1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 35 */ 36 37 /* 38 * External virtual filesystem routines 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_compat.h" 45 #include "opt_ddb.h" 46 #include "opt_watchdog.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/condvar.h> 53 #include <sys/conf.h> 54 #include <sys/dirent.h> 55 #include <sys/event.h> 56 #include <sys/eventhandler.h> 57 #include <sys/extattr.h> 58 #include <sys/file.h> 59 #include <sys/fcntl.h> 60 #include <sys/jail.h> 61 #include <sys/kdb.h> 62 #include <sys/kernel.h> 63 #include <sys/kthread.h> 64 #include <sys/lockf.h> 65 #include <sys/malloc.h> 66 #include <sys/mount.h> 67 #include <sys/namei.h> 68 #include <sys/pctrie.h> 69 #include <sys/priv.h> 70 #include <sys/reboot.h> 71 #include <sys/refcount.h> 72 #include <sys/rwlock.h> 73 #include <sys/sched.h> 74 #include <sys/sleepqueue.h> 75 #include <sys/smp.h> 76 #include <sys/stat.h> 77 #include <sys/sysctl.h> 78 #include <sys/syslog.h> 79 #include <sys/vmmeter.h> 80 #include <sys/vnode.h> 81 #include <sys/watchdog.h> 82 83 #include <machine/stdarg.h> 84 85 #include <security/mac/mac_framework.h> 86 87 #include <vm/vm.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_extern.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_kern.h> 94 #include <vm/uma.h> 95 96 #ifdef DDB 97 #include <ddb/ddb.h> 98 #endif 99 100 static void delmntque(struct vnode *vp); 101 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 102 int slpflag, int slptimeo); 103 static void syncer_shutdown(void *arg, int howto); 104 static int vtryrecycle(struct vnode *vp); 105 static void v_init_counters(struct vnode *); 106 static void v_incr_usecount(struct vnode *); 107 static void v_incr_devcount(struct vnode *); 108 static void v_decr_devcount(struct vnode *); 109 static void vnlru_free(int); 110 static void vgonel(struct vnode *); 111 static void vfs_knllock(void *arg); 112 static void vfs_knlunlock(void *arg); 113 static void vfs_knl_assert_locked(void *arg); 114 static void vfs_knl_assert_unlocked(void *arg); 115 static void destroy_vpollinfo(struct vpollinfo *vi); 116 117 /* 118 * Number of vnodes in existence. Increased whenever getnewvnode() 119 * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode. 120 */ 121 static unsigned long numvnodes; 122 123 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 124 "Number of vnodes in existence"); 125 126 static u_long vnodes_created; 127 SYSCTL_ULONG(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 128 0, "Number of vnodes created by getnewvnode"); 129 130 /* 131 * Conversion tables for conversion from vnode types to inode formats 132 * and back. 133 */ 134 enum vtype iftovt_tab[16] = { 135 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 136 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 137 }; 138 int vttoif_tab[10] = { 139 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 140 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 141 }; 142 143 /* 144 * List of vnodes that are ready for recycling. 145 */ 146 static TAILQ_HEAD(freelst, vnode) vnode_free_list; 147 148 /* 149 * Free vnode target. Free vnodes may simply be files which have been stat'd 150 * but not read. This is somewhat common, and a small cache of such files 151 * should be kept to avoid recreation costs. 152 */ 153 static u_long wantfreevnodes; 154 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, ""); 155 /* Number of vnodes in the free list. */ 156 static u_long freevnodes; 157 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, 158 "Number of vnodes in the free list"); 159 160 static int vlru_allow_cache_src; 161 SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW, 162 &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode"); 163 164 static u_long recycles_count; 165 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 0, 166 "Number of vnodes recycled to avoid exceding kern.maxvnodes"); 167 168 /* 169 * Various variables used for debugging the new implementation of 170 * reassignbuf(). 171 * XXX these are probably of (very) limited utility now. 172 */ 173 static int reassignbufcalls; 174 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, 175 "Number of calls to reassignbuf"); 176 177 static u_long free_owe_inact; 178 SYSCTL_ULONG(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact, 0, 179 "Number of times free vnodes kept on active list due to VFS " 180 "owing inactivation"); 181 182 /* 183 * Cache for the mount type id assigned to NFS. This is used for 184 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c. 185 */ 186 int nfs_mount_type = -1; 187 188 /* To keep more than one thread at a time from running vfs_getnewfsid */ 189 static struct mtx mntid_mtx; 190 191 /* 192 * Lock for any access to the following: 193 * vnode_free_list 194 * numvnodes 195 * freevnodes 196 */ 197 static struct mtx vnode_free_list_mtx; 198 199 /* Publicly exported FS */ 200 struct nfs_public nfs_pub; 201 202 static uma_zone_t buf_trie_zone; 203 204 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 205 static uma_zone_t vnode_zone; 206 static uma_zone_t vnodepoll_zone; 207 208 /* 209 * The workitem queue. 210 * 211 * It is useful to delay writes of file data and filesystem metadata 212 * for tens of seconds so that quickly created and deleted files need 213 * not waste disk bandwidth being created and removed. To realize this, 214 * we append vnodes to a "workitem" queue. When running with a soft 215 * updates implementation, most pending metadata dependencies should 216 * not wait for more than a few seconds. Thus, mounted on block devices 217 * are delayed only about a half the time that file data is delayed. 218 * Similarly, directory updates are more critical, so are only delayed 219 * about a third the time that file data is delayed. Thus, there are 220 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 221 * one each second (driven off the filesystem syncer process). The 222 * syncer_delayno variable indicates the next queue that is to be processed. 223 * Items that need to be processed soon are placed in this queue: 224 * 225 * syncer_workitem_pending[syncer_delayno] 226 * 227 * A delay of fifteen seconds is done by placing the request fifteen 228 * entries later in the queue: 229 * 230 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 231 * 232 */ 233 static int syncer_delayno; 234 static long syncer_mask; 235 LIST_HEAD(synclist, bufobj); 236 static struct synclist *syncer_workitem_pending; 237 /* 238 * The sync_mtx protects: 239 * bo->bo_synclist 240 * sync_vnode_count 241 * syncer_delayno 242 * syncer_state 243 * syncer_workitem_pending 244 * syncer_worklist_len 245 * rushjob 246 */ 247 static struct mtx sync_mtx; 248 static struct cv sync_wakeup; 249 250 #define SYNCER_MAXDELAY 32 251 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 252 static int syncdelay = 30; /* max time to delay syncing data */ 253 static int filedelay = 30; /* time to delay syncing files */ 254 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 255 "Time to delay syncing files (in seconds)"); 256 static int dirdelay = 29; /* time to delay syncing directories */ 257 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 258 "Time to delay syncing directories (in seconds)"); 259 static int metadelay = 28; /* time to delay syncing metadata */ 260 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 261 "Time to delay syncing metadata (in seconds)"); 262 static int rushjob; /* number of slots to run ASAP */ 263 static int stat_rush_requests; /* number of times I/O speeded up */ 264 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 265 "Number of times I/O speeded up (rush requests)"); 266 267 /* 268 * When shutting down the syncer, run it at four times normal speed. 269 */ 270 #define SYNCER_SHUTDOWN_SPEEDUP 4 271 static int sync_vnode_count; 272 static int syncer_worklist_len; 273 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 274 syncer_state; 275 276 /* 277 * Number of vnodes we want to exist at any one time. This is mostly used 278 * to size hash tables in vnode-related code. It is normally not used in 279 * getnewvnode(), as wantfreevnodes is normally nonzero.) 280 * 281 * XXX desiredvnodes is historical cruft and should not exist. 282 */ 283 int desiredvnodes; 284 285 static int 286 sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS) 287 { 288 int error, old_desiredvnodes; 289 290 old_desiredvnodes = desiredvnodes; 291 if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0) 292 return (error); 293 if (old_desiredvnodes != desiredvnodes) { 294 vfs_hash_changesize(desiredvnodes); 295 cache_changesize(desiredvnodes); 296 } 297 return (0); 298 } 299 300 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, 301 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0, 302 sysctl_update_desiredvnodes, "I", "Maximum number of vnodes"); 303 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 304 &wantfreevnodes, 0, "Minimum number of vnodes (legacy)"); 305 static int vnlru_nowhere; 306 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, 307 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 308 309 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 310 static int vnsz2log; 311 312 /* 313 * Support for the bufobj clean & dirty pctrie. 314 */ 315 static void * 316 buf_trie_alloc(struct pctrie *ptree) 317 { 318 319 return uma_zalloc(buf_trie_zone, M_NOWAIT); 320 } 321 322 static void 323 buf_trie_free(struct pctrie *ptree, void *node) 324 { 325 326 uma_zfree(buf_trie_zone, node); 327 } 328 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free); 329 330 /* 331 * Initialize the vnode management data structures. 332 * 333 * Reevaluate the following cap on the number of vnodes after the physical 334 * memory size exceeds 512GB. In the limit, as the physical memory size 335 * grows, the ratio of physical pages to vnodes approaches sixteen to one. 336 */ 337 #ifndef MAXVNODES_MAX 338 #define MAXVNODES_MAX (512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16)) 339 #endif 340 static void 341 vntblinit(void *dummy __unused) 342 { 343 u_int i; 344 int physvnodes, virtvnodes; 345 346 /* 347 * Desiredvnodes is a function of the physical memory size and the 348 * kernel's heap size. Generally speaking, it scales with the 349 * physical memory size. The ratio of desiredvnodes to physical pages 350 * is one to four until desiredvnodes exceeds 98,304. Thereafter, the 351 * marginal ratio of desiredvnodes to physical pages is one to 352 * sixteen. However, desiredvnodes is limited by the kernel's heap 353 * size. The memory required by desiredvnodes vnodes and vm objects 354 * may not exceed one seventh of the kernel's heap size. 355 */ 356 physvnodes = maxproc + vm_cnt.v_page_count / 16 + 3 * min(98304 * 4, 357 vm_cnt.v_page_count) / 16; 358 virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) + 359 sizeof(struct vnode))); 360 desiredvnodes = min(physvnodes, virtvnodes); 361 if (desiredvnodes > MAXVNODES_MAX) { 362 if (bootverbose) 363 printf("Reducing kern.maxvnodes %d -> %d\n", 364 desiredvnodes, MAXVNODES_MAX); 365 desiredvnodes = MAXVNODES_MAX; 366 } 367 wantfreevnodes = desiredvnodes / 4; 368 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 369 TAILQ_INIT(&vnode_free_list); 370 mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF); 371 vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL, 372 NULL, NULL, UMA_ALIGN_PTR, 0); 373 vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo), 374 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 375 /* 376 * Preallocate enough nodes to support one-per buf so that 377 * we can not fail an insert. reassignbuf() callers can not 378 * tolerate the insertion failure. 379 */ 380 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 381 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 382 UMA_ZONE_NOFREE | UMA_ZONE_VM); 383 uma_prealloc(buf_trie_zone, nbuf); 384 /* 385 * Initialize the filesystem syncer. 386 */ 387 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 388 &syncer_mask); 389 syncer_maxdelay = syncer_mask + 1; 390 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 391 cv_init(&sync_wakeup, "syncer"); 392 for (i = 1; i <= sizeof(struct vnode); i <<= 1) 393 vnsz2log++; 394 vnsz2log--; 395 } 396 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 397 398 399 /* 400 * Mark a mount point as busy. Used to synchronize access and to delay 401 * unmounting. Eventually, mountlist_mtx is not released on failure. 402 * 403 * vfs_busy() is a custom lock, it can block the caller. 404 * vfs_busy() only sleeps if the unmount is active on the mount point. 405 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 406 * vnode belonging to mp. 407 * 408 * Lookup uses vfs_busy() to traverse mount points. 409 * root fs var fs 410 * / vnode lock A / vnode lock (/var) D 411 * /var vnode lock B /log vnode lock(/var/log) E 412 * vfs_busy lock C vfs_busy lock F 413 * 414 * Within each file system, the lock order is C->A->B and F->D->E. 415 * 416 * When traversing across mounts, the system follows that lock order: 417 * 418 * C->A->B 419 * | 420 * +->F->D->E 421 * 422 * The lookup() process for namei("/var") illustrates the process: 423 * VOP_LOOKUP() obtains B while A is held 424 * vfs_busy() obtains a shared lock on F while A and B are held 425 * vput() releases lock on B 426 * vput() releases lock on A 427 * VFS_ROOT() obtains lock on D while shared lock on F is held 428 * vfs_unbusy() releases shared lock on F 429 * vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 430 * Attempt to lock A (instead of vp_crossmp) while D is held would 431 * violate the global order, causing deadlocks. 432 * 433 * dounmount() locks B while F is drained. 434 */ 435 int 436 vfs_busy(struct mount *mp, int flags) 437 { 438 439 MPASS((flags & ~MBF_MASK) == 0); 440 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 441 442 MNT_ILOCK(mp); 443 MNT_REF(mp); 444 /* 445 * If mount point is currenly being unmounted, sleep until the 446 * mount point fate is decided. If thread doing the unmounting fails, 447 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 448 * that this mount point has survived the unmount attempt and vfs_busy 449 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 450 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 451 * about to be really destroyed. vfs_busy needs to release its 452 * reference on the mount point in this case and return with ENOENT, 453 * telling the caller that mount mount it tried to busy is no longer 454 * valid. 455 */ 456 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 457 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 458 MNT_REL(mp); 459 MNT_IUNLOCK(mp); 460 CTR1(KTR_VFS, "%s: failed busying before sleeping", 461 __func__); 462 return (ENOENT); 463 } 464 if (flags & MBF_MNTLSTLOCK) 465 mtx_unlock(&mountlist_mtx); 466 mp->mnt_kern_flag |= MNTK_MWAIT; 467 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 468 if (flags & MBF_MNTLSTLOCK) 469 mtx_lock(&mountlist_mtx); 470 MNT_ILOCK(mp); 471 } 472 if (flags & MBF_MNTLSTLOCK) 473 mtx_unlock(&mountlist_mtx); 474 mp->mnt_lockref++; 475 MNT_IUNLOCK(mp); 476 return (0); 477 } 478 479 /* 480 * Free a busy filesystem. 481 */ 482 void 483 vfs_unbusy(struct mount *mp) 484 { 485 486 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 487 MNT_ILOCK(mp); 488 MNT_REL(mp); 489 KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref")); 490 mp->mnt_lockref--; 491 if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 492 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 493 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 494 mp->mnt_kern_flag &= ~MNTK_DRAINING; 495 wakeup(&mp->mnt_lockref); 496 } 497 MNT_IUNLOCK(mp); 498 } 499 500 /* 501 * Lookup a mount point by filesystem identifier. 502 */ 503 struct mount * 504 vfs_getvfs(fsid_t *fsid) 505 { 506 struct mount *mp; 507 508 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 509 mtx_lock(&mountlist_mtx); 510 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 511 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 512 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 513 vfs_ref(mp); 514 mtx_unlock(&mountlist_mtx); 515 return (mp); 516 } 517 } 518 mtx_unlock(&mountlist_mtx); 519 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 520 return ((struct mount *) 0); 521 } 522 523 /* 524 * Lookup a mount point by filesystem identifier, busying it before 525 * returning. 526 * 527 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 528 * cache for popular filesystem identifiers. The cache is lockess, using 529 * the fact that struct mount's are never freed. In worst case we may 530 * get pointer to unmounted or even different filesystem, so we have to 531 * check what we got, and go slow way if so. 532 */ 533 struct mount * 534 vfs_busyfs(fsid_t *fsid) 535 { 536 #define FSID_CACHE_SIZE 256 537 typedef struct mount * volatile vmp_t; 538 static vmp_t cache[FSID_CACHE_SIZE]; 539 struct mount *mp; 540 int error; 541 uint32_t hash; 542 543 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 544 hash = fsid->val[0] ^ fsid->val[1]; 545 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 546 mp = cache[hash]; 547 if (mp == NULL || 548 mp->mnt_stat.f_fsid.val[0] != fsid->val[0] || 549 mp->mnt_stat.f_fsid.val[1] != fsid->val[1]) 550 goto slow; 551 if (vfs_busy(mp, 0) != 0) { 552 cache[hash] = NULL; 553 goto slow; 554 } 555 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 556 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) 557 return (mp); 558 else 559 vfs_unbusy(mp); 560 561 slow: 562 mtx_lock(&mountlist_mtx); 563 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 564 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 565 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 566 error = vfs_busy(mp, MBF_MNTLSTLOCK); 567 if (error) { 568 cache[hash] = NULL; 569 mtx_unlock(&mountlist_mtx); 570 return (NULL); 571 } 572 cache[hash] = mp; 573 return (mp); 574 } 575 } 576 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 577 mtx_unlock(&mountlist_mtx); 578 return ((struct mount *) 0); 579 } 580 581 /* 582 * Check if a user can access privileged mount options. 583 */ 584 int 585 vfs_suser(struct mount *mp, struct thread *td) 586 { 587 int error; 588 589 /* 590 * If the thread is jailed, but this is not a jail-friendly file 591 * system, deny immediately. 592 */ 593 if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred)) 594 return (EPERM); 595 596 /* 597 * If the file system was mounted outside the jail of the calling 598 * thread, deny immediately. 599 */ 600 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 601 return (EPERM); 602 603 /* 604 * If file system supports delegated administration, we don't check 605 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 606 * by the file system itself. 607 * If this is not the user that did original mount, we check for 608 * the PRIV_VFS_MOUNT_OWNER privilege. 609 */ 610 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 611 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 612 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 613 return (error); 614 } 615 return (0); 616 } 617 618 /* 619 * Get a new unique fsid. Try to make its val[0] unique, since this value 620 * will be used to create fake device numbers for stat(). Also try (but 621 * not so hard) make its val[0] unique mod 2^16, since some emulators only 622 * support 16-bit device numbers. We end up with unique val[0]'s for the 623 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 624 * 625 * Keep in mind that several mounts may be running in parallel. Starting 626 * the search one past where the previous search terminated is both a 627 * micro-optimization and a defense against returning the same fsid to 628 * different mounts. 629 */ 630 void 631 vfs_getnewfsid(struct mount *mp) 632 { 633 static uint16_t mntid_base; 634 struct mount *nmp; 635 fsid_t tfsid; 636 int mtype; 637 638 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 639 mtx_lock(&mntid_mtx); 640 mtype = mp->mnt_vfc->vfc_typenum; 641 tfsid.val[1] = mtype; 642 mtype = (mtype & 0xFF) << 24; 643 for (;;) { 644 tfsid.val[0] = makedev(255, 645 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 646 mntid_base++; 647 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 648 break; 649 vfs_rel(nmp); 650 } 651 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 652 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 653 mtx_unlock(&mntid_mtx); 654 } 655 656 /* 657 * Knob to control the precision of file timestamps: 658 * 659 * 0 = seconds only; nanoseconds zeroed. 660 * 1 = seconds and nanoseconds, accurate within 1/HZ. 661 * 2 = seconds and nanoseconds, truncated to microseconds. 662 * >=3 = seconds and nanoseconds, maximum precision. 663 */ 664 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 665 666 static int timestamp_precision = TSP_USEC; 667 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 668 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 669 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, " 670 "3+: sec + ns (max. precision))"); 671 672 /* 673 * Get a current timestamp. 674 */ 675 void 676 vfs_timestamp(struct timespec *tsp) 677 { 678 struct timeval tv; 679 680 switch (timestamp_precision) { 681 case TSP_SEC: 682 tsp->tv_sec = time_second; 683 tsp->tv_nsec = 0; 684 break; 685 case TSP_HZ: 686 getnanotime(tsp); 687 break; 688 case TSP_USEC: 689 microtime(&tv); 690 TIMEVAL_TO_TIMESPEC(&tv, tsp); 691 break; 692 case TSP_NSEC: 693 default: 694 nanotime(tsp); 695 break; 696 } 697 } 698 699 /* 700 * Set vnode attributes to VNOVAL 701 */ 702 void 703 vattr_null(struct vattr *vap) 704 { 705 706 vap->va_type = VNON; 707 vap->va_size = VNOVAL; 708 vap->va_bytes = VNOVAL; 709 vap->va_mode = VNOVAL; 710 vap->va_nlink = VNOVAL; 711 vap->va_uid = VNOVAL; 712 vap->va_gid = VNOVAL; 713 vap->va_fsid = VNOVAL; 714 vap->va_fileid = VNOVAL; 715 vap->va_blocksize = VNOVAL; 716 vap->va_rdev = VNOVAL; 717 vap->va_atime.tv_sec = VNOVAL; 718 vap->va_atime.tv_nsec = VNOVAL; 719 vap->va_mtime.tv_sec = VNOVAL; 720 vap->va_mtime.tv_nsec = VNOVAL; 721 vap->va_ctime.tv_sec = VNOVAL; 722 vap->va_ctime.tv_nsec = VNOVAL; 723 vap->va_birthtime.tv_sec = VNOVAL; 724 vap->va_birthtime.tv_nsec = VNOVAL; 725 vap->va_flags = VNOVAL; 726 vap->va_gen = VNOVAL; 727 vap->va_vaflags = 0; 728 } 729 730 /* 731 * This routine is called when we have too many vnodes. It attempts 732 * to free <count> vnodes and will potentially free vnodes that still 733 * have VM backing store (VM backing store is typically the cause 734 * of a vnode blowout so we want to do this). Therefore, this operation 735 * is not considered cheap. 736 * 737 * A number of conditions may prevent a vnode from being reclaimed. 738 * the buffer cache may have references on the vnode, a directory 739 * vnode may still have references due to the namei cache representing 740 * underlying files, or the vnode may be in active use. It is not 741 * desireable to reuse such vnodes. These conditions may cause the 742 * number of vnodes to reach some minimum value regardless of what 743 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 744 */ 745 static int 746 vlrureclaim(struct mount *mp) 747 { 748 struct vnode *vp; 749 int done; 750 int trigger; 751 int usevnodes; 752 int count; 753 754 /* 755 * Calculate the trigger point, don't allow user 756 * screwups to blow us up. This prevents us from 757 * recycling vnodes with lots of resident pages. We 758 * aren't trying to free memory, we are trying to 759 * free vnodes. 760 */ 761 usevnodes = desiredvnodes; 762 if (usevnodes <= 0) 763 usevnodes = 1; 764 trigger = vm_cnt.v_page_count * 2 / usevnodes; 765 done = 0; 766 vn_start_write(NULL, &mp, V_WAIT); 767 MNT_ILOCK(mp); 768 count = mp->mnt_nvnodelistsize / 10 + 1; 769 while (count != 0) { 770 vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 771 while (vp != NULL && vp->v_type == VMARKER) 772 vp = TAILQ_NEXT(vp, v_nmntvnodes); 773 if (vp == NULL) 774 break; 775 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 776 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 777 --count; 778 if (!VI_TRYLOCK(vp)) 779 goto next_iter; 780 /* 781 * If it's been deconstructed already, it's still 782 * referenced, or it exceeds the trigger, skip it. 783 */ 784 if (vp->v_usecount || 785 (!vlru_allow_cache_src && 786 !LIST_EMPTY(&(vp)->v_cache_src)) || 787 (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL && 788 vp->v_object->resident_page_count > trigger)) { 789 VI_UNLOCK(vp); 790 goto next_iter; 791 } 792 MNT_IUNLOCK(mp); 793 vholdl(vp); 794 if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) { 795 vdrop(vp); 796 goto next_iter_mntunlocked; 797 } 798 VI_LOCK(vp); 799 /* 800 * v_usecount may have been bumped after VOP_LOCK() dropped 801 * the vnode interlock and before it was locked again. 802 * 803 * It is not necessary to recheck VI_DOOMED because it can 804 * only be set by another thread that holds both the vnode 805 * lock and vnode interlock. If another thread has the 806 * vnode lock before we get to VOP_LOCK() and obtains the 807 * vnode interlock after VOP_LOCK() drops the vnode 808 * interlock, the other thread will be unable to drop the 809 * vnode lock before our VOP_LOCK() call fails. 810 */ 811 if (vp->v_usecount || 812 (!vlru_allow_cache_src && 813 !LIST_EMPTY(&(vp)->v_cache_src)) || 814 (vp->v_object != NULL && 815 vp->v_object->resident_page_count > trigger)) { 816 VOP_UNLOCK(vp, LK_INTERLOCK); 817 vdrop(vp); 818 goto next_iter_mntunlocked; 819 } 820 KASSERT((vp->v_iflag & VI_DOOMED) == 0, 821 ("VI_DOOMED unexpectedly detected in vlrureclaim()")); 822 atomic_add_long(&recycles_count, 1); 823 vgonel(vp); 824 VOP_UNLOCK(vp, 0); 825 vdropl(vp); 826 done++; 827 next_iter_mntunlocked: 828 if (!should_yield()) 829 goto relock_mnt; 830 goto yield; 831 next_iter: 832 if (!should_yield()) 833 continue; 834 MNT_IUNLOCK(mp); 835 yield: 836 kern_yield(PRI_USER); 837 relock_mnt: 838 MNT_ILOCK(mp); 839 } 840 MNT_IUNLOCK(mp); 841 vn_finished_write(mp); 842 return done; 843 } 844 845 /* 846 * Attempt to keep the free list at wantfreevnodes length. 847 */ 848 static void 849 vnlru_free(int count) 850 { 851 struct vnode *vp; 852 853 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 854 for (; count > 0; count--) { 855 vp = TAILQ_FIRST(&vnode_free_list); 856 /* 857 * The list can be modified while the free_list_mtx 858 * has been dropped and vp could be NULL here. 859 */ 860 if (!vp) 861 break; 862 VNASSERT(vp->v_op != NULL, vp, 863 ("vnlru_free: vnode already reclaimed.")); 864 KASSERT((vp->v_iflag & VI_FREE) != 0, 865 ("Removing vnode not on freelist")); 866 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 867 ("Mangling active vnode")); 868 TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist); 869 /* 870 * Don't recycle if we can't get the interlock. 871 */ 872 if (!VI_TRYLOCK(vp)) { 873 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist); 874 continue; 875 } 876 VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0, 877 vp, ("vp inconsistent on freelist")); 878 879 /* 880 * The clear of VI_FREE prevents activation of the 881 * vnode. There is no sense in putting the vnode on 882 * the mount point active list, only to remove it 883 * later during recycling. Inline the relevant part 884 * of vholdl(), to avoid triggering assertions or 885 * activating. 886 */ 887 freevnodes--; 888 vp->v_iflag &= ~VI_FREE; 889 refcount_acquire(&vp->v_holdcnt); 890 891 mtx_unlock(&vnode_free_list_mtx); 892 VI_UNLOCK(vp); 893 vtryrecycle(vp); 894 /* 895 * If the recycled succeeded this vdrop will actually free 896 * the vnode. If not it will simply place it back on 897 * the free list. 898 */ 899 vdrop(vp); 900 mtx_lock(&vnode_free_list_mtx); 901 } 902 } 903 /* 904 * Attempt to recycle vnodes in a context that is always safe to block. 905 * Calling vlrurecycle() from the bowels of filesystem code has some 906 * interesting deadlock problems. 907 */ 908 static struct proc *vnlruproc; 909 static int vnlruproc_sig; 910 911 static void 912 vnlru_proc(void) 913 { 914 struct mount *mp, *nmp; 915 int done; 916 struct proc *p = vnlruproc; 917 918 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p, 919 SHUTDOWN_PRI_FIRST); 920 921 for (;;) { 922 kproc_suspend_check(p); 923 mtx_lock(&vnode_free_list_mtx); 924 if (freevnodes > wantfreevnodes) 925 vnlru_free(freevnodes - wantfreevnodes); 926 if (numvnodes <= desiredvnodes * 9 / 10) { 927 vnlruproc_sig = 0; 928 wakeup(&vnlruproc_sig); 929 msleep(vnlruproc, &vnode_free_list_mtx, 930 PVFS|PDROP, "vlruwt", hz); 931 continue; 932 } 933 mtx_unlock(&vnode_free_list_mtx); 934 done = 0; 935 mtx_lock(&mountlist_mtx); 936 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 937 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) { 938 nmp = TAILQ_NEXT(mp, mnt_list); 939 continue; 940 } 941 done += vlrureclaim(mp); 942 mtx_lock(&mountlist_mtx); 943 nmp = TAILQ_NEXT(mp, mnt_list); 944 vfs_unbusy(mp); 945 } 946 mtx_unlock(&mountlist_mtx); 947 if (done == 0) { 948 #if 0 949 /* These messages are temporary debugging aids */ 950 if (vnlru_nowhere < 5) 951 printf("vnlru process getting nowhere..\n"); 952 else if (vnlru_nowhere == 5) 953 printf("vnlru process messages stopped.\n"); 954 #endif 955 vnlru_nowhere++; 956 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 957 } else 958 kern_yield(PRI_USER); 959 } 960 } 961 962 static struct kproc_desc vnlru_kp = { 963 "vnlru", 964 vnlru_proc, 965 &vnlruproc 966 }; 967 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 968 &vnlru_kp); 969 970 /* 971 * Routines having to do with the management of the vnode table. 972 */ 973 974 /* 975 * Try to recycle a freed vnode. We abort if anyone picks up a reference 976 * before we actually vgone(). This function must be called with the vnode 977 * held to prevent the vnode from being returned to the free list midway 978 * through vgone(). 979 */ 980 static int 981 vtryrecycle(struct vnode *vp) 982 { 983 struct mount *vnmp; 984 985 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 986 VNASSERT(vp->v_holdcnt, vp, 987 ("vtryrecycle: Recycling vp %p without a reference.", vp)); 988 /* 989 * This vnode may found and locked via some other list, if so we 990 * can't recycle it yet. 991 */ 992 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 993 CTR2(KTR_VFS, 994 "%s: impossible to recycle, vp %p lock is already held", 995 __func__, vp); 996 return (EWOULDBLOCK); 997 } 998 /* 999 * Don't recycle if its filesystem is being suspended. 1000 */ 1001 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 1002 VOP_UNLOCK(vp, 0); 1003 CTR2(KTR_VFS, 1004 "%s: impossible to recycle, cannot start the write for %p", 1005 __func__, vp); 1006 return (EBUSY); 1007 } 1008 /* 1009 * If we got this far, we need to acquire the interlock and see if 1010 * anyone picked up this vnode from another list. If not, we will 1011 * mark it with DOOMED via vgonel() so that anyone who does find it 1012 * will skip over it. 1013 */ 1014 VI_LOCK(vp); 1015 if (vp->v_usecount) { 1016 VOP_UNLOCK(vp, LK_INTERLOCK); 1017 vn_finished_write(vnmp); 1018 CTR2(KTR_VFS, 1019 "%s: impossible to recycle, %p is already referenced", 1020 __func__, vp); 1021 return (EBUSY); 1022 } 1023 if ((vp->v_iflag & VI_DOOMED) == 0) { 1024 atomic_add_long(&recycles_count, 1); 1025 vgonel(vp); 1026 } 1027 VOP_UNLOCK(vp, LK_INTERLOCK); 1028 vn_finished_write(vnmp); 1029 return (0); 1030 } 1031 1032 /* 1033 * Wait for available vnodes. 1034 */ 1035 static int 1036 getnewvnode_wait(int suspended) 1037 { 1038 1039 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 1040 if (numvnodes > desiredvnodes) { 1041 if (suspended) { 1042 /* 1043 * File system is beeing suspended, we cannot risk a 1044 * deadlock here, so allocate new vnode anyway. 1045 */ 1046 if (freevnodes > wantfreevnodes) 1047 vnlru_free(freevnodes - wantfreevnodes); 1048 return (0); 1049 } 1050 if (vnlruproc_sig == 0) { 1051 vnlruproc_sig = 1; /* avoid unnecessary wakeups */ 1052 wakeup(vnlruproc); 1053 } 1054 msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS, 1055 "vlruwk", hz); 1056 } 1057 return (numvnodes > desiredvnodes ? ENFILE : 0); 1058 } 1059 1060 void 1061 getnewvnode_reserve(u_int count) 1062 { 1063 struct thread *td; 1064 1065 td = curthread; 1066 /* First try to be quick and racy. */ 1067 if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) { 1068 td->td_vp_reserv += count; 1069 return; 1070 } else 1071 atomic_subtract_long(&numvnodes, count); 1072 1073 mtx_lock(&vnode_free_list_mtx); 1074 while (count > 0) { 1075 if (getnewvnode_wait(0) == 0) { 1076 count--; 1077 td->td_vp_reserv++; 1078 atomic_add_long(&numvnodes, 1); 1079 } 1080 } 1081 mtx_unlock(&vnode_free_list_mtx); 1082 } 1083 1084 void 1085 getnewvnode_drop_reserve(void) 1086 { 1087 struct thread *td; 1088 1089 td = curthread; 1090 atomic_subtract_long(&numvnodes, td->td_vp_reserv); 1091 td->td_vp_reserv = 0; 1092 } 1093 1094 /* 1095 * Return the next vnode from the free list. 1096 */ 1097 int 1098 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 1099 struct vnode **vpp) 1100 { 1101 struct vnode *vp; 1102 struct bufobj *bo; 1103 struct thread *td; 1104 int error; 1105 1106 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 1107 vp = NULL; 1108 td = curthread; 1109 if (td->td_vp_reserv > 0) { 1110 td->td_vp_reserv -= 1; 1111 goto alloc; 1112 } 1113 mtx_lock(&vnode_free_list_mtx); 1114 /* 1115 * Lend our context to reclaim vnodes if they've exceeded the max. 1116 */ 1117 if (freevnodes > wantfreevnodes) 1118 vnlru_free(1); 1119 error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag & 1120 MNTK_SUSPEND)); 1121 #if 0 /* XXX Not all VFS_VGET/ffs_vget callers check returns. */ 1122 if (error != 0) { 1123 mtx_unlock(&vnode_free_list_mtx); 1124 return (error); 1125 } 1126 #endif 1127 atomic_add_long(&numvnodes, 1); 1128 mtx_unlock(&vnode_free_list_mtx); 1129 alloc: 1130 atomic_add_long(&vnodes_created, 1); 1131 vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO); 1132 /* 1133 * Setup locks. 1134 */ 1135 vp->v_vnlock = &vp->v_lock; 1136 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 1137 /* 1138 * By default, don't allow shared locks unless filesystems 1139 * opt-in. 1140 */ 1141 lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE | LK_IS_VNODE); 1142 /* 1143 * Initialize bufobj. 1144 */ 1145 bo = &vp->v_bufobj; 1146 bo->__bo_vnode = vp; 1147 rw_init(BO_LOCKPTR(bo), "bufobj interlock"); 1148 bo->bo_ops = &buf_ops_bio; 1149 bo->bo_private = vp; 1150 TAILQ_INIT(&bo->bo_clean.bv_hd); 1151 TAILQ_INIT(&bo->bo_dirty.bv_hd); 1152 /* 1153 * Initialize namecache. 1154 */ 1155 LIST_INIT(&vp->v_cache_src); 1156 TAILQ_INIT(&vp->v_cache_dst); 1157 /* 1158 * Finalize various vnode identity bits. 1159 */ 1160 vp->v_type = VNON; 1161 vp->v_tag = tag; 1162 vp->v_op = vops; 1163 v_init_counters(vp); 1164 vp->v_data = NULL; 1165 #ifdef MAC 1166 mac_vnode_init(vp); 1167 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 1168 mac_vnode_associate_singlelabel(mp, vp); 1169 else if (mp == NULL && vops != &dead_vnodeops) 1170 printf("NULL mp in getnewvnode()\n"); 1171 #endif 1172 if (mp != NULL) { 1173 bo->bo_bsize = mp->mnt_stat.f_iosize; 1174 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0) 1175 vp->v_vflag |= VV_NOKNOTE; 1176 } 1177 rangelock_init(&vp->v_rl); 1178 1179 /* 1180 * For the filesystems which do not use vfs_hash_insert(), 1181 * still initialize v_hash to have vfs_hash_index() useful. 1182 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 1183 * its own hashing. 1184 */ 1185 vp->v_hash = (uintptr_t)vp >> vnsz2log; 1186 1187 *vpp = vp; 1188 return (0); 1189 } 1190 1191 /* 1192 * Delete from old mount point vnode list, if on one. 1193 */ 1194 static void 1195 delmntque(struct vnode *vp) 1196 { 1197 struct mount *mp; 1198 int active; 1199 1200 mp = vp->v_mount; 1201 if (mp == NULL) 1202 return; 1203 MNT_ILOCK(mp); 1204 VI_LOCK(vp); 1205 KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize, 1206 ("Active vnode list size %d > Vnode list size %d", 1207 mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize)); 1208 active = vp->v_iflag & VI_ACTIVE; 1209 vp->v_iflag &= ~VI_ACTIVE; 1210 if (active) { 1211 mtx_lock(&vnode_free_list_mtx); 1212 TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist); 1213 mp->mnt_activevnodelistsize--; 1214 mtx_unlock(&vnode_free_list_mtx); 1215 } 1216 vp->v_mount = NULL; 1217 VI_UNLOCK(vp); 1218 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 1219 ("bad mount point vnode list size")); 1220 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1221 mp->mnt_nvnodelistsize--; 1222 MNT_REL(mp); 1223 MNT_IUNLOCK(mp); 1224 } 1225 1226 static void 1227 insmntque_stddtr(struct vnode *vp, void *dtr_arg) 1228 { 1229 1230 vp->v_data = NULL; 1231 vp->v_op = &dead_vnodeops; 1232 vgone(vp); 1233 vput(vp); 1234 } 1235 1236 /* 1237 * Insert into list of vnodes for the new mount point, if available. 1238 */ 1239 int 1240 insmntque1(struct vnode *vp, struct mount *mp, 1241 void (*dtr)(struct vnode *, void *), void *dtr_arg) 1242 { 1243 1244 KASSERT(vp->v_mount == NULL, 1245 ("insmntque: vnode already on per mount vnode list")); 1246 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 1247 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 1248 1249 /* 1250 * We acquire the vnode interlock early to ensure that the 1251 * vnode cannot be recycled by another process releasing a 1252 * holdcnt on it before we get it on both the vnode list 1253 * and the active vnode list. The mount mutex protects only 1254 * manipulation of the vnode list and the vnode freelist 1255 * mutex protects only manipulation of the active vnode list. 1256 * Hence the need to hold the vnode interlock throughout. 1257 */ 1258 MNT_ILOCK(mp); 1259 VI_LOCK(vp); 1260 if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 && 1261 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 1262 mp->mnt_nvnodelistsize == 0)) && 1263 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 1264 VI_UNLOCK(vp); 1265 MNT_IUNLOCK(mp); 1266 if (dtr != NULL) 1267 dtr(vp, dtr_arg); 1268 return (EBUSY); 1269 } 1270 vp->v_mount = mp; 1271 MNT_REF(mp); 1272 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1273 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 1274 ("neg mount point vnode list size")); 1275 mp->mnt_nvnodelistsize++; 1276 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 1277 ("Activating already active vnode")); 1278 vp->v_iflag |= VI_ACTIVE; 1279 mtx_lock(&vnode_free_list_mtx); 1280 TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist); 1281 mp->mnt_activevnodelistsize++; 1282 mtx_unlock(&vnode_free_list_mtx); 1283 VI_UNLOCK(vp); 1284 MNT_IUNLOCK(mp); 1285 return (0); 1286 } 1287 1288 int 1289 insmntque(struct vnode *vp, struct mount *mp) 1290 { 1291 1292 return (insmntque1(vp, mp, insmntque_stddtr, NULL)); 1293 } 1294 1295 /* 1296 * Flush out and invalidate all buffers associated with a bufobj 1297 * Called with the underlying object locked. 1298 */ 1299 int 1300 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 1301 { 1302 int error; 1303 1304 BO_LOCK(bo); 1305 if (flags & V_SAVE) { 1306 error = bufobj_wwait(bo, slpflag, slptimeo); 1307 if (error) { 1308 BO_UNLOCK(bo); 1309 return (error); 1310 } 1311 if (bo->bo_dirty.bv_cnt > 0) { 1312 BO_UNLOCK(bo); 1313 if ((error = BO_SYNC(bo, MNT_WAIT)) != 0) 1314 return (error); 1315 /* 1316 * XXX We could save a lock/unlock if this was only 1317 * enabled under INVARIANTS 1318 */ 1319 BO_LOCK(bo); 1320 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) 1321 panic("vinvalbuf: dirty bufs"); 1322 } 1323 } 1324 /* 1325 * If you alter this loop please notice that interlock is dropped and 1326 * reacquired in flushbuflist. Special care is needed to ensure that 1327 * no race conditions occur from this. 1328 */ 1329 do { 1330 error = flushbuflist(&bo->bo_clean, 1331 flags, bo, slpflag, slptimeo); 1332 if (error == 0 && !(flags & V_CLEANONLY)) 1333 error = flushbuflist(&bo->bo_dirty, 1334 flags, bo, slpflag, slptimeo); 1335 if (error != 0 && error != EAGAIN) { 1336 BO_UNLOCK(bo); 1337 return (error); 1338 } 1339 } while (error != 0); 1340 1341 /* 1342 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 1343 * have write I/O in-progress but if there is a VM object then the 1344 * VM object can also have read-I/O in-progress. 1345 */ 1346 do { 1347 bufobj_wwait(bo, 0, 0); 1348 BO_UNLOCK(bo); 1349 if (bo->bo_object != NULL) { 1350 VM_OBJECT_WLOCK(bo->bo_object); 1351 vm_object_pip_wait(bo->bo_object, "bovlbx"); 1352 VM_OBJECT_WUNLOCK(bo->bo_object); 1353 } 1354 BO_LOCK(bo); 1355 } while (bo->bo_numoutput > 0); 1356 BO_UNLOCK(bo); 1357 1358 /* 1359 * Destroy the copy in the VM cache, too. 1360 */ 1361 if (bo->bo_object != NULL && 1362 (flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0) { 1363 VM_OBJECT_WLOCK(bo->bo_object); 1364 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 1365 OBJPR_CLEANONLY : 0); 1366 VM_OBJECT_WUNLOCK(bo->bo_object); 1367 } 1368 1369 #ifdef INVARIANTS 1370 BO_LOCK(bo); 1371 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0 && 1372 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) 1373 panic("vinvalbuf: flush failed"); 1374 BO_UNLOCK(bo); 1375 #endif 1376 return (0); 1377 } 1378 1379 /* 1380 * Flush out and invalidate all buffers associated with a vnode. 1381 * Called with the underlying object locked. 1382 */ 1383 int 1384 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 1385 { 1386 1387 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 1388 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 1389 if (vp->v_object != NULL && vp->v_object->handle != vp) 1390 return (0); 1391 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 1392 } 1393 1394 /* 1395 * Flush out buffers on the specified list. 1396 * 1397 */ 1398 static int 1399 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 1400 int slptimeo) 1401 { 1402 struct buf *bp, *nbp; 1403 int retval, error; 1404 daddr_t lblkno; 1405 b_xflags_t xflags; 1406 1407 ASSERT_BO_WLOCKED(bo); 1408 1409 retval = 0; 1410 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 1411 if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) || 1412 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) { 1413 continue; 1414 } 1415 lblkno = 0; 1416 xflags = 0; 1417 if (nbp != NULL) { 1418 lblkno = nbp->b_lblkno; 1419 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 1420 } 1421 retval = EAGAIN; 1422 error = BUF_TIMELOCK(bp, 1423 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 1424 "flushbuf", slpflag, slptimeo); 1425 if (error) { 1426 BO_LOCK(bo); 1427 return (error != ENOLCK ? error : EAGAIN); 1428 } 1429 KASSERT(bp->b_bufobj == bo, 1430 ("bp %p wrong b_bufobj %p should be %p", 1431 bp, bp->b_bufobj, bo)); 1432 /* 1433 * XXX Since there are no node locks for NFS, I 1434 * believe there is a slight chance that a delayed 1435 * write will occur while sleeping just above, so 1436 * check for it. 1437 */ 1438 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 1439 (flags & V_SAVE)) { 1440 bremfree(bp); 1441 bp->b_flags |= B_ASYNC; 1442 bwrite(bp); 1443 BO_LOCK(bo); 1444 return (EAGAIN); /* XXX: why not loop ? */ 1445 } 1446 bremfree(bp); 1447 bp->b_flags |= (B_INVAL | B_RELBUF); 1448 bp->b_flags &= ~B_ASYNC; 1449 brelse(bp); 1450 BO_LOCK(bo); 1451 if (nbp != NULL && 1452 (nbp->b_bufobj != bo || 1453 nbp->b_lblkno != lblkno || 1454 (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) != xflags)) 1455 break; /* nbp invalid */ 1456 } 1457 return (retval); 1458 } 1459 1460 /* 1461 * Truncate a file's buffer and pages to a specified length. This 1462 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 1463 * sync activity. 1464 */ 1465 int 1466 vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize) 1467 { 1468 struct buf *bp, *nbp; 1469 int anyfreed; 1470 int trunclbn; 1471 struct bufobj *bo; 1472 1473 CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__, 1474 vp, cred, blksize, (uintmax_t)length); 1475 1476 /* 1477 * Round up to the *next* lbn. 1478 */ 1479 trunclbn = (length + blksize - 1) / blksize; 1480 1481 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 1482 restart: 1483 bo = &vp->v_bufobj; 1484 BO_LOCK(bo); 1485 anyfreed = 1; 1486 for (;anyfreed;) { 1487 anyfreed = 0; 1488 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 1489 if (bp->b_lblkno < trunclbn) 1490 continue; 1491 if (BUF_LOCK(bp, 1492 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1493 BO_LOCKPTR(bo)) == ENOLCK) 1494 goto restart; 1495 1496 bremfree(bp); 1497 bp->b_flags |= (B_INVAL | B_RELBUF); 1498 bp->b_flags &= ~B_ASYNC; 1499 brelse(bp); 1500 anyfreed = 1; 1501 1502 BO_LOCK(bo); 1503 if (nbp != NULL && 1504 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 1505 (nbp->b_vp != vp) || 1506 (nbp->b_flags & B_DELWRI))) { 1507 BO_UNLOCK(bo); 1508 goto restart; 1509 } 1510 } 1511 1512 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1513 if (bp->b_lblkno < trunclbn) 1514 continue; 1515 if (BUF_LOCK(bp, 1516 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1517 BO_LOCKPTR(bo)) == ENOLCK) 1518 goto restart; 1519 bremfree(bp); 1520 bp->b_flags |= (B_INVAL | B_RELBUF); 1521 bp->b_flags &= ~B_ASYNC; 1522 brelse(bp); 1523 anyfreed = 1; 1524 1525 BO_LOCK(bo); 1526 if (nbp != NULL && 1527 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 1528 (nbp->b_vp != vp) || 1529 (nbp->b_flags & B_DELWRI) == 0)) { 1530 BO_UNLOCK(bo); 1531 goto restart; 1532 } 1533 } 1534 } 1535 1536 if (length > 0) { 1537 restartsync: 1538 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1539 if (bp->b_lblkno > 0) 1540 continue; 1541 /* 1542 * Since we hold the vnode lock this should only 1543 * fail if we're racing with the buf daemon. 1544 */ 1545 if (BUF_LOCK(bp, 1546 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1547 BO_LOCKPTR(bo)) == ENOLCK) { 1548 goto restart; 1549 } 1550 VNASSERT((bp->b_flags & B_DELWRI), vp, 1551 ("buf(%p) on dirty queue without DELWRI", bp)); 1552 1553 bremfree(bp); 1554 bawrite(bp); 1555 BO_LOCK(bo); 1556 goto restartsync; 1557 } 1558 } 1559 1560 bufobj_wwait(bo, 0, 0); 1561 BO_UNLOCK(bo); 1562 vnode_pager_setsize(vp, length); 1563 1564 return (0); 1565 } 1566 1567 static void 1568 buf_vlist_remove(struct buf *bp) 1569 { 1570 struct bufv *bv; 1571 1572 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1573 ASSERT_BO_WLOCKED(bp->b_bufobj); 1574 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) != 1575 (BX_VNDIRTY|BX_VNCLEAN), 1576 ("buf_vlist_remove: Buf %p is on two lists", bp)); 1577 if (bp->b_xflags & BX_VNDIRTY) 1578 bv = &bp->b_bufobj->bo_dirty; 1579 else 1580 bv = &bp->b_bufobj->bo_clean; 1581 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 1582 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 1583 bv->bv_cnt--; 1584 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 1585 } 1586 1587 /* 1588 * Add the buffer to the sorted clean or dirty block list. 1589 * 1590 * NOTE: xflags is passed as a constant, optimizing this inline function! 1591 */ 1592 static void 1593 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 1594 { 1595 struct bufv *bv; 1596 struct buf *n; 1597 int error; 1598 1599 ASSERT_BO_WLOCKED(bo); 1600 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, 1601 ("dead bo %p", bo)); 1602 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 1603 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 1604 bp->b_xflags |= xflags; 1605 if (xflags & BX_VNDIRTY) 1606 bv = &bo->bo_dirty; 1607 else 1608 bv = &bo->bo_clean; 1609 1610 /* 1611 * Keep the list ordered. Optimize empty list insertion. Assume 1612 * we tend to grow at the tail so lookup_le should usually be cheaper 1613 * than _ge. 1614 */ 1615 if (bv->bv_cnt == 0 || 1616 bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno) 1617 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 1618 else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL) 1619 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 1620 else 1621 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 1622 error = BUF_PCTRIE_INSERT(&bv->bv_root, bp); 1623 if (error) 1624 panic("buf_vlist_add: Preallocated nodes insufficient."); 1625 bv->bv_cnt++; 1626 } 1627 1628 /* 1629 * Look up a buffer using the buffer tries. 1630 */ 1631 struct buf * 1632 gbincore(struct bufobj *bo, daddr_t lblkno) 1633 { 1634 struct buf *bp; 1635 1636 ASSERT_BO_LOCKED(bo); 1637 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 1638 if (bp != NULL) 1639 return (bp); 1640 return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno); 1641 } 1642 1643 /* 1644 * Associate a buffer with a vnode. 1645 */ 1646 void 1647 bgetvp(struct vnode *vp, struct buf *bp) 1648 { 1649 struct bufobj *bo; 1650 1651 bo = &vp->v_bufobj; 1652 ASSERT_BO_WLOCKED(bo); 1653 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 1654 1655 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 1656 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 1657 ("bgetvp: bp already attached! %p", bp)); 1658 1659 vhold(vp); 1660 bp->b_vp = vp; 1661 bp->b_bufobj = bo; 1662 /* 1663 * Insert onto list for new vnode. 1664 */ 1665 buf_vlist_add(bp, bo, BX_VNCLEAN); 1666 } 1667 1668 /* 1669 * Disassociate a buffer from a vnode. 1670 */ 1671 void 1672 brelvp(struct buf *bp) 1673 { 1674 struct bufobj *bo; 1675 struct vnode *vp; 1676 1677 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1678 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 1679 1680 /* 1681 * Delete from old vnode list, if on one. 1682 */ 1683 vp = bp->b_vp; /* XXX */ 1684 bo = bp->b_bufobj; 1685 BO_LOCK(bo); 1686 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 1687 buf_vlist_remove(bp); 1688 else 1689 panic("brelvp: Buffer %p not on queue.", bp); 1690 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 1691 bo->bo_flag &= ~BO_ONWORKLST; 1692 mtx_lock(&sync_mtx); 1693 LIST_REMOVE(bo, bo_synclist); 1694 syncer_worklist_len--; 1695 mtx_unlock(&sync_mtx); 1696 } 1697 bp->b_vp = NULL; 1698 bp->b_bufobj = NULL; 1699 BO_UNLOCK(bo); 1700 vdrop(vp); 1701 } 1702 1703 /* 1704 * Add an item to the syncer work queue. 1705 */ 1706 static void 1707 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 1708 { 1709 int slot; 1710 1711 ASSERT_BO_WLOCKED(bo); 1712 1713 mtx_lock(&sync_mtx); 1714 if (bo->bo_flag & BO_ONWORKLST) 1715 LIST_REMOVE(bo, bo_synclist); 1716 else { 1717 bo->bo_flag |= BO_ONWORKLST; 1718 syncer_worklist_len++; 1719 } 1720 1721 if (delay > syncer_maxdelay - 2) 1722 delay = syncer_maxdelay - 2; 1723 slot = (syncer_delayno + delay) & syncer_mask; 1724 1725 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 1726 mtx_unlock(&sync_mtx); 1727 } 1728 1729 static int 1730 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 1731 { 1732 int error, len; 1733 1734 mtx_lock(&sync_mtx); 1735 len = syncer_worklist_len - sync_vnode_count; 1736 mtx_unlock(&sync_mtx); 1737 error = SYSCTL_OUT(req, &len, sizeof(len)); 1738 return (error); 1739 } 1740 1741 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 1742 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 1743 1744 static struct proc *updateproc; 1745 static void sched_sync(void); 1746 static struct kproc_desc up_kp = { 1747 "syncer", 1748 sched_sync, 1749 &updateproc 1750 }; 1751 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 1752 1753 static int 1754 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 1755 { 1756 struct vnode *vp; 1757 struct mount *mp; 1758 1759 *bo = LIST_FIRST(slp); 1760 if (*bo == NULL) 1761 return (0); 1762 vp = (*bo)->__bo_vnode; /* XXX */ 1763 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 1764 return (1); 1765 /* 1766 * We use vhold in case the vnode does not 1767 * successfully sync. vhold prevents the vnode from 1768 * going away when we unlock the sync_mtx so that 1769 * we can acquire the vnode interlock. 1770 */ 1771 vholdl(vp); 1772 mtx_unlock(&sync_mtx); 1773 VI_UNLOCK(vp); 1774 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1775 vdrop(vp); 1776 mtx_lock(&sync_mtx); 1777 return (*bo == LIST_FIRST(slp)); 1778 } 1779 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1780 (void) VOP_FSYNC(vp, MNT_LAZY, td); 1781 VOP_UNLOCK(vp, 0); 1782 vn_finished_write(mp); 1783 BO_LOCK(*bo); 1784 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 1785 /* 1786 * Put us back on the worklist. The worklist 1787 * routine will remove us from our current 1788 * position and then add us back in at a later 1789 * position. 1790 */ 1791 vn_syncer_add_to_worklist(*bo, syncdelay); 1792 } 1793 BO_UNLOCK(*bo); 1794 vdrop(vp); 1795 mtx_lock(&sync_mtx); 1796 return (0); 1797 } 1798 1799 static int first_printf = 1; 1800 1801 /* 1802 * System filesystem synchronizer daemon. 1803 */ 1804 static void 1805 sched_sync(void) 1806 { 1807 struct synclist *next, *slp; 1808 struct bufobj *bo; 1809 long starttime; 1810 struct thread *td = curthread; 1811 int last_work_seen; 1812 int net_worklist_len; 1813 int syncer_final_iter; 1814 int error; 1815 1816 last_work_seen = 0; 1817 syncer_final_iter = 0; 1818 syncer_state = SYNCER_RUNNING; 1819 starttime = time_uptime; 1820 td->td_pflags |= TDP_NORUNNINGBUF; 1821 1822 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 1823 SHUTDOWN_PRI_LAST); 1824 1825 mtx_lock(&sync_mtx); 1826 for (;;) { 1827 if (syncer_state == SYNCER_FINAL_DELAY && 1828 syncer_final_iter == 0) { 1829 mtx_unlock(&sync_mtx); 1830 kproc_suspend_check(td->td_proc); 1831 mtx_lock(&sync_mtx); 1832 } 1833 net_worklist_len = syncer_worklist_len - sync_vnode_count; 1834 if (syncer_state != SYNCER_RUNNING && 1835 starttime != time_uptime) { 1836 if (first_printf) { 1837 printf("\nSyncing disks, vnodes remaining..."); 1838 first_printf = 0; 1839 } 1840 printf("%d ", net_worklist_len); 1841 } 1842 starttime = time_uptime; 1843 1844 /* 1845 * Push files whose dirty time has expired. Be careful 1846 * of interrupt race on slp queue. 1847 * 1848 * Skip over empty worklist slots when shutting down. 1849 */ 1850 do { 1851 slp = &syncer_workitem_pending[syncer_delayno]; 1852 syncer_delayno += 1; 1853 if (syncer_delayno == syncer_maxdelay) 1854 syncer_delayno = 0; 1855 next = &syncer_workitem_pending[syncer_delayno]; 1856 /* 1857 * If the worklist has wrapped since the 1858 * it was emptied of all but syncer vnodes, 1859 * switch to the FINAL_DELAY state and run 1860 * for one more second. 1861 */ 1862 if (syncer_state == SYNCER_SHUTTING_DOWN && 1863 net_worklist_len == 0 && 1864 last_work_seen == syncer_delayno) { 1865 syncer_state = SYNCER_FINAL_DELAY; 1866 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 1867 } 1868 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 1869 syncer_worklist_len > 0); 1870 1871 /* 1872 * Keep track of the last time there was anything 1873 * on the worklist other than syncer vnodes. 1874 * Return to the SHUTTING_DOWN state if any 1875 * new work appears. 1876 */ 1877 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 1878 last_work_seen = syncer_delayno; 1879 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 1880 syncer_state = SYNCER_SHUTTING_DOWN; 1881 while (!LIST_EMPTY(slp)) { 1882 error = sync_vnode(slp, &bo, td); 1883 if (error == 1) { 1884 LIST_REMOVE(bo, bo_synclist); 1885 LIST_INSERT_HEAD(next, bo, bo_synclist); 1886 continue; 1887 } 1888 1889 if (first_printf == 0) { 1890 /* 1891 * Drop the sync mutex, because some watchdog 1892 * drivers need to sleep while patting 1893 */ 1894 mtx_unlock(&sync_mtx); 1895 wdog_kern_pat(WD_LASTVAL); 1896 mtx_lock(&sync_mtx); 1897 } 1898 1899 } 1900 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 1901 syncer_final_iter--; 1902 /* 1903 * The variable rushjob allows the kernel to speed up the 1904 * processing of the filesystem syncer process. A rushjob 1905 * value of N tells the filesystem syncer to process the next 1906 * N seconds worth of work on its queue ASAP. Currently rushjob 1907 * is used by the soft update code to speed up the filesystem 1908 * syncer process when the incore state is getting so far 1909 * ahead of the disk that the kernel memory pool is being 1910 * threatened with exhaustion. 1911 */ 1912 if (rushjob > 0) { 1913 rushjob -= 1; 1914 continue; 1915 } 1916 /* 1917 * Just sleep for a short period of time between 1918 * iterations when shutting down to allow some I/O 1919 * to happen. 1920 * 1921 * If it has taken us less than a second to process the 1922 * current work, then wait. Otherwise start right over 1923 * again. We can still lose time if any single round 1924 * takes more than two seconds, but it does not really 1925 * matter as we are just trying to generally pace the 1926 * filesystem activity. 1927 */ 1928 if (syncer_state != SYNCER_RUNNING || 1929 time_uptime == starttime) { 1930 thread_lock(td); 1931 sched_prio(td, PPAUSE); 1932 thread_unlock(td); 1933 } 1934 if (syncer_state != SYNCER_RUNNING) 1935 cv_timedwait(&sync_wakeup, &sync_mtx, 1936 hz / SYNCER_SHUTDOWN_SPEEDUP); 1937 else if (time_uptime == starttime) 1938 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 1939 } 1940 } 1941 1942 /* 1943 * Request the syncer daemon to speed up its work. 1944 * We never push it to speed up more than half of its 1945 * normal turn time, otherwise it could take over the cpu. 1946 */ 1947 int 1948 speedup_syncer(void) 1949 { 1950 int ret = 0; 1951 1952 mtx_lock(&sync_mtx); 1953 if (rushjob < syncdelay / 2) { 1954 rushjob += 1; 1955 stat_rush_requests += 1; 1956 ret = 1; 1957 } 1958 mtx_unlock(&sync_mtx); 1959 cv_broadcast(&sync_wakeup); 1960 return (ret); 1961 } 1962 1963 /* 1964 * Tell the syncer to speed up its work and run though its work 1965 * list several times, then tell it to shut down. 1966 */ 1967 static void 1968 syncer_shutdown(void *arg, int howto) 1969 { 1970 1971 if (howto & RB_NOSYNC) 1972 return; 1973 mtx_lock(&sync_mtx); 1974 syncer_state = SYNCER_SHUTTING_DOWN; 1975 rushjob = 0; 1976 mtx_unlock(&sync_mtx); 1977 cv_broadcast(&sync_wakeup); 1978 kproc_shutdown(arg, howto); 1979 } 1980 1981 void 1982 syncer_suspend(void) 1983 { 1984 1985 syncer_shutdown(updateproc, 0); 1986 } 1987 1988 void 1989 syncer_resume(void) 1990 { 1991 1992 mtx_lock(&sync_mtx); 1993 first_printf = 1; 1994 syncer_state = SYNCER_RUNNING; 1995 mtx_unlock(&sync_mtx); 1996 cv_broadcast(&sync_wakeup); 1997 kproc_resume(updateproc); 1998 } 1999 2000 /* 2001 * Reassign a buffer from one vnode to another. 2002 * Used to assign file specific control information 2003 * (indirect blocks) to the vnode to which they belong. 2004 */ 2005 void 2006 reassignbuf(struct buf *bp) 2007 { 2008 struct vnode *vp; 2009 struct bufobj *bo; 2010 int delay; 2011 #ifdef INVARIANTS 2012 struct bufv *bv; 2013 #endif 2014 2015 vp = bp->b_vp; 2016 bo = bp->b_bufobj; 2017 ++reassignbufcalls; 2018 2019 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 2020 bp, bp->b_vp, bp->b_flags); 2021 /* 2022 * B_PAGING flagged buffers cannot be reassigned because their vp 2023 * is not fully linked in. 2024 */ 2025 if (bp->b_flags & B_PAGING) 2026 panic("cannot reassign paging buffer"); 2027 2028 /* 2029 * Delete from old vnode list, if on one. 2030 */ 2031 BO_LOCK(bo); 2032 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2033 buf_vlist_remove(bp); 2034 else 2035 panic("reassignbuf: Buffer %p not on queue.", bp); 2036 /* 2037 * If dirty, put on list of dirty buffers; otherwise insert onto list 2038 * of clean buffers. 2039 */ 2040 if (bp->b_flags & B_DELWRI) { 2041 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 2042 switch (vp->v_type) { 2043 case VDIR: 2044 delay = dirdelay; 2045 break; 2046 case VCHR: 2047 delay = metadelay; 2048 break; 2049 default: 2050 delay = filedelay; 2051 } 2052 vn_syncer_add_to_worklist(bo, delay); 2053 } 2054 buf_vlist_add(bp, bo, BX_VNDIRTY); 2055 } else { 2056 buf_vlist_add(bp, bo, BX_VNCLEAN); 2057 2058 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2059 mtx_lock(&sync_mtx); 2060 LIST_REMOVE(bo, bo_synclist); 2061 syncer_worklist_len--; 2062 mtx_unlock(&sync_mtx); 2063 bo->bo_flag &= ~BO_ONWORKLST; 2064 } 2065 } 2066 #ifdef INVARIANTS 2067 bv = &bo->bo_clean; 2068 bp = TAILQ_FIRST(&bv->bv_hd); 2069 KASSERT(bp == NULL || bp->b_bufobj == bo, 2070 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2071 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2072 KASSERT(bp == NULL || bp->b_bufobj == bo, 2073 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2074 bv = &bo->bo_dirty; 2075 bp = TAILQ_FIRST(&bv->bv_hd); 2076 KASSERT(bp == NULL || bp->b_bufobj == bo, 2077 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2078 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2079 KASSERT(bp == NULL || bp->b_bufobj == bo, 2080 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2081 #endif 2082 BO_UNLOCK(bo); 2083 } 2084 2085 /* 2086 * A temporary hack until refcount_* APIs are sorted out. 2087 */ 2088 static __inline int 2089 vfs_refcount_acquire_if_not_zero(volatile u_int *count) 2090 { 2091 u_int old; 2092 2093 for (;;) { 2094 old = *count; 2095 if (old == 0) 2096 return (0); 2097 if (atomic_cmpset_int(count, old, old + 1)) 2098 return (1); 2099 } 2100 } 2101 2102 static __inline int 2103 vfs_refcount_release_if_not_last(volatile u_int *count) 2104 { 2105 u_int old; 2106 2107 for (;;) { 2108 old = *count; 2109 if (old == 1) 2110 return (0); 2111 if (atomic_cmpset_int(count, old, old - 1)) 2112 return (1); 2113 } 2114 } 2115 2116 static void 2117 v_init_counters(struct vnode *vp) 2118 { 2119 2120 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, 2121 vp, ("%s called for an initialized vnode", __FUNCTION__)); 2122 ASSERT_VI_UNLOCKED(vp, __FUNCTION__); 2123 2124 refcount_init(&vp->v_holdcnt, 1); 2125 refcount_init(&vp->v_usecount, 1); 2126 } 2127 2128 /* 2129 * Increment the use and hold counts on the vnode, taking care to reference 2130 * the driver's usecount if this is a chardev. The _vhold() will remove 2131 * the vnode from the free list if it is presently free. 2132 */ 2133 static void 2134 v_incr_usecount(struct vnode *vp) 2135 { 2136 2137 ASSERT_VI_UNLOCKED(vp, __func__); 2138 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2139 2140 if (vp->v_type == VCHR) { 2141 VI_LOCK(vp); 2142 _vhold(vp, true); 2143 if (vp->v_iflag & VI_OWEINACT) { 2144 VNASSERT(vp->v_usecount == 0, vp, 2145 ("vnode with usecount and VI_OWEINACT set")); 2146 vp->v_iflag &= ~VI_OWEINACT; 2147 } 2148 refcount_acquire(&vp->v_usecount); 2149 v_incr_devcount(vp); 2150 VI_UNLOCK(vp); 2151 return; 2152 } 2153 2154 _vhold(vp, false); 2155 if (vfs_refcount_acquire_if_not_zero(&vp->v_usecount)) { 2156 VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp, 2157 ("vnode with usecount and VI_OWEINACT set")); 2158 } else { 2159 VI_LOCK(vp); 2160 if (vp->v_iflag & VI_OWEINACT) 2161 vp->v_iflag &= ~VI_OWEINACT; 2162 refcount_acquire(&vp->v_usecount); 2163 VI_UNLOCK(vp); 2164 } 2165 } 2166 2167 /* 2168 * Increment si_usecount of the associated device, if any. 2169 */ 2170 static void 2171 v_incr_devcount(struct vnode *vp) 2172 { 2173 2174 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2175 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2176 dev_lock(); 2177 vp->v_rdev->si_usecount++; 2178 dev_unlock(); 2179 } 2180 } 2181 2182 /* 2183 * Decrement si_usecount of the associated device, if any. 2184 */ 2185 static void 2186 v_decr_devcount(struct vnode *vp) 2187 { 2188 2189 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2190 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2191 dev_lock(); 2192 vp->v_rdev->si_usecount--; 2193 dev_unlock(); 2194 } 2195 } 2196 2197 /* 2198 * Grab a particular vnode from the free list, increment its 2199 * reference count and lock it. VI_DOOMED is set if the vnode 2200 * is being destroyed. Only callers who specify LK_RETRY will 2201 * see doomed vnodes. If inactive processing was delayed in 2202 * vput try to do it here. 2203 * 2204 * Notes on lockless counter manipulation: 2205 * _vhold, vputx and other routines make various decisions based 2206 * on either holdcnt or usecount being 0. As long as either contuner 2207 * is not transitioning 0->1 nor 1->0, the manipulation can be done 2208 * with atomic operations. Otherwise the interlock is taken. 2209 */ 2210 int 2211 vget(struct vnode *vp, int flags, struct thread *td) 2212 { 2213 int error, oweinact; 2214 2215 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 2216 ("vget: invalid lock operation")); 2217 2218 if ((flags & LK_INTERLOCK) != 0) 2219 ASSERT_VI_LOCKED(vp, __func__); 2220 else 2221 ASSERT_VI_UNLOCKED(vp, __func__); 2222 if ((flags & LK_VNHELD) != 0) 2223 VNASSERT((vp->v_holdcnt > 0), vp, 2224 ("vget: LK_VNHELD passed but vnode not held")); 2225 2226 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2227 2228 if ((flags & LK_VNHELD) == 0) 2229 _vhold(vp, (flags & LK_INTERLOCK) != 0); 2230 2231 if ((error = vn_lock(vp, flags)) != 0) { 2232 vdrop(vp); 2233 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 2234 vp); 2235 return (error); 2236 } 2237 if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0) 2238 panic("vget: vn_lock failed to return ENOENT\n"); 2239 /* 2240 * We don't guarantee that any particular close will 2241 * trigger inactive processing so just make a best effort 2242 * here at preventing a reference to a removed file. If 2243 * we don't succeed no harm is done. 2244 * 2245 * Upgrade our holdcnt to a usecount. 2246 */ 2247 if (vp->v_type != VCHR && 2248 vfs_refcount_acquire_if_not_zero(&vp->v_usecount)) { 2249 VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp, 2250 ("vnode with usecount and VI_OWEINACT set")); 2251 } else { 2252 VI_LOCK(vp); 2253 if ((vp->v_iflag & VI_OWEINACT) == 0) { 2254 oweinact = 0; 2255 } else { 2256 oweinact = 1; 2257 vp->v_iflag &= ~VI_OWEINACT; 2258 } 2259 refcount_acquire(&vp->v_usecount); 2260 v_incr_devcount(vp); 2261 if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE && 2262 (flags & LK_NOWAIT) == 0) 2263 vinactive(vp, td); 2264 VI_UNLOCK(vp); 2265 } 2266 return (0); 2267 } 2268 2269 /* 2270 * Increase the reference count of a vnode. 2271 */ 2272 void 2273 vref(struct vnode *vp) 2274 { 2275 2276 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2277 v_incr_usecount(vp); 2278 } 2279 2280 /* 2281 * Return reference count of a vnode. 2282 * 2283 * The results of this call are only guaranteed when some mechanism is used to 2284 * stop other processes from gaining references to the vnode. This may be the 2285 * case if the caller holds the only reference. This is also useful when stale 2286 * data is acceptable as race conditions may be accounted for by some other 2287 * means. 2288 */ 2289 int 2290 vrefcnt(struct vnode *vp) 2291 { 2292 2293 return (vp->v_usecount); 2294 } 2295 2296 #define VPUTX_VRELE 1 2297 #define VPUTX_VPUT 2 2298 #define VPUTX_VUNREF 3 2299 2300 /* 2301 * Decrement the use and hold counts for a vnode. 2302 * 2303 * See an explanation near vget() as to why atomic operation is safe. 2304 */ 2305 static void 2306 vputx(struct vnode *vp, int func) 2307 { 2308 int error; 2309 2310 KASSERT(vp != NULL, ("vputx: null vp")); 2311 if (func == VPUTX_VUNREF) 2312 ASSERT_VOP_LOCKED(vp, "vunref"); 2313 else if (func == VPUTX_VPUT) 2314 ASSERT_VOP_LOCKED(vp, "vput"); 2315 else 2316 KASSERT(func == VPUTX_VRELE, ("vputx: wrong func")); 2317 ASSERT_VI_UNLOCKED(vp, __func__); 2318 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2319 2320 if (vp->v_type != VCHR && 2321 vfs_refcount_release_if_not_last(&vp->v_usecount)) { 2322 if (func == VPUTX_VPUT) 2323 VOP_UNLOCK(vp, 0); 2324 vdrop(vp); 2325 return; 2326 } 2327 2328 VI_LOCK(vp); 2329 2330 /* 2331 * We want to hold the vnode until the inactive finishes to 2332 * prevent vgone() races. We drop the use count here and the 2333 * hold count below when we're done. 2334 */ 2335 if (!refcount_release(&vp->v_usecount) || 2336 (vp->v_iflag & VI_DOINGINACT)) { 2337 if (func == VPUTX_VPUT) 2338 VOP_UNLOCK(vp, 0); 2339 v_decr_devcount(vp); 2340 vdropl(vp); 2341 return; 2342 } 2343 2344 v_decr_devcount(vp); 2345 2346 error = 0; 2347 2348 if (vp->v_usecount != 0) { 2349 vprint("vputx: usecount not zero", vp); 2350 panic("vputx: usecount not zero"); 2351 } 2352 2353 CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp); 2354 2355 /* 2356 * We must call VOP_INACTIVE with the node locked. Mark 2357 * as VI_DOINGINACT to avoid recursion. 2358 */ 2359 vp->v_iflag |= VI_OWEINACT; 2360 switch (func) { 2361 case VPUTX_VRELE: 2362 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 2363 VI_LOCK(vp); 2364 break; 2365 case VPUTX_VPUT: 2366 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 2367 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 2368 LK_NOWAIT); 2369 VI_LOCK(vp); 2370 } 2371 break; 2372 case VPUTX_VUNREF: 2373 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 2374 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 2375 VI_LOCK(vp); 2376 } 2377 break; 2378 } 2379 VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp, 2380 ("vnode with usecount and VI_OWEINACT set")); 2381 if (error == 0) { 2382 if (vp->v_iflag & VI_OWEINACT) 2383 vinactive(vp, curthread); 2384 if (func != VPUTX_VUNREF) 2385 VOP_UNLOCK(vp, 0); 2386 } 2387 vdropl(vp); 2388 } 2389 2390 /* 2391 * Vnode put/release. 2392 * If count drops to zero, call inactive routine and return to freelist. 2393 */ 2394 void 2395 vrele(struct vnode *vp) 2396 { 2397 2398 vputx(vp, VPUTX_VRELE); 2399 } 2400 2401 /* 2402 * Release an already locked vnode. This give the same effects as 2403 * unlock+vrele(), but takes less time and avoids releasing and 2404 * re-aquiring the lock (as vrele() acquires the lock internally.) 2405 */ 2406 void 2407 vput(struct vnode *vp) 2408 { 2409 2410 vputx(vp, VPUTX_VPUT); 2411 } 2412 2413 /* 2414 * Release an exclusively locked vnode. Do not unlock the vnode lock. 2415 */ 2416 void 2417 vunref(struct vnode *vp) 2418 { 2419 2420 vputx(vp, VPUTX_VUNREF); 2421 } 2422 2423 /* 2424 * Increase the hold count and activate if this is the first reference. 2425 */ 2426 void 2427 _vhold(struct vnode *vp, bool locked) 2428 { 2429 struct mount *mp; 2430 2431 if (locked) 2432 ASSERT_VI_LOCKED(vp, __func__); 2433 else 2434 ASSERT_VI_UNLOCKED(vp, __func__); 2435 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2436 if (!locked && vfs_refcount_acquire_if_not_zero(&vp->v_holdcnt)) { 2437 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2438 ("_vhold: vnode with holdcnt is free")); 2439 return; 2440 } 2441 2442 if (!locked) 2443 VI_LOCK(vp); 2444 if ((vp->v_iflag & VI_FREE) == 0) { 2445 refcount_acquire(&vp->v_holdcnt); 2446 if (!locked) 2447 VI_UNLOCK(vp); 2448 return; 2449 } 2450 VNASSERT(vp->v_holdcnt == 0, vp, 2451 ("%s: wrong hold count", __func__)); 2452 VNASSERT(vp->v_op != NULL, vp, 2453 ("%s: vnode already reclaimed.", __func__)); 2454 /* 2455 * Remove a vnode from the free list, mark it as in use, 2456 * and put it on the active list. 2457 */ 2458 mtx_lock(&vnode_free_list_mtx); 2459 TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist); 2460 freevnodes--; 2461 vp->v_iflag &= ~(VI_FREE|VI_AGE); 2462 KASSERT((vp->v_iflag & VI_ACTIVE) == 0, 2463 ("Activating already active vnode")); 2464 vp->v_iflag |= VI_ACTIVE; 2465 mp = vp->v_mount; 2466 TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist); 2467 mp->mnt_activevnodelistsize++; 2468 mtx_unlock(&vnode_free_list_mtx); 2469 refcount_acquire(&vp->v_holdcnt); 2470 if (!locked) 2471 VI_UNLOCK(vp); 2472 } 2473 2474 /* 2475 * Drop the hold count of the vnode. If this is the last reference to 2476 * the vnode we place it on the free list unless it has been vgone'd 2477 * (marked VI_DOOMED) in which case we will free it. 2478 */ 2479 void 2480 _vdrop(struct vnode *vp, bool locked) 2481 { 2482 struct bufobj *bo; 2483 struct mount *mp; 2484 int active; 2485 2486 if (locked) 2487 ASSERT_VI_LOCKED(vp, __func__); 2488 else 2489 ASSERT_VI_UNLOCKED(vp, __func__); 2490 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2491 if ((int)vp->v_holdcnt <= 0) 2492 panic("vdrop: holdcnt %d", vp->v_holdcnt); 2493 if (vfs_refcount_release_if_not_last(&vp->v_holdcnt)) { 2494 if (locked) 2495 VI_UNLOCK(vp); 2496 return; 2497 } 2498 2499 if (!locked) 2500 VI_LOCK(vp); 2501 if (refcount_release(&vp->v_holdcnt) == 0) { 2502 VI_UNLOCK(vp); 2503 return; 2504 } 2505 if ((vp->v_iflag & VI_DOOMED) == 0) { 2506 /* 2507 * Mark a vnode as free: remove it from its active list 2508 * and put it up for recycling on the freelist. 2509 */ 2510 VNASSERT(vp->v_op != NULL, vp, 2511 ("vdropl: vnode already reclaimed.")); 2512 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2513 ("vnode already free")); 2514 VNASSERT(vp->v_holdcnt == 0, vp, 2515 ("vdropl: freeing when we shouldn't")); 2516 active = vp->v_iflag & VI_ACTIVE; 2517 if ((vp->v_iflag & VI_OWEINACT) == 0) { 2518 vp->v_iflag &= ~VI_ACTIVE; 2519 mp = vp->v_mount; 2520 mtx_lock(&vnode_free_list_mtx); 2521 if (active) { 2522 TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, 2523 v_actfreelist); 2524 mp->mnt_activevnodelistsize--; 2525 } 2526 if (vp->v_iflag & VI_AGE) { 2527 TAILQ_INSERT_HEAD(&vnode_free_list, vp, 2528 v_actfreelist); 2529 } else { 2530 TAILQ_INSERT_TAIL(&vnode_free_list, vp, 2531 v_actfreelist); 2532 } 2533 freevnodes++; 2534 vp->v_iflag &= ~VI_AGE; 2535 vp->v_iflag |= VI_FREE; 2536 mtx_unlock(&vnode_free_list_mtx); 2537 } else { 2538 atomic_add_long(&free_owe_inact, 1); 2539 } 2540 VI_UNLOCK(vp); 2541 return; 2542 } 2543 /* 2544 * The vnode has been marked for destruction, so free it. 2545 */ 2546 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 2547 atomic_subtract_long(&numvnodes, 1); 2548 bo = &vp->v_bufobj; 2549 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 2550 ("cleaned vnode still on the free list.")); 2551 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 2552 VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count")); 2553 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 2554 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 2555 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 2556 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 2557 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 2558 ("clean blk trie not empty")); 2559 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 2560 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 2561 ("dirty blk trie not empty")); 2562 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst")); 2563 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src")); 2564 VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for ..")); 2565 VI_UNLOCK(vp); 2566 #ifdef MAC 2567 mac_vnode_destroy(vp); 2568 #endif 2569 if (vp->v_pollinfo != NULL) 2570 destroy_vpollinfo(vp->v_pollinfo); 2571 #ifdef INVARIANTS 2572 /* XXX Elsewhere we detect an already freed vnode via NULL v_op. */ 2573 vp->v_op = NULL; 2574 #endif 2575 rangelock_destroy(&vp->v_rl); 2576 lockdestroy(vp->v_vnlock); 2577 mtx_destroy(&vp->v_interlock); 2578 rw_destroy(BO_LOCKPTR(bo)); 2579 uma_zfree(vnode_zone, vp); 2580 } 2581 2582 /* 2583 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 2584 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 2585 * OWEINACT tracks whether a vnode missed a call to inactive due to a 2586 * failed lock upgrade. 2587 */ 2588 void 2589 vinactive(struct vnode *vp, struct thread *td) 2590 { 2591 struct vm_object *obj; 2592 2593 ASSERT_VOP_ELOCKED(vp, "vinactive"); 2594 ASSERT_VI_LOCKED(vp, "vinactive"); 2595 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp, 2596 ("vinactive: recursed on VI_DOINGINACT")); 2597 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2598 vp->v_iflag |= VI_DOINGINACT; 2599 vp->v_iflag &= ~VI_OWEINACT; 2600 VI_UNLOCK(vp); 2601 /* 2602 * Before moving off the active list, we must be sure that any 2603 * modified pages are on the vnode's dirty list since these will 2604 * no longer be checked once the vnode is on the inactive list. 2605 * Because the vnode vm object keeps a hold reference on the vnode 2606 * if there is at least one resident non-cached page, the vnode 2607 * cannot leave the active list without the page cleanup done. 2608 */ 2609 obj = vp->v_object; 2610 if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0) { 2611 VM_OBJECT_WLOCK(obj); 2612 vm_object_page_clean(obj, 0, 0, OBJPC_NOSYNC); 2613 VM_OBJECT_WUNLOCK(obj); 2614 } 2615 VOP_INACTIVE(vp, td); 2616 VI_LOCK(vp); 2617 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp, 2618 ("vinactive: lost VI_DOINGINACT")); 2619 vp->v_iflag &= ~VI_DOINGINACT; 2620 } 2621 2622 /* 2623 * Remove any vnodes in the vnode table belonging to mount point mp. 2624 * 2625 * If FORCECLOSE is not specified, there should not be any active ones, 2626 * return error if any are found (nb: this is a user error, not a 2627 * system error). If FORCECLOSE is specified, detach any active vnodes 2628 * that are found. 2629 * 2630 * If WRITECLOSE is set, only flush out regular file vnodes open for 2631 * writing. 2632 * 2633 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 2634 * 2635 * `rootrefs' specifies the base reference count for the root vnode 2636 * of this filesystem. The root vnode is considered busy if its 2637 * v_usecount exceeds this value. On a successful return, vflush(, td) 2638 * will call vrele() on the root vnode exactly rootrefs times. 2639 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 2640 * be zero. 2641 */ 2642 #ifdef DIAGNOSTIC 2643 static int busyprt = 0; /* print out busy vnodes */ 2644 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 2645 #endif 2646 2647 int 2648 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 2649 { 2650 struct vnode *vp, *mvp, *rootvp = NULL; 2651 struct vattr vattr; 2652 int busy = 0, error; 2653 2654 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 2655 rootrefs, flags); 2656 if (rootrefs > 0) { 2657 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 2658 ("vflush: bad args")); 2659 /* 2660 * Get the filesystem root vnode. We can vput() it 2661 * immediately, since with rootrefs > 0, it won't go away. 2662 */ 2663 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 2664 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 2665 __func__, error); 2666 return (error); 2667 } 2668 vput(rootvp); 2669 } 2670 loop: 2671 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 2672 vholdl(vp); 2673 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 2674 if (error) { 2675 vdrop(vp); 2676 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 2677 goto loop; 2678 } 2679 /* 2680 * Skip over a vnodes marked VV_SYSTEM. 2681 */ 2682 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 2683 VOP_UNLOCK(vp, 0); 2684 vdrop(vp); 2685 continue; 2686 } 2687 /* 2688 * If WRITECLOSE is set, flush out unlinked but still open 2689 * files (even if open only for reading) and regular file 2690 * vnodes open for writing. 2691 */ 2692 if (flags & WRITECLOSE) { 2693 if (vp->v_object != NULL) { 2694 VM_OBJECT_WLOCK(vp->v_object); 2695 vm_object_page_clean(vp->v_object, 0, 0, 0); 2696 VM_OBJECT_WUNLOCK(vp->v_object); 2697 } 2698 error = VOP_FSYNC(vp, MNT_WAIT, td); 2699 if (error != 0) { 2700 VOP_UNLOCK(vp, 0); 2701 vdrop(vp); 2702 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 2703 return (error); 2704 } 2705 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 2706 VI_LOCK(vp); 2707 2708 if ((vp->v_type == VNON || 2709 (error == 0 && vattr.va_nlink > 0)) && 2710 (vp->v_writecount == 0 || vp->v_type != VREG)) { 2711 VOP_UNLOCK(vp, 0); 2712 vdropl(vp); 2713 continue; 2714 } 2715 } else 2716 VI_LOCK(vp); 2717 /* 2718 * With v_usecount == 0, all we need to do is clear out the 2719 * vnode data structures and we are done. 2720 * 2721 * If FORCECLOSE is set, forcibly close the vnode. 2722 */ 2723 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 2724 vgonel(vp); 2725 } else { 2726 busy++; 2727 #ifdef DIAGNOSTIC 2728 if (busyprt) 2729 vprint("vflush: busy vnode", vp); 2730 #endif 2731 } 2732 VOP_UNLOCK(vp, 0); 2733 vdropl(vp); 2734 } 2735 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 2736 /* 2737 * If just the root vnode is busy, and if its refcount 2738 * is equal to `rootrefs', then go ahead and kill it. 2739 */ 2740 VI_LOCK(rootvp); 2741 KASSERT(busy > 0, ("vflush: not busy")); 2742 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 2743 ("vflush: usecount %d < rootrefs %d", 2744 rootvp->v_usecount, rootrefs)); 2745 if (busy == 1 && rootvp->v_usecount == rootrefs) { 2746 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 2747 vgone(rootvp); 2748 VOP_UNLOCK(rootvp, 0); 2749 busy = 0; 2750 } else 2751 VI_UNLOCK(rootvp); 2752 } 2753 if (busy) { 2754 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 2755 busy); 2756 return (EBUSY); 2757 } 2758 for (; rootrefs > 0; rootrefs--) 2759 vrele(rootvp); 2760 return (0); 2761 } 2762 2763 /* 2764 * Recycle an unused vnode to the front of the free list. 2765 */ 2766 int 2767 vrecycle(struct vnode *vp) 2768 { 2769 int recycled; 2770 2771 ASSERT_VOP_ELOCKED(vp, "vrecycle"); 2772 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2773 recycled = 0; 2774 VI_LOCK(vp); 2775 if (vp->v_usecount == 0) { 2776 recycled = 1; 2777 vgonel(vp); 2778 } 2779 VI_UNLOCK(vp); 2780 return (recycled); 2781 } 2782 2783 /* 2784 * Eliminate all activity associated with a vnode 2785 * in preparation for reuse. 2786 */ 2787 void 2788 vgone(struct vnode *vp) 2789 { 2790 VI_LOCK(vp); 2791 vgonel(vp); 2792 VI_UNLOCK(vp); 2793 } 2794 2795 static void 2796 notify_lowervp_vfs_dummy(struct mount *mp __unused, 2797 struct vnode *lowervp __unused) 2798 { 2799 } 2800 2801 /* 2802 * Notify upper mounts about reclaimed or unlinked vnode. 2803 */ 2804 void 2805 vfs_notify_upper(struct vnode *vp, int event) 2806 { 2807 static struct vfsops vgonel_vfsops = { 2808 .vfs_reclaim_lowervp = notify_lowervp_vfs_dummy, 2809 .vfs_unlink_lowervp = notify_lowervp_vfs_dummy, 2810 }; 2811 struct mount *mp, *ump, *mmp; 2812 2813 mp = vp->v_mount; 2814 if (mp == NULL) 2815 return; 2816 2817 MNT_ILOCK(mp); 2818 if (TAILQ_EMPTY(&mp->mnt_uppers)) 2819 goto unlock; 2820 MNT_IUNLOCK(mp); 2821 mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO); 2822 mmp->mnt_op = &vgonel_vfsops; 2823 mmp->mnt_kern_flag |= MNTK_MARKER; 2824 MNT_ILOCK(mp); 2825 mp->mnt_kern_flag |= MNTK_VGONE_UPPER; 2826 for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) { 2827 if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) { 2828 ump = TAILQ_NEXT(ump, mnt_upper_link); 2829 continue; 2830 } 2831 TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link); 2832 MNT_IUNLOCK(mp); 2833 switch (event) { 2834 case VFS_NOTIFY_UPPER_RECLAIM: 2835 VFS_RECLAIM_LOWERVP(ump, vp); 2836 break; 2837 case VFS_NOTIFY_UPPER_UNLINK: 2838 VFS_UNLINK_LOWERVP(ump, vp); 2839 break; 2840 default: 2841 KASSERT(0, ("invalid event %d", event)); 2842 break; 2843 } 2844 MNT_ILOCK(mp); 2845 ump = TAILQ_NEXT(mmp, mnt_upper_link); 2846 TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link); 2847 } 2848 free(mmp, M_TEMP); 2849 mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER; 2850 if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) { 2851 mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER; 2852 wakeup(&mp->mnt_uppers); 2853 } 2854 unlock: 2855 MNT_IUNLOCK(mp); 2856 } 2857 2858 /* 2859 * vgone, with the vp interlock held. 2860 */ 2861 static void 2862 vgonel(struct vnode *vp) 2863 { 2864 struct thread *td; 2865 int oweinact; 2866 int active; 2867 struct mount *mp; 2868 2869 ASSERT_VOP_ELOCKED(vp, "vgonel"); 2870 ASSERT_VI_LOCKED(vp, "vgonel"); 2871 VNASSERT(vp->v_holdcnt, vp, 2872 ("vgonel: vp %p has no reference.", vp)); 2873 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2874 td = curthread; 2875 2876 /* 2877 * Don't vgonel if we're already doomed. 2878 */ 2879 if (vp->v_iflag & VI_DOOMED) 2880 return; 2881 vp->v_iflag |= VI_DOOMED; 2882 2883 /* 2884 * Check to see if the vnode is in use. If so, we have to call 2885 * VOP_CLOSE() and VOP_INACTIVE(). 2886 */ 2887 active = vp->v_usecount; 2888 oweinact = (vp->v_iflag & VI_OWEINACT); 2889 VI_UNLOCK(vp); 2890 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 2891 2892 /* 2893 * If purging an active vnode, it must be closed and 2894 * deactivated before being reclaimed. 2895 */ 2896 if (active) 2897 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 2898 if (oweinact || active) { 2899 VI_LOCK(vp); 2900 if ((vp->v_iflag & VI_DOINGINACT) == 0) 2901 vinactive(vp, td); 2902 VI_UNLOCK(vp); 2903 } 2904 if (vp->v_type == VSOCK) 2905 vfs_unp_reclaim(vp); 2906 2907 /* 2908 * Clean out any buffers associated with the vnode. 2909 * If the flush fails, just toss the buffers. 2910 */ 2911 mp = NULL; 2912 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 2913 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 2914 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 2915 while (vinvalbuf(vp, 0, 0, 0) != 0) 2916 ; 2917 } 2918 2919 BO_LOCK(&vp->v_bufobj); 2920 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 2921 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 2922 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 2923 vp->v_bufobj.bo_clean.bv_cnt == 0, 2924 ("vp %p bufobj not invalidated", vp)); 2925 vp->v_bufobj.bo_flag |= BO_DEAD; 2926 BO_UNLOCK(&vp->v_bufobj); 2927 2928 /* 2929 * Reclaim the vnode. 2930 */ 2931 if (VOP_RECLAIM(vp, td)) 2932 panic("vgone: cannot reclaim"); 2933 if (mp != NULL) 2934 vn_finished_secondary_write(mp); 2935 VNASSERT(vp->v_object == NULL, vp, 2936 ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag)); 2937 /* 2938 * Clear the advisory locks and wake up waiting threads. 2939 */ 2940 (void)VOP_ADVLOCKPURGE(vp); 2941 /* 2942 * Delete from old mount point vnode list. 2943 */ 2944 delmntque(vp); 2945 cache_purge(vp); 2946 /* 2947 * Done with purge, reset to the standard lock and invalidate 2948 * the vnode. 2949 */ 2950 VI_LOCK(vp); 2951 vp->v_vnlock = &vp->v_lock; 2952 vp->v_op = &dead_vnodeops; 2953 vp->v_tag = "none"; 2954 vp->v_type = VBAD; 2955 } 2956 2957 /* 2958 * Calculate the total number of references to a special device. 2959 */ 2960 int 2961 vcount(struct vnode *vp) 2962 { 2963 int count; 2964 2965 dev_lock(); 2966 count = vp->v_rdev->si_usecount; 2967 dev_unlock(); 2968 return (count); 2969 } 2970 2971 /* 2972 * Same as above, but using the struct cdev *as argument 2973 */ 2974 int 2975 count_dev(struct cdev *dev) 2976 { 2977 int count; 2978 2979 dev_lock(); 2980 count = dev->si_usecount; 2981 dev_unlock(); 2982 return(count); 2983 } 2984 2985 /* 2986 * Print out a description of a vnode. 2987 */ 2988 static char *typename[] = 2989 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", 2990 "VMARKER"}; 2991 2992 void 2993 vn_printf(struct vnode *vp, const char *fmt, ...) 2994 { 2995 va_list ap; 2996 char buf[256], buf2[16]; 2997 u_long flags; 2998 2999 va_start(ap, fmt); 3000 vprintf(fmt, ap); 3001 va_end(ap); 3002 printf("%p: ", (void *)vp); 3003 printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]); 3004 printf(" usecount %d, writecount %d, refcount %d mountedhere %p\n", 3005 vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere); 3006 buf[0] = '\0'; 3007 buf[1] = '\0'; 3008 if (vp->v_vflag & VV_ROOT) 3009 strlcat(buf, "|VV_ROOT", sizeof(buf)); 3010 if (vp->v_vflag & VV_ISTTY) 3011 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 3012 if (vp->v_vflag & VV_NOSYNC) 3013 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 3014 if (vp->v_vflag & VV_ETERNALDEV) 3015 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 3016 if (vp->v_vflag & VV_CACHEDLABEL) 3017 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 3018 if (vp->v_vflag & VV_TEXT) 3019 strlcat(buf, "|VV_TEXT", sizeof(buf)); 3020 if (vp->v_vflag & VV_COPYONWRITE) 3021 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 3022 if (vp->v_vflag & VV_SYSTEM) 3023 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 3024 if (vp->v_vflag & VV_PROCDEP) 3025 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 3026 if (vp->v_vflag & VV_NOKNOTE) 3027 strlcat(buf, "|VV_NOKNOTE", sizeof(buf)); 3028 if (vp->v_vflag & VV_DELETED) 3029 strlcat(buf, "|VV_DELETED", sizeof(buf)); 3030 if (vp->v_vflag & VV_MD) 3031 strlcat(buf, "|VV_MD", sizeof(buf)); 3032 if (vp->v_vflag & VV_FORCEINSMQ) 3033 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 3034 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 3035 VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP | 3036 VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ); 3037 if (flags != 0) { 3038 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 3039 strlcat(buf, buf2, sizeof(buf)); 3040 } 3041 if (vp->v_iflag & VI_MOUNT) 3042 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 3043 if (vp->v_iflag & VI_AGE) 3044 strlcat(buf, "|VI_AGE", sizeof(buf)); 3045 if (vp->v_iflag & VI_DOOMED) 3046 strlcat(buf, "|VI_DOOMED", sizeof(buf)); 3047 if (vp->v_iflag & VI_FREE) 3048 strlcat(buf, "|VI_FREE", sizeof(buf)); 3049 if (vp->v_iflag & VI_ACTIVE) 3050 strlcat(buf, "|VI_ACTIVE", sizeof(buf)); 3051 if (vp->v_iflag & VI_DOINGINACT) 3052 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 3053 if (vp->v_iflag & VI_OWEINACT) 3054 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 3055 flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE | 3056 VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT); 3057 if (flags != 0) { 3058 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 3059 strlcat(buf, buf2, sizeof(buf)); 3060 } 3061 printf(" flags (%s)\n", buf + 1); 3062 if (mtx_owned(VI_MTX(vp))) 3063 printf(" VI_LOCKed"); 3064 if (vp->v_object != NULL) 3065 printf(" v_object %p ref %d pages %d " 3066 "cleanbuf %d dirtybuf %d\n", 3067 vp->v_object, vp->v_object->ref_count, 3068 vp->v_object->resident_page_count, 3069 vp->v_bufobj.bo_clean.bv_cnt, 3070 vp->v_bufobj.bo_dirty.bv_cnt); 3071 printf(" "); 3072 lockmgr_printinfo(vp->v_vnlock); 3073 if (vp->v_data != NULL) 3074 VOP_PRINT(vp); 3075 } 3076 3077 #ifdef DDB 3078 /* 3079 * List all of the locked vnodes in the system. 3080 * Called when debugging the kernel. 3081 */ 3082 DB_SHOW_COMMAND(lockedvnods, lockedvnodes) 3083 { 3084 struct mount *mp; 3085 struct vnode *vp; 3086 3087 /* 3088 * Note: because this is DDB, we can't obey the locking semantics 3089 * for these structures, which means we could catch an inconsistent 3090 * state and dereference a nasty pointer. Not much to be done 3091 * about that. 3092 */ 3093 db_printf("Locked vnodes\n"); 3094 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3095 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3096 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 3097 vprint("", vp); 3098 } 3099 } 3100 } 3101 3102 /* 3103 * Show details about the given vnode. 3104 */ 3105 DB_SHOW_COMMAND(vnode, db_show_vnode) 3106 { 3107 struct vnode *vp; 3108 3109 if (!have_addr) 3110 return; 3111 vp = (struct vnode *)addr; 3112 vn_printf(vp, "vnode "); 3113 } 3114 3115 /* 3116 * Show details about the given mount point. 3117 */ 3118 DB_SHOW_COMMAND(mount, db_show_mount) 3119 { 3120 struct mount *mp; 3121 struct vfsopt *opt; 3122 struct statfs *sp; 3123 struct vnode *vp; 3124 char buf[512]; 3125 uint64_t mflags; 3126 u_int flags; 3127 3128 if (!have_addr) { 3129 /* No address given, print short info about all mount points. */ 3130 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3131 db_printf("%p %s on %s (%s)\n", mp, 3132 mp->mnt_stat.f_mntfromname, 3133 mp->mnt_stat.f_mntonname, 3134 mp->mnt_stat.f_fstypename); 3135 if (db_pager_quit) 3136 break; 3137 } 3138 db_printf("\nMore info: show mount <addr>\n"); 3139 return; 3140 } 3141 3142 mp = (struct mount *)addr; 3143 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 3144 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 3145 3146 buf[0] = '\0'; 3147 mflags = mp->mnt_flag; 3148 #define MNT_FLAG(flag) do { \ 3149 if (mflags & (flag)) { \ 3150 if (buf[0] != '\0') \ 3151 strlcat(buf, ", ", sizeof(buf)); \ 3152 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 3153 mflags &= ~(flag); \ 3154 } \ 3155 } while (0) 3156 MNT_FLAG(MNT_RDONLY); 3157 MNT_FLAG(MNT_SYNCHRONOUS); 3158 MNT_FLAG(MNT_NOEXEC); 3159 MNT_FLAG(MNT_NOSUID); 3160 MNT_FLAG(MNT_NFS4ACLS); 3161 MNT_FLAG(MNT_UNION); 3162 MNT_FLAG(MNT_ASYNC); 3163 MNT_FLAG(MNT_SUIDDIR); 3164 MNT_FLAG(MNT_SOFTDEP); 3165 MNT_FLAG(MNT_NOSYMFOLLOW); 3166 MNT_FLAG(MNT_GJOURNAL); 3167 MNT_FLAG(MNT_MULTILABEL); 3168 MNT_FLAG(MNT_ACLS); 3169 MNT_FLAG(MNT_NOATIME); 3170 MNT_FLAG(MNT_NOCLUSTERR); 3171 MNT_FLAG(MNT_NOCLUSTERW); 3172 MNT_FLAG(MNT_SUJ); 3173 MNT_FLAG(MNT_EXRDONLY); 3174 MNT_FLAG(MNT_EXPORTED); 3175 MNT_FLAG(MNT_DEFEXPORTED); 3176 MNT_FLAG(MNT_EXPORTANON); 3177 MNT_FLAG(MNT_EXKERB); 3178 MNT_FLAG(MNT_EXPUBLIC); 3179 MNT_FLAG(MNT_LOCAL); 3180 MNT_FLAG(MNT_QUOTA); 3181 MNT_FLAG(MNT_ROOTFS); 3182 MNT_FLAG(MNT_USER); 3183 MNT_FLAG(MNT_IGNORE); 3184 MNT_FLAG(MNT_UPDATE); 3185 MNT_FLAG(MNT_DELEXPORT); 3186 MNT_FLAG(MNT_RELOAD); 3187 MNT_FLAG(MNT_FORCE); 3188 MNT_FLAG(MNT_SNAPSHOT); 3189 MNT_FLAG(MNT_BYFSID); 3190 #undef MNT_FLAG 3191 if (mflags != 0) { 3192 if (buf[0] != '\0') 3193 strlcat(buf, ", ", sizeof(buf)); 3194 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 3195 "0x%016jx", mflags); 3196 } 3197 db_printf(" mnt_flag = %s\n", buf); 3198 3199 buf[0] = '\0'; 3200 flags = mp->mnt_kern_flag; 3201 #define MNT_KERN_FLAG(flag) do { \ 3202 if (flags & (flag)) { \ 3203 if (buf[0] != '\0') \ 3204 strlcat(buf, ", ", sizeof(buf)); \ 3205 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 3206 flags &= ~(flag); \ 3207 } \ 3208 } while (0) 3209 MNT_KERN_FLAG(MNTK_UNMOUNTF); 3210 MNT_KERN_FLAG(MNTK_ASYNC); 3211 MNT_KERN_FLAG(MNTK_SOFTDEP); 3212 MNT_KERN_FLAG(MNTK_NOINSMNTQ); 3213 MNT_KERN_FLAG(MNTK_DRAINING); 3214 MNT_KERN_FLAG(MNTK_REFEXPIRE); 3215 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 3216 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 3217 MNT_KERN_FLAG(MNTK_NO_IOPF); 3218 MNT_KERN_FLAG(MNTK_VGONE_UPPER); 3219 MNT_KERN_FLAG(MNTK_VGONE_WAITER); 3220 MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT); 3221 MNT_KERN_FLAG(MNTK_MARKER); 3222 MNT_KERN_FLAG(MNTK_USES_BCACHE); 3223 MNT_KERN_FLAG(MNTK_NOASYNC); 3224 MNT_KERN_FLAG(MNTK_UNMOUNT); 3225 MNT_KERN_FLAG(MNTK_MWAIT); 3226 MNT_KERN_FLAG(MNTK_SUSPEND); 3227 MNT_KERN_FLAG(MNTK_SUSPEND2); 3228 MNT_KERN_FLAG(MNTK_SUSPENDED); 3229 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 3230 MNT_KERN_FLAG(MNTK_NOKNOTE); 3231 #undef MNT_KERN_FLAG 3232 if (flags != 0) { 3233 if (buf[0] != '\0') 3234 strlcat(buf, ", ", sizeof(buf)); 3235 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 3236 "0x%08x", flags); 3237 } 3238 db_printf(" mnt_kern_flag = %s\n", buf); 3239 3240 db_printf(" mnt_opt = "); 3241 opt = TAILQ_FIRST(mp->mnt_opt); 3242 if (opt != NULL) { 3243 db_printf("%s", opt->name); 3244 opt = TAILQ_NEXT(opt, link); 3245 while (opt != NULL) { 3246 db_printf(", %s", opt->name); 3247 opt = TAILQ_NEXT(opt, link); 3248 } 3249 } 3250 db_printf("\n"); 3251 3252 sp = &mp->mnt_stat; 3253 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 3254 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 3255 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 3256 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 3257 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 3258 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 3259 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 3260 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 3261 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 3262 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 3263 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 3264 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 3265 3266 db_printf(" mnt_cred = { uid=%u ruid=%u", 3267 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 3268 if (jailed(mp->mnt_cred)) 3269 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 3270 db_printf(" }\n"); 3271 db_printf(" mnt_ref = %d\n", mp->mnt_ref); 3272 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 3273 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 3274 db_printf(" mnt_activevnodelistsize = %d\n", 3275 mp->mnt_activevnodelistsize); 3276 db_printf(" mnt_writeopcount = %d\n", mp->mnt_writeopcount); 3277 db_printf(" mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen); 3278 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 3279 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 3280 db_printf(" mnt_lockref = %d\n", mp->mnt_lockref); 3281 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 3282 db_printf(" mnt_secondary_accwrites = %d\n", 3283 mp->mnt_secondary_accwrites); 3284 db_printf(" mnt_gjprovider = %s\n", 3285 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 3286 3287 db_printf("\n\nList of active vnodes\n"); 3288 TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) { 3289 if (vp->v_type != VMARKER) { 3290 vn_printf(vp, "vnode "); 3291 if (db_pager_quit) 3292 break; 3293 } 3294 } 3295 db_printf("\n\nList of inactive vnodes\n"); 3296 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3297 if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) { 3298 vn_printf(vp, "vnode "); 3299 if (db_pager_quit) 3300 break; 3301 } 3302 } 3303 } 3304 #endif /* DDB */ 3305 3306 /* 3307 * Fill in a struct xvfsconf based on a struct vfsconf. 3308 */ 3309 static int 3310 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 3311 { 3312 struct xvfsconf xvfsp; 3313 3314 bzero(&xvfsp, sizeof(xvfsp)); 3315 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 3316 xvfsp.vfc_typenum = vfsp->vfc_typenum; 3317 xvfsp.vfc_refcount = vfsp->vfc_refcount; 3318 xvfsp.vfc_flags = vfsp->vfc_flags; 3319 /* 3320 * These are unused in userland, we keep them 3321 * to not break binary compatibility. 3322 */ 3323 xvfsp.vfc_vfsops = NULL; 3324 xvfsp.vfc_next = NULL; 3325 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 3326 } 3327 3328 #ifdef COMPAT_FREEBSD32 3329 struct xvfsconf32 { 3330 uint32_t vfc_vfsops; 3331 char vfc_name[MFSNAMELEN]; 3332 int32_t vfc_typenum; 3333 int32_t vfc_refcount; 3334 int32_t vfc_flags; 3335 uint32_t vfc_next; 3336 }; 3337 3338 static int 3339 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 3340 { 3341 struct xvfsconf32 xvfsp; 3342 3343 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 3344 xvfsp.vfc_typenum = vfsp->vfc_typenum; 3345 xvfsp.vfc_refcount = vfsp->vfc_refcount; 3346 xvfsp.vfc_flags = vfsp->vfc_flags; 3347 xvfsp.vfc_vfsops = 0; 3348 xvfsp.vfc_next = 0; 3349 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 3350 } 3351 #endif 3352 3353 /* 3354 * Top level filesystem related information gathering. 3355 */ 3356 static int 3357 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 3358 { 3359 struct vfsconf *vfsp; 3360 int error; 3361 3362 error = 0; 3363 vfsconf_slock(); 3364 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3365 #ifdef COMPAT_FREEBSD32 3366 if (req->flags & SCTL_MASK32) 3367 error = vfsconf2x32(req, vfsp); 3368 else 3369 #endif 3370 error = vfsconf2x(req, vfsp); 3371 if (error) 3372 break; 3373 } 3374 vfsconf_sunlock(); 3375 return (error); 3376 } 3377 3378 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 3379 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 3380 "S,xvfsconf", "List of all configured filesystems"); 3381 3382 #ifndef BURN_BRIDGES 3383 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 3384 3385 static int 3386 vfs_sysctl(SYSCTL_HANDLER_ARGS) 3387 { 3388 int *name = (int *)arg1 - 1; /* XXX */ 3389 u_int namelen = arg2 + 1; /* XXX */ 3390 struct vfsconf *vfsp; 3391 3392 log(LOG_WARNING, "userland calling deprecated sysctl, " 3393 "please rebuild world\n"); 3394 3395 #if 1 || defined(COMPAT_PRELITE2) 3396 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 3397 if (namelen == 1) 3398 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 3399 #endif 3400 3401 switch (name[1]) { 3402 case VFS_MAXTYPENUM: 3403 if (namelen != 2) 3404 return (ENOTDIR); 3405 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 3406 case VFS_CONF: 3407 if (namelen != 3) 3408 return (ENOTDIR); /* overloaded */ 3409 vfsconf_slock(); 3410 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3411 if (vfsp->vfc_typenum == name[2]) 3412 break; 3413 } 3414 vfsconf_sunlock(); 3415 if (vfsp == NULL) 3416 return (EOPNOTSUPP); 3417 #ifdef COMPAT_FREEBSD32 3418 if (req->flags & SCTL_MASK32) 3419 return (vfsconf2x32(req, vfsp)); 3420 else 3421 #endif 3422 return (vfsconf2x(req, vfsp)); 3423 } 3424 return (EOPNOTSUPP); 3425 } 3426 3427 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 3428 CTLFLAG_MPSAFE, vfs_sysctl, 3429 "Generic filesystem"); 3430 3431 #if 1 || defined(COMPAT_PRELITE2) 3432 3433 static int 3434 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 3435 { 3436 int error; 3437 struct vfsconf *vfsp; 3438 struct ovfsconf ovfs; 3439 3440 vfsconf_slock(); 3441 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3442 bzero(&ovfs, sizeof(ovfs)); 3443 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 3444 strcpy(ovfs.vfc_name, vfsp->vfc_name); 3445 ovfs.vfc_index = vfsp->vfc_typenum; 3446 ovfs.vfc_refcount = vfsp->vfc_refcount; 3447 ovfs.vfc_flags = vfsp->vfc_flags; 3448 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 3449 if (error != 0) { 3450 vfsconf_sunlock(); 3451 return (error); 3452 } 3453 } 3454 vfsconf_sunlock(); 3455 return (0); 3456 } 3457 3458 #endif /* 1 || COMPAT_PRELITE2 */ 3459 #endif /* !BURN_BRIDGES */ 3460 3461 #define KINFO_VNODESLOP 10 3462 #ifdef notyet 3463 /* 3464 * Dump vnode list (via sysctl). 3465 */ 3466 /* ARGSUSED */ 3467 static int 3468 sysctl_vnode(SYSCTL_HANDLER_ARGS) 3469 { 3470 struct xvnode *xvn; 3471 struct mount *mp; 3472 struct vnode *vp; 3473 int error, len, n; 3474 3475 /* 3476 * Stale numvnodes access is not fatal here. 3477 */ 3478 req->lock = 0; 3479 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; 3480 if (!req->oldptr) 3481 /* Make an estimate */ 3482 return (SYSCTL_OUT(req, 0, len)); 3483 3484 error = sysctl_wire_old_buffer(req, 0); 3485 if (error != 0) 3486 return (error); 3487 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); 3488 n = 0; 3489 mtx_lock(&mountlist_mtx); 3490 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3491 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 3492 continue; 3493 MNT_ILOCK(mp); 3494 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3495 if (n == len) 3496 break; 3497 vref(vp); 3498 xvn[n].xv_size = sizeof *xvn; 3499 xvn[n].xv_vnode = vp; 3500 xvn[n].xv_id = 0; /* XXX compat */ 3501 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field 3502 XV_COPY(usecount); 3503 XV_COPY(writecount); 3504 XV_COPY(holdcnt); 3505 XV_COPY(mount); 3506 XV_COPY(numoutput); 3507 XV_COPY(type); 3508 #undef XV_COPY 3509 xvn[n].xv_flag = vp->v_vflag; 3510 3511 switch (vp->v_type) { 3512 case VREG: 3513 case VDIR: 3514 case VLNK: 3515 break; 3516 case VBLK: 3517 case VCHR: 3518 if (vp->v_rdev == NULL) { 3519 vrele(vp); 3520 continue; 3521 } 3522 xvn[n].xv_dev = dev2udev(vp->v_rdev); 3523 break; 3524 case VSOCK: 3525 xvn[n].xv_socket = vp->v_socket; 3526 break; 3527 case VFIFO: 3528 xvn[n].xv_fifo = vp->v_fifoinfo; 3529 break; 3530 case VNON: 3531 case VBAD: 3532 default: 3533 /* shouldn't happen? */ 3534 vrele(vp); 3535 continue; 3536 } 3537 vrele(vp); 3538 ++n; 3539 } 3540 MNT_IUNLOCK(mp); 3541 mtx_lock(&mountlist_mtx); 3542 vfs_unbusy(mp); 3543 if (n == len) 3544 break; 3545 } 3546 mtx_unlock(&mountlist_mtx); 3547 3548 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); 3549 free(xvn, M_TEMP); 3550 return (error); 3551 } 3552 3553 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD | 3554 CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode", 3555 ""); 3556 #endif 3557 3558 static void 3559 unmount_or_warn(struct mount *mp) 3560 { 3561 int error; 3562 3563 error = dounmount(mp, MNT_FORCE, curthread); 3564 if (error != 0) { 3565 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); 3566 if (error == EBUSY) 3567 printf("BUSY)\n"); 3568 else 3569 printf("%d)\n", error); 3570 } 3571 } 3572 3573 /* 3574 * Unmount all filesystems. The list is traversed in reverse order 3575 * of mounting to avoid dependencies. 3576 */ 3577 void 3578 vfs_unmountall(void) 3579 { 3580 struct mount *mp, *tmp; 3581 3582 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 3583 3584 /* 3585 * Since this only runs when rebooting, it is not interlocked. 3586 */ 3587 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { 3588 vfs_ref(mp); 3589 3590 /* 3591 * Forcibly unmounting "/dev" before "/" would prevent clean 3592 * unmount of the latter. 3593 */ 3594 if (mp == rootdevmp) 3595 continue; 3596 3597 unmount_or_warn(mp); 3598 } 3599 3600 if (rootdevmp != NULL) 3601 unmount_or_warn(rootdevmp); 3602 } 3603 3604 /* 3605 * perform msync on all vnodes under a mount point 3606 * the mount point must be locked. 3607 */ 3608 void 3609 vfs_msync(struct mount *mp, int flags) 3610 { 3611 struct vnode *vp, *mvp; 3612 struct vm_object *obj; 3613 3614 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 3615 MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) { 3616 obj = vp->v_object; 3617 if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 && 3618 (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) { 3619 if (!vget(vp, 3620 LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, 3621 curthread)) { 3622 if (vp->v_vflag & VV_NOSYNC) { /* unlinked */ 3623 vput(vp); 3624 continue; 3625 } 3626 3627 obj = vp->v_object; 3628 if (obj != NULL) { 3629 VM_OBJECT_WLOCK(obj); 3630 vm_object_page_clean(obj, 0, 0, 3631 flags == MNT_WAIT ? 3632 OBJPC_SYNC : OBJPC_NOSYNC); 3633 VM_OBJECT_WUNLOCK(obj); 3634 } 3635 vput(vp); 3636 } 3637 } else 3638 VI_UNLOCK(vp); 3639 } 3640 } 3641 3642 static void 3643 destroy_vpollinfo_free(struct vpollinfo *vi) 3644 { 3645 3646 knlist_destroy(&vi->vpi_selinfo.si_note); 3647 mtx_destroy(&vi->vpi_lock); 3648 uma_zfree(vnodepoll_zone, vi); 3649 } 3650 3651 static void 3652 destroy_vpollinfo(struct vpollinfo *vi) 3653 { 3654 3655 knlist_clear(&vi->vpi_selinfo.si_note, 1); 3656 seldrain(&vi->vpi_selinfo); 3657 destroy_vpollinfo_free(vi); 3658 } 3659 3660 /* 3661 * Initalize per-vnode helper structure to hold poll-related state. 3662 */ 3663 void 3664 v_addpollinfo(struct vnode *vp) 3665 { 3666 struct vpollinfo *vi; 3667 3668 if (vp->v_pollinfo != NULL) 3669 return; 3670 vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO); 3671 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 3672 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 3673 vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked); 3674 VI_LOCK(vp); 3675 if (vp->v_pollinfo != NULL) { 3676 VI_UNLOCK(vp); 3677 destroy_vpollinfo_free(vi); 3678 return; 3679 } 3680 vp->v_pollinfo = vi; 3681 VI_UNLOCK(vp); 3682 } 3683 3684 /* 3685 * Record a process's interest in events which might happen to 3686 * a vnode. Because poll uses the historic select-style interface 3687 * internally, this routine serves as both the ``check for any 3688 * pending events'' and the ``record my interest in future events'' 3689 * functions. (These are done together, while the lock is held, 3690 * to avoid race conditions.) 3691 */ 3692 int 3693 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 3694 { 3695 3696 v_addpollinfo(vp); 3697 mtx_lock(&vp->v_pollinfo->vpi_lock); 3698 if (vp->v_pollinfo->vpi_revents & events) { 3699 /* 3700 * This leaves events we are not interested 3701 * in available for the other process which 3702 * which presumably had requested them 3703 * (otherwise they would never have been 3704 * recorded). 3705 */ 3706 events &= vp->v_pollinfo->vpi_revents; 3707 vp->v_pollinfo->vpi_revents &= ~events; 3708 3709 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3710 return (events); 3711 } 3712 vp->v_pollinfo->vpi_events |= events; 3713 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 3714 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3715 return (0); 3716 } 3717 3718 /* 3719 * Routine to create and manage a filesystem syncer vnode. 3720 */ 3721 #define sync_close ((int (*)(struct vop_close_args *))nullop) 3722 static int sync_fsync(struct vop_fsync_args *); 3723 static int sync_inactive(struct vop_inactive_args *); 3724 static int sync_reclaim(struct vop_reclaim_args *); 3725 3726 static struct vop_vector sync_vnodeops = { 3727 .vop_bypass = VOP_EOPNOTSUPP, 3728 .vop_close = sync_close, /* close */ 3729 .vop_fsync = sync_fsync, /* fsync */ 3730 .vop_inactive = sync_inactive, /* inactive */ 3731 .vop_reclaim = sync_reclaim, /* reclaim */ 3732 .vop_lock1 = vop_stdlock, /* lock */ 3733 .vop_unlock = vop_stdunlock, /* unlock */ 3734 .vop_islocked = vop_stdislocked, /* islocked */ 3735 }; 3736 3737 /* 3738 * Create a new filesystem syncer vnode for the specified mount point. 3739 */ 3740 void 3741 vfs_allocate_syncvnode(struct mount *mp) 3742 { 3743 struct vnode *vp; 3744 struct bufobj *bo; 3745 static long start, incr, next; 3746 int error; 3747 3748 /* Allocate a new vnode */ 3749 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 3750 if (error != 0) 3751 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 3752 vp->v_type = VNON; 3753 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3754 vp->v_vflag |= VV_FORCEINSMQ; 3755 error = insmntque(vp, mp); 3756 if (error != 0) 3757 panic("vfs_allocate_syncvnode: insmntque() failed"); 3758 vp->v_vflag &= ~VV_FORCEINSMQ; 3759 VOP_UNLOCK(vp, 0); 3760 /* 3761 * Place the vnode onto the syncer worklist. We attempt to 3762 * scatter them about on the list so that they will go off 3763 * at evenly distributed times even if all the filesystems 3764 * are mounted at once. 3765 */ 3766 next += incr; 3767 if (next == 0 || next > syncer_maxdelay) { 3768 start /= 2; 3769 incr /= 2; 3770 if (start == 0) { 3771 start = syncer_maxdelay / 2; 3772 incr = syncer_maxdelay; 3773 } 3774 next = start; 3775 } 3776 bo = &vp->v_bufobj; 3777 BO_LOCK(bo); 3778 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 3779 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 3780 mtx_lock(&sync_mtx); 3781 sync_vnode_count++; 3782 if (mp->mnt_syncer == NULL) { 3783 mp->mnt_syncer = vp; 3784 vp = NULL; 3785 } 3786 mtx_unlock(&sync_mtx); 3787 BO_UNLOCK(bo); 3788 if (vp != NULL) { 3789 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3790 vgone(vp); 3791 vput(vp); 3792 } 3793 } 3794 3795 void 3796 vfs_deallocate_syncvnode(struct mount *mp) 3797 { 3798 struct vnode *vp; 3799 3800 mtx_lock(&sync_mtx); 3801 vp = mp->mnt_syncer; 3802 if (vp != NULL) 3803 mp->mnt_syncer = NULL; 3804 mtx_unlock(&sync_mtx); 3805 if (vp != NULL) 3806 vrele(vp); 3807 } 3808 3809 /* 3810 * Do a lazy sync of the filesystem. 3811 */ 3812 static int 3813 sync_fsync(struct vop_fsync_args *ap) 3814 { 3815 struct vnode *syncvp = ap->a_vp; 3816 struct mount *mp = syncvp->v_mount; 3817 int error, save; 3818 struct bufobj *bo; 3819 3820 /* 3821 * We only need to do something if this is a lazy evaluation. 3822 */ 3823 if (ap->a_waitfor != MNT_LAZY) 3824 return (0); 3825 3826 /* 3827 * Move ourselves to the back of the sync list. 3828 */ 3829 bo = &syncvp->v_bufobj; 3830 BO_LOCK(bo); 3831 vn_syncer_add_to_worklist(bo, syncdelay); 3832 BO_UNLOCK(bo); 3833 3834 /* 3835 * Walk the list of vnodes pushing all that are dirty and 3836 * not already on the sync list. 3837 */ 3838 if (vfs_busy(mp, MBF_NOWAIT) != 0) 3839 return (0); 3840 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 3841 vfs_unbusy(mp); 3842 return (0); 3843 } 3844 save = curthread_pflags_set(TDP_SYNCIO); 3845 vfs_msync(mp, MNT_NOWAIT); 3846 error = VFS_SYNC(mp, MNT_LAZY); 3847 curthread_pflags_restore(save); 3848 vn_finished_write(mp); 3849 vfs_unbusy(mp); 3850 return (error); 3851 } 3852 3853 /* 3854 * The syncer vnode is no referenced. 3855 */ 3856 static int 3857 sync_inactive(struct vop_inactive_args *ap) 3858 { 3859 3860 vgone(ap->a_vp); 3861 return (0); 3862 } 3863 3864 /* 3865 * The syncer vnode is no longer needed and is being decommissioned. 3866 * 3867 * Modifications to the worklist must be protected by sync_mtx. 3868 */ 3869 static int 3870 sync_reclaim(struct vop_reclaim_args *ap) 3871 { 3872 struct vnode *vp = ap->a_vp; 3873 struct bufobj *bo; 3874 3875 bo = &vp->v_bufobj; 3876 BO_LOCK(bo); 3877 mtx_lock(&sync_mtx); 3878 if (vp->v_mount->mnt_syncer == vp) 3879 vp->v_mount->mnt_syncer = NULL; 3880 if (bo->bo_flag & BO_ONWORKLST) { 3881 LIST_REMOVE(bo, bo_synclist); 3882 syncer_worklist_len--; 3883 sync_vnode_count--; 3884 bo->bo_flag &= ~BO_ONWORKLST; 3885 } 3886 mtx_unlock(&sync_mtx); 3887 BO_UNLOCK(bo); 3888 3889 return (0); 3890 } 3891 3892 /* 3893 * Check if vnode represents a disk device 3894 */ 3895 int 3896 vn_isdisk(struct vnode *vp, int *errp) 3897 { 3898 int error; 3899 3900 if (vp->v_type != VCHR) { 3901 error = ENOTBLK; 3902 goto out; 3903 } 3904 error = 0; 3905 dev_lock(); 3906 if (vp->v_rdev == NULL) 3907 error = ENXIO; 3908 else if (vp->v_rdev->si_devsw == NULL) 3909 error = ENXIO; 3910 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 3911 error = ENOTBLK; 3912 dev_unlock(); 3913 out: 3914 if (errp != NULL) 3915 *errp = error; 3916 return (error == 0); 3917 } 3918 3919 /* 3920 * Common filesystem object access control check routine. Accepts a 3921 * vnode's type, "mode", uid and gid, requested access mode, credentials, 3922 * and optional call-by-reference privused argument allowing vaccess() 3923 * to indicate to the caller whether privilege was used to satisfy the 3924 * request (obsoleted). Returns 0 on success, or an errno on failure. 3925 */ 3926 int 3927 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 3928 accmode_t accmode, struct ucred *cred, int *privused) 3929 { 3930 accmode_t dac_granted; 3931 accmode_t priv_granted; 3932 3933 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 3934 ("invalid bit in accmode")); 3935 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 3936 ("VAPPEND without VWRITE")); 3937 3938 /* 3939 * Look for a normal, non-privileged way to access the file/directory 3940 * as requested. If it exists, go with that. 3941 */ 3942 3943 if (privused != NULL) 3944 *privused = 0; 3945 3946 dac_granted = 0; 3947 3948 /* Check the owner. */ 3949 if (cred->cr_uid == file_uid) { 3950 dac_granted |= VADMIN; 3951 if (file_mode & S_IXUSR) 3952 dac_granted |= VEXEC; 3953 if (file_mode & S_IRUSR) 3954 dac_granted |= VREAD; 3955 if (file_mode & S_IWUSR) 3956 dac_granted |= (VWRITE | VAPPEND); 3957 3958 if ((accmode & dac_granted) == accmode) 3959 return (0); 3960 3961 goto privcheck; 3962 } 3963 3964 /* Otherwise, check the groups (first match) */ 3965 if (groupmember(file_gid, cred)) { 3966 if (file_mode & S_IXGRP) 3967 dac_granted |= VEXEC; 3968 if (file_mode & S_IRGRP) 3969 dac_granted |= VREAD; 3970 if (file_mode & S_IWGRP) 3971 dac_granted |= (VWRITE | VAPPEND); 3972 3973 if ((accmode & dac_granted) == accmode) 3974 return (0); 3975 3976 goto privcheck; 3977 } 3978 3979 /* Otherwise, check everyone else. */ 3980 if (file_mode & S_IXOTH) 3981 dac_granted |= VEXEC; 3982 if (file_mode & S_IROTH) 3983 dac_granted |= VREAD; 3984 if (file_mode & S_IWOTH) 3985 dac_granted |= (VWRITE | VAPPEND); 3986 if ((accmode & dac_granted) == accmode) 3987 return (0); 3988 3989 privcheck: 3990 /* 3991 * Build a privilege mask to determine if the set of privileges 3992 * satisfies the requirements when combined with the granted mask 3993 * from above. For each privilege, if the privilege is required, 3994 * bitwise or the request type onto the priv_granted mask. 3995 */ 3996 priv_granted = 0; 3997 3998 if (type == VDIR) { 3999 /* 4000 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 4001 * requests, instead of PRIV_VFS_EXEC. 4002 */ 4003 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 4004 !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0)) 4005 priv_granted |= VEXEC; 4006 } else { 4007 /* 4008 * Ensure that at least one execute bit is on. Otherwise, 4009 * a privileged user will always succeed, and we don't want 4010 * this to happen unless the file really is executable. 4011 */ 4012 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 4013 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 4014 !priv_check_cred(cred, PRIV_VFS_EXEC, 0)) 4015 priv_granted |= VEXEC; 4016 } 4017 4018 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 4019 !priv_check_cred(cred, PRIV_VFS_READ, 0)) 4020 priv_granted |= VREAD; 4021 4022 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 4023 !priv_check_cred(cred, PRIV_VFS_WRITE, 0)) 4024 priv_granted |= (VWRITE | VAPPEND); 4025 4026 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 4027 !priv_check_cred(cred, PRIV_VFS_ADMIN, 0)) 4028 priv_granted |= VADMIN; 4029 4030 if ((accmode & (priv_granted | dac_granted)) == accmode) { 4031 /* XXX audit: privilege used */ 4032 if (privused != NULL) 4033 *privused = 1; 4034 return (0); 4035 } 4036 4037 return ((accmode & VADMIN) ? EPERM : EACCES); 4038 } 4039 4040 /* 4041 * Credential check based on process requesting service, and per-attribute 4042 * permissions. 4043 */ 4044 int 4045 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 4046 struct thread *td, accmode_t accmode) 4047 { 4048 4049 /* 4050 * Kernel-invoked always succeeds. 4051 */ 4052 if (cred == NOCRED) 4053 return (0); 4054 4055 /* 4056 * Do not allow privileged processes in jail to directly manipulate 4057 * system attributes. 4058 */ 4059 switch (attrnamespace) { 4060 case EXTATTR_NAMESPACE_SYSTEM: 4061 /* Potentially should be: return (EPERM); */ 4062 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0)); 4063 case EXTATTR_NAMESPACE_USER: 4064 return (VOP_ACCESS(vp, accmode, cred, td)); 4065 default: 4066 return (EPERM); 4067 } 4068 } 4069 4070 #ifdef DEBUG_VFS_LOCKS 4071 /* 4072 * This only exists to supress warnings from unlocked specfs accesses. It is 4073 * no longer ok to have an unlocked VFS. 4074 */ 4075 #define IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL || \ 4076 (vp)->v_type == VCHR || (vp)->v_type == VBAD) 4077 4078 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 4079 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 4080 "Drop into debugger on lock violation"); 4081 4082 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 4083 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 4084 0, "Check for interlock across VOPs"); 4085 4086 int vfs_badlock_print = 1; /* Print lock violations. */ 4087 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 4088 0, "Print lock violations"); 4089 4090 #ifdef KDB 4091 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 4092 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 4093 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 4094 #endif 4095 4096 static void 4097 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 4098 { 4099 4100 #ifdef KDB 4101 if (vfs_badlock_backtrace) 4102 kdb_backtrace(); 4103 #endif 4104 if (vfs_badlock_print) 4105 printf("%s: %p %s\n", str, (void *)vp, msg); 4106 if (vfs_badlock_ddb) 4107 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 4108 } 4109 4110 void 4111 assert_vi_locked(struct vnode *vp, const char *str) 4112 { 4113 4114 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 4115 vfs_badlock("interlock is not locked but should be", str, vp); 4116 } 4117 4118 void 4119 assert_vi_unlocked(struct vnode *vp, const char *str) 4120 { 4121 4122 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 4123 vfs_badlock("interlock is locked but should not be", str, vp); 4124 } 4125 4126 void 4127 assert_vop_locked(struct vnode *vp, const char *str) 4128 { 4129 int locked; 4130 4131 if (!IGNORE_LOCK(vp)) { 4132 locked = VOP_ISLOCKED(vp); 4133 if (locked == 0 || locked == LK_EXCLOTHER) 4134 vfs_badlock("is not locked but should be", str, vp); 4135 } 4136 } 4137 4138 void 4139 assert_vop_unlocked(struct vnode *vp, const char *str) 4140 { 4141 4142 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 4143 vfs_badlock("is locked but should not be", str, vp); 4144 } 4145 4146 void 4147 assert_vop_elocked(struct vnode *vp, const char *str) 4148 { 4149 4150 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 4151 vfs_badlock("is not exclusive locked but should be", str, vp); 4152 } 4153 4154 #if 0 4155 void 4156 assert_vop_elocked_other(struct vnode *vp, const char *str) 4157 { 4158 4159 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER) 4160 vfs_badlock("is not exclusive locked by another thread", 4161 str, vp); 4162 } 4163 4164 void 4165 assert_vop_slocked(struct vnode *vp, const char *str) 4166 { 4167 4168 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED) 4169 vfs_badlock("is not locked shared but should be", str, vp); 4170 } 4171 #endif /* 0 */ 4172 #endif /* DEBUG_VFS_LOCKS */ 4173 4174 void 4175 vop_rename_fail(struct vop_rename_args *ap) 4176 { 4177 4178 if (ap->a_tvp != NULL) 4179 vput(ap->a_tvp); 4180 if (ap->a_tdvp == ap->a_tvp) 4181 vrele(ap->a_tdvp); 4182 else 4183 vput(ap->a_tdvp); 4184 vrele(ap->a_fdvp); 4185 vrele(ap->a_fvp); 4186 } 4187 4188 void 4189 vop_rename_pre(void *ap) 4190 { 4191 struct vop_rename_args *a = ap; 4192 4193 #ifdef DEBUG_VFS_LOCKS 4194 if (a->a_tvp) 4195 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 4196 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 4197 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 4198 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 4199 4200 /* Check the source (from). */ 4201 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 4202 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 4203 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 4204 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 4205 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 4206 4207 /* Check the target. */ 4208 if (a->a_tvp) 4209 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 4210 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 4211 #endif 4212 if (a->a_tdvp != a->a_fdvp) 4213 vhold(a->a_fdvp); 4214 if (a->a_tvp != a->a_fvp) 4215 vhold(a->a_fvp); 4216 vhold(a->a_tdvp); 4217 if (a->a_tvp) 4218 vhold(a->a_tvp); 4219 } 4220 4221 void 4222 vop_strategy_pre(void *ap) 4223 { 4224 #ifdef DEBUG_VFS_LOCKS 4225 struct vop_strategy_args *a; 4226 struct buf *bp; 4227 4228 a = ap; 4229 bp = a->a_bp; 4230 4231 /* 4232 * Cluster ops lock their component buffers but not the IO container. 4233 */ 4234 if ((bp->b_flags & B_CLUSTER) != 0) 4235 return; 4236 4237 if (panicstr == NULL && !BUF_ISLOCKED(bp)) { 4238 if (vfs_badlock_print) 4239 printf( 4240 "VOP_STRATEGY: bp is not locked but should be\n"); 4241 if (vfs_badlock_ddb) 4242 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 4243 } 4244 #endif 4245 } 4246 4247 void 4248 vop_lock_pre(void *ap) 4249 { 4250 #ifdef DEBUG_VFS_LOCKS 4251 struct vop_lock1_args *a = ap; 4252 4253 if ((a->a_flags & LK_INTERLOCK) == 0) 4254 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 4255 else 4256 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 4257 #endif 4258 } 4259 4260 void 4261 vop_lock_post(void *ap, int rc) 4262 { 4263 #ifdef DEBUG_VFS_LOCKS 4264 struct vop_lock1_args *a = ap; 4265 4266 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 4267 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 4268 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 4269 #endif 4270 } 4271 4272 void 4273 vop_unlock_pre(void *ap) 4274 { 4275 #ifdef DEBUG_VFS_LOCKS 4276 struct vop_unlock_args *a = ap; 4277 4278 if (a->a_flags & LK_INTERLOCK) 4279 ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK"); 4280 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); 4281 #endif 4282 } 4283 4284 void 4285 vop_unlock_post(void *ap, int rc) 4286 { 4287 #ifdef DEBUG_VFS_LOCKS 4288 struct vop_unlock_args *a = ap; 4289 4290 if (a->a_flags & LK_INTERLOCK) 4291 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK"); 4292 #endif 4293 } 4294 4295 void 4296 vop_create_post(void *ap, int rc) 4297 { 4298 struct vop_create_args *a = ap; 4299 4300 if (!rc) 4301 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4302 } 4303 4304 void 4305 vop_deleteextattr_post(void *ap, int rc) 4306 { 4307 struct vop_deleteextattr_args *a = ap; 4308 4309 if (!rc) 4310 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4311 } 4312 4313 void 4314 vop_link_post(void *ap, int rc) 4315 { 4316 struct vop_link_args *a = ap; 4317 4318 if (!rc) { 4319 VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK); 4320 VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE); 4321 } 4322 } 4323 4324 void 4325 vop_mkdir_post(void *ap, int rc) 4326 { 4327 struct vop_mkdir_args *a = ap; 4328 4329 if (!rc) 4330 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 4331 } 4332 4333 void 4334 vop_mknod_post(void *ap, int rc) 4335 { 4336 struct vop_mknod_args *a = ap; 4337 4338 if (!rc) 4339 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4340 } 4341 4342 void 4343 vop_reclaim_post(void *ap, int rc) 4344 { 4345 struct vop_reclaim_args *a = ap; 4346 4347 if (!rc) 4348 VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE); 4349 } 4350 4351 void 4352 vop_remove_post(void *ap, int rc) 4353 { 4354 struct vop_remove_args *a = ap; 4355 4356 if (!rc) { 4357 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4358 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 4359 } 4360 } 4361 4362 void 4363 vop_rename_post(void *ap, int rc) 4364 { 4365 struct vop_rename_args *a = ap; 4366 4367 if (!rc) { 4368 VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE); 4369 VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE); 4370 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 4371 if (a->a_tvp) 4372 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 4373 } 4374 if (a->a_tdvp != a->a_fdvp) 4375 vdrop(a->a_fdvp); 4376 if (a->a_tvp != a->a_fvp) 4377 vdrop(a->a_fvp); 4378 vdrop(a->a_tdvp); 4379 if (a->a_tvp) 4380 vdrop(a->a_tvp); 4381 } 4382 4383 void 4384 vop_rmdir_post(void *ap, int rc) 4385 { 4386 struct vop_rmdir_args *a = ap; 4387 4388 if (!rc) { 4389 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 4390 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 4391 } 4392 } 4393 4394 void 4395 vop_setattr_post(void *ap, int rc) 4396 { 4397 struct vop_setattr_args *a = ap; 4398 4399 if (!rc) 4400 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4401 } 4402 4403 void 4404 vop_setextattr_post(void *ap, int rc) 4405 { 4406 struct vop_setextattr_args *a = ap; 4407 4408 if (!rc) 4409 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 4410 } 4411 4412 void 4413 vop_symlink_post(void *ap, int rc) 4414 { 4415 struct vop_symlink_args *a = ap; 4416 4417 if (!rc) 4418 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4419 } 4420 4421 static struct knlist fs_knlist; 4422 4423 static void 4424 vfs_event_init(void *arg) 4425 { 4426 knlist_init_mtx(&fs_knlist, NULL); 4427 } 4428 /* XXX - correct order? */ 4429 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 4430 4431 void 4432 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 4433 { 4434 4435 KNOTE_UNLOCKED(&fs_knlist, event); 4436 } 4437 4438 static int filt_fsattach(struct knote *kn); 4439 static void filt_fsdetach(struct knote *kn); 4440 static int filt_fsevent(struct knote *kn, long hint); 4441 4442 struct filterops fs_filtops = { 4443 .f_isfd = 0, 4444 .f_attach = filt_fsattach, 4445 .f_detach = filt_fsdetach, 4446 .f_event = filt_fsevent 4447 }; 4448 4449 static int 4450 filt_fsattach(struct knote *kn) 4451 { 4452 4453 kn->kn_flags |= EV_CLEAR; 4454 knlist_add(&fs_knlist, kn, 0); 4455 return (0); 4456 } 4457 4458 static void 4459 filt_fsdetach(struct knote *kn) 4460 { 4461 4462 knlist_remove(&fs_knlist, kn, 0); 4463 } 4464 4465 static int 4466 filt_fsevent(struct knote *kn, long hint) 4467 { 4468 4469 kn->kn_fflags |= hint; 4470 return (kn->kn_fflags != 0); 4471 } 4472 4473 static int 4474 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 4475 { 4476 struct vfsidctl vc; 4477 int error; 4478 struct mount *mp; 4479 4480 error = SYSCTL_IN(req, &vc, sizeof(vc)); 4481 if (error) 4482 return (error); 4483 if (vc.vc_vers != VFS_CTL_VERS1) 4484 return (EINVAL); 4485 mp = vfs_getvfs(&vc.vc_fsid); 4486 if (mp == NULL) 4487 return (ENOENT); 4488 /* ensure that a specific sysctl goes to the right filesystem. */ 4489 if (strcmp(vc.vc_fstypename, "*") != 0 && 4490 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 4491 vfs_rel(mp); 4492 return (EINVAL); 4493 } 4494 VCTLTOREQ(&vc, req); 4495 error = VFS_SYSCTL(mp, vc.vc_op, req); 4496 vfs_rel(mp); 4497 return (error); 4498 } 4499 4500 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR, 4501 NULL, 0, sysctl_vfs_ctl, "", 4502 "Sysctl by fsid"); 4503 4504 /* 4505 * Function to initialize a va_filerev field sensibly. 4506 * XXX: Wouldn't a random number make a lot more sense ?? 4507 */ 4508 u_quad_t 4509 init_va_filerev(void) 4510 { 4511 struct bintime bt; 4512 4513 getbinuptime(&bt); 4514 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 4515 } 4516 4517 static int filt_vfsread(struct knote *kn, long hint); 4518 static int filt_vfswrite(struct knote *kn, long hint); 4519 static int filt_vfsvnode(struct knote *kn, long hint); 4520 static void filt_vfsdetach(struct knote *kn); 4521 static struct filterops vfsread_filtops = { 4522 .f_isfd = 1, 4523 .f_detach = filt_vfsdetach, 4524 .f_event = filt_vfsread 4525 }; 4526 static struct filterops vfswrite_filtops = { 4527 .f_isfd = 1, 4528 .f_detach = filt_vfsdetach, 4529 .f_event = filt_vfswrite 4530 }; 4531 static struct filterops vfsvnode_filtops = { 4532 .f_isfd = 1, 4533 .f_detach = filt_vfsdetach, 4534 .f_event = filt_vfsvnode 4535 }; 4536 4537 static void 4538 vfs_knllock(void *arg) 4539 { 4540 struct vnode *vp = arg; 4541 4542 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 4543 } 4544 4545 static void 4546 vfs_knlunlock(void *arg) 4547 { 4548 struct vnode *vp = arg; 4549 4550 VOP_UNLOCK(vp, 0); 4551 } 4552 4553 static void 4554 vfs_knl_assert_locked(void *arg) 4555 { 4556 #ifdef DEBUG_VFS_LOCKS 4557 struct vnode *vp = arg; 4558 4559 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 4560 #endif 4561 } 4562 4563 static void 4564 vfs_knl_assert_unlocked(void *arg) 4565 { 4566 #ifdef DEBUG_VFS_LOCKS 4567 struct vnode *vp = arg; 4568 4569 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 4570 #endif 4571 } 4572 4573 int 4574 vfs_kqfilter(struct vop_kqfilter_args *ap) 4575 { 4576 struct vnode *vp = ap->a_vp; 4577 struct knote *kn = ap->a_kn; 4578 struct knlist *knl; 4579 4580 switch (kn->kn_filter) { 4581 case EVFILT_READ: 4582 kn->kn_fop = &vfsread_filtops; 4583 break; 4584 case EVFILT_WRITE: 4585 kn->kn_fop = &vfswrite_filtops; 4586 break; 4587 case EVFILT_VNODE: 4588 kn->kn_fop = &vfsvnode_filtops; 4589 break; 4590 default: 4591 return (EINVAL); 4592 } 4593 4594 kn->kn_hook = (caddr_t)vp; 4595 4596 v_addpollinfo(vp); 4597 if (vp->v_pollinfo == NULL) 4598 return (ENOMEM); 4599 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 4600 vhold(vp); 4601 knlist_add(knl, kn, 0); 4602 4603 return (0); 4604 } 4605 4606 /* 4607 * Detach knote from vnode 4608 */ 4609 static void 4610 filt_vfsdetach(struct knote *kn) 4611 { 4612 struct vnode *vp = (struct vnode *)kn->kn_hook; 4613 4614 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 4615 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 4616 vdrop(vp); 4617 } 4618 4619 /*ARGSUSED*/ 4620 static int 4621 filt_vfsread(struct knote *kn, long hint) 4622 { 4623 struct vnode *vp = (struct vnode *)kn->kn_hook; 4624 struct vattr va; 4625 int res; 4626 4627 /* 4628 * filesystem is gone, so set the EOF flag and schedule 4629 * the knote for deletion. 4630 */ 4631 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 4632 VI_LOCK(vp); 4633 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 4634 VI_UNLOCK(vp); 4635 return (1); 4636 } 4637 4638 if (VOP_GETATTR(vp, &va, curthread->td_ucred)) 4639 return (0); 4640 4641 VI_LOCK(vp); 4642 kn->kn_data = va.va_size - kn->kn_fp->f_offset; 4643 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; 4644 VI_UNLOCK(vp); 4645 return (res); 4646 } 4647 4648 /*ARGSUSED*/ 4649 static int 4650 filt_vfswrite(struct knote *kn, long hint) 4651 { 4652 struct vnode *vp = (struct vnode *)kn->kn_hook; 4653 4654 VI_LOCK(vp); 4655 4656 /* 4657 * filesystem is gone, so set the EOF flag and schedule 4658 * the knote for deletion. 4659 */ 4660 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) 4661 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 4662 4663 kn->kn_data = 0; 4664 VI_UNLOCK(vp); 4665 return (1); 4666 } 4667 4668 static int 4669 filt_vfsvnode(struct knote *kn, long hint) 4670 { 4671 struct vnode *vp = (struct vnode *)kn->kn_hook; 4672 int res; 4673 4674 VI_LOCK(vp); 4675 if (kn->kn_sfflags & hint) 4676 kn->kn_fflags |= hint; 4677 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 4678 kn->kn_flags |= EV_EOF; 4679 VI_UNLOCK(vp); 4680 return (1); 4681 } 4682 res = (kn->kn_fflags != 0); 4683 VI_UNLOCK(vp); 4684 return (res); 4685 } 4686 4687 int 4688 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 4689 { 4690 int error; 4691 4692 if (dp->d_reclen > ap->a_uio->uio_resid) 4693 return (ENAMETOOLONG); 4694 error = uiomove(dp, dp->d_reclen, ap->a_uio); 4695 if (error) { 4696 if (ap->a_ncookies != NULL) { 4697 if (ap->a_cookies != NULL) 4698 free(ap->a_cookies, M_TEMP); 4699 ap->a_cookies = NULL; 4700 *ap->a_ncookies = 0; 4701 } 4702 return (error); 4703 } 4704 if (ap->a_ncookies == NULL) 4705 return (0); 4706 4707 KASSERT(ap->a_cookies, 4708 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 4709 4710 *ap->a_cookies = realloc(*ap->a_cookies, 4711 (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO); 4712 (*ap->a_cookies)[*ap->a_ncookies] = off; 4713 return (0); 4714 } 4715 4716 /* 4717 * Mark for update the access time of the file if the filesystem 4718 * supports VOP_MARKATIME. This functionality is used by execve and 4719 * mmap, so we want to avoid the I/O implied by directly setting 4720 * va_atime for the sake of efficiency. 4721 */ 4722 void 4723 vfs_mark_atime(struct vnode *vp, struct ucred *cred) 4724 { 4725 struct mount *mp; 4726 4727 mp = vp->v_mount; 4728 ASSERT_VOP_LOCKED(vp, "vfs_mark_atime"); 4729 if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 4730 (void)VOP_MARKATIME(vp); 4731 } 4732 4733 /* 4734 * The purpose of this routine is to remove granularity from accmode_t, 4735 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 4736 * VADMIN and VAPPEND. 4737 * 4738 * If it returns 0, the caller is supposed to continue with the usual 4739 * access checks using 'accmode' as modified by this routine. If it 4740 * returns nonzero value, the caller is supposed to return that value 4741 * as errno. 4742 * 4743 * Note that after this routine runs, accmode may be zero. 4744 */ 4745 int 4746 vfs_unixify_accmode(accmode_t *accmode) 4747 { 4748 /* 4749 * There is no way to specify explicit "deny" rule using 4750 * file mode or POSIX.1e ACLs. 4751 */ 4752 if (*accmode & VEXPLICIT_DENY) { 4753 *accmode = 0; 4754 return (0); 4755 } 4756 4757 /* 4758 * None of these can be translated into usual access bits. 4759 * Also, the common case for NFSv4 ACLs is to not contain 4760 * either of these bits. Caller should check for VWRITE 4761 * on the containing directory instead. 4762 */ 4763 if (*accmode & (VDELETE_CHILD | VDELETE)) 4764 return (EPERM); 4765 4766 if (*accmode & VADMIN_PERMS) { 4767 *accmode &= ~VADMIN_PERMS; 4768 *accmode |= VADMIN; 4769 } 4770 4771 /* 4772 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 4773 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 4774 */ 4775 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 4776 4777 return (0); 4778 } 4779 4780 /* 4781 * These are helper functions for filesystems to traverse all 4782 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 4783 * 4784 * This interface replaces MNT_VNODE_FOREACH. 4785 */ 4786 4787 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 4788 4789 struct vnode * 4790 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 4791 { 4792 struct vnode *vp; 4793 4794 if (should_yield()) 4795 kern_yield(PRI_USER); 4796 MNT_ILOCK(mp); 4797 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4798 vp = TAILQ_NEXT(*mvp, v_nmntvnodes); 4799 while (vp != NULL && (vp->v_type == VMARKER || 4800 (vp->v_iflag & VI_DOOMED) != 0)) 4801 vp = TAILQ_NEXT(vp, v_nmntvnodes); 4802 4803 /* Check if we are done */ 4804 if (vp == NULL) { 4805 __mnt_vnode_markerfree_all(mvp, mp); 4806 /* MNT_IUNLOCK(mp); -- done in above function */ 4807 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 4808 return (NULL); 4809 } 4810 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 4811 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 4812 VI_LOCK(vp); 4813 MNT_IUNLOCK(mp); 4814 return (vp); 4815 } 4816 4817 struct vnode * 4818 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 4819 { 4820 struct vnode *vp; 4821 4822 *mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 4823 MNT_ILOCK(mp); 4824 MNT_REF(mp); 4825 (*mvp)->v_type = VMARKER; 4826 4827 vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 4828 while (vp != NULL && (vp->v_type == VMARKER || 4829 (vp->v_iflag & VI_DOOMED) != 0)) 4830 vp = TAILQ_NEXT(vp, v_nmntvnodes); 4831 4832 /* Check if we are done */ 4833 if (vp == NULL) { 4834 MNT_REL(mp); 4835 MNT_IUNLOCK(mp); 4836 free(*mvp, M_VNODE_MARKER); 4837 *mvp = NULL; 4838 return (NULL); 4839 } 4840 (*mvp)->v_mount = mp; 4841 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 4842 VI_LOCK(vp); 4843 MNT_IUNLOCK(mp); 4844 return (vp); 4845 } 4846 4847 4848 void 4849 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 4850 { 4851 4852 if (*mvp == NULL) { 4853 MNT_IUNLOCK(mp); 4854 return; 4855 } 4856 4857 mtx_assert(MNT_MTX(mp), MA_OWNED); 4858 4859 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4860 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 4861 MNT_REL(mp); 4862 MNT_IUNLOCK(mp); 4863 free(*mvp, M_VNODE_MARKER); 4864 *mvp = NULL; 4865 } 4866 4867 /* 4868 * These are helper functions for filesystems to traverse their 4869 * active vnodes. See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h 4870 */ 4871 static void 4872 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp) 4873 { 4874 4875 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4876 4877 MNT_ILOCK(mp); 4878 MNT_REL(mp); 4879 MNT_IUNLOCK(mp); 4880 free(*mvp, M_VNODE_MARKER); 4881 *mvp = NULL; 4882 } 4883 4884 static struct vnode * 4885 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp) 4886 { 4887 struct vnode *vp, *nvp; 4888 4889 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 4890 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 4891 restart: 4892 vp = TAILQ_NEXT(*mvp, v_actfreelist); 4893 TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist); 4894 while (vp != NULL) { 4895 if (vp->v_type == VMARKER) { 4896 vp = TAILQ_NEXT(vp, v_actfreelist); 4897 continue; 4898 } 4899 if (!VI_TRYLOCK(vp)) { 4900 if (mp_ncpus == 1 || should_yield()) { 4901 TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist); 4902 mtx_unlock(&vnode_free_list_mtx); 4903 pause("vnacti", 1); 4904 mtx_lock(&vnode_free_list_mtx); 4905 goto restart; 4906 } 4907 continue; 4908 } 4909 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 4910 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 4911 ("alien vnode on the active list %p %p", vp, mp)); 4912 if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0) 4913 break; 4914 nvp = TAILQ_NEXT(vp, v_actfreelist); 4915 VI_UNLOCK(vp); 4916 vp = nvp; 4917 } 4918 4919 /* Check if we are done */ 4920 if (vp == NULL) { 4921 mtx_unlock(&vnode_free_list_mtx); 4922 mnt_vnode_markerfree_active(mvp, mp); 4923 return (NULL); 4924 } 4925 TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist); 4926 mtx_unlock(&vnode_free_list_mtx); 4927 ASSERT_VI_LOCKED(vp, "active iter"); 4928 KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp)); 4929 return (vp); 4930 } 4931 4932 struct vnode * 4933 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp) 4934 { 4935 4936 if (should_yield()) 4937 kern_yield(PRI_USER); 4938 mtx_lock(&vnode_free_list_mtx); 4939 return (mnt_vnode_next_active(mvp, mp)); 4940 } 4941 4942 struct vnode * 4943 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp) 4944 { 4945 struct vnode *vp; 4946 4947 *mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 4948 MNT_ILOCK(mp); 4949 MNT_REF(mp); 4950 MNT_IUNLOCK(mp); 4951 (*mvp)->v_type = VMARKER; 4952 (*mvp)->v_mount = mp; 4953 4954 mtx_lock(&vnode_free_list_mtx); 4955 vp = TAILQ_FIRST(&mp->mnt_activevnodelist); 4956 if (vp == NULL) { 4957 mtx_unlock(&vnode_free_list_mtx); 4958 mnt_vnode_markerfree_active(mvp, mp); 4959 return (NULL); 4960 } 4961 TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist); 4962 return (mnt_vnode_next_active(mvp, mp)); 4963 } 4964 4965 void 4966 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp) 4967 { 4968 4969 if (*mvp == NULL) 4970 return; 4971 4972 mtx_lock(&vnode_free_list_mtx); 4973 TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist); 4974 mtx_unlock(&vnode_free_list_mtx); 4975 mnt_vnode_markerfree_active(mvp, mp); 4976 } 4977