xref: /freebsd/sys/kern/vfs_subr.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_watchdog.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/asan.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/capsicum.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/counter.h>
54 #include <sys/dirent.h>
55 #include <sys/event.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/file.h>
59 #include <sys/fcntl.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vnode.h>
84 #include <sys/watchdog.h>
85 
86 #include <machine/stdarg.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99 
100 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
101 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
102 #endif
103 
104 #ifdef DDB
105 #include <ddb/ddb.h>
106 #endif
107 
108 static void	delmntque(struct vnode *vp);
109 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
110 		    int slpflag, int slptimeo);
111 static void	syncer_shutdown(void *arg, int howto);
112 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
113 static void	v_init_counters(struct vnode *);
114 static void	vn_seqc_init(struct vnode *);
115 static void	vn_seqc_write_end_free(struct vnode *vp);
116 static void	vgonel(struct vnode *);
117 static bool	vhold_recycle_free(struct vnode *);
118 static void	vdropl_recycle(struct vnode *vp);
119 static void	vdrop_recycle(struct vnode *vp);
120 static void	vfs_knllock(void *arg);
121 static void	vfs_knlunlock(void *arg);
122 static void	vfs_knl_assert_lock(void *arg, int what);
123 static void	destroy_vpollinfo(struct vpollinfo *vi);
124 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
125 		    daddr_t startlbn, daddr_t endlbn);
126 static void	vnlru_recalc(void);
127 
128 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129     "vnode configuration and statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131     "vnode configuration");
132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133     "vnode statistics");
134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135     "vnode recycling");
136 
137 /*
138  * Number of vnodes in existence.  Increased whenever getnewvnode()
139  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140  */
141 static u_long __exclusive_cache_line numvnodes;
142 
143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144     "Number of vnodes in existence (legacy)");
145 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence");
147 
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150     "Number of vnodes created by getnewvnode (legacy)");
151 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
152     "Number of vnodes created by getnewvnode");
153 
154 /*
155  * Conversion tables for conversion from vnode types to inode formats
156  * and back.
157  */
158 __enum_uint8(vtype) iftovt_tab[16] = {
159 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161 };
162 int vttoif_tab[10] = {
163 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165 };
166 
167 /*
168  * List of allocates vnodes in the system.
169  */
170 static TAILQ_HEAD(freelst, vnode) vnode_list;
171 static struct vnode *vnode_list_free_marker;
172 static struct vnode *vnode_list_reclaim_marker;
173 
174 /*
175  * "Free" vnode target.  Free vnodes are rarely completely free, but are
176  * just ones that are cheap to recycle.  Usually they are for files which
177  * have been stat'd but not read; these usually have inode and namecache
178  * data attached to them.  This target is the preferred minimum size of a
179  * sub-cache consisting mostly of such files. The system balances the size
180  * of this sub-cache with its complement to try to prevent either from
181  * thrashing while the other is relatively inactive.  The targets express
182  * a preference for the best balance.
183  *
184  * "Above" this target there are 2 further targets (watermarks) related
185  * to recyling of free vnodes.  In the best-operating case, the cache is
186  * exactly full, the free list has size between vlowat and vhiwat above the
187  * free target, and recycling from it and normal use maintains this state.
188  * Sometimes the free list is below vlowat or even empty, but this state
189  * is even better for immediate use provided the cache is not full.
190  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191  * ones) to reach one of these states.  The watermarks are currently hard-
192  * coded as 4% and 9% of the available space higher.  These and the default
193  * of 25% for wantfreevnodes are too large if the memory size is large.
194  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195  * whenever vnlru_proc() becomes active.
196  */
197 static long wantfreevnodes;
198 static long __exclusive_cache_line freevnodes;
199 static long freevnodes_old;
200 
201 static u_long recycles_count;
202 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
203     "Number of vnodes recycled to meet vnode cache targets (legacy)");
204 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
205     &recycles_count, 0,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static u_long recycles_free_count;
209 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
210     &recycles_free_count, 0,
211     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
212 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
213     &recycles_free_count, 0,
214     "Number of free vnodes recycled to meet vnode cache targets");
215 
216 static counter_u64_t direct_recycles_free_count;
217 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
218     &direct_recycles_free_count,
219     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
220 
221 static counter_u64_t vnode_skipped_requeues;
222 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
223     "Number of times LRU requeue was skipped due to lock contention");
224 
225 static __read_mostly bool vnode_can_skip_requeue;
226 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
227     &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
228 
229 static u_long deferred_inact;
230 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
231     &deferred_inact, 0, "Number of times inactive processing was deferred");
232 
233 /* To keep more than one thread at a time from running vfs_getnewfsid */
234 static struct mtx mntid_mtx;
235 
236 /*
237  * Lock for any access to the following:
238  *	vnode_list
239  *	numvnodes
240  *	freevnodes
241  */
242 static struct mtx __exclusive_cache_line vnode_list_mtx;
243 
244 /* Publicly exported FS */
245 struct nfs_public nfs_pub;
246 
247 static uma_zone_t buf_trie_zone;
248 static smr_t buf_trie_smr;
249 
250 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
251 static uma_zone_t vnode_zone;
252 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
253 
254 __read_frequently smr_t vfs_smr;
255 
256 /*
257  * The workitem queue.
258  *
259  * It is useful to delay writes of file data and filesystem metadata
260  * for tens of seconds so that quickly created and deleted files need
261  * not waste disk bandwidth being created and removed. To realize this,
262  * we append vnodes to a "workitem" queue. When running with a soft
263  * updates implementation, most pending metadata dependencies should
264  * not wait for more than a few seconds. Thus, mounted on block devices
265  * are delayed only about a half the time that file data is delayed.
266  * Similarly, directory updates are more critical, so are only delayed
267  * about a third the time that file data is delayed. Thus, there are
268  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
269  * one each second (driven off the filesystem syncer process). The
270  * syncer_delayno variable indicates the next queue that is to be processed.
271  * Items that need to be processed soon are placed in this queue:
272  *
273  *	syncer_workitem_pending[syncer_delayno]
274  *
275  * A delay of fifteen seconds is done by placing the request fifteen
276  * entries later in the queue:
277  *
278  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
279  *
280  */
281 static int syncer_delayno;
282 static long syncer_mask;
283 LIST_HEAD(synclist, bufobj);
284 static struct synclist *syncer_workitem_pending;
285 /*
286  * The sync_mtx protects:
287  *	bo->bo_synclist
288  *	sync_vnode_count
289  *	syncer_delayno
290  *	syncer_state
291  *	syncer_workitem_pending
292  *	syncer_worklist_len
293  *	rushjob
294  */
295 static struct mtx sync_mtx;
296 static struct cv sync_wakeup;
297 
298 #define SYNCER_MAXDELAY		32
299 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
300 static int syncdelay = 30;		/* max time to delay syncing data */
301 static int filedelay = 30;		/* time to delay syncing files */
302 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
303     "Time to delay syncing files (in seconds)");
304 static int dirdelay = 29;		/* time to delay syncing directories */
305 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
306     "Time to delay syncing directories (in seconds)");
307 static int metadelay = 28;		/* time to delay syncing metadata */
308 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
309     "Time to delay syncing metadata (in seconds)");
310 static int rushjob;		/* number of slots to run ASAP */
311 static int stat_rush_requests;	/* number of times I/O speeded up */
312 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
313     "Number of times I/O speeded up (rush requests)");
314 
315 #define	VDBATCH_SIZE 8
316 struct vdbatch {
317 	u_int index;
318 	struct mtx lock;
319 	struct vnode *tab[VDBATCH_SIZE];
320 };
321 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
322 
323 static void	vdbatch_dequeue(struct vnode *vp);
324 
325 /*
326  * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
327  * we probably don't want to pause for the whole second each time.
328  */
329 #define SYNCER_SHUTDOWN_SPEEDUP		32
330 static int sync_vnode_count;
331 static int syncer_worklist_len;
332 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
333     syncer_state;
334 
335 /* Target for maximum number of vnodes. */
336 u_long desiredvnodes;
337 static u_long gapvnodes;		/* gap between wanted and desired */
338 static u_long vhiwat;		/* enough extras after expansion */
339 static u_long vlowat;		/* minimal extras before expansion */
340 static bool vstir;		/* nonzero to stir non-free vnodes */
341 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
342 
343 static u_long vnlru_read_freevnodes(void);
344 
345 /*
346  * Note that no attempt is made to sanitize these parameters.
347  */
348 static int
349 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
350 {
351 	u_long val;
352 	int error;
353 
354 	val = desiredvnodes;
355 	error = sysctl_handle_long(oidp, &val, 0, req);
356 	if (error != 0 || req->newptr == NULL)
357 		return (error);
358 
359 	if (val == desiredvnodes)
360 		return (0);
361 	mtx_lock(&vnode_list_mtx);
362 	desiredvnodes = val;
363 	wantfreevnodes = desiredvnodes / 4;
364 	vnlru_recalc();
365 	mtx_unlock(&vnode_list_mtx);
366 	/*
367 	 * XXX There is no protection against multiple threads changing
368 	 * desiredvnodes at the same time. Locking above only helps vnlru and
369 	 * getnewvnode.
370 	 */
371 	vfs_hash_changesize(desiredvnodes);
372 	cache_changesize(desiredvnodes);
373 	return (0);
374 }
375 
376 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
377     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
378     "LU", "Target for maximum number of vnodes (legacy)");
379 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
380     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
381     "LU", "Target for maximum number of vnodes");
382 
383 static int
384 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
385 {
386 	u_long rfreevnodes;
387 
388 	rfreevnodes = vnlru_read_freevnodes();
389 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
390 }
391 
392 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
393     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
394     "LU", "Number of \"free\" vnodes (legacy)");
395 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
396     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
397     "LU", "Number of \"free\" vnodes");
398 
399 static int
400 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
401 {
402 	u_long val;
403 	int error;
404 
405 	val = wantfreevnodes;
406 	error = sysctl_handle_long(oidp, &val, 0, req);
407 	if (error != 0 || req->newptr == NULL)
408 		return (error);
409 
410 	if (val == wantfreevnodes)
411 		return (0);
412 	mtx_lock(&vnode_list_mtx);
413 	wantfreevnodes = val;
414 	vnlru_recalc();
415 	mtx_unlock(&vnode_list_mtx);
416 	return (0);
417 }
418 
419 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
420     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
421     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
422 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
423     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
424     "LU", "Target for minimum number of \"free\" vnodes");
425 
426 static int vnlru_nowhere;
427 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
428     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
429 
430 static int
431 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
432 {
433 	struct vnode *vp;
434 	struct nameidata nd;
435 	char *buf;
436 	unsigned long ndflags;
437 	int error;
438 
439 	if (req->newptr == NULL)
440 		return (EINVAL);
441 	if (req->newlen >= PATH_MAX)
442 		return (E2BIG);
443 
444 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
445 	error = SYSCTL_IN(req, buf, req->newlen);
446 	if (error != 0)
447 		goto out;
448 
449 	buf[req->newlen] = '\0';
450 
451 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
452 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
453 	if ((error = namei(&nd)) != 0)
454 		goto out;
455 	vp = nd.ni_vp;
456 
457 	if (VN_IS_DOOMED(vp)) {
458 		/*
459 		 * This vnode is being recycled.  Return != 0 to let the caller
460 		 * know that the sysctl had no effect.  Return EAGAIN because a
461 		 * subsequent call will likely succeed (since namei will create
462 		 * a new vnode if necessary)
463 		 */
464 		error = EAGAIN;
465 		goto putvnode;
466 	}
467 
468 	vgone(vp);
469 putvnode:
470 	vput(vp);
471 	NDFREE_PNBUF(&nd);
472 out:
473 	free(buf, M_TEMP);
474 	return (error);
475 }
476 
477 static int
478 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
479 {
480 	struct thread *td = curthread;
481 	struct vnode *vp;
482 	struct file *fp;
483 	int error;
484 	int fd;
485 
486 	if (req->newptr == NULL)
487 		return (EBADF);
488 
489         error = sysctl_handle_int(oidp, &fd, 0, req);
490         if (error != 0)
491                 return (error);
492 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
493 	if (error != 0)
494 		return (error);
495 	vp = fp->f_vnode;
496 
497 	error = vn_lock(vp, LK_EXCLUSIVE);
498 	if (error != 0)
499 		goto drop;
500 
501 	vgone(vp);
502 	VOP_UNLOCK(vp);
503 drop:
504 	fdrop(fp, td);
505 	return (error);
506 }
507 
508 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
509     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
510     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
511 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
512     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
513     sysctl_ftry_reclaim_vnode, "I",
514     "Try to reclaim a vnode by its file descriptor");
515 
516 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
517 #define vnsz2log 8
518 #ifndef DEBUG_LOCKS
519 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
520     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
521     "vnsz2log needs to be updated");
522 #endif
523 
524 /*
525  * Support for the bufobj clean & dirty pctrie.
526  */
527 static void *
528 buf_trie_alloc(struct pctrie *ptree)
529 {
530 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
531 }
532 
533 static void
534 buf_trie_free(struct pctrie *ptree, void *node)
535 {
536 	uma_zfree_smr(buf_trie_zone, node);
537 }
538 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
539     buf_trie_smr);
540 
541 /*
542  * Lookup the next element greater than or equal to lblkno, accounting for the
543  * fact that, for pctries, negative values are greater than nonnegative ones.
544  */
545 static struct buf *
546 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
547 {
548 	struct buf *bp;
549 
550 	bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
551 	if (bp == NULL && lblkno < 0)
552 		bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
553 	if (bp != NULL && bp->b_lblkno < lblkno)
554 		bp = NULL;
555 	return (bp);
556 }
557 
558 /*
559  * Insert bp, and find the next element smaller than bp, accounting for the fact
560  * that, for pctries, negative values are greater than nonnegative ones.
561  */
562 static int
563 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
564 {
565 	int error;
566 
567 	error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
568 	if (error != EEXIST) {
569 		if (*n == NULL && bp->b_lblkno >= 0)
570 			*n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
571 		if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
572 			*n = NULL;
573 	}
574 	return (error);
575 }
576 
577 /*
578  * Initialize the vnode management data structures.
579  *
580  * Reevaluate the following cap on the number of vnodes after the physical
581  * memory size exceeds 512GB.  In the limit, as the physical memory size
582  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
583  */
584 #ifndef	MAXVNODES_MAX
585 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
586 #endif
587 
588 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
589 
590 static struct vnode *
591 vn_alloc_marker(struct mount *mp)
592 {
593 	struct vnode *vp;
594 
595 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
596 	vp->v_type = VMARKER;
597 	vp->v_mount = mp;
598 
599 	return (vp);
600 }
601 
602 static void
603 vn_free_marker(struct vnode *vp)
604 {
605 
606 	MPASS(vp->v_type == VMARKER);
607 	free(vp, M_VNODE_MARKER);
608 }
609 
610 #ifdef KASAN
611 static int
612 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
613 {
614 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
615 	return (0);
616 }
617 
618 static void
619 vnode_dtor(void *mem, int size, void *arg __unused)
620 {
621 	size_t end1, end2, off1, off2;
622 
623 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
624 	    offsetof(struct vnode, v_dbatchcpu),
625 	    "KASAN marks require updating");
626 
627 	off1 = offsetof(struct vnode, v_vnodelist);
628 	off2 = offsetof(struct vnode, v_dbatchcpu);
629 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
630 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
631 
632 	/*
633 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
634 	 * after the vnode has been freed.  Try to get some KASAN coverage by
635 	 * marking everything except those two fields as invalid.  Because
636 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
637 	 * the same 8-byte aligned word must also be marked valid.
638 	 */
639 
640 	/* Handle the area from the start until v_vnodelist... */
641 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
642 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
643 
644 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
645 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
646 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
647 	if (off2 > off1)
648 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
649 		    off2 - off1, KASAN_UMA_FREED);
650 
651 	/* ... and finally the area from v_dbatchcpu to the end. */
652 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
653 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
654 	    KASAN_UMA_FREED);
655 }
656 #endif /* KASAN */
657 
658 /*
659  * Initialize a vnode as it first enters the zone.
660  */
661 static int
662 vnode_init(void *mem, int size, int flags)
663 {
664 	struct vnode *vp;
665 
666 	vp = mem;
667 	bzero(vp, size);
668 	/*
669 	 * Setup locks.
670 	 */
671 	vp->v_vnlock = &vp->v_lock;
672 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
673 	/*
674 	 * By default, don't allow shared locks unless filesystems opt-in.
675 	 */
676 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
677 	    LK_NOSHARE | LK_IS_VNODE);
678 	/*
679 	 * Initialize bufobj.
680 	 */
681 	bufobj_init(&vp->v_bufobj, vp);
682 	/*
683 	 * Initialize namecache.
684 	 */
685 	cache_vnode_init(vp);
686 	/*
687 	 * Initialize rangelocks.
688 	 */
689 	rangelock_init(&vp->v_rl);
690 
691 	vp->v_dbatchcpu = NOCPU;
692 
693 	vp->v_state = VSTATE_DEAD;
694 
695 	/*
696 	 * Check vhold_recycle_free for an explanation.
697 	 */
698 	vp->v_holdcnt = VHOLD_NO_SMR;
699 	vp->v_type = VNON;
700 	mtx_lock(&vnode_list_mtx);
701 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
702 	mtx_unlock(&vnode_list_mtx);
703 	return (0);
704 }
705 
706 /*
707  * Free a vnode when it is cleared from the zone.
708  */
709 static void
710 vnode_fini(void *mem, int size)
711 {
712 	struct vnode *vp;
713 	struct bufobj *bo;
714 
715 	vp = mem;
716 	vdbatch_dequeue(vp);
717 	mtx_lock(&vnode_list_mtx);
718 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
719 	mtx_unlock(&vnode_list_mtx);
720 	rangelock_destroy(&vp->v_rl);
721 	lockdestroy(vp->v_vnlock);
722 	mtx_destroy(&vp->v_interlock);
723 	bo = &vp->v_bufobj;
724 	rw_destroy(BO_LOCKPTR(bo));
725 
726 	kasan_mark(mem, size, size, 0);
727 }
728 
729 /*
730  * Provide the size of NFS nclnode and NFS fh for calculation of the
731  * vnode memory consumption.  The size is specified directly to
732  * eliminate dependency on NFS-private header.
733  *
734  * Other filesystems may use bigger or smaller (like UFS and ZFS)
735  * private inode data, but the NFS-based estimation is ample enough.
736  * Still, we care about differences in the size between 64- and 32-bit
737  * platforms.
738  *
739  * Namecache structure size is heuristically
740  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
741  */
742 #ifdef _LP64
743 #define	NFS_NCLNODE_SZ	(528 + 64)
744 #define	NC_SZ		148
745 #else
746 #define	NFS_NCLNODE_SZ	(360 + 32)
747 #define	NC_SZ		92
748 #endif
749 
750 static void
751 vntblinit(void *dummy __unused)
752 {
753 	struct vdbatch *vd;
754 	uma_ctor ctor;
755 	uma_dtor dtor;
756 	int cpu, physvnodes, virtvnodes;
757 
758 	/*
759 	 * Desiredvnodes is a function of the physical memory size and the
760 	 * kernel's heap size.  Generally speaking, it scales with the
761 	 * physical memory size.  The ratio of desiredvnodes to the physical
762 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
763 	 * Thereafter, the
764 	 * marginal ratio of desiredvnodes to the physical memory size is
765 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
766 	 * size.  The memory required by desiredvnodes vnodes and vm objects
767 	 * must not exceed 1/10th of the kernel's heap size.
768 	 */
769 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
770 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
771 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
772 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
773 	desiredvnodes = min(physvnodes, virtvnodes);
774 	if (desiredvnodes > MAXVNODES_MAX) {
775 		if (bootverbose)
776 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
777 			    desiredvnodes, MAXVNODES_MAX);
778 		desiredvnodes = MAXVNODES_MAX;
779 	}
780 	wantfreevnodes = desiredvnodes / 4;
781 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
782 	TAILQ_INIT(&vnode_list);
783 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
784 	/*
785 	 * The lock is taken to appease WITNESS.
786 	 */
787 	mtx_lock(&vnode_list_mtx);
788 	vnlru_recalc();
789 	mtx_unlock(&vnode_list_mtx);
790 	vnode_list_free_marker = vn_alloc_marker(NULL);
791 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
792 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
793 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
794 
795 #ifdef KASAN
796 	ctor = vnode_ctor;
797 	dtor = vnode_dtor;
798 #else
799 	ctor = NULL;
800 	dtor = NULL;
801 #endif
802 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
803 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
804 	uma_zone_set_smr(vnode_zone, vfs_smr);
805 
806 	/*
807 	 * Preallocate enough nodes to support one-per buf so that
808 	 * we can not fail an insert.  reassignbuf() callers can not
809 	 * tolerate the insertion failure.
810 	 */
811 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
812 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
813 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
814 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
815 	uma_prealloc(buf_trie_zone, nbuf);
816 
817 	vnodes_created = counter_u64_alloc(M_WAITOK);
818 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
819 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
820 
821 	/*
822 	 * Initialize the filesystem syncer.
823 	 */
824 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
825 	    &syncer_mask);
826 	syncer_maxdelay = syncer_mask + 1;
827 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
828 	cv_init(&sync_wakeup, "syncer");
829 
830 	CPU_FOREACH(cpu) {
831 		vd = DPCPU_ID_PTR((cpu), vd);
832 		bzero(vd, sizeof(*vd));
833 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
834 	}
835 }
836 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
837 
838 /*
839  * Mark a mount point as busy. Used to synchronize access and to delay
840  * unmounting. Eventually, mountlist_mtx is not released on failure.
841  *
842  * vfs_busy() is a custom lock, it can block the caller.
843  * vfs_busy() only sleeps if the unmount is active on the mount point.
844  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
845  * vnode belonging to mp.
846  *
847  * Lookup uses vfs_busy() to traverse mount points.
848  * root fs			var fs
849  * / vnode lock		A	/ vnode lock (/var)		D
850  * /var vnode lock	B	/log vnode lock(/var/log)	E
851  * vfs_busy lock	C	vfs_busy lock			F
852  *
853  * Within each file system, the lock order is C->A->B and F->D->E.
854  *
855  * When traversing across mounts, the system follows that lock order:
856  *
857  *        C->A->B
858  *              |
859  *              +->F->D->E
860  *
861  * The lookup() process for namei("/var") illustrates the process:
862  *  1. VOP_LOOKUP() obtains B while A is held
863  *  2. vfs_busy() obtains a shared lock on F while A and B are held
864  *  3. vput() releases lock on B
865  *  4. vput() releases lock on A
866  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
867  *  6. vfs_unbusy() releases shared lock on F
868  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
869  *     Attempt to lock A (instead of vp_crossmp) while D is held would
870  *     violate the global order, causing deadlocks.
871  *
872  * dounmount() locks B while F is drained.  Note that for stacked
873  * filesystems, D and B in the example above may be the same lock,
874  * which introdues potential lock order reversal deadlock between
875  * dounmount() and step 5 above.  These filesystems may avoid the LOR
876  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
877  * remain held until after step 5.
878  */
879 int
880 vfs_busy(struct mount *mp, int flags)
881 {
882 	struct mount_pcpu *mpcpu;
883 
884 	MPASS((flags & ~MBF_MASK) == 0);
885 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
886 
887 	if (vfs_op_thread_enter(mp, mpcpu)) {
888 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
889 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
890 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
891 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
892 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
893 		vfs_op_thread_exit(mp, mpcpu);
894 		if (flags & MBF_MNTLSTLOCK)
895 			mtx_unlock(&mountlist_mtx);
896 		return (0);
897 	}
898 
899 	MNT_ILOCK(mp);
900 	vfs_assert_mount_counters(mp);
901 	MNT_REF(mp);
902 	/*
903 	 * If mount point is currently being unmounted, sleep until the
904 	 * mount point fate is decided.  If thread doing the unmounting fails,
905 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
906 	 * that this mount point has survived the unmount attempt and vfs_busy
907 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
908 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
909 	 * about to be really destroyed.  vfs_busy needs to release its
910 	 * reference on the mount point in this case and return with ENOENT,
911 	 * telling the caller the mount it tried to busy is no longer valid.
912 	 */
913 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
914 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
915 		    ("%s: non-empty upper mount list with pending unmount",
916 		    __func__));
917 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
918 			MNT_REL(mp);
919 			MNT_IUNLOCK(mp);
920 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
921 			    __func__);
922 			return (ENOENT);
923 		}
924 		if (flags & MBF_MNTLSTLOCK)
925 			mtx_unlock(&mountlist_mtx);
926 		mp->mnt_kern_flag |= MNTK_MWAIT;
927 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
928 		if (flags & MBF_MNTLSTLOCK)
929 			mtx_lock(&mountlist_mtx);
930 		MNT_ILOCK(mp);
931 	}
932 	if (flags & MBF_MNTLSTLOCK)
933 		mtx_unlock(&mountlist_mtx);
934 	mp->mnt_lockref++;
935 	MNT_IUNLOCK(mp);
936 	return (0);
937 }
938 
939 /*
940  * Free a busy filesystem.
941  */
942 void
943 vfs_unbusy(struct mount *mp)
944 {
945 	struct mount_pcpu *mpcpu;
946 	int c;
947 
948 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
949 
950 	if (vfs_op_thread_enter(mp, mpcpu)) {
951 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
952 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
953 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
954 		vfs_op_thread_exit(mp, mpcpu);
955 		return;
956 	}
957 
958 	MNT_ILOCK(mp);
959 	vfs_assert_mount_counters(mp);
960 	MNT_REL(mp);
961 	c = --mp->mnt_lockref;
962 	if (mp->mnt_vfs_ops == 0) {
963 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
964 		MNT_IUNLOCK(mp);
965 		return;
966 	}
967 	if (c < 0)
968 		vfs_dump_mount_counters(mp);
969 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
970 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
971 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
972 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
973 		wakeup(&mp->mnt_lockref);
974 	}
975 	MNT_IUNLOCK(mp);
976 }
977 
978 /*
979  * Lookup a mount point by filesystem identifier.
980  */
981 struct mount *
982 vfs_getvfs(fsid_t *fsid)
983 {
984 	struct mount *mp;
985 
986 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
987 	mtx_lock(&mountlist_mtx);
988 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
989 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
990 			vfs_ref(mp);
991 			mtx_unlock(&mountlist_mtx);
992 			return (mp);
993 		}
994 	}
995 	mtx_unlock(&mountlist_mtx);
996 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
997 	return ((struct mount *) 0);
998 }
999 
1000 /*
1001  * Lookup a mount point by filesystem identifier, busying it before
1002  * returning.
1003  *
1004  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1005  * cache for popular filesystem identifiers.  The cache is lockess, using
1006  * the fact that struct mount's are never freed.  In worst case we may
1007  * get pointer to unmounted or even different filesystem, so we have to
1008  * check what we got, and go slow way if so.
1009  */
1010 struct mount *
1011 vfs_busyfs(fsid_t *fsid)
1012 {
1013 #define	FSID_CACHE_SIZE	256
1014 	typedef struct mount * volatile vmp_t;
1015 	static vmp_t cache[FSID_CACHE_SIZE];
1016 	struct mount *mp;
1017 	int error;
1018 	uint32_t hash;
1019 
1020 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1021 	hash = fsid->val[0] ^ fsid->val[1];
1022 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1023 	mp = cache[hash];
1024 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1025 		goto slow;
1026 	if (vfs_busy(mp, 0) != 0) {
1027 		cache[hash] = NULL;
1028 		goto slow;
1029 	}
1030 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1031 		return (mp);
1032 	else
1033 	    vfs_unbusy(mp);
1034 
1035 slow:
1036 	mtx_lock(&mountlist_mtx);
1037 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1038 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1039 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
1040 			if (error) {
1041 				cache[hash] = NULL;
1042 				mtx_unlock(&mountlist_mtx);
1043 				return (NULL);
1044 			}
1045 			cache[hash] = mp;
1046 			return (mp);
1047 		}
1048 	}
1049 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1050 	mtx_unlock(&mountlist_mtx);
1051 	return ((struct mount *) 0);
1052 }
1053 
1054 /*
1055  * Check if a user can access privileged mount options.
1056  */
1057 int
1058 vfs_suser(struct mount *mp, struct thread *td)
1059 {
1060 	int error;
1061 
1062 	if (jailed(td->td_ucred)) {
1063 		/*
1064 		 * If the jail of the calling thread lacks permission for
1065 		 * this type of file system, deny immediately.
1066 		 */
1067 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1068 			return (EPERM);
1069 
1070 		/*
1071 		 * If the file system was mounted outside the jail of the
1072 		 * calling thread, deny immediately.
1073 		 */
1074 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1075 			return (EPERM);
1076 	}
1077 
1078 	/*
1079 	 * If file system supports delegated administration, we don't check
1080 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1081 	 * by the file system itself.
1082 	 * If this is not the user that did original mount, we check for
1083 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1084 	 */
1085 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1086 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1087 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1088 			return (error);
1089 	}
1090 	return (0);
1091 }
1092 
1093 /*
1094  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1095  * will be used to create fake device numbers for stat().  Also try (but
1096  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1097  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1098  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1099  *
1100  * Keep in mind that several mounts may be running in parallel.  Starting
1101  * the search one past where the previous search terminated is both a
1102  * micro-optimization and a defense against returning the same fsid to
1103  * different mounts.
1104  */
1105 void
1106 vfs_getnewfsid(struct mount *mp)
1107 {
1108 	static uint16_t mntid_base;
1109 	struct mount *nmp;
1110 	fsid_t tfsid;
1111 	int mtype;
1112 
1113 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1114 	mtx_lock(&mntid_mtx);
1115 	mtype = mp->mnt_vfc->vfc_typenum;
1116 	tfsid.val[1] = mtype;
1117 	mtype = (mtype & 0xFF) << 24;
1118 	for (;;) {
1119 		tfsid.val[0] = makedev(255,
1120 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1121 		mntid_base++;
1122 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1123 			break;
1124 		vfs_rel(nmp);
1125 	}
1126 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1127 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1128 	mtx_unlock(&mntid_mtx);
1129 }
1130 
1131 /*
1132  * Knob to control the precision of file timestamps:
1133  *
1134  *   0 = seconds only; nanoseconds zeroed.
1135  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1136  *   2 = seconds and nanoseconds, truncated to microseconds.
1137  * >=3 = seconds and nanoseconds, maximum precision.
1138  */
1139 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1140 
1141 static int timestamp_precision = TSP_USEC;
1142 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1143     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1144     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1145     "3+: sec + ns (max. precision))");
1146 
1147 /*
1148  * Get a current timestamp.
1149  */
1150 void
1151 vfs_timestamp(struct timespec *tsp)
1152 {
1153 	struct timeval tv;
1154 
1155 	switch (timestamp_precision) {
1156 	case TSP_SEC:
1157 		tsp->tv_sec = time_second;
1158 		tsp->tv_nsec = 0;
1159 		break;
1160 	case TSP_HZ:
1161 		getnanotime(tsp);
1162 		break;
1163 	case TSP_USEC:
1164 		microtime(&tv);
1165 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1166 		break;
1167 	case TSP_NSEC:
1168 	default:
1169 		nanotime(tsp);
1170 		break;
1171 	}
1172 }
1173 
1174 /*
1175  * Set vnode attributes to VNOVAL
1176  */
1177 void
1178 vattr_null(struct vattr *vap)
1179 {
1180 
1181 	vap->va_type = VNON;
1182 	vap->va_size = VNOVAL;
1183 	vap->va_bytes = VNOVAL;
1184 	vap->va_mode = VNOVAL;
1185 	vap->va_nlink = VNOVAL;
1186 	vap->va_uid = VNOVAL;
1187 	vap->va_gid = VNOVAL;
1188 	vap->va_fsid = VNOVAL;
1189 	vap->va_fileid = VNOVAL;
1190 	vap->va_blocksize = VNOVAL;
1191 	vap->va_rdev = VNOVAL;
1192 	vap->va_atime.tv_sec = VNOVAL;
1193 	vap->va_atime.tv_nsec = VNOVAL;
1194 	vap->va_mtime.tv_sec = VNOVAL;
1195 	vap->va_mtime.tv_nsec = VNOVAL;
1196 	vap->va_ctime.tv_sec = VNOVAL;
1197 	vap->va_ctime.tv_nsec = VNOVAL;
1198 	vap->va_birthtime.tv_sec = VNOVAL;
1199 	vap->va_birthtime.tv_nsec = VNOVAL;
1200 	vap->va_flags = VNOVAL;
1201 	vap->va_gen = VNOVAL;
1202 	vap->va_vaflags = 0;
1203 }
1204 
1205 /*
1206  * Try to reduce the total number of vnodes.
1207  *
1208  * This routine (and its user) are buggy in at least the following ways:
1209  * - all parameters were picked years ago when RAM sizes were significantly
1210  *   smaller
1211  * - it can pick vnodes based on pages used by the vm object, but filesystems
1212  *   like ZFS don't use it making the pick broken
1213  * - since ZFS has its own aging policy it gets partially combated by this one
1214  * - a dedicated method should be provided for filesystems to let them decide
1215  *   whether the vnode should be recycled
1216  *
1217  * This routine is called when we have too many vnodes.  It attempts
1218  * to free <count> vnodes and will potentially free vnodes that still
1219  * have VM backing store (VM backing store is typically the cause
1220  * of a vnode blowout so we want to do this).  Therefore, this operation
1221  * is not considered cheap.
1222  *
1223  * A number of conditions may prevent a vnode from being reclaimed.
1224  * the buffer cache may have references on the vnode, a directory
1225  * vnode may still have references due to the namei cache representing
1226  * underlying files, or the vnode may be in active use.   It is not
1227  * desirable to reuse such vnodes.  These conditions may cause the
1228  * number of vnodes to reach some minimum value regardless of what
1229  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1230  *
1231  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1232  * 			 entries if this argument is strue
1233  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1234  *			 pages.
1235  * @param target	 How many vnodes to reclaim.
1236  * @return		 The number of vnodes that were reclaimed.
1237  */
1238 static int
1239 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1240 {
1241 	struct vnode *vp, *mvp;
1242 	struct mount *mp;
1243 	struct vm_object *object;
1244 	u_long done;
1245 	bool retried;
1246 
1247 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1248 
1249 	retried = false;
1250 	done = 0;
1251 
1252 	mvp = vnode_list_reclaim_marker;
1253 restart:
1254 	vp = mvp;
1255 	while (done < target) {
1256 		vp = TAILQ_NEXT(vp, v_vnodelist);
1257 		if (__predict_false(vp == NULL))
1258 			break;
1259 
1260 		if (__predict_false(vp->v_type == VMARKER))
1261 			continue;
1262 
1263 		/*
1264 		 * If it's been deconstructed already, it's still
1265 		 * referenced, or it exceeds the trigger, skip it.
1266 		 * Also skip free vnodes.  We are trying to make space
1267 		 * for more free vnodes, not reduce their count.
1268 		 */
1269 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1270 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1271 			goto next_iter;
1272 
1273 		if (vp->v_type == VBAD || vp->v_type == VNON)
1274 			goto next_iter;
1275 
1276 		object = atomic_load_ptr(&vp->v_object);
1277 		if (object == NULL || object->resident_page_count > trigger) {
1278 			goto next_iter;
1279 		}
1280 
1281 		/*
1282 		 * Handle races against vnode allocation. Filesystems lock the
1283 		 * vnode some time after it gets returned from getnewvnode,
1284 		 * despite type and hold count being manipulated earlier.
1285 		 * Resorting to checking v_mount restores guarantees present
1286 		 * before the global list was reworked to contain all vnodes.
1287 		 */
1288 		if (!VI_TRYLOCK(vp))
1289 			goto next_iter;
1290 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1291 			VI_UNLOCK(vp);
1292 			goto next_iter;
1293 		}
1294 		if (vp->v_mount == NULL) {
1295 			VI_UNLOCK(vp);
1296 			goto next_iter;
1297 		}
1298 		vholdl(vp);
1299 		VI_UNLOCK(vp);
1300 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1301 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1302 		mtx_unlock(&vnode_list_mtx);
1303 
1304 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1305 			vdrop_recycle(vp);
1306 			goto next_iter_unlocked;
1307 		}
1308 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1309 			vdrop_recycle(vp);
1310 			vn_finished_write(mp);
1311 			goto next_iter_unlocked;
1312 		}
1313 
1314 		VI_LOCK(vp);
1315 		if (vp->v_usecount > 0 ||
1316 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1317 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1318 		    vp->v_object->resident_page_count > trigger)) {
1319 			VOP_UNLOCK(vp);
1320 			vdropl_recycle(vp);
1321 			vn_finished_write(mp);
1322 			goto next_iter_unlocked;
1323 		}
1324 		recycles_count++;
1325 		vgonel(vp);
1326 		VOP_UNLOCK(vp);
1327 		vdropl_recycle(vp);
1328 		vn_finished_write(mp);
1329 		done++;
1330 next_iter_unlocked:
1331 		maybe_yield();
1332 		mtx_lock(&vnode_list_mtx);
1333 		goto restart;
1334 next_iter:
1335 		MPASS(vp->v_type != VMARKER);
1336 		if (!should_yield())
1337 			continue;
1338 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1339 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1340 		mtx_unlock(&vnode_list_mtx);
1341 		kern_yield(PRI_USER);
1342 		mtx_lock(&vnode_list_mtx);
1343 		goto restart;
1344 	}
1345 	if (done == 0 && !retried) {
1346 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1347 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1348 		retried = true;
1349 		goto restart;
1350 	}
1351 	return (done);
1352 }
1353 
1354 static int max_free_per_call = 10000;
1355 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1356     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1357 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1358     &max_free_per_call, 0,
1359     "limit on vnode free requests per call to the vnlru_free routine");
1360 
1361 /*
1362  * Attempt to recycle requested amount of free vnodes.
1363  */
1364 static int
1365 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1366 {
1367 	struct vnode *vp;
1368 	struct mount *mp;
1369 	int ocount;
1370 	bool retried;
1371 
1372 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1373 	if (count > max_free_per_call)
1374 		count = max_free_per_call;
1375 	if (count == 0) {
1376 		mtx_unlock(&vnode_list_mtx);
1377 		return (0);
1378 	}
1379 	ocount = count;
1380 	retried = false;
1381 	vp = mvp;
1382 	for (;;) {
1383 		vp = TAILQ_NEXT(vp, v_vnodelist);
1384 		if (__predict_false(vp == NULL)) {
1385 			/*
1386 			 * The free vnode marker can be past eligible vnodes:
1387 			 * 1. if vdbatch_process trylock failed
1388 			 * 2. if vtryrecycle failed
1389 			 *
1390 			 * If so, start the scan from scratch.
1391 			 */
1392 			if (!retried && vnlru_read_freevnodes() > 0) {
1393 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1394 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1395 				vp = mvp;
1396 				retried = true;
1397 				continue;
1398 			}
1399 
1400 			/*
1401 			 * Give up
1402 			 */
1403 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1404 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1405 			mtx_unlock(&vnode_list_mtx);
1406 			break;
1407 		}
1408 		if (__predict_false(vp->v_type == VMARKER))
1409 			continue;
1410 		if (vp->v_holdcnt > 0)
1411 			continue;
1412 		/*
1413 		 * Don't recycle if our vnode is from different type
1414 		 * of mount point.  Note that mp is type-safe, the
1415 		 * check does not reach unmapped address even if
1416 		 * vnode is reclaimed.
1417 		 */
1418 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1419 		    mp->mnt_op != mnt_op) {
1420 			continue;
1421 		}
1422 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1423 			continue;
1424 		}
1425 		if (!vhold_recycle_free(vp))
1426 			continue;
1427 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1428 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1429 		mtx_unlock(&vnode_list_mtx);
1430 		/*
1431 		 * FIXME: ignores the return value, meaning it may be nothing
1432 		 * got recycled but it claims otherwise to the caller.
1433 		 *
1434 		 * Originally the value started being ignored in 2005 with
1435 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1436 		 *
1437 		 * Respecting the value can run into significant stalls if most
1438 		 * vnodes belong to one file system and it has writes
1439 		 * suspended.  In presence of many threads and millions of
1440 		 * vnodes they keep contending on the vnode_list_mtx lock only
1441 		 * to find vnodes they can't recycle.
1442 		 *
1443 		 * The solution would be to pre-check if the vnode is likely to
1444 		 * be recycle-able, but it needs to happen with the
1445 		 * vnode_list_mtx lock held. This runs into a problem where
1446 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1447 		 * writes are frozen) can take locks which LOR against it.
1448 		 *
1449 		 * Check nullfs for one example (null_getwritemount).
1450 		 */
1451 		vtryrecycle(vp, isvnlru);
1452 		count--;
1453 		if (count == 0) {
1454 			break;
1455 		}
1456 		mtx_lock(&vnode_list_mtx);
1457 		vp = mvp;
1458 	}
1459 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1460 	return (ocount - count);
1461 }
1462 
1463 /*
1464  * XXX: returns without vnode_list_mtx locked!
1465  */
1466 static int
1467 vnlru_free_locked_direct(int count)
1468 {
1469 	int ret;
1470 
1471 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1472 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1473 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1474 	return (ret);
1475 }
1476 
1477 static int
1478 vnlru_free_locked_vnlru(int count)
1479 {
1480 	int ret;
1481 
1482 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1483 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1484 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1485 	return (ret);
1486 }
1487 
1488 static int
1489 vnlru_free_vnlru(int count)
1490 {
1491 
1492 	mtx_lock(&vnode_list_mtx);
1493 	return (vnlru_free_locked_vnlru(count));
1494 }
1495 
1496 void
1497 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1498 {
1499 
1500 	MPASS(mnt_op != NULL);
1501 	MPASS(mvp != NULL);
1502 	VNPASS(mvp->v_type == VMARKER, mvp);
1503 	mtx_lock(&vnode_list_mtx);
1504 	vnlru_free_impl(count, mnt_op, mvp, true);
1505 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1506 }
1507 
1508 struct vnode *
1509 vnlru_alloc_marker(void)
1510 {
1511 	struct vnode *mvp;
1512 
1513 	mvp = vn_alloc_marker(NULL);
1514 	mtx_lock(&vnode_list_mtx);
1515 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1516 	mtx_unlock(&vnode_list_mtx);
1517 	return (mvp);
1518 }
1519 
1520 void
1521 vnlru_free_marker(struct vnode *mvp)
1522 {
1523 	mtx_lock(&vnode_list_mtx);
1524 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1525 	mtx_unlock(&vnode_list_mtx);
1526 	vn_free_marker(mvp);
1527 }
1528 
1529 static void
1530 vnlru_recalc(void)
1531 {
1532 
1533 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1534 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1535 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1536 	vlowat = vhiwat / 2;
1537 }
1538 
1539 /*
1540  * Attempt to recycle vnodes in a context that is always safe to block.
1541  * Calling vlrurecycle() from the bowels of filesystem code has some
1542  * interesting deadlock problems.
1543  */
1544 static struct proc *vnlruproc;
1545 static int vnlruproc_sig;
1546 static u_long vnlruproc_kicks;
1547 
1548 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1549     "Number of times vnlru awakened due to vnode shortage");
1550 
1551 #define VNLRU_COUNT_SLOP 100
1552 
1553 /*
1554  * The main freevnodes counter is only updated when a counter local to CPU
1555  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1556  * walked to compute a more accurate total.
1557  *
1558  * Note: the actual value at any given moment can still exceed slop, but it
1559  * should not be by significant margin in practice.
1560  */
1561 #define VNLRU_FREEVNODES_SLOP 126
1562 
1563 static void __noinline
1564 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1565 {
1566 
1567 	atomic_add_long(&freevnodes, *lfreevnodes);
1568 	*lfreevnodes = 0;
1569 	critical_exit();
1570 }
1571 
1572 static __inline void
1573 vfs_freevnodes_inc(void)
1574 {
1575 	int8_t *lfreevnodes;
1576 
1577 	critical_enter();
1578 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1579 	(*lfreevnodes)++;
1580 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1581 		vfs_freevnodes_rollup(lfreevnodes);
1582 	else
1583 		critical_exit();
1584 }
1585 
1586 static __inline void
1587 vfs_freevnodes_dec(void)
1588 {
1589 	int8_t *lfreevnodes;
1590 
1591 	critical_enter();
1592 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1593 	(*lfreevnodes)--;
1594 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1595 		vfs_freevnodes_rollup(lfreevnodes);
1596 	else
1597 		critical_exit();
1598 }
1599 
1600 static u_long
1601 vnlru_read_freevnodes(void)
1602 {
1603 	long slop, rfreevnodes, rfreevnodes_old;
1604 	int cpu;
1605 
1606 	rfreevnodes = atomic_load_long(&freevnodes);
1607 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1608 
1609 	if (rfreevnodes > rfreevnodes_old)
1610 		slop = rfreevnodes - rfreevnodes_old;
1611 	else
1612 		slop = rfreevnodes_old - rfreevnodes;
1613 	if (slop < VNLRU_FREEVNODES_SLOP)
1614 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1615 	CPU_FOREACH(cpu) {
1616 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1617 	}
1618 	atomic_store_long(&freevnodes_old, rfreevnodes);
1619 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1620 }
1621 
1622 static bool
1623 vnlru_under(u_long rnumvnodes, u_long limit)
1624 {
1625 	u_long rfreevnodes, space;
1626 
1627 	if (__predict_false(rnumvnodes > desiredvnodes))
1628 		return (true);
1629 
1630 	space = desiredvnodes - rnumvnodes;
1631 	if (space < limit) {
1632 		rfreevnodes = vnlru_read_freevnodes();
1633 		if (rfreevnodes > wantfreevnodes)
1634 			space += rfreevnodes - wantfreevnodes;
1635 	}
1636 	return (space < limit);
1637 }
1638 
1639 static void
1640 vnlru_kick_locked(void)
1641 {
1642 
1643 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1644 	if (vnlruproc_sig == 0) {
1645 		vnlruproc_sig = 1;
1646 		vnlruproc_kicks++;
1647 		wakeup(vnlruproc);
1648 	}
1649 }
1650 
1651 static void
1652 vnlru_kick_cond(void)
1653 {
1654 
1655 	if (vnlru_read_freevnodes() > wantfreevnodes)
1656 		return;
1657 
1658 	if (vnlruproc_sig)
1659 		return;
1660 	mtx_lock(&vnode_list_mtx);
1661 	vnlru_kick_locked();
1662 	mtx_unlock(&vnode_list_mtx);
1663 }
1664 
1665 static void
1666 vnlru_proc_sleep(void)
1667 {
1668 
1669 	if (vnlruproc_sig) {
1670 		vnlruproc_sig = 0;
1671 		wakeup(&vnlruproc_sig);
1672 	}
1673 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1674 }
1675 
1676 /*
1677  * A lighter version of the machinery below.
1678  *
1679  * Tries to reach goals only by recycling free vnodes and does not invoke
1680  * uma_reclaim(UMA_RECLAIM_DRAIN).
1681  *
1682  * This works around pathological behavior in vnlru in presence of tons of free
1683  * vnodes, but without having to rewrite the machinery at this time. Said
1684  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1685  * (cycling through all levels of "force") when the count is transiently above
1686  * limit. This happens a lot when all vnodes are used up and vn_alloc
1687  * speculatively increments the counter.
1688  *
1689  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1690  * 1 million files in total and 20 find(1) processes stating them in parallel
1691  * (one per each tree).
1692  *
1693  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1694  * seconds to execute (time varies *wildly* between runs). With the workaround
1695  * it consistently stays around 20 seconds [it got further down with later
1696  * changes].
1697  *
1698  * That is to say the entire thing needs a fundamental redesign (most notably
1699  * to accommodate faster recycling), the above only tries to get it ouf the way.
1700  *
1701  * Return values are:
1702  * -1 -- fallback to regular vnlru loop
1703  *  0 -- do nothing, go to sleep
1704  * >0 -- recycle this many vnodes
1705  */
1706 static long
1707 vnlru_proc_light_pick(void)
1708 {
1709 	u_long rnumvnodes, rfreevnodes;
1710 
1711 	if (vstir || vnlruproc_sig == 1)
1712 		return (-1);
1713 
1714 	rnumvnodes = atomic_load_long(&numvnodes);
1715 	rfreevnodes = vnlru_read_freevnodes();
1716 
1717 	/*
1718 	 * vnode limit might have changed and now we may be at a significant
1719 	 * excess. Bail if we can't sort it out with free vnodes.
1720 	 *
1721 	 * Due to atomic updates the count can legitimately go above
1722 	 * the limit for a short period, don't bother doing anything in
1723 	 * that case.
1724 	 */
1725 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1726 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1727 		    rfreevnodes <= wantfreevnodes) {
1728 			return (-1);
1729 		}
1730 
1731 		return (rnumvnodes - desiredvnodes);
1732 	}
1733 
1734 	/*
1735 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1736 	 * to begin with.
1737 	 */
1738 	if (rnumvnodes < wantfreevnodes) {
1739 		return (0);
1740 	}
1741 
1742 	if (rfreevnodes < wantfreevnodes) {
1743 		return (-1);
1744 	}
1745 
1746 	return (0);
1747 }
1748 
1749 static bool
1750 vnlru_proc_light(void)
1751 {
1752 	long freecount;
1753 
1754 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1755 
1756 	freecount = vnlru_proc_light_pick();
1757 	if (freecount == -1)
1758 		return (false);
1759 
1760 	if (freecount != 0) {
1761 		vnlru_free_vnlru(freecount);
1762 	}
1763 
1764 	mtx_lock(&vnode_list_mtx);
1765 	vnlru_proc_sleep();
1766 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1767 	return (true);
1768 }
1769 
1770 static u_long uma_reclaim_calls;
1771 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1772     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1773 
1774 static void
1775 vnlru_proc(void)
1776 {
1777 	u_long rnumvnodes, rfreevnodes, target;
1778 	unsigned long onumvnodes;
1779 	int done, force, trigger, usevnodes;
1780 	bool reclaim_nc_src, want_reread;
1781 
1782 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1783 	    SHUTDOWN_PRI_FIRST);
1784 
1785 	force = 0;
1786 	want_reread = false;
1787 	for (;;) {
1788 		kproc_suspend_check(vnlruproc);
1789 
1790 		if (force == 0 && vnlru_proc_light())
1791 			continue;
1792 
1793 		mtx_lock(&vnode_list_mtx);
1794 		rnumvnodes = atomic_load_long(&numvnodes);
1795 
1796 		if (want_reread) {
1797 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1798 			want_reread = false;
1799 		}
1800 
1801 		/*
1802 		 * If numvnodes is too large (due to desiredvnodes being
1803 		 * adjusted using its sysctl, or emergency growth), first
1804 		 * try to reduce it by discarding free vnodes.
1805 		 */
1806 		if (rnumvnodes > desiredvnodes + 10) {
1807 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1808 			mtx_lock(&vnode_list_mtx);
1809 			rnumvnodes = atomic_load_long(&numvnodes);
1810 		}
1811 		/*
1812 		 * Sleep if the vnode cache is in a good state.  This is
1813 		 * when it is not over-full and has space for about a 4%
1814 		 * or 9% expansion (by growing its size or inexcessively
1815 		 * reducing free vnode count).  Otherwise, try to reclaim
1816 		 * space for a 10% expansion.
1817 		 */
1818 		if (vstir && force == 0) {
1819 			force = 1;
1820 			vstir = false;
1821 		}
1822 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1823 			vnlru_proc_sleep();
1824 			continue;
1825 		}
1826 		rfreevnodes = vnlru_read_freevnodes();
1827 
1828 		onumvnodes = rnumvnodes;
1829 		/*
1830 		 * Calculate parameters for recycling.  These are the same
1831 		 * throughout the loop to give some semblance of fairness.
1832 		 * The trigger point is to avoid recycling vnodes with lots
1833 		 * of resident pages.  We aren't trying to free memory; we
1834 		 * are trying to recycle or at least free vnodes.
1835 		 */
1836 		if (rnumvnodes <= desiredvnodes)
1837 			usevnodes = rnumvnodes - rfreevnodes;
1838 		else
1839 			usevnodes = rnumvnodes;
1840 		if (usevnodes <= 0)
1841 			usevnodes = 1;
1842 		/*
1843 		 * The trigger value is chosen to give a conservatively
1844 		 * large value to ensure that it alone doesn't prevent
1845 		 * making progress.  The value can easily be so large that
1846 		 * it is effectively infinite in some congested and
1847 		 * misconfigured cases, and this is necessary.  Normally
1848 		 * it is about 8 to 100 (pages), which is quite large.
1849 		 */
1850 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1851 		if (force < 2)
1852 			trigger = vsmalltrigger;
1853 		reclaim_nc_src = force >= 3;
1854 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1855 		target = target / 10 + 1;
1856 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1857 		mtx_unlock(&vnode_list_mtx);
1858 		/*
1859 		 * Total number of vnodes can transiently go slightly above the
1860 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1861 		 * this happens.
1862 		 */
1863 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1864 		    numvnodes <= desiredvnodes) {
1865 			uma_reclaim_calls++;
1866 			uma_reclaim(UMA_RECLAIM_DRAIN);
1867 		}
1868 		if (done == 0) {
1869 			if (force == 0 || force == 1) {
1870 				force = 2;
1871 				continue;
1872 			}
1873 			if (force == 2) {
1874 				force = 3;
1875 				continue;
1876 			}
1877 			want_reread = true;
1878 			force = 0;
1879 			vnlru_nowhere++;
1880 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1881 		} else {
1882 			want_reread = true;
1883 			kern_yield(PRI_USER);
1884 		}
1885 	}
1886 }
1887 
1888 static struct kproc_desc vnlru_kp = {
1889 	"vnlru",
1890 	vnlru_proc,
1891 	&vnlruproc
1892 };
1893 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1894     &vnlru_kp);
1895 
1896 /*
1897  * Routines having to do with the management of the vnode table.
1898  */
1899 
1900 /*
1901  * Try to recycle a freed vnode.
1902  */
1903 static int
1904 vtryrecycle(struct vnode *vp, bool isvnlru)
1905 {
1906 	struct mount *vnmp;
1907 
1908 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1909 	VNPASS(vp->v_holdcnt > 0, vp);
1910 	/*
1911 	 * This vnode may found and locked via some other list, if so we
1912 	 * can't recycle it yet.
1913 	 */
1914 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1915 		CTR2(KTR_VFS,
1916 		    "%s: impossible to recycle, vp %p lock is already held",
1917 		    __func__, vp);
1918 		vdrop_recycle(vp);
1919 		return (EWOULDBLOCK);
1920 	}
1921 	/*
1922 	 * Don't recycle if its filesystem is being suspended.
1923 	 */
1924 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1925 		VOP_UNLOCK(vp);
1926 		CTR2(KTR_VFS,
1927 		    "%s: impossible to recycle, cannot start the write for %p",
1928 		    __func__, vp);
1929 		vdrop_recycle(vp);
1930 		return (EBUSY);
1931 	}
1932 	/*
1933 	 * If we got this far, we need to acquire the interlock and see if
1934 	 * anyone picked up this vnode from another list.  If not, we will
1935 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1936 	 * will skip over it.
1937 	 */
1938 	VI_LOCK(vp);
1939 	if (vp->v_usecount) {
1940 		VOP_UNLOCK(vp);
1941 		vdropl_recycle(vp);
1942 		vn_finished_write(vnmp);
1943 		CTR2(KTR_VFS,
1944 		    "%s: impossible to recycle, %p is already referenced",
1945 		    __func__, vp);
1946 		return (EBUSY);
1947 	}
1948 	if (!VN_IS_DOOMED(vp)) {
1949 		if (isvnlru)
1950 			recycles_free_count++;
1951 		else
1952 			counter_u64_add(direct_recycles_free_count, 1);
1953 		vgonel(vp);
1954 	}
1955 	VOP_UNLOCK(vp);
1956 	vdropl_recycle(vp);
1957 	vn_finished_write(vnmp);
1958 	return (0);
1959 }
1960 
1961 /*
1962  * Allocate a new vnode.
1963  *
1964  * The operation never returns an error. Returning an error was disabled
1965  * in r145385 (dated 2005) with the following comment:
1966  *
1967  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1968  *
1969  * Given the age of this commit (almost 15 years at the time of writing this
1970  * comment) restoring the ability to fail requires a significant audit of
1971  * all codepaths.
1972  *
1973  * The routine can try to free a vnode or stall for up to 1 second waiting for
1974  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1975  */
1976 static u_long vn_alloc_cyclecount;
1977 static u_long vn_alloc_sleeps;
1978 
1979 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1980     "Number of times vnode allocation blocked waiting on vnlru");
1981 
1982 static struct vnode * __noinline
1983 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1984 {
1985 	u_long rfreevnodes;
1986 
1987 	if (bumped) {
1988 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1989 			atomic_subtract_long(&numvnodes, 1);
1990 			bumped = false;
1991 		}
1992 	}
1993 
1994 	mtx_lock(&vnode_list_mtx);
1995 
1996 	rfreevnodes = vnlru_read_freevnodes();
1997 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1998 		vn_alloc_cyclecount = 0;
1999 		vstir = true;
2000 	}
2001 	/*
2002 	 * Grow the vnode cache if it will not be above its target max after
2003 	 * growing.  Otherwise, if there is at least one free vnode, try to
2004 	 * reclaim 1 item from it before growing the cache (possibly above its
2005 	 * target max if the reclamation failed or is delayed).
2006 	 */
2007 	if (vnlru_free_locked_direct(1) > 0)
2008 		goto alloc;
2009 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2010 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2011 		/*
2012 		 * Wait for space for a new vnode.
2013 		 */
2014 		if (bumped) {
2015 			atomic_subtract_long(&numvnodes, 1);
2016 			bumped = false;
2017 		}
2018 		mtx_lock(&vnode_list_mtx);
2019 		vnlru_kick_locked();
2020 		vn_alloc_sleeps++;
2021 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2022 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2023 		    vnlru_read_freevnodes() > 1)
2024 			vnlru_free_locked_direct(1);
2025 		else
2026 			mtx_unlock(&vnode_list_mtx);
2027 	}
2028 alloc:
2029 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2030 	if (!bumped)
2031 		atomic_add_long(&numvnodes, 1);
2032 	vnlru_kick_cond();
2033 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2034 }
2035 
2036 static struct vnode *
2037 vn_alloc(struct mount *mp)
2038 {
2039 	u_long rnumvnodes;
2040 
2041 	if (__predict_false(vn_alloc_cyclecount != 0))
2042 		return (vn_alloc_hard(mp, 0, false));
2043 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2044 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2045 		return (vn_alloc_hard(mp, rnumvnodes, true));
2046 	}
2047 
2048 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2049 }
2050 
2051 static void
2052 vn_free(struct vnode *vp)
2053 {
2054 
2055 	atomic_subtract_long(&numvnodes, 1);
2056 	uma_zfree_smr(vnode_zone, vp);
2057 }
2058 
2059 /*
2060  * Allocate a new vnode.
2061  */
2062 int
2063 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2064     struct vnode **vpp)
2065 {
2066 	struct vnode *vp;
2067 	struct thread *td;
2068 	struct lock_object *lo;
2069 
2070 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2071 
2072 	KASSERT(vops->registered,
2073 	    ("%s: not registered vector op %p\n", __func__, vops));
2074 	cache_validate_vop_vector(mp, vops);
2075 
2076 	td = curthread;
2077 	if (td->td_vp_reserved != NULL) {
2078 		vp = td->td_vp_reserved;
2079 		td->td_vp_reserved = NULL;
2080 	} else {
2081 		vp = vn_alloc(mp);
2082 	}
2083 	counter_u64_add(vnodes_created, 1);
2084 
2085 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2086 
2087 	/*
2088 	 * Locks are given the generic name "vnode" when created.
2089 	 * Follow the historic practice of using the filesystem
2090 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2091 	 *
2092 	 * Locks live in a witness group keyed on their name. Thus,
2093 	 * when a lock is renamed, it must also move from the witness
2094 	 * group of its old name to the witness group of its new name.
2095 	 *
2096 	 * The change only needs to be made when the vnode moves
2097 	 * from one filesystem type to another. We ensure that each
2098 	 * filesystem use a single static name pointer for its tag so
2099 	 * that we can compare pointers rather than doing a strcmp().
2100 	 */
2101 	lo = &vp->v_vnlock->lock_object;
2102 #ifdef WITNESS
2103 	if (lo->lo_name != tag) {
2104 #endif
2105 		lo->lo_name = tag;
2106 #ifdef WITNESS
2107 		WITNESS_DESTROY(lo);
2108 		WITNESS_INIT(lo, tag);
2109 	}
2110 #endif
2111 	/*
2112 	 * By default, don't allow shared locks unless filesystems opt-in.
2113 	 */
2114 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2115 	/*
2116 	 * Finalize various vnode identity bits.
2117 	 */
2118 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2119 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2120 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2121 	vp->v_type = VNON;
2122 	vp->v_op = vops;
2123 	vp->v_irflag = 0;
2124 	v_init_counters(vp);
2125 	vn_seqc_init(vp);
2126 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2127 #ifdef DIAGNOSTIC
2128 	if (mp == NULL && vops != &dead_vnodeops)
2129 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2130 #endif
2131 #ifdef MAC
2132 	mac_vnode_init(vp);
2133 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2134 		mac_vnode_associate_singlelabel(mp, vp);
2135 #endif
2136 	if (mp != NULL) {
2137 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2138 	}
2139 
2140 	/*
2141 	 * For the filesystems which do not use vfs_hash_insert(),
2142 	 * still initialize v_hash to have vfs_hash_index() useful.
2143 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2144 	 * its own hashing.
2145 	 */
2146 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2147 
2148 	*vpp = vp;
2149 	return (0);
2150 }
2151 
2152 void
2153 getnewvnode_reserve(void)
2154 {
2155 	struct thread *td;
2156 
2157 	td = curthread;
2158 	MPASS(td->td_vp_reserved == NULL);
2159 	td->td_vp_reserved = vn_alloc(NULL);
2160 }
2161 
2162 void
2163 getnewvnode_drop_reserve(void)
2164 {
2165 	struct thread *td;
2166 
2167 	td = curthread;
2168 	if (td->td_vp_reserved != NULL) {
2169 		vn_free(td->td_vp_reserved);
2170 		td->td_vp_reserved = NULL;
2171 	}
2172 }
2173 
2174 static void __noinline
2175 freevnode(struct vnode *vp)
2176 {
2177 	struct bufobj *bo;
2178 
2179 	/*
2180 	 * The vnode has been marked for destruction, so free it.
2181 	 *
2182 	 * The vnode will be returned to the zone where it will
2183 	 * normally remain until it is needed for another vnode. We
2184 	 * need to cleanup (or verify that the cleanup has already
2185 	 * been done) any residual data left from its current use
2186 	 * so as not to contaminate the freshly allocated vnode.
2187 	 */
2188 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2189 	/*
2190 	 * Paired with vgone.
2191 	 */
2192 	vn_seqc_write_end_free(vp);
2193 
2194 	bo = &vp->v_bufobj;
2195 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2196 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2197 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2198 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2199 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2200 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2201 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2202 	    ("clean blk trie not empty"));
2203 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2204 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2205 	    ("dirty blk trie not empty"));
2206 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2207 	    ("Leaked inactivation"));
2208 	VI_UNLOCK(vp);
2209 	cache_assert_no_entries(vp);
2210 
2211 #ifdef MAC
2212 	mac_vnode_destroy(vp);
2213 #endif
2214 	if (vp->v_pollinfo != NULL) {
2215 		/*
2216 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2217 		 * here while having another vnode locked when trying to
2218 		 * satisfy a lookup and needing to recycle.
2219 		 */
2220 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2221 		destroy_vpollinfo(vp->v_pollinfo);
2222 		VOP_UNLOCK(vp);
2223 		vp->v_pollinfo = NULL;
2224 	}
2225 	vp->v_mountedhere = NULL;
2226 	vp->v_unpcb = NULL;
2227 	vp->v_rdev = NULL;
2228 	vp->v_fifoinfo = NULL;
2229 	vp->v_iflag = 0;
2230 	vp->v_vflag = 0;
2231 	bo->bo_flag = 0;
2232 	vn_free(vp);
2233 }
2234 
2235 /*
2236  * Delete from old mount point vnode list, if on one.
2237  */
2238 static void
2239 delmntque(struct vnode *vp)
2240 {
2241 	struct mount *mp;
2242 
2243 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2244 
2245 	mp = vp->v_mount;
2246 	MNT_ILOCK(mp);
2247 	VI_LOCK(vp);
2248 	vp->v_mount = NULL;
2249 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2250 		("bad mount point vnode list size"));
2251 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2252 	mp->mnt_nvnodelistsize--;
2253 	MNT_REL(mp);
2254 	MNT_IUNLOCK(mp);
2255 	/*
2256 	 * The caller expects the interlock to be still held.
2257 	 */
2258 	ASSERT_VI_LOCKED(vp, __func__);
2259 }
2260 
2261 static int
2262 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2263 {
2264 
2265 	KASSERT(vp->v_mount == NULL,
2266 		("insmntque: vnode already on per mount vnode list"));
2267 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2268 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2269 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2270 	} else {
2271 		KASSERT(!dtr,
2272 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2273 		    __func__));
2274 	}
2275 
2276 	/*
2277 	 * We acquire the vnode interlock early to ensure that the
2278 	 * vnode cannot be recycled by another process releasing a
2279 	 * holdcnt on it before we get it on both the vnode list
2280 	 * and the active vnode list. The mount mutex protects only
2281 	 * manipulation of the vnode list and the vnode freelist
2282 	 * mutex protects only manipulation of the active vnode list.
2283 	 * Hence the need to hold the vnode interlock throughout.
2284 	 */
2285 	MNT_ILOCK(mp);
2286 	VI_LOCK(vp);
2287 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2288 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2289 	    mp->mnt_nvnodelistsize == 0)) &&
2290 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2291 		VI_UNLOCK(vp);
2292 		MNT_IUNLOCK(mp);
2293 		if (dtr) {
2294 			vp->v_data = NULL;
2295 			vp->v_op = &dead_vnodeops;
2296 			vgone(vp);
2297 			vput(vp);
2298 		}
2299 		return (EBUSY);
2300 	}
2301 	vp->v_mount = mp;
2302 	MNT_REF(mp);
2303 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2304 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2305 		("neg mount point vnode list size"));
2306 	mp->mnt_nvnodelistsize++;
2307 	VI_UNLOCK(vp);
2308 	MNT_IUNLOCK(mp);
2309 	return (0);
2310 }
2311 
2312 /*
2313  * Insert into list of vnodes for the new mount point, if available.
2314  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2315  * leaves handling of the vnode to the caller.
2316  */
2317 int
2318 insmntque(struct vnode *vp, struct mount *mp)
2319 {
2320 	return (insmntque1_int(vp, mp, true));
2321 }
2322 
2323 int
2324 insmntque1(struct vnode *vp, struct mount *mp)
2325 {
2326 	return (insmntque1_int(vp, mp, false));
2327 }
2328 
2329 /*
2330  * Flush out and invalidate all buffers associated with a bufobj
2331  * Called with the underlying object locked.
2332  */
2333 int
2334 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2335 {
2336 	int error;
2337 
2338 	BO_LOCK(bo);
2339 	if (flags & V_SAVE) {
2340 		error = bufobj_wwait(bo, slpflag, slptimeo);
2341 		if (error) {
2342 			BO_UNLOCK(bo);
2343 			return (error);
2344 		}
2345 		if (bo->bo_dirty.bv_cnt > 0) {
2346 			BO_UNLOCK(bo);
2347 			do {
2348 				error = BO_SYNC(bo, MNT_WAIT);
2349 			} while (error == ERELOOKUP);
2350 			if (error != 0)
2351 				return (error);
2352 			BO_LOCK(bo);
2353 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2354 				BO_UNLOCK(bo);
2355 				return (EBUSY);
2356 			}
2357 		}
2358 	}
2359 	/*
2360 	 * If you alter this loop please notice that interlock is dropped and
2361 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2362 	 * no race conditions occur from this.
2363 	 */
2364 	do {
2365 		error = flushbuflist(&bo->bo_clean,
2366 		    flags, bo, slpflag, slptimeo);
2367 		if (error == 0 && !(flags & V_CLEANONLY))
2368 			error = flushbuflist(&bo->bo_dirty,
2369 			    flags, bo, slpflag, slptimeo);
2370 		if (error != 0 && error != EAGAIN) {
2371 			BO_UNLOCK(bo);
2372 			return (error);
2373 		}
2374 	} while (error != 0);
2375 
2376 	/*
2377 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2378 	 * have write I/O in-progress but if there is a VM object then the
2379 	 * VM object can also have read-I/O in-progress.
2380 	 */
2381 	do {
2382 		bufobj_wwait(bo, 0, 0);
2383 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2384 			BO_UNLOCK(bo);
2385 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2386 			BO_LOCK(bo);
2387 		}
2388 	} while (bo->bo_numoutput > 0);
2389 	BO_UNLOCK(bo);
2390 
2391 	/*
2392 	 * Destroy the copy in the VM cache, too.
2393 	 */
2394 	if (bo->bo_object != NULL &&
2395 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2396 		VM_OBJECT_WLOCK(bo->bo_object);
2397 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2398 		    OBJPR_CLEANONLY : 0);
2399 		VM_OBJECT_WUNLOCK(bo->bo_object);
2400 	}
2401 
2402 #ifdef INVARIANTS
2403 	BO_LOCK(bo);
2404 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2405 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2406 	    bo->bo_clean.bv_cnt > 0))
2407 		panic("vinvalbuf: flush failed");
2408 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2409 	    bo->bo_dirty.bv_cnt > 0)
2410 		panic("vinvalbuf: flush dirty failed");
2411 	BO_UNLOCK(bo);
2412 #endif
2413 	return (0);
2414 }
2415 
2416 /*
2417  * Flush out and invalidate all buffers associated with a vnode.
2418  * Called with the underlying object locked.
2419  */
2420 int
2421 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2422 {
2423 
2424 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2425 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2426 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2427 		return (0);
2428 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2429 }
2430 
2431 /*
2432  * Flush out buffers on the specified list.
2433  *
2434  */
2435 static int
2436 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2437     int slptimeo)
2438 {
2439 	struct buf *bp, *nbp;
2440 	int retval, error;
2441 	daddr_t lblkno;
2442 	b_xflags_t xflags;
2443 
2444 	ASSERT_BO_WLOCKED(bo);
2445 
2446 	retval = 0;
2447 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2448 		/*
2449 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2450 		 * do not skip any buffers. If we are flushing only V_NORMAL
2451 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2452 		 * flushing only V_ALT buffers then skip buffers not marked
2453 		 * as BX_ALTDATA.
2454 		 */
2455 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2456 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2457 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2458 			continue;
2459 		}
2460 		if (nbp != NULL) {
2461 			lblkno = nbp->b_lblkno;
2462 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2463 		}
2464 		retval = EAGAIN;
2465 		error = BUF_TIMELOCK(bp,
2466 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2467 		    "flushbuf", slpflag, slptimeo);
2468 		if (error) {
2469 			BO_LOCK(bo);
2470 			return (error != ENOLCK ? error : EAGAIN);
2471 		}
2472 		KASSERT(bp->b_bufobj == bo,
2473 		    ("bp %p wrong b_bufobj %p should be %p",
2474 		    bp, bp->b_bufobj, bo));
2475 		/*
2476 		 * XXX Since there are no node locks for NFS, I
2477 		 * believe there is a slight chance that a delayed
2478 		 * write will occur while sleeping just above, so
2479 		 * check for it.
2480 		 */
2481 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2482 		    (flags & V_SAVE)) {
2483 			bremfree(bp);
2484 			bp->b_flags |= B_ASYNC;
2485 			bwrite(bp);
2486 			BO_LOCK(bo);
2487 			return (EAGAIN);	/* XXX: why not loop ? */
2488 		}
2489 		bremfree(bp);
2490 		bp->b_flags |= (B_INVAL | B_RELBUF);
2491 		bp->b_flags &= ~B_ASYNC;
2492 		brelse(bp);
2493 		BO_LOCK(bo);
2494 		if (nbp == NULL)
2495 			break;
2496 		nbp = gbincore(bo, lblkno);
2497 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2498 		    != xflags)
2499 			break;			/* nbp invalid */
2500 	}
2501 	return (retval);
2502 }
2503 
2504 int
2505 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2506 {
2507 	struct buf *bp;
2508 	int error;
2509 	daddr_t lblkno;
2510 
2511 	ASSERT_BO_LOCKED(bo);
2512 
2513 	for (lblkno = startn;;) {
2514 again:
2515 		bp = buf_lookup_ge(bufv, lblkno);
2516 		if (bp == NULL || bp->b_lblkno >= endn)
2517 			break;
2518 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2519 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2520 		if (error != 0) {
2521 			BO_RLOCK(bo);
2522 			if (error == ENOLCK)
2523 				goto again;
2524 			return (error);
2525 		}
2526 		KASSERT(bp->b_bufobj == bo,
2527 		    ("bp %p wrong b_bufobj %p should be %p",
2528 		    bp, bp->b_bufobj, bo));
2529 		lblkno = bp->b_lblkno + 1;
2530 		if ((bp->b_flags & B_MANAGED) == 0)
2531 			bremfree(bp);
2532 		bp->b_flags |= B_RELBUF;
2533 		/*
2534 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2535 		 * pages backing each buffer in the range are unlikely to be
2536 		 * reused.  Dirty buffers will have the hint applied once
2537 		 * they've been written.
2538 		 */
2539 		if ((bp->b_flags & B_VMIO) != 0)
2540 			bp->b_flags |= B_NOREUSE;
2541 		brelse(bp);
2542 		BO_RLOCK(bo);
2543 	}
2544 	return (0);
2545 }
2546 
2547 /*
2548  * Truncate a file's buffer and pages to a specified length.  This
2549  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2550  * sync activity.
2551  */
2552 int
2553 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2554 {
2555 	struct buf *bp, *nbp;
2556 	struct bufobj *bo;
2557 	daddr_t startlbn;
2558 
2559 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2560 	    vp, blksize, (uintmax_t)length);
2561 
2562 	/*
2563 	 * Round up to the *next* lbn.
2564 	 */
2565 	startlbn = howmany(length, blksize);
2566 
2567 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2568 
2569 	bo = &vp->v_bufobj;
2570 restart_unlocked:
2571 	BO_LOCK(bo);
2572 
2573 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2574 		;
2575 
2576 	if (length > 0) {
2577 		/*
2578 		 * Write out vnode metadata, e.g. indirect blocks.
2579 		 */
2580 restartsync:
2581 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2582 			if (bp->b_lblkno >= 0)
2583 				continue;
2584 			/*
2585 			 * Since we hold the vnode lock this should only
2586 			 * fail if we're racing with the buf daemon.
2587 			 */
2588 			if (BUF_LOCK(bp,
2589 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2590 			    BO_LOCKPTR(bo)) == ENOLCK)
2591 				goto restart_unlocked;
2592 
2593 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2594 			    ("buf(%p) on dirty queue without DELWRI", bp));
2595 
2596 			bremfree(bp);
2597 			bawrite(bp);
2598 			BO_LOCK(bo);
2599 			goto restartsync;
2600 		}
2601 	}
2602 
2603 	bufobj_wwait(bo, 0, 0);
2604 	BO_UNLOCK(bo);
2605 	vnode_pager_setsize(vp, length);
2606 
2607 	return (0);
2608 }
2609 
2610 /*
2611  * Invalidate the cached pages of a file's buffer within the range of block
2612  * numbers [startlbn, endlbn).
2613  */
2614 void
2615 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2616     int blksize)
2617 {
2618 	struct bufobj *bo;
2619 	off_t start, end;
2620 
2621 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2622 
2623 	start = blksize * startlbn;
2624 	end = blksize * endlbn;
2625 
2626 	bo = &vp->v_bufobj;
2627 	BO_LOCK(bo);
2628 	MPASS(blksize == bo->bo_bsize);
2629 
2630 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2631 		;
2632 
2633 	BO_UNLOCK(bo);
2634 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2635 }
2636 
2637 static int
2638 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2639     daddr_t startlbn, daddr_t endlbn)
2640 {
2641 	struct bufv *bv;
2642 	struct buf *bp, *nbp;
2643 	uint8_t anyfreed;
2644 	bool clean;
2645 
2646 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2647 	ASSERT_BO_LOCKED(bo);
2648 
2649 	anyfreed = 1;
2650 	clean = true;
2651 	do {
2652 		bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2653 		bp = buf_lookup_ge(bv, startlbn);
2654 		if (bp == NULL)
2655 			continue;
2656 		TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2657 			if (bp->b_lblkno >= endlbn)
2658 				break;
2659 			if (BUF_LOCK(bp,
2660 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2661 			    BO_LOCKPTR(bo)) == ENOLCK) {
2662 				BO_LOCK(bo);
2663 				return (EAGAIN);
2664 			}
2665 
2666 			bremfree(bp);
2667 			bp->b_flags |= B_INVAL | B_RELBUF;
2668 			bp->b_flags &= ~B_ASYNC;
2669 			brelse(bp);
2670 			anyfreed = 2;
2671 
2672 			BO_LOCK(bo);
2673 			if (nbp != NULL &&
2674 			    (((nbp->b_xflags &
2675 			    (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2676 			    nbp->b_vp != vp ||
2677 			    (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2678 				return (EAGAIN);
2679 		}
2680 	} while (clean = !clean, anyfreed-- > 0);
2681 	return (0);
2682 }
2683 
2684 static void
2685 buf_vlist_remove(struct buf *bp)
2686 {
2687 	struct bufv *bv;
2688 	b_xflags_t flags;
2689 
2690 	flags = bp->b_xflags;
2691 
2692 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2693 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2694 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2695 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2696 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2697 
2698 	if ((flags & BX_VNDIRTY) != 0)
2699 		bv = &bp->b_bufobj->bo_dirty;
2700 	else
2701 		bv = &bp->b_bufobj->bo_clean;
2702 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2703 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2704 	bv->bv_cnt--;
2705 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2706 }
2707 
2708 /*
2709  * Add the buffer to the sorted clean or dirty block list.  Return zero on
2710  * success, EEXIST if a buffer with this identity already exists, or another
2711  * error on allocation failure.
2712  */
2713 static inline int
2714 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2715 {
2716 	struct bufv *bv;
2717 	struct buf *n;
2718 	int error;
2719 
2720 	ASSERT_BO_WLOCKED(bo);
2721 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2722 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2723 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2724 	    ("dead bo %p", bo));
2725 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2726 	    ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2727 
2728 	if (xflags & BX_VNDIRTY)
2729 		bv = &bo->bo_dirty;
2730 	else
2731 		bv = &bo->bo_clean;
2732 
2733 	error = buf_insert_lookup_le(bv, bp, &n);
2734 	if (n == NULL) {
2735 		KASSERT(error != EEXIST,
2736 		    ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2737 		    bp));
2738 	} else {
2739 		KASSERT(n->b_lblkno <= bp->b_lblkno,
2740 		    ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2741 		    bp, n));
2742 		KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2743 		    ("buf_vlist_add: inconsistent result for existing buf: "
2744 		    "error %d bp %p n %p", error, bp, n));
2745 	}
2746 	if (error != 0)
2747 		return (error);
2748 
2749 	/* Keep the list ordered. */
2750 	if (n == NULL) {
2751 		KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2752 		    bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2753 		    ("buf_vlist_add: queue order: "
2754 		    "%p should be before first %p",
2755 		    bp, TAILQ_FIRST(&bv->bv_hd)));
2756 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2757 	} else {
2758 		KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2759 		    bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2760 		    ("buf_vlist_add: queue order: "
2761 		    "%p should be before next %p",
2762 		    bp, TAILQ_NEXT(n, b_bobufs)));
2763 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2764 	}
2765 
2766 	bv->bv_cnt++;
2767 	return (0);
2768 }
2769 
2770 /*
2771  * Add the buffer to the sorted clean or dirty block list.
2772  *
2773  * NOTE: xflags is passed as a constant, optimizing this inline function!
2774  */
2775 static void
2776 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2777 {
2778 	int error;
2779 
2780 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2781 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2782 	bp->b_xflags |= xflags;
2783 	error = buf_vlist_find_or_add(bp, bo, xflags);
2784 	if (error)
2785 		panic("buf_vlist_add: error=%d", error);
2786 }
2787 
2788 /*
2789  * Look up a buffer using the buffer tries.
2790  */
2791 struct buf *
2792 gbincore(struct bufobj *bo, daddr_t lblkno)
2793 {
2794 	struct buf *bp;
2795 
2796 	ASSERT_BO_LOCKED(bo);
2797 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2798 	if (bp != NULL)
2799 		return (bp);
2800 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2801 }
2802 
2803 /*
2804  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2805  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2806  * stability of the result.  Like other lockless lookups, the found buf may
2807  * already be invalid by the time this function returns.
2808  */
2809 struct buf *
2810 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2811 {
2812 	struct buf *bp;
2813 
2814 	ASSERT_BO_UNLOCKED(bo);
2815 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2816 	if (bp != NULL)
2817 		return (bp);
2818 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2819 }
2820 
2821 /*
2822  * Associate a buffer with a vnode.
2823  */
2824 int
2825 bgetvp(struct vnode *vp, struct buf *bp)
2826 {
2827 	struct bufobj *bo;
2828 	int error;
2829 
2830 	bo = &vp->v_bufobj;
2831 	ASSERT_BO_UNLOCKED(bo);
2832 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2833 
2834 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2835 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2836 	    ("bgetvp: bp already attached! %p", bp));
2837 
2838 	/*
2839 	 * Add the buf to the vnode's clean list unless we lost a race and find
2840 	 * an existing buf in either dirty or clean.
2841 	 */
2842 	bp->b_vp = vp;
2843 	bp->b_bufobj = bo;
2844 	bp->b_xflags |= BX_VNCLEAN;
2845 	error = EEXIST;
2846 	BO_LOCK(bo);
2847 	if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2848 		error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2849 	BO_UNLOCK(bo);
2850 	if (__predict_true(error == 0)) {
2851 		vhold(vp);
2852 		return (0);
2853 	}
2854 	if (error != EEXIST)
2855 		panic("bgetvp: buf_vlist_add error: %d", error);
2856 	bp->b_vp = NULL;
2857 	bp->b_bufobj = NULL;
2858 	bp->b_xflags &= ~BX_VNCLEAN;
2859 	return (error);
2860 }
2861 
2862 /*
2863  * Disassociate a buffer from a vnode.
2864  */
2865 void
2866 brelvp(struct buf *bp)
2867 {
2868 	struct bufobj *bo;
2869 	struct vnode *vp;
2870 
2871 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2872 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2873 
2874 	/*
2875 	 * Delete from old vnode list, if on one.
2876 	 */
2877 	vp = bp->b_vp;		/* XXX */
2878 	bo = bp->b_bufobj;
2879 	BO_LOCK(bo);
2880 	buf_vlist_remove(bp);
2881 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2882 		bo->bo_flag &= ~BO_ONWORKLST;
2883 		mtx_lock(&sync_mtx);
2884 		LIST_REMOVE(bo, bo_synclist);
2885 		syncer_worklist_len--;
2886 		mtx_unlock(&sync_mtx);
2887 	}
2888 	bp->b_vp = NULL;
2889 	bp->b_bufobj = NULL;
2890 	BO_UNLOCK(bo);
2891 	vdrop(vp);
2892 }
2893 
2894 /*
2895  * Add an item to the syncer work queue.
2896  */
2897 static void
2898 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2899 {
2900 	int slot;
2901 
2902 	ASSERT_BO_WLOCKED(bo);
2903 
2904 	mtx_lock(&sync_mtx);
2905 	if (bo->bo_flag & BO_ONWORKLST)
2906 		LIST_REMOVE(bo, bo_synclist);
2907 	else {
2908 		bo->bo_flag |= BO_ONWORKLST;
2909 		syncer_worklist_len++;
2910 	}
2911 
2912 	if (delay > syncer_maxdelay - 2)
2913 		delay = syncer_maxdelay - 2;
2914 	slot = (syncer_delayno + delay) & syncer_mask;
2915 
2916 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2917 	mtx_unlock(&sync_mtx);
2918 }
2919 
2920 static int
2921 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2922 {
2923 	int error, len;
2924 
2925 	mtx_lock(&sync_mtx);
2926 	len = syncer_worklist_len - sync_vnode_count;
2927 	mtx_unlock(&sync_mtx);
2928 	error = SYSCTL_OUT(req, &len, sizeof(len));
2929 	return (error);
2930 }
2931 
2932 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2933     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2934     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2935 
2936 static struct proc *updateproc;
2937 static void sched_sync(void);
2938 static struct kproc_desc up_kp = {
2939 	"syncer",
2940 	sched_sync,
2941 	&updateproc
2942 };
2943 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2944 
2945 static int
2946 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2947 {
2948 	struct vnode *vp;
2949 	struct mount *mp;
2950 
2951 	*bo = LIST_FIRST(slp);
2952 	if (*bo == NULL)
2953 		return (0);
2954 	vp = bo2vnode(*bo);
2955 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2956 		return (1);
2957 	/*
2958 	 * We use vhold in case the vnode does not
2959 	 * successfully sync.  vhold prevents the vnode from
2960 	 * going away when we unlock the sync_mtx so that
2961 	 * we can acquire the vnode interlock.
2962 	 */
2963 	vholdl(vp);
2964 	mtx_unlock(&sync_mtx);
2965 	VI_UNLOCK(vp);
2966 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2967 		vdrop(vp);
2968 		mtx_lock(&sync_mtx);
2969 		return (*bo == LIST_FIRST(slp));
2970 	}
2971 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2972 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2973 	    ("suspended mp syncing vp %p", vp));
2974 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2975 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2976 	VOP_UNLOCK(vp);
2977 	vn_finished_write(mp);
2978 	BO_LOCK(*bo);
2979 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2980 		/*
2981 		 * Put us back on the worklist.  The worklist
2982 		 * routine will remove us from our current
2983 		 * position and then add us back in at a later
2984 		 * position.
2985 		 */
2986 		vn_syncer_add_to_worklist(*bo, syncdelay);
2987 	}
2988 	BO_UNLOCK(*bo);
2989 	vdrop(vp);
2990 	mtx_lock(&sync_mtx);
2991 	return (0);
2992 }
2993 
2994 static int first_printf = 1;
2995 
2996 /*
2997  * System filesystem synchronizer daemon.
2998  */
2999 static void
3000 sched_sync(void)
3001 {
3002 	struct synclist *next, *slp;
3003 	struct bufobj *bo;
3004 	long starttime;
3005 	struct thread *td = curthread;
3006 	int last_work_seen;
3007 	int net_worklist_len;
3008 	int syncer_final_iter;
3009 	int error;
3010 
3011 	last_work_seen = 0;
3012 	syncer_final_iter = 0;
3013 	syncer_state = SYNCER_RUNNING;
3014 	starttime = time_uptime;
3015 	td->td_pflags |= TDP_NORUNNINGBUF;
3016 
3017 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3018 	    SHUTDOWN_PRI_LAST);
3019 
3020 	mtx_lock(&sync_mtx);
3021 	for (;;) {
3022 		if (syncer_state == SYNCER_FINAL_DELAY &&
3023 		    syncer_final_iter == 0) {
3024 			mtx_unlock(&sync_mtx);
3025 			kproc_suspend_check(td->td_proc);
3026 			mtx_lock(&sync_mtx);
3027 		}
3028 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
3029 		if (syncer_state != SYNCER_RUNNING &&
3030 		    starttime != time_uptime) {
3031 			if (first_printf) {
3032 				printf("\nSyncing disks, vnodes remaining... ");
3033 				first_printf = 0;
3034 			}
3035 			printf("%d ", net_worklist_len);
3036 		}
3037 		starttime = time_uptime;
3038 
3039 		/*
3040 		 * Push files whose dirty time has expired.  Be careful
3041 		 * of interrupt race on slp queue.
3042 		 *
3043 		 * Skip over empty worklist slots when shutting down.
3044 		 */
3045 		do {
3046 			slp = &syncer_workitem_pending[syncer_delayno];
3047 			syncer_delayno += 1;
3048 			if (syncer_delayno == syncer_maxdelay)
3049 				syncer_delayno = 0;
3050 			next = &syncer_workitem_pending[syncer_delayno];
3051 			/*
3052 			 * If the worklist has wrapped since the
3053 			 * it was emptied of all but syncer vnodes,
3054 			 * switch to the FINAL_DELAY state and run
3055 			 * for one more second.
3056 			 */
3057 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
3058 			    net_worklist_len == 0 &&
3059 			    last_work_seen == syncer_delayno) {
3060 				syncer_state = SYNCER_FINAL_DELAY;
3061 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3062 			}
3063 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3064 		    syncer_worklist_len > 0);
3065 
3066 		/*
3067 		 * Keep track of the last time there was anything
3068 		 * on the worklist other than syncer vnodes.
3069 		 * Return to the SHUTTING_DOWN state if any
3070 		 * new work appears.
3071 		 */
3072 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3073 			last_work_seen = syncer_delayno;
3074 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3075 			syncer_state = SYNCER_SHUTTING_DOWN;
3076 		while (!LIST_EMPTY(slp)) {
3077 			error = sync_vnode(slp, &bo, td);
3078 			if (error == 1) {
3079 				LIST_REMOVE(bo, bo_synclist);
3080 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3081 				continue;
3082 			}
3083 
3084 			if (first_printf == 0) {
3085 				/*
3086 				 * Drop the sync mutex, because some watchdog
3087 				 * drivers need to sleep while patting
3088 				 */
3089 				mtx_unlock(&sync_mtx);
3090 				wdog_kern_pat(WD_LASTVAL);
3091 				mtx_lock(&sync_mtx);
3092 			}
3093 		}
3094 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3095 			syncer_final_iter--;
3096 		/*
3097 		 * The variable rushjob allows the kernel to speed up the
3098 		 * processing of the filesystem syncer process. A rushjob
3099 		 * value of N tells the filesystem syncer to process the next
3100 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3101 		 * is used by the soft update code to speed up the filesystem
3102 		 * syncer process when the incore state is getting so far
3103 		 * ahead of the disk that the kernel memory pool is being
3104 		 * threatened with exhaustion.
3105 		 */
3106 		if (rushjob > 0) {
3107 			rushjob -= 1;
3108 			continue;
3109 		}
3110 		/*
3111 		 * Just sleep for a short period of time between
3112 		 * iterations when shutting down to allow some I/O
3113 		 * to happen.
3114 		 *
3115 		 * If it has taken us less than a second to process the
3116 		 * current work, then wait. Otherwise start right over
3117 		 * again. We can still lose time if any single round
3118 		 * takes more than two seconds, but it does not really
3119 		 * matter as we are just trying to generally pace the
3120 		 * filesystem activity.
3121 		 */
3122 		if (syncer_state != SYNCER_RUNNING ||
3123 		    time_uptime == starttime) {
3124 			thread_lock(td);
3125 			sched_prio(td, PPAUSE);
3126 			thread_unlock(td);
3127 		}
3128 		if (syncer_state != SYNCER_RUNNING)
3129 			cv_timedwait(&sync_wakeup, &sync_mtx,
3130 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3131 		else if (time_uptime == starttime)
3132 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3133 	}
3134 }
3135 
3136 /*
3137  * Request the syncer daemon to speed up its work.
3138  * We never push it to speed up more than half of its
3139  * normal turn time, otherwise it could take over the cpu.
3140  */
3141 int
3142 speedup_syncer(void)
3143 {
3144 	int ret = 0;
3145 
3146 	mtx_lock(&sync_mtx);
3147 	if (rushjob < syncdelay / 2) {
3148 		rushjob += 1;
3149 		stat_rush_requests += 1;
3150 		ret = 1;
3151 	}
3152 	mtx_unlock(&sync_mtx);
3153 	cv_broadcast(&sync_wakeup);
3154 	return (ret);
3155 }
3156 
3157 /*
3158  * Tell the syncer to speed up its work and run though its work
3159  * list several times, then tell it to shut down.
3160  */
3161 static void
3162 syncer_shutdown(void *arg, int howto)
3163 {
3164 
3165 	if (howto & RB_NOSYNC)
3166 		return;
3167 	mtx_lock(&sync_mtx);
3168 	syncer_state = SYNCER_SHUTTING_DOWN;
3169 	rushjob = 0;
3170 	mtx_unlock(&sync_mtx);
3171 	cv_broadcast(&sync_wakeup);
3172 	kproc_shutdown(arg, howto);
3173 }
3174 
3175 void
3176 syncer_suspend(void)
3177 {
3178 
3179 	syncer_shutdown(updateproc, 0);
3180 }
3181 
3182 void
3183 syncer_resume(void)
3184 {
3185 
3186 	mtx_lock(&sync_mtx);
3187 	first_printf = 1;
3188 	syncer_state = SYNCER_RUNNING;
3189 	mtx_unlock(&sync_mtx);
3190 	cv_broadcast(&sync_wakeup);
3191 	kproc_resume(updateproc);
3192 }
3193 
3194 /*
3195  * Move the buffer between the clean and dirty lists of its vnode.
3196  */
3197 void
3198 reassignbuf(struct buf *bp)
3199 {
3200 	struct vnode *vp;
3201 	struct bufobj *bo;
3202 	int delay;
3203 #ifdef INVARIANTS
3204 	struct bufv *bv;
3205 #endif
3206 
3207 	vp = bp->b_vp;
3208 	bo = bp->b_bufobj;
3209 
3210 	KASSERT((bp->b_flags & B_PAGING) == 0,
3211 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3212 
3213 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3214 	    bp, bp->b_vp, bp->b_flags);
3215 
3216 	BO_LOCK(bo);
3217 	if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3218 		/*
3219 		 * Coordinate with getblk's unlocked lookup.  Make
3220 		 * BO_NONSTERILE visible before the first reassignbuf produces
3221 		 * any side effect.  This could be outside the bo lock if we
3222 		 * used a separate atomic flag field.
3223 		 */
3224 		bo->bo_flag |= BO_NONSTERILE;
3225 		atomic_thread_fence_rel();
3226 	}
3227 	buf_vlist_remove(bp);
3228 
3229 	/*
3230 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3231 	 * of clean buffers.
3232 	 */
3233 	if (bp->b_flags & B_DELWRI) {
3234 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3235 			switch (vp->v_type) {
3236 			case VDIR:
3237 				delay = dirdelay;
3238 				break;
3239 			case VCHR:
3240 				delay = metadelay;
3241 				break;
3242 			default:
3243 				delay = filedelay;
3244 			}
3245 			vn_syncer_add_to_worklist(bo, delay);
3246 		}
3247 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3248 	} else {
3249 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3250 
3251 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3252 			mtx_lock(&sync_mtx);
3253 			LIST_REMOVE(bo, bo_synclist);
3254 			syncer_worklist_len--;
3255 			mtx_unlock(&sync_mtx);
3256 			bo->bo_flag &= ~BO_ONWORKLST;
3257 		}
3258 	}
3259 #ifdef INVARIANTS
3260 	bv = &bo->bo_clean;
3261 	bp = TAILQ_FIRST(&bv->bv_hd);
3262 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3263 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3264 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3265 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3266 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3267 	bv = &bo->bo_dirty;
3268 	bp = TAILQ_FIRST(&bv->bv_hd);
3269 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3270 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3271 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3272 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3273 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3274 #endif
3275 	BO_UNLOCK(bo);
3276 }
3277 
3278 static void
3279 v_init_counters(struct vnode *vp)
3280 {
3281 
3282 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3283 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3284 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3285 
3286 	refcount_init(&vp->v_holdcnt, 1);
3287 	refcount_init(&vp->v_usecount, 1);
3288 }
3289 
3290 /*
3291  * Get a usecount on a vnode.
3292  *
3293  * vget and vget_finish may fail to lock the vnode if they lose a race against
3294  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3295  *
3296  * Consumers which don't guarantee liveness of the vnode can use SMR to
3297  * try to get a reference. Note this operation can fail since the vnode
3298  * may be awaiting getting freed by the time they get to it.
3299  */
3300 enum vgetstate
3301 vget_prep_smr(struct vnode *vp)
3302 {
3303 	enum vgetstate vs;
3304 
3305 	VFS_SMR_ASSERT_ENTERED();
3306 
3307 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3308 		vs = VGET_USECOUNT;
3309 	} else {
3310 		if (vhold_smr(vp))
3311 			vs = VGET_HOLDCNT;
3312 		else
3313 			vs = VGET_NONE;
3314 	}
3315 	return (vs);
3316 }
3317 
3318 enum vgetstate
3319 vget_prep(struct vnode *vp)
3320 {
3321 	enum vgetstate vs;
3322 
3323 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3324 		vs = VGET_USECOUNT;
3325 	} else {
3326 		vhold(vp);
3327 		vs = VGET_HOLDCNT;
3328 	}
3329 	return (vs);
3330 }
3331 
3332 void
3333 vget_abort(struct vnode *vp, enum vgetstate vs)
3334 {
3335 
3336 	switch (vs) {
3337 	case VGET_USECOUNT:
3338 		vrele(vp);
3339 		break;
3340 	case VGET_HOLDCNT:
3341 		vdrop(vp);
3342 		break;
3343 	default:
3344 		__assert_unreachable();
3345 	}
3346 }
3347 
3348 int
3349 vget(struct vnode *vp, int flags)
3350 {
3351 	enum vgetstate vs;
3352 
3353 	vs = vget_prep(vp);
3354 	return (vget_finish(vp, flags, vs));
3355 }
3356 
3357 int
3358 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3359 {
3360 	int error;
3361 
3362 	if ((flags & LK_INTERLOCK) != 0)
3363 		ASSERT_VI_LOCKED(vp, __func__);
3364 	else
3365 		ASSERT_VI_UNLOCKED(vp, __func__);
3366 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3367 	VNPASS(vp->v_holdcnt > 0, vp);
3368 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3369 
3370 	error = vn_lock(vp, flags);
3371 	if (__predict_false(error != 0)) {
3372 		vget_abort(vp, vs);
3373 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3374 		    vp);
3375 		return (error);
3376 	}
3377 
3378 	vget_finish_ref(vp, vs);
3379 	return (0);
3380 }
3381 
3382 void
3383 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3384 {
3385 	int old;
3386 
3387 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3388 	VNPASS(vp->v_holdcnt > 0, vp);
3389 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3390 
3391 	if (vs == VGET_USECOUNT)
3392 		return;
3393 
3394 	/*
3395 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3396 	 * the vnode around. Otherwise someone else lended their hold count and
3397 	 * we have to drop ours.
3398 	 */
3399 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3400 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3401 	if (old != 0) {
3402 #ifdef INVARIANTS
3403 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3404 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3405 #else
3406 		refcount_release(&vp->v_holdcnt);
3407 #endif
3408 	}
3409 }
3410 
3411 void
3412 vref(struct vnode *vp)
3413 {
3414 	enum vgetstate vs;
3415 
3416 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3417 	vs = vget_prep(vp);
3418 	vget_finish_ref(vp, vs);
3419 }
3420 
3421 void
3422 vrefact(struct vnode *vp)
3423 {
3424 	int old __diagused;
3425 
3426 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3427 	old = refcount_acquire(&vp->v_usecount);
3428 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3429 }
3430 
3431 void
3432 vlazy(struct vnode *vp)
3433 {
3434 	struct mount *mp;
3435 
3436 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3437 
3438 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3439 		return;
3440 	/*
3441 	 * We may get here for inactive routines after the vnode got doomed.
3442 	 */
3443 	if (VN_IS_DOOMED(vp))
3444 		return;
3445 	mp = vp->v_mount;
3446 	mtx_lock(&mp->mnt_listmtx);
3447 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3448 		vp->v_mflag |= VMP_LAZYLIST;
3449 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3450 		mp->mnt_lazyvnodelistsize++;
3451 	}
3452 	mtx_unlock(&mp->mnt_listmtx);
3453 }
3454 
3455 static void
3456 vunlazy(struct vnode *vp)
3457 {
3458 	struct mount *mp;
3459 
3460 	ASSERT_VI_LOCKED(vp, __func__);
3461 	VNPASS(!VN_IS_DOOMED(vp), vp);
3462 
3463 	mp = vp->v_mount;
3464 	mtx_lock(&mp->mnt_listmtx);
3465 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3466 	/*
3467 	 * Don't remove the vnode from the lazy list if another thread
3468 	 * has increased the hold count. It may have re-enqueued the
3469 	 * vnode to the lazy list and is now responsible for its
3470 	 * removal.
3471 	 */
3472 	if (vp->v_holdcnt == 0) {
3473 		vp->v_mflag &= ~VMP_LAZYLIST;
3474 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3475 		mp->mnt_lazyvnodelistsize--;
3476 	}
3477 	mtx_unlock(&mp->mnt_listmtx);
3478 }
3479 
3480 /*
3481  * This routine is only meant to be called from vgonel prior to dooming
3482  * the vnode.
3483  */
3484 static void
3485 vunlazy_gone(struct vnode *vp)
3486 {
3487 	struct mount *mp;
3488 
3489 	ASSERT_VOP_ELOCKED(vp, __func__);
3490 	ASSERT_VI_LOCKED(vp, __func__);
3491 	VNPASS(!VN_IS_DOOMED(vp), vp);
3492 
3493 	if (vp->v_mflag & VMP_LAZYLIST) {
3494 		mp = vp->v_mount;
3495 		mtx_lock(&mp->mnt_listmtx);
3496 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3497 		vp->v_mflag &= ~VMP_LAZYLIST;
3498 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3499 		mp->mnt_lazyvnodelistsize--;
3500 		mtx_unlock(&mp->mnt_listmtx);
3501 	}
3502 }
3503 
3504 static void
3505 vdefer_inactive(struct vnode *vp)
3506 {
3507 
3508 	ASSERT_VI_LOCKED(vp, __func__);
3509 	VNPASS(vp->v_holdcnt > 0, vp);
3510 	if (VN_IS_DOOMED(vp)) {
3511 		vdropl(vp);
3512 		return;
3513 	}
3514 	if (vp->v_iflag & VI_DEFINACT) {
3515 		VNPASS(vp->v_holdcnt > 1, vp);
3516 		vdropl(vp);
3517 		return;
3518 	}
3519 	if (vp->v_usecount > 0) {
3520 		vp->v_iflag &= ~VI_OWEINACT;
3521 		vdropl(vp);
3522 		return;
3523 	}
3524 	vlazy(vp);
3525 	vp->v_iflag |= VI_DEFINACT;
3526 	VI_UNLOCK(vp);
3527 	atomic_add_long(&deferred_inact, 1);
3528 }
3529 
3530 static void
3531 vdefer_inactive_unlocked(struct vnode *vp)
3532 {
3533 
3534 	VI_LOCK(vp);
3535 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3536 		vdropl(vp);
3537 		return;
3538 	}
3539 	vdefer_inactive(vp);
3540 }
3541 
3542 enum vput_op { VRELE, VPUT, VUNREF };
3543 
3544 /*
3545  * Handle ->v_usecount transitioning to 0.
3546  *
3547  * By releasing the last usecount we take ownership of the hold count which
3548  * provides liveness of the vnode, meaning we have to vdrop.
3549  *
3550  * For all vnodes we may need to perform inactive processing. It requires an
3551  * exclusive lock on the vnode, while it is legal to call here with only a
3552  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3553  * inactive processing gets deferred to the syncer.
3554  *
3555  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3556  * on the lock being held all the way until VOP_INACTIVE. This in particular
3557  * happens with UFS which adds half-constructed vnodes to the hash, where they
3558  * can be found by other code.
3559  */
3560 static void
3561 vput_final(struct vnode *vp, enum vput_op func)
3562 {
3563 	int error;
3564 	bool want_unlock;
3565 
3566 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3567 	VNPASS(vp->v_holdcnt > 0, vp);
3568 
3569 	VI_LOCK(vp);
3570 
3571 	/*
3572 	 * By the time we got here someone else might have transitioned
3573 	 * the count back to > 0.
3574 	 */
3575 	if (vp->v_usecount > 0)
3576 		goto out;
3577 
3578 	/*
3579 	 * If the vnode is doomed vgone already performed inactive processing
3580 	 * (if needed).
3581 	 */
3582 	if (VN_IS_DOOMED(vp))
3583 		goto out;
3584 
3585 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3586 		goto out;
3587 
3588 	if (vp->v_iflag & VI_DOINGINACT)
3589 		goto out;
3590 
3591 	/*
3592 	 * Locking operations here will drop the interlock and possibly the
3593 	 * vnode lock, opening a window where the vnode can get doomed all the
3594 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3595 	 * perform inactive.
3596 	 */
3597 	vp->v_iflag |= VI_OWEINACT;
3598 	want_unlock = false;
3599 	error = 0;
3600 	switch (func) {
3601 	case VRELE:
3602 		switch (VOP_ISLOCKED(vp)) {
3603 		case LK_EXCLUSIVE:
3604 			break;
3605 		case LK_EXCLOTHER:
3606 		case 0:
3607 			want_unlock = true;
3608 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3609 			VI_LOCK(vp);
3610 			break;
3611 		default:
3612 			/*
3613 			 * The lock has at least one sharer, but we have no way
3614 			 * to conclude whether this is us. Play it safe and
3615 			 * defer processing.
3616 			 */
3617 			error = EAGAIN;
3618 			break;
3619 		}
3620 		break;
3621 	case VPUT:
3622 		want_unlock = true;
3623 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3624 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3625 			    LK_NOWAIT);
3626 			VI_LOCK(vp);
3627 		}
3628 		break;
3629 	case VUNREF:
3630 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3631 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3632 			VI_LOCK(vp);
3633 		}
3634 		break;
3635 	}
3636 	if (error == 0) {
3637 		if (func == VUNREF) {
3638 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3639 			    ("recursive vunref"));
3640 			vp->v_vflag |= VV_UNREF;
3641 		}
3642 		for (;;) {
3643 			error = vinactive(vp);
3644 			if (want_unlock)
3645 				VOP_UNLOCK(vp);
3646 			if (error != ERELOOKUP || !want_unlock)
3647 				break;
3648 			VOP_LOCK(vp, LK_EXCLUSIVE);
3649 		}
3650 		if (func == VUNREF)
3651 			vp->v_vflag &= ~VV_UNREF;
3652 		vdropl(vp);
3653 	} else {
3654 		vdefer_inactive(vp);
3655 	}
3656 	return;
3657 out:
3658 	if (func == VPUT)
3659 		VOP_UNLOCK(vp);
3660 	vdropl(vp);
3661 }
3662 
3663 /*
3664  * Decrement ->v_usecount for a vnode.
3665  *
3666  * Releasing the last use count requires additional processing, see vput_final
3667  * above for details.
3668  *
3669  * Comment above each variant denotes lock state on entry and exit.
3670  */
3671 
3672 /*
3673  * in: any
3674  * out: same as passed in
3675  */
3676 void
3677 vrele(struct vnode *vp)
3678 {
3679 
3680 	ASSERT_VI_UNLOCKED(vp, __func__);
3681 	if (!refcount_release(&vp->v_usecount))
3682 		return;
3683 	vput_final(vp, VRELE);
3684 }
3685 
3686 /*
3687  * in: locked
3688  * out: unlocked
3689  */
3690 void
3691 vput(struct vnode *vp)
3692 {
3693 
3694 	ASSERT_VOP_LOCKED(vp, __func__);
3695 	ASSERT_VI_UNLOCKED(vp, __func__);
3696 	if (!refcount_release(&vp->v_usecount)) {
3697 		VOP_UNLOCK(vp);
3698 		return;
3699 	}
3700 	vput_final(vp, VPUT);
3701 }
3702 
3703 /*
3704  * in: locked
3705  * out: locked
3706  */
3707 void
3708 vunref(struct vnode *vp)
3709 {
3710 
3711 	ASSERT_VOP_LOCKED(vp, __func__);
3712 	ASSERT_VI_UNLOCKED(vp, __func__);
3713 	if (!refcount_release(&vp->v_usecount))
3714 		return;
3715 	vput_final(vp, VUNREF);
3716 }
3717 
3718 void
3719 vhold(struct vnode *vp)
3720 {
3721 	int old;
3722 
3723 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3724 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3725 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3726 	    ("%s: wrong hold count %d", __func__, old));
3727 	if (old == 0)
3728 		vfs_freevnodes_dec();
3729 }
3730 
3731 void
3732 vholdnz(struct vnode *vp)
3733 {
3734 
3735 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3736 #ifdef INVARIANTS
3737 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3738 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3739 	    ("%s: wrong hold count %d", __func__, old));
3740 #else
3741 	atomic_add_int(&vp->v_holdcnt, 1);
3742 #endif
3743 }
3744 
3745 /*
3746  * Grab a hold count unless the vnode is freed.
3747  *
3748  * Only use this routine if vfs smr is the only protection you have against
3749  * freeing the vnode.
3750  *
3751  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3752  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3753  * the thread which managed to set the flag.
3754  *
3755  * It may be tempting to replace the loop with:
3756  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3757  * if (count & VHOLD_NO_SMR) {
3758  *     backpedal and error out;
3759  * }
3760  *
3761  * However, while this is more performant, it hinders debugging by eliminating
3762  * the previously mentioned invariant.
3763  */
3764 bool
3765 vhold_smr(struct vnode *vp)
3766 {
3767 	int count;
3768 
3769 	VFS_SMR_ASSERT_ENTERED();
3770 
3771 	count = atomic_load_int(&vp->v_holdcnt);
3772 	for (;;) {
3773 		if (count & VHOLD_NO_SMR) {
3774 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3775 			    ("non-zero hold count with flags %d\n", count));
3776 			return (false);
3777 		}
3778 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3779 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3780 			if (count == 0)
3781 				vfs_freevnodes_dec();
3782 			return (true);
3783 		}
3784 	}
3785 }
3786 
3787 /*
3788  * Hold a free vnode for recycling.
3789  *
3790  * Note: vnode_init references this comment.
3791  *
3792  * Attempts to recycle only need the global vnode list lock and have no use for
3793  * SMR.
3794  *
3795  * However, vnodes get inserted into the global list before they get fully
3796  * initialized and stay there until UMA decides to free the memory. This in
3797  * particular means the target can be found before it becomes usable and after
3798  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3799  * VHOLD_NO_SMR.
3800  *
3801  * Note: the vnode may gain more references after we transition the count 0->1.
3802  */
3803 static bool
3804 vhold_recycle_free(struct vnode *vp)
3805 {
3806 	int count;
3807 
3808 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3809 
3810 	count = atomic_load_int(&vp->v_holdcnt);
3811 	for (;;) {
3812 		if (count & VHOLD_NO_SMR) {
3813 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3814 			    ("non-zero hold count with flags %d\n", count));
3815 			return (false);
3816 		}
3817 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3818 		if (count > 0) {
3819 			return (false);
3820 		}
3821 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3822 			vfs_freevnodes_dec();
3823 			return (true);
3824 		}
3825 	}
3826 }
3827 
3828 static void __noinline
3829 vdbatch_process(struct vdbatch *vd)
3830 {
3831 	struct vnode *vp;
3832 	int i;
3833 
3834 	mtx_assert(&vd->lock, MA_OWNED);
3835 	MPASS(curthread->td_pinned > 0);
3836 	MPASS(vd->index == VDBATCH_SIZE);
3837 
3838 	/*
3839 	 * Attempt to requeue the passed batch, but give up easily.
3840 	 *
3841 	 * Despite batching the mechanism is prone to transient *significant*
3842 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3843 	 * if multiple CPUs get here (one real-world example is highly parallel
3844 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3845 	 * quasi-LRU (read: not that great even if fully honoured) provide an
3846 	 * option to just dodge the problem. Parties which don't like it are
3847 	 * welcome to implement something better.
3848 	 */
3849 	if (vnode_can_skip_requeue) {
3850 		if (!mtx_trylock(&vnode_list_mtx)) {
3851 			counter_u64_add(vnode_skipped_requeues, 1);
3852 			critical_enter();
3853 			for (i = 0; i < VDBATCH_SIZE; i++) {
3854 				vp = vd->tab[i];
3855 				vd->tab[i] = NULL;
3856 				MPASS(vp->v_dbatchcpu != NOCPU);
3857 				vp->v_dbatchcpu = NOCPU;
3858 			}
3859 			vd->index = 0;
3860 			critical_exit();
3861 			return;
3862 
3863 		}
3864 		/* fallthrough to locked processing */
3865 	} else {
3866 		mtx_lock(&vnode_list_mtx);
3867 	}
3868 
3869 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3870 	critical_enter();
3871 	for (i = 0; i < VDBATCH_SIZE; i++) {
3872 		vp = vd->tab[i];
3873 		vd->tab[i] = NULL;
3874 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3875 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3876 		MPASS(vp->v_dbatchcpu != NOCPU);
3877 		vp->v_dbatchcpu = NOCPU;
3878 	}
3879 	mtx_unlock(&vnode_list_mtx);
3880 	vd->index = 0;
3881 	critical_exit();
3882 }
3883 
3884 static void
3885 vdbatch_enqueue(struct vnode *vp)
3886 {
3887 	struct vdbatch *vd;
3888 
3889 	ASSERT_VI_LOCKED(vp, __func__);
3890 	VNPASS(!VN_IS_DOOMED(vp), vp);
3891 
3892 	if (vp->v_dbatchcpu != NOCPU) {
3893 		VI_UNLOCK(vp);
3894 		return;
3895 	}
3896 
3897 	sched_pin();
3898 	vd = DPCPU_PTR(vd);
3899 	mtx_lock(&vd->lock);
3900 	MPASS(vd->index < VDBATCH_SIZE);
3901 	MPASS(vd->tab[vd->index] == NULL);
3902 	/*
3903 	 * A hack: we depend on being pinned so that we know what to put in
3904 	 * ->v_dbatchcpu.
3905 	 */
3906 	vp->v_dbatchcpu = curcpu;
3907 	vd->tab[vd->index] = vp;
3908 	vd->index++;
3909 	VI_UNLOCK(vp);
3910 	if (vd->index == VDBATCH_SIZE)
3911 		vdbatch_process(vd);
3912 	mtx_unlock(&vd->lock);
3913 	sched_unpin();
3914 }
3915 
3916 /*
3917  * This routine must only be called for vnodes which are about to be
3918  * deallocated. Supporting dequeue for arbitrary vndoes would require
3919  * validating that the locked batch matches.
3920  */
3921 static void
3922 vdbatch_dequeue(struct vnode *vp)
3923 {
3924 	struct vdbatch *vd;
3925 	int i;
3926 	short cpu;
3927 
3928 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3929 
3930 	cpu = vp->v_dbatchcpu;
3931 	if (cpu == NOCPU)
3932 		return;
3933 
3934 	vd = DPCPU_ID_PTR(cpu, vd);
3935 	mtx_lock(&vd->lock);
3936 	for (i = 0; i < vd->index; i++) {
3937 		if (vd->tab[i] != vp)
3938 			continue;
3939 		vp->v_dbatchcpu = NOCPU;
3940 		vd->index--;
3941 		vd->tab[i] = vd->tab[vd->index];
3942 		vd->tab[vd->index] = NULL;
3943 		break;
3944 	}
3945 	mtx_unlock(&vd->lock);
3946 	/*
3947 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3948 	 */
3949 	MPASS(vp->v_dbatchcpu == NOCPU);
3950 }
3951 
3952 /*
3953  * Drop the hold count of the vnode.
3954  *
3955  * It will only get freed if this is the last hold *and* it has been vgone'd.
3956  *
3957  * Because the vnode vm object keeps a hold reference on the vnode if
3958  * there is at least one resident non-cached page, the vnode cannot
3959  * leave the active list without the page cleanup done.
3960  */
3961 static void __noinline
3962 vdropl_final(struct vnode *vp)
3963 {
3964 
3965 	ASSERT_VI_LOCKED(vp, __func__);
3966 	VNPASS(VN_IS_DOOMED(vp), vp);
3967 	/*
3968 	 * Set the VHOLD_NO_SMR flag.
3969 	 *
3970 	 * We may be racing against vhold_smr. If they win we can just pretend
3971 	 * we never got this far, they will vdrop later.
3972 	 */
3973 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3974 		vfs_freevnodes_inc();
3975 		VI_UNLOCK(vp);
3976 		/*
3977 		 * We lost the aforementioned race. Any subsequent access is
3978 		 * invalid as they might have managed to vdropl on their own.
3979 		 */
3980 		return;
3981 	}
3982 	/*
3983 	 * Don't bump freevnodes as this one is going away.
3984 	 */
3985 	freevnode(vp);
3986 }
3987 
3988 void
3989 vdrop(struct vnode *vp)
3990 {
3991 
3992 	ASSERT_VI_UNLOCKED(vp, __func__);
3993 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3994 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3995 		return;
3996 	VI_LOCK(vp);
3997 	vdropl(vp);
3998 }
3999 
4000 static __always_inline void
4001 vdropl_impl(struct vnode *vp, bool enqueue)
4002 {
4003 
4004 	ASSERT_VI_LOCKED(vp, __func__);
4005 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4006 	if (!refcount_release(&vp->v_holdcnt)) {
4007 		VI_UNLOCK(vp);
4008 		return;
4009 	}
4010 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4011 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4012 	if (VN_IS_DOOMED(vp)) {
4013 		vdropl_final(vp);
4014 		return;
4015 	}
4016 
4017 	vfs_freevnodes_inc();
4018 	if (vp->v_mflag & VMP_LAZYLIST) {
4019 		vunlazy(vp);
4020 	}
4021 
4022 	if (!enqueue) {
4023 		VI_UNLOCK(vp);
4024 		return;
4025 	}
4026 
4027 	/*
4028 	 * Also unlocks the interlock. We can't assert on it as we
4029 	 * released our hold and by now the vnode might have been
4030 	 * freed.
4031 	 */
4032 	vdbatch_enqueue(vp);
4033 }
4034 
4035 void
4036 vdropl(struct vnode *vp)
4037 {
4038 
4039 	vdropl_impl(vp, true);
4040 }
4041 
4042 /*
4043  * vdrop a vnode when recycling
4044  *
4045  * This is a special case routine only to be used when recycling, differs from
4046  * regular vdrop by not requeieing the vnode on LRU.
4047  *
4048  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4049  * e.g., frozen writes on the filesystem), filling the batch and causing it to
4050  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4051  * loop which can last for as long as writes are frozen.
4052  */
4053 static void
4054 vdropl_recycle(struct vnode *vp)
4055 {
4056 
4057 	vdropl_impl(vp, false);
4058 }
4059 
4060 static void
4061 vdrop_recycle(struct vnode *vp)
4062 {
4063 
4064 	VI_LOCK(vp);
4065 	vdropl_recycle(vp);
4066 }
4067 
4068 /*
4069  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4070  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4071  */
4072 static int
4073 vinactivef(struct vnode *vp)
4074 {
4075 	int error;
4076 
4077 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4078 	ASSERT_VI_LOCKED(vp, "vinactive");
4079 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4080 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4081 	vp->v_iflag |= VI_DOINGINACT;
4082 	vp->v_iflag &= ~VI_OWEINACT;
4083 	VI_UNLOCK(vp);
4084 
4085 	/*
4086 	 * Before moving off the active list, we must be sure that any
4087 	 * modified pages are converted into the vnode's dirty
4088 	 * buffers, since these will no longer be checked once the
4089 	 * vnode is on the inactive list.
4090 	 *
4091 	 * The write-out of the dirty pages is asynchronous.  At the
4092 	 * point that VOP_INACTIVE() is called, there could still be
4093 	 * pending I/O and dirty pages in the object.
4094 	 */
4095 	if ((vp->v_vflag & VV_NOSYNC) == 0)
4096 		vnode_pager_clean_async(vp);
4097 
4098 	error = VOP_INACTIVE(vp);
4099 	VI_LOCK(vp);
4100 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4101 	vp->v_iflag &= ~VI_DOINGINACT;
4102 	return (error);
4103 }
4104 
4105 int
4106 vinactive(struct vnode *vp)
4107 {
4108 
4109 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4110 	ASSERT_VI_LOCKED(vp, "vinactive");
4111 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4112 
4113 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4114 		return (0);
4115 	if (vp->v_iflag & VI_DOINGINACT)
4116 		return (0);
4117 	if (vp->v_usecount > 0) {
4118 		vp->v_iflag &= ~VI_OWEINACT;
4119 		return (0);
4120 	}
4121 	return (vinactivef(vp));
4122 }
4123 
4124 /*
4125  * Remove any vnodes in the vnode table belonging to mount point mp.
4126  *
4127  * If FORCECLOSE is not specified, there should not be any active ones,
4128  * return error if any are found (nb: this is a user error, not a
4129  * system error). If FORCECLOSE is specified, detach any active vnodes
4130  * that are found.
4131  *
4132  * If WRITECLOSE is set, only flush out regular file vnodes open for
4133  * writing.
4134  *
4135  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4136  *
4137  * `rootrefs' specifies the base reference count for the root vnode
4138  * of this filesystem. The root vnode is considered busy if its
4139  * v_usecount exceeds this value. On a successful return, vflush(, td)
4140  * will call vrele() on the root vnode exactly rootrefs times.
4141  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4142  * be zero.
4143  */
4144 #ifdef DIAGNOSTIC
4145 static int busyprt = 0;		/* print out busy vnodes */
4146 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4147 #endif
4148 
4149 int
4150 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4151 {
4152 	struct vnode *vp, *mvp, *rootvp = NULL;
4153 	struct vattr vattr;
4154 	int busy = 0, error;
4155 
4156 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4157 	    rootrefs, flags);
4158 	if (rootrefs > 0) {
4159 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4160 		    ("vflush: bad args"));
4161 		/*
4162 		 * Get the filesystem root vnode. We can vput() it
4163 		 * immediately, since with rootrefs > 0, it won't go away.
4164 		 */
4165 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4166 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4167 			    __func__, error);
4168 			return (error);
4169 		}
4170 		vput(rootvp);
4171 	}
4172 loop:
4173 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4174 		vholdl(vp);
4175 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4176 		if (error) {
4177 			vdrop(vp);
4178 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4179 			goto loop;
4180 		}
4181 		/*
4182 		 * Skip over a vnodes marked VV_SYSTEM.
4183 		 */
4184 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4185 			VOP_UNLOCK(vp);
4186 			vdrop(vp);
4187 			continue;
4188 		}
4189 		/*
4190 		 * If WRITECLOSE is set, flush out unlinked but still open
4191 		 * files (even if open only for reading) and regular file
4192 		 * vnodes open for writing.
4193 		 */
4194 		if (flags & WRITECLOSE) {
4195 			vnode_pager_clean_async(vp);
4196 			do {
4197 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4198 			} while (error == ERELOOKUP);
4199 			if (error != 0) {
4200 				VOP_UNLOCK(vp);
4201 				vdrop(vp);
4202 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4203 				return (error);
4204 			}
4205 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4206 			VI_LOCK(vp);
4207 
4208 			if ((vp->v_type == VNON ||
4209 			    (error == 0 && vattr.va_nlink > 0)) &&
4210 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4211 				VOP_UNLOCK(vp);
4212 				vdropl(vp);
4213 				continue;
4214 			}
4215 		} else
4216 			VI_LOCK(vp);
4217 		/*
4218 		 * With v_usecount == 0, all we need to do is clear out the
4219 		 * vnode data structures and we are done.
4220 		 *
4221 		 * If FORCECLOSE is set, forcibly close the vnode.
4222 		 */
4223 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4224 			vgonel(vp);
4225 		} else {
4226 			busy++;
4227 #ifdef DIAGNOSTIC
4228 			if (busyprt)
4229 				vn_printf(vp, "vflush: busy vnode ");
4230 #endif
4231 		}
4232 		VOP_UNLOCK(vp);
4233 		vdropl(vp);
4234 	}
4235 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4236 		/*
4237 		 * If just the root vnode is busy, and if its refcount
4238 		 * is equal to `rootrefs', then go ahead and kill it.
4239 		 */
4240 		VI_LOCK(rootvp);
4241 		KASSERT(busy > 0, ("vflush: not busy"));
4242 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4243 		    ("vflush: usecount %d < rootrefs %d",
4244 		     rootvp->v_usecount, rootrefs));
4245 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4246 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4247 			vgone(rootvp);
4248 			VOP_UNLOCK(rootvp);
4249 			busy = 0;
4250 		} else
4251 			VI_UNLOCK(rootvp);
4252 	}
4253 	if (busy) {
4254 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4255 		    busy);
4256 		return (EBUSY);
4257 	}
4258 	for (; rootrefs > 0; rootrefs--)
4259 		vrele(rootvp);
4260 	return (0);
4261 }
4262 
4263 /*
4264  * Recycle an unused vnode.
4265  */
4266 int
4267 vrecycle(struct vnode *vp)
4268 {
4269 	int recycled;
4270 
4271 	VI_LOCK(vp);
4272 	recycled = vrecyclel(vp);
4273 	VI_UNLOCK(vp);
4274 	return (recycled);
4275 }
4276 
4277 /*
4278  * vrecycle, with the vp interlock held.
4279  */
4280 int
4281 vrecyclel(struct vnode *vp)
4282 {
4283 	int recycled;
4284 
4285 	ASSERT_VOP_ELOCKED(vp, __func__);
4286 	ASSERT_VI_LOCKED(vp, __func__);
4287 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4288 	recycled = 0;
4289 	if (vp->v_usecount == 0) {
4290 		recycled = 1;
4291 		vgonel(vp);
4292 	}
4293 	return (recycled);
4294 }
4295 
4296 /*
4297  * Eliminate all activity associated with a vnode
4298  * in preparation for reuse.
4299  */
4300 void
4301 vgone(struct vnode *vp)
4302 {
4303 	VI_LOCK(vp);
4304 	vgonel(vp);
4305 	VI_UNLOCK(vp);
4306 }
4307 
4308 /*
4309  * Notify upper mounts about reclaimed or unlinked vnode.
4310  */
4311 void
4312 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4313 {
4314 	struct mount *mp;
4315 	struct mount_upper_node *ump;
4316 
4317 	mp = atomic_load_ptr(&vp->v_mount);
4318 	if (mp == NULL)
4319 		return;
4320 	if (TAILQ_EMPTY(&mp->mnt_notify))
4321 		return;
4322 
4323 	MNT_ILOCK(mp);
4324 	mp->mnt_upper_pending++;
4325 	KASSERT(mp->mnt_upper_pending > 0,
4326 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4327 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4328 		MNT_IUNLOCK(mp);
4329 		switch (event) {
4330 		case VFS_NOTIFY_UPPER_RECLAIM:
4331 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4332 			break;
4333 		case VFS_NOTIFY_UPPER_UNLINK:
4334 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4335 			break;
4336 		}
4337 		MNT_ILOCK(mp);
4338 	}
4339 	mp->mnt_upper_pending--;
4340 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4341 	    mp->mnt_upper_pending == 0) {
4342 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4343 		wakeup(&mp->mnt_uppers);
4344 	}
4345 	MNT_IUNLOCK(mp);
4346 }
4347 
4348 /*
4349  * vgone, with the vp interlock held.
4350  */
4351 static void
4352 vgonel(struct vnode *vp)
4353 {
4354 	struct thread *td;
4355 	struct mount *mp;
4356 	vm_object_t object;
4357 	bool active, doinginact, oweinact;
4358 
4359 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4360 	ASSERT_VI_LOCKED(vp, "vgonel");
4361 	VNASSERT(vp->v_holdcnt, vp,
4362 	    ("vgonel: vp %p has no reference.", vp));
4363 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4364 	td = curthread;
4365 
4366 	/*
4367 	 * Don't vgonel if we're already doomed.
4368 	 */
4369 	if (VN_IS_DOOMED(vp)) {
4370 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4371 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4372 		return;
4373 	}
4374 	/*
4375 	 * Paired with freevnode.
4376 	 */
4377 	vn_seqc_write_begin_locked(vp);
4378 	vunlazy_gone(vp);
4379 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4380 	vn_set_state(vp, VSTATE_DESTROYING);
4381 
4382 	/*
4383 	 * Check to see if the vnode is in use.  If so, we have to
4384 	 * call VOP_CLOSE() and VOP_INACTIVE().
4385 	 *
4386 	 * It could be that VOP_INACTIVE() requested reclamation, in
4387 	 * which case we should avoid recursion, so check
4388 	 * VI_DOINGINACT.  This is not precise but good enough.
4389 	 */
4390 	active = vp->v_usecount > 0;
4391 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4392 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4393 
4394 	/*
4395 	 * If we need to do inactive VI_OWEINACT will be set.
4396 	 */
4397 	if (vp->v_iflag & VI_DEFINACT) {
4398 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4399 		vp->v_iflag &= ~VI_DEFINACT;
4400 		vdropl(vp);
4401 	} else {
4402 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4403 		VI_UNLOCK(vp);
4404 	}
4405 	cache_purge_vgone(vp);
4406 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4407 
4408 	/*
4409 	 * If purging an active vnode, it must be closed and
4410 	 * deactivated before being reclaimed.
4411 	 */
4412 	if (active)
4413 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4414 	if (!doinginact) {
4415 		do {
4416 			if (oweinact || active) {
4417 				VI_LOCK(vp);
4418 				vinactivef(vp);
4419 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4420 				VI_UNLOCK(vp);
4421 			}
4422 		} while (oweinact);
4423 	}
4424 	if (vp->v_type == VSOCK)
4425 		vfs_unp_reclaim(vp);
4426 
4427 	/*
4428 	 * Clean out any buffers associated with the vnode.
4429 	 * If the flush fails, just toss the buffers.
4430 	 */
4431 	mp = NULL;
4432 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4433 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4434 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4435 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4436 			;
4437 	}
4438 
4439 	BO_LOCK(&vp->v_bufobj);
4440 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4441 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4442 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4443 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4444 	    ("vp %p bufobj not invalidated", vp));
4445 
4446 	/*
4447 	 * For VMIO bufobj, BO_DEAD is set later, or in
4448 	 * vm_object_terminate() after the object's page queue is
4449 	 * flushed.
4450 	 */
4451 	object = vp->v_bufobj.bo_object;
4452 	if (object == NULL)
4453 		vp->v_bufobj.bo_flag |= BO_DEAD;
4454 	BO_UNLOCK(&vp->v_bufobj);
4455 
4456 	/*
4457 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4458 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4459 	 * should not touch the object borrowed from the lower vnode
4460 	 * (the handle check).
4461 	 */
4462 	if (object != NULL && object->type == OBJT_VNODE &&
4463 	    object->handle == vp)
4464 		vnode_destroy_vobject(vp);
4465 
4466 	/*
4467 	 * Reclaim the vnode.
4468 	 */
4469 	if (VOP_RECLAIM(vp))
4470 		panic("vgone: cannot reclaim");
4471 	if (mp != NULL)
4472 		vn_finished_secondary_write(mp);
4473 	VNASSERT(vp->v_object == NULL, vp,
4474 	    ("vop_reclaim left v_object vp=%p", vp));
4475 	/*
4476 	 * Clear the advisory locks and wake up waiting threads.
4477 	 */
4478 	if (vp->v_lockf != NULL) {
4479 		(void)VOP_ADVLOCKPURGE(vp);
4480 		vp->v_lockf = NULL;
4481 	}
4482 	/*
4483 	 * Delete from old mount point vnode list.
4484 	 */
4485 	if (vp->v_mount == NULL) {
4486 		VI_LOCK(vp);
4487 	} else {
4488 		delmntque(vp);
4489 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4490 	}
4491 	/*
4492 	 * Done with purge, reset to the standard lock and invalidate
4493 	 * the vnode.
4494 	 */
4495 	vp->v_vnlock = &vp->v_lock;
4496 	vp->v_op = &dead_vnodeops;
4497 	vp->v_type = VBAD;
4498 	vn_set_state(vp, VSTATE_DEAD);
4499 }
4500 
4501 /*
4502  * Print out a description of a vnode.
4503  */
4504 static const char *const vtypename[] = {
4505 	[VNON] = "VNON",
4506 	[VREG] = "VREG",
4507 	[VDIR] = "VDIR",
4508 	[VBLK] = "VBLK",
4509 	[VCHR] = "VCHR",
4510 	[VLNK] = "VLNK",
4511 	[VSOCK] = "VSOCK",
4512 	[VFIFO] = "VFIFO",
4513 	[VBAD] = "VBAD",
4514 	[VMARKER] = "VMARKER",
4515 };
4516 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4517     "vnode type name not added to vtypename");
4518 
4519 static const char *const vstatename[] = {
4520 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4521 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4522 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4523 	[VSTATE_DEAD] = "VSTATE_DEAD",
4524 };
4525 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4526     "vnode state name not added to vstatename");
4527 
4528 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4529     "new hold count flag not added to vn_printf");
4530 
4531 void
4532 vn_printf(struct vnode *vp, const char *fmt, ...)
4533 {
4534 	va_list ap;
4535 	char buf[256], buf2[16];
4536 	u_long flags;
4537 	u_int holdcnt;
4538 	short irflag;
4539 
4540 	va_start(ap, fmt);
4541 	vprintf(fmt, ap);
4542 	va_end(ap);
4543 	printf("%p: ", (void *)vp);
4544 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4545 	    vstatename[vp->v_state], vp->v_op);
4546 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4547 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4548 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4549 	    vp->v_seqc_users);
4550 	switch (vp->v_type) {
4551 	case VDIR:
4552 		printf(" mountedhere %p\n", vp->v_mountedhere);
4553 		break;
4554 	case VCHR:
4555 		printf(" rdev %p\n", vp->v_rdev);
4556 		break;
4557 	case VSOCK:
4558 		printf(" socket %p\n", vp->v_unpcb);
4559 		break;
4560 	case VFIFO:
4561 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4562 		break;
4563 	default:
4564 		printf("\n");
4565 		break;
4566 	}
4567 	buf[0] = '\0';
4568 	buf[1] = '\0';
4569 	if (holdcnt & VHOLD_NO_SMR)
4570 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4571 	printf("    hold count flags (%s)\n", buf + 1);
4572 
4573 	buf[0] = '\0';
4574 	buf[1] = '\0';
4575 	irflag = vn_irflag_read(vp);
4576 	if (irflag & VIRF_DOOMED)
4577 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4578 	if (irflag & VIRF_PGREAD)
4579 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4580 	if (irflag & VIRF_MOUNTPOINT)
4581 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4582 	if (irflag & VIRF_TEXT_REF)
4583 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4584 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4585 	if (flags != 0) {
4586 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4587 		strlcat(buf, buf2, sizeof(buf));
4588 	}
4589 	if (vp->v_vflag & VV_ROOT)
4590 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4591 	if (vp->v_vflag & VV_ISTTY)
4592 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4593 	if (vp->v_vflag & VV_NOSYNC)
4594 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4595 	if (vp->v_vflag & VV_ETERNALDEV)
4596 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4597 	if (vp->v_vflag & VV_CACHEDLABEL)
4598 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4599 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4600 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4601 	if (vp->v_vflag & VV_COPYONWRITE)
4602 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4603 	if (vp->v_vflag & VV_SYSTEM)
4604 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4605 	if (vp->v_vflag & VV_PROCDEP)
4606 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4607 	if (vp->v_vflag & VV_DELETED)
4608 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4609 	if (vp->v_vflag & VV_MD)
4610 		strlcat(buf, "|VV_MD", sizeof(buf));
4611 	if (vp->v_vflag & VV_FORCEINSMQ)
4612 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4613 	if (vp->v_vflag & VV_READLINK)
4614 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4615 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4616 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4617 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4618 	if (flags != 0) {
4619 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4620 		strlcat(buf, buf2, sizeof(buf));
4621 	}
4622 	if (vp->v_iflag & VI_MOUNT)
4623 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4624 	if (vp->v_iflag & VI_DOINGINACT)
4625 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4626 	if (vp->v_iflag & VI_OWEINACT)
4627 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4628 	if (vp->v_iflag & VI_DEFINACT)
4629 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4630 	if (vp->v_iflag & VI_FOPENING)
4631 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4632 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4633 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4634 	if (flags != 0) {
4635 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4636 		strlcat(buf, buf2, sizeof(buf));
4637 	}
4638 	if (vp->v_mflag & VMP_LAZYLIST)
4639 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4640 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4641 	if (flags != 0) {
4642 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4643 		strlcat(buf, buf2, sizeof(buf));
4644 	}
4645 	printf("    flags (%s)", buf + 1);
4646 	if (mtx_owned(VI_MTX(vp)))
4647 		printf(" VI_LOCKed");
4648 	printf("\n");
4649 	if (vp->v_object != NULL)
4650 		printf("    v_object %p ref %d pages %d "
4651 		    "cleanbuf %d dirtybuf %d\n",
4652 		    vp->v_object, vp->v_object->ref_count,
4653 		    vp->v_object->resident_page_count,
4654 		    vp->v_bufobj.bo_clean.bv_cnt,
4655 		    vp->v_bufobj.bo_dirty.bv_cnt);
4656 	printf("    ");
4657 	lockmgr_printinfo(vp->v_vnlock);
4658 	if (vp->v_data != NULL)
4659 		VOP_PRINT(vp);
4660 }
4661 
4662 #ifdef DDB
4663 /*
4664  * List all of the locked vnodes in the system.
4665  * Called when debugging the kernel.
4666  */
4667 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4668 {
4669 	struct mount *mp;
4670 	struct vnode *vp;
4671 
4672 	/*
4673 	 * Note: because this is DDB, we can't obey the locking semantics
4674 	 * for these structures, which means we could catch an inconsistent
4675 	 * state and dereference a nasty pointer.  Not much to be done
4676 	 * about that.
4677 	 */
4678 	db_printf("Locked vnodes\n");
4679 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4680 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4681 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4682 				vn_printf(vp, "vnode ");
4683 		}
4684 	}
4685 }
4686 
4687 /*
4688  * Show details about the given vnode.
4689  */
4690 DB_SHOW_COMMAND(vnode, db_show_vnode)
4691 {
4692 	struct vnode *vp;
4693 
4694 	if (!have_addr)
4695 		return;
4696 	vp = (struct vnode *)addr;
4697 	vn_printf(vp, "vnode ");
4698 }
4699 
4700 /*
4701  * Show details about the given mount point.
4702  */
4703 DB_SHOW_COMMAND(mount, db_show_mount)
4704 {
4705 	struct mount *mp;
4706 	struct vfsopt *opt;
4707 	struct statfs *sp;
4708 	struct vnode *vp;
4709 	char buf[512];
4710 	uint64_t mflags;
4711 	u_int flags;
4712 
4713 	if (!have_addr) {
4714 		/* No address given, print short info about all mount points. */
4715 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4716 			db_printf("%p %s on %s (%s)\n", mp,
4717 			    mp->mnt_stat.f_mntfromname,
4718 			    mp->mnt_stat.f_mntonname,
4719 			    mp->mnt_stat.f_fstypename);
4720 			if (db_pager_quit)
4721 				break;
4722 		}
4723 		db_printf("\nMore info: show mount <addr>\n");
4724 		return;
4725 	}
4726 
4727 	mp = (struct mount *)addr;
4728 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4729 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4730 
4731 	buf[0] = '\0';
4732 	mflags = mp->mnt_flag;
4733 #define	MNT_FLAG(flag)	do {						\
4734 	if (mflags & (flag)) {						\
4735 		if (buf[0] != '\0')					\
4736 			strlcat(buf, ", ", sizeof(buf));		\
4737 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4738 		mflags &= ~(flag);					\
4739 	}								\
4740 } while (0)
4741 	MNT_FLAG(MNT_RDONLY);
4742 	MNT_FLAG(MNT_SYNCHRONOUS);
4743 	MNT_FLAG(MNT_NOEXEC);
4744 	MNT_FLAG(MNT_NOSUID);
4745 	MNT_FLAG(MNT_NFS4ACLS);
4746 	MNT_FLAG(MNT_UNION);
4747 	MNT_FLAG(MNT_ASYNC);
4748 	MNT_FLAG(MNT_SUIDDIR);
4749 	MNT_FLAG(MNT_SOFTDEP);
4750 	MNT_FLAG(MNT_NOSYMFOLLOW);
4751 	MNT_FLAG(MNT_GJOURNAL);
4752 	MNT_FLAG(MNT_MULTILABEL);
4753 	MNT_FLAG(MNT_ACLS);
4754 	MNT_FLAG(MNT_NOATIME);
4755 	MNT_FLAG(MNT_NOCLUSTERR);
4756 	MNT_FLAG(MNT_NOCLUSTERW);
4757 	MNT_FLAG(MNT_SUJ);
4758 	MNT_FLAG(MNT_EXRDONLY);
4759 	MNT_FLAG(MNT_EXPORTED);
4760 	MNT_FLAG(MNT_DEFEXPORTED);
4761 	MNT_FLAG(MNT_EXPORTANON);
4762 	MNT_FLAG(MNT_EXKERB);
4763 	MNT_FLAG(MNT_EXPUBLIC);
4764 	MNT_FLAG(MNT_LOCAL);
4765 	MNT_FLAG(MNT_QUOTA);
4766 	MNT_FLAG(MNT_ROOTFS);
4767 	MNT_FLAG(MNT_USER);
4768 	MNT_FLAG(MNT_IGNORE);
4769 	MNT_FLAG(MNT_UPDATE);
4770 	MNT_FLAG(MNT_DELEXPORT);
4771 	MNT_FLAG(MNT_RELOAD);
4772 	MNT_FLAG(MNT_FORCE);
4773 	MNT_FLAG(MNT_SNAPSHOT);
4774 	MNT_FLAG(MNT_BYFSID);
4775 #undef MNT_FLAG
4776 	if (mflags != 0) {
4777 		if (buf[0] != '\0')
4778 			strlcat(buf, ", ", sizeof(buf));
4779 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4780 		    "0x%016jx", mflags);
4781 	}
4782 	db_printf("    mnt_flag = %s\n", buf);
4783 
4784 	buf[0] = '\0';
4785 	flags = mp->mnt_kern_flag;
4786 #define	MNT_KERN_FLAG(flag)	do {					\
4787 	if (flags & (flag)) {						\
4788 		if (buf[0] != '\0')					\
4789 			strlcat(buf, ", ", sizeof(buf));		\
4790 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4791 		flags &= ~(flag);					\
4792 	}								\
4793 } while (0)
4794 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4795 	MNT_KERN_FLAG(MNTK_ASYNC);
4796 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4797 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4798 	MNT_KERN_FLAG(MNTK_DRAINING);
4799 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4800 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4801 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4802 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4803 	MNT_KERN_FLAG(MNTK_RECURSE);
4804 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4805 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4806 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4807 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4808 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4809 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4810 	MNT_KERN_FLAG(MNTK_NOASYNC);
4811 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4812 	MNT_KERN_FLAG(MNTK_MWAIT);
4813 	MNT_KERN_FLAG(MNTK_SUSPEND);
4814 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4815 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4816 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4817 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4818 #undef MNT_KERN_FLAG
4819 	if (flags != 0) {
4820 		if (buf[0] != '\0')
4821 			strlcat(buf, ", ", sizeof(buf));
4822 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4823 		    "0x%08x", flags);
4824 	}
4825 	db_printf("    mnt_kern_flag = %s\n", buf);
4826 
4827 	db_printf("    mnt_opt = ");
4828 	opt = TAILQ_FIRST(mp->mnt_opt);
4829 	if (opt != NULL) {
4830 		db_printf("%s", opt->name);
4831 		opt = TAILQ_NEXT(opt, link);
4832 		while (opt != NULL) {
4833 			db_printf(", %s", opt->name);
4834 			opt = TAILQ_NEXT(opt, link);
4835 		}
4836 	}
4837 	db_printf("\n");
4838 
4839 	sp = &mp->mnt_stat;
4840 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4841 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4842 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4843 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4844 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4845 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4846 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4847 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4848 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4849 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4850 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4851 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4852 
4853 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4854 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4855 	if (jailed(mp->mnt_cred))
4856 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4857 	db_printf(" }\n");
4858 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4859 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4860 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4861 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4862 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4863 	    mp->mnt_lazyvnodelistsize);
4864 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4865 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4866 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4867 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4868 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4869 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4870 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4871 	db_printf("    mnt_secondary_accwrites = %d\n",
4872 	    mp->mnt_secondary_accwrites);
4873 	db_printf("    mnt_gjprovider = %s\n",
4874 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4875 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4876 
4877 	db_printf("\n\nList of active vnodes\n");
4878 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4879 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4880 			vn_printf(vp, "vnode ");
4881 			if (db_pager_quit)
4882 				break;
4883 		}
4884 	}
4885 	db_printf("\n\nList of inactive vnodes\n");
4886 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4887 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4888 			vn_printf(vp, "vnode ");
4889 			if (db_pager_quit)
4890 				break;
4891 		}
4892 	}
4893 }
4894 #endif	/* DDB */
4895 
4896 /*
4897  * Fill in a struct xvfsconf based on a struct vfsconf.
4898  */
4899 static int
4900 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4901 {
4902 	struct xvfsconf xvfsp;
4903 
4904 	bzero(&xvfsp, sizeof(xvfsp));
4905 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4906 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4907 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4908 	xvfsp.vfc_flags = vfsp->vfc_flags;
4909 	/*
4910 	 * These are unused in userland, we keep them
4911 	 * to not break binary compatibility.
4912 	 */
4913 	xvfsp.vfc_vfsops = NULL;
4914 	xvfsp.vfc_next = NULL;
4915 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4916 }
4917 
4918 #ifdef COMPAT_FREEBSD32
4919 struct xvfsconf32 {
4920 	uint32_t	vfc_vfsops;
4921 	char		vfc_name[MFSNAMELEN];
4922 	int32_t		vfc_typenum;
4923 	int32_t		vfc_refcount;
4924 	int32_t		vfc_flags;
4925 	uint32_t	vfc_next;
4926 };
4927 
4928 static int
4929 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4930 {
4931 	struct xvfsconf32 xvfsp;
4932 
4933 	bzero(&xvfsp, sizeof(xvfsp));
4934 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4935 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4936 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4937 	xvfsp.vfc_flags = vfsp->vfc_flags;
4938 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4939 }
4940 #endif
4941 
4942 /*
4943  * Top level filesystem related information gathering.
4944  */
4945 static int
4946 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4947 {
4948 	struct vfsconf *vfsp;
4949 	int error;
4950 
4951 	error = 0;
4952 	vfsconf_slock();
4953 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4954 #ifdef COMPAT_FREEBSD32
4955 		if (req->flags & SCTL_MASK32)
4956 			error = vfsconf2x32(req, vfsp);
4957 		else
4958 #endif
4959 			error = vfsconf2x(req, vfsp);
4960 		if (error)
4961 			break;
4962 	}
4963 	vfsconf_sunlock();
4964 	return (error);
4965 }
4966 
4967 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4968     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4969     "S,xvfsconf", "List of all configured filesystems");
4970 
4971 #ifndef BURN_BRIDGES
4972 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4973 
4974 static int
4975 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4976 {
4977 	int *name = (int *)arg1 - 1;	/* XXX */
4978 	u_int namelen = arg2 + 1;	/* XXX */
4979 	struct vfsconf *vfsp;
4980 
4981 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4982 	    "please rebuild world\n");
4983 
4984 #if 1 || defined(COMPAT_PRELITE2)
4985 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4986 	if (namelen == 1)
4987 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4988 #endif
4989 
4990 	switch (name[1]) {
4991 	case VFS_MAXTYPENUM:
4992 		if (namelen != 2)
4993 			return (ENOTDIR);
4994 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4995 	case VFS_CONF:
4996 		if (namelen != 3)
4997 			return (ENOTDIR);	/* overloaded */
4998 		vfsconf_slock();
4999 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5000 			if (vfsp->vfc_typenum == name[2])
5001 				break;
5002 		}
5003 		vfsconf_sunlock();
5004 		if (vfsp == NULL)
5005 			return (EOPNOTSUPP);
5006 #ifdef COMPAT_FREEBSD32
5007 		if (req->flags & SCTL_MASK32)
5008 			return (vfsconf2x32(req, vfsp));
5009 		else
5010 #endif
5011 			return (vfsconf2x(req, vfsp));
5012 	}
5013 	return (EOPNOTSUPP);
5014 }
5015 
5016 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5017     CTLFLAG_MPSAFE, vfs_sysctl,
5018     "Generic filesystem");
5019 
5020 #if 1 || defined(COMPAT_PRELITE2)
5021 
5022 static int
5023 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5024 {
5025 	int error;
5026 	struct vfsconf *vfsp;
5027 	struct ovfsconf ovfs;
5028 
5029 	vfsconf_slock();
5030 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5031 		bzero(&ovfs, sizeof(ovfs));
5032 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
5033 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
5034 		ovfs.vfc_index = vfsp->vfc_typenum;
5035 		ovfs.vfc_refcount = vfsp->vfc_refcount;
5036 		ovfs.vfc_flags = vfsp->vfc_flags;
5037 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5038 		if (error != 0) {
5039 			vfsconf_sunlock();
5040 			return (error);
5041 		}
5042 	}
5043 	vfsconf_sunlock();
5044 	return (0);
5045 }
5046 
5047 #endif /* 1 || COMPAT_PRELITE2 */
5048 #endif /* !BURN_BRIDGES */
5049 
5050 static void
5051 unmount_or_warn(struct mount *mp)
5052 {
5053 	int error;
5054 
5055 	error = dounmount(mp, MNT_FORCE, curthread);
5056 	if (error != 0) {
5057 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5058 		if (error == EBUSY)
5059 			printf("BUSY)\n");
5060 		else
5061 			printf("%d)\n", error);
5062 	}
5063 }
5064 
5065 /*
5066  * Unmount all filesystems. The list is traversed in reverse order
5067  * of mounting to avoid dependencies.
5068  */
5069 void
5070 vfs_unmountall(void)
5071 {
5072 	struct mount *mp, *tmp;
5073 
5074 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5075 
5076 	/*
5077 	 * Since this only runs when rebooting, it is not interlocked.
5078 	 */
5079 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5080 		vfs_ref(mp);
5081 
5082 		/*
5083 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5084 		 * unmount of the latter.
5085 		 */
5086 		if (mp == rootdevmp)
5087 			continue;
5088 
5089 		unmount_or_warn(mp);
5090 	}
5091 
5092 	if (rootdevmp != NULL)
5093 		unmount_or_warn(rootdevmp);
5094 }
5095 
5096 static void
5097 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5098 {
5099 
5100 	ASSERT_VI_LOCKED(vp, __func__);
5101 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5102 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5103 		vdropl(vp);
5104 		return;
5105 	}
5106 	if (vn_lock(vp, lkflags) == 0) {
5107 		VI_LOCK(vp);
5108 		vinactive(vp);
5109 		VOP_UNLOCK(vp);
5110 		vdropl(vp);
5111 		return;
5112 	}
5113 	vdefer_inactive_unlocked(vp);
5114 }
5115 
5116 static int
5117 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5118 {
5119 
5120 	return (vp->v_iflag & VI_DEFINACT);
5121 }
5122 
5123 static void __noinline
5124 vfs_periodic_inactive(struct mount *mp, int flags)
5125 {
5126 	struct vnode *vp, *mvp;
5127 	int lkflags;
5128 
5129 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5130 	if (flags != MNT_WAIT)
5131 		lkflags |= LK_NOWAIT;
5132 
5133 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5134 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5135 			VI_UNLOCK(vp);
5136 			continue;
5137 		}
5138 		vp->v_iflag &= ~VI_DEFINACT;
5139 		vfs_deferred_inactive(vp, lkflags);
5140 	}
5141 }
5142 
5143 static inline bool
5144 vfs_want_msync(struct vnode *vp)
5145 {
5146 	struct vm_object *obj;
5147 
5148 	/*
5149 	 * This test may be performed without any locks held.
5150 	 * We rely on vm_object's type stability.
5151 	 */
5152 	if (vp->v_vflag & VV_NOSYNC)
5153 		return (false);
5154 	obj = vp->v_object;
5155 	return (obj != NULL && vm_object_mightbedirty(obj));
5156 }
5157 
5158 static int
5159 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5160 {
5161 
5162 	if (vp->v_vflag & VV_NOSYNC)
5163 		return (false);
5164 	if (vp->v_iflag & VI_DEFINACT)
5165 		return (true);
5166 	return (vfs_want_msync(vp));
5167 }
5168 
5169 static void __noinline
5170 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5171 {
5172 	struct vnode *vp, *mvp;
5173 	int lkflags;
5174 	bool seen_defer;
5175 
5176 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5177 	if (flags != MNT_WAIT)
5178 		lkflags |= LK_NOWAIT;
5179 
5180 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5181 		seen_defer = false;
5182 		if (vp->v_iflag & VI_DEFINACT) {
5183 			vp->v_iflag &= ~VI_DEFINACT;
5184 			seen_defer = true;
5185 		}
5186 		if (!vfs_want_msync(vp)) {
5187 			if (seen_defer)
5188 				vfs_deferred_inactive(vp, lkflags);
5189 			else
5190 				VI_UNLOCK(vp);
5191 			continue;
5192 		}
5193 		if (vget(vp, lkflags) == 0) {
5194 			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5195 				if (flags == MNT_WAIT)
5196 					vnode_pager_clean_sync(vp);
5197 				else
5198 					vnode_pager_clean_async(vp);
5199 			}
5200 			vput(vp);
5201 			if (seen_defer)
5202 				vdrop(vp);
5203 		} else {
5204 			if (seen_defer)
5205 				vdefer_inactive_unlocked(vp);
5206 		}
5207 	}
5208 }
5209 
5210 void
5211 vfs_periodic(struct mount *mp, int flags)
5212 {
5213 
5214 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5215 
5216 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5217 		vfs_periodic_inactive(mp, flags);
5218 	else
5219 		vfs_periodic_msync_inactive(mp, flags);
5220 }
5221 
5222 static void
5223 destroy_vpollinfo_free(struct vpollinfo *vi)
5224 {
5225 
5226 	knlist_destroy(&vi->vpi_selinfo.si_note);
5227 	mtx_destroy(&vi->vpi_lock);
5228 	free(vi, M_VNODEPOLL);
5229 }
5230 
5231 static void
5232 destroy_vpollinfo(struct vpollinfo *vi)
5233 {
5234 
5235 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5236 	seldrain(&vi->vpi_selinfo);
5237 	destroy_vpollinfo_free(vi);
5238 }
5239 
5240 /*
5241  * Initialize per-vnode helper structure to hold poll-related state.
5242  */
5243 void
5244 v_addpollinfo(struct vnode *vp)
5245 {
5246 	struct vpollinfo *vi;
5247 
5248 	if (vp->v_pollinfo != NULL)
5249 		return;
5250 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5251 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5252 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5253 	    vfs_knlunlock, vfs_knl_assert_lock);
5254 	VI_LOCK(vp);
5255 	if (vp->v_pollinfo != NULL) {
5256 		VI_UNLOCK(vp);
5257 		destroy_vpollinfo_free(vi);
5258 		return;
5259 	}
5260 	vp->v_pollinfo = vi;
5261 	VI_UNLOCK(vp);
5262 }
5263 
5264 /*
5265  * Record a process's interest in events which might happen to
5266  * a vnode.  Because poll uses the historic select-style interface
5267  * internally, this routine serves as both the ``check for any
5268  * pending events'' and the ``record my interest in future events''
5269  * functions.  (These are done together, while the lock is held,
5270  * to avoid race conditions.)
5271  */
5272 int
5273 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5274 {
5275 
5276 	v_addpollinfo(vp);
5277 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5278 	if (vp->v_pollinfo->vpi_revents & events) {
5279 		/*
5280 		 * This leaves events we are not interested
5281 		 * in available for the other process which
5282 		 * which presumably had requested them
5283 		 * (otherwise they would never have been
5284 		 * recorded).
5285 		 */
5286 		events &= vp->v_pollinfo->vpi_revents;
5287 		vp->v_pollinfo->vpi_revents &= ~events;
5288 
5289 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5290 		return (events);
5291 	}
5292 	vp->v_pollinfo->vpi_events |= events;
5293 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5294 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5295 	return (0);
5296 }
5297 
5298 /*
5299  * Routine to create and manage a filesystem syncer vnode.
5300  */
5301 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5302 static int	sync_fsync(struct  vop_fsync_args *);
5303 static int	sync_inactive(struct  vop_inactive_args *);
5304 static int	sync_reclaim(struct  vop_reclaim_args *);
5305 
5306 static struct vop_vector sync_vnodeops = {
5307 	.vop_bypass =	VOP_EOPNOTSUPP,
5308 	.vop_close =	sync_close,
5309 	.vop_fsync =	sync_fsync,
5310 	.vop_getwritemount = vop_stdgetwritemount,
5311 	.vop_inactive =	sync_inactive,
5312 	.vop_need_inactive = vop_stdneed_inactive,
5313 	.vop_reclaim =	sync_reclaim,
5314 	.vop_lock1 =	vop_stdlock,
5315 	.vop_unlock =	vop_stdunlock,
5316 	.vop_islocked =	vop_stdislocked,
5317 	.vop_fplookup_vexec = VOP_EAGAIN,
5318 	.vop_fplookup_symlink = VOP_EAGAIN,
5319 };
5320 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5321 
5322 /*
5323  * Create a new filesystem syncer vnode for the specified mount point.
5324  */
5325 void
5326 vfs_allocate_syncvnode(struct mount *mp)
5327 {
5328 	struct vnode *vp;
5329 	struct bufobj *bo;
5330 	static long start, incr, next;
5331 	int error;
5332 
5333 	/* Allocate a new vnode */
5334 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5335 	if (error != 0)
5336 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5337 	vp->v_type = VNON;
5338 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5339 	vp->v_vflag |= VV_FORCEINSMQ;
5340 	error = insmntque1(vp, mp);
5341 	if (error != 0)
5342 		panic("vfs_allocate_syncvnode: insmntque() failed");
5343 	vp->v_vflag &= ~VV_FORCEINSMQ;
5344 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5345 	VOP_UNLOCK(vp);
5346 	/*
5347 	 * Place the vnode onto the syncer worklist. We attempt to
5348 	 * scatter them about on the list so that they will go off
5349 	 * at evenly distributed times even if all the filesystems
5350 	 * are mounted at once.
5351 	 */
5352 	next += incr;
5353 	if (next == 0 || next > syncer_maxdelay) {
5354 		start /= 2;
5355 		incr /= 2;
5356 		if (start == 0) {
5357 			start = syncer_maxdelay / 2;
5358 			incr = syncer_maxdelay;
5359 		}
5360 		next = start;
5361 	}
5362 	bo = &vp->v_bufobj;
5363 	BO_LOCK(bo);
5364 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5365 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5366 	mtx_lock(&sync_mtx);
5367 	sync_vnode_count++;
5368 	if (mp->mnt_syncer == NULL) {
5369 		mp->mnt_syncer = vp;
5370 		vp = NULL;
5371 	}
5372 	mtx_unlock(&sync_mtx);
5373 	BO_UNLOCK(bo);
5374 	if (vp != NULL) {
5375 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5376 		vgone(vp);
5377 		vput(vp);
5378 	}
5379 }
5380 
5381 void
5382 vfs_deallocate_syncvnode(struct mount *mp)
5383 {
5384 	struct vnode *vp;
5385 
5386 	mtx_lock(&sync_mtx);
5387 	vp = mp->mnt_syncer;
5388 	if (vp != NULL)
5389 		mp->mnt_syncer = NULL;
5390 	mtx_unlock(&sync_mtx);
5391 	if (vp != NULL)
5392 		vrele(vp);
5393 }
5394 
5395 /*
5396  * Do a lazy sync of the filesystem.
5397  */
5398 static int
5399 sync_fsync(struct vop_fsync_args *ap)
5400 {
5401 	struct vnode *syncvp = ap->a_vp;
5402 	struct mount *mp = syncvp->v_mount;
5403 	int error, save;
5404 	struct bufobj *bo;
5405 
5406 	/*
5407 	 * We only need to do something if this is a lazy evaluation.
5408 	 */
5409 	if (ap->a_waitfor != MNT_LAZY)
5410 		return (0);
5411 
5412 	/*
5413 	 * Move ourselves to the back of the sync list.
5414 	 */
5415 	bo = &syncvp->v_bufobj;
5416 	BO_LOCK(bo);
5417 	vn_syncer_add_to_worklist(bo, syncdelay);
5418 	BO_UNLOCK(bo);
5419 
5420 	/*
5421 	 * Walk the list of vnodes pushing all that are dirty and
5422 	 * not already on the sync list.
5423 	 */
5424 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5425 		return (0);
5426 	VOP_UNLOCK(syncvp);
5427 	save = curthread_pflags_set(TDP_SYNCIO);
5428 	/*
5429 	 * The filesystem at hand may be idle with free vnodes stored in the
5430 	 * batch.  Return them instead of letting them stay there indefinitely.
5431 	 */
5432 	vfs_periodic(mp, MNT_NOWAIT);
5433 	error = VFS_SYNC(mp, MNT_LAZY);
5434 	curthread_pflags_restore(save);
5435 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5436 	vfs_unbusy(mp);
5437 	return (error);
5438 }
5439 
5440 /*
5441  * The syncer vnode is no referenced.
5442  */
5443 static int
5444 sync_inactive(struct vop_inactive_args *ap)
5445 {
5446 
5447 	vgone(ap->a_vp);
5448 	return (0);
5449 }
5450 
5451 /*
5452  * The syncer vnode is no longer needed and is being decommissioned.
5453  *
5454  * Modifications to the worklist must be protected by sync_mtx.
5455  */
5456 static int
5457 sync_reclaim(struct vop_reclaim_args *ap)
5458 {
5459 	struct vnode *vp = ap->a_vp;
5460 	struct bufobj *bo;
5461 
5462 	bo = &vp->v_bufobj;
5463 	BO_LOCK(bo);
5464 	mtx_lock(&sync_mtx);
5465 	if (vp->v_mount->mnt_syncer == vp)
5466 		vp->v_mount->mnt_syncer = NULL;
5467 	if (bo->bo_flag & BO_ONWORKLST) {
5468 		LIST_REMOVE(bo, bo_synclist);
5469 		syncer_worklist_len--;
5470 		sync_vnode_count--;
5471 		bo->bo_flag &= ~BO_ONWORKLST;
5472 	}
5473 	mtx_unlock(&sync_mtx);
5474 	BO_UNLOCK(bo);
5475 
5476 	return (0);
5477 }
5478 
5479 int
5480 vn_need_pageq_flush(struct vnode *vp)
5481 {
5482 	struct vm_object *obj;
5483 
5484 	obj = vp->v_object;
5485 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5486 	    vm_object_mightbedirty(obj));
5487 }
5488 
5489 /*
5490  * Check if vnode represents a disk device
5491  */
5492 bool
5493 vn_isdisk_error(struct vnode *vp, int *errp)
5494 {
5495 	int error;
5496 
5497 	if (vp->v_type != VCHR) {
5498 		error = ENOTBLK;
5499 		goto out;
5500 	}
5501 	error = 0;
5502 	dev_lock();
5503 	if (vp->v_rdev == NULL)
5504 		error = ENXIO;
5505 	else if (vp->v_rdev->si_devsw == NULL)
5506 		error = ENXIO;
5507 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5508 		error = ENOTBLK;
5509 	dev_unlock();
5510 out:
5511 	*errp = error;
5512 	return (error == 0);
5513 }
5514 
5515 bool
5516 vn_isdisk(struct vnode *vp)
5517 {
5518 	int error;
5519 
5520 	return (vn_isdisk_error(vp, &error));
5521 }
5522 
5523 /*
5524  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5525  * the comment above cache_fplookup for details.
5526  */
5527 int
5528 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5529 {
5530 	int error;
5531 
5532 	VFS_SMR_ASSERT_ENTERED();
5533 
5534 	/* Check the owner. */
5535 	if (cred->cr_uid == file_uid) {
5536 		if (file_mode & S_IXUSR)
5537 			return (0);
5538 		goto out_error;
5539 	}
5540 
5541 	/* Otherwise, check the groups (first match) */
5542 	if (groupmember(file_gid, cred)) {
5543 		if (file_mode & S_IXGRP)
5544 			return (0);
5545 		goto out_error;
5546 	}
5547 
5548 	/* Otherwise, check everyone else. */
5549 	if (file_mode & S_IXOTH)
5550 		return (0);
5551 out_error:
5552 	/*
5553 	 * Permission check failed, but it is possible denial will get overwritten
5554 	 * (e.g., when root is traversing through a 700 directory owned by someone
5555 	 * else).
5556 	 *
5557 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5558 	 * modules overriding this result. It's quite unclear what semantics
5559 	 * are allowed for them to operate, thus for safety we don't call them
5560 	 * from within the SMR section. This also means if any such modules
5561 	 * are present, we have to let the regular lookup decide.
5562 	 */
5563 	error = priv_check_cred_vfs_lookup_nomac(cred);
5564 	switch (error) {
5565 	case 0:
5566 		return (0);
5567 	case EAGAIN:
5568 		/*
5569 		 * MAC modules present.
5570 		 */
5571 		return (EAGAIN);
5572 	case EPERM:
5573 		return (EACCES);
5574 	default:
5575 		return (error);
5576 	}
5577 }
5578 
5579 /*
5580  * Common filesystem object access control check routine.  Accepts a
5581  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5582  * Returns 0 on success, or an errno on failure.
5583  */
5584 int
5585 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5586     accmode_t accmode, struct ucred *cred)
5587 {
5588 	accmode_t dac_granted;
5589 	accmode_t priv_granted;
5590 
5591 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5592 	    ("invalid bit in accmode"));
5593 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5594 	    ("VAPPEND without VWRITE"));
5595 
5596 	/*
5597 	 * Look for a normal, non-privileged way to access the file/directory
5598 	 * as requested.  If it exists, go with that.
5599 	 */
5600 
5601 	dac_granted = 0;
5602 
5603 	/* Check the owner. */
5604 	if (cred->cr_uid == file_uid) {
5605 		dac_granted |= VADMIN;
5606 		if (file_mode & S_IXUSR)
5607 			dac_granted |= VEXEC;
5608 		if (file_mode & S_IRUSR)
5609 			dac_granted |= VREAD;
5610 		if (file_mode & S_IWUSR)
5611 			dac_granted |= (VWRITE | VAPPEND);
5612 
5613 		if ((accmode & dac_granted) == accmode)
5614 			return (0);
5615 
5616 		goto privcheck;
5617 	}
5618 
5619 	/* Otherwise, check the groups (first match) */
5620 	if (groupmember(file_gid, cred)) {
5621 		if (file_mode & S_IXGRP)
5622 			dac_granted |= VEXEC;
5623 		if (file_mode & S_IRGRP)
5624 			dac_granted |= VREAD;
5625 		if (file_mode & S_IWGRP)
5626 			dac_granted |= (VWRITE | VAPPEND);
5627 
5628 		if ((accmode & dac_granted) == accmode)
5629 			return (0);
5630 
5631 		goto privcheck;
5632 	}
5633 
5634 	/* Otherwise, check everyone else. */
5635 	if (file_mode & S_IXOTH)
5636 		dac_granted |= VEXEC;
5637 	if (file_mode & S_IROTH)
5638 		dac_granted |= VREAD;
5639 	if (file_mode & S_IWOTH)
5640 		dac_granted |= (VWRITE | VAPPEND);
5641 	if ((accmode & dac_granted) == accmode)
5642 		return (0);
5643 
5644 privcheck:
5645 	/*
5646 	 * Build a privilege mask to determine if the set of privileges
5647 	 * satisfies the requirements when combined with the granted mask
5648 	 * from above.  For each privilege, if the privilege is required,
5649 	 * bitwise or the request type onto the priv_granted mask.
5650 	 */
5651 	priv_granted = 0;
5652 
5653 	if (type == VDIR) {
5654 		/*
5655 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5656 		 * requests, instead of PRIV_VFS_EXEC.
5657 		 */
5658 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5659 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5660 			priv_granted |= VEXEC;
5661 	} else {
5662 		/*
5663 		 * Ensure that at least one execute bit is on. Otherwise,
5664 		 * a privileged user will always succeed, and we don't want
5665 		 * this to happen unless the file really is executable.
5666 		 */
5667 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5668 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5669 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5670 			priv_granted |= VEXEC;
5671 	}
5672 
5673 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5674 	    !priv_check_cred(cred, PRIV_VFS_READ))
5675 		priv_granted |= VREAD;
5676 
5677 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5678 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5679 		priv_granted |= (VWRITE | VAPPEND);
5680 
5681 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5682 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5683 		priv_granted |= VADMIN;
5684 
5685 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5686 		return (0);
5687 	}
5688 
5689 	return ((accmode & VADMIN) ? EPERM : EACCES);
5690 }
5691 
5692 /*
5693  * Credential check based on process requesting service, and per-attribute
5694  * permissions.
5695  */
5696 int
5697 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5698     struct thread *td, accmode_t accmode)
5699 {
5700 
5701 	/*
5702 	 * Kernel-invoked always succeeds.
5703 	 */
5704 	if (cred == NOCRED)
5705 		return (0);
5706 
5707 	/*
5708 	 * Do not allow privileged processes in jail to directly manipulate
5709 	 * system attributes.
5710 	 */
5711 	switch (attrnamespace) {
5712 	case EXTATTR_NAMESPACE_SYSTEM:
5713 		/* Potentially should be: return (EPERM); */
5714 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5715 	case EXTATTR_NAMESPACE_USER:
5716 		return (VOP_ACCESS(vp, accmode, cred, td));
5717 	default:
5718 		return (EPERM);
5719 	}
5720 }
5721 
5722 #ifdef DEBUG_VFS_LOCKS
5723 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5724 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5725     "Drop into debugger on lock violation");
5726 
5727 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5728 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5729     0, "Check for interlock across VOPs");
5730 
5731 int vfs_badlock_print = 1;	/* Print lock violations. */
5732 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5733     0, "Print lock violations");
5734 
5735 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5736 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5737     0, "Print vnode details on lock violations");
5738 
5739 #ifdef KDB
5740 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5741 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5742     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5743 #endif
5744 
5745 static void
5746 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5747 {
5748 
5749 #ifdef KDB
5750 	if (vfs_badlock_backtrace)
5751 		kdb_backtrace();
5752 #endif
5753 	if (vfs_badlock_vnode)
5754 		vn_printf(vp, "vnode ");
5755 	if (vfs_badlock_print)
5756 		printf("%s: %p %s\n", str, (void *)vp, msg);
5757 	if (vfs_badlock_ddb)
5758 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5759 }
5760 
5761 void
5762 assert_vi_locked(struct vnode *vp, const char *str)
5763 {
5764 
5765 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5766 		vfs_badlock("interlock is not locked but should be", str, vp);
5767 }
5768 
5769 void
5770 assert_vi_unlocked(struct vnode *vp, const char *str)
5771 {
5772 
5773 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5774 		vfs_badlock("interlock is locked but should not be", str, vp);
5775 }
5776 
5777 void
5778 assert_vop_locked(struct vnode *vp, const char *str)
5779 {
5780 	if (KERNEL_PANICKED() || vp == NULL)
5781 		return;
5782 
5783 #ifdef WITNESS
5784 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5785 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5786 #else
5787 	int locked = VOP_ISLOCKED(vp);
5788 	if (locked == 0 || locked == LK_EXCLOTHER)
5789 #endif
5790 		vfs_badlock("is not locked but should be", str, vp);
5791 }
5792 
5793 void
5794 assert_vop_unlocked(struct vnode *vp, const char *str)
5795 {
5796 	if (KERNEL_PANICKED() || vp == NULL)
5797 		return;
5798 
5799 #ifdef WITNESS
5800 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5801 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5802 #else
5803 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5804 #endif
5805 		vfs_badlock("is locked but should not be", str, vp);
5806 }
5807 
5808 void
5809 assert_vop_elocked(struct vnode *vp, const char *str)
5810 {
5811 	if (KERNEL_PANICKED() || vp == NULL)
5812 		return;
5813 
5814 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5815 		vfs_badlock("is not exclusive locked but should be", str, vp);
5816 }
5817 #endif /* DEBUG_VFS_LOCKS */
5818 
5819 void
5820 vop_rename_fail(struct vop_rename_args *ap)
5821 {
5822 
5823 	if (ap->a_tvp != NULL)
5824 		vput(ap->a_tvp);
5825 	if (ap->a_tdvp == ap->a_tvp)
5826 		vrele(ap->a_tdvp);
5827 	else
5828 		vput(ap->a_tdvp);
5829 	vrele(ap->a_fdvp);
5830 	vrele(ap->a_fvp);
5831 }
5832 
5833 void
5834 vop_rename_pre(void *ap)
5835 {
5836 	struct vop_rename_args *a = ap;
5837 
5838 #ifdef DEBUG_VFS_LOCKS
5839 	if (a->a_tvp)
5840 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5841 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5842 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5843 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5844 
5845 	/* Check the source (from). */
5846 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5847 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5848 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5849 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5850 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5851 
5852 	/* Check the target. */
5853 	if (a->a_tvp)
5854 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5855 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5856 #endif
5857 	/*
5858 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5859 	 * in vop_rename_post but that's not going to work out since some
5860 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5861 	 *
5862 	 * For now filesystems are expected to do the relevant calls after they
5863 	 * decide what vnodes to operate on.
5864 	 */
5865 	if (a->a_tdvp != a->a_fdvp)
5866 		vhold(a->a_fdvp);
5867 	if (a->a_tvp != a->a_fvp)
5868 		vhold(a->a_fvp);
5869 	vhold(a->a_tdvp);
5870 	if (a->a_tvp)
5871 		vhold(a->a_tvp);
5872 }
5873 
5874 #ifdef DEBUG_VFS_LOCKS
5875 void
5876 vop_fplookup_vexec_debugpre(void *ap __unused)
5877 {
5878 
5879 	VFS_SMR_ASSERT_ENTERED();
5880 }
5881 
5882 void
5883 vop_fplookup_vexec_debugpost(void *ap, int rc)
5884 {
5885 	struct vop_fplookup_vexec_args *a;
5886 	struct vnode *vp;
5887 
5888 	a = ap;
5889 	vp = a->a_vp;
5890 
5891 	VFS_SMR_ASSERT_ENTERED();
5892 	if (rc == EOPNOTSUPP)
5893 		VNPASS(VN_IS_DOOMED(vp), vp);
5894 }
5895 
5896 void
5897 vop_fplookup_symlink_debugpre(void *ap __unused)
5898 {
5899 
5900 	VFS_SMR_ASSERT_ENTERED();
5901 }
5902 
5903 void
5904 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5905 {
5906 
5907 	VFS_SMR_ASSERT_ENTERED();
5908 }
5909 
5910 static void
5911 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5912 {
5913 	if (vp->v_type == VCHR)
5914 		;
5915 	/*
5916 	 * The shared vs. exclusive locking policy for fsync()
5917 	 * is actually determined by vp's write mount as indicated
5918 	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5919 	 * may not be the same as vp->v_mount.  However, if the
5920 	 * underlying filesystem which really handles the fsync()
5921 	 * supports shared locking, the stacked filesystem must also
5922 	 * be prepared for its VOP_FSYNC() operation to be called
5923 	 * with only a shared lock.  On the other hand, if the
5924 	 * stacked filesystem claims support for shared write
5925 	 * locking but the underlying filesystem does not, and the
5926 	 * caller incorrectly uses a shared lock, this condition
5927 	 * should still be caught when the stacked filesystem
5928 	 * invokes VOP_FSYNC() on the underlying filesystem.
5929 	 */
5930 	else if (MNT_SHARED_WRITES(vp->v_mount))
5931 		ASSERT_VOP_LOCKED(vp, name);
5932 	else
5933 		ASSERT_VOP_ELOCKED(vp, name);
5934 }
5935 
5936 void
5937 vop_fsync_debugpre(void *a)
5938 {
5939 	struct vop_fsync_args *ap;
5940 
5941 	ap = a;
5942 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5943 }
5944 
5945 void
5946 vop_fsync_debugpost(void *a, int rc __unused)
5947 {
5948 	struct vop_fsync_args *ap;
5949 
5950 	ap = a;
5951 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5952 }
5953 
5954 void
5955 vop_fdatasync_debugpre(void *a)
5956 {
5957 	struct vop_fdatasync_args *ap;
5958 
5959 	ap = a;
5960 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5961 }
5962 
5963 void
5964 vop_fdatasync_debugpost(void *a, int rc __unused)
5965 {
5966 	struct vop_fdatasync_args *ap;
5967 
5968 	ap = a;
5969 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5970 }
5971 
5972 void
5973 vop_strategy_debugpre(void *ap)
5974 {
5975 	struct vop_strategy_args *a;
5976 	struct buf *bp;
5977 
5978 	a = ap;
5979 	bp = a->a_bp;
5980 
5981 	/*
5982 	 * Cluster ops lock their component buffers but not the IO container.
5983 	 */
5984 	if ((bp->b_flags & B_CLUSTER) != 0)
5985 		return;
5986 
5987 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5988 		if (vfs_badlock_print)
5989 			printf(
5990 			    "VOP_STRATEGY: bp is not locked but should be\n");
5991 		if (vfs_badlock_ddb)
5992 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5993 	}
5994 }
5995 
5996 void
5997 vop_lock_debugpre(void *ap)
5998 {
5999 	struct vop_lock1_args *a = ap;
6000 
6001 	if ((a->a_flags & LK_INTERLOCK) == 0)
6002 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6003 	else
6004 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6005 }
6006 
6007 void
6008 vop_lock_debugpost(void *ap, int rc)
6009 {
6010 	struct vop_lock1_args *a = ap;
6011 
6012 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6013 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6014 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6015 }
6016 
6017 void
6018 vop_unlock_debugpre(void *ap)
6019 {
6020 	struct vop_unlock_args *a = ap;
6021 	struct vnode *vp = a->a_vp;
6022 
6023 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6024 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6025 }
6026 
6027 void
6028 vop_need_inactive_debugpre(void *ap)
6029 {
6030 	struct vop_need_inactive_args *a = ap;
6031 
6032 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6033 }
6034 
6035 void
6036 vop_need_inactive_debugpost(void *ap, int rc)
6037 {
6038 	struct vop_need_inactive_args *a = ap;
6039 
6040 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6041 }
6042 #endif
6043 
6044 void
6045 vop_create_pre(void *ap)
6046 {
6047 	struct vop_create_args *a;
6048 	struct vnode *dvp;
6049 
6050 	a = ap;
6051 	dvp = a->a_dvp;
6052 	vn_seqc_write_begin(dvp);
6053 }
6054 
6055 void
6056 vop_create_post(void *ap, int rc)
6057 {
6058 	struct vop_create_args *a;
6059 	struct vnode *dvp;
6060 
6061 	a = ap;
6062 	dvp = a->a_dvp;
6063 	vn_seqc_write_end(dvp);
6064 	if (!rc)
6065 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6066 }
6067 
6068 void
6069 vop_whiteout_pre(void *ap)
6070 {
6071 	struct vop_whiteout_args *a;
6072 	struct vnode *dvp;
6073 
6074 	a = ap;
6075 	dvp = a->a_dvp;
6076 	vn_seqc_write_begin(dvp);
6077 }
6078 
6079 void
6080 vop_whiteout_post(void *ap, int rc)
6081 {
6082 	struct vop_whiteout_args *a;
6083 	struct vnode *dvp;
6084 
6085 	a = ap;
6086 	dvp = a->a_dvp;
6087 	vn_seqc_write_end(dvp);
6088 }
6089 
6090 void
6091 vop_deleteextattr_pre(void *ap)
6092 {
6093 	struct vop_deleteextattr_args *a;
6094 	struct vnode *vp;
6095 
6096 	a = ap;
6097 	vp = a->a_vp;
6098 	vn_seqc_write_begin(vp);
6099 }
6100 
6101 void
6102 vop_deleteextattr_post(void *ap, int rc)
6103 {
6104 	struct vop_deleteextattr_args *a;
6105 	struct vnode *vp;
6106 
6107 	a = ap;
6108 	vp = a->a_vp;
6109 	vn_seqc_write_end(vp);
6110 	if (!rc)
6111 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6112 }
6113 
6114 void
6115 vop_link_pre(void *ap)
6116 {
6117 	struct vop_link_args *a;
6118 	struct vnode *vp, *tdvp;
6119 
6120 	a = ap;
6121 	vp = a->a_vp;
6122 	tdvp = a->a_tdvp;
6123 	vn_seqc_write_begin(vp);
6124 	vn_seqc_write_begin(tdvp);
6125 }
6126 
6127 void
6128 vop_link_post(void *ap, int rc)
6129 {
6130 	struct vop_link_args *a;
6131 	struct vnode *vp, *tdvp;
6132 
6133 	a = ap;
6134 	vp = a->a_vp;
6135 	tdvp = a->a_tdvp;
6136 	vn_seqc_write_end(vp);
6137 	vn_seqc_write_end(tdvp);
6138 	if (!rc) {
6139 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6140 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6141 	}
6142 }
6143 
6144 void
6145 vop_mkdir_pre(void *ap)
6146 {
6147 	struct vop_mkdir_args *a;
6148 	struct vnode *dvp;
6149 
6150 	a = ap;
6151 	dvp = a->a_dvp;
6152 	vn_seqc_write_begin(dvp);
6153 }
6154 
6155 void
6156 vop_mkdir_post(void *ap, int rc)
6157 {
6158 	struct vop_mkdir_args *a;
6159 	struct vnode *dvp;
6160 
6161 	a = ap;
6162 	dvp = a->a_dvp;
6163 	vn_seqc_write_end(dvp);
6164 	if (!rc)
6165 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6166 }
6167 
6168 #ifdef DEBUG_VFS_LOCKS
6169 void
6170 vop_mkdir_debugpost(void *ap, int rc)
6171 {
6172 	struct vop_mkdir_args *a;
6173 
6174 	a = ap;
6175 	if (!rc)
6176 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6177 }
6178 #endif
6179 
6180 void
6181 vop_mknod_pre(void *ap)
6182 {
6183 	struct vop_mknod_args *a;
6184 	struct vnode *dvp;
6185 
6186 	a = ap;
6187 	dvp = a->a_dvp;
6188 	vn_seqc_write_begin(dvp);
6189 }
6190 
6191 void
6192 vop_mknod_post(void *ap, int rc)
6193 {
6194 	struct vop_mknod_args *a;
6195 	struct vnode *dvp;
6196 
6197 	a = ap;
6198 	dvp = a->a_dvp;
6199 	vn_seqc_write_end(dvp);
6200 	if (!rc)
6201 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6202 }
6203 
6204 void
6205 vop_reclaim_post(void *ap, int rc)
6206 {
6207 	struct vop_reclaim_args *a;
6208 	struct vnode *vp;
6209 
6210 	a = ap;
6211 	vp = a->a_vp;
6212 	ASSERT_VOP_IN_SEQC(vp);
6213 	if (!rc)
6214 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6215 }
6216 
6217 void
6218 vop_remove_pre(void *ap)
6219 {
6220 	struct vop_remove_args *a;
6221 	struct vnode *dvp, *vp;
6222 
6223 	a = ap;
6224 	dvp = a->a_dvp;
6225 	vp = a->a_vp;
6226 	vn_seqc_write_begin(dvp);
6227 	vn_seqc_write_begin(vp);
6228 }
6229 
6230 void
6231 vop_remove_post(void *ap, int rc)
6232 {
6233 	struct vop_remove_args *a;
6234 	struct vnode *dvp, *vp;
6235 
6236 	a = ap;
6237 	dvp = a->a_dvp;
6238 	vp = a->a_vp;
6239 	vn_seqc_write_end(dvp);
6240 	vn_seqc_write_end(vp);
6241 	if (!rc) {
6242 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6243 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6244 	}
6245 }
6246 
6247 void
6248 vop_rename_post(void *ap, int rc)
6249 {
6250 	struct vop_rename_args *a = ap;
6251 	long hint;
6252 
6253 	if (!rc) {
6254 		hint = NOTE_WRITE;
6255 		if (a->a_fdvp == a->a_tdvp) {
6256 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6257 				hint |= NOTE_LINK;
6258 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6259 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6260 		} else {
6261 			hint |= NOTE_EXTEND;
6262 			if (a->a_fvp->v_type == VDIR)
6263 				hint |= NOTE_LINK;
6264 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6265 
6266 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6267 			    a->a_tvp->v_type == VDIR)
6268 				hint &= ~NOTE_LINK;
6269 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6270 		}
6271 
6272 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6273 		if (a->a_tvp)
6274 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6275 	}
6276 	if (a->a_tdvp != a->a_fdvp)
6277 		vdrop(a->a_fdvp);
6278 	if (a->a_tvp != a->a_fvp)
6279 		vdrop(a->a_fvp);
6280 	vdrop(a->a_tdvp);
6281 	if (a->a_tvp)
6282 		vdrop(a->a_tvp);
6283 }
6284 
6285 void
6286 vop_rmdir_pre(void *ap)
6287 {
6288 	struct vop_rmdir_args *a;
6289 	struct vnode *dvp, *vp;
6290 
6291 	a = ap;
6292 	dvp = a->a_dvp;
6293 	vp = a->a_vp;
6294 	vn_seqc_write_begin(dvp);
6295 	vn_seqc_write_begin(vp);
6296 }
6297 
6298 void
6299 vop_rmdir_post(void *ap, int rc)
6300 {
6301 	struct vop_rmdir_args *a;
6302 	struct vnode *dvp, *vp;
6303 
6304 	a = ap;
6305 	dvp = a->a_dvp;
6306 	vp = a->a_vp;
6307 	vn_seqc_write_end(dvp);
6308 	vn_seqc_write_end(vp);
6309 	if (!rc) {
6310 		vp->v_vflag |= VV_UNLINKED;
6311 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6312 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6313 	}
6314 }
6315 
6316 void
6317 vop_setattr_pre(void *ap)
6318 {
6319 	struct vop_setattr_args *a;
6320 	struct vnode *vp;
6321 
6322 	a = ap;
6323 	vp = a->a_vp;
6324 	vn_seqc_write_begin(vp);
6325 }
6326 
6327 void
6328 vop_setattr_post(void *ap, int rc)
6329 {
6330 	struct vop_setattr_args *a;
6331 	struct vnode *vp;
6332 
6333 	a = ap;
6334 	vp = a->a_vp;
6335 	vn_seqc_write_end(vp);
6336 	if (!rc)
6337 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6338 }
6339 
6340 void
6341 vop_setacl_pre(void *ap)
6342 {
6343 	struct vop_setacl_args *a;
6344 	struct vnode *vp;
6345 
6346 	a = ap;
6347 	vp = a->a_vp;
6348 	vn_seqc_write_begin(vp);
6349 }
6350 
6351 void
6352 vop_setacl_post(void *ap, int rc __unused)
6353 {
6354 	struct vop_setacl_args *a;
6355 	struct vnode *vp;
6356 
6357 	a = ap;
6358 	vp = a->a_vp;
6359 	vn_seqc_write_end(vp);
6360 }
6361 
6362 void
6363 vop_setextattr_pre(void *ap)
6364 {
6365 	struct vop_setextattr_args *a;
6366 	struct vnode *vp;
6367 
6368 	a = ap;
6369 	vp = a->a_vp;
6370 	vn_seqc_write_begin(vp);
6371 }
6372 
6373 void
6374 vop_setextattr_post(void *ap, int rc)
6375 {
6376 	struct vop_setextattr_args *a;
6377 	struct vnode *vp;
6378 
6379 	a = ap;
6380 	vp = a->a_vp;
6381 	vn_seqc_write_end(vp);
6382 	if (!rc)
6383 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6384 }
6385 
6386 void
6387 vop_symlink_pre(void *ap)
6388 {
6389 	struct vop_symlink_args *a;
6390 	struct vnode *dvp;
6391 
6392 	a = ap;
6393 	dvp = a->a_dvp;
6394 	vn_seqc_write_begin(dvp);
6395 }
6396 
6397 void
6398 vop_symlink_post(void *ap, int rc)
6399 {
6400 	struct vop_symlink_args *a;
6401 	struct vnode *dvp;
6402 
6403 	a = ap;
6404 	dvp = a->a_dvp;
6405 	vn_seqc_write_end(dvp);
6406 	if (!rc)
6407 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6408 }
6409 
6410 void
6411 vop_open_post(void *ap, int rc)
6412 {
6413 	struct vop_open_args *a = ap;
6414 
6415 	if (!rc)
6416 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6417 }
6418 
6419 void
6420 vop_close_post(void *ap, int rc)
6421 {
6422 	struct vop_close_args *a = ap;
6423 
6424 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6425 	    !VN_IS_DOOMED(a->a_vp))) {
6426 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6427 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6428 	}
6429 }
6430 
6431 void
6432 vop_read_post(void *ap, int rc)
6433 {
6434 	struct vop_read_args *a = ap;
6435 
6436 	if (!rc)
6437 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6438 }
6439 
6440 void
6441 vop_read_pgcache_post(void *ap, int rc)
6442 {
6443 	struct vop_read_pgcache_args *a = ap;
6444 
6445 	if (!rc)
6446 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6447 }
6448 
6449 void
6450 vop_readdir_post(void *ap, int rc)
6451 {
6452 	struct vop_readdir_args *a = ap;
6453 
6454 	if (!rc)
6455 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6456 }
6457 
6458 static struct knlist fs_knlist;
6459 
6460 static void
6461 vfs_event_init(void *arg)
6462 {
6463 	knlist_init_mtx(&fs_knlist, NULL);
6464 }
6465 /* XXX - correct order? */
6466 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6467 
6468 void
6469 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6470 {
6471 
6472 	KNOTE_UNLOCKED(&fs_knlist, event);
6473 }
6474 
6475 static int	filt_fsattach(struct knote *kn);
6476 static void	filt_fsdetach(struct knote *kn);
6477 static int	filt_fsevent(struct knote *kn, long hint);
6478 
6479 const struct filterops fs_filtops = {
6480 	.f_isfd = 0,
6481 	.f_attach = filt_fsattach,
6482 	.f_detach = filt_fsdetach,
6483 	.f_event = filt_fsevent
6484 };
6485 
6486 static int
6487 filt_fsattach(struct knote *kn)
6488 {
6489 
6490 	kn->kn_flags |= EV_CLEAR;
6491 	knlist_add(&fs_knlist, kn, 0);
6492 	return (0);
6493 }
6494 
6495 static void
6496 filt_fsdetach(struct knote *kn)
6497 {
6498 
6499 	knlist_remove(&fs_knlist, kn, 0);
6500 }
6501 
6502 static int
6503 filt_fsevent(struct knote *kn, long hint)
6504 {
6505 
6506 	kn->kn_fflags |= kn->kn_sfflags & hint;
6507 
6508 	return (kn->kn_fflags != 0);
6509 }
6510 
6511 static int
6512 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6513 {
6514 	struct vfsidctl vc;
6515 	int error;
6516 	struct mount *mp;
6517 
6518 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6519 	if (error)
6520 		return (error);
6521 	if (vc.vc_vers != VFS_CTL_VERS1)
6522 		return (EINVAL);
6523 	mp = vfs_getvfs(&vc.vc_fsid);
6524 	if (mp == NULL)
6525 		return (ENOENT);
6526 	/* ensure that a specific sysctl goes to the right filesystem. */
6527 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6528 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6529 		vfs_rel(mp);
6530 		return (EINVAL);
6531 	}
6532 	VCTLTOREQ(&vc, req);
6533 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6534 	vfs_rel(mp);
6535 	return (error);
6536 }
6537 
6538 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6539     NULL, 0, sysctl_vfs_ctl, "",
6540     "Sysctl by fsid");
6541 
6542 /*
6543  * Function to initialize a va_filerev field sensibly.
6544  * XXX: Wouldn't a random number make a lot more sense ??
6545  */
6546 u_quad_t
6547 init_va_filerev(void)
6548 {
6549 	struct bintime bt;
6550 
6551 	getbinuptime(&bt);
6552 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6553 }
6554 
6555 static int	filt_vfsread(struct knote *kn, long hint);
6556 static int	filt_vfswrite(struct knote *kn, long hint);
6557 static int	filt_vfsvnode(struct knote *kn, long hint);
6558 static void	filt_vfsdetach(struct knote *kn);
6559 static const struct filterops vfsread_filtops = {
6560 	.f_isfd = 1,
6561 	.f_detach = filt_vfsdetach,
6562 	.f_event = filt_vfsread
6563 };
6564 static const struct filterops vfswrite_filtops = {
6565 	.f_isfd = 1,
6566 	.f_detach = filt_vfsdetach,
6567 	.f_event = filt_vfswrite
6568 };
6569 static const struct filterops vfsvnode_filtops = {
6570 	.f_isfd = 1,
6571 	.f_detach = filt_vfsdetach,
6572 	.f_event = filt_vfsvnode
6573 };
6574 
6575 static void
6576 vfs_knllock(void *arg)
6577 {
6578 	struct vnode *vp = arg;
6579 
6580 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6581 }
6582 
6583 static void
6584 vfs_knlunlock(void *arg)
6585 {
6586 	struct vnode *vp = arg;
6587 
6588 	VOP_UNLOCK(vp);
6589 }
6590 
6591 static void
6592 vfs_knl_assert_lock(void *arg, int what)
6593 {
6594 #ifdef DEBUG_VFS_LOCKS
6595 	struct vnode *vp = arg;
6596 
6597 	if (what == LA_LOCKED)
6598 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6599 	else
6600 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6601 #endif
6602 }
6603 
6604 int
6605 vfs_kqfilter(struct vop_kqfilter_args *ap)
6606 {
6607 	struct vnode *vp = ap->a_vp;
6608 	struct knote *kn = ap->a_kn;
6609 	struct knlist *knl;
6610 
6611 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6612 	    kn->kn_filter != EVFILT_WRITE),
6613 	    ("READ/WRITE filter on a FIFO leaked through"));
6614 	switch (kn->kn_filter) {
6615 	case EVFILT_READ:
6616 		kn->kn_fop = &vfsread_filtops;
6617 		break;
6618 	case EVFILT_WRITE:
6619 		kn->kn_fop = &vfswrite_filtops;
6620 		break;
6621 	case EVFILT_VNODE:
6622 		kn->kn_fop = &vfsvnode_filtops;
6623 		break;
6624 	default:
6625 		return (EINVAL);
6626 	}
6627 
6628 	kn->kn_hook = (caddr_t)vp;
6629 
6630 	v_addpollinfo(vp);
6631 	if (vp->v_pollinfo == NULL)
6632 		return (ENOMEM);
6633 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6634 	vhold(vp);
6635 	knlist_add(knl, kn, 0);
6636 
6637 	return (0);
6638 }
6639 
6640 /*
6641  * Detach knote from vnode
6642  */
6643 static void
6644 filt_vfsdetach(struct knote *kn)
6645 {
6646 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6647 
6648 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6649 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6650 	vdrop(vp);
6651 }
6652 
6653 /*ARGSUSED*/
6654 static int
6655 filt_vfsread(struct knote *kn, long hint)
6656 {
6657 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6658 	off_t size;
6659 	int res;
6660 
6661 	/*
6662 	 * filesystem is gone, so set the EOF flag and schedule
6663 	 * the knote for deletion.
6664 	 */
6665 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6666 		VI_LOCK(vp);
6667 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6668 		VI_UNLOCK(vp);
6669 		return (1);
6670 	}
6671 
6672 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6673 		return (0);
6674 
6675 	VI_LOCK(vp);
6676 	kn->kn_data = size - kn->kn_fp->f_offset;
6677 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6678 	VI_UNLOCK(vp);
6679 	return (res);
6680 }
6681 
6682 /*ARGSUSED*/
6683 static int
6684 filt_vfswrite(struct knote *kn, long hint)
6685 {
6686 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6687 
6688 	VI_LOCK(vp);
6689 
6690 	/*
6691 	 * filesystem is gone, so set the EOF flag and schedule
6692 	 * the knote for deletion.
6693 	 */
6694 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6695 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6696 
6697 	kn->kn_data = 0;
6698 	VI_UNLOCK(vp);
6699 	return (1);
6700 }
6701 
6702 static int
6703 filt_vfsvnode(struct knote *kn, long hint)
6704 {
6705 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6706 	int res;
6707 
6708 	VI_LOCK(vp);
6709 	if (kn->kn_sfflags & hint)
6710 		kn->kn_fflags |= hint;
6711 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6712 		kn->kn_flags |= EV_EOF;
6713 		VI_UNLOCK(vp);
6714 		return (1);
6715 	}
6716 	res = (kn->kn_fflags != 0);
6717 	VI_UNLOCK(vp);
6718 	return (res);
6719 }
6720 
6721 int
6722 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6723 {
6724 	int error;
6725 
6726 	if (dp->d_reclen > ap->a_uio->uio_resid)
6727 		return (ENAMETOOLONG);
6728 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6729 	if (error) {
6730 		if (ap->a_ncookies != NULL) {
6731 			if (ap->a_cookies != NULL)
6732 				free(ap->a_cookies, M_TEMP);
6733 			ap->a_cookies = NULL;
6734 			*ap->a_ncookies = 0;
6735 		}
6736 		return (error);
6737 	}
6738 	if (ap->a_ncookies == NULL)
6739 		return (0);
6740 
6741 	KASSERT(ap->a_cookies,
6742 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6743 
6744 	*ap->a_cookies = realloc(*ap->a_cookies,
6745 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6746 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6747 	*ap->a_ncookies += 1;
6748 	return (0);
6749 }
6750 
6751 /*
6752  * The purpose of this routine is to remove granularity from accmode_t,
6753  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6754  * VADMIN and VAPPEND.
6755  *
6756  * If it returns 0, the caller is supposed to continue with the usual
6757  * access checks using 'accmode' as modified by this routine.  If it
6758  * returns nonzero value, the caller is supposed to return that value
6759  * as errno.
6760  *
6761  * Note that after this routine runs, accmode may be zero.
6762  */
6763 int
6764 vfs_unixify_accmode(accmode_t *accmode)
6765 {
6766 	/*
6767 	 * There is no way to specify explicit "deny" rule using
6768 	 * file mode or POSIX.1e ACLs.
6769 	 */
6770 	if (*accmode & VEXPLICIT_DENY) {
6771 		*accmode = 0;
6772 		return (0);
6773 	}
6774 
6775 	/*
6776 	 * None of these can be translated into usual access bits.
6777 	 * Also, the common case for NFSv4 ACLs is to not contain
6778 	 * either of these bits. Caller should check for VWRITE
6779 	 * on the containing directory instead.
6780 	 */
6781 	if (*accmode & (VDELETE_CHILD | VDELETE))
6782 		return (EPERM);
6783 
6784 	if (*accmode & VADMIN_PERMS) {
6785 		*accmode &= ~VADMIN_PERMS;
6786 		*accmode |= VADMIN;
6787 	}
6788 
6789 	/*
6790 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6791 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6792 	 */
6793 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6794 
6795 	return (0);
6796 }
6797 
6798 /*
6799  * Clear out a doomed vnode (if any) and replace it with a new one as long
6800  * as the fs is not being unmounted. Return the root vnode to the caller.
6801  */
6802 static int __noinline
6803 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6804 {
6805 	struct vnode *vp;
6806 	int error;
6807 
6808 restart:
6809 	if (mp->mnt_rootvnode != NULL) {
6810 		MNT_ILOCK(mp);
6811 		vp = mp->mnt_rootvnode;
6812 		if (vp != NULL) {
6813 			if (!VN_IS_DOOMED(vp)) {
6814 				vrefact(vp);
6815 				MNT_IUNLOCK(mp);
6816 				error = vn_lock(vp, flags);
6817 				if (error == 0) {
6818 					*vpp = vp;
6819 					return (0);
6820 				}
6821 				vrele(vp);
6822 				goto restart;
6823 			}
6824 			/*
6825 			 * Clear the old one.
6826 			 */
6827 			mp->mnt_rootvnode = NULL;
6828 		}
6829 		MNT_IUNLOCK(mp);
6830 		if (vp != NULL) {
6831 			vfs_op_barrier_wait(mp);
6832 			vrele(vp);
6833 		}
6834 	}
6835 	error = VFS_CACHEDROOT(mp, flags, vpp);
6836 	if (error != 0)
6837 		return (error);
6838 	if (mp->mnt_vfs_ops == 0) {
6839 		MNT_ILOCK(mp);
6840 		if (mp->mnt_vfs_ops != 0) {
6841 			MNT_IUNLOCK(mp);
6842 			return (0);
6843 		}
6844 		if (mp->mnt_rootvnode == NULL) {
6845 			vrefact(*vpp);
6846 			mp->mnt_rootvnode = *vpp;
6847 		} else {
6848 			if (mp->mnt_rootvnode != *vpp) {
6849 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6850 					panic("%s: mismatch between vnode returned "
6851 					    " by VFS_CACHEDROOT and the one cached "
6852 					    " (%p != %p)",
6853 					    __func__, *vpp, mp->mnt_rootvnode);
6854 				}
6855 			}
6856 		}
6857 		MNT_IUNLOCK(mp);
6858 	}
6859 	return (0);
6860 }
6861 
6862 int
6863 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6864 {
6865 	struct mount_pcpu *mpcpu;
6866 	struct vnode *vp;
6867 	int error;
6868 
6869 	if (!vfs_op_thread_enter(mp, mpcpu))
6870 		return (vfs_cache_root_fallback(mp, flags, vpp));
6871 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6872 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6873 		vfs_op_thread_exit(mp, mpcpu);
6874 		return (vfs_cache_root_fallback(mp, flags, vpp));
6875 	}
6876 	vrefact(vp);
6877 	vfs_op_thread_exit(mp, mpcpu);
6878 	error = vn_lock(vp, flags);
6879 	if (error != 0) {
6880 		vrele(vp);
6881 		return (vfs_cache_root_fallback(mp, flags, vpp));
6882 	}
6883 	*vpp = vp;
6884 	return (0);
6885 }
6886 
6887 struct vnode *
6888 vfs_cache_root_clear(struct mount *mp)
6889 {
6890 	struct vnode *vp;
6891 
6892 	/*
6893 	 * ops > 0 guarantees there is nobody who can see this vnode
6894 	 */
6895 	MPASS(mp->mnt_vfs_ops > 0);
6896 	vp = mp->mnt_rootvnode;
6897 	if (vp != NULL)
6898 		vn_seqc_write_begin(vp);
6899 	mp->mnt_rootvnode = NULL;
6900 	return (vp);
6901 }
6902 
6903 void
6904 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6905 {
6906 
6907 	MPASS(mp->mnt_vfs_ops > 0);
6908 	vrefact(vp);
6909 	mp->mnt_rootvnode = vp;
6910 }
6911 
6912 /*
6913  * These are helper functions for filesystems to traverse all
6914  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6915  *
6916  * This interface replaces MNT_VNODE_FOREACH.
6917  */
6918 
6919 struct vnode *
6920 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6921 {
6922 	struct vnode *vp;
6923 
6924 	maybe_yield();
6925 	MNT_ILOCK(mp);
6926 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6927 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6928 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6929 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6930 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6931 			continue;
6932 		VI_LOCK(vp);
6933 		if (VN_IS_DOOMED(vp)) {
6934 			VI_UNLOCK(vp);
6935 			continue;
6936 		}
6937 		break;
6938 	}
6939 	if (vp == NULL) {
6940 		__mnt_vnode_markerfree_all(mvp, mp);
6941 		/* MNT_IUNLOCK(mp); -- done in above function */
6942 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6943 		return (NULL);
6944 	}
6945 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6946 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6947 	MNT_IUNLOCK(mp);
6948 	return (vp);
6949 }
6950 
6951 struct vnode *
6952 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6953 {
6954 	struct vnode *vp;
6955 
6956 	*mvp = vn_alloc_marker(mp);
6957 	MNT_ILOCK(mp);
6958 	MNT_REF(mp);
6959 
6960 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6961 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6962 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6963 			continue;
6964 		VI_LOCK(vp);
6965 		if (VN_IS_DOOMED(vp)) {
6966 			VI_UNLOCK(vp);
6967 			continue;
6968 		}
6969 		break;
6970 	}
6971 	if (vp == NULL) {
6972 		MNT_REL(mp);
6973 		MNT_IUNLOCK(mp);
6974 		vn_free_marker(*mvp);
6975 		*mvp = NULL;
6976 		return (NULL);
6977 	}
6978 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6979 	MNT_IUNLOCK(mp);
6980 	return (vp);
6981 }
6982 
6983 void
6984 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6985 {
6986 
6987 	if (*mvp == NULL) {
6988 		MNT_IUNLOCK(mp);
6989 		return;
6990 	}
6991 
6992 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6993 
6994 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6995 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6996 	MNT_REL(mp);
6997 	MNT_IUNLOCK(mp);
6998 	vn_free_marker(*mvp);
6999 	*mvp = NULL;
7000 }
7001 
7002 /*
7003  * These are helper functions for filesystems to traverse their
7004  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7005  */
7006 static void
7007 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7008 {
7009 
7010 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7011 
7012 	MNT_ILOCK(mp);
7013 	MNT_REL(mp);
7014 	MNT_IUNLOCK(mp);
7015 	vn_free_marker(*mvp);
7016 	*mvp = NULL;
7017 }
7018 
7019 /*
7020  * Relock the mp mount vnode list lock with the vp vnode interlock in the
7021  * conventional lock order during mnt_vnode_next_lazy iteration.
7022  *
7023  * On entry, the mount vnode list lock is held and the vnode interlock is not.
7024  * The list lock is dropped and reacquired.  On success, both locks are held.
7025  * On failure, the mount vnode list lock is held but the vnode interlock is
7026  * not, and the procedure may have yielded.
7027  */
7028 static bool
7029 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7030     struct vnode *vp)
7031 {
7032 
7033 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7034 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7035 	    ("%s: bad marker", __func__));
7036 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7037 	    ("%s: inappropriate vnode", __func__));
7038 	ASSERT_VI_UNLOCKED(vp, __func__);
7039 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7040 
7041 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7042 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7043 
7044 	/*
7045 	 * Note we may be racing against vdrop which transitioned the hold
7046 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7047 	 * if we are the only user after we get the interlock we will just
7048 	 * vdrop.
7049 	 */
7050 	vhold(vp);
7051 	mtx_unlock(&mp->mnt_listmtx);
7052 	VI_LOCK(vp);
7053 	if (VN_IS_DOOMED(vp)) {
7054 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7055 		goto out_lost;
7056 	}
7057 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7058 	/*
7059 	 * There is nothing to do if we are the last user.
7060 	 */
7061 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
7062 		goto out_lost;
7063 	mtx_lock(&mp->mnt_listmtx);
7064 	return (true);
7065 out_lost:
7066 	vdropl(vp);
7067 	maybe_yield();
7068 	mtx_lock(&mp->mnt_listmtx);
7069 	return (false);
7070 }
7071 
7072 static struct vnode *
7073 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7074     void *cbarg)
7075 {
7076 	struct vnode *vp;
7077 
7078 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7079 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7080 restart:
7081 	vp = TAILQ_NEXT(*mvp, v_lazylist);
7082 	while (vp != NULL) {
7083 		if (vp->v_type == VMARKER) {
7084 			vp = TAILQ_NEXT(vp, v_lazylist);
7085 			continue;
7086 		}
7087 		/*
7088 		 * See if we want to process the vnode. Note we may encounter a
7089 		 * long string of vnodes we don't care about and hog the list
7090 		 * as a result. Check for it and requeue the marker.
7091 		 */
7092 		VNPASS(!VN_IS_DOOMED(vp), vp);
7093 		if (!cb(vp, cbarg)) {
7094 			if (!should_yield()) {
7095 				vp = TAILQ_NEXT(vp, v_lazylist);
7096 				continue;
7097 			}
7098 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7099 			    v_lazylist);
7100 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7101 			    v_lazylist);
7102 			mtx_unlock(&mp->mnt_listmtx);
7103 			kern_yield(PRI_USER);
7104 			mtx_lock(&mp->mnt_listmtx);
7105 			goto restart;
7106 		}
7107 		/*
7108 		 * Try-lock because this is the wrong lock order.
7109 		 */
7110 		if (!VI_TRYLOCK(vp) &&
7111 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7112 			goto restart;
7113 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7114 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7115 		    ("alien vnode on the lazy list %p %p", vp, mp));
7116 		VNPASS(vp->v_mount == mp, vp);
7117 		VNPASS(!VN_IS_DOOMED(vp), vp);
7118 		break;
7119 	}
7120 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7121 
7122 	/* Check if we are done */
7123 	if (vp == NULL) {
7124 		mtx_unlock(&mp->mnt_listmtx);
7125 		mnt_vnode_markerfree_lazy(mvp, mp);
7126 		return (NULL);
7127 	}
7128 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7129 	mtx_unlock(&mp->mnt_listmtx);
7130 	ASSERT_VI_LOCKED(vp, "lazy iter");
7131 	return (vp);
7132 }
7133 
7134 struct vnode *
7135 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7136     void *cbarg)
7137 {
7138 
7139 	maybe_yield();
7140 	mtx_lock(&mp->mnt_listmtx);
7141 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7142 }
7143 
7144 struct vnode *
7145 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7146     void *cbarg)
7147 {
7148 	struct vnode *vp;
7149 
7150 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7151 		return (NULL);
7152 
7153 	*mvp = vn_alloc_marker(mp);
7154 	MNT_ILOCK(mp);
7155 	MNT_REF(mp);
7156 	MNT_IUNLOCK(mp);
7157 
7158 	mtx_lock(&mp->mnt_listmtx);
7159 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7160 	if (vp == NULL) {
7161 		mtx_unlock(&mp->mnt_listmtx);
7162 		mnt_vnode_markerfree_lazy(mvp, mp);
7163 		return (NULL);
7164 	}
7165 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7166 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7167 }
7168 
7169 void
7170 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7171 {
7172 
7173 	if (*mvp == NULL)
7174 		return;
7175 
7176 	mtx_lock(&mp->mnt_listmtx);
7177 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7178 	mtx_unlock(&mp->mnt_listmtx);
7179 	mnt_vnode_markerfree_lazy(mvp, mp);
7180 }
7181 
7182 int
7183 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7184 {
7185 
7186 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7187 		cnp->cn_flags &= ~NOEXECCHECK;
7188 		return (0);
7189 	}
7190 
7191 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7192 }
7193 
7194 /*
7195  * Do not use this variant unless you have means other than the hold count
7196  * to prevent the vnode from getting freed.
7197  */
7198 void
7199 vn_seqc_write_begin_locked(struct vnode *vp)
7200 {
7201 
7202 	ASSERT_VI_LOCKED(vp, __func__);
7203 	VNPASS(vp->v_holdcnt > 0, vp);
7204 	VNPASS(vp->v_seqc_users >= 0, vp);
7205 	vp->v_seqc_users++;
7206 	if (vp->v_seqc_users == 1)
7207 		seqc_sleepable_write_begin(&vp->v_seqc);
7208 }
7209 
7210 void
7211 vn_seqc_write_begin(struct vnode *vp)
7212 {
7213 
7214 	VI_LOCK(vp);
7215 	vn_seqc_write_begin_locked(vp);
7216 	VI_UNLOCK(vp);
7217 }
7218 
7219 void
7220 vn_seqc_write_end_locked(struct vnode *vp)
7221 {
7222 
7223 	ASSERT_VI_LOCKED(vp, __func__);
7224 	VNPASS(vp->v_seqc_users > 0, vp);
7225 	vp->v_seqc_users--;
7226 	if (vp->v_seqc_users == 0)
7227 		seqc_sleepable_write_end(&vp->v_seqc);
7228 }
7229 
7230 void
7231 vn_seqc_write_end(struct vnode *vp)
7232 {
7233 
7234 	VI_LOCK(vp);
7235 	vn_seqc_write_end_locked(vp);
7236 	VI_UNLOCK(vp);
7237 }
7238 
7239 /*
7240  * Special case handling for allocating and freeing vnodes.
7241  *
7242  * The counter remains unchanged on free so that a doomed vnode will
7243  * keep testing as in modify as long as it is accessible with SMR.
7244  */
7245 static void
7246 vn_seqc_init(struct vnode *vp)
7247 {
7248 
7249 	vp->v_seqc = 0;
7250 	vp->v_seqc_users = 0;
7251 }
7252 
7253 static void
7254 vn_seqc_write_end_free(struct vnode *vp)
7255 {
7256 
7257 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7258 	VNPASS(vp->v_seqc_users == 1, vp);
7259 }
7260 
7261 void
7262 vn_irflag_set_locked(struct vnode *vp, short toset)
7263 {
7264 	short flags;
7265 
7266 	ASSERT_VI_LOCKED(vp, __func__);
7267 	flags = vn_irflag_read(vp);
7268 	VNASSERT((flags & toset) == 0, vp,
7269 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7270 	    __func__, flags, toset));
7271 	atomic_store_short(&vp->v_irflag, flags | toset);
7272 }
7273 
7274 void
7275 vn_irflag_set(struct vnode *vp, short toset)
7276 {
7277 
7278 	VI_LOCK(vp);
7279 	vn_irflag_set_locked(vp, toset);
7280 	VI_UNLOCK(vp);
7281 }
7282 
7283 void
7284 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7285 {
7286 	short flags;
7287 
7288 	ASSERT_VI_LOCKED(vp, __func__);
7289 	flags = vn_irflag_read(vp);
7290 	atomic_store_short(&vp->v_irflag, flags | toset);
7291 }
7292 
7293 void
7294 vn_irflag_set_cond(struct vnode *vp, short toset)
7295 {
7296 
7297 	VI_LOCK(vp);
7298 	vn_irflag_set_cond_locked(vp, toset);
7299 	VI_UNLOCK(vp);
7300 }
7301 
7302 void
7303 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7304 {
7305 	short flags;
7306 
7307 	ASSERT_VI_LOCKED(vp, __func__);
7308 	flags = vn_irflag_read(vp);
7309 	VNASSERT((flags & tounset) == tounset, vp,
7310 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7311 	    __func__, flags, tounset));
7312 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7313 }
7314 
7315 void
7316 vn_irflag_unset(struct vnode *vp, short tounset)
7317 {
7318 
7319 	VI_LOCK(vp);
7320 	vn_irflag_unset_locked(vp, tounset);
7321 	VI_UNLOCK(vp);
7322 }
7323 
7324 int
7325 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7326 {
7327 	struct vattr vattr;
7328 	int error;
7329 
7330 	ASSERT_VOP_LOCKED(vp, __func__);
7331 	error = VOP_GETATTR(vp, &vattr, cred);
7332 	if (__predict_true(error == 0)) {
7333 		if (vattr.va_size <= OFF_MAX)
7334 			*size = vattr.va_size;
7335 		else
7336 			error = EFBIG;
7337 	}
7338 	return (error);
7339 }
7340 
7341 int
7342 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7343 {
7344 	int error;
7345 
7346 	VOP_LOCK(vp, LK_SHARED);
7347 	error = vn_getsize_locked(vp, size, cred);
7348 	VOP_UNLOCK(vp);
7349 	return (error);
7350 }
7351 
7352 #ifdef INVARIANTS
7353 void
7354 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7355 {
7356 
7357 	switch (vp->v_state) {
7358 	case VSTATE_UNINITIALIZED:
7359 		switch (state) {
7360 		case VSTATE_CONSTRUCTED:
7361 		case VSTATE_DESTROYING:
7362 			return;
7363 		default:
7364 			break;
7365 		}
7366 		break;
7367 	case VSTATE_CONSTRUCTED:
7368 		ASSERT_VOP_ELOCKED(vp, __func__);
7369 		switch (state) {
7370 		case VSTATE_DESTROYING:
7371 			return;
7372 		default:
7373 			break;
7374 		}
7375 		break;
7376 	case VSTATE_DESTROYING:
7377 		ASSERT_VOP_ELOCKED(vp, __func__);
7378 		switch (state) {
7379 		case VSTATE_DEAD:
7380 			return;
7381 		default:
7382 			break;
7383 		}
7384 		break;
7385 	case VSTATE_DEAD:
7386 		switch (state) {
7387 		case VSTATE_UNINITIALIZED:
7388 			return;
7389 		default:
7390 			break;
7391 		}
7392 		break;
7393 	}
7394 
7395 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7396 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7397 }
7398 #endif
7399