xref: /freebsd/sys/kern/vfs_subr.c (revision adeb92a24c57f97d5cd3c3c45be239cbb23aed68)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD$
40  */
41 
42 /*
43  * External virtual filesystem routines
44  */
45 #include "opt_ddb.h"
46 #include "opt_ffs.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/eventhandler.h>
54 #include <sys/fcntl.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/stat.h>
61 #include <sys/sysctl.h>
62 #include <sys/syslog.h>
63 #include <sys/vmmeter.h>
64 #include <sys/vnode.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_extern.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_zone.h>
73 
74 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
75 
76 static void	addalias __P((struct vnode *vp, dev_t nvp_rdev));
77 static void	insmntque __P((struct vnode *vp, struct mount *mp));
78 static void	vclean __P((struct vnode *vp, int flags, struct thread *td));
79 
80 /*
81  * Number of vnodes in existence.  Increased whenever getnewvnode()
82  * allocates a new vnode, never decreased.
83  */
84 static unsigned long	numvnodes;
85 SYSCTL_LONG(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
86 
87 /*
88  * Conversion tables for conversion from vnode types to inode formats
89  * and back.
90  */
91 enum vtype iftovt_tab[16] = {
92 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
93 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
94 };
95 int vttoif_tab[9] = {
96 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
97 	S_IFSOCK, S_IFIFO, S_IFMT,
98 };
99 
100 /*
101  * List of vnodes that are ready for recycling.
102  */
103 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
104 
105 /*
106  * Minimum number of free vnodes.  If there are fewer than this free vnodes,
107  * getnewvnode() will return a newly allocated vnode.
108  */
109 static u_long wantfreevnodes = 25;
110 SYSCTL_LONG(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
111 /* Number of vnodes in the free list. */
112 static u_long freevnodes;
113 SYSCTL_LONG(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
114 
115 #if 0
116 /* Number of vnode allocation. */
117 static u_long vnodeallocs;
118 SYSCTL_LONG(_debug, OID_AUTO, vnodeallocs, CTLFLAG_RD, &vnodeallocs, 0, "");
119 /* Period of vnode recycle from namecache in vnode allocation times. */
120 static u_long vnoderecycleperiod = 1000;
121 SYSCTL_LONG(_debug, OID_AUTO, vnoderecycleperiod, CTLFLAG_RW, &vnoderecycleperiod, 0, "");
122 /* Minimum number of total vnodes required to invoke vnode recycle from namecache. */
123 static u_long vnoderecyclemintotalvn = 2000;
124 SYSCTL_LONG(_debug, OID_AUTO, vnoderecyclemintotalvn, CTLFLAG_RW, &vnoderecyclemintotalvn, 0, "");
125 /* Minimum number of free vnodes required to invoke vnode recycle from namecache. */
126 static u_long vnoderecycleminfreevn = 2000;
127 SYSCTL_LONG(_debug, OID_AUTO, vnoderecycleminfreevn, CTLFLAG_RW, &vnoderecycleminfreevn, 0, "");
128 /* Number of vnodes attempted to recycle at a time. */
129 static u_long vnoderecyclenumber = 3000;
130 SYSCTL_LONG(_debug, OID_AUTO, vnoderecyclenumber, CTLFLAG_RW, &vnoderecyclenumber, 0, "");
131 #endif
132 
133 /*
134  * Various variables used for debugging the new implementation of
135  * reassignbuf().
136  * XXX these are probably of (very) limited utility now.
137  */
138 static int reassignbufcalls;
139 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
140 static int reassignbufloops;
141 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
142 static int reassignbufsortgood;
143 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
144 static int reassignbufsortbad;
145 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
146 /* Set to 0 for old insertion-sort based reassignbuf, 1 for modern method. */
147 static int reassignbufmethod = 1;
148 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
149 static int nameileafonly;
150 SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
151 
152 #ifdef ENABLE_VFS_IOOPT
153 /* See NOTES for a description of this setting. */
154 int vfs_ioopt;
155 SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
156 #endif
157 
158 /* List of mounted filesystems. */
159 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
160 
161 /* For any iteration/modification of mountlist */
162 struct mtx mountlist_mtx;
163 
164 /* For any iteration/modification of mnt_vnodelist */
165 struct mtx mntvnode_mtx;
166 
167 /*
168  * Cache for the mount type id assigned to NFS.  This is used for
169  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
170  */
171 int	nfs_mount_type = -1;
172 
173 /* To keep more than one thread at a time from running vfs_getnewfsid */
174 static struct mtx mntid_mtx;
175 
176 /* For any iteration/modification of vnode_free_list */
177 static struct mtx vnode_free_list_mtx;
178 
179 /*
180  * For any iteration/modification of dev->si_hlist (linked through
181  * v_specnext)
182  */
183 static struct mtx spechash_mtx;
184 
185 /* Publicly exported FS */
186 struct nfs_public nfs_pub;
187 
188 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
189 static vm_zone_t vnode_zone;
190 
191 /* Set to 1 to print out reclaim of active vnodes */
192 int	prtactive;
193 
194 /*
195  * The workitem queue.
196  *
197  * It is useful to delay writes of file data and filesystem metadata
198  * for tens of seconds so that quickly created and deleted files need
199  * not waste disk bandwidth being created and removed. To realize this,
200  * we append vnodes to a "workitem" queue. When running with a soft
201  * updates implementation, most pending metadata dependencies should
202  * not wait for more than a few seconds. Thus, mounted on block devices
203  * are delayed only about a half the time that file data is delayed.
204  * Similarly, directory updates are more critical, so are only delayed
205  * about a third the time that file data is delayed. Thus, there are
206  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
207  * one each second (driven off the filesystem syncer process). The
208  * syncer_delayno variable indicates the next queue that is to be processed.
209  * Items that need to be processed soon are placed in this queue:
210  *
211  *	syncer_workitem_pending[syncer_delayno]
212  *
213  * A delay of fifteen seconds is done by placing the request fifteen
214  * entries later in the queue:
215  *
216  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
217  *
218  */
219 static int syncer_delayno;
220 static long syncer_mask;
221 LIST_HEAD(synclist, vnode);
222 static struct synclist *syncer_workitem_pending;
223 
224 #define SYNCER_MAXDELAY		32
225 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
226 static int syncdelay = 30;		/* max time to delay syncing data */
227 static int filedelay = 30;		/* time to delay syncing files */
228 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
229 static int dirdelay = 29;		/* time to delay syncing directories */
230 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
231 static int metadelay = 28;		/* time to delay syncing metadata */
232 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
233 static int rushjob;		/* number of slots to run ASAP */
234 static int stat_rush_requests;	/* number of times I/O speeded up */
235 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
236 
237 /*
238  * Number of vnodes we want to exist at any one time.  This is mostly used
239  * to size hash tables in vnode-related code.  It is normally not used in
240  * getnewvnode(), as wantfreevnodes is normally nonzero.)
241  *
242  * XXX desiredvnodes is historical cruft and should not exist.
243  */
244 int desiredvnodes;
245 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
246     &desiredvnodes, 0, "Maximum number of vnodes");
247 static int minvnodes;
248 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
249     &minvnodes, 0, "Minimum number of vnodes");
250 static int vnlru_nowhere;
251 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
252     "Number of times the vnlru process ran without success");
253 
254 /*
255  * Initialize the vnode management data structures.
256  */
257 static void
258 vntblinit(void *dummy __unused)
259 {
260 
261 	desiredvnodes = maxproc + cnt.v_page_count / 4;
262 	minvnodes = desiredvnodes / 4;
263 	mtx_init(&mountlist_mtx, "mountlist", MTX_DEF);
264 	mtx_init(&mntvnode_mtx, "mntvnode", MTX_DEF);
265 	mtx_init(&mntid_mtx, "mntid", MTX_DEF);
266 	mtx_init(&spechash_mtx, "spechash", MTX_DEF);
267 	TAILQ_INIT(&vnode_free_list);
268 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", MTX_DEF);
269 	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
270 	/*
271 	 * Initialize the filesystem syncer.
272 	 */
273 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
274 		&syncer_mask);
275 	syncer_maxdelay = syncer_mask + 1;
276 }
277 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
278 
279 
280 /*
281  * Mark a mount point as busy. Used to synchronize access and to delay
282  * unmounting. Interlock is not released on failure.
283  */
284 int
285 vfs_busy(mp, flags, interlkp, td)
286 	struct mount *mp;
287 	int flags;
288 	struct mtx *interlkp;
289 	struct thread *td;
290 {
291 	int lkflags;
292 
293 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
294 		if (flags & LK_NOWAIT)
295 			return (ENOENT);
296 		mp->mnt_kern_flag |= MNTK_MWAIT;
297 		/*
298 		 * Since all busy locks are shared except the exclusive
299 		 * lock granted when unmounting, the only place that a
300 		 * wakeup needs to be done is at the release of the
301 		 * exclusive lock at the end of dounmount.
302 		 */
303 		msleep((caddr_t)mp, interlkp, PVFS, "vfs_busy", 0);
304 		return (ENOENT);
305 	}
306 	lkflags = LK_SHARED | LK_NOPAUSE;
307 	if (interlkp)
308 		lkflags |= LK_INTERLOCK;
309 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
310 		panic("vfs_busy: unexpected lock failure");
311 	return (0);
312 }
313 
314 /*
315  * Free a busy filesystem.
316  */
317 void
318 vfs_unbusy(mp, td)
319 	struct mount *mp;
320 	struct thread *td;
321 {
322 
323 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
324 }
325 
326 /*
327  * Lookup a filesystem type, and if found allocate and initialize
328  * a mount structure for it.
329  *
330  * Devname is usually updated by mount(8) after booting.
331  */
332 int
333 vfs_rootmountalloc(fstypename, devname, mpp)
334 	char *fstypename;
335 	char *devname;
336 	struct mount **mpp;
337 {
338 	struct thread *td = curthread;	/* XXX */
339 	struct vfsconf *vfsp;
340 	struct mount *mp;
341 
342 	if (fstypename == NULL)
343 		return (ENODEV);
344 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
345 		if (!strcmp(vfsp->vfc_name, fstypename))
346 			break;
347 	if (vfsp == NULL)
348 		return (ENODEV);
349 	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
350 	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
351 	(void)vfs_busy(mp, LK_NOWAIT, 0, td);
352 	TAILQ_INIT(&mp->mnt_nvnodelist);
353 	TAILQ_INIT(&mp->mnt_reservedvnlist);
354 	mp->mnt_vfc = vfsp;
355 	mp->mnt_op = vfsp->vfc_vfsops;
356 	mp->mnt_flag = MNT_RDONLY;
357 	mp->mnt_vnodecovered = NULLVP;
358 	vfsp->vfc_refcount++;
359 	mp->mnt_iosize_max = DFLTPHYS;
360 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
361 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
362 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
363 	mp->mnt_stat.f_mntonname[0] = '/';
364 	mp->mnt_stat.f_mntonname[1] = 0;
365 	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
366 	*mpp = mp;
367 	return (0);
368 }
369 
370 /*
371  * Find an appropriate filesystem to use for the root. If a filesystem
372  * has not been preselected, walk through the list of known filesystems
373  * trying those that have mountroot routines, and try them until one
374  * works or we have tried them all.
375  */
376 #ifdef notdef	/* XXX JH */
377 int
378 lite2_vfs_mountroot()
379 {
380 	struct vfsconf *vfsp;
381 	extern int (*lite2_mountroot) __P((void));
382 	int error;
383 
384 	if (lite2_mountroot != NULL)
385 		return ((*lite2_mountroot)());
386 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
387 		if (vfsp->vfc_mountroot == NULL)
388 			continue;
389 		if ((error = (*vfsp->vfc_mountroot)()) == 0)
390 			return (0);
391 		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
392 	}
393 	return (ENODEV);
394 }
395 #endif
396 
397 /*
398  * Lookup a mount point by filesystem identifier.
399  */
400 struct mount *
401 vfs_getvfs(fsid)
402 	fsid_t *fsid;
403 {
404 	register struct mount *mp;
405 
406 	mtx_lock(&mountlist_mtx);
407 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
408 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
409 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
410 			mtx_unlock(&mountlist_mtx);
411 			return (mp);
412 	    }
413 	}
414 	mtx_unlock(&mountlist_mtx);
415 	return ((struct mount *) 0);
416 }
417 
418 /*
419  * Get a new unique fsid.  Try to make its val[0] unique, since this value
420  * will be used to create fake device numbers for stat().  Also try (but
421  * not so hard) make its val[0] unique mod 2^16, since some emulators only
422  * support 16-bit device numbers.  We end up with unique val[0]'s for the
423  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
424  *
425  * Keep in mind that several mounts may be running in parallel.  Starting
426  * the search one past where the previous search terminated is both a
427  * micro-optimization and a defense against returning the same fsid to
428  * different mounts.
429  */
430 void
431 vfs_getnewfsid(mp)
432 	struct mount *mp;
433 {
434 	static u_int16_t mntid_base;
435 	fsid_t tfsid;
436 	int mtype;
437 
438 	mtx_lock(&mntid_mtx);
439 	mtype = mp->mnt_vfc->vfc_typenum;
440 	tfsid.val[1] = mtype;
441 	mtype = (mtype & 0xFF) << 24;
442 	for (;;) {
443 		tfsid.val[0] = makeudev(255,
444 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
445 		mntid_base++;
446 		if (vfs_getvfs(&tfsid) == NULL)
447 			break;
448 	}
449 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
450 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
451 	mtx_unlock(&mntid_mtx);
452 }
453 
454 /*
455  * Knob to control the precision of file timestamps:
456  *
457  *   0 = seconds only; nanoseconds zeroed.
458  *   1 = seconds and nanoseconds, accurate within 1/HZ.
459  *   2 = seconds and nanoseconds, truncated to microseconds.
460  * >=3 = seconds and nanoseconds, maximum precision.
461  */
462 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
463 
464 static int timestamp_precision = TSP_SEC;
465 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
466     &timestamp_precision, 0, "");
467 
468 /*
469  * Get a current timestamp.
470  */
471 void
472 vfs_timestamp(tsp)
473 	struct timespec *tsp;
474 {
475 	struct timeval tv;
476 
477 	switch (timestamp_precision) {
478 	case TSP_SEC:
479 		tsp->tv_sec = time_second;
480 		tsp->tv_nsec = 0;
481 		break;
482 	case TSP_HZ:
483 		getnanotime(tsp);
484 		break;
485 	case TSP_USEC:
486 		microtime(&tv);
487 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
488 		break;
489 	case TSP_NSEC:
490 	default:
491 		nanotime(tsp);
492 		break;
493 	}
494 }
495 
496 /*
497  * Set vnode attributes to VNOVAL
498  */
499 void
500 vattr_null(vap)
501 	register struct vattr *vap;
502 {
503 
504 	vap->va_type = VNON;
505 	vap->va_size = VNOVAL;
506 	vap->va_bytes = VNOVAL;
507 	vap->va_mode = VNOVAL;
508 	vap->va_nlink = VNOVAL;
509 	vap->va_uid = VNOVAL;
510 	vap->va_gid = VNOVAL;
511 	vap->va_fsid = VNOVAL;
512 	vap->va_fileid = VNOVAL;
513 	vap->va_blocksize = VNOVAL;
514 	vap->va_rdev = VNOVAL;
515 	vap->va_atime.tv_sec = VNOVAL;
516 	vap->va_atime.tv_nsec = VNOVAL;
517 	vap->va_mtime.tv_sec = VNOVAL;
518 	vap->va_mtime.tv_nsec = VNOVAL;
519 	vap->va_ctime.tv_sec = VNOVAL;
520 	vap->va_ctime.tv_nsec = VNOVAL;
521 	vap->va_flags = VNOVAL;
522 	vap->va_gen = VNOVAL;
523 	vap->va_vaflags = 0;
524 }
525 
526 /*
527  * This routine is called when we have too many vnodes.  It attempts
528  * to free <count> vnodes and will potentially free vnodes that still
529  * have VM backing store (VM backing store is typically the cause
530  * of a vnode blowout so we want to do this).  Therefore, this operation
531  * is not considered cheap.
532  *
533  * A number of conditions may prevent a vnode from being reclaimed.
534  * the buffer cache may have references on the vnode, a directory
535  * vnode may still have references due to the namei cache representing
536  * underlying files, or the vnode may be in active use.   It is not
537  * desireable to reuse such vnodes.  These conditions may cause the
538  * number of vnodes to reach some minimum value regardless of what
539  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
540  */
541 static int
542 vlrureclaim(struct mount *mp, int count)
543 {
544 	struct vnode *vp;
545 	int done;
546 
547 	done = 0;
548 	mtx_lock(&mntvnode_mtx);
549 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
550 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
551 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
552 
553 		if (vp->v_type != VNON &&
554 		    vp->v_type != VBAD &&
555 		    VMIGHTFREE(vp) &&           /* critical path opt */
556 		    mtx_trylock(&vp->v_interlock)
557 		) {
558 			mtx_unlock(&mntvnode_mtx);
559 			if (VMIGHTFREE(vp)) {
560 				vgonel(vp, curthread);
561 				done++;
562 			} else {
563 				mtx_unlock(&vp->v_interlock);
564 			}
565 			mtx_lock(&mntvnode_mtx);
566 		}
567 		--count;
568 	}
569 	mtx_unlock(&mntvnode_mtx);
570 	return done;
571 }
572 
573 /*
574  * Attempt to recycle vnodes in a context that is always safe to block.
575  * Calling vlrurecycle() from the bowels of file system code has some
576  * interesting deadlock problems.
577  */
578 static struct proc *vnlruproc;
579 static int vnlruproc_sig;
580 
581 static void
582 vnlru_proc(void)
583 {
584 	struct mount *mp, *nmp;
585 	int s;
586 	int done;
587 	struct proc *p = vnlruproc;
588 	struct thread *td = &p->p_thread;	/* XXXKSE */
589 
590 	mtx_lock(&Giant);
591 
592 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
593 	    SHUTDOWN_PRI_FIRST);
594 
595 	s = splbio();
596 	for (;;) {
597 		kthread_suspend_check(p);
598 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
599 			vnlruproc_sig = 0;
600 			tsleep(vnlruproc, PVFS, "vlruwt", 0);
601 			continue;
602 		}
603 		done = 0;
604 		mtx_lock(&mountlist_mtx);
605 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
606 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
607 				nmp = TAILQ_NEXT(mp, mnt_list);
608 				continue;
609 			}
610 			done += vlrureclaim(mp, 10);
611 			mtx_lock(&mountlist_mtx);
612 			nmp = TAILQ_NEXT(mp, mnt_list);
613 			vfs_unbusy(mp, td);
614 		}
615 		mtx_unlock(&mountlist_mtx);
616 		if (done == 0) {
617 #if 0
618 			/* These messages are temporary debugging aids */
619 			if (vnlru_nowhere < 5)
620 				printf("vnlru process getting nowhere..\n");
621 			else if (vnlru_nowhere == 5)
622 				printf("vnlru process messages stopped.\n");
623 #endif
624 			vnlru_nowhere++;
625 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
626 		}
627 	}
628 	splx(s);
629 }
630 
631 static struct kproc_desc vnlru_kp = {
632 	"vnlru",
633 	vnlru_proc,
634 	&vnlruproc
635 };
636 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
637 
638 
639 /*
640  * Routines having to do with the management of the vnode table.
641  */
642 
643 /*
644  * Return the next vnode from the free list.
645  */
646 int
647 getnewvnode(tag, mp, vops, vpp)
648 	enum vtagtype tag;
649 	struct mount *mp;
650 	vop_t **vops;
651 	struct vnode **vpp;
652 {
653 	int s;
654 	struct thread *td = curthread;	/* XXX */
655 	struct vnode *vp = NULL;
656 	struct mount *vnmp;
657 	vm_object_t object;
658 
659 	s = splbio();
660 	/*
661 	 * Try to reuse vnodes if we hit the max.  This situation only
662 	 * occurs in certain large-memory (2G+) situations.  We cannot
663 	 * attempt to directly reclaim vnodes due to nasty recursion
664 	 * problems.
665 	 */
666 	if (vnlruproc_sig == 0 && numvnodes - freevnodes > desiredvnodes) {
667 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
668 		wakeup(vnlruproc);
669 	}
670 
671 	/*
672 	 * Attempt to reuse a vnode already on the free list, allocating
673 	 * a new vnode if we can't find one or if we have not reached a
674 	 * good minimum for good LRU performance.
675 	 */
676 
677 	mtx_lock(&vnode_free_list_mtx);
678 
679 	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
680 		int count;
681 
682 		for (count = 0; count < freevnodes; count++) {
683 			vp = TAILQ_FIRST(&vnode_free_list);
684 			if (vp == NULL || vp->v_usecount)
685 				panic("getnewvnode: free vnode isn't");
686 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
687 
688 			/*
689 			 * Don't recycle if we still have cached pages or if
690 			 * we cannot get the interlock.
691 			 */
692 			if ((VOP_GETVOBJECT(vp, &object) == 0 &&
693 			     (object->resident_page_count ||
694 			      object->ref_count)) ||
695 			     !mtx_trylock(&vp->v_interlock)) {
696 				TAILQ_INSERT_TAIL(&vnode_free_list, vp,
697 						    v_freelist);
698 				vp = NULL;
699 				continue;
700 			}
701 			if (LIST_FIRST(&vp->v_cache_src)) {
702 				/*
703 				 * note: nameileafonly sysctl is temporary,
704 				 * for debugging only, and will eventually be
705 				 * removed.
706 				 */
707 				if (nameileafonly > 0) {
708 					/*
709 					 * Do not reuse namei-cached directory
710 					 * vnodes that have cached
711 					 * subdirectories.
712 					 */
713 					if (cache_leaf_test(vp) < 0) {
714 						mtx_unlock(&vp->v_interlock);
715 						TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
716 						vp = NULL;
717 						continue;
718 					}
719 				} else if (nameileafonly < 0 ||
720 					    vmiodirenable == 0) {
721 					/*
722 					 * Do not reuse namei-cached directory
723 					 * vnodes if nameileafonly is -1 or
724 					 * if VMIO backing for directories is
725 					 * turned off (otherwise we reuse them
726 					 * too quickly).
727 					 */
728 					mtx_unlock(&vp->v_interlock);
729 					TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
730 					vp = NULL;
731 					continue;
732 				}
733 			}
734 			/*
735 			 * Skip over it if its filesystem is being suspended.
736 			 */
737 			if (vn_start_write(vp, &vnmp, V_NOWAIT) == 0)
738 				break;
739 			mtx_unlock(&vp->v_interlock);
740 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
741 			vp = NULL;
742 		}
743 	}
744 	if (vp) {
745 		vp->v_flag |= VDOOMED;
746 		vp->v_flag &= ~VFREE;
747 		freevnodes--;
748 		mtx_unlock(&vnode_free_list_mtx);
749 		cache_purge(vp);
750 		vp->v_lease = NULL;
751 		if (vp->v_type != VBAD) {
752 			vgonel(vp, td);
753 		} else {
754 			mtx_unlock(&vp->v_interlock);
755 		}
756 		vn_finished_write(vnmp);
757 
758 #ifdef INVARIANTS
759 		{
760 			int s;
761 
762 			if (vp->v_data)
763 				panic("cleaned vnode isn't");
764 			s = splbio();
765 			if (vp->v_numoutput)
766 				panic("Clean vnode has pending I/O's");
767 			splx(s);
768 			if (vp->v_writecount != 0)
769 				panic("Non-zero write count");
770 		}
771 #endif
772 		vp->v_flag = 0;
773 		vp->v_lastw = 0;
774 		vp->v_lasta = 0;
775 		vp->v_cstart = 0;
776 		vp->v_clen = 0;
777 		vp->v_socket = 0;
778 	} else {
779 		mtx_unlock(&vnode_free_list_mtx);
780 		vp = (struct vnode *) zalloc(vnode_zone);
781 		bzero((char *) vp, sizeof *vp);
782 		mtx_init(&vp->v_interlock, "vnode interlock", MTX_DEF);
783 		vp->v_dd = vp;
784 		mtx_init(&vp->v_pollinfo.vpi_lock, "vnode pollinfo", MTX_DEF);
785 		cache_purge(vp);
786 		LIST_INIT(&vp->v_cache_src);
787 		TAILQ_INIT(&vp->v_cache_dst);
788 		numvnodes++;
789 	}
790 
791 	TAILQ_INIT(&vp->v_cleanblkhd);
792 	TAILQ_INIT(&vp->v_dirtyblkhd);
793 	vp->v_type = VNON;
794 	vp->v_tag = tag;
795 	vp->v_op = vops;
796 	lockinit(&vp->v_lock, PVFS, "vnlock", VLKTIMEOUT, LK_NOPAUSE);
797 	insmntque(vp, mp);
798 	*vpp = vp;
799 	vp->v_usecount = 1;
800 	vp->v_data = 0;
801 
802 	splx(s);
803 
804 	vfs_object_create(vp, td, td->td_proc->p_ucred);
805 
806 #if 0
807 	vnodeallocs++;
808 	if (vnodeallocs % vnoderecycleperiod == 0 &&
809 	    freevnodes < vnoderecycleminfreevn &&
810 	    vnoderecyclemintotalvn < numvnodes) {
811 		/* Recycle vnodes. */
812 		cache_purgeleafdirs(vnoderecyclenumber);
813 	}
814 #endif
815 
816 	return (0);
817 }
818 
819 /*
820  * Move a vnode from one mount queue to another.
821  */
822 static void
823 insmntque(vp, mp)
824 	register struct vnode *vp;
825 	register struct mount *mp;
826 {
827 
828 	mtx_lock(&mntvnode_mtx);
829 	/*
830 	 * Delete from old mount point vnode list, if on one.
831 	 */
832 	if (vp->v_mount != NULL)
833 		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
834 	/*
835 	 * Insert into list of vnodes for the new mount point, if available.
836 	 */
837 	if ((vp->v_mount = mp) == NULL) {
838 		mtx_unlock(&mntvnode_mtx);
839 		return;
840 	}
841 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
842 	mtx_unlock(&mntvnode_mtx);
843 }
844 
845 /*
846  * Update outstanding I/O count and do wakeup if requested.
847  */
848 void
849 vwakeup(bp)
850 	register struct buf *bp;
851 {
852 	register struct vnode *vp;
853 
854 	bp->b_flags &= ~B_WRITEINPROG;
855 	if ((vp = bp->b_vp)) {
856 		vp->v_numoutput--;
857 		if (vp->v_numoutput < 0)
858 			panic("vwakeup: neg numoutput");
859 		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
860 			vp->v_flag &= ~VBWAIT;
861 			wakeup((caddr_t) &vp->v_numoutput);
862 		}
863 	}
864 }
865 
866 /*
867  * Flush out and invalidate all buffers associated with a vnode.
868  * Called with the underlying object locked.
869  */
870 int
871 vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
872 	register struct vnode *vp;
873 	int flags;
874 	struct ucred *cred;
875 	struct thread *td;
876 	int slpflag, slptimeo;
877 {
878 	register struct buf *bp;
879 	struct buf *nbp, *blist;
880 	int s, error;
881 	vm_object_t object;
882 
883 	GIANT_REQUIRED;
884 
885 	if (flags & V_SAVE) {
886 		s = splbio();
887 		while (vp->v_numoutput) {
888 			vp->v_flag |= VBWAIT;
889 			error = tsleep((caddr_t)&vp->v_numoutput,
890 			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
891 			if (error) {
892 				splx(s);
893 				return (error);
894 			}
895 		}
896 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
897 			splx(s);
898 			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
899 				return (error);
900 			s = splbio();
901 			if (vp->v_numoutput > 0 ||
902 			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
903 				panic("vinvalbuf: dirty bufs");
904 		}
905 		splx(s);
906   	}
907 	s = splbio();
908 	for (;;) {
909 		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
910 		if (!blist)
911 			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
912 		if (!blist)
913 			break;
914 
915 		for (bp = blist; bp; bp = nbp) {
916 			nbp = TAILQ_NEXT(bp, b_vnbufs);
917 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
918 				error = BUF_TIMELOCK(bp,
919 				    LK_EXCLUSIVE | LK_SLEEPFAIL,
920 				    "vinvalbuf", slpflag, slptimeo);
921 				if (error == ENOLCK)
922 					break;
923 				splx(s);
924 				return (error);
925 			}
926 			/*
927 			 * XXX Since there are no node locks for NFS, I
928 			 * believe there is a slight chance that a delayed
929 			 * write will occur while sleeping just above, so
930 			 * check for it.  Note that vfs_bio_awrite expects
931 			 * buffers to reside on a queue, while BUF_WRITE and
932 			 * brelse do not.
933 			 */
934 			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
935 				(flags & V_SAVE)) {
936 
937 				if (bp->b_vp == vp) {
938 					if (bp->b_flags & B_CLUSTEROK) {
939 						BUF_UNLOCK(bp);
940 						vfs_bio_awrite(bp);
941 					} else {
942 						bremfree(bp);
943 						bp->b_flags |= B_ASYNC;
944 						BUF_WRITE(bp);
945 					}
946 				} else {
947 					bremfree(bp);
948 					(void) BUF_WRITE(bp);
949 				}
950 				break;
951 			}
952 			bremfree(bp);
953 			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
954 			bp->b_flags &= ~B_ASYNC;
955 			brelse(bp);
956 		}
957 	}
958 
959 	/*
960 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
961 	 * have write I/O in-progress but if there is a VM object then the
962 	 * VM object can also have read-I/O in-progress.
963 	 */
964 	do {
965 		while (vp->v_numoutput > 0) {
966 			vp->v_flag |= VBWAIT;
967 			tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
968 		}
969 		if (VOP_GETVOBJECT(vp, &object) == 0) {
970 			while (object->paging_in_progress)
971 			vm_object_pip_sleep(object, "vnvlbx");
972 		}
973 	} while (vp->v_numoutput > 0);
974 
975 	splx(s);
976 
977 	/*
978 	 * Destroy the copy in the VM cache, too.
979 	 */
980 	mtx_lock(&vp->v_interlock);
981 	if (VOP_GETVOBJECT(vp, &object) == 0) {
982 		vm_object_page_remove(object, 0, 0,
983 			(flags & V_SAVE) ? TRUE : FALSE);
984 	}
985 	mtx_unlock(&vp->v_interlock);
986 
987 	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
988 		panic("vinvalbuf: flush failed");
989 	return (0);
990 }
991 
992 /*
993  * Truncate a file's buffer and pages to a specified length.  This
994  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
995  * sync activity.
996  */
997 int
998 vtruncbuf(vp, cred, td, length, blksize)
999 	register struct vnode *vp;
1000 	struct ucred *cred;
1001 	struct thread *td;
1002 	off_t length;
1003 	int blksize;
1004 {
1005 	register struct buf *bp;
1006 	struct buf *nbp;
1007 	int s, anyfreed;
1008 	int trunclbn;
1009 
1010 	/*
1011 	 * Round up to the *next* lbn.
1012 	 */
1013 	trunclbn = (length + blksize - 1) / blksize;
1014 
1015 	s = splbio();
1016 restart:
1017 	anyfreed = 1;
1018 	for (;anyfreed;) {
1019 		anyfreed = 0;
1020 		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1021 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1022 			if (bp->b_lblkno >= trunclbn) {
1023 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1024 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1025 					goto restart;
1026 				} else {
1027 					bremfree(bp);
1028 					bp->b_flags |= (B_INVAL | B_RELBUF);
1029 					bp->b_flags &= ~B_ASYNC;
1030 					brelse(bp);
1031 					anyfreed = 1;
1032 				}
1033 				if (nbp &&
1034 				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1035 				    (nbp->b_vp != vp) ||
1036 				    (nbp->b_flags & B_DELWRI))) {
1037 					goto restart;
1038 				}
1039 			}
1040 		}
1041 
1042 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1043 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1044 			if (bp->b_lblkno >= trunclbn) {
1045 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1046 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1047 					goto restart;
1048 				} else {
1049 					bremfree(bp);
1050 					bp->b_flags |= (B_INVAL | B_RELBUF);
1051 					bp->b_flags &= ~B_ASYNC;
1052 					brelse(bp);
1053 					anyfreed = 1;
1054 				}
1055 				if (nbp &&
1056 				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1057 				    (nbp->b_vp != vp) ||
1058 				    (nbp->b_flags & B_DELWRI) == 0)) {
1059 					goto restart;
1060 				}
1061 			}
1062 		}
1063 	}
1064 
1065 	if (length > 0) {
1066 restartsync:
1067 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1068 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1069 			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1070 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1071 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1072 					goto restart;
1073 				} else {
1074 					bremfree(bp);
1075 					if (bp->b_vp == vp) {
1076 						bp->b_flags |= B_ASYNC;
1077 					} else {
1078 						bp->b_flags &= ~B_ASYNC;
1079 					}
1080 					BUF_WRITE(bp);
1081 				}
1082 				goto restartsync;
1083 			}
1084 
1085 		}
1086 	}
1087 
1088 	while (vp->v_numoutput > 0) {
1089 		vp->v_flag |= VBWAIT;
1090 		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
1091 	}
1092 
1093 	splx(s);
1094 
1095 	vnode_pager_setsize(vp, length);
1096 
1097 	return (0);
1098 }
1099 
1100 /*
1101  * Associate a buffer with a vnode.
1102  */
1103 void
1104 bgetvp(vp, bp)
1105 	register struct vnode *vp;
1106 	register struct buf *bp;
1107 {
1108 	int s;
1109 
1110 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1111 
1112 	vhold(vp);
1113 	bp->b_vp = vp;
1114 	bp->b_dev = vn_todev(vp);
1115 	/*
1116 	 * Insert onto list for new vnode.
1117 	 */
1118 	s = splbio();
1119 	bp->b_xflags |= BX_VNCLEAN;
1120 	bp->b_xflags &= ~BX_VNDIRTY;
1121 	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1122 	splx(s);
1123 }
1124 
1125 /*
1126  * Disassociate a buffer from a vnode.
1127  */
1128 void
1129 brelvp(bp)
1130 	register struct buf *bp;
1131 {
1132 	struct vnode *vp;
1133 	struct buflists *listheadp;
1134 	int s;
1135 
1136 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1137 
1138 	/*
1139 	 * Delete from old vnode list, if on one.
1140 	 */
1141 	vp = bp->b_vp;
1142 	s = splbio();
1143 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1144 		if (bp->b_xflags & BX_VNDIRTY)
1145 			listheadp = &vp->v_dirtyblkhd;
1146 		else
1147 			listheadp = &vp->v_cleanblkhd;
1148 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1149 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1150 	}
1151 	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1152 		vp->v_flag &= ~VONWORKLST;
1153 		LIST_REMOVE(vp, v_synclist);
1154 	}
1155 	splx(s);
1156 	bp->b_vp = (struct vnode *) 0;
1157 	vdrop(vp);
1158 }
1159 
1160 /*
1161  * Add an item to the syncer work queue.
1162  */
1163 static void
1164 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1165 {
1166 	int s, slot;
1167 
1168 	s = splbio();
1169 
1170 	if (vp->v_flag & VONWORKLST) {
1171 		LIST_REMOVE(vp, v_synclist);
1172 	}
1173 
1174 	if (delay > syncer_maxdelay - 2)
1175 		delay = syncer_maxdelay - 2;
1176 	slot = (syncer_delayno + delay) & syncer_mask;
1177 
1178 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1179 	vp->v_flag |= VONWORKLST;
1180 	splx(s);
1181 }
1182 
1183 struct  proc *updateproc;
1184 static void sched_sync __P((void));
1185 static struct kproc_desc up_kp = {
1186 	"syncer",
1187 	sched_sync,
1188 	&updateproc
1189 };
1190 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1191 
1192 /*
1193  * System filesystem synchronizer daemon.
1194  */
1195 void
1196 sched_sync(void)
1197 {
1198 	struct synclist *slp;
1199 	struct vnode *vp;
1200 	struct mount *mp;
1201 	long starttime;
1202 	int s;
1203 	struct thread *td = &updateproc->p_thread;  /* XXXKSE */
1204 
1205 	mtx_lock(&Giant);
1206 
1207 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, td->td_proc,
1208 	    SHUTDOWN_PRI_LAST);
1209 
1210 	for (;;) {
1211 		kthread_suspend_check(td->td_proc);
1212 
1213 		starttime = time_second;
1214 
1215 		/*
1216 		 * Push files whose dirty time has expired.  Be careful
1217 		 * of interrupt race on slp queue.
1218 		 */
1219 		s = splbio();
1220 		slp = &syncer_workitem_pending[syncer_delayno];
1221 		syncer_delayno += 1;
1222 		if (syncer_delayno == syncer_maxdelay)
1223 			syncer_delayno = 0;
1224 		splx(s);
1225 
1226 		while ((vp = LIST_FIRST(slp)) != NULL) {
1227 			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1228 			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1229 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1230 				(void) VOP_FSYNC(vp, td->td_proc->p_ucred, MNT_LAZY, td);
1231 				VOP_UNLOCK(vp, 0, td);
1232 				vn_finished_write(mp);
1233 			}
1234 			s = splbio();
1235 			if (LIST_FIRST(slp) == vp) {
1236 				/*
1237 				 * Note: v_tag VT_VFS vps can remain on the
1238 				 * worklist too with no dirty blocks, but
1239 				 * since sync_fsync() moves it to a different
1240 				 * slot we are safe.
1241 				 */
1242 				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1243 				    !vn_isdisk(vp, NULL))
1244 					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1245 				/*
1246 				 * Put us back on the worklist.  The worklist
1247 				 * routine will remove us from our current
1248 				 * position and then add us back in at a later
1249 				 * position.
1250 				 */
1251 				vn_syncer_add_to_worklist(vp, syncdelay);
1252 			}
1253 			splx(s);
1254 		}
1255 
1256 		/*
1257 		 * Do soft update processing.
1258 		 */
1259 #ifdef SOFTUPDATES
1260 		softdep_process_worklist(NULL);
1261 #endif
1262 
1263 		/*
1264 		 * The variable rushjob allows the kernel to speed up the
1265 		 * processing of the filesystem syncer process. A rushjob
1266 		 * value of N tells the filesystem syncer to process the next
1267 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1268 		 * is used by the soft update code to speed up the filesystem
1269 		 * syncer process when the incore state is getting so far
1270 		 * ahead of the disk that the kernel memory pool is being
1271 		 * threatened with exhaustion.
1272 		 */
1273 		if (rushjob > 0) {
1274 			rushjob -= 1;
1275 			continue;
1276 		}
1277 		/*
1278 		 * If it has taken us less than a second to process the
1279 		 * current work, then wait. Otherwise start right over
1280 		 * again. We can still lose time if any single round
1281 		 * takes more than two seconds, but it does not really
1282 		 * matter as we are just trying to generally pace the
1283 		 * filesystem activity.
1284 		 */
1285 		if (time_second == starttime)
1286 			tsleep(&lbolt, PPAUSE, "syncer", 0);
1287 	}
1288 }
1289 
1290 /*
1291  * Request the syncer daemon to speed up its work.
1292  * We never push it to speed up more than half of its
1293  * normal turn time, otherwise it could take over the cpu.
1294  * XXXKSE  only one update?
1295  */
1296 int
1297 speedup_syncer()
1298 {
1299 
1300 	mtx_lock_spin(&sched_lock);
1301 	if (updateproc->p_thread.td_wchan == &lbolt) /* XXXKSE */
1302 		setrunnable(&updateproc->p_thread);
1303 	mtx_unlock_spin(&sched_lock);
1304 	if (rushjob < syncdelay / 2) {
1305 		rushjob += 1;
1306 		stat_rush_requests += 1;
1307 		return (1);
1308 	}
1309 	return(0);
1310 }
1311 
1312 /*
1313  * Associate a p-buffer with a vnode.
1314  *
1315  * Also sets B_PAGING flag to indicate that vnode is not fully associated
1316  * with the buffer.  i.e. the bp has not been linked into the vnode or
1317  * ref-counted.
1318  */
1319 void
1320 pbgetvp(vp, bp)
1321 	register struct vnode *vp;
1322 	register struct buf *bp;
1323 {
1324 
1325 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1326 
1327 	bp->b_vp = vp;
1328 	bp->b_flags |= B_PAGING;
1329 	bp->b_dev = vn_todev(vp);
1330 }
1331 
1332 /*
1333  * Disassociate a p-buffer from a vnode.
1334  */
1335 void
1336 pbrelvp(bp)
1337 	register struct buf *bp;
1338 {
1339 
1340 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1341 
1342 	/* XXX REMOVE ME */
1343 	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1344 		panic(
1345 		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1346 		    bp,
1347 		    (int)bp->b_flags
1348 		);
1349 	}
1350 	bp->b_vp = (struct vnode *) 0;
1351 	bp->b_flags &= ~B_PAGING;
1352 }
1353 
1354 /*
1355  * Change the vnode a pager buffer is associated with.
1356  */
1357 void
1358 pbreassignbuf(bp, newvp)
1359 	struct buf *bp;
1360 	struct vnode *newvp;
1361 {
1362 
1363 	KASSERT(bp->b_flags & B_PAGING,
1364 	    ("pbreassignbuf() on non phys bp %p", bp));
1365 	bp->b_vp = newvp;
1366 }
1367 
1368 /*
1369  * Reassign a buffer from one vnode to another.
1370  * Used to assign file specific control information
1371  * (indirect blocks) to the vnode to which they belong.
1372  */
1373 void
1374 reassignbuf(bp, newvp)
1375 	register struct buf *bp;
1376 	register struct vnode *newvp;
1377 {
1378 	struct buflists *listheadp;
1379 	int delay;
1380 	int s;
1381 
1382 	if (newvp == NULL) {
1383 		printf("reassignbuf: NULL");
1384 		return;
1385 	}
1386 	++reassignbufcalls;
1387 
1388 	/*
1389 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1390 	 * is not fully linked in.
1391 	 */
1392 	if (bp->b_flags & B_PAGING)
1393 		panic("cannot reassign paging buffer");
1394 
1395 	s = splbio();
1396 	/*
1397 	 * Delete from old vnode list, if on one.
1398 	 */
1399 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1400 		if (bp->b_xflags & BX_VNDIRTY)
1401 			listheadp = &bp->b_vp->v_dirtyblkhd;
1402 		else
1403 			listheadp = &bp->b_vp->v_cleanblkhd;
1404 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1405 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1406 		if (bp->b_vp != newvp) {
1407 			vdrop(bp->b_vp);
1408 			bp->b_vp = NULL;	/* for clarification */
1409 		}
1410 	}
1411 	/*
1412 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1413 	 * of clean buffers.
1414 	 */
1415 	if (bp->b_flags & B_DELWRI) {
1416 		struct buf *tbp;
1417 
1418 		listheadp = &newvp->v_dirtyblkhd;
1419 		if ((newvp->v_flag & VONWORKLST) == 0) {
1420 			switch (newvp->v_type) {
1421 			case VDIR:
1422 				delay = dirdelay;
1423 				break;
1424 			case VCHR:
1425 				if (newvp->v_rdev->si_mountpoint != NULL) {
1426 					delay = metadelay;
1427 					break;
1428 				}
1429 				/* fall through */
1430 			default:
1431 				delay = filedelay;
1432 			}
1433 			vn_syncer_add_to_worklist(newvp, delay);
1434 		}
1435 		bp->b_xflags |= BX_VNDIRTY;
1436 		tbp = TAILQ_FIRST(listheadp);
1437 		if (tbp == NULL ||
1438 		    bp->b_lblkno == 0 ||
1439 		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1440 		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1441 			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1442 			++reassignbufsortgood;
1443 		} else if (bp->b_lblkno < 0) {
1444 			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1445 			++reassignbufsortgood;
1446 		} else if (reassignbufmethod == 1) {
1447 			/*
1448 			 * New sorting algorithm, only handle sequential case,
1449 			 * otherwise append to end (but before metadata)
1450 			 */
1451 			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1452 			    (tbp->b_xflags & BX_VNDIRTY)) {
1453 				/*
1454 				 * Found the best place to insert the buffer
1455 				 */
1456 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1457 				++reassignbufsortgood;
1458 			} else {
1459 				/*
1460 				 * Missed, append to end, but before meta-data.
1461 				 * We know that the head buffer in the list is
1462 				 * not meta-data due to prior conditionals.
1463 				 *
1464 				 * Indirect effects:  NFS second stage write
1465 				 * tends to wind up here, giving maximum
1466 				 * distance between the unstable write and the
1467 				 * commit rpc.
1468 				 */
1469 				tbp = TAILQ_LAST(listheadp, buflists);
1470 				while (tbp && tbp->b_lblkno < 0)
1471 					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1472 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1473 				++reassignbufsortbad;
1474 			}
1475 		} else {
1476 			/*
1477 			 * Old sorting algorithm, scan queue and insert
1478 			 */
1479 			struct buf *ttbp;
1480 			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1481 			    (ttbp->b_lblkno < bp->b_lblkno)) {
1482 				++reassignbufloops;
1483 				tbp = ttbp;
1484 			}
1485 			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1486 		}
1487 	} else {
1488 		bp->b_xflags |= BX_VNCLEAN;
1489 		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1490 		if ((newvp->v_flag & VONWORKLST) &&
1491 		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1492 			newvp->v_flag &= ~VONWORKLST;
1493 			LIST_REMOVE(newvp, v_synclist);
1494 		}
1495 	}
1496 	if (bp->b_vp != newvp) {
1497 		bp->b_vp = newvp;
1498 		vhold(bp->b_vp);
1499 	}
1500 	splx(s);
1501 }
1502 
1503 /*
1504  * Create a vnode for a device.
1505  * Used for mounting the root file system.
1506  */
1507 int
1508 bdevvp(dev, vpp)
1509 	dev_t dev;
1510 	struct vnode **vpp;
1511 {
1512 	register struct vnode *vp;
1513 	struct vnode *nvp;
1514 	int error;
1515 
1516 	if (dev == NODEV) {
1517 		*vpp = NULLVP;
1518 		return (ENXIO);
1519 	}
1520 	if (vfinddev(dev, VCHR, vpp))
1521 		return (0);
1522 	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1523 	if (error) {
1524 		*vpp = NULLVP;
1525 		return (error);
1526 	}
1527 	vp = nvp;
1528 	vp->v_type = VCHR;
1529 	addalias(vp, dev);
1530 	*vpp = vp;
1531 	return (0);
1532 }
1533 
1534 /*
1535  * Add vnode to the alias list hung off the dev_t.
1536  *
1537  * The reason for this gunk is that multiple vnodes can reference
1538  * the same physical device, so checking vp->v_usecount to see
1539  * how many users there are is inadequate; the v_usecount for
1540  * the vnodes need to be accumulated.  vcount() does that.
1541  */
1542 struct vnode *
1543 addaliasu(nvp, nvp_rdev)
1544 	struct vnode *nvp;
1545 	udev_t nvp_rdev;
1546 {
1547 	struct vnode *ovp;
1548 	vop_t **ops;
1549 	dev_t dev;
1550 
1551 	if (nvp->v_type == VBLK)
1552 		return (nvp);
1553 	if (nvp->v_type != VCHR)
1554 		panic("addaliasu on non-special vnode");
1555 	dev = udev2dev(nvp_rdev, 0);
1556 	/*
1557 	 * Check to see if we have a bdevvp vnode with no associated
1558 	 * filesystem. If so, we want to associate the filesystem of
1559 	 * the new newly instigated vnode with the bdevvp vnode and
1560 	 * discard the newly created vnode rather than leaving the
1561 	 * bdevvp vnode lying around with no associated filesystem.
1562 	 */
1563 	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
1564 		addalias(nvp, dev);
1565 		return (nvp);
1566 	}
1567 	/*
1568 	 * Discard unneeded vnode, but save its node specific data.
1569 	 * Note that if there is a lock, it is carried over in the
1570 	 * node specific data to the replacement vnode.
1571 	 */
1572 	vref(ovp);
1573 	ovp->v_data = nvp->v_data;
1574 	ovp->v_tag = nvp->v_tag;
1575 	nvp->v_data = NULL;
1576 	lockinit(&ovp->v_lock, PVFS, nvp->v_lock.lk_wmesg,
1577 	    nvp->v_lock.lk_timo, nvp->v_lock.lk_flags & LK_EXTFLG_MASK);
1578 	if (nvp->v_vnlock)
1579 		ovp->v_vnlock = &ovp->v_lock;
1580 	ops = ovp->v_op;
1581 	ovp->v_op = nvp->v_op;
1582 	if (VOP_ISLOCKED(nvp, curthread)) {
1583 		VOP_UNLOCK(nvp, 0, curthread);
1584 		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
1585 	}
1586 	nvp->v_op = ops;
1587 	insmntque(ovp, nvp->v_mount);
1588 	vrele(nvp);
1589 	vgone(nvp);
1590 	return (ovp);
1591 }
1592 
1593 /* This is a local helper function that do the same as addaliasu, but for a
1594  * dev_t instead of an udev_t. */
1595 static void
1596 addalias(nvp, dev)
1597 	struct vnode *nvp;
1598 	dev_t dev;
1599 {
1600 
1601 	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1602 	nvp->v_rdev = dev;
1603 	mtx_lock(&spechash_mtx);
1604 	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1605 	mtx_unlock(&spechash_mtx);
1606 }
1607 
1608 /*
1609  * Grab a particular vnode from the free list, increment its
1610  * reference count and lock it. The vnode lock bit is set if the
1611  * vnode is being eliminated in vgone. The process is awakened
1612  * when the transition is completed, and an error returned to
1613  * indicate that the vnode is no longer usable (possibly having
1614  * been changed to a new file system type).
1615  */
1616 int
1617 vget(vp, flags, td)
1618 	register struct vnode *vp;
1619 	int flags;
1620 	struct thread *td;
1621 {
1622 	int error;
1623 
1624 	/*
1625 	 * If the vnode is in the process of being cleaned out for
1626 	 * another use, we wait for the cleaning to finish and then
1627 	 * return failure. Cleaning is determined by checking that
1628 	 * the VXLOCK flag is set.
1629 	 */
1630 	if ((flags & LK_INTERLOCK) == 0)
1631 		mtx_lock(&vp->v_interlock);
1632 	if (vp->v_flag & VXLOCK) {
1633 		if (vp->v_vxproc == curthread) {
1634 			log(LOG_INFO, "VXLOCK interlock avoided\n");
1635 		} else {
1636 			vp->v_flag |= VXWANT;
1637 			msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
1638 			    "vget", 0);
1639 			return (ENOENT);
1640 		}
1641 	}
1642 
1643 	vp->v_usecount++;
1644 
1645 	if (VSHOULDBUSY(vp))
1646 		vbusy(vp);
1647 	if (flags & LK_TYPE_MASK) {
1648 		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1649 			/*
1650 			 * must expand vrele here because we do not want
1651 			 * to call VOP_INACTIVE if the reference count
1652 			 * drops back to zero since it was never really
1653 			 * active. We must remove it from the free list
1654 			 * before sleeping so that multiple processes do
1655 			 * not try to recycle it.
1656 			 */
1657 			mtx_lock(&vp->v_interlock);
1658 			vp->v_usecount--;
1659 			if (VSHOULDFREE(vp))
1660 				vfree(vp);
1661 			mtx_unlock(&vp->v_interlock);
1662 		}
1663 		return (error);
1664 	}
1665 	mtx_unlock(&vp->v_interlock);
1666 	return (0);
1667 }
1668 
1669 /*
1670  * Increase the reference count of a vnode.
1671  */
1672 void
1673 vref(struct vnode *vp)
1674 {
1675 	mtx_lock(&vp->v_interlock);
1676 	vp->v_usecount++;
1677 	mtx_unlock(&vp->v_interlock);
1678 }
1679 
1680 /*
1681  * Vnode put/release.
1682  * If count drops to zero, call inactive routine and return to freelist.
1683  */
1684 void
1685 vrele(vp)
1686 	struct vnode *vp;
1687 {
1688 	struct thread *td = curthread;	/* XXX */
1689 
1690 	KASSERT(vp != NULL, ("vrele: null vp"));
1691 
1692 	mtx_lock(&vp->v_interlock);
1693 
1694 	/* Skip this v_writecount check if we're going to panic below. */
1695 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1696 	    ("vrele: missed vn_close"));
1697 
1698 	if (vp->v_usecount > 1) {
1699 
1700 		vp->v_usecount--;
1701 		mtx_unlock(&vp->v_interlock);
1702 
1703 		return;
1704 	}
1705 
1706 	if (vp->v_usecount == 1) {
1707 		vp->v_usecount--;
1708 		if (VSHOULDFREE(vp))
1709 			vfree(vp);
1710 	/*
1711 	 * If we are doing a vput, the node is already locked, and we must
1712 	 * call VOP_INACTIVE with the node locked.  So, in the case of
1713 	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1714 	 */
1715 		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
1716 			VOP_INACTIVE(vp, td);
1717 		}
1718 
1719 	} else {
1720 #ifdef DIAGNOSTIC
1721 		vprint("vrele: negative ref count", vp);
1722 		mtx_unlock(&vp->v_interlock);
1723 #endif
1724 		panic("vrele: negative ref cnt");
1725 	}
1726 }
1727 
1728 /*
1729  * Release an already locked vnode.  This give the same effects as
1730  * unlock+vrele(), but takes less time and avoids releasing and
1731  * re-aquiring the lock (as vrele() aquires the lock internally.)
1732  */
1733 void
1734 vput(vp)
1735 	struct vnode *vp;
1736 {
1737 	struct thread *td = curthread;	/* XXX */
1738 
1739 	GIANT_REQUIRED;
1740 
1741 	KASSERT(vp != NULL, ("vput: null vp"));
1742 	mtx_lock(&vp->v_interlock);
1743 	/* Skip this v_writecount check if we're going to panic below. */
1744 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1745 	    ("vput: missed vn_close"));
1746 
1747 	if (vp->v_usecount > 1) {
1748 		vp->v_usecount--;
1749 		VOP_UNLOCK(vp, LK_INTERLOCK, td);
1750 		return;
1751 	}
1752 
1753 	if (vp->v_usecount == 1) {
1754 		vp->v_usecount--;
1755 		if (VSHOULDFREE(vp))
1756 			vfree(vp);
1757 	/*
1758 	 * If we are doing a vput, the node is already locked, and we must
1759 	 * call VOP_INACTIVE with the node locked.  So, in the case of
1760 	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1761 	 */
1762 		mtx_unlock(&vp->v_interlock);
1763 		VOP_INACTIVE(vp, td);
1764 
1765 	} else {
1766 #ifdef DIAGNOSTIC
1767 		vprint("vput: negative ref count", vp);
1768 #endif
1769 		panic("vput: negative ref cnt");
1770 	}
1771 }
1772 
1773 /*
1774  * Somebody doesn't want the vnode recycled.
1775  */
1776 void
1777 vhold(vp)
1778 	register struct vnode *vp;
1779 {
1780 	int s;
1781 
1782   	s = splbio();
1783 	vp->v_holdcnt++;
1784 	if (VSHOULDBUSY(vp))
1785 		vbusy(vp);
1786 	splx(s);
1787 }
1788 
1789 /*
1790  * Note that there is one less who cares about this vnode.  vdrop() is the
1791  * opposite of vhold().
1792  */
1793 void
1794 vdrop(vp)
1795 	register struct vnode *vp;
1796 {
1797 	int s;
1798 
1799 	s = splbio();
1800 	if (vp->v_holdcnt <= 0)
1801 		panic("vdrop: holdcnt");
1802 	vp->v_holdcnt--;
1803 	if (VSHOULDFREE(vp))
1804 		vfree(vp);
1805 	splx(s);
1806 }
1807 
1808 /*
1809  * Remove any vnodes in the vnode table belonging to mount point mp.
1810  *
1811  * If FORCECLOSE is not specified, there should not be any active ones,
1812  * return error if any are found (nb: this is a user error, not a
1813  * system error). If FORCECLOSE is specified, detach any active vnodes
1814  * that are found.
1815  *
1816  * If WRITECLOSE is set, only flush out regular file vnodes open for
1817  * writing.
1818  *
1819  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1820  *
1821  * `rootrefs' specifies the base reference count for the root vnode
1822  * of this filesystem. The root vnode is considered busy if its
1823  * v_usecount exceeds this value. On a successful return, vflush()
1824  * will call vrele() on the root vnode exactly rootrefs times.
1825  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1826  * be zero.
1827  */
1828 #ifdef DIAGNOSTIC
1829 static int busyprt = 0;		/* print out busy vnodes */
1830 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1831 #endif
1832 
1833 int
1834 vflush(mp, rootrefs, flags)
1835 	struct mount *mp;
1836 	int rootrefs;
1837 	int flags;
1838 {
1839 	struct thread *td = curthread;	/* XXX */
1840 	struct vnode *vp, *nvp, *rootvp = NULL;
1841 	int busy = 0, error;
1842 
1843 	if (rootrefs > 0) {
1844 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1845 		    ("vflush: bad args"));
1846 		/*
1847 		 * Get the filesystem root vnode. We can vput() it
1848 		 * immediately, since with rootrefs > 0, it won't go away.
1849 		 */
1850 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1851 			return (error);
1852 		vput(rootvp);
1853 	}
1854 	mtx_lock(&mntvnode_mtx);
1855 loop:
1856 	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
1857 		/*
1858 		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1859 		 * Start over if it has (it won't be on the list anymore).
1860 		 */
1861 		if (vp->v_mount != mp)
1862 			goto loop;
1863 		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
1864 
1865 		mtx_unlock(&mntvnode_mtx);
1866 		mtx_lock(&vp->v_interlock);
1867 		/*
1868 		 * Skip over a vnodes marked VSYSTEM.
1869 		 */
1870 		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1871 			mtx_unlock(&vp->v_interlock);
1872 			mtx_lock(&mntvnode_mtx);
1873 			continue;
1874 		}
1875 		/*
1876 		 * If WRITECLOSE is set, only flush out regular file vnodes
1877 		 * open for writing.
1878 		 */
1879 		if ((flags & WRITECLOSE) &&
1880 		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1881 			mtx_unlock(&vp->v_interlock);
1882 			mtx_lock(&mntvnode_mtx);
1883 			continue;
1884 		}
1885 
1886 		/*
1887 		 * With v_usecount == 0, all we need to do is clear out the
1888 		 * vnode data structures and we are done.
1889 		 */
1890 		if (vp->v_usecount == 0) {
1891 			vgonel(vp, td);
1892 			mtx_lock(&mntvnode_mtx);
1893 			continue;
1894 		}
1895 
1896 		/*
1897 		 * If FORCECLOSE is set, forcibly close the vnode. For block
1898 		 * or character devices, revert to an anonymous device. For
1899 		 * all other files, just kill them.
1900 		 */
1901 		if (flags & FORCECLOSE) {
1902 			if (vp->v_type != VCHR) {
1903 				vgonel(vp, td);
1904 			} else {
1905 				vclean(vp, 0, td);
1906 				vp->v_op = spec_vnodeop_p;
1907 				insmntque(vp, (struct mount *) 0);
1908 			}
1909 			mtx_lock(&mntvnode_mtx);
1910 			continue;
1911 		}
1912 #ifdef DIAGNOSTIC
1913 		if (busyprt)
1914 			vprint("vflush: busy vnode", vp);
1915 #endif
1916 		mtx_unlock(&vp->v_interlock);
1917 		mtx_lock(&mntvnode_mtx);
1918 		busy++;
1919 	}
1920 	mtx_unlock(&mntvnode_mtx);
1921 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1922 		/*
1923 		 * If just the root vnode is busy, and if its refcount
1924 		 * is equal to `rootrefs', then go ahead and kill it.
1925 		 */
1926 		mtx_lock(&rootvp->v_interlock);
1927 		KASSERT(busy > 0, ("vflush: not busy"));
1928 		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1929 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
1930 			vgonel(rootvp, td);
1931 			busy = 0;
1932 		} else
1933 			mtx_unlock(&rootvp->v_interlock);
1934 	}
1935 	if (busy)
1936 		return (EBUSY);
1937 	for (; rootrefs > 0; rootrefs--)
1938 		vrele(rootvp);
1939 	return (0);
1940 }
1941 
1942 /*
1943  * Disassociate the underlying file system from a vnode.
1944  */
1945 static void
1946 vclean(vp, flags, td)
1947 	struct vnode *vp;
1948 	int flags;
1949 	struct thread *td;
1950 {
1951 	int active;
1952 
1953 	/*
1954 	 * Check to see if the vnode is in use. If so we have to reference it
1955 	 * before we clean it out so that its count cannot fall to zero and
1956 	 * generate a race against ourselves to recycle it.
1957 	 */
1958 	if ((active = vp->v_usecount))
1959 		vp->v_usecount++;
1960 
1961 	/*
1962 	 * Prevent the vnode from being recycled or brought into use while we
1963 	 * clean it out.
1964 	 */
1965 	if (vp->v_flag & VXLOCK)
1966 		panic("vclean: deadlock");
1967 	vp->v_flag |= VXLOCK;
1968 	vp->v_vxproc = curthread;
1969 	/*
1970 	 * Even if the count is zero, the VOP_INACTIVE routine may still
1971 	 * have the object locked while it cleans it out. The VOP_LOCK
1972 	 * ensures that the VOP_INACTIVE routine is done with its work.
1973 	 * For active vnodes, it ensures that no other activity can
1974 	 * occur while the underlying object is being cleaned out.
1975 	 */
1976 	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
1977 
1978 	/*
1979 	 * Clean out any buffers associated with the vnode.
1980 	 * If the flush fails, just toss the buffers.
1981 	 */
1982 	if (flags & DOCLOSE) {
1983 		if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL)
1984 			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
1985 		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
1986 			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
1987 	}
1988 
1989 	VOP_DESTROYVOBJECT(vp);
1990 
1991 	/*
1992 	 * If purging an active vnode, it must be closed and
1993 	 * deactivated before being reclaimed. Note that the
1994 	 * VOP_INACTIVE will unlock the vnode.
1995 	 */
1996 	if (active) {
1997 		if (flags & DOCLOSE)
1998 			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
1999 		VOP_INACTIVE(vp, td);
2000 	} else {
2001 		/*
2002 		 * Any other processes trying to obtain this lock must first
2003 		 * wait for VXLOCK to clear, then call the new lock operation.
2004 		 */
2005 		VOP_UNLOCK(vp, 0, td);
2006 	}
2007 	/*
2008 	 * Reclaim the vnode.
2009 	 */
2010 	if (VOP_RECLAIM(vp, td))
2011 		panic("vclean: cannot reclaim");
2012 
2013 	if (active) {
2014 		/*
2015 		 * Inline copy of vrele() since VOP_INACTIVE
2016 		 * has already been called.
2017 		 */
2018 		mtx_lock(&vp->v_interlock);
2019 		if (--vp->v_usecount <= 0) {
2020 #ifdef DIAGNOSTIC
2021 			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2022 				vprint("vclean: bad ref count", vp);
2023 				panic("vclean: ref cnt");
2024 			}
2025 #endif
2026 			vfree(vp);
2027 		}
2028 		mtx_unlock(&vp->v_interlock);
2029 	}
2030 
2031 	cache_purge(vp);
2032 	vp->v_vnlock = NULL;
2033 	lockdestroy(&vp->v_lock);
2034 
2035 	if (VSHOULDFREE(vp))
2036 		vfree(vp);
2037 
2038 	/*
2039 	 * Done with purge, notify sleepers of the grim news.
2040 	 */
2041 	vp->v_op = dead_vnodeop_p;
2042 	vn_pollgone(vp);
2043 	vp->v_tag = VT_NON;
2044 	vp->v_flag &= ~VXLOCK;
2045 	vp->v_vxproc = NULL;
2046 	if (vp->v_flag & VXWANT) {
2047 		vp->v_flag &= ~VXWANT;
2048 		wakeup((caddr_t) vp);
2049 	}
2050 }
2051 
2052 /*
2053  * Eliminate all activity associated with the requested vnode
2054  * and with all vnodes aliased to the requested vnode.
2055  */
2056 int
2057 vop_revoke(ap)
2058 	struct vop_revoke_args /* {
2059 		struct vnode *a_vp;
2060 		int a_flags;
2061 	} */ *ap;
2062 {
2063 	struct vnode *vp, *vq;
2064 	dev_t dev;
2065 
2066 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2067 
2068 	vp = ap->a_vp;
2069 	/*
2070 	 * If a vgone (or vclean) is already in progress,
2071 	 * wait until it is done and return.
2072 	 */
2073 	if (vp->v_flag & VXLOCK) {
2074 		vp->v_flag |= VXWANT;
2075 		msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
2076 		    "vop_revokeall", 0);
2077 		return (0);
2078 	}
2079 	dev = vp->v_rdev;
2080 	for (;;) {
2081 		mtx_lock(&spechash_mtx);
2082 		vq = SLIST_FIRST(&dev->si_hlist);
2083 		mtx_unlock(&spechash_mtx);
2084 		if (!vq)
2085 			break;
2086 		vgone(vq);
2087 	}
2088 	return (0);
2089 }
2090 
2091 /*
2092  * Recycle an unused vnode to the front of the free list.
2093  * Release the passed interlock if the vnode will be recycled.
2094  */
2095 int
2096 vrecycle(vp, inter_lkp, td)
2097 	struct vnode *vp;
2098 	struct mtx *inter_lkp;
2099 	struct thread *td;
2100 {
2101 
2102 	mtx_lock(&vp->v_interlock);
2103 	if (vp->v_usecount == 0) {
2104 		if (inter_lkp) {
2105 			mtx_unlock(inter_lkp);
2106 		}
2107 		vgonel(vp, td);
2108 		return (1);
2109 	}
2110 	mtx_unlock(&vp->v_interlock);
2111 	return (0);
2112 }
2113 
2114 /*
2115  * Eliminate all activity associated with a vnode
2116  * in preparation for reuse.
2117  */
2118 void
2119 vgone(vp)
2120 	register struct vnode *vp;
2121 {
2122 	struct thread *td = curthread;	/* XXX */
2123 
2124 	mtx_lock(&vp->v_interlock);
2125 	vgonel(vp, td);
2126 }
2127 
2128 /*
2129  * vgone, with the vp interlock held.
2130  */
2131 void
2132 vgonel(vp, td)
2133 	struct vnode *vp;
2134 	struct thread *td;
2135 {
2136 	int s;
2137 
2138 	/*
2139 	 * If a vgone (or vclean) is already in progress,
2140 	 * wait until it is done and return.
2141 	 */
2142 	if (vp->v_flag & VXLOCK) {
2143 		vp->v_flag |= VXWANT;
2144 		msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
2145 		    "vgone", 0);
2146 		return;
2147 	}
2148 
2149 	/*
2150 	 * Clean out the filesystem specific data.
2151 	 */
2152 	vclean(vp, DOCLOSE, td);
2153 	mtx_lock(&vp->v_interlock);
2154 
2155 	/*
2156 	 * Delete from old mount point vnode list, if on one.
2157 	 */
2158 	if (vp->v_mount != NULL)
2159 		insmntque(vp, (struct mount *)0);
2160 	/*
2161 	 * If special device, remove it from special device alias list
2162 	 * if it is on one.
2163 	 */
2164 	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
2165 		mtx_lock(&spechash_mtx);
2166 		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2167 		freedev(vp->v_rdev);
2168 		mtx_unlock(&spechash_mtx);
2169 		vp->v_rdev = NULL;
2170 	}
2171 
2172 	/*
2173 	 * If it is on the freelist and not already at the head,
2174 	 * move it to the head of the list. The test of the
2175 	 * VDOOMED flag and the reference count of zero is because
2176 	 * it will be removed from the free list by getnewvnode,
2177 	 * but will not have its reference count incremented until
2178 	 * after calling vgone. If the reference count were
2179 	 * incremented first, vgone would (incorrectly) try to
2180 	 * close the previous instance of the underlying object.
2181 	 */
2182 	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2183 		s = splbio();
2184 		mtx_lock(&vnode_free_list_mtx);
2185 		if (vp->v_flag & VFREE)
2186 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2187 		else
2188 			freevnodes++;
2189 		vp->v_flag |= VFREE;
2190 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2191 		mtx_unlock(&vnode_free_list_mtx);
2192 		splx(s);
2193 	}
2194 
2195 	vp->v_type = VBAD;
2196 	mtx_unlock(&vp->v_interlock);
2197 }
2198 
2199 /*
2200  * Lookup a vnode by device number.
2201  */
2202 int
2203 vfinddev(dev, type, vpp)
2204 	dev_t dev;
2205 	enum vtype type;
2206 	struct vnode **vpp;
2207 {
2208 	struct vnode *vp;
2209 
2210 	mtx_lock(&spechash_mtx);
2211 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2212 		if (type == vp->v_type) {
2213 			*vpp = vp;
2214 			mtx_unlock(&spechash_mtx);
2215 			return (1);
2216 		}
2217 	}
2218 	mtx_unlock(&spechash_mtx);
2219 	return (0);
2220 }
2221 
2222 /*
2223  * Calculate the total number of references to a special device.
2224  */
2225 int
2226 vcount(vp)
2227 	struct vnode *vp;
2228 {
2229 	struct vnode *vq;
2230 	int count;
2231 
2232 	count = 0;
2233 	mtx_lock(&spechash_mtx);
2234 	SLIST_FOREACH(vq, &vp->v_rdev->si_hlist, v_specnext)
2235 		count += vq->v_usecount;
2236 	mtx_unlock(&spechash_mtx);
2237 	return (count);
2238 }
2239 
2240 /*
2241  * Same as above, but using the dev_t as argument
2242  */
2243 int
2244 count_dev(dev)
2245 	dev_t dev;
2246 {
2247 	struct vnode *vp;
2248 
2249 	vp = SLIST_FIRST(&dev->si_hlist);
2250 	if (vp == NULL)
2251 		return (0);
2252 	return(vcount(vp));
2253 }
2254 
2255 /*
2256  * Print out a description of a vnode.
2257  */
2258 static char *typename[] =
2259 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2260 
2261 void
2262 vprint(label, vp)
2263 	char *label;
2264 	struct vnode *vp;
2265 {
2266 	char buf[96];
2267 
2268 	if (label != NULL)
2269 		printf("%s: %p: ", label, (void *)vp);
2270 	else
2271 		printf("%p: ", (void *)vp);
2272 	printf("type %s, usecount %d, writecount %d, refcount %d,",
2273 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2274 	    vp->v_holdcnt);
2275 	buf[0] = '\0';
2276 	if (vp->v_flag & VROOT)
2277 		strcat(buf, "|VROOT");
2278 	if (vp->v_flag & VTEXT)
2279 		strcat(buf, "|VTEXT");
2280 	if (vp->v_flag & VSYSTEM)
2281 		strcat(buf, "|VSYSTEM");
2282 	if (vp->v_flag & VXLOCK)
2283 		strcat(buf, "|VXLOCK");
2284 	if (vp->v_flag & VXWANT)
2285 		strcat(buf, "|VXWANT");
2286 	if (vp->v_flag & VBWAIT)
2287 		strcat(buf, "|VBWAIT");
2288 	if (vp->v_flag & VDOOMED)
2289 		strcat(buf, "|VDOOMED");
2290 	if (vp->v_flag & VFREE)
2291 		strcat(buf, "|VFREE");
2292 	if (vp->v_flag & VOBJBUF)
2293 		strcat(buf, "|VOBJBUF");
2294 	if (buf[0] != '\0')
2295 		printf(" flags (%s)", &buf[1]);
2296 	if (vp->v_data == NULL) {
2297 		printf("\n");
2298 	} else {
2299 		printf("\n\t");
2300 		VOP_PRINT(vp);
2301 	}
2302 }
2303 
2304 #ifdef DDB
2305 #include <ddb/ddb.h>
2306 /*
2307  * List all of the locked vnodes in the system.
2308  * Called when debugging the kernel.
2309  */
2310 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2311 {
2312 	struct thread *td = curthread;	/* XXX */
2313 	struct mount *mp, *nmp;
2314 	struct vnode *vp;
2315 
2316 	printf("Locked vnodes\n");
2317 	mtx_lock(&mountlist_mtx);
2318 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2319 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
2320 			nmp = TAILQ_NEXT(mp, mnt_list);
2321 			continue;
2322 		}
2323 		mtx_lock(&mntvnode_mtx);
2324 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2325 			if (VOP_ISLOCKED(vp, NULL))
2326 				vprint((char *)0, vp);
2327 		}
2328 		mtx_unlock(&mntvnode_mtx);
2329 		mtx_lock(&mountlist_mtx);
2330 		nmp = TAILQ_NEXT(mp, mnt_list);
2331 		vfs_unbusy(mp, td);
2332 	}
2333 	mtx_unlock(&mountlist_mtx);
2334 }
2335 #endif
2336 
2337 /*
2338  * Top level filesystem related information gathering.
2339  */
2340 static int	sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
2341 
2342 static int
2343 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2344 {
2345 	int *name = (int *)arg1 - 1;	/* XXX */
2346 	u_int namelen = arg2 + 1;	/* XXX */
2347 	struct vfsconf *vfsp;
2348 
2349 #if 1 || defined(COMPAT_PRELITE2)
2350 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2351 	if (namelen == 1)
2352 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2353 #endif
2354 
2355 	/* XXX the below code does not compile; vfs_sysctl does not exist. */
2356 #ifdef notyet
2357 	/* all sysctl names at this level are at least name and field */
2358 	if (namelen < 2)
2359 		return (ENOTDIR);		/* overloaded */
2360 	if (name[0] != VFS_GENERIC) {
2361 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2362 			if (vfsp->vfc_typenum == name[0])
2363 				break;
2364 		if (vfsp == NULL)
2365 			return (EOPNOTSUPP);
2366 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2367 		    oldp, oldlenp, newp, newlen, td));
2368 	}
2369 #endif
2370 	switch (name[1]) {
2371 	case VFS_MAXTYPENUM:
2372 		if (namelen != 2)
2373 			return (ENOTDIR);
2374 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2375 	case VFS_CONF:
2376 		if (namelen != 3)
2377 			return (ENOTDIR);	/* overloaded */
2378 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2379 			if (vfsp->vfc_typenum == name[2])
2380 				break;
2381 		if (vfsp == NULL)
2382 			return (EOPNOTSUPP);
2383 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2384 	}
2385 	return (EOPNOTSUPP);
2386 }
2387 
2388 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2389 	"Generic filesystem");
2390 
2391 #if 1 || defined(COMPAT_PRELITE2)
2392 
2393 static int
2394 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2395 {
2396 	int error;
2397 	struct vfsconf *vfsp;
2398 	struct ovfsconf ovfs;
2399 
2400 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2401 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2402 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2403 		ovfs.vfc_index = vfsp->vfc_typenum;
2404 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2405 		ovfs.vfc_flags = vfsp->vfc_flags;
2406 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2407 		if (error)
2408 			return error;
2409 	}
2410 	return 0;
2411 }
2412 
2413 #endif /* 1 || COMPAT_PRELITE2 */
2414 
2415 #if COMPILING_LINT
2416 #define KINFO_VNODESLOP	10
2417 /*
2418  * Dump vnode list (via sysctl).
2419  * Copyout address of vnode followed by vnode.
2420  */
2421 /* ARGSUSED */
2422 static int
2423 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2424 {
2425 	struct thread *td = curthread;	/* XXX */
2426 	struct mount *mp, *nmp;
2427 	struct vnode *nvp, *vp;
2428 	int error;
2429 
2430 #define VPTRSZ	sizeof (struct vnode *)
2431 #define VNODESZ	sizeof (struct vnode)
2432 
2433 	req->lock = 0;
2434 	if (!req->oldptr) /* Make an estimate */
2435 		return (SYSCTL_OUT(req, 0,
2436 			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2437 
2438 	mtx_lock(&mountlist_mtx);
2439 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2440 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
2441 			nmp = TAILQ_NEXT(mp, mnt_list);
2442 			continue;
2443 		}
2444 		mtx_lock(&mntvnode_mtx);
2445 again:
2446 		for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2447 		     vp != NULL;
2448 		     vp = nvp) {
2449 			/*
2450 			 * Check that the vp is still associated with
2451 			 * this filesystem.  RACE: could have been
2452 			 * recycled onto the same filesystem.
2453 			 */
2454 			if (vp->v_mount != mp)
2455 				goto again;
2456 			nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2457 			mtx_unlock(&mntvnode_mtx);
2458 			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2459 			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2460 				return (error);
2461 			mtx_lock(&mntvnode_mtx);
2462 		}
2463 		mtx_unlock(&mntvnode_mtx);
2464 		mtx_lock(&mountlist_mtx);
2465 		nmp = TAILQ_NEXT(mp, mnt_list);
2466 		vfs_unbusy(mp, td);
2467 	}
2468 	mtx_unlock(&mountlist_mtx);
2469 
2470 	return (0);
2471 }
2472 
2473 /*
2474  * XXX
2475  * Exporting the vnode list on large systems causes them to crash.
2476  * Exporting the vnode list on medium systems causes sysctl to coredump.
2477  */
2478 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2479 	0, 0, sysctl_vnode, "S,vnode", "");
2480 #endif
2481 
2482 /*
2483  * Check to see if a filesystem is mounted on a block device.
2484  */
2485 int
2486 vfs_mountedon(vp)
2487 	struct vnode *vp;
2488 {
2489 
2490 	if (vp->v_rdev->si_mountpoint != NULL)
2491 		return (EBUSY);
2492 	return (0);
2493 }
2494 
2495 /*
2496  * Unmount all filesystems. The list is traversed in reverse order
2497  * of mounting to avoid dependencies.
2498  */
2499 void
2500 vfs_unmountall()
2501 {
2502 	struct mount *mp;
2503 	struct thread *td;
2504 	int error;
2505 
2506 	if (curthread != NULL)
2507 		td = curthread;
2508 	else
2509 		td = &initproc->p_thread;	/* XXX XXX should this be proc0? */
2510 	/*
2511 	 * Since this only runs when rebooting, it is not interlocked.
2512 	 */
2513 	while(!TAILQ_EMPTY(&mountlist)) {
2514 		mp = TAILQ_LAST(&mountlist, mntlist);
2515 		error = dounmount(mp, MNT_FORCE, td);
2516 		if (error) {
2517 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2518 			printf("unmount of %s failed (",
2519 			    mp->mnt_stat.f_mntonname);
2520 			if (error == EBUSY)
2521 				printf("BUSY)\n");
2522 			else
2523 				printf("%d)\n", error);
2524 		} else {
2525 			/* The unmount has removed mp from the mountlist */
2526 		}
2527 	}
2528 }
2529 
2530 /*
2531  * perform msync on all vnodes under a mount point
2532  * the mount point must be locked.
2533  */
2534 void
2535 vfs_msync(struct mount *mp, int flags)
2536 {
2537 	struct vnode *vp, *nvp;
2538 	struct vm_object *obj;
2539 	int tries;
2540 
2541 	GIANT_REQUIRED;
2542 
2543 	tries = 5;
2544 	mtx_lock(&mntvnode_mtx);
2545 loop:
2546 	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
2547 		if (vp->v_mount != mp) {
2548 			if (--tries > 0)
2549 				goto loop;
2550 			break;
2551 		}
2552 		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2553 
2554 		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2555 			continue;
2556 
2557 		if (vp->v_flag & VNOSYNC)	/* unlinked, skip it */
2558 			continue;
2559 
2560 		if ((vp->v_flag & VOBJDIRTY) &&
2561 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2562 			mtx_unlock(&mntvnode_mtx);
2563 			if (!vget(vp,
2564 			    LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curthread)) {
2565 				if (VOP_GETVOBJECT(vp, &obj) == 0) {
2566 					vm_object_page_clean(obj, 0, 0,
2567 					    flags == MNT_WAIT ?
2568 					    OBJPC_SYNC : OBJPC_NOSYNC);
2569 				}
2570 				vput(vp);
2571 			}
2572 			mtx_lock(&mntvnode_mtx);
2573 			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
2574 				if (--tries > 0)
2575 					goto loop;
2576 				break;
2577 			}
2578 		}
2579 	}
2580 	mtx_unlock(&mntvnode_mtx);
2581 }
2582 
2583 /*
2584  * Create the VM object needed for VMIO and mmap support.  This
2585  * is done for all VREG files in the system.  Some filesystems might
2586  * afford the additional metadata buffering capability of the
2587  * VMIO code by making the device node be VMIO mode also.
2588  *
2589  * vp must be locked when vfs_object_create is called.
2590  */
2591 int
2592 vfs_object_create(vp, td, cred)
2593 	struct vnode *vp;
2594 	struct thread *td;
2595 	struct ucred *cred;
2596 {
2597 	GIANT_REQUIRED;
2598 	return (VOP_CREATEVOBJECT(vp, cred, td));
2599 }
2600 
2601 /*
2602  * Mark a vnode as free, putting it up for recycling.
2603  */
2604 void
2605 vfree(vp)
2606 	struct vnode *vp;
2607 {
2608 	int s;
2609 
2610 	s = splbio();
2611 	mtx_lock(&vnode_free_list_mtx);
2612 	KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2613 	if (vp->v_flag & VAGE) {
2614 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2615 	} else {
2616 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2617 	}
2618 	freevnodes++;
2619 	mtx_unlock(&vnode_free_list_mtx);
2620 	vp->v_flag &= ~VAGE;
2621 	vp->v_flag |= VFREE;
2622 	splx(s);
2623 }
2624 
2625 /*
2626  * Opposite of vfree() - mark a vnode as in use.
2627  */
2628 void
2629 vbusy(vp)
2630 	struct vnode *vp;
2631 {
2632 	int s;
2633 
2634 	s = splbio();
2635 	mtx_lock(&vnode_free_list_mtx);
2636 	KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2637 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2638 	freevnodes--;
2639 	mtx_unlock(&vnode_free_list_mtx);
2640 	vp->v_flag &= ~(VFREE|VAGE);
2641 	splx(s);
2642 }
2643 
2644 /*
2645  * Record a process's interest in events which might happen to
2646  * a vnode.  Because poll uses the historic select-style interface
2647  * internally, this routine serves as both the ``check for any
2648  * pending events'' and the ``record my interest in future events''
2649  * functions.  (These are done together, while the lock is held,
2650  * to avoid race conditions.)
2651  */
2652 int
2653 vn_pollrecord(vp, td, events)
2654 	struct vnode *vp;
2655 	struct thread *td;
2656 	short events;
2657 {
2658 	mtx_lock(&vp->v_pollinfo.vpi_lock);
2659 	if (vp->v_pollinfo.vpi_revents & events) {
2660 		/*
2661 		 * This leaves events we are not interested
2662 		 * in available for the other process which
2663 		 * which presumably had requested them
2664 		 * (otherwise they would never have been
2665 		 * recorded).
2666 		 */
2667 		events &= vp->v_pollinfo.vpi_revents;
2668 		vp->v_pollinfo.vpi_revents &= ~events;
2669 
2670 		mtx_unlock(&vp->v_pollinfo.vpi_lock);
2671 		return events;
2672 	}
2673 	vp->v_pollinfo.vpi_events |= events;
2674 	selrecord(td, &vp->v_pollinfo.vpi_selinfo);
2675 	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2676 	return 0;
2677 }
2678 
2679 /*
2680  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2681  * it is possible for us to miss an event due to race conditions, but
2682  * that condition is expected to be rare, so for the moment it is the
2683  * preferred interface.
2684  */
2685 void
2686 vn_pollevent(vp, events)
2687 	struct vnode *vp;
2688 	short events;
2689 {
2690 	mtx_lock(&vp->v_pollinfo.vpi_lock);
2691 	if (vp->v_pollinfo.vpi_events & events) {
2692 		/*
2693 		 * We clear vpi_events so that we don't
2694 		 * call selwakeup() twice if two events are
2695 		 * posted before the polling process(es) is
2696 		 * awakened.  This also ensures that we take at
2697 		 * most one selwakeup() if the polling process
2698 		 * is no longer interested.  However, it does
2699 		 * mean that only one event can be noticed at
2700 		 * a time.  (Perhaps we should only clear those
2701 		 * event bits which we note?) XXX
2702 		 */
2703 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2704 		vp->v_pollinfo.vpi_revents |= events;
2705 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2706 	}
2707 	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2708 }
2709 
2710 #define VN_KNOTE(vp, b) \
2711 	KNOTE((struct klist *)&vp->v_pollinfo.vpi_selinfo.si_note, (b))
2712 
2713 /*
2714  * Wake up anyone polling on vp because it is being revoked.
2715  * This depends on dead_poll() returning POLLHUP for correct
2716  * behavior.
2717  */
2718 void
2719 vn_pollgone(vp)
2720 	struct vnode *vp;
2721 {
2722 	mtx_lock(&vp->v_pollinfo.vpi_lock);
2723         VN_KNOTE(vp, NOTE_REVOKE);
2724 	if (vp->v_pollinfo.vpi_events) {
2725 		vp->v_pollinfo.vpi_events = 0;
2726 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2727 	}
2728 	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2729 }
2730 
2731 
2732 
2733 /*
2734  * Routine to create and manage a filesystem syncer vnode.
2735  */
2736 #define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2737 static int	sync_fsync __P((struct  vop_fsync_args *));
2738 static int	sync_inactive __P((struct  vop_inactive_args *));
2739 static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2740 #define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2741 #define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2742 static int	sync_print __P((struct vop_print_args *));
2743 #define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2744 
2745 static vop_t **sync_vnodeop_p;
2746 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2747 	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2748 	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2749 	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2750 	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2751 	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2752 	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2753 	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2754 	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2755 	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2756 	{ NULL, NULL }
2757 };
2758 static struct vnodeopv_desc sync_vnodeop_opv_desc =
2759 	{ &sync_vnodeop_p, sync_vnodeop_entries };
2760 
2761 VNODEOP_SET(sync_vnodeop_opv_desc);
2762 
2763 /*
2764  * Create a new filesystem syncer vnode for the specified mount point.
2765  */
2766 int
2767 vfs_allocate_syncvnode(mp)
2768 	struct mount *mp;
2769 {
2770 	struct vnode *vp;
2771 	static long start, incr, next;
2772 	int error;
2773 
2774 	/* Allocate a new vnode */
2775 	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2776 		mp->mnt_syncer = NULL;
2777 		return (error);
2778 	}
2779 	vp->v_type = VNON;
2780 	/*
2781 	 * Place the vnode onto the syncer worklist. We attempt to
2782 	 * scatter them about on the list so that they will go off
2783 	 * at evenly distributed times even if all the filesystems
2784 	 * are mounted at once.
2785 	 */
2786 	next += incr;
2787 	if (next == 0 || next > syncer_maxdelay) {
2788 		start /= 2;
2789 		incr /= 2;
2790 		if (start == 0) {
2791 			start = syncer_maxdelay / 2;
2792 			incr = syncer_maxdelay;
2793 		}
2794 		next = start;
2795 	}
2796 	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2797 	mp->mnt_syncer = vp;
2798 	return (0);
2799 }
2800 
2801 /*
2802  * Do a lazy sync of the filesystem.
2803  */
2804 static int
2805 sync_fsync(ap)
2806 	struct vop_fsync_args /* {
2807 		struct vnode *a_vp;
2808 		struct ucred *a_cred;
2809 		int a_waitfor;
2810 		struct thread *a_td;
2811 	} */ *ap;
2812 {
2813 	struct vnode *syncvp = ap->a_vp;
2814 	struct mount *mp = syncvp->v_mount;
2815 	struct thread *td = ap->a_td;
2816 	int asyncflag;
2817 
2818 	/*
2819 	 * We only need to do something if this is a lazy evaluation.
2820 	 */
2821 	if (ap->a_waitfor != MNT_LAZY)
2822 		return (0);
2823 
2824 	/*
2825 	 * Move ourselves to the back of the sync list.
2826 	 */
2827 	vn_syncer_add_to_worklist(syncvp, syncdelay);
2828 
2829 	/*
2830 	 * Walk the list of vnodes pushing all that are dirty and
2831 	 * not already on the sync list.
2832 	 */
2833 	mtx_lock(&mountlist_mtx);
2834 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
2835 		mtx_unlock(&mountlist_mtx);
2836 		return (0);
2837 	}
2838 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
2839 		vfs_unbusy(mp, td);
2840 		return (0);
2841 	}
2842 	asyncflag = mp->mnt_flag & MNT_ASYNC;
2843 	mp->mnt_flag &= ~MNT_ASYNC;
2844 	vfs_msync(mp, MNT_NOWAIT);
2845 	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
2846 	if (asyncflag)
2847 		mp->mnt_flag |= MNT_ASYNC;
2848 	vn_finished_write(mp);
2849 	vfs_unbusy(mp, td);
2850 	return (0);
2851 }
2852 
2853 /*
2854  * The syncer vnode is no referenced.
2855  */
2856 static int
2857 sync_inactive(ap)
2858 	struct vop_inactive_args /* {
2859 		struct vnode *a_vp;
2860 		struct thread *a_td;
2861 	} */ *ap;
2862 {
2863 
2864 	vgone(ap->a_vp);
2865 	return (0);
2866 }
2867 
2868 /*
2869  * The syncer vnode is no longer needed and is being decommissioned.
2870  *
2871  * Modifications to the worklist must be protected at splbio().
2872  */
2873 static int
2874 sync_reclaim(ap)
2875 	struct vop_reclaim_args /* {
2876 		struct vnode *a_vp;
2877 	} */ *ap;
2878 {
2879 	struct vnode *vp = ap->a_vp;
2880 	int s;
2881 
2882 	s = splbio();
2883 	vp->v_mount->mnt_syncer = NULL;
2884 	if (vp->v_flag & VONWORKLST) {
2885 		LIST_REMOVE(vp, v_synclist);
2886 		vp->v_flag &= ~VONWORKLST;
2887 	}
2888 	splx(s);
2889 
2890 	return (0);
2891 }
2892 
2893 /*
2894  * Print out a syncer vnode.
2895  */
2896 static int
2897 sync_print(ap)
2898 	struct vop_print_args /* {
2899 		struct vnode *a_vp;
2900 	} */ *ap;
2901 {
2902 	struct vnode *vp = ap->a_vp;
2903 
2904 	printf("syncer vnode");
2905 	if (vp->v_vnlock != NULL)
2906 		lockmgr_printinfo(vp->v_vnlock);
2907 	printf("\n");
2908 	return (0);
2909 }
2910 
2911 /*
2912  * extract the dev_t from a VCHR
2913  */
2914 dev_t
2915 vn_todev(vp)
2916 	struct vnode *vp;
2917 {
2918 	if (vp->v_type != VCHR)
2919 		return (NODEV);
2920 	return (vp->v_rdev);
2921 }
2922 
2923 /*
2924  * Check if vnode represents a disk device
2925  */
2926 int
2927 vn_isdisk(vp, errp)
2928 	struct vnode *vp;
2929 	int *errp;
2930 {
2931 	struct cdevsw *cdevsw;
2932 
2933 	if (vp->v_type != VCHR) {
2934 		if (errp != NULL)
2935 			*errp = ENOTBLK;
2936 		return (0);
2937 	}
2938 	if (vp->v_rdev == NULL) {
2939 		if (errp != NULL)
2940 			*errp = ENXIO;
2941 		return (0);
2942 	}
2943 	cdevsw = devsw(vp->v_rdev);
2944 	if (cdevsw == NULL) {
2945 		if (errp != NULL)
2946 			*errp = ENXIO;
2947 		return (0);
2948 	}
2949 	if (!(cdevsw->d_flags & D_DISK)) {
2950 		if (errp != NULL)
2951 			*errp = ENOTBLK;
2952 		return (0);
2953 	}
2954 	if (errp != NULL)
2955 		*errp = 0;
2956 	return (1);
2957 }
2958 
2959 /*
2960  * Free data allocated by namei(); see namei(9) for details.
2961  */
2962 void
2963 NDFREE(ndp, flags)
2964      struct nameidata *ndp;
2965      const uint flags;
2966 {
2967 	if (!(flags & NDF_NO_FREE_PNBUF) &&
2968 	    (ndp->ni_cnd.cn_flags & HASBUF)) {
2969 		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2970 		ndp->ni_cnd.cn_flags &= ~HASBUF;
2971 	}
2972 	if (!(flags & NDF_NO_DVP_UNLOCK) &&
2973 	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
2974 	    ndp->ni_dvp != ndp->ni_vp)
2975 		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
2976 	if (!(flags & NDF_NO_DVP_RELE) &&
2977 	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
2978 		vrele(ndp->ni_dvp);
2979 		ndp->ni_dvp = NULL;
2980 	}
2981 	if (!(flags & NDF_NO_VP_UNLOCK) &&
2982 	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
2983 		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
2984 	if (!(flags & NDF_NO_VP_RELE) &&
2985 	    ndp->ni_vp) {
2986 		vrele(ndp->ni_vp);
2987 		ndp->ni_vp = NULL;
2988 	}
2989 	if (!(flags & NDF_NO_STARTDIR_RELE) &&
2990 	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
2991 		vrele(ndp->ni_startdir);
2992 		ndp->ni_startdir = NULL;
2993 	}
2994 }
2995 
2996 /*
2997  * Common file system object access control check routine.  Accepts a
2998  * vnode's type, "mode", uid and gid, requested access mode, credentials,
2999  * and optional call-by-reference privused argument allowing vaccess()
3000  * to indicate to the caller whether privilege was used to satisfy the
3001  * request.  Returns 0 on success, or an errno on failure.
3002  */
3003 int
3004 vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3005 	enum vtype type;
3006 	mode_t file_mode;
3007 	uid_t file_uid;
3008 	gid_t file_gid;
3009 	mode_t acc_mode;
3010 	struct ucred *cred;
3011 	int *privused;
3012 {
3013 	mode_t dac_granted;
3014 #ifdef CAPABILITIES
3015 	mode_t cap_granted;
3016 #endif
3017 
3018 	/*
3019 	 * Look for a normal, non-privileged way to access the file/directory
3020 	 * as requested.  If it exists, go with that.
3021 	 */
3022 
3023 	if (privused != NULL)
3024 		*privused = 0;
3025 
3026 	dac_granted = 0;
3027 
3028 	/* Check the owner. */
3029 	if (cred->cr_uid == file_uid) {
3030 		dac_granted |= VADMIN;
3031 		if (file_mode & S_IXUSR)
3032 			dac_granted |= VEXEC;
3033 		if (file_mode & S_IRUSR)
3034 			dac_granted |= VREAD;
3035 		if (file_mode & S_IWUSR)
3036 			dac_granted |= VWRITE;
3037 
3038 		if ((acc_mode & dac_granted) == acc_mode)
3039 			return (0);
3040 
3041 		goto privcheck;
3042 	}
3043 
3044 	/* Otherwise, check the groups (first match) */
3045 	if (groupmember(file_gid, cred)) {
3046 		if (file_mode & S_IXGRP)
3047 			dac_granted |= VEXEC;
3048 		if (file_mode & S_IRGRP)
3049 			dac_granted |= VREAD;
3050 		if (file_mode & S_IWGRP)
3051 			dac_granted |= VWRITE;
3052 
3053 		if ((acc_mode & dac_granted) == acc_mode)
3054 			return (0);
3055 
3056 		goto privcheck;
3057 	}
3058 
3059 	/* Otherwise, check everyone else. */
3060 	if (file_mode & S_IXOTH)
3061 		dac_granted |= VEXEC;
3062 	if (file_mode & S_IROTH)
3063 		dac_granted |= VREAD;
3064 	if (file_mode & S_IWOTH)
3065 		dac_granted |= VWRITE;
3066 	if ((acc_mode & dac_granted) == acc_mode)
3067 		return (0);
3068 
3069 privcheck:
3070 	if (!suser_xxx(cred, NULL, PRISON_ROOT)) {
3071 		/* XXX audit: privilege used */
3072 		if (privused != NULL)
3073 			*privused = 1;
3074 		return (0);
3075 	}
3076 
3077 #ifdef CAPABILITIES
3078 	/*
3079 	 * Build a capability mask to determine if the set of capabilities
3080 	 * satisfies the requirements when combined with the granted mask
3081 	 * from above.
3082 	 * For each capability, if the capability is required, bitwise
3083 	 * or the request type onto the cap_granted mask.
3084 	 */
3085 	cap_granted = 0;
3086 
3087 	if (type == VDIR) {
3088 		/*
3089 		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3090 		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3091 		 */
3092 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3093 		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3094 			cap_granted |= VEXEC;
3095 	} else {
3096 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3097 		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3098 			cap_granted |= VEXEC;
3099 	}
3100 
3101 	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3102 	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3103 		cap_granted |= VREAD;
3104 
3105 	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3106 	    !cap_check(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3107 		cap_granted |= VWRITE;
3108 
3109 	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3110 	    !cap_check(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3111 		cap_granted |= VADMIN;
3112 
3113 	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3114 		/* XXX audit: privilege used */
3115 		if (privused != NULL)
3116 			*privused = 1;
3117 		return (0);
3118 	}
3119 #endif
3120 
3121 	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3122 }
3123 
3124