1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 35 */ 36 37 /* 38 * External virtual filesystem routines 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_compat.h" 45 #include "opt_ddb.h" 46 #include "opt_watchdog.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/condvar.h> 53 #include <sys/conf.h> 54 #include <sys/dirent.h> 55 #include <sys/event.h> 56 #include <sys/eventhandler.h> 57 #include <sys/extattr.h> 58 #include <sys/file.h> 59 #include <sys/fcntl.h> 60 #include <sys/jail.h> 61 #include <sys/kdb.h> 62 #include <sys/kernel.h> 63 #include <sys/kthread.h> 64 #include <sys/lockf.h> 65 #include <sys/malloc.h> 66 #include <sys/mount.h> 67 #include <sys/namei.h> 68 #include <sys/pctrie.h> 69 #include <sys/priv.h> 70 #include <sys/reboot.h> 71 #include <sys/rwlock.h> 72 #include <sys/sched.h> 73 #include <sys/sleepqueue.h> 74 #include <sys/smp.h> 75 #include <sys/stat.h> 76 #include <sys/sysctl.h> 77 #include <sys/syslog.h> 78 #include <sys/vmmeter.h> 79 #include <sys/vnode.h> 80 #include <sys/watchdog.h> 81 82 #include <machine/stdarg.h> 83 84 #include <security/mac/mac_framework.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_extern.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_kern.h> 93 #include <vm/uma.h> 94 95 #ifdef DDB 96 #include <ddb/ddb.h> 97 #endif 98 99 static void delmntque(struct vnode *vp); 100 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 101 int slpflag, int slptimeo); 102 static void syncer_shutdown(void *arg, int howto); 103 static int vtryrecycle(struct vnode *vp); 104 static void v_incr_usecount(struct vnode *); 105 static void v_decr_usecount(struct vnode *); 106 static void v_decr_useonly(struct vnode *); 107 static void v_upgrade_usecount(struct vnode *); 108 static void vnlru_free(int); 109 static void vgonel(struct vnode *); 110 static void vfs_knllock(void *arg); 111 static void vfs_knlunlock(void *arg); 112 static void vfs_knl_assert_locked(void *arg); 113 static void vfs_knl_assert_unlocked(void *arg); 114 static void destroy_vpollinfo(struct vpollinfo *vi); 115 116 /* 117 * Number of vnodes in existence. Increased whenever getnewvnode() 118 * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode. 119 */ 120 static unsigned long numvnodes; 121 122 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 123 "Number of vnodes in existence"); 124 125 static u_long vnodes_created; 126 SYSCTL_ULONG(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 127 0, "Number of vnodes created by getnewvnode"); 128 129 /* 130 * Conversion tables for conversion from vnode types to inode formats 131 * and back. 132 */ 133 enum vtype iftovt_tab[16] = { 134 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 135 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 136 }; 137 int vttoif_tab[10] = { 138 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 139 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 140 }; 141 142 /* 143 * List of vnodes that are ready for recycling. 144 */ 145 static TAILQ_HEAD(freelst, vnode) vnode_free_list; 146 147 /* 148 * Free vnode target. Free vnodes may simply be files which have been stat'd 149 * but not read. This is somewhat common, and a small cache of such files 150 * should be kept to avoid recreation costs. 151 */ 152 static u_long wantfreevnodes; 153 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, ""); 154 /* Number of vnodes in the free list. */ 155 static u_long freevnodes; 156 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, 157 "Number of vnodes in the free list"); 158 159 static int vlru_allow_cache_src; 160 SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW, 161 &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode"); 162 163 static u_long recycles_count; 164 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 0, 165 "Number of vnodes recycled to avoid exceding kern.maxvnodes"); 166 167 /* 168 * Various variables used for debugging the new implementation of 169 * reassignbuf(). 170 * XXX these are probably of (very) limited utility now. 171 */ 172 static int reassignbufcalls; 173 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, 174 "Number of calls to reassignbuf"); 175 176 static u_long free_owe_inact; 177 SYSCTL_ULONG(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact, 0, 178 "Number of times free vnodes kept on active list due to VFS " 179 "owing inactivation"); 180 181 /* 182 * Cache for the mount type id assigned to NFS. This is used for 183 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c. 184 */ 185 int nfs_mount_type = -1; 186 187 /* To keep more than one thread at a time from running vfs_getnewfsid */ 188 static struct mtx mntid_mtx; 189 190 /* 191 * Lock for any access to the following: 192 * vnode_free_list 193 * numvnodes 194 * freevnodes 195 */ 196 static struct mtx vnode_free_list_mtx; 197 198 /* Publicly exported FS */ 199 struct nfs_public nfs_pub; 200 201 static uma_zone_t buf_trie_zone; 202 203 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 204 static uma_zone_t vnode_zone; 205 static uma_zone_t vnodepoll_zone; 206 207 /* 208 * The workitem queue. 209 * 210 * It is useful to delay writes of file data and filesystem metadata 211 * for tens of seconds so that quickly created and deleted files need 212 * not waste disk bandwidth being created and removed. To realize this, 213 * we append vnodes to a "workitem" queue. When running with a soft 214 * updates implementation, most pending metadata dependencies should 215 * not wait for more than a few seconds. Thus, mounted on block devices 216 * are delayed only about a half the time that file data is delayed. 217 * Similarly, directory updates are more critical, so are only delayed 218 * about a third the time that file data is delayed. Thus, there are 219 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 220 * one each second (driven off the filesystem syncer process). The 221 * syncer_delayno variable indicates the next queue that is to be processed. 222 * Items that need to be processed soon are placed in this queue: 223 * 224 * syncer_workitem_pending[syncer_delayno] 225 * 226 * A delay of fifteen seconds is done by placing the request fifteen 227 * entries later in the queue: 228 * 229 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 230 * 231 */ 232 static int syncer_delayno; 233 static long syncer_mask; 234 LIST_HEAD(synclist, bufobj); 235 static struct synclist *syncer_workitem_pending; 236 /* 237 * The sync_mtx protects: 238 * bo->bo_synclist 239 * sync_vnode_count 240 * syncer_delayno 241 * syncer_state 242 * syncer_workitem_pending 243 * syncer_worklist_len 244 * rushjob 245 */ 246 static struct mtx sync_mtx; 247 static struct cv sync_wakeup; 248 249 #define SYNCER_MAXDELAY 32 250 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 251 static int syncdelay = 30; /* max time to delay syncing data */ 252 static int filedelay = 30; /* time to delay syncing files */ 253 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 254 "Time to delay syncing files (in seconds)"); 255 static int dirdelay = 29; /* time to delay syncing directories */ 256 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 257 "Time to delay syncing directories (in seconds)"); 258 static int metadelay = 28; /* time to delay syncing metadata */ 259 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 260 "Time to delay syncing metadata (in seconds)"); 261 static int rushjob; /* number of slots to run ASAP */ 262 static int stat_rush_requests; /* number of times I/O speeded up */ 263 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 264 "Number of times I/O speeded up (rush requests)"); 265 266 /* 267 * When shutting down the syncer, run it at four times normal speed. 268 */ 269 #define SYNCER_SHUTDOWN_SPEEDUP 4 270 static int sync_vnode_count; 271 static int syncer_worklist_len; 272 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 273 syncer_state; 274 275 /* 276 * Number of vnodes we want to exist at any one time. This is mostly used 277 * to size hash tables in vnode-related code. It is normally not used in 278 * getnewvnode(), as wantfreevnodes is normally nonzero.) 279 * 280 * XXX desiredvnodes is historical cruft and should not exist. 281 */ 282 int desiredvnodes; 283 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, 284 &desiredvnodes, 0, "Maximum number of vnodes"); 285 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 286 &wantfreevnodes, 0, "Minimum number of vnodes (legacy)"); 287 static int vnlru_nowhere; 288 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, 289 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 290 291 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 292 static int vnsz2log; 293 294 /* 295 * Support for the bufobj clean & dirty pctrie. 296 */ 297 static void * 298 buf_trie_alloc(struct pctrie *ptree) 299 { 300 301 return uma_zalloc(buf_trie_zone, M_NOWAIT); 302 } 303 304 static void 305 buf_trie_free(struct pctrie *ptree, void *node) 306 { 307 308 uma_zfree(buf_trie_zone, node); 309 } 310 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free); 311 312 /* 313 * Initialize the vnode management data structures. 314 * 315 * Reevaluate the following cap on the number of vnodes after the physical 316 * memory size exceeds 512GB. In the limit, as the physical memory size 317 * grows, the ratio of physical pages to vnodes approaches sixteen to one. 318 */ 319 #ifndef MAXVNODES_MAX 320 #define MAXVNODES_MAX (512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16)) 321 #endif 322 static void 323 vntblinit(void *dummy __unused) 324 { 325 u_int i; 326 int physvnodes, virtvnodes; 327 328 /* 329 * Desiredvnodes is a function of the physical memory size and the 330 * kernel's heap size. Generally speaking, it scales with the 331 * physical memory size. The ratio of desiredvnodes to physical pages 332 * is one to four until desiredvnodes exceeds 98,304. Thereafter, the 333 * marginal ratio of desiredvnodes to physical pages is one to 334 * sixteen. However, desiredvnodes is limited by the kernel's heap 335 * size. The memory required by desiredvnodes vnodes and vm objects 336 * may not exceed one seventh of the kernel's heap size. 337 */ 338 physvnodes = maxproc + vm_cnt.v_page_count / 16 + 3 * min(98304 * 4, 339 vm_cnt.v_page_count) / 16; 340 virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) + 341 sizeof(struct vnode))); 342 desiredvnodes = min(physvnodes, virtvnodes); 343 if (desiredvnodes > MAXVNODES_MAX) { 344 if (bootverbose) 345 printf("Reducing kern.maxvnodes %d -> %d\n", 346 desiredvnodes, MAXVNODES_MAX); 347 desiredvnodes = MAXVNODES_MAX; 348 } 349 wantfreevnodes = desiredvnodes / 4; 350 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 351 TAILQ_INIT(&vnode_free_list); 352 mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF); 353 vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL, 354 NULL, NULL, UMA_ALIGN_PTR, 0); 355 vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo), 356 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 357 /* 358 * Preallocate enough nodes to support one-per buf so that 359 * we can not fail an insert. reassignbuf() callers can not 360 * tolerate the insertion failure. 361 */ 362 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 363 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 364 UMA_ZONE_NOFREE | UMA_ZONE_VM); 365 uma_prealloc(buf_trie_zone, nbuf); 366 /* 367 * Initialize the filesystem syncer. 368 */ 369 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 370 &syncer_mask); 371 syncer_maxdelay = syncer_mask + 1; 372 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 373 cv_init(&sync_wakeup, "syncer"); 374 for (i = 1; i <= sizeof(struct vnode); i <<= 1) 375 vnsz2log++; 376 vnsz2log--; 377 } 378 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 379 380 381 /* 382 * Mark a mount point as busy. Used to synchronize access and to delay 383 * unmounting. Eventually, mountlist_mtx is not released on failure. 384 * 385 * vfs_busy() is a custom lock, it can block the caller. 386 * vfs_busy() only sleeps if the unmount is active on the mount point. 387 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 388 * vnode belonging to mp. 389 * 390 * Lookup uses vfs_busy() to traverse mount points. 391 * root fs var fs 392 * / vnode lock A / vnode lock (/var) D 393 * /var vnode lock B /log vnode lock(/var/log) E 394 * vfs_busy lock C vfs_busy lock F 395 * 396 * Within each file system, the lock order is C->A->B and F->D->E. 397 * 398 * When traversing across mounts, the system follows that lock order: 399 * 400 * C->A->B 401 * | 402 * +->F->D->E 403 * 404 * The lookup() process for namei("/var") illustrates the process: 405 * VOP_LOOKUP() obtains B while A is held 406 * vfs_busy() obtains a shared lock on F while A and B are held 407 * vput() releases lock on B 408 * vput() releases lock on A 409 * VFS_ROOT() obtains lock on D while shared lock on F is held 410 * vfs_unbusy() releases shared lock on F 411 * vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 412 * Attempt to lock A (instead of vp_crossmp) while D is held would 413 * violate the global order, causing deadlocks. 414 * 415 * dounmount() locks B while F is drained. 416 */ 417 int 418 vfs_busy(struct mount *mp, int flags) 419 { 420 421 MPASS((flags & ~MBF_MASK) == 0); 422 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 423 424 MNT_ILOCK(mp); 425 MNT_REF(mp); 426 /* 427 * If mount point is currenly being unmounted, sleep until the 428 * mount point fate is decided. If thread doing the unmounting fails, 429 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 430 * that this mount point has survived the unmount attempt and vfs_busy 431 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 432 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 433 * about to be really destroyed. vfs_busy needs to release its 434 * reference on the mount point in this case and return with ENOENT, 435 * telling the caller that mount mount it tried to busy is no longer 436 * valid. 437 */ 438 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 439 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 440 MNT_REL(mp); 441 MNT_IUNLOCK(mp); 442 CTR1(KTR_VFS, "%s: failed busying before sleeping", 443 __func__); 444 return (ENOENT); 445 } 446 if (flags & MBF_MNTLSTLOCK) 447 mtx_unlock(&mountlist_mtx); 448 mp->mnt_kern_flag |= MNTK_MWAIT; 449 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 450 if (flags & MBF_MNTLSTLOCK) 451 mtx_lock(&mountlist_mtx); 452 MNT_ILOCK(mp); 453 } 454 if (flags & MBF_MNTLSTLOCK) 455 mtx_unlock(&mountlist_mtx); 456 mp->mnt_lockref++; 457 MNT_IUNLOCK(mp); 458 return (0); 459 } 460 461 /* 462 * Free a busy filesystem. 463 */ 464 void 465 vfs_unbusy(struct mount *mp) 466 { 467 468 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 469 MNT_ILOCK(mp); 470 MNT_REL(mp); 471 KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref")); 472 mp->mnt_lockref--; 473 if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 474 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 475 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 476 mp->mnt_kern_flag &= ~MNTK_DRAINING; 477 wakeup(&mp->mnt_lockref); 478 } 479 MNT_IUNLOCK(mp); 480 } 481 482 /* 483 * Lookup a mount point by filesystem identifier. 484 */ 485 struct mount * 486 vfs_getvfs(fsid_t *fsid) 487 { 488 struct mount *mp; 489 490 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 491 mtx_lock(&mountlist_mtx); 492 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 493 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 494 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 495 vfs_ref(mp); 496 mtx_unlock(&mountlist_mtx); 497 return (mp); 498 } 499 } 500 mtx_unlock(&mountlist_mtx); 501 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 502 return ((struct mount *) 0); 503 } 504 505 /* 506 * Lookup a mount point by filesystem identifier, busying it before 507 * returning. 508 * 509 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 510 * cache for popular filesystem identifiers. The cache is lockess, using 511 * the fact that struct mount's are never freed. In worst case we may 512 * get pointer to unmounted or even different filesystem, so we have to 513 * check what we got, and go slow way if so. 514 */ 515 struct mount * 516 vfs_busyfs(fsid_t *fsid) 517 { 518 #define FSID_CACHE_SIZE 256 519 typedef struct mount * volatile vmp_t; 520 static vmp_t cache[FSID_CACHE_SIZE]; 521 struct mount *mp; 522 int error; 523 uint32_t hash; 524 525 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 526 hash = fsid->val[0] ^ fsid->val[1]; 527 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 528 mp = cache[hash]; 529 if (mp == NULL || 530 mp->mnt_stat.f_fsid.val[0] != fsid->val[0] || 531 mp->mnt_stat.f_fsid.val[1] != fsid->val[1]) 532 goto slow; 533 if (vfs_busy(mp, 0) != 0) { 534 cache[hash] = NULL; 535 goto slow; 536 } 537 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 538 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) 539 return (mp); 540 else 541 vfs_unbusy(mp); 542 543 slow: 544 mtx_lock(&mountlist_mtx); 545 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 546 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 547 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 548 error = vfs_busy(mp, MBF_MNTLSTLOCK); 549 if (error) { 550 cache[hash] = NULL; 551 mtx_unlock(&mountlist_mtx); 552 return (NULL); 553 } 554 cache[hash] = mp; 555 return (mp); 556 } 557 } 558 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 559 mtx_unlock(&mountlist_mtx); 560 return ((struct mount *) 0); 561 } 562 563 /* 564 * Check if a user can access privileged mount options. 565 */ 566 int 567 vfs_suser(struct mount *mp, struct thread *td) 568 { 569 int error; 570 571 /* 572 * If the thread is jailed, but this is not a jail-friendly file 573 * system, deny immediately. 574 */ 575 if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred)) 576 return (EPERM); 577 578 /* 579 * If the file system was mounted outside the jail of the calling 580 * thread, deny immediately. 581 */ 582 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 583 return (EPERM); 584 585 /* 586 * If file system supports delegated administration, we don't check 587 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 588 * by the file system itself. 589 * If this is not the user that did original mount, we check for 590 * the PRIV_VFS_MOUNT_OWNER privilege. 591 */ 592 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 593 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 594 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 595 return (error); 596 } 597 return (0); 598 } 599 600 /* 601 * Get a new unique fsid. Try to make its val[0] unique, since this value 602 * will be used to create fake device numbers for stat(). Also try (but 603 * not so hard) make its val[0] unique mod 2^16, since some emulators only 604 * support 16-bit device numbers. We end up with unique val[0]'s for the 605 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 606 * 607 * Keep in mind that several mounts may be running in parallel. Starting 608 * the search one past where the previous search terminated is both a 609 * micro-optimization and a defense against returning the same fsid to 610 * different mounts. 611 */ 612 void 613 vfs_getnewfsid(struct mount *mp) 614 { 615 static uint16_t mntid_base; 616 struct mount *nmp; 617 fsid_t tfsid; 618 int mtype; 619 620 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 621 mtx_lock(&mntid_mtx); 622 mtype = mp->mnt_vfc->vfc_typenum; 623 tfsid.val[1] = mtype; 624 mtype = (mtype & 0xFF) << 24; 625 for (;;) { 626 tfsid.val[0] = makedev(255, 627 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 628 mntid_base++; 629 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 630 break; 631 vfs_rel(nmp); 632 } 633 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 634 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 635 mtx_unlock(&mntid_mtx); 636 } 637 638 /* 639 * Knob to control the precision of file timestamps: 640 * 641 * 0 = seconds only; nanoseconds zeroed. 642 * 1 = seconds and nanoseconds, accurate within 1/HZ. 643 * 2 = seconds and nanoseconds, truncated to microseconds. 644 * >=3 = seconds and nanoseconds, maximum precision. 645 */ 646 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 647 648 static int timestamp_precision = TSP_USEC; 649 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 650 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 651 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, " 652 "3+: sec + ns (max. precision))"); 653 654 /* 655 * Get a current timestamp. 656 */ 657 void 658 vfs_timestamp(struct timespec *tsp) 659 { 660 struct timeval tv; 661 662 switch (timestamp_precision) { 663 case TSP_SEC: 664 tsp->tv_sec = time_second; 665 tsp->tv_nsec = 0; 666 break; 667 case TSP_HZ: 668 getnanotime(tsp); 669 break; 670 case TSP_USEC: 671 microtime(&tv); 672 TIMEVAL_TO_TIMESPEC(&tv, tsp); 673 break; 674 case TSP_NSEC: 675 default: 676 nanotime(tsp); 677 break; 678 } 679 } 680 681 /* 682 * Set vnode attributes to VNOVAL 683 */ 684 void 685 vattr_null(struct vattr *vap) 686 { 687 688 vap->va_type = VNON; 689 vap->va_size = VNOVAL; 690 vap->va_bytes = VNOVAL; 691 vap->va_mode = VNOVAL; 692 vap->va_nlink = VNOVAL; 693 vap->va_uid = VNOVAL; 694 vap->va_gid = VNOVAL; 695 vap->va_fsid = VNOVAL; 696 vap->va_fileid = VNOVAL; 697 vap->va_blocksize = VNOVAL; 698 vap->va_rdev = VNOVAL; 699 vap->va_atime.tv_sec = VNOVAL; 700 vap->va_atime.tv_nsec = VNOVAL; 701 vap->va_mtime.tv_sec = VNOVAL; 702 vap->va_mtime.tv_nsec = VNOVAL; 703 vap->va_ctime.tv_sec = VNOVAL; 704 vap->va_ctime.tv_nsec = VNOVAL; 705 vap->va_birthtime.tv_sec = VNOVAL; 706 vap->va_birthtime.tv_nsec = VNOVAL; 707 vap->va_flags = VNOVAL; 708 vap->va_gen = VNOVAL; 709 vap->va_vaflags = 0; 710 } 711 712 /* 713 * This routine is called when we have too many vnodes. It attempts 714 * to free <count> vnodes and will potentially free vnodes that still 715 * have VM backing store (VM backing store is typically the cause 716 * of a vnode blowout so we want to do this). Therefore, this operation 717 * is not considered cheap. 718 * 719 * A number of conditions may prevent a vnode from being reclaimed. 720 * the buffer cache may have references on the vnode, a directory 721 * vnode may still have references due to the namei cache representing 722 * underlying files, or the vnode may be in active use. It is not 723 * desireable to reuse such vnodes. These conditions may cause the 724 * number of vnodes to reach some minimum value regardless of what 725 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 726 */ 727 static int 728 vlrureclaim(struct mount *mp) 729 { 730 struct vnode *vp; 731 int done; 732 int trigger; 733 int usevnodes; 734 int count; 735 736 /* 737 * Calculate the trigger point, don't allow user 738 * screwups to blow us up. This prevents us from 739 * recycling vnodes with lots of resident pages. We 740 * aren't trying to free memory, we are trying to 741 * free vnodes. 742 */ 743 usevnodes = desiredvnodes; 744 if (usevnodes <= 0) 745 usevnodes = 1; 746 trigger = vm_cnt.v_page_count * 2 / usevnodes; 747 done = 0; 748 vn_start_write(NULL, &mp, V_WAIT); 749 MNT_ILOCK(mp); 750 count = mp->mnt_nvnodelistsize / 10 + 1; 751 while (count != 0) { 752 vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 753 while (vp != NULL && vp->v_type == VMARKER) 754 vp = TAILQ_NEXT(vp, v_nmntvnodes); 755 if (vp == NULL) 756 break; 757 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 758 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 759 --count; 760 if (!VI_TRYLOCK(vp)) 761 goto next_iter; 762 /* 763 * If it's been deconstructed already, it's still 764 * referenced, or it exceeds the trigger, skip it. 765 */ 766 if (vp->v_usecount || 767 (!vlru_allow_cache_src && 768 !LIST_EMPTY(&(vp)->v_cache_src)) || 769 (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL && 770 vp->v_object->resident_page_count > trigger)) { 771 VI_UNLOCK(vp); 772 goto next_iter; 773 } 774 MNT_IUNLOCK(mp); 775 vholdl(vp); 776 if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) { 777 vdrop(vp); 778 goto next_iter_mntunlocked; 779 } 780 VI_LOCK(vp); 781 /* 782 * v_usecount may have been bumped after VOP_LOCK() dropped 783 * the vnode interlock and before it was locked again. 784 * 785 * It is not necessary to recheck VI_DOOMED because it can 786 * only be set by another thread that holds both the vnode 787 * lock and vnode interlock. If another thread has the 788 * vnode lock before we get to VOP_LOCK() and obtains the 789 * vnode interlock after VOP_LOCK() drops the vnode 790 * interlock, the other thread will be unable to drop the 791 * vnode lock before our VOP_LOCK() call fails. 792 */ 793 if (vp->v_usecount || 794 (!vlru_allow_cache_src && 795 !LIST_EMPTY(&(vp)->v_cache_src)) || 796 (vp->v_object != NULL && 797 vp->v_object->resident_page_count > trigger)) { 798 VOP_UNLOCK(vp, LK_INTERLOCK); 799 vdrop(vp); 800 goto next_iter_mntunlocked; 801 } 802 KASSERT((vp->v_iflag & VI_DOOMED) == 0, 803 ("VI_DOOMED unexpectedly detected in vlrureclaim()")); 804 atomic_add_long(&recycles_count, 1); 805 vgonel(vp); 806 VOP_UNLOCK(vp, 0); 807 vdropl(vp); 808 done++; 809 next_iter_mntunlocked: 810 if (!should_yield()) 811 goto relock_mnt; 812 goto yield; 813 next_iter: 814 if (!should_yield()) 815 continue; 816 MNT_IUNLOCK(mp); 817 yield: 818 kern_yield(PRI_USER); 819 relock_mnt: 820 MNT_ILOCK(mp); 821 } 822 MNT_IUNLOCK(mp); 823 vn_finished_write(mp); 824 return done; 825 } 826 827 /* 828 * Attempt to keep the free list at wantfreevnodes length. 829 */ 830 static void 831 vnlru_free(int count) 832 { 833 struct vnode *vp; 834 835 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 836 for (; count > 0; count--) { 837 vp = TAILQ_FIRST(&vnode_free_list); 838 /* 839 * The list can be modified while the free_list_mtx 840 * has been dropped and vp could be NULL here. 841 */ 842 if (!vp) 843 break; 844 VNASSERT(vp->v_op != NULL, vp, 845 ("vnlru_free: vnode already reclaimed.")); 846 KASSERT((vp->v_iflag & VI_FREE) != 0, 847 ("Removing vnode not on freelist")); 848 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 849 ("Mangling active vnode")); 850 TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist); 851 /* 852 * Don't recycle if we can't get the interlock. 853 */ 854 if (!VI_TRYLOCK(vp)) { 855 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist); 856 continue; 857 } 858 VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0, 859 vp, ("vp inconsistent on freelist")); 860 861 /* 862 * The clear of VI_FREE prevents activation of the 863 * vnode. There is no sense in putting the vnode on 864 * the mount point active list, only to remove it 865 * later during recycling. Inline the relevant part 866 * of vholdl(), to avoid triggering assertions or 867 * activating. 868 */ 869 freevnodes--; 870 vp->v_iflag &= ~VI_FREE; 871 vp->v_holdcnt++; 872 873 mtx_unlock(&vnode_free_list_mtx); 874 VI_UNLOCK(vp); 875 vtryrecycle(vp); 876 /* 877 * If the recycled succeeded this vdrop will actually free 878 * the vnode. If not it will simply place it back on 879 * the free list. 880 */ 881 vdrop(vp); 882 mtx_lock(&vnode_free_list_mtx); 883 } 884 } 885 /* 886 * Attempt to recycle vnodes in a context that is always safe to block. 887 * Calling vlrurecycle() from the bowels of filesystem code has some 888 * interesting deadlock problems. 889 */ 890 static struct proc *vnlruproc; 891 static int vnlruproc_sig; 892 893 static void 894 vnlru_proc(void) 895 { 896 struct mount *mp, *nmp; 897 int done; 898 struct proc *p = vnlruproc; 899 900 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p, 901 SHUTDOWN_PRI_FIRST); 902 903 for (;;) { 904 kproc_suspend_check(p); 905 mtx_lock(&vnode_free_list_mtx); 906 if (freevnodes > wantfreevnodes) 907 vnlru_free(freevnodes - wantfreevnodes); 908 if (numvnodes <= desiredvnodes * 9 / 10) { 909 vnlruproc_sig = 0; 910 wakeup(&vnlruproc_sig); 911 msleep(vnlruproc, &vnode_free_list_mtx, 912 PVFS|PDROP, "vlruwt", hz); 913 continue; 914 } 915 mtx_unlock(&vnode_free_list_mtx); 916 done = 0; 917 mtx_lock(&mountlist_mtx); 918 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 919 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) { 920 nmp = TAILQ_NEXT(mp, mnt_list); 921 continue; 922 } 923 done += vlrureclaim(mp); 924 mtx_lock(&mountlist_mtx); 925 nmp = TAILQ_NEXT(mp, mnt_list); 926 vfs_unbusy(mp); 927 } 928 mtx_unlock(&mountlist_mtx); 929 if (done == 0) { 930 #if 0 931 /* These messages are temporary debugging aids */ 932 if (vnlru_nowhere < 5) 933 printf("vnlru process getting nowhere..\n"); 934 else if (vnlru_nowhere == 5) 935 printf("vnlru process messages stopped.\n"); 936 #endif 937 vnlru_nowhere++; 938 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 939 } else 940 kern_yield(PRI_USER); 941 } 942 } 943 944 static struct kproc_desc vnlru_kp = { 945 "vnlru", 946 vnlru_proc, 947 &vnlruproc 948 }; 949 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 950 &vnlru_kp); 951 952 /* 953 * Routines having to do with the management of the vnode table. 954 */ 955 956 /* 957 * Try to recycle a freed vnode. We abort if anyone picks up a reference 958 * before we actually vgone(). This function must be called with the vnode 959 * held to prevent the vnode from being returned to the free list midway 960 * through vgone(). 961 */ 962 static int 963 vtryrecycle(struct vnode *vp) 964 { 965 struct mount *vnmp; 966 967 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 968 VNASSERT(vp->v_holdcnt, vp, 969 ("vtryrecycle: Recycling vp %p without a reference.", vp)); 970 /* 971 * This vnode may found and locked via some other list, if so we 972 * can't recycle it yet. 973 */ 974 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 975 CTR2(KTR_VFS, 976 "%s: impossible to recycle, vp %p lock is already held", 977 __func__, vp); 978 return (EWOULDBLOCK); 979 } 980 /* 981 * Don't recycle if its filesystem is being suspended. 982 */ 983 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 984 VOP_UNLOCK(vp, 0); 985 CTR2(KTR_VFS, 986 "%s: impossible to recycle, cannot start the write for %p", 987 __func__, vp); 988 return (EBUSY); 989 } 990 /* 991 * If we got this far, we need to acquire the interlock and see if 992 * anyone picked up this vnode from another list. If not, we will 993 * mark it with DOOMED via vgonel() so that anyone who does find it 994 * will skip over it. 995 */ 996 VI_LOCK(vp); 997 if (vp->v_usecount) { 998 VOP_UNLOCK(vp, LK_INTERLOCK); 999 vn_finished_write(vnmp); 1000 CTR2(KTR_VFS, 1001 "%s: impossible to recycle, %p is already referenced", 1002 __func__, vp); 1003 return (EBUSY); 1004 } 1005 if ((vp->v_iflag & VI_DOOMED) == 0) { 1006 atomic_add_long(&recycles_count, 1); 1007 vgonel(vp); 1008 } 1009 VOP_UNLOCK(vp, LK_INTERLOCK); 1010 vn_finished_write(vnmp); 1011 return (0); 1012 } 1013 1014 /* 1015 * Wait for available vnodes. 1016 */ 1017 static int 1018 getnewvnode_wait(int suspended) 1019 { 1020 1021 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 1022 if (numvnodes > desiredvnodes) { 1023 if (suspended) { 1024 /* 1025 * File system is beeing suspended, we cannot risk a 1026 * deadlock here, so allocate new vnode anyway. 1027 */ 1028 if (freevnodes > wantfreevnodes) 1029 vnlru_free(freevnodes - wantfreevnodes); 1030 return (0); 1031 } 1032 if (vnlruproc_sig == 0) { 1033 vnlruproc_sig = 1; /* avoid unnecessary wakeups */ 1034 wakeup(vnlruproc); 1035 } 1036 msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS, 1037 "vlruwk", hz); 1038 } 1039 return (numvnodes > desiredvnodes ? ENFILE : 0); 1040 } 1041 1042 void 1043 getnewvnode_reserve(u_int count) 1044 { 1045 struct thread *td; 1046 1047 td = curthread; 1048 /* First try to be quick and racy. */ 1049 if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) { 1050 td->td_vp_reserv += count; 1051 return; 1052 } else 1053 atomic_subtract_long(&numvnodes, count); 1054 1055 mtx_lock(&vnode_free_list_mtx); 1056 while (count > 0) { 1057 if (getnewvnode_wait(0) == 0) { 1058 count--; 1059 td->td_vp_reserv++; 1060 atomic_add_long(&numvnodes, 1); 1061 } 1062 } 1063 mtx_unlock(&vnode_free_list_mtx); 1064 } 1065 1066 void 1067 getnewvnode_drop_reserve(void) 1068 { 1069 struct thread *td; 1070 1071 td = curthread; 1072 atomic_subtract_long(&numvnodes, td->td_vp_reserv); 1073 td->td_vp_reserv = 0; 1074 } 1075 1076 /* 1077 * Return the next vnode from the free list. 1078 */ 1079 int 1080 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 1081 struct vnode **vpp) 1082 { 1083 struct vnode *vp; 1084 struct bufobj *bo; 1085 struct thread *td; 1086 int error; 1087 1088 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 1089 vp = NULL; 1090 td = curthread; 1091 if (td->td_vp_reserv > 0) { 1092 td->td_vp_reserv -= 1; 1093 goto alloc; 1094 } 1095 mtx_lock(&vnode_free_list_mtx); 1096 /* 1097 * Lend our context to reclaim vnodes if they've exceeded the max. 1098 */ 1099 if (freevnodes > wantfreevnodes) 1100 vnlru_free(1); 1101 error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag & 1102 MNTK_SUSPEND)); 1103 #if 0 /* XXX Not all VFS_VGET/ffs_vget callers check returns. */ 1104 if (error != 0) { 1105 mtx_unlock(&vnode_free_list_mtx); 1106 return (error); 1107 } 1108 #endif 1109 atomic_add_long(&numvnodes, 1); 1110 mtx_unlock(&vnode_free_list_mtx); 1111 alloc: 1112 atomic_add_long(&vnodes_created, 1); 1113 vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO); 1114 /* 1115 * Setup locks. 1116 */ 1117 vp->v_vnlock = &vp->v_lock; 1118 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 1119 /* 1120 * By default, don't allow shared locks unless filesystems 1121 * opt-in. 1122 */ 1123 lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE | LK_IS_VNODE); 1124 /* 1125 * Initialize bufobj. 1126 */ 1127 bo = &vp->v_bufobj; 1128 bo->__bo_vnode = vp; 1129 rw_init(BO_LOCKPTR(bo), "bufobj interlock"); 1130 bo->bo_ops = &buf_ops_bio; 1131 bo->bo_private = vp; 1132 TAILQ_INIT(&bo->bo_clean.bv_hd); 1133 TAILQ_INIT(&bo->bo_dirty.bv_hd); 1134 /* 1135 * Initialize namecache. 1136 */ 1137 LIST_INIT(&vp->v_cache_src); 1138 TAILQ_INIT(&vp->v_cache_dst); 1139 /* 1140 * Finalize various vnode identity bits. 1141 */ 1142 vp->v_type = VNON; 1143 vp->v_tag = tag; 1144 vp->v_op = vops; 1145 v_incr_usecount(vp); 1146 vp->v_data = NULL; 1147 #ifdef MAC 1148 mac_vnode_init(vp); 1149 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 1150 mac_vnode_associate_singlelabel(mp, vp); 1151 else if (mp == NULL && vops != &dead_vnodeops) 1152 printf("NULL mp in getnewvnode()\n"); 1153 #endif 1154 if (mp != NULL) { 1155 bo->bo_bsize = mp->mnt_stat.f_iosize; 1156 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0) 1157 vp->v_vflag |= VV_NOKNOTE; 1158 } 1159 rangelock_init(&vp->v_rl); 1160 1161 /* 1162 * For the filesystems which do not use vfs_hash_insert(), 1163 * still initialize v_hash to have vfs_hash_index() useful. 1164 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 1165 * its own hashing. 1166 */ 1167 vp->v_hash = (uintptr_t)vp >> vnsz2log; 1168 1169 *vpp = vp; 1170 return (0); 1171 } 1172 1173 /* 1174 * Delete from old mount point vnode list, if on one. 1175 */ 1176 static void 1177 delmntque(struct vnode *vp) 1178 { 1179 struct mount *mp; 1180 int active; 1181 1182 mp = vp->v_mount; 1183 if (mp == NULL) 1184 return; 1185 MNT_ILOCK(mp); 1186 VI_LOCK(vp); 1187 KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize, 1188 ("Active vnode list size %d > Vnode list size %d", 1189 mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize)); 1190 active = vp->v_iflag & VI_ACTIVE; 1191 vp->v_iflag &= ~VI_ACTIVE; 1192 if (active) { 1193 mtx_lock(&vnode_free_list_mtx); 1194 TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist); 1195 mp->mnt_activevnodelistsize--; 1196 mtx_unlock(&vnode_free_list_mtx); 1197 } 1198 vp->v_mount = NULL; 1199 VI_UNLOCK(vp); 1200 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 1201 ("bad mount point vnode list size")); 1202 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1203 mp->mnt_nvnodelistsize--; 1204 MNT_REL(mp); 1205 MNT_IUNLOCK(mp); 1206 } 1207 1208 static void 1209 insmntque_stddtr(struct vnode *vp, void *dtr_arg) 1210 { 1211 1212 vp->v_data = NULL; 1213 vp->v_op = &dead_vnodeops; 1214 vgone(vp); 1215 vput(vp); 1216 } 1217 1218 /* 1219 * Insert into list of vnodes for the new mount point, if available. 1220 */ 1221 int 1222 insmntque1(struct vnode *vp, struct mount *mp, 1223 void (*dtr)(struct vnode *, void *), void *dtr_arg) 1224 { 1225 1226 KASSERT(vp->v_mount == NULL, 1227 ("insmntque: vnode already on per mount vnode list")); 1228 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 1229 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 1230 1231 /* 1232 * We acquire the vnode interlock early to ensure that the 1233 * vnode cannot be recycled by another process releasing a 1234 * holdcnt on it before we get it on both the vnode list 1235 * and the active vnode list. The mount mutex protects only 1236 * manipulation of the vnode list and the vnode freelist 1237 * mutex protects only manipulation of the active vnode list. 1238 * Hence the need to hold the vnode interlock throughout. 1239 */ 1240 MNT_ILOCK(mp); 1241 VI_LOCK(vp); 1242 if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 && 1243 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 1244 mp->mnt_nvnodelistsize == 0)) && 1245 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 1246 VI_UNLOCK(vp); 1247 MNT_IUNLOCK(mp); 1248 if (dtr != NULL) 1249 dtr(vp, dtr_arg); 1250 return (EBUSY); 1251 } 1252 vp->v_mount = mp; 1253 MNT_REF(mp); 1254 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1255 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 1256 ("neg mount point vnode list size")); 1257 mp->mnt_nvnodelistsize++; 1258 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 1259 ("Activating already active vnode")); 1260 vp->v_iflag |= VI_ACTIVE; 1261 mtx_lock(&vnode_free_list_mtx); 1262 TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist); 1263 mp->mnt_activevnodelistsize++; 1264 mtx_unlock(&vnode_free_list_mtx); 1265 VI_UNLOCK(vp); 1266 MNT_IUNLOCK(mp); 1267 return (0); 1268 } 1269 1270 int 1271 insmntque(struct vnode *vp, struct mount *mp) 1272 { 1273 1274 return (insmntque1(vp, mp, insmntque_stddtr, NULL)); 1275 } 1276 1277 /* 1278 * Flush out and invalidate all buffers associated with a bufobj 1279 * Called with the underlying object locked. 1280 */ 1281 int 1282 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 1283 { 1284 int error; 1285 1286 BO_LOCK(bo); 1287 if (flags & V_SAVE) { 1288 error = bufobj_wwait(bo, slpflag, slptimeo); 1289 if (error) { 1290 BO_UNLOCK(bo); 1291 return (error); 1292 } 1293 if (bo->bo_dirty.bv_cnt > 0) { 1294 BO_UNLOCK(bo); 1295 if ((error = BO_SYNC(bo, MNT_WAIT)) != 0) 1296 return (error); 1297 /* 1298 * XXX We could save a lock/unlock if this was only 1299 * enabled under INVARIANTS 1300 */ 1301 BO_LOCK(bo); 1302 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) 1303 panic("vinvalbuf: dirty bufs"); 1304 } 1305 } 1306 /* 1307 * If you alter this loop please notice that interlock is dropped and 1308 * reacquired in flushbuflist. Special care is needed to ensure that 1309 * no race conditions occur from this. 1310 */ 1311 do { 1312 error = flushbuflist(&bo->bo_clean, 1313 flags, bo, slpflag, slptimeo); 1314 if (error == 0 && !(flags & V_CLEANONLY)) 1315 error = flushbuflist(&bo->bo_dirty, 1316 flags, bo, slpflag, slptimeo); 1317 if (error != 0 && error != EAGAIN) { 1318 BO_UNLOCK(bo); 1319 return (error); 1320 } 1321 } while (error != 0); 1322 1323 /* 1324 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 1325 * have write I/O in-progress but if there is a VM object then the 1326 * VM object can also have read-I/O in-progress. 1327 */ 1328 do { 1329 bufobj_wwait(bo, 0, 0); 1330 BO_UNLOCK(bo); 1331 if (bo->bo_object != NULL) { 1332 VM_OBJECT_WLOCK(bo->bo_object); 1333 vm_object_pip_wait(bo->bo_object, "bovlbx"); 1334 VM_OBJECT_WUNLOCK(bo->bo_object); 1335 } 1336 BO_LOCK(bo); 1337 } while (bo->bo_numoutput > 0); 1338 BO_UNLOCK(bo); 1339 1340 /* 1341 * Destroy the copy in the VM cache, too. 1342 */ 1343 if (bo->bo_object != NULL && 1344 (flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0) { 1345 VM_OBJECT_WLOCK(bo->bo_object); 1346 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 1347 OBJPR_CLEANONLY : 0); 1348 VM_OBJECT_WUNLOCK(bo->bo_object); 1349 } 1350 1351 #ifdef INVARIANTS 1352 BO_LOCK(bo); 1353 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0 && 1354 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) 1355 panic("vinvalbuf: flush failed"); 1356 BO_UNLOCK(bo); 1357 #endif 1358 return (0); 1359 } 1360 1361 /* 1362 * Flush out and invalidate all buffers associated with a vnode. 1363 * Called with the underlying object locked. 1364 */ 1365 int 1366 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 1367 { 1368 1369 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 1370 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 1371 if (vp->v_object != NULL && vp->v_object->handle != vp) 1372 return (0); 1373 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 1374 } 1375 1376 /* 1377 * Flush out buffers on the specified list. 1378 * 1379 */ 1380 static int 1381 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 1382 int slptimeo) 1383 { 1384 struct buf *bp, *nbp; 1385 int retval, error; 1386 daddr_t lblkno; 1387 b_xflags_t xflags; 1388 1389 ASSERT_BO_WLOCKED(bo); 1390 1391 retval = 0; 1392 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 1393 if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) || 1394 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) { 1395 continue; 1396 } 1397 lblkno = 0; 1398 xflags = 0; 1399 if (nbp != NULL) { 1400 lblkno = nbp->b_lblkno; 1401 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 1402 } 1403 retval = EAGAIN; 1404 error = BUF_TIMELOCK(bp, 1405 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 1406 "flushbuf", slpflag, slptimeo); 1407 if (error) { 1408 BO_LOCK(bo); 1409 return (error != ENOLCK ? error : EAGAIN); 1410 } 1411 KASSERT(bp->b_bufobj == bo, 1412 ("bp %p wrong b_bufobj %p should be %p", 1413 bp, bp->b_bufobj, bo)); 1414 if (bp->b_bufobj != bo) { /* XXX: necessary ? */ 1415 BUF_UNLOCK(bp); 1416 BO_LOCK(bo); 1417 return (EAGAIN); 1418 } 1419 /* 1420 * XXX Since there are no node locks for NFS, I 1421 * believe there is a slight chance that a delayed 1422 * write will occur while sleeping just above, so 1423 * check for it. 1424 */ 1425 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 1426 (flags & V_SAVE)) { 1427 bremfree(bp); 1428 bp->b_flags |= B_ASYNC; 1429 bwrite(bp); 1430 BO_LOCK(bo); 1431 return (EAGAIN); /* XXX: why not loop ? */ 1432 } 1433 bremfree(bp); 1434 bp->b_flags |= (B_INVAL | B_RELBUF); 1435 bp->b_flags &= ~B_ASYNC; 1436 brelse(bp); 1437 BO_LOCK(bo); 1438 if (nbp != NULL && 1439 (nbp->b_bufobj != bo || 1440 nbp->b_lblkno != lblkno || 1441 (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) != xflags)) 1442 break; /* nbp invalid */ 1443 } 1444 return (retval); 1445 } 1446 1447 /* 1448 * Truncate a file's buffer and pages to a specified length. This 1449 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 1450 * sync activity. 1451 */ 1452 int 1453 vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize) 1454 { 1455 struct buf *bp, *nbp; 1456 int anyfreed; 1457 int trunclbn; 1458 struct bufobj *bo; 1459 1460 CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__, 1461 vp, cred, blksize, (uintmax_t)length); 1462 1463 /* 1464 * Round up to the *next* lbn. 1465 */ 1466 trunclbn = (length + blksize - 1) / blksize; 1467 1468 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 1469 restart: 1470 bo = &vp->v_bufobj; 1471 BO_LOCK(bo); 1472 anyfreed = 1; 1473 for (;anyfreed;) { 1474 anyfreed = 0; 1475 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 1476 if (bp->b_lblkno < trunclbn) 1477 continue; 1478 if (BUF_LOCK(bp, 1479 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1480 BO_LOCKPTR(bo)) == ENOLCK) 1481 goto restart; 1482 1483 bremfree(bp); 1484 bp->b_flags |= (B_INVAL | B_RELBUF); 1485 bp->b_flags &= ~B_ASYNC; 1486 brelse(bp); 1487 anyfreed = 1; 1488 1489 BO_LOCK(bo); 1490 if (nbp != NULL && 1491 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 1492 (nbp->b_vp != vp) || 1493 (nbp->b_flags & B_DELWRI))) { 1494 BO_UNLOCK(bo); 1495 goto restart; 1496 } 1497 } 1498 1499 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1500 if (bp->b_lblkno < trunclbn) 1501 continue; 1502 if (BUF_LOCK(bp, 1503 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1504 BO_LOCKPTR(bo)) == ENOLCK) 1505 goto restart; 1506 bremfree(bp); 1507 bp->b_flags |= (B_INVAL | B_RELBUF); 1508 bp->b_flags &= ~B_ASYNC; 1509 brelse(bp); 1510 anyfreed = 1; 1511 1512 BO_LOCK(bo); 1513 if (nbp != NULL && 1514 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 1515 (nbp->b_vp != vp) || 1516 (nbp->b_flags & B_DELWRI) == 0)) { 1517 BO_UNLOCK(bo); 1518 goto restart; 1519 } 1520 } 1521 } 1522 1523 if (length > 0) { 1524 restartsync: 1525 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1526 if (bp->b_lblkno > 0) 1527 continue; 1528 /* 1529 * Since we hold the vnode lock this should only 1530 * fail if we're racing with the buf daemon. 1531 */ 1532 if (BUF_LOCK(bp, 1533 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1534 BO_LOCKPTR(bo)) == ENOLCK) { 1535 goto restart; 1536 } 1537 VNASSERT((bp->b_flags & B_DELWRI), vp, 1538 ("buf(%p) on dirty queue without DELWRI", bp)); 1539 1540 bremfree(bp); 1541 bawrite(bp); 1542 BO_LOCK(bo); 1543 goto restartsync; 1544 } 1545 } 1546 1547 bufobj_wwait(bo, 0, 0); 1548 BO_UNLOCK(bo); 1549 vnode_pager_setsize(vp, length); 1550 1551 return (0); 1552 } 1553 1554 static void 1555 buf_vlist_remove(struct buf *bp) 1556 { 1557 struct bufv *bv; 1558 1559 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1560 ASSERT_BO_WLOCKED(bp->b_bufobj); 1561 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) != 1562 (BX_VNDIRTY|BX_VNCLEAN), 1563 ("buf_vlist_remove: Buf %p is on two lists", bp)); 1564 if (bp->b_xflags & BX_VNDIRTY) 1565 bv = &bp->b_bufobj->bo_dirty; 1566 else 1567 bv = &bp->b_bufobj->bo_clean; 1568 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 1569 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 1570 bv->bv_cnt--; 1571 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 1572 } 1573 1574 /* 1575 * Add the buffer to the sorted clean or dirty block list. 1576 * 1577 * NOTE: xflags is passed as a constant, optimizing this inline function! 1578 */ 1579 static void 1580 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 1581 { 1582 struct bufv *bv; 1583 struct buf *n; 1584 int error; 1585 1586 ASSERT_BO_WLOCKED(bo); 1587 KASSERT((bo->bo_flag & BO_DEAD) == 0, ("dead bo %p", bo)); 1588 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 1589 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 1590 bp->b_xflags |= xflags; 1591 if (xflags & BX_VNDIRTY) 1592 bv = &bo->bo_dirty; 1593 else 1594 bv = &bo->bo_clean; 1595 1596 /* 1597 * Keep the list ordered. Optimize empty list insertion. Assume 1598 * we tend to grow at the tail so lookup_le should usually be cheaper 1599 * than _ge. 1600 */ 1601 if (bv->bv_cnt == 0 || 1602 bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno) 1603 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 1604 else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL) 1605 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 1606 else 1607 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 1608 error = BUF_PCTRIE_INSERT(&bv->bv_root, bp); 1609 if (error) 1610 panic("buf_vlist_add: Preallocated nodes insufficient."); 1611 bv->bv_cnt++; 1612 } 1613 1614 /* 1615 * Lookup a buffer using the splay tree. Note that we specifically avoid 1616 * shadow buffers used in background bitmap writes. 1617 * 1618 * This code isn't quite efficient as it could be because we are maintaining 1619 * two sorted lists and do not know which list the block resides in. 1620 * 1621 * During a "make buildworld" the desired buffer is found at one of 1622 * the roots more than 60% of the time. Thus, checking both roots 1623 * before performing either splay eliminates unnecessary splays on the 1624 * first tree splayed. 1625 */ 1626 struct buf * 1627 gbincore(struct bufobj *bo, daddr_t lblkno) 1628 { 1629 struct buf *bp; 1630 1631 ASSERT_BO_LOCKED(bo); 1632 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 1633 if (bp != NULL) 1634 return (bp); 1635 return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno); 1636 } 1637 1638 /* 1639 * Associate a buffer with a vnode. 1640 */ 1641 void 1642 bgetvp(struct vnode *vp, struct buf *bp) 1643 { 1644 struct bufobj *bo; 1645 1646 bo = &vp->v_bufobj; 1647 ASSERT_BO_WLOCKED(bo); 1648 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 1649 1650 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 1651 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 1652 ("bgetvp: bp already attached! %p", bp)); 1653 1654 vhold(vp); 1655 bp->b_vp = vp; 1656 bp->b_bufobj = bo; 1657 /* 1658 * Insert onto list for new vnode. 1659 */ 1660 buf_vlist_add(bp, bo, BX_VNCLEAN); 1661 } 1662 1663 /* 1664 * Disassociate a buffer from a vnode. 1665 */ 1666 void 1667 brelvp(struct buf *bp) 1668 { 1669 struct bufobj *bo; 1670 struct vnode *vp; 1671 1672 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1673 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 1674 1675 /* 1676 * Delete from old vnode list, if on one. 1677 */ 1678 vp = bp->b_vp; /* XXX */ 1679 bo = bp->b_bufobj; 1680 BO_LOCK(bo); 1681 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 1682 buf_vlist_remove(bp); 1683 else 1684 panic("brelvp: Buffer %p not on queue.", bp); 1685 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 1686 bo->bo_flag &= ~BO_ONWORKLST; 1687 mtx_lock(&sync_mtx); 1688 LIST_REMOVE(bo, bo_synclist); 1689 syncer_worklist_len--; 1690 mtx_unlock(&sync_mtx); 1691 } 1692 bp->b_vp = NULL; 1693 bp->b_bufobj = NULL; 1694 BO_UNLOCK(bo); 1695 vdrop(vp); 1696 } 1697 1698 /* 1699 * Add an item to the syncer work queue. 1700 */ 1701 static void 1702 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 1703 { 1704 int slot; 1705 1706 ASSERT_BO_WLOCKED(bo); 1707 1708 mtx_lock(&sync_mtx); 1709 if (bo->bo_flag & BO_ONWORKLST) 1710 LIST_REMOVE(bo, bo_synclist); 1711 else { 1712 bo->bo_flag |= BO_ONWORKLST; 1713 syncer_worklist_len++; 1714 } 1715 1716 if (delay > syncer_maxdelay - 2) 1717 delay = syncer_maxdelay - 2; 1718 slot = (syncer_delayno + delay) & syncer_mask; 1719 1720 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 1721 mtx_unlock(&sync_mtx); 1722 } 1723 1724 static int 1725 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 1726 { 1727 int error, len; 1728 1729 mtx_lock(&sync_mtx); 1730 len = syncer_worklist_len - sync_vnode_count; 1731 mtx_unlock(&sync_mtx); 1732 error = SYSCTL_OUT(req, &len, sizeof(len)); 1733 return (error); 1734 } 1735 1736 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 1737 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 1738 1739 static struct proc *updateproc; 1740 static void sched_sync(void); 1741 static struct kproc_desc up_kp = { 1742 "syncer", 1743 sched_sync, 1744 &updateproc 1745 }; 1746 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 1747 1748 static int 1749 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 1750 { 1751 struct vnode *vp; 1752 struct mount *mp; 1753 1754 *bo = LIST_FIRST(slp); 1755 if (*bo == NULL) 1756 return (0); 1757 vp = (*bo)->__bo_vnode; /* XXX */ 1758 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 1759 return (1); 1760 /* 1761 * We use vhold in case the vnode does not 1762 * successfully sync. vhold prevents the vnode from 1763 * going away when we unlock the sync_mtx so that 1764 * we can acquire the vnode interlock. 1765 */ 1766 vholdl(vp); 1767 mtx_unlock(&sync_mtx); 1768 VI_UNLOCK(vp); 1769 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1770 vdrop(vp); 1771 mtx_lock(&sync_mtx); 1772 return (*bo == LIST_FIRST(slp)); 1773 } 1774 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1775 (void) VOP_FSYNC(vp, MNT_LAZY, td); 1776 VOP_UNLOCK(vp, 0); 1777 vn_finished_write(mp); 1778 BO_LOCK(*bo); 1779 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 1780 /* 1781 * Put us back on the worklist. The worklist 1782 * routine will remove us from our current 1783 * position and then add us back in at a later 1784 * position. 1785 */ 1786 vn_syncer_add_to_worklist(*bo, syncdelay); 1787 } 1788 BO_UNLOCK(*bo); 1789 vdrop(vp); 1790 mtx_lock(&sync_mtx); 1791 return (0); 1792 } 1793 1794 static int first_printf = 1; 1795 1796 /* 1797 * System filesystem synchronizer daemon. 1798 */ 1799 static void 1800 sched_sync(void) 1801 { 1802 struct synclist *next, *slp; 1803 struct bufobj *bo; 1804 long starttime; 1805 struct thread *td = curthread; 1806 int last_work_seen; 1807 int net_worklist_len; 1808 int syncer_final_iter; 1809 int error; 1810 1811 last_work_seen = 0; 1812 syncer_final_iter = 0; 1813 syncer_state = SYNCER_RUNNING; 1814 starttime = time_uptime; 1815 td->td_pflags |= TDP_NORUNNINGBUF; 1816 1817 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 1818 SHUTDOWN_PRI_LAST); 1819 1820 mtx_lock(&sync_mtx); 1821 for (;;) { 1822 if (syncer_state == SYNCER_FINAL_DELAY && 1823 syncer_final_iter == 0) { 1824 mtx_unlock(&sync_mtx); 1825 kproc_suspend_check(td->td_proc); 1826 mtx_lock(&sync_mtx); 1827 } 1828 net_worklist_len = syncer_worklist_len - sync_vnode_count; 1829 if (syncer_state != SYNCER_RUNNING && 1830 starttime != time_uptime) { 1831 if (first_printf) { 1832 printf("\nSyncing disks, vnodes remaining..."); 1833 first_printf = 0; 1834 } 1835 printf("%d ", net_worklist_len); 1836 } 1837 starttime = time_uptime; 1838 1839 /* 1840 * Push files whose dirty time has expired. Be careful 1841 * of interrupt race on slp queue. 1842 * 1843 * Skip over empty worklist slots when shutting down. 1844 */ 1845 do { 1846 slp = &syncer_workitem_pending[syncer_delayno]; 1847 syncer_delayno += 1; 1848 if (syncer_delayno == syncer_maxdelay) 1849 syncer_delayno = 0; 1850 next = &syncer_workitem_pending[syncer_delayno]; 1851 /* 1852 * If the worklist has wrapped since the 1853 * it was emptied of all but syncer vnodes, 1854 * switch to the FINAL_DELAY state and run 1855 * for one more second. 1856 */ 1857 if (syncer_state == SYNCER_SHUTTING_DOWN && 1858 net_worklist_len == 0 && 1859 last_work_seen == syncer_delayno) { 1860 syncer_state = SYNCER_FINAL_DELAY; 1861 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 1862 } 1863 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 1864 syncer_worklist_len > 0); 1865 1866 /* 1867 * Keep track of the last time there was anything 1868 * on the worklist other than syncer vnodes. 1869 * Return to the SHUTTING_DOWN state if any 1870 * new work appears. 1871 */ 1872 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 1873 last_work_seen = syncer_delayno; 1874 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 1875 syncer_state = SYNCER_SHUTTING_DOWN; 1876 while (!LIST_EMPTY(slp)) { 1877 error = sync_vnode(slp, &bo, td); 1878 if (error == 1) { 1879 LIST_REMOVE(bo, bo_synclist); 1880 LIST_INSERT_HEAD(next, bo, bo_synclist); 1881 continue; 1882 } 1883 1884 if (first_printf == 0) { 1885 /* 1886 * Drop the sync mutex, because some watchdog 1887 * drivers need to sleep while patting 1888 */ 1889 mtx_unlock(&sync_mtx); 1890 wdog_kern_pat(WD_LASTVAL); 1891 mtx_lock(&sync_mtx); 1892 } 1893 1894 } 1895 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 1896 syncer_final_iter--; 1897 /* 1898 * The variable rushjob allows the kernel to speed up the 1899 * processing of the filesystem syncer process. A rushjob 1900 * value of N tells the filesystem syncer to process the next 1901 * N seconds worth of work on its queue ASAP. Currently rushjob 1902 * is used by the soft update code to speed up the filesystem 1903 * syncer process when the incore state is getting so far 1904 * ahead of the disk that the kernel memory pool is being 1905 * threatened with exhaustion. 1906 */ 1907 if (rushjob > 0) { 1908 rushjob -= 1; 1909 continue; 1910 } 1911 /* 1912 * Just sleep for a short period of time between 1913 * iterations when shutting down to allow some I/O 1914 * to happen. 1915 * 1916 * If it has taken us less than a second to process the 1917 * current work, then wait. Otherwise start right over 1918 * again. We can still lose time if any single round 1919 * takes more than two seconds, but it does not really 1920 * matter as we are just trying to generally pace the 1921 * filesystem activity. 1922 */ 1923 if (syncer_state != SYNCER_RUNNING || 1924 time_uptime == starttime) { 1925 thread_lock(td); 1926 sched_prio(td, PPAUSE); 1927 thread_unlock(td); 1928 } 1929 if (syncer_state != SYNCER_RUNNING) 1930 cv_timedwait(&sync_wakeup, &sync_mtx, 1931 hz / SYNCER_SHUTDOWN_SPEEDUP); 1932 else if (time_uptime == starttime) 1933 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 1934 } 1935 } 1936 1937 /* 1938 * Request the syncer daemon to speed up its work. 1939 * We never push it to speed up more than half of its 1940 * normal turn time, otherwise it could take over the cpu. 1941 */ 1942 int 1943 speedup_syncer(void) 1944 { 1945 int ret = 0; 1946 1947 mtx_lock(&sync_mtx); 1948 if (rushjob < syncdelay / 2) { 1949 rushjob += 1; 1950 stat_rush_requests += 1; 1951 ret = 1; 1952 } 1953 mtx_unlock(&sync_mtx); 1954 cv_broadcast(&sync_wakeup); 1955 return (ret); 1956 } 1957 1958 /* 1959 * Tell the syncer to speed up its work and run though its work 1960 * list several times, then tell it to shut down. 1961 */ 1962 static void 1963 syncer_shutdown(void *arg, int howto) 1964 { 1965 1966 if (howto & RB_NOSYNC) 1967 return; 1968 mtx_lock(&sync_mtx); 1969 syncer_state = SYNCER_SHUTTING_DOWN; 1970 rushjob = 0; 1971 mtx_unlock(&sync_mtx); 1972 cv_broadcast(&sync_wakeup); 1973 kproc_shutdown(arg, howto); 1974 } 1975 1976 void 1977 syncer_suspend(void) 1978 { 1979 1980 syncer_shutdown(updateproc, 0); 1981 } 1982 1983 void 1984 syncer_resume(void) 1985 { 1986 1987 mtx_lock(&sync_mtx); 1988 first_printf = 1; 1989 syncer_state = SYNCER_RUNNING; 1990 mtx_unlock(&sync_mtx); 1991 cv_broadcast(&sync_wakeup); 1992 kproc_resume(updateproc); 1993 } 1994 1995 /* 1996 * Reassign a buffer from one vnode to another. 1997 * Used to assign file specific control information 1998 * (indirect blocks) to the vnode to which they belong. 1999 */ 2000 void 2001 reassignbuf(struct buf *bp) 2002 { 2003 struct vnode *vp; 2004 struct bufobj *bo; 2005 int delay; 2006 #ifdef INVARIANTS 2007 struct bufv *bv; 2008 #endif 2009 2010 vp = bp->b_vp; 2011 bo = bp->b_bufobj; 2012 ++reassignbufcalls; 2013 2014 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 2015 bp, bp->b_vp, bp->b_flags); 2016 /* 2017 * B_PAGING flagged buffers cannot be reassigned because their vp 2018 * is not fully linked in. 2019 */ 2020 if (bp->b_flags & B_PAGING) 2021 panic("cannot reassign paging buffer"); 2022 2023 /* 2024 * Delete from old vnode list, if on one. 2025 */ 2026 BO_LOCK(bo); 2027 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2028 buf_vlist_remove(bp); 2029 else 2030 panic("reassignbuf: Buffer %p not on queue.", bp); 2031 /* 2032 * If dirty, put on list of dirty buffers; otherwise insert onto list 2033 * of clean buffers. 2034 */ 2035 if (bp->b_flags & B_DELWRI) { 2036 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 2037 switch (vp->v_type) { 2038 case VDIR: 2039 delay = dirdelay; 2040 break; 2041 case VCHR: 2042 delay = metadelay; 2043 break; 2044 default: 2045 delay = filedelay; 2046 } 2047 vn_syncer_add_to_worklist(bo, delay); 2048 } 2049 buf_vlist_add(bp, bo, BX_VNDIRTY); 2050 } else { 2051 buf_vlist_add(bp, bo, BX_VNCLEAN); 2052 2053 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2054 mtx_lock(&sync_mtx); 2055 LIST_REMOVE(bo, bo_synclist); 2056 syncer_worklist_len--; 2057 mtx_unlock(&sync_mtx); 2058 bo->bo_flag &= ~BO_ONWORKLST; 2059 } 2060 } 2061 #ifdef INVARIANTS 2062 bv = &bo->bo_clean; 2063 bp = TAILQ_FIRST(&bv->bv_hd); 2064 KASSERT(bp == NULL || bp->b_bufobj == bo, 2065 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2066 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2067 KASSERT(bp == NULL || bp->b_bufobj == bo, 2068 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2069 bv = &bo->bo_dirty; 2070 bp = TAILQ_FIRST(&bv->bv_hd); 2071 KASSERT(bp == NULL || bp->b_bufobj == bo, 2072 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2073 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2074 KASSERT(bp == NULL || bp->b_bufobj == bo, 2075 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2076 #endif 2077 BO_UNLOCK(bo); 2078 } 2079 2080 /* 2081 * Increment the use and hold counts on the vnode, taking care to reference 2082 * the driver's usecount if this is a chardev. The vholdl() will remove 2083 * the vnode from the free list if it is presently free. Requires the 2084 * vnode interlock and returns with it held. 2085 */ 2086 static void 2087 v_incr_usecount(struct vnode *vp) 2088 { 2089 2090 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2091 vholdl(vp); 2092 vp->v_usecount++; 2093 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2094 dev_lock(); 2095 vp->v_rdev->si_usecount++; 2096 dev_unlock(); 2097 } 2098 } 2099 2100 /* 2101 * Turn a holdcnt into a use+holdcnt such that only one call to 2102 * v_decr_usecount is needed. 2103 */ 2104 static void 2105 v_upgrade_usecount(struct vnode *vp) 2106 { 2107 2108 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2109 vp->v_usecount++; 2110 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2111 dev_lock(); 2112 vp->v_rdev->si_usecount++; 2113 dev_unlock(); 2114 } 2115 } 2116 2117 /* 2118 * Decrement the vnode use and hold count along with the driver's usecount 2119 * if this is a chardev. The vdropl() below releases the vnode interlock 2120 * as it may free the vnode. 2121 */ 2122 static void 2123 v_decr_usecount(struct vnode *vp) 2124 { 2125 2126 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2127 VNASSERT(vp->v_usecount > 0, vp, 2128 ("v_decr_usecount: negative usecount")); 2129 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2130 vp->v_usecount--; 2131 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2132 dev_lock(); 2133 vp->v_rdev->si_usecount--; 2134 dev_unlock(); 2135 } 2136 vdropl(vp); 2137 } 2138 2139 /* 2140 * Decrement only the use count and driver use count. This is intended to 2141 * be paired with a follow on vdropl() to release the remaining hold count. 2142 * In this way we may vgone() a vnode with a 0 usecount without risk of 2143 * having it end up on a free list because the hold count is kept above 0. 2144 */ 2145 static void 2146 v_decr_useonly(struct vnode *vp) 2147 { 2148 2149 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2150 VNASSERT(vp->v_usecount > 0, vp, 2151 ("v_decr_useonly: negative usecount")); 2152 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2153 vp->v_usecount--; 2154 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2155 dev_lock(); 2156 vp->v_rdev->si_usecount--; 2157 dev_unlock(); 2158 } 2159 } 2160 2161 /* 2162 * Grab a particular vnode from the free list, increment its 2163 * reference count and lock it. VI_DOOMED is set if the vnode 2164 * is being destroyed. Only callers who specify LK_RETRY will 2165 * see doomed vnodes. If inactive processing was delayed in 2166 * vput try to do it here. 2167 */ 2168 int 2169 vget(struct vnode *vp, int flags, struct thread *td) 2170 { 2171 int error; 2172 2173 error = 0; 2174 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 2175 ("vget: invalid lock operation")); 2176 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2177 2178 if ((flags & LK_INTERLOCK) == 0) 2179 VI_LOCK(vp); 2180 vholdl(vp); 2181 if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) { 2182 vdrop(vp); 2183 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 2184 vp); 2185 return (error); 2186 } 2187 if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0) 2188 panic("vget: vn_lock failed to return ENOENT\n"); 2189 VI_LOCK(vp); 2190 /* Upgrade our holdcnt to a usecount. */ 2191 v_upgrade_usecount(vp); 2192 /* 2193 * We don't guarantee that any particular close will 2194 * trigger inactive processing so just make a best effort 2195 * here at preventing a reference to a removed file. If 2196 * we don't succeed no harm is done. 2197 */ 2198 if (vp->v_iflag & VI_OWEINACT) { 2199 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && 2200 (flags & LK_NOWAIT) == 0) 2201 vinactive(vp, td); 2202 vp->v_iflag &= ~VI_OWEINACT; 2203 } 2204 VI_UNLOCK(vp); 2205 return (0); 2206 } 2207 2208 /* 2209 * Increase the reference count of a vnode. 2210 */ 2211 void 2212 vref(struct vnode *vp) 2213 { 2214 2215 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2216 VI_LOCK(vp); 2217 v_incr_usecount(vp); 2218 VI_UNLOCK(vp); 2219 } 2220 2221 /* 2222 * Return reference count of a vnode. 2223 * 2224 * The results of this call are only guaranteed when some mechanism other 2225 * than the VI lock is used to stop other processes from gaining references 2226 * to the vnode. This may be the case if the caller holds the only reference. 2227 * This is also useful when stale data is acceptable as race conditions may 2228 * be accounted for by some other means. 2229 */ 2230 int 2231 vrefcnt(struct vnode *vp) 2232 { 2233 int usecnt; 2234 2235 VI_LOCK(vp); 2236 usecnt = vp->v_usecount; 2237 VI_UNLOCK(vp); 2238 2239 return (usecnt); 2240 } 2241 2242 #define VPUTX_VRELE 1 2243 #define VPUTX_VPUT 2 2244 #define VPUTX_VUNREF 3 2245 2246 static void 2247 vputx(struct vnode *vp, int func) 2248 { 2249 int error; 2250 2251 KASSERT(vp != NULL, ("vputx: null vp")); 2252 if (func == VPUTX_VUNREF) 2253 ASSERT_VOP_LOCKED(vp, "vunref"); 2254 else if (func == VPUTX_VPUT) 2255 ASSERT_VOP_LOCKED(vp, "vput"); 2256 else 2257 KASSERT(func == VPUTX_VRELE, ("vputx: wrong func")); 2258 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2259 VI_LOCK(vp); 2260 2261 /* Skip this v_writecount check if we're going to panic below. */ 2262 VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp, 2263 ("vputx: missed vn_close")); 2264 error = 0; 2265 2266 if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) && 2267 vp->v_usecount == 1)) { 2268 if (func == VPUTX_VPUT) 2269 VOP_UNLOCK(vp, 0); 2270 v_decr_usecount(vp); 2271 return; 2272 } 2273 2274 if (vp->v_usecount != 1) { 2275 vprint("vputx: negative ref count", vp); 2276 panic("vputx: negative ref cnt"); 2277 } 2278 CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp); 2279 /* 2280 * We want to hold the vnode until the inactive finishes to 2281 * prevent vgone() races. We drop the use count here and the 2282 * hold count below when we're done. 2283 */ 2284 v_decr_useonly(vp); 2285 /* 2286 * We must call VOP_INACTIVE with the node locked. Mark 2287 * as VI_DOINGINACT to avoid recursion. 2288 */ 2289 vp->v_iflag |= VI_OWEINACT; 2290 switch (func) { 2291 case VPUTX_VRELE: 2292 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 2293 VI_LOCK(vp); 2294 break; 2295 case VPUTX_VPUT: 2296 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 2297 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 2298 LK_NOWAIT); 2299 VI_LOCK(vp); 2300 } 2301 break; 2302 case VPUTX_VUNREF: 2303 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 2304 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 2305 VI_LOCK(vp); 2306 } 2307 break; 2308 } 2309 if (vp->v_usecount > 0) 2310 vp->v_iflag &= ~VI_OWEINACT; 2311 if (error == 0) { 2312 if (vp->v_iflag & VI_OWEINACT) 2313 vinactive(vp, curthread); 2314 if (func != VPUTX_VUNREF) 2315 VOP_UNLOCK(vp, 0); 2316 } 2317 vdropl(vp); 2318 } 2319 2320 /* 2321 * Vnode put/release. 2322 * If count drops to zero, call inactive routine and return to freelist. 2323 */ 2324 void 2325 vrele(struct vnode *vp) 2326 { 2327 2328 vputx(vp, VPUTX_VRELE); 2329 } 2330 2331 /* 2332 * Release an already locked vnode. This give the same effects as 2333 * unlock+vrele(), but takes less time and avoids releasing and 2334 * re-aquiring the lock (as vrele() acquires the lock internally.) 2335 */ 2336 void 2337 vput(struct vnode *vp) 2338 { 2339 2340 vputx(vp, VPUTX_VPUT); 2341 } 2342 2343 /* 2344 * Release an exclusively locked vnode. Do not unlock the vnode lock. 2345 */ 2346 void 2347 vunref(struct vnode *vp) 2348 { 2349 2350 vputx(vp, VPUTX_VUNREF); 2351 } 2352 2353 /* 2354 * Somebody doesn't want the vnode recycled. 2355 */ 2356 void 2357 vhold(struct vnode *vp) 2358 { 2359 2360 VI_LOCK(vp); 2361 vholdl(vp); 2362 VI_UNLOCK(vp); 2363 } 2364 2365 /* 2366 * Increase the hold count and activate if this is the first reference. 2367 */ 2368 void 2369 vholdl(struct vnode *vp) 2370 { 2371 struct mount *mp; 2372 2373 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2374 #ifdef INVARIANTS 2375 /* getnewvnode() calls v_incr_usecount() without holding interlock. */ 2376 if (vp->v_type != VNON || vp->v_data != NULL) 2377 ASSERT_VI_LOCKED(vp, "vholdl"); 2378 #endif 2379 vp->v_holdcnt++; 2380 if ((vp->v_iflag & VI_FREE) == 0) 2381 return; 2382 VNASSERT(vp->v_holdcnt == 1, vp, ("vholdl: wrong hold count")); 2383 VNASSERT(vp->v_op != NULL, vp, ("vholdl: vnode already reclaimed.")); 2384 /* 2385 * Remove a vnode from the free list, mark it as in use, 2386 * and put it on the active list. 2387 */ 2388 mtx_lock(&vnode_free_list_mtx); 2389 TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist); 2390 freevnodes--; 2391 vp->v_iflag &= ~(VI_FREE|VI_AGE); 2392 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 2393 ("Activating already active vnode")); 2394 vp->v_iflag |= VI_ACTIVE; 2395 mp = vp->v_mount; 2396 TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist); 2397 mp->mnt_activevnodelistsize++; 2398 mtx_unlock(&vnode_free_list_mtx); 2399 } 2400 2401 /* 2402 * Note that there is one less who cares about this vnode. 2403 * vdrop() is the opposite of vhold(). 2404 */ 2405 void 2406 vdrop(struct vnode *vp) 2407 { 2408 2409 VI_LOCK(vp); 2410 vdropl(vp); 2411 } 2412 2413 /* 2414 * Drop the hold count of the vnode. If this is the last reference to 2415 * the vnode we place it on the free list unless it has been vgone'd 2416 * (marked VI_DOOMED) in which case we will free it. 2417 */ 2418 void 2419 vdropl(struct vnode *vp) 2420 { 2421 struct bufobj *bo; 2422 struct mount *mp; 2423 int active; 2424 2425 ASSERT_VI_LOCKED(vp, "vdropl"); 2426 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2427 if (vp->v_holdcnt <= 0) 2428 panic("vdrop: holdcnt %d", vp->v_holdcnt); 2429 vp->v_holdcnt--; 2430 VNASSERT(vp->v_holdcnt >= vp->v_usecount, vp, 2431 ("hold count less than use count")); 2432 if (vp->v_holdcnt > 0) { 2433 VI_UNLOCK(vp); 2434 return; 2435 } 2436 if ((vp->v_iflag & VI_DOOMED) == 0) { 2437 /* 2438 * Mark a vnode as free: remove it from its active list 2439 * and put it up for recycling on the freelist. 2440 */ 2441 VNASSERT(vp->v_op != NULL, vp, 2442 ("vdropl: vnode already reclaimed.")); 2443 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2444 ("vnode already free")); 2445 VNASSERT(vp->v_holdcnt == 0, vp, 2446 ("vdropl: freeing when we shouldn't")); 2447 active = vp->v_iflag & VI_ACTIVE; 2448 if ((vp->v_iflag & VI_OWEINACT) == 0) { 2449 vp->v_iflag &= ~VI_ACTIVE; 2450 mp = vp->v_mount; 2451 mtx_lock(&vnode_free_list_mtx); 2452 if (active) { 2453 TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, 2454 v_actfreelist); 2455 mp->mnt_activevnodelistsize--; 2456 } 2457 if (vp->v_iflag & VI_AGE) { 2458 TAILQ_INSERT_HEAD(&vnode_free_list, vp, 2459 v_actfreelist); 2460 } else { 2461 TAILQ_INSERT_TAIL(&vnode_free_list, vp, 2462 v_actfreelist); 2463 } 2464 freevnodes++; 2465 vp->v_iflag &= ~VI_AGE; 2466 vp->v_iflag |= VI_FREE; 2467 mtx_unlock(&vnode_free_list_mtx); 2468 } else { 2469 atomic_add_long(&free_owe_inact, 1); 2470 } 2471 VI_UNLOCK(vp); 2472 return; 2473 } 2474 /* 2475 * The vnode has been marked for destruction, so free it. 2476 */ 2477 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 2478 atomic_subtract_long(&numvnodes, 1); 2479 bo = &vp->v_bufobj; 2480 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2481 ("cleaned vnode still on the free list.")); 2482 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 2483 VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count")); 2484 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 2485 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 2486 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 2487 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 2488 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 2489 ("clean blk trie not empty")); 2490 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 2491 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 2492 ("dirty blk trie not empty")); 2493 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst")); 2494 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src")); 2495 VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for ..")); 2496 VI_UNLOCK(vp); 2497 #ifdef MAC 2498 mac_vnode_destroy(vp); 2499 #endif 2500 if (vp->v_pollinfo != NULL) 2501 destroy_vpollinfo(vp->v_pollinfo); 2502 #ifdef INVARIANTS 2503 /* XXX Elsewhere we detect an already freed vnode via NULL v_op. */ 2504 vp->v_op = NULL; 2505 #endif 2506 rangelock_destroy(&vp->v_rl); 2507 lockdestroy(vp->v_vnlock); 2508 mtx_destroy(&vp->v_interlock); 2509 rw_destroy(BO_LOCKPTR(bo)); 2510 uma_zfree(vnode_zone, vp); 2511 } 2512 2513 /* 2514 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 2515 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 2516 * OWEINACT tracks whether a vnode missed a call to inactive due to a 2517 * failed lock upgrade. 2518 */ 2519 void 2520 vinactive(struct vnode *vp, struct thread *td) 2521 { 2522 struct vm_object *obj; 2523 2524 ASSERT_VOP_ELOCKED(vp, "vinactive"); 2525 ASSERT_VI_LOCKED(vp, "vinactive"); 2526 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp, 2527 ("vinactive: recursed on VI_DOINGINACT")); 2528 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2529 vp->v_iflag |= VI_DOINGINACT; 2530 vp->v_iflag &= ~VI_OWEINACT; 2531 VI_UNLOCK(vp); 2532 /* 2533 * Before moving off the active list, we must be sure that any 2534 * modified pages are on the vnode's dirty list since these will 2535 * no longer be checked once the vnode is on the inactive list. 2536 * Because the vnode vm object keeps a hold reference on the vnode 2537 * if there is at least one resident non-cached page, the vnode 2538 * cannot leave the active list without the page cleanup done. 2539 */ 2540 obj = vp->v_object; 2541 if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0) { 2542 VM_OBJECT_WLOCK(obj); 2543 vm_object_page_clean(obj, 0, 0, OBJPC_NOSYNC); 2544 VM_OBJECT_WUNLOCK(obj); 2545 } 2546 VOP_INACTIVE(vp, td); 2547 VI_LOCK(vp); 2548 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp, 2549 ("vinactive: lost VI_DOINGINACT")); 2550 vp->v_iflag &= ~VI_DOINGINACT; 2551 } 2552 2553 /* 2554 * Remove any vnodes in the vnode table belonging to mount point mp. 2555 * 2556 * If FORCECLOSE is not specified, there should not be any active ones, 2557 * return error if any are found (nb: this is a user error, not a 2558 * system error). If FORCECLOSE is specified, detach any active vnodes 2559 * that are found. 2560 * 2561 * If WRITECLOSE is set, only flush out regular file vnodes open for 2562 * writing. 2563 * 2564 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 2565 * 2566 * `rootrefs' specifies the base reference count for the root vnode 2567 * of this filesystem. The root vnode is considered busy if its 2568 * v_usecount exceeds this value. On a successful return, vflush(, td) 2569 * will call vrele() on the root vnode exactly rootrefs times. 2570 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 2571 * be zero. 2572 */ 2573 #ifdef DIAGNOSTIC 2574 static int busyprt = 0; /* print out busy vnodes */ 2575 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 2576 #endif 2577 2578 int 2579 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 2580 { 2581 struct vnode *vp, *mvp, *rootvp = NULL; 2582 struct vattr vattr; 2583 int busy = 0, error; 2584 2585 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 2586 rootrefs, flags); 2587 if (rootrefs > 0) { 2588 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 2589 ("vflush: bad args")); 2590 /* 2591 * Get the filesystem root vnode. We can vput() it 2592 * immediately, since with rootrefs > 0, it won't go away. 2593 */ 2594 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 2595 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 2596 __func__, error); 2597 return (error); 2598 } 2599 vput(rootvp); 2600 } 2601 loop: 2602 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 2603 vholdl(vp); 2604 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 2605 if (error) { 2606 vdrop(vp); 2607 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 2608 goto loop; 2609 } 2610 /* 2611 * Skip over a vnodes marked VV_SYSTEM. 2612 */ 2613 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 2614 VOP_UNLOCK(vp, 0); 2615 vdrop(vp); 2616 continue; 2617 } 2618 /* 2619 * If WRITECLOSE is set, flush out unlinked but still open 2620 * files (even if open only for reading) and regular file 2621 * vnodes open for writing. 2622 */ 2623 if (flags & WRITECLOSE) { 2624 if (vp->v_object != NULL) { 2625 VM_OBJECT_WLOCK(vp->v_object); 2626 vm_object_page_clean(vp->v_object, 0, 0, 0); 2627 VM_OBJECT_WUNLOCK(vp->v_object); 2628 } 2629 error = VOP_FSYNC(vp, MNT_WAIT, td); 2630 if (error != 0) { 2631 VOP_UNLOCK(vp, 0); 2632 vdrop(vp); 2633 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 2634 return (error); 2635 } 2636 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 2637 VI_LOCK(vp); 2638 2639 if ((vp->v_type == VNON || 2640 (error == 0 && vattr.va_nlink > 0)) && 2641 (vp->v_writecount == 0 || vp->v_type != VREG)) { 2642 VOP_UNLOCK(vp, 0); 2643 vdropl(vp); 2644 continue; 2645 } 2646 } else 2647 VI_LOCK(vp); 2648 /* 2649 * With v_usecount == 0, all we need to do is clear out the 2650 * vnode data structures and we are done. 2651 * 2652 * If FORCECLOSE is set, forcibly close the vnode. 2653 */ 2654 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 2655 VNASSERT(vp->v_usecount == 0 || 2656 vp->v_op != &devfs_specops || 2657 (vp->v_type != VCHR && vp->v_type != VBLK), vp, 2658 ("device VNODE %p is FORCECLOSED", vp)); 2659 vgonel(vp); 2660 } else { 2661 busy++; 2662 #ifdef DIAGNOSTIC 2663 if (busyprt) 2664 vprint("vflush: busy vnode", vp); 2665 #endif 2666 } 2667 VOP_UNLOCK(vp, 0); 2668 vdropl(vp); 2669 } 2670 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 2671 /* 2672 * If just the root vnode is busy, and if its refcount 2673 * is equal to `rootrefs', then go ahead and kill it. 2674 */ 2675 VI_LOCK(rootvp); 2676 KASSERT(busy > 0, ("vflush: not busy")); 2677 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 2678 ("vflush: usecount %d < rootrefs %d", 2679 rootvp->v_usecount, rootrefs)); 2680 if (busy == 1 && rootvp->v_usecount == rootrefs) { 2681 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 2682 vgone(rootvp); 2683 VOP_UNLOCK(rootvp, 0); 2684 busy = 0; 2685 } else 2686 VI_UNLOCK(rootvp); 2687 } 2688 if (busy) { 2689 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 2690 busy); 2691 return (EBUSY); 2692 } 2693 for (; rootrefs > 0; rootrefs--) 2694 vrele(rootvp); 2695 return (0); 2696 } 2697 2698 /* 2699 * Recycle an unused vnode to the front of the free list. 2700 */ 2701 int 2702 vrecycle(struct vnode *vp) 2703 { 2704 int recycled; 2705 2706 ASSERT_VOP_ELOCKED(vp, "vrecycle"); 2707 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2708 recycled = 0; 2709 VI_LOCK(vp); 2710 if (vp->v_usecount == 0) { 2711 recycled = 1; 2712 vgonel(vp); 2713 } 2714 VI_UNLOCK(vp); 2715 return (recycled); 2716 } 2717 2718 /* 2719 * Eliminate all activity associated with a vnode 2720 * in preparation for reuse. 2721 */ 2722 void 2723 vgone(struct vnode *vp) 2724 { 2725 VI_LOCK(vp); 2726 vgonel(vp); 2727 VI_UNLOCK(vp); 2728 } 2729 2730 static void 2731 notify_lowervp_vfs_dummy(struct mount *mp __unused, 2732 struct vnode *lowervp __unused) 2733 { 2734 } 2735 2736 /* 2737 * Notify upper mounts about reclaimed or unlinked vnode. 2738 */ 2739 void 2740 vfs_notify_upper(struct vnode *vp, int event) 2741 { 2742 static struct vfsops vgonel_vfsops = { 2743 .vfs_reclaim_lowervp = notify_lowervp_vfs_dummy, 2744 .vfs_unlink_lowervp = notify_lowervp_vfs_dummy, 2745 }; 2746 struct mount *mp, *ump, *mmp; 2747 2748 mp = vp->v_mount; 2749 if (mp == NULL) 2750 return; 2751 2752 MNT_ILOCK(mp); 2753 if (TAILQ_EMPTY(&mp->mnt_uppers)) 2754 goto unlock; 2755 MNT_IUNLOCK(mp); 2756 mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO); 2757 mmp->mnt_op = &vgonel_vfsops; 2758 mmp->mnt_kern_flag |= MNTK_MARKER; 2759 MNT_ILOCK(mp); 2760 mp->mnt_kern_flag |= MNTK_VGONE_UPPER; 2761 for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) { 2762 if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) { 2763 ump = TAILQ_NEXT(ump, mnt_upper_link); 2764 continue; 2765 } 2766 TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link); 2767 MNT_IUNLOCK(mp); 2768 switch (event) { 2769 case VFS_NOTIFY_UPPER_RECLAIM: 2770 VFS_RECLAIM_LOWERVP(ump, vp); 2771 break; 2772 case VFS_NOTIFY_UPPER_UNLINK: 2773 VFS_UNLINK_LOWERVP(ump, vp); 2774 break; 2775 default: 2776 KASSERT(0, ("invalid event %d", event)); 2777 break; 2778 } 2779 MNT_ILOCK(mp); 2780 ump = TAILQ_NEXT(mmp, mnt_upper_link); 2781 TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link); 2782 } 2783 free(mmp, M_TEMP); 2784 mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER; 2785 if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) { 2786 mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER; 2787 wakeup(&mp->mnt_uppers); 2788 } 2789 unlock: 2790 MNT_IUNLOCK(mp); 2791 } 2792 2793 /* 2794 * vgone, with the vp interlock held. 2795 */ 2796 void 2797 vgonel(struct vnode *vp) 2798 { 2799 struct thread *td; 2800 int oweinact; 2801 int active; 2802 struct mount *mp; 2803 2804 ASSERT_VOP_ELOCKED(vp, "vgonel"); 2805 ASSERT_VI_LOCKED(vp, "vgonel"); 2806 VNASSERT(vp->v_holdcnt, vp, 2807 ("vgonel: vp %p has no reference.", vp)); 2808 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2809 td = curthread; 2810 2811 /* 2812 * Don't vgonel if we're already doomed. 2813 */ 2814 if (vp->v_iflag & VI_DOOMED) 2815 return; 2816 vp->v_iflag |= VI_DOOMED; 2817 2818 /* 2819 * Check to see if the vnode is in use. If so, we have to call 2820 * VOP_CLOSE() and VOP_INACTIVE(). 2821 */ 2822 active = vp->v_usecount; 2823 oweinact = (vp->v_iflag & VI_OWEINACT); 2824 VI_UNLOCK(vp); 2825 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 2826 2827 /* 2828 * If purging an active vnode, it must be closed and 2829 * deactivated before being reclaimed. 2830 */ 2831 if (active) 2832 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 2833 if (oweinact || active) { 2834 VI_LOCK(vp); 2835 if ((vp->v_iflag & VI_DOINGINACT) == 0) 2836 vinactive(vp, td); 2837 VI_UNLOCK(vp); 2838 } 2839 if (vp->v_type == VSOCK) 2840 vfs_unp_reclaim(vp); 2841 2842 /* 2843 * Clean out any buffers associated with the vnode. 2844 * If the flush fails, just toss the buffers. 2845 */ 2846 mp = NULL; 2847 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 2848 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 2849 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 2850 while (vinvalbuf(vp, 0, 0, 0) != 0) 2851 ; 2852 } 2853 #ifdef INVARIANTS 2854 BO_LOCK(&vp->v_bufobj); 2855 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 2856 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 2857 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 2858 vp->v_bufobj.bo_clean.bv_cnt == 0, 2859 ("vp %p bufobj not invalidated", vp)); 2860 vp->v_bufobj.bo_flag |= BO_DEAD; 2861 BO_UNLOCK(&vp->v_bufobj); 2862 #endif 2863 2864 /* 2865 * Reclaim the vnode. 2866 */ 2867 if (VOP_RECLAIM(vp, td)) 2868 panic("vgone: cannot reclaim"); 2869 if (mp != NULL) 2870 vn_finished_secondary_write(mp); 2871 VNASSERT(vp->v_object == NULL, vp, 2872 ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag)); 2873 /* 2874 * Clear the advisory locks and wake up waiting threads. 2875 */ 2876 (void)VOP_ADVLOCKPURGE(vp); 2877 /* 2878 * Delete from old mount point vnode list. 2879 */ 2880 delmntque(vp); 2881 cache_purge(vp); 2882 /* 2883 * Done with purge, reset to the standard lock and invalidate 2884 * the vnode. 2885 */ 2886 VI_LOCK(vp); 2887 vp->v_vnlock = &vp->v_lock; 2888 vp->v_op = &dead_vnodeops; 2889 vp->v_tag = "none"; 2890 vp->v_type = VBAD; 2891 } 2892 2893 /* 2894 * Calculate the total number of references to a special device. 2895 */ 2896 int 2897 vcount(struct vnode *vp) 2898 { 2899 int count; 2900 2901 dev_lock(); 2902 count = vp->v_rdev->si_usecount; 2903 dev_unlock(); 2904 return (count); 2905 } 2906 2907 /* 2908 * Same as above, but using the struct cdev *as argument 2909 */ 2910 int 2911 count_dev(struct cdev *dev) 2912 { 2913 int count; 2914 2915 dev_lock(); 2916 count = dev->si_usecount; 2917 dev_unlock(); 2918 return(count); 2919 } 2920 2921 /* 2922 * Print out a description of a vnode. 2923 */ 2924 static char *typename[] = 2925 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", 2926 "VMARKER"}; 2927 2928 void 2929 vn_printf(struct vnode *vp, const char *fmt, ...) 2930 { 2931 va_list ap; 2932 char buf[256], buf2[16]; 2933 u_long flags; 2934 2935 va_start(ap, fmt); 2936 vprintf(fmt, ap); 2937 va_end(ap); 2938 printf("%p: ", (void *)vp); 2939 printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]); 2940 printf(" usecount %d, writecount %d, refcount %d mountedhere %p\n", 2941 vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere); 2942 buf[0] = '\0'; 2943 buf[1] = '\0'; 2944 if (vp->v_vflag & VV_ROOT) 2945 strlcat(buf, "|VV_ROOT", sizeof(buf)); 2946 if (vp->v_vflag & VV_ISTTY) 2947 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 2948 if (vp->v_vflag & VV_NOSYNC) 2949 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 2950 if (vp->v_vflag & VV_ETERNALDEV) 2951 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 2952 if (vp->v_vflag & VV_CACHEDLABEL) 2953 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 2954 if (vp->v_vflag & VV_TEXT) 2955 strlcat(buf, "|VV_TEXT", sizeof(buf)); 2956 if (vp->v_vflag & VV_COPYONWRITE) 2957 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 2958 if (vp->v_vflag & VV_SYSTEM) 2959 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 2960 if (vp->v_vflag & VV_PROCDEP) 2961 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 2962 if (vp->v_vflag & VV_NOKNOTE) 2963 strlcat(buf, "|VV_NOKNOTE", sizeof(buf)); 2964 if (vp->v_vflag & VV_DELETED) 2965 strlcat(buf, "|VV_DELETED", sizeof(buf)); 2966 if (vp->v_vflag & VV_MD) 2967 strlcat(buf, "|VV_MD", sizeof(buf)); 2968 if (vp->v_vflag & VV_FORCEINSMQ) 2969 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 2970 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 2971 VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP | 2972 VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ); 2973 if (flags != 0) { 2974 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 2975 strlcat(buf, buf2, sizeof(buf)); 2976 } 2977 if (vp->v_iflag & VI_MOUNT) 2978 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 2979 if (vp->v_iflag & VI_AGE) 2980 strlcat(buf, "|VI_AGE", sizeof(buf)); 2981 if (vp->v_iflag & VI_DOOMED) 2982 strlcat(buf, "|VI_DOOMED", sizeof(buf)); 2983 if (vp->v_iflag & VI_FREE) 2984 strlcat(buf, "|VI_FREE", sizeof(buf)); 2985 if (vp->v_iflag & VI_ACTIVE) 2986 strlcat(buf, "|VI_ACTIVE", sizeof(buf)); 2987 if (vp->v_iflag & VI_DOINGINACT) 2988 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 2989 if (vp->v_iflag & VI_OWEINACT) 2990 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 2991 flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE | 2992 VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT); 2993 if (flags != 0) { 2994 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 2995 strlcat(buf, buf2, sizeof(buf)); 2996 } 2997 printf(" flags (%s)\n", buf + 1); 2998 if (mtx_owned(VI_MTX(vp))) 2999 printf(" VI_LOCKed"); 3000 if (vp->v_object != NULL) 3001 printf(" v_object %p ref %d pages %d " 3002 "cleanbuf %d dirtybuf %d\n", 3003 vp->v_object, vp->v_object->ref_count, 3004 vp->v_object->resident_page_count, 3005 vp->v_bufobj.bo_dirty.bv_cnt, 3006 vp->v_bufobj.bo_clean.bv_cnt); 3007 printf(" "); 3008 lockmgr_printinfo(vp->v_vnlock); 3009 if (vp->v_data != NULL) 3010 VOP_PRINT(vp); 3011 } 3012 3013 #ifdef DDB 3014 /* 3015 * List all of the locked vnodes in the system. 3016 * Called when debugging the kernel. 3017 */ 3018 DB_SHOW_COMMAND(lockedvnods, lockedvnodes) 3019 { 3020 struct mount *mp; 3021 struct vnode *vp; 3022 3023 /* 3024 * Note: because this is DDB, we can't obey the locking semantics 3025 * for these structures, which means we could catch an inconsistent 3026 * state and dereference a nasty pointer. Not much to be done 3027 * about that. 3028 */ 3029 db_printf("Locked vnodes\n"); 3030 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3031 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3032 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 3033 vprint("", vp); 3034 } 3035 } 3036 } 3037 3038 /* 3039 * Show details about the given vnode. 3040 */ 3041 DB_SHOW_COMMAND(vnode, db_show_vnode) 3042 { 3043 struct vnode *vp; 3044 3045 if (!have_addr) 3046 return; 3047 vp = (struct vnode *)addr; 3048 vn_printf(vp, "vnode "); 3049 } 3050 3051 /* 3052 * Show details about the given mount point. 3053 */ 3054 DB_SHOW_COMMAND(mount, db_show_mount) 3055 { 3056 struct mount *mp; 3057 struct vfsopt *opt; 3058 struct statfs *sp; 3059 struct vnode *vp; 3060 char buf[512]; 3061 uint64_t mflags; 3062 u_int flags; 3063 3064 if (!have_addr) { 3065 /* No address given, print short info about all mount points. */ 3066 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3067 db_printf("%p %s on %s (%s)\n", mp, 3068 mp->mnt_stat.f_mntfromname, 3069 mp->mnt_stat.f_mntonname, 3070 mp->mnt_stat.f_fstypename); 3071 if (db_pager_quit) 3072 break; 3073 } 3074 db_printf("\nMore info: show mount <addr>\n"); 3075 return; 3076 } 3077 3078 mp = (struct mount *)addr; 3079 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 3080 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 3081 3082 buf[0] = '\0'; 3083 mflags = mp->mnt_flag; 3084 #define MNT_FLAG(flag) do { \ 3085 if (mflags & (flag)) { \ 3086 if (buf[0] != '\0') \ 3087 strlcat(buf, ", ", sizeof(buf)); \ 3088 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 3089 mflags &= ~(flag); \ 3090 } \ 3091 } while (0) 3092 MNT_FLAG(MNT_RDONLY); 3093 MNT_FLAG(MNT_SYNCHRONOUS); 3094 MNT_FLAG(MNT_NOEXEC); 3095 MNT_FLAG(MNT_NOSUID); 3096 MNT_FLAG(MNT_NFS4ACLS); 3097 MNT_FLAG(MNT_UNION); 3098 MNT_FLAG(MNT_ASYNC); 3099 MNT_FLAG(MNT_SUIDDIR); 3100 MNT_FLAG(MNT_SOFTDEP); 3101 MNT_FLAG(MNT_NOSYMFOLLOW); 3102 MNT_FLAG(MNT_GJOURNAL); 3103 MNT_FLAG(MNT_MULTILABEL); 3104 MNT_FLAG(MNT_ACLS); 3105 MNT_FLAG(MNT_NOATIME); 3106 MNT_FLAG(MNT_NOCLUSTERR); 3107 MNT_FLAG(MNT_NOCLUSTERW); 3108 MNT_FLAG(MNT_SUJ); 3109 MNT_FLAG(MNT_EXRDONLY); 3110 MNT_FLAG(MNT_EXPORTED); 3111 MNT_FLAG(MNT_DEFEXPORTED); 3112 MNT_FLAG(MNT_EXPORTANON); 3113 MNT_FLAG(MNT_EXKERB); 3114 MNT_FLAG(MNT_EXPUBLIC); 3115 MNT_FLAG(MNT_LOCAL); 3116 MNT_FLAG(MNT_QUOTA); 3117 MNT_FLAG(MNT_ROOTFS); 3118 MNT_FLAG(MNT_USER); 3119 MNT_FLAG(MNT_IGNORE); 3120 MNT_FLAG(MNT_UPDATE); 3121 MNT_FLAG(MNT_DELEXPORT); 3122 MNT_FLAG(MNT_RELOAD); 3123 MNT_FLAG(MNT_FORCE); 3124 MNT_FLAG(MNT_SNAPSHOT); 3125 MNT_FLAG(MNT_BYFSID); 3126 #undef MNT_FLAG 3127 if (mflags != 0) { 3128 if (buf[0] != '\0') 3129 strlcat(buf, ", ", sizeof(buf)); 3130 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 3131 "0x%016jx", mflags); 3132 } 3133 db_printf(" mnt_flag = %s\n", buf); 3134 3135 buf[0] = '\0'; 3136 flags = mp->mnt_kern_flag; 3137 #define MNT_KERN_FLAG(flag) do { \ 3138 if (flags & (flag)) { \ 3139 if (buf[0] != '\0') \ 3140 strlcat(buf, ", ", sizeof(buf)); \ 3141 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 3142 flags &= ~(flag); \ 3143 } \ 3144 } while (0) 3145 MNT_KERN_FLAG(MNTK_UNMOUNTF); 3146 MNT_KERN_FLAG(MNTK_ASYNC); 3147 MNT_KERN_FLAG(MNTK_SOFTDEP); 3148 MNT_KERN_FLAG(MNTK_NOINSMNTQ); 3149 MNT_KERN_FLAG(MNTK_DRAINING); 3150 MNT_KERN_FLAG(MNTK_REFEXPIRE); 3151 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 3152 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 3153 MNT_KERN_FLAG(MNTK_NO_IOPF); 3154 MNT_KERN_FLAG(MNTK_VGONE_UPPER); 3155 MNT_KERN_FLAG(MNTK_VGONE_WAITER); 3156 MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT); 3157 MNT_KERN_FLAG(MNTK_MARKER); 3158 MNT_KERN_FLAG(MNTK_USES_BCACHE); 3159 MNT_KERN_FLAG(MNTK_NOASYNC); 3160 MNT_KERN_FLAG(MNTK_UNMOUNT); 3161 MNT_KERN_FLAG(MNTK_MWAIT); 3162 MNT_KERN_FLAG(MNTK_SUSPEND); 3163 MNT_KERN_FLAG(MNTK_SUSPEND2); 3164 MNT_KERN_FLAG(MNTK_SUSPENDED); 3165 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 3166 MNT_KERN_FLAG(MNTK_NOKNOTE); 3167 #undef MNT_KERN_FLAG 3168 if (flags != 0) { 3169 if (buf[0] != '\0') 3170 strlcat(buf, ", ", sizeof(buf)); 3171 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 3172 "0x%08x", flags); 3173 } 3174 db_printf(" mnt_kern_flag = %s\n", buf); 3175 3176 db_printf(" mnt_opt = "); 3177 opt = TAILQ_FIRST(mp->mnt_opt); 3178 if (opt != NULL) { 3179 db_printf("%s", opt->name); 3180 opt = TAILQ_NEXT(opt, link); 3181 while (opt != NULL) { 3182 db_printf(", %s", opt->name); 3183 opt = TAILQ_NEXT(opt, link); 3184 } 3185 } 3186 db_printf("\n"); 3187 3188 sp = &mp->mnt_stat; 3189 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 3190 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 3191 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 3192 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 3193 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 3194 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 3195 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 3196 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 3197 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 3198 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 3199 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 3200 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 3201 3202 db_printf(" mnt_cred = { uid=%u ruid=%u", 3203 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 3204 if (jailed(mp->mnt_cred)) 3205 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 3206 db_printf(" }\n"); 3207 db_printf(" mnt_ref = %d\n", mp->mnt_ref); 3208 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 3209 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 3210 db_printf(" mnt_activevnodelistsize = %d\n", 3211 mp->mnt_activevnodelistsize); 3212 db_printf(" mnt_writeopcount = %d\n", mp->mnt_writeopcount); 3213 db_printf(" mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen); 3214 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 3215 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 3216 db_printf(" mnt_lockref = %d\n", mp->mnt_lockref); 3217 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 3218 db_printf(" mnt_secondary_accwrites = %d\n", 3219 mp->mnt_secondary_accwrites); 3220 db_printf(" mnt_gjprovider = %s\n", 3221 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 3222 3223 db_printf("\n\nList of active vnodes\n"); 3224 TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) { 3225 if (vp->v_type != VMARKER) { 3226 vn_printf(vp, "vnode "); 3227 if (db_pager_quit) 3228 break; 3229 } 3230 } 3231 db_printf("\n\nList of inactive vnodes\n"); 3232 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3233 if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) { 3234 vn_printf(vp, "vnode "); 3235 if (db_pager_quit) 3236 break; 3237 } 3238 } 3239 } 3240 #endif /* DDB */ 3241 3242 /* 3243 * Fill in a struct xvfsconf based on a struct vfsconf. 3244 */ 3245 static int 3246 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 3247 { 3248 struct xvfsconf xvfsp; 3249 3250 bzero(&xvfsp, sizeof(xvfsp)); 3251 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 3252 xvfsp.vfc_typenum = vfsp->vfc_typenum; 3253 xvfsp.vfc_refcount = vfsp->vfc_refcount; 3254 xvfsp.vfc_flags = vfsp->vfc_flags; 3255 /* 3256 * These are unused in userland, we keep them 3257 * to not break binary compatibility. 3258 */ 3259 xvfsp.vfc_vfsops = NULL; 3260 xvfsp.vfc_next = NULL; 3261 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 3262 } 3263 3264 #ifdef COMPAT_FREEBSD32 3265 struct xvfsconf32 { 3266 uint32_t vfc_vfsops; 3267 char vfc_name[MFSNAMELEN]; 3268 int32_t vfc_typenum; 3269 int32_t vfc_refcount; 3270 int32_t vfc_flags; 3271 uint32_t vfc_next; 3272 }; 3273 3274 static int 3275 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 3276 { 3277 struct xvfsconf32 xvfsp; 3278 3279 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 3280 xvfsp.vfc_typenum = vfsp->vfc_typenum; 3281 xvfsp.vfc_refcount = vfsp->vfc_refcount; 3282 xvfsp.vfc_flags = vfsp->vfc_flags; 3283 xvfsp.vfc_vfsops = 0; 3284 xvfsp.vfc_next = 0; 3285 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 3286 } 3287 #endif 3288 3289 /* 3290 * Top level filesystem related information gathering. 3291 */ 3292 static int 3293 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 3294 { 3295 struct vfsconf *vfsp; 3296 int error; 3297 3298 error = 0; 3299 vfsconf_slock(); 3300 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3301 #ifdef COMPAT_FREEBSD32 3302 if (req->flags & SCTL_MASK32) 3303 error = vfsconf2x32(req, vfsp); 3304 else 3305 #endif 3306 error = vfsconf2x(req, vfsp); 3307 if (error) 3308 break; 3309 } 3310 vfsconf_sunlock(); 3311 return (error); 3312 } 3313 3314 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 3315 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 3316 "S,xvfsconf", "List of all configured filesystems"); 3317 3318 #ifndef BURN_BRIDGES 3319 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 3320 3321 static int 3322 vfs_sysctl(SYSCTL_HANDLER_ARGS) 3323 { 3324 int *name = (int *)arg1 - 1; /* XXX */ 3325 u_int namelen = arg2 + 1; /* XXX */ 3326 struct vfsconf *vfsp; 3327 3328 log(LOG_WARNING, "userland calling deprecated sysctl, " 3329 "please rebuild world\n"); 3330 3331 #if 1 || defined(COMPAT_PRELITE2) 3332 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 3333 if (namelen == 1) 3334 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 3335 #endif 3336 3337 switch (name[1]) { 3338 case VFS_MAXTYPENUM: 3339 if (namelen != 2) 3340 return (ENOTDIR); 3341 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 3342 case VFS_CONF: 3343 if (namelen != 3) 3344 return (ENOTDIR); /* overloaded */ 3345 vfsconf_slock(); 3346 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3347 if (vfsp->vfc_typenum == name[2]) 3348 break; 3349 } 3350 vfsconf_sunlock(); 3351 if (vfsp == NULL) 3352 return (EOPNOTSUPP); 3353 #ifdef COMPAT_FREEBSD32 3354 if (req->flags & SCTL_MASK32) 3355 return (vfsconf2x32(req, vfsp)); 3356 else 3357 #endif 3358 return (vfsconf2x(req, vfsp)); 3359 } 3360 return (EOPNOTSUPP); 3361 } 3362 3363 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 3364 CTLFLAG_MPSAFE, vfs_sysctl, 3365 "Generic filesystem"); 3366 3367 #if 1 || defined(COMPAT_PRELITE2) 3368 3369 static int 3370 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 3371 { 3372 int error; 3373 struct vfsconf *vfsp; 3374 struct ovfsconf ovfs; 3375 3376 vfsconf_slock(); 3377 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3378 bzero(&ovfs, sizeof(ovfs)); 3379 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 3380 strcpy(ovfs.vfc_name, vfsp->vfc_name); 3381 ovfs.vfc_index = vfsp->vfc_typenum; 3382 ovfs.vfc_refcount = vfsp->vfc_refcount; 3383 ovfs.vfc_flags = vfsp->vfc_flags; 3384 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 3385 if (error != 0) { 3386 vfsconf_sunlock(); 3387 return (error); 3388 } 3389 } 3390 vfsconf_sunlock(); 3391 return (0); 3392 } 3393 3394 #endif /* 1 || COMPAT_PRELITE2 */ 3395 #endif /* !BURN_BRIDGES */ 3396 3397 #define KINFO_VNODESLOP 10 3398 #ifdef notyet 3399 /* 3400 * Dump vnode list (via sysctl). 3401 */ 3402 /* ARGSUSED */ 3403 static int 3404 sysctl_vnode(SYSCTL_HANDLER_ARGS) 3405 { 3406 struct xvnode *xvn; 3407 struct mount *mp; 3408 struct vnode *vp; 3409 int error, len, n; 3410 3411 /* 3412 * Stale numvnodes access is not fatal here. 3413 */ 3414 req->lock = 0; 3415 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; 3416 if (!req->oldptr) 3417 /* Make an estimate */ 3418 return (SYSCTL_OUT(req, 0, len)); 3419 3420 error = sysctl_wire_old_buffer(req, 0); 3421 if (error != 0) 3422 return (error); 3423 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); 3424 n = 0; 3425 mtx_lock(&mountlist_mtx); 3426 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3427 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 3428 continue; 3429 MNT_ILOCK(mp); 3430 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3431 if (n == len) 3432 break; 3433 vref(vp); 3434 xvn[n].xv_size = sizeof *xvn; 3435 xvn[n].xv_vnode = vp; 3436 xvn[n].xv_id = 0; /* XXX compat */ 3437 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field 3438 XV_COPY(usecount); 3439 XV_COPY(writecount); 3440 XV_COPY(holdcnt); 3441 XV_COPY(mount); 3442 XV_COPY(numoutput); 3443 XV_COPY(type); 3444 #undef XV_COPY 3445 xvn[n].xv_flag = vp->v_vflag; 3446 3447 switch (vp->v_type) { 3448 case VREG: 3449 case VDIR: 3450 case VLNK: 3451 break; 3452 case VBLK: 3453 case VCHR: 3454 if (vp->v_rdev == NULL) { 3455 vrele(vp); 3456 continue; 3457 } 3458 xvn[n].xv_dev = dev2udev(vp->v_rdev); 3459 break; 3460 case VSOCK: 3461 xvn[n].xv_socket = vp->v_socket; 3462 break; 3463 case VFIFO: 3464 xvn[n].xv_fifo = vp->v_fifoinfo; 3465 break; 3466 case VNON: 3467 case VBAD: 3468 default: 3469 /* shouldn't happen? */ 3470 vrele(vp); 3471 continue; 3472 } 3473 vrele(vp); 3474 ++n; 3475 } 3476 MNT_IUNLOCK(mp); 3477 mtx_lock(&mountlist_mtx); 3478 vfs_unbusy(mp); 3479 if (n == len) 3480 break; 3481 } 3482 mtx_unlock(&mountlist_mtx); 3483 3484 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); 3485 free(xvn, M_TEMP); 3486 return (error); 3487 } 3488 3489 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD | 3490 CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode", 3491 ""); 3492 #endif 3493 3494 /* 3495 * Unmount all filesystems. The list is traversed in reverse order 3496 * of mounting to avoid dependencies. 3497 */ 3498 void 3499 vfs_unmountall(void) 3500 { 3501 struct mount *mp; 3502 struct thread *td; 3503 int error; 3504 3505 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 3506 td = curthread; 3507 3508 /* 3509 * Since this only runs when rebooting, it is not interlocked. 3510 */ 3511 while(!TAILQ_EMPTY(&mountlist)) { 3512 mp = TAILQ_LAST(&mountlist, mntlist); 3513 vfs_ref(mp); 3514 error = dounmount(mp, MNT_FORCE, td); 3515 if (error != 0) { 3516 TAILQ_REMOVE(&mountlist, mp, mnt_list); 3517 /* 3518 * XXX: Due to the way in which we mount the root 3519 * file system off of devfs, devfs will generate a 3520 * "busy" warning when we try to unmount it before 3521 * the root. Don't print a warning as a result in 3522 * order to avoid false positive errors that may 3523 * cause needless upset. 3524 */ 3525 if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) { 3526 printf("unmount of %s failed (", 3527 mp->mnt_stat.f_mntonname); 3528 if (error == EBUSY) 3529 printf("BUSY)\n"); 3530 else 3531 printf("%d)\n", error); 3532 } 3533 } else { 3534 /* The unmount has removed mp from the mountlist */ 3535 } 3536 } 3537 } 3538 3539 /* 3540 * perform msync on all vnodes under a mount point 3541 * the mount point must be locked. 3542 */ 3543 void 3544 vfs_msync(struct mount *mp, int flags) 3545 { 3546 struct vnode *vp, *mvp; 3547 struct vm_object *obj; 3548 3549 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 3550 MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) { 3551 obj = vp->v_object; 3552 if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 && 3553 (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) { 3554 if (!vget(vp, 3555 LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, 3556 curthread)) { 3557 if (vp->v_vflag & VV_NOSYNC) { /* unlinked */ 3558 vput(vp); 3559 continue; 3560 } 3561 3562 obj = vp->v_object; 3563 if (obj != NULL) { 3564 VM_OBJECT_WLOCK(obj); 3565 vm_object_page_clean(obj, 0, 0, 3566 flags == MNT_WAIT ? 3567 OBJPC_SYNC : OBJPC_NOSYNC); 3568 VM_OBJECT_WUNLOCK(obj); 3569 } 3570 vput(vp); 3571 } 3572 } else 3573 VI_UNLOCK(vp); 3574 } 3575 } 3576 3577 static void 3578 destroy_vpollinfo_free(struct vpollinfo *vi) 3579 { 3580 3581 knlist_destroy(&vi->vpi_selinfo.si_note); 3582 mtx_destroy(&vi->vpi_lock); 3583 uma_zfree(vnodepoll_zone, vi); 3584 } 3585 3586 static void 3587 destroy_vpollinfo(struct vpollinfo *vi) 3588 { 3589 3590 knlist_clear(&vi->vpi_selinfo.si_note, 1); 3591 seldrain(&vi->vpi_selinfo); 3592 destroy_vpollinfo_free(vi); 3593 } 3594 3595 /* 3596 * Initalize per-vnode helper structure to hold poll-related state. 3597 */ 3598 void 3599 v_addpollinfo(struct vnode *vp) 3600 { 3601 struct vpollinfo *vi; 3602 3603 if (vp->v_pollinfo != NULL) 3604 return; 3605 vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO); 3606 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 3607 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 3608 vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked); 3609 VI_LOCK(vp); 3610 if (vp->v_pollinfo != NULL) { 3611 VI_UNLOCK(vp); 3612 destroy_vpollinfo_free(vi); 3613 return; 3614 } 3615 vp->v_pollinfo = vi; 3616 VI_UNLOCK(vp); 3617 } 3618 3619 /* 3620 * Record a process's interest in events which might happen to 3621 * a vnode. Because poll uses the historic select-style interface 3622 * internally, this routine serves as both the ``check for any 3623 * pending events'' and the ``record my interest in future events'' 3624 * functions. (These are done together, while the lock is held, 3625 * to avoid race conditions.) 3626 */ 3627 int 3628 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 3629 { 3630 3631 v_addpollinfo(vp); 3632 mtx_lock(&vp->v_pollinfo->vpi_lock); 3633 if (vp->v_pollinfo->vpi_revents & events) { 3634 /* 3635 * This leaves events we are not interested 3636 * in available for the other process which 3637 * which presumably had requested them 3638 * (otherwise they would never have been 3639 * recorded). 3640 */ 3641 events &= vp->v_pollinfo->vpi_revents; 3642 vp->v_pollinfo->vpi_revents &= ~events; 3643 3644 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3645 return (events); 3646 } 3647 vp->v_pollinfo->vpi_events |= events; 3648 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 3649 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3650 return (0); 3651 } 3652 3653 /* 3654 * Routine to create and manage a filesystem syncer vnode. 3655 */ 3656 #define sync_close ((int (*)(struct vop_close_args *))nullop) 3657 static int sync_fsync(struct vop_fsync_args *); 3658 static int sync_inactive(struct vop_inactive_args *); 3659 static int sync_reclaim(struct vop_reclaim_args *); 3660 3661 static struct vop_vector sync_vnodeops = { 3662 .vop_bypass = VOP_EOPNOTSUPP, 3663 .vop_close = sync_close, /* close */ 3664 .vop_fsync = sync_fsync, /* fsync */ 3665 .vop_inactive = sync_inactive, /* inactive */ 3666 .vop_reclaim = sync_reclaim, /* reclaim */ 3667 .vop_lock1 = vop_stdlock, /* lock */ 3668 .vop_unlock = vop_stdunlock, /* unlock */ 3669 .vop_islocked = vop_stdislocked, /* islocked */ 3670 }; 3671 3672 /* 3673 * Create a new filesystem syncer vnode for the specified mount point. 3674 */ 3675 void 3676 vfs_allocate_syncvnode(struct mount *mp) 3677 { 3678 struct vnode *vp; 3679 struct bufobj *bo; 3680 static long start, incr, next; 3681 int error; 3682 3683 /* Allocate a new vnode */ 3684 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 3685 if (error != 0) 3686 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 3687 vp->v_type = VNON; 3688 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3689 vp->v_vflag |= VV_FORCEINSMQ; 3690 error = insmntque(vp, mp); 3691 if (error != 0) 3692 panic("vfs_allocate_syncvnode: insmntque() failed"); 3693 vp->v_vflag &= ~VV_FORCEINSMQ; 3694 VOP_UNLOCK(vp, 0); 3695 /* 3696 * Place the vnode onto the syncer worklist. We attempt to 3697 * scatter them about on the list so that they will go off 3698 * at evenly distributed times even if all the filesystems 3699 * are mounted at once. 3700 */ 3701 next += incr; 3702 if (next == 0 || next > syncer_maxdelay) { 3703 start /= 2; 3704 incr /= 2; 3705 if (start == 0) { 3706 start = syncer_maxdelay / 2; 3707 incr = syncer_maxdelay; 3708 } 3709 next = start; 3710 } 3711 bo = &vp->v_bufobj; 3712 BO_LOCK(bo); 3713 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 3714 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 3715 mtx_lock(&sync_mtx); 3716 sync_vnode_count++; 3717 if (mp->mnt_syncer == NULL) { 3718 mp->mnt_syncer = vp; 3719 vp = NULL; 3720 } 3721 mtx_unlock(&sync_mtx); 3722 BO_UNLOCK(bo); 3723 if (vp != NULL) { 3724 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3725 vgone(vp); 3726 vput(vp); 3727 } 3728 } 3729 3730 void 3731 vfs_deallocate_syncvnode(struct mount *mp) 3732 { 3733 struct vnode *vp; 3734 3735 mtx_lock(&sync_mtx); 3736 vp = mp->mnt_syncer; 3737 if (vp != NULL) 3738 mp->mnt_syncer = NULL; 3739 mtx_unlock(&sync_mtx); 3740 if (vp != NULL) 3741 vrele(vp); 3742 } 3743 3744 /* 3745 * Do a lazy sync of the filesystem. 3746 */ 3747 static int 3748 sync_fsync(struct vop_fsync_args *ap) 3749 { 3750 struct vnode *syncvp = ap->a_vp; 3751 struct mount *mp = syncvp->v_mount; 3752 int error, save; 3753 struct bufobj *bo; 3754 3755 /* 3756 * We only need to do something if this is a lazy evaluation. 3757 */ 3758 if (ap->a_waitfor != MNT_LAZY) 3759 return (0); 3760 3761 /* 3762 * Move ourselves to the back of the sync list. 3763 */ 3764 bo = &syncvp->v_bufobj; 3765 BO_LOCK(bo); 3766 vn_syncer_add_to_worklist(bo, syncdelay); 3767 BO_UNLOCK(bo); 3768 3769 /* 3770 * Walk the list of vnodes pushing all that are dirty and 3771 * not already on the sync list. 3772 */ 3773 if (vfs_busy(mp, MBF_NOWAIT) != 0) 3774 return (0); 3775 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 3776 vfs_unbusy(mp); 3777 return (0); 3778 } 3779 save = curthread_pflags_set(TDP_SYNCIO); 3780 vfs_msync(mp, MNT_NOWAIT); 3781 error = VFS_SYNC(mp, MNT_LAZY); 3782 curthread_pflags_restore(save); 3783 vn_finished_write(mp); 3784 vfs_unbusy(mp); 3785 return (error); 3786 } 3787 3788 /* 3789 * The syncer vnode is no referenced. 3790 */ 3791 static int 3792 sync_inactive(struct vop_inactive_args *ap) 3793 { 3794 3795 vgone(ap->a_vp); 3796 return (0); 3797 } 3798 3799 /* 3800 * The syncer vnode is no longer needed and is being decommissioned. 3801 * 3802 * Modifications to the worklist must be protected by sync_mtx. 3803 */ 3804 static int 3805 sync_reclaim(struct vop_reclaim_args *ap) 3806 { 3807 struct vnode *vp = ap->a_vp; 3808 struct bufobj *bo; 3809 3810 bo = &vp->v_bufobj; 3811 BO_LOCK(bo); 3812 mtx_lock(&sync_mtx); 3813 if (vp->v_mount->mnt_syncer == vp) 3814 vp->v_mount->mnt_syncer = NULL; 3815 if (bo->bo_flag & BO_ONWORKLST) { 3816 LIST_REMOVE(bo, bo_synclist); 3817 syncer_worklist_len--; 3818 sync_vnode_count--; 3819 bo->bo_flag &= ~BO_ONWORKLST; 3820 } 3821 mtx_unlock(&sync_mtx); 3822 BO_UNLOCK(bo); 3823 3824 return (0); 3825 } 3826 3827 /* 3828 * Check if vnode represents a disk device 3829 */ 3830 int 3831 vn_isdisk(struct vnode *vp, int *errp) 3832 { 3833 int error; 3834 3835 if (vp->v_type != VCHR) { 3836 error = ENOTBLK; 3837 goto out; 3838 } 3839 error = 0; 3840 dev_lock(); 3841 if (vp->v_rdev == NULL) 3842 error = ENXIO; 3843 else if (vp->v_rdev->si_devsw == NULL) 3844 error = ENXIO; 3845 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 3846 error = ENOTBLK; 3847 dev_unlock(); 3848 out: 3849 if (errp != NULL) 3850 *errp = error; 3851 return (error == 0); 3852 } 3853 3854 /* 3855 * Common filesystem object access control check routine. Accepts a 3856 * vnode's type, "mode", uid and gid, requested access mode, credentials, 3857 * and optional call-by-reference privused argument allowing vaccess() 3858 * to indicate to the caller whether privilege was used to satisfy the 3859 * request (obsoleted). Returns 0 on success, or an errno on failure. 3860 */ 3861 int 3862 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 3863 accmode_t accmode, struct ucred *cred, int *privused) 3864 { 3865 accmode_t dac_granted; 3866 accmode_t priv_granted; 3867 3868 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 3869 ("invalid bit in accmode")); 3870 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 3871 ("VAPPEND without VWRITE")); 3872 3873 /* 3874 * Look for a normal, non-privileged way to access the file/directory 3875 * as requested. If it exists, go with that. 3876 */ 3877 3878 if (privused != NULL) 3879 *privused = 0; 3880 3881 dac_granted = 0; 3882 3883 /* Check the owner. */ 3884 if (cred->cr_uid == file_uid) { 3885 dac_granted |= VADMIN; 3886 if (file_mode & S_IXUSR) 3887 dac_granted |= VEXEC; 3888 if (file_mode & S_IRUSR) 3889 dac_granted |= VREAD; 3890 if (file_mode & S_IWUSR) 3891 dac_granted |= (VWRITE | VAPPEND); 3892 3893 if ((accmode & dac_granted) == accmode) 3894 return (0); 3895 3896 goto privcheck; 3897 } 3898 3899 /* Otherwise, check the groups (first match) */ 3900 if (groupmember(file_gid, cred)) { 3901 if (file_mode & S_IXGRP) 3902 dac_granted |= VEXEC; 3903 if (file_mode & S_IRGRP) 3904 dac_granted |= VREAD; 3905 if (file_mode & S_IWGRP) 3906 dac_granted |= (VWRITE | VAPPEND); 3907 3908 if ((accmode & dac_granted) == accmode) 3909 return (0); 3910 3911 goto privcheck; 3912 } 3913 3914 /* Otherwise, check everyone else. */ 3915 if (file_mode & S_IXOTH) 3916 dac_granted |= VEXEC; 3917 if (file_mode & S_IROTH) 3918 dac_granted |= VREAD; 3919 if (file_mode & S_IWOTH) 3920 dac_granted |= (VWRITE | VAPPEND); 3921 if ((accmode & dac_granted) == accmode) 3922 return (0); 3923 3924 privcheck: 3925 /* 3926 * Build a privilege mask to determine if the set of privileges 3927 * satisfies the requirements when combined with the granted mask 3928 * from above. For each privilege, if the privilege is required, 3929 * bitwise or the request type onto the priv_granted mask. 3930 */ 3931 priv_granted = 0; 3932 3933 if (type == VDIR) { 3934 /* 3935 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 3936 * requests, instead of PRIV_VFS_EXEC. 3937 */ 3938 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3939 !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0)) 3940 priv_granted |= VEXEC; 3941 } else { 3942 /* 3943 * Ensure that at least one execute bit is on. Otherwise, 3944 * a privileged user will always succeed, and we don't want 3945 * this to happen unless the file really is executable. 3946 */ 3947 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3948 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 3949 !priv_check_cred(cred, PRIV_VFS_EXEC, 0)) 3950 priv_granted |= VEXEC; 3951 } 3952 3953 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 3954 !priv_check_cred(cred, PRIV_VFS_READ, 0)) 3955 priv_granted |= VREAD; 3956 3957 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 3958 !priv_check_cred(cred, PRIV_VFS_WRITE, 0)) 3959 priv_granted |= (VWRITE | VAPPEND); 3960 3961 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 3962 !priv_check_cred(cred, PRIV_VFS_ADMIN, 0)) 3963 priv_granted |= VADMIN; 3964 3965 if ((accmode & (priv_granted | dac_granted)) == accmode) { 3966 /* XXX audit: privilege used */ 3967 if (privused != NULL) 3968 *privused = 1; 3969 return (0); 3970 } 3971 3972 return ((accmode & VADMIN) ? EPERM : EACCES); 3973 } 3974 3975 /* 3976 * Credential check based on process requesting service, and per-attribute 3977 * permissions. 3978 */ 3979 int 3980 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 3981 struct thread *td, accmode_t accmode) 3982 { 3983 3984 /* 3985 * Kernel-invoked always succeeds. 3986 */ 3987 if (cred == NOCRED) 3988 return (0); 3989 3990 /* 3991 * Do not allow privileged processes in jail to directly manipulate 3992 * system attributes. 3993 */ 3994 switch (attrnamespace) { 3995 case EXTATTR_NAMESPACE_SYSTEM: 3996 /* Potentially should be: return (EPERM); */ 3997 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0)); 3998 case EXTATTR_NAMESPACE_USER: 3999 return (VOP_ACCESS(vp, accmode, cred, td)); 4000 default: 4001 return (EPERM); 4002 } 4003 } 4004 4005 #ifdef DEBUG_VFS_LOCKS 4006 /* 4007 * This only exists to supress warnings from unlocked specfs accesses. It is 4008 * no longer ok to have an unlocked VFS. 4009 */ 4010 #define IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL || \ 4011 (vp)->v_type == VCHR || (vp)->v_type == VBAD) 4012 4013 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 4014 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 4015 "Drop into debugger on lock violation"); 4016 4017 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 4018 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 4019 0, "Check for interlock across VOPs"); 4020 4021 int vfs_badlock_print = 1; /* Print lock violations. */ 4022 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 4023 0, "Print lock violations"); 4024 4025 #ifdef KDB 4026 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 4027 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 4028 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 4029 #endif 4030 4031 static void 4032 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 4033 { 4034 4035 #ifdef KDB 4036 if (vfs_badlock_backtrace) 4037 kdb_backtrace(); 4038 #endif 4039 if (vfs_badlock_print) 4040 printf("%s: %p %s\n", str, (void *)vp, msg); 4041 if (vfs_badlock_ddb) 4042 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 4043 } 4044 4045 void 4046 assert_vi_locked(struct vnode *vp, const char *str) 4047 { 4048 4049 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 4050 vfs_badlock("interlock is not locked but should be", str, vp); 4051 } 4052 4053 void 4054 assert_vi_unlocked(struct vnode *vp, const char *str) 4055 { 4056 4057 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 4058 vfs_badlock("interlock is locked but should not be", str, vp); 4059 } 4060 4061 void 4062 assert_vop_locked(struct vnode *vp, const char *str) 4063 { 4064 int locked; 4065 4066 if (!IGNORE_LOCK(vp)) { 4067 locked = VOP_ISLOCKED(vp); 4068 if (locked == 0 || locked == LK_EXCLOTHER) 4069 vfs_badlock("is not locked but should be", str, vp); 4070 } 4071 } 4072 4073 void 4074 assert_vop_unlocked(struct vnode *vp, const char *str) 4075 { 4076 4077 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 4078 vfs_badlock("is locked but should not be", str, vp); 4079 } 4080 4081 void 4082 assert_vop_elocked(struct vnode *vp, const char *str) 4083 { 4084 4085 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 4086 vfs_badlock("is not exclusive locked but should be", str, vp); 4087 } 4088 4089 #if 0 4090 void 4091 assert_vop_elocked_other(struct vnode *vp, const char *str) 4092 { 4093 4094 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER) 4095 vfs_badlock("is not exclusive locked by another thread", 4096 str, vp); 4097 } 4098 4099 void 4100 assert_vop_slocked(struct vnode *vp, const char *str) 4101 { 4102 4103 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED) 4104 vfs_badlock("is not locked shared but should be", str, vp); 4105 } 4106 #endif /* 0 */ 4107 #endif /* DEBUG_VFS_LOCKS */ 4108 4109 void 4110 vop_rename_fail(struct vop_rename_args *ap) 4111 { 4112 4113 if (ap->a_tvp != NULL) 4114 vput(ap->a_tvp); 4115 if (ap->a_tdvp == ap->a_tvp) 4116 vrele(ap->a_tdvp); 4117 else 4118 vput(ap->a_tdvp); 4119 vrele(ap->a_fdvp); 4120 vrele(ap->a_fvp); 4121 } 4122 4123 void 4124 vop_rename_pre(void *ap) 4125 { 4126 struct vop_rename_args *a = ap; 4127 4128 #ifdef DEBUG_VFS_LOCKS 4129 if (a->a_tvp) 4130 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 4131 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 4132 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 4133 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 4134 4135 /* Check the source (from). */ 4136 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 4137 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 4138 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 4139 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 4140 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 4141 4142 /* Check the target. */ 4143 if (a->a_tvp) 4144 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 4145 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 4146 #endif 4147 if (a->a_tdvp != a->a_fdvp) 4148 vhold(a->a_fdvp); 4149 if (a->a_tvp != a->a_fvp) 4150 vhold(a->a_fvp); 4151 vhold(a->a_tdvp); 4152 if (a->a_tvp) 4153 vhold(a->a_tvp); 4154 } 4155 4156 void 4157 vop_strategy_pre(void *ap) 4158 { 4159 #ifdef DEBUG_VFS_LOCKS 4160 struct vop_strategy_args *a; 4161 struct buf *bp; 4162 4163 a = ap; 4164 bp = a->a_bp; 4165 4166 /* 4167 * Cluster ops lock their component buffers but not the IO container. 4168 */ 4169 if ((bp->b_flags & B_CLUSTER) != 0) 4170 return; 4171 4172 if (panicstr == NULL && !BUF_ISLOCKED(bp)) { 4173 if (vfs_badlock_print) 4174 printf( 4175 "VOP_STRATEGY: bp is not locked but should be\n"); 4176 if (vfs_badlock_ddb) 4177 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 4178 } 4179 #endif 4180 } 4181 4182 void 4183 vop_lock_pre(void *ap) 4184 { 4185 #ifdef DEBUG_VFS_LOCKS 4186 struct vop_lock1_args *a = ap; 4187 4188 if ((a->a_flags & LK_INTERLOCK) == 0) 4189 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 4190 else 4191 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 4192 #endif 4193 } 4194 4195 void 4196 vop_lock_post(void *ap, int rc) 4197 { 4198 #ifdef DEBUG_VFS_LOCKS 4199 struct vop_lock1_args *a = ap; 4200 4201 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 4202 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 4203 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 4204 #endif 4205 } 4206 4207 void 4208 vop_unlock_pre(void *ap) 4209 { 4210 #ifdef DEBUG_VFS_LOCKS 4211 struct vop_unlock_args *a = ap; 4212 4213 if (a->a_flags & LK_INTERLOCK) 4214 ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK"); 4215 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); 4216 #endif 4217 } 4218 4219 void 4220 vop_unlock_post(void *ap, int rc) 4221 { 4222 #ifdef DEBUG_VFS_LOCKS 4223 struct vop_unlock_args *a = ap; 4224 4225 if (a->a_flags & LK_INTERLOCK) 4226 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK"); 4227 #endif 4228 } 4229 4230 void 4231 vop_create_post(void *ap, int rc) 4232 { 4233 struct vop_create_args *a = ap; 4234 4235 if (!rc) 4236 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4237 } 4238 4239 void 4240 vop_deleteextattr_post(void *ap, int rc) 4241 { 4242 struct vop_deleteextattr_args *a = ap; 4243 4244 if (!rc) 4245 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4246 } 4247 4248 void 4249 vop_link_post(void *ap, int rc) 4250 { 4251 struct vop_link_args *a = ap; 4252 4253 if (!rc) { 4254 VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK); 4255 VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE); 4256 } 4257 } 4258 4259 void 4260 vop_mkdir_post(void *ap, int rc) 4261 { 4262 struct vop_mkdir_args *a = ap; 4263 4264 if (!rc) 4265 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 4266 } 4267 4268 void 4269 vop_mknod_post(void *ap, int rc) 4270 { 4271 struct vop_mknod_args *a = ap; 4272 4273 if (!rc) 4274 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4275 } 4276 4277 void 4278 vop_remove_post(void *ap, int rc) 4279 { 4280 struct vop_remove_args *a = ap; 4281 4282 if (!rc) { 4283 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4284 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 4285 } 4286 } 4287 4288 void 4289 vop_rename_post(void *ap, int rc) 4290 { 4291 struct vop_rename_args *a = ap; 4292 4293 if (!rc) { 4294 VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE); 4295 VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE); 4296 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 4297 if (a->a_tvp) 4298 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 4299 } 4300 if (a->a_tdvp != a->a_fdvp) 4301 vdrop(a->a_fdvp); 4302 if (a->a_tvp != a->a_fvp) 4303 vdrop(a->a_fvp); 4304 vdrop(a->a_tdvp); 4305 if (a->a_tvp) 4306 vdrop(a->a_tvp); 4307 } 4308 4309 void 4310 vop_rmdir_post(void *ap, int rc) 4311 { 4312 struct vop_rmdir_args *a = ap; 4313 4314 if (!rc) { 4315 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 4316 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 4317 } 4318 } 4319 4320 void 4321 vop_setattr_post(void *ap, int rc) 4322 { 4323 struct vop_setattr_args *a = ap; 4324 4325 if (!rc) 4326 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4327 } 4328 4329 void 4330 vop_setextattr_post(void *ap, int rc) 4331 { 4332 struct vop_setextattr_args *a = ap; 4333 4334 if (!rc) 4335 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4336 } 4337 4338 void 4339 vop_symlink_post(void *ap, int rc) 4340 { 4341 struct vop_symlink_args *a = ap; 4342 4343 if (!rc) 4344 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4345 } 4346 4347 static struct knlist fs_knlist; 4348 4349 static void 4350 vfs_event_init(void *arg) 4351 { 4352 knlist_init_mtx(&fs_knlist, NULL); 4353 } 4354 /* XXX - correct order? */ 4355 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 4356 4357 void 4358 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 4359 { 4360 4361 KNOTE_UNLOCKED(&fs_knlist, event); 4362 } 4363 4364 static int filt_fsattach(struct knote *kn); 4365 static void filt_fsdetach(struct knote *kn); 4366 static int filt_fsevent(struct knote *kn, long hint); 4367 4368 struct filterops fs_filtops = { 4369 .f_isfd = 0, 4370 .f_attach = filt_fsattach, 4371 .f_detach = filt_fsdetach, 4372 .f_event = filt_fsevent 4373 }; 4374 4375 static int 4376 filt_fsattach(struct knote *kn) 4377 { 4378 4379 kn->kn_flags |= EV_CLEAR; 4380 knlist_add(&fs_knlist, kn, 0); 4381 return (0); 4382 } 4383 4384 static void 4385 filt_fsdetach(struct knote *kn) 4386 { 4387 4388 knlist_remove(&fs_knlist, kn, 0); 4389 } 4390 4391 static int 4392 filt_fsevent(struct knote *kn, long hint) 4393 { 4394 4395 kn->kn_fflags |= hint; 4396 return (kn->kn_fflags != 0); 4397 } 4398 4399 static int 4400 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 4401 { 4402 struct vfsidctl vc; 4403 int error; 4404 struct mount *mp; 4405 4406 error = SYSCTL_IN(req, &vc, sizeof(vc)); 4407 if (error) 4408 return (error); 4409 if (vc.vc_vers != VFS_CTL_VERS1) 4410 return (EINVAL); 4411 mp = vfs_getvfs(&vc.vc_fsid); 4412 if (mp == NULL) 4413 return (ENOENT); 4414 /* ensure that a specific sysctl goes to the right filesystem. */ 4415 if (strcmp(vc.vc_fstypename, "*") != 0 && 4416 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 4417 vfs_rel(mp); 4418 return (EINVAL); 4419 } 4420 VCTLTOREQ(&vc, req); 4421 error = VFS_SYSCTL(mp, vc.vc_op, req); 4422 vfs_rel(mp); 4423 return (error); 4424 } 4425 4426 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR, 4427 NULL, 0, sysctl_vfs_ctl, "", 4428 "Sysctl by fsid"); 4429 4430 /* 4431 * Function to initialize a va_filerev field sensibly. 4432 * XXX: Wouldn't a random number make a lot more sense ?? 4433 */ 4434 u_quad_t 4435 init_va_filerev(void) 4436 { 4437 struct bintime bt; 4438 4439 getbinuptime(&bt); 4440 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 4441 } 4442 4443 static int filt_vfsread(struct knote *kn, long hint); 4444 static int filt_vfswrite(struct knote *kn, long hint); 4445 static int filt_vfsvnode(struct knote *kn, long hint); 4446 static void filt_vfsdetach(struct knote *kn); 4447 static struct filterops vfsread_filtops = { 4448 .f_isfd = 1, 4449 .f_detach = filt_vfsdetach, 4450 .f_event = filt_vfsread 4451 }; 4452 static struct filterops vfswrite_filtops = { 4453 .f_isfd = 1, 4454 .f_detach = filt_vfsdetach, 4455 .f_event = filt_vfswrite 4456 }; 4457 static struct filterops vfsvnode_filtops = { 4458 .f_isfd = 1, 4459 .f_detach = filt_vfsdetach, 4460 .f_event = filt_vfsvnode 4461 }; 4462 4463 static void 4464 vfs_knllock(void *arg) 4465 { 4466 struct vnode *vp = arg; 4467 4468 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 4469 } 4470 4471 static void 4472 vfs_knlunlock(void *arg) 4473 { 4474 struct vnode *vp = arg; 4475 4476 VOP_UNLOCK(vp, 0); 4477 } 4478 4479 static void 4480 vfs_knl_assert_locked(void *arg) 4481 { 4482 #ifdef DEBUG_VFS_LOCKS 4483 struct vnode *vp = arg; 4484 4485 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 4486 #endif 4487 } 4488 4489 static void 4490 vfs_knl_assert_unlocked(void *arg) 4491 { 4492 #ifdef DEBUG_VFS_LOCKS 4493 struct vnode *vp = arg; 4494 4495 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 4496 #endif 4497 } 4498 4499 int 4500 vfs_kqfilter(struct vop_kqfilter_args *ap) 4501 { 4502 struct vnode *vp = ap->a_vp; 4503 struct knote *kn = ap->a_kn; 4504 struct knlist *knl; 4505 4506 switch (kn->kn_filter) { 4507 case EVFILT_READ: 4508 kn->kn_fop = &vfsread_filtops; 4509 break; 4510 case EVFILT_WRITE: 4511 kn->kn_fop = &vfswrite_filtops; 4512 break; 4513 case EVFILT_VNODE: 4514 kn->kn_fop = &vfsvnode_filtops; 4515 break; 4516 default: 4517 return (EINVAL); 4518 } 4519 4520 kn->kn_hook = (caddr_t)vp; 4521 4522 v_addpollinfo(vp); 4523 if (vp->v_pollinfo == NULL) 4524 return (ENOMEM); 4525 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 4526 vhold(vp); 4527 knlist_add(knl, kn, 0); 4528 4529 return (0); 4530 } 4531 4532 /* 4533 * Detach knote from vnode 4534 */ 4535 static void 4536 filt_vfsdetach(struct knote *kn) 4537 { 4538 struct vnode *vp = (struct vnode *)kn->kn_hook; 4539 4540 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 4541 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 4542 vdrop(vp); 4543 } 4544 4545 /*ARGSUSED*/ 4546 static int 4547 filt_vfsread(struct knote *kn, long hint) 4548 { 4549 struct vnode *vp = (struct vnode *)kn->kn_hook; 4550 struct vattr va; 4551 int res; 4552 4553 /* 4554 * filesystem is gone, so set the EOF flag and schedule 4555 * the knote for deletion. 4556 */ 4557 if (hint == NOTE_REVOKE) { 4558 VI_LOCK(vp); 4559 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 4560 VI_UNLOCK(vp); 4561 return (1); 4562 } 4563 4564 if (VOP_GETATTR(vp, &va, curthread->td_ucred)) 4565 return (0); 4566 4567 VI_LOCK(vp); 4568 kn->kn_data = va.va_size - kn->kn_fp->f_offset; 4569 res = (kn->kn_data != 0); 4570 VI_UNLOCK(vp); 4571 return (res); 4572 } 4573 4574 /*ARGSUSED*/ 4575 static int 4576 filt_vfswrite(struct knote *kn, long hint) 4577 { 4578 struct vnode *vp = (struct vnode *)kn->kn_hook; 4579 4580 VI_LOCK(vp); 4581 4582 /* 4583 * filesystem is gone, so set the EOF flag and schedule 4584 * the knote for deletion. 4585 */ 4586 if (hint == NOTE_REVOKE) 4587 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 4588 4589 kn->kn_data = 0; 4590 VI_UNLOCK(vp); 4591 return (1); 4592 } 4593 4594 static int 4595 filt_vfsvnode(struct knote *kn, long hint) 4596 { 4597 struct vnode *vp = (struct vnode *)kn->kn_hook; 4598 int res; 4599 4600 VI_LOCK(vp); 4601 if (kn->kn_sfflags & hint) 4602 kn->kn_fflags |= hint; 4603 if (hint == NOTE_REVOKE) { 4604 kn->kn_flags |= EV_EOF; 4605 VI_UNLOCK(vp); 4606 return (1); 4607 } 4608 res = (kn->kn_fflags != 0); 4609 VI_UNLOCK(vp); 4610 return (res); 4611 } 4612 4613 int 4614 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 4615 { 4616 int error; 4617 4618 if (dp->d_reclen > ap->a_uio->uio_resid) 4619 return (ENAMETOOLONG); 4620 error = uiomove(dp, dp->d_reclen, ap->a_uio); 4621 if (error) { 4622 if (ap->a_ncookies != NULL) { 4623 if (ap->a_cookies != NULL) 4624 free(ap->a_cookies, M_TEMP); 4625 ap->a_cookies = NULL; 4626 *ap->a_ncookies = 0; 4627 } 4628 return (error); 4629 } 4630 if (ap->a_ncookies == NULL) 4631 return (0); 4632 4633 KASSERT(ap->a_cookies, 4634 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 4635 4636 *ap->a_cookies = realloc(*ap->a_cookies, 4637 (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO); 4638 (*ap->a_cookies)[*ap->a_ncookies] = off; 4639 return (0); 4640 } 4641 4642 /* 4643 * Mark for update the access time of the file if the filesystem 4644 * supports VOP_MARKATIME. This functionality is used by execve and 4645 * mmap, so we want to avoid the I/O implied by directly setting 4646 * va_atime for the sake of efficiency. 4647 */ 4648 void 4649 vfs_mark_atime(struct vnode *vp, struct ucred *cred) 4650 { 4651 struct mount *mp; 4652 4653 mp = vp->v_mount; 4654 ASSERT_VOP_LOCKED(vp, "vfs_mark_atime"); 4655 if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 4656 (void)VOP_MARKATIME(vp); 4657 } 4658 4659 /* 4660 * The purpose of this routine is to remove granularity from accmode_t, 4661 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 4662 * VADMIN and VAPPEND. 4663 * 4664 * If it returns 0, the caller is supposed to continue with the usual 4665 * access checks using 'accmode' as modified by this routine. If it 4666 * returns nonzero value, the caller is supposed to return that value 4667 * as errno. 4668 * 4669 * Note that after this routine runs, accmode may be zero. 4670 */ 4671 int 4672 vfs_unixify_accmode(accmode_t *accmode) 4673 { 4674 /* 4675 * There is no way to specify explicit "deny" rule using 4676 * file mode or POSIX.1e ACLs. 4677 */ 4678 if (*accmode & VEXPLICIT_DENY) { 4679 *accmode = 0; 4680 return (0); 4681 } 4682 4683 /* 4684 * None of these can be translated into usual access bits. 4685 * Also, the common case for NFSv4 ACLs is to not contain 4686 * either of these bits. Caller should check for VWRITE 4687 * on the containing directory instead. 4688 */ 4689 if (*accmode & (VDELETE_CHILD | VDELETE)) 4690 return (EPERM); 4691 4692 if (*accmode & VADMIN_PERMS) { 4693 *accmode &= ~VADMIN_PERMS; 4694 *accmode |= VADMIN; 4695 } 4696 4697 /* 4698 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 4699 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 4700 */ 4701 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 4702 4703 return (0); 4704 } 4705 4706 /* 4707 * These are helper functions for filesystems to traverse all 4708 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 4709 * 4710 * This interface replaces MNT_VNODE_FOREACH. 4711 */ 4712 4713 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 4714 4715 struct vnode * 4716 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 4717 { 4718 struct vnode *vp; 4719 4720 if (should_yield()) 4721 kern_yield(PRI_USER); 4722 MNT_ILOCK(mp); 4723 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4724 vp = TAILQ_NEXT(*mvp, v_nmntvnodes); 4725 while (vp != NULL && (vp->v_type == VMARKER || 4726 (vp->v_iflag & VI_DOOMED) != 0)) 4727 vp = TAILQ_NEXT(vp, v_nmntvnodes); 4728 4729 /* Check if we are done */ 4730 if (vp == NULL) { 4731 __mnt_vnode_markerfree_all(mvp, mp); 4732 /* MNT_IUNLOCK(mp); -- done in above function */ 4733 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 4734 return (NULL); 4735 } 4736 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 4737 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 4738 VI_LOCK(vp); 4739 MNT_IUNLOCK(mp); 4740 return (vp); 4741 } 4742 4743 struct vnode * 4744 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 4745 { 4746 struct vnode *vp; 4747 4748 *mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 4749 MNT_ILOCK(mp); 4750 MNT_REF(mp); 4751 (*mvp)->v_type = VMARKER; 4752 4753 vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 4754 while (vp != NULL && (vp->v_type == VMARKER || 4755 (vp->v_iflag & VI_DOOMED) != 0)) 4756 vp = TAILQ_NEXT(vp, v_nmntvnodes); 4757 4758 /* Check if we are done */ 4759 if (vp == NULL) { 4760 MNT_REL(mp); 4761 MNT_IUNLOCK(mp); 4762 free(*mvp, M_VNODE_MARKER); 4763 *mvp = NULL; 4764 return (NULL); 4765 } 4766 (*mvp)->v_mount = mp; 4767 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 4768 VI_LOCK(vp); 4769 MNT_IUNLOCK(mp); 4770 return (vp); 4771 } 4772 4773 4774 void 4775 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 4776 { 4777 4778 if (*mvp == NULL) { 4779 MNT_IUNLOCK(mp); 4780 return; 4781 } 4782 4783 mtx_assert(MNT_MTX(mp), MA_OWNED); 4784 4785 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4786 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 4787 MNT_REL(mp); 4788 MNT_IUNLOCK(mp); 4789 free(*mvp, M_VNODE_MARKER); 4790 *mvp = NULL; 4791 } 4792 4793 /* 4794 * These are helper functions for filesystems to traverse their 4795 * active vnodes. See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h 4796 */ 4797 static void 4798 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp) 4799 { 4800 4801 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4802 4803 MNT_ILOCK(mp); 4804 MNT_REL(mp); 4805 MNT_IUNLOCK(mp); 4806 free(*mvp, M_VNODE_MARKER); 4807 *mvp = NULL; 4808 } 4809 4810 static struct vnode * 4811 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp) 4812 { 4813 struct vnode *vp, *nvp; 4814 4815 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 4816 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4817 restart: 4818 vp = TAILQ_NEXT(*mvp, v_actfreelist); 4819 TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist); 4820 while (vp != NULL) { 4821 if (vp->v_type == VMARKER) { 4822 vp = TAILQ_NEXT(vp, v_actfreelist); 4823 continue; 4824 } 4825 if (!VI_TRYLOCK(vp)) { 4826 if (mp_ncpus == 1 || should_yield()) { 4827 TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist); 4828 mtx_unlock(&vnode_free_list_mtx); 4829 pause("vnacti", 1); 4830 mtx_lock(&vnode_free_list_mtx); 4831 goto restart; 4832 } 4833 continue; 4834 } 4835 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 4836 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 4837 ("alien vnode on the active list %p %p", vp, mp)); 4838 if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0) 4839 break; 4840 nvp = TAILQ_NEXT(vp, v_actfreelist); 4841 VI_UNLOCK(vp); 4842 vp = nvp; 4843 } 4844 4845 /* Check if we are done */ 4846 if (vp == NULL) { 4847 mtx_unlock(&vnode_free_list_mtx); 4848 mnt_vnode_markerfree_active(mvp, mp); 4849 return (NULL); 4850 } 4851 TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist); 4852 mtx_unlock(&vnode_free_list_mtx); 4853 ASSERT_VI_LOCKED(vp, "active iter"); 4854 KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp)); 4855 return (vp); 4856 } 4857 4858 struct vnode * 4859 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp) 4860 { 4861 4862 if (should_yield()) 4863 kern_yield(PRI_USER); 4864 mtx_lock(&vnode_free_list_mtx); 4865 return (mnt_vnode_next_active(mvp, mp)); 4866 } 4867 4868 struct vnode * 4869 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp) 4870 { 4871 struct vnode *vp; 4872 4873 *mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 4874 MNT_ILOCK(mp); 4875 MNT_REF(mp); 4876 MNT_IUNLOCK(mp); 4877 (*mvp)->v_type = VMARKER; 4878 (*mvp)->v_mount = mp; 4879 4880 mtx_lock(&vnode_free_list_mtx); 4881 vp = TAILQ_FIRST(&mp->mnt_activevnodelist); 4882 if (vp == NULL) { 4883 mtx_unlock(&vnode_free_list_mtx); 4884 mnt_vnode_markerfree_active(mvp, mp); 4885 return (NULL); 4886 } 4887 TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist); 4888 return (mnt_vnode_next_active(mvp, mp)); 4889 } 4890 4891 void 4892 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp) 4893 { 4894 4895 if (*mvp == NULL) 4896 return; 4897 4898 mtx_lock(&vnode_free_list_mtx); 4899 TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist); 4900 mtx_unlock(&vnode_free_list_mtx); 4901 mnt_vnode_markerfree_active(mvp, mp); 4902 } 4903