xref: /freebsd/sys/kern/vfs_subr.c (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_watchdog.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/asan.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/capsicum.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/counter.h>
54 #include <sys/dirent.h>
55 #include <sys/event.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/file.h>
59 #include <sys/fcntl.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vnode.h>
84 #include <sys/watchdog.h>
85 
86 #include <machine/stdarg.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99 
100 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
101 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
102 #endif
103 
104 #ifdef DDB
105 #include <ddb/ddb.h>
106 #endif
107 
108 static void	delmntque(struct vnode *vp);
109 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
110 		    int slpflag, int slptimeo);
111 static void	syncer_shutdown(void *arg, int howto);
112 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
113 static void	v_init_counters(struct vnode *);
114 static void	vn_seqc_init(struct vnode *);
115 static void	vn_seqc_write_end_free(struct vnode *vp);
116 static void	vgonel(struct vnode *);
117 static bool	vhold_recycle_free(struct vnode *);
118 static void	vdropl_recycle(struct vnode *vp);
119 static void	vdrop_recycle(struct vnode *vp);
120 static void	vfs_knllock(void *arg);
121 static void	vfs_knlunlock(void *arg);
122 static void	vfs_knl_assert_lock(void *arg, int what);
123 static void	destroy_vpollinfo(struct vpollinfo *vi);
124 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
125 		    daddr_t startlbn, daddr_t endlbn);
126 static void	vnlru_recalc(void);
127 
128 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129     "vnode configuration and statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131     "vnode configuration");
132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133     "vnode statistics");
134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135     "vnode recycling");
136 
137 /*
138  * Number of vnodes in existence.  Increased whenever getnewvnode()
139  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140  */
141 static u_long __exclusive_cache_line numvnodes;
142 
143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144     "Number of vnodes in existence (legacy)");
145 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence");
147 
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150     "Number of vnodes created by getnewvnode (legacy)");
151 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
152     "Number of vnodes created by getnewvnode");
153 
154 /*
155  * Conversion tables for conversion from vnode types to inode formats
156  * and back.
157  */
158 __enum_uint8(vtype) iftovt_tab[16] = {
159 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161 };
162 int vttoif_tab[10] = {
163 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165 };
166 
167 /*
168  * List of allocates vnodes in the system.
169  */
170 static TAILQ_HEAD(freelst, vnode) vnode_list;
171 static struct vnode *vnode_list_free_marker;
172 static struct vnode *vnode_list_reclaim_marker;
173 
174 /*
175  * "Free" vnode target.  Free vnodes are rarely completely free, but are
176  * just ones that are cheap to recycle.  Usually they are for files which
177  * have been stat'd but not read; these usually have inode and namecache
178  * data attached to them.  This target is the preferred minimum size of a
179  * sub-cache consisting mostly of such files. The system balances the size
180  * of this sub-cache with its complement to try to prevent either from
181  * thrashing while the other is relatively inactive.  The targets express
182  * a preference for the best balance.
183  *
184  * "Above" this target there are 2 further targets (watermarks) related
185  * to recyling of free vnodes.  In the best-operating case, the cache is
186  * exactly full, the free list has size between vlowat and vhiwat above the
187  * free target, and recycling from it and normal use maintains this state.
188  * Sometimes the free list is below vlowat or even empty, but this state
189  * is even better for immediate use provided the cache is not full.
190  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191  * ones) to reach one of these states.  The watermarks are currently hard-
192  * coded as 4% and 9% of the available space higher.  These and the default
193  * of 25% for wantfreevnodes are too large if the memory size is large.
194  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195  * whenever vnlru_proc() becomes active.
196  */
197 static long wantfreevnodes;
198 static long __exclusive_cache_line freevnodes;
199 static long freevnodes_old;
200 
201 static u_long recycles_count;
202 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
203     "Number of vnodes recycled to meet vnode cache targets (legacy)");
204 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
205     &recycles_count, 0,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static u_long recycles_free_count;
209 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
210     &recycles_free_count, 0,
211     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
212 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
213     &recycles_free_count, 0,
214     "Number of free vnodes recycled to meet vnode cache targets");
215 
216 static counter_u64_t direct_recycles_free_count;
217 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
218     &direct_recycles_free_count,
219     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
220 
221 static counter_u64_t vnode_skipped_requeues;
222 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
223     "Number of times LRU requeue was skipped due to lock contention");
224 
225 static __read_mostly bool vnode_can_skip_requeue;
226 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
227     &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
228 
229 static u_long deferred_inact;
230 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
231     &deferred_inact, 0, "Number of times inactive processing was deferred");
232 
233 /* To keep more than one thread at a time from running vfs_getnewfsid */
234 static struct mtx mntid_mtx;
235 
236 /*
237  * Lock for any access to the following:
238  *	vnode_list
239  *	numvnodes
240  *	freevnodes
241  */
242 static struct mtx __exclusive_cache_line vnode_list_mtx;
243 
244 /* Publicly exported FS */
245 struct nfs_public nfs_pub;
246 
247 static uma_zone_t buf_trie_zone;
248 static smr_t buf_trie_smr;
249 
250 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
251 static uma_zone_t vnode_zone;
252 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
253 
254 __read_frequently smr_t vfs_smr;
255 
256 /*
257  * The workitem queue.
258  *
259  * It is useful to delay writes of file data and filesystem metadata
260  * for tens of seconds so that quickly created and deleted files need
261  * not waste disk bandwidth being created and removed. To realize this,
262  * we append vnodes to a "workitem" queue. When running with a soft
263  * updates implementation, most pending metadata dependencies should
264  * not wait for more than a few seconds. Thus, mounted on block devices
265  * are delayed only about a half the time that file data is delayed.
266  * Similarly, directory updates are more critical, so are only delayed
267  * about a third the time that file data is delayed. Thus, there are
268  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
269  * one each second (driven off the filesystem syncer process). The
270  * syncer_delayno variable indicates the next queue that is to be processed.
271  * Items that need to be processed soon are placed in this queue:
272  *
273  *	syncer_workitem_pending[syncer_delayno]
274  *
275  * A delay of fifteen seconds is done by placing the request fifteen
276  * entries later in the queue:
277  *
278  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
279  *
280  */
281 static int syncer_delayno;
282 static long syncer_mask;
283 LIST_HEAD(synclist, bufobj);
284 static struct synclist *syncer_workitem_pending;
285 /*
286  * The sync_mtx protects:
287  *	bo->bo_synclist
288  *	sync_vnode_count
289  *	syncer_delayno
290  *	syncer_state
291  *	syncer_workitem_pending
292  *	syncer_worklist_len
293  *	rushjob
294  */
295 static struct mtx sync_mtx;
296 static struct cv sync_wakeup;
297 
298 #define SYNCER_MAXDELAY		32
299 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
300 static int syncdelay = 30;		/* max time to delay syncing data */
301 static int filedelay = 30;		/* time to delay syncing files */
302 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
303     "Time to delay syncing files (in seconds)");
304 static int dirdelay = 29;		/* time to delay syncing directories */
305 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
306     "Time to delay syncing directories (in seconds)");
307 static int metadelay = 28;		/* time to delay syncing metadata */
308 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
309     "Time to delay syncing metadata (in seconds)");
310 static int rushjob;		/* number of slots to run ASAP */
311 static int stat_rush_requests;	/* number of times I/O speeded up */
312 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
313     "Number of times I/O speeded up (rush requests)");
314 
315 #define	VDBATCH_SIZE 8
316 struct vdbatch {
317 	u_int index;
318 	struct mtx lock;
319 	struct vnode *tab[VDBATCH_SIZE];
320 };
321 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
322 
323 static void	vdbatch_dequeue(struct vnode *vp);
324 
325 /*
326  * When shutting down the syncer, run it at four times normal speed.
327  */
328 #define SYNCER_SHUTDOWN_SPEEDUP		4
329 static int sync_vnode_count;
330 static int syncer_worklist_len;
331 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
332     syncer_state;
333 
334 /* Target for maximum number of vnodes. */
335 u_long desiredvnodes;
336 static u_long gapvnodes;		/* gap between wanted and desired */
337 static u_long vhiwat;		/* enough extras after expansion */
338 static u_long vlowat;		/* minimal extras before expansion */
339 static bool vstir;		/* nonzero to stir non-free vnodes */
340 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
341 
342 static u_long vnlru_read_freevnodes(void);
343 
344 /*
345  * Note that no attempt is made to sanitize these parameters.
346  */
347 static int
348 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = desiredvnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == desiredvnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	desiredvnodes = val;
362 	wantfreevnodes = desiredvnodes / 4;
363 	vnlru_recalc();
364 	mtx_unlock(&vnode_list_mtx);
365 	/*
366 	 * XXX There is no protection against multiple threads changing
367 	 * desiredvnodes at the same time. Locking above only helps vnlru and
368 	 * getnewvnode.
369 	 */
370 	vfs_hash_changesize(desiredvnodes);
371 	cache_changesize(desiredvnodes);
372 	return (0);
373 }
374 
375 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
376     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377     "LU", "Target for maximum number of vnodes (legacy)");
378 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
379     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
380     "LU", "Target for maximum number of vnodes");
381 
382 static int
383 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
384 {
385 	u_long rfreevnodes;
386 
387 	rfreevnodes = vnlru_read_freevnodes();
388 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
389 }
390 
391 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
392     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393     "LU", "Number of \"free\" vnodes (legacy)");
394 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
395     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
396     "LU", "Number of \"free\" vnodes");
397 
398 static int
399 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
400 {
401 	u_long val;
402 	int error;
403 
404 	val = wantfreevnodes;
405 	error = sysctl_handle_long(oidp, &val, 0, req);
406 	if (error != 0 || req->newptr == NULL)
407 		return (error);
408 
409 	if (val == wantfreevnodes)
410 		return (0);
411 	mtx_lock(&vnode_list_mtx);
412 	wantfreevnodes = val;
413 	vnlru_recalc();
414 	mtx_unlock(&vnode_list_mtx);
415 	return (0);
416 }
417 
418 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
419     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
421 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
422     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
423     "LU", "Target for minimum number of \"free\" vnodes");
424 
425 static int vnlru_nowhere;
426 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
427     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
428 
429 static int
430 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
431 {
432 	struct vnode *vp;
433 	struct nameidata nd;
434 	char *buf;
435 	unsigned long ndflags;
436 	int error;
437 
438 	if (req->newptr == NULL)
439 		return (EINVAL);
440 	if (req->newlen >= PATH_MAX)
441 		return (E2BIG);
442 
443 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
444 	error = SYSCTL_IN(req, buf, req->newlen);
445 	if (error != 0)
446 		goto out;
447 
448 	buf[req->newlen] = '\0';
449 
450 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
451 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
452 	if ((error = namei(&nd)) != 0)
453 		goto out;
454 	vp = nd.ni_vp;
455 
456 	if (VN_IS_DOOMED(vp)) {
457 		/*
458 		 * This vnode is being recycled.  Return != 0 to let the caller
459 		 * know that the sysctl had no effect.  Return EAGAIN because a
460 		 * subsequent call will likely succeed (since namei will create
461 		 * a new vnode if necessary)
462 		 */
463 		error = EAGAIN;
464 		goto putvnode;
465 	}
466 
467 	vgone(vp);
468 putvnode:
469 	vput(vp);
470 	NDFREE_PNBUF(&nd);
471 out:
472 	free(buf, M_TEMP);
473 	return (error);
474 }
475 
476 static int
477 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
478 {
479 	struct thread *td = curthread;
480 	struct vnode *vp;
481 	struct file *fp;
482 	int error;
483 	int fd;
484 
485 	if (req->newptr == NULL)
486 		return (EBADF);
487 
488         error = sysctl_handle_int(oidp, &fd, 0, req);
489         if (error != 0)
490                 return (error);
491 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
492 	if (error != 0)
493 		return (error);
494 	vp = fp->f_vnode;
495 
496 	error = vn_lock(vp, LK_EXCLUSIVE);
497 	if (error != 0)
498 		goto drop;
499 
500 	vgone(vp);
501 	VOP_UNLOCK(vp);
502 drop:
503 	fdrop(fp, td);
504 	return (error);
505 }
506 
507 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
508     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
510 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
511     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
512     sysctl_ftry_reclaim_vnode, "I",
513     "Try to reclaim a vnode by its file descriptor");
514 
515 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
516 #define vnsz2log 8
517 #ifndef DEBUG_LOCKS
518 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
519     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
520     "vnsz2log needs to be updated");
521 #endif
522 
523 /*
524  * Support for the bufobj clean & dirty pctrie.
525  */
526 static void *
527 buf_trie_alloc(struct pctrie *ptree)
528 {
529 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
530 }
531 
532 static void
533 buf_trie_free(struct pctrie *ptree, void *node)
534 {
535 	uma_zfree_smr(buf_trie_zone, node);
536 }
537 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
538     buf_trie_smr);
539 
540 /*
541  * Initialize the vnode management data structures.
542  *
543  * Reevaluate the following cap on the number of vnodes after the physical
544  * memory size exceeds 512GB.  In the limit, as the physical memory size
545  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
546  */
547 #ifndef	MAXVNODES_MAX
548 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
549 #endif
550 
551 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
552 
553 static struct vnode *
554 vn_alloc_marker(struct mount *mp)
555 {
556 	struct vnode *vp;
557 
558 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
559 	vp->v_type = VMARKER;
560 	vp->v_mount = mp;
561 
562 	return (vp);
563 }
564 
565 static void
566 vn_free_marker(struct vnode *vp)
567 {
568 
569 	MPASS(vp->v_type == VMARKER);
570 	free(vp, M_VNODE_MARKER);
571 }
572 
573 #ifdef KASAN
574 static int
575 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
576 {
577 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
578 	return (0);
579 }
580 
581 static void
582 vnode_dtor(void *mem, int size, void *arg __unused)
583 {
584 	size_t end1, end2, off1, off2;
585 
586 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
587 	    offsetof(struct vnode, v_dbatchcpu),
588 	    "KASAN marks require updating");
589 
590 	off1 = offsetof(struct vnode, v_vnodelist);
591 	off2 = offsetof(struct vnode, v_dbatchcpu);
592 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
593 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
594 
595 	/*
596 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
597 	 * after the vnode has been freed.  Try to get some KASAN coverage by
598 	 * marking everything except those two fields as invalid.  Because
599 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
600 	 * the same 8-byte aligned word must also be marked valid.
601 	 */
602 
603 	/* Handle the area from the start until v_vnodelist... */
604 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
605 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
606 
607 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
608 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
609 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
610 	if (off2 > off1)
611 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
612 		    off2 - off1, KASAN_UMA_FREED);
613 
614 	/* ... and finally the area from v_dbatchcpu to the end. */
615 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
616 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
617 	    KASAN_UMA_FREED);
618 }
619 #endif /* KASAN */
620 
621 /*
622  * Initialize a vnode as it first enters the zone.
623  */
624 static int
625 vnode_init(void *mem, int size, int flags)
626 {
627 	struct vnode *vp;
628 
629 	vp = mem;
630 	bzero(vp, size);
631 	/*
632 	 * Setup locks.
633 	 */
634 	vp->v_vnlock = &vp->v_lock;
635 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
636 	/*
637 	 * By default, don't allow shared locks unless filesystems opt-in.
638 	 */
639 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
640 	    LK_NOSHARE | LK_IS_VNODE);
641 	/*
642 	 * Initialize bufobj.
643 	 */
644 	bufobj_init(&vp->v_bufobj, vp);
645 	/*
646 	 * Initialize namecache.
647 	 */
648 	cache_vnode_init(vp);
649 	/*
650 	 * Initialize rangelocks.
651 	 */
652 	rangelock_init(&vp->v_rl);
653 
654 	vp->v_dbatchcpu = NOCPU;
655 
656 	vp->v_state = VSTATE_DEAD;
657 
658 	/*
659 	 * Check vhold_recycle_free for an explanation.
660 	 */
661 	vp->v_holdcnt = VHOLD_NO_SMR;
662 	vp->v_type = VNON;
663 	mtx_lock(&vnode_list_mtx);
664 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
665 	mtx_unlock(&vnode_list_mtx);
666 	return (0);
667 }
668 
669 /*
670  * Free a vnode when it is cleared from the zone.
671  */
672 static void
673 vnode_fini(void *mem, int size)
674 {
675 	struct vnode *vp;
676 	struct bufobj *bo;
677 
678 	vp = mem;
679 	vdbatch_dequeue(vp);
680 	mtx_lock(&vnode_list_mtx);
681 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
682 	mtx_unlock(&vnode_list_mtx);
683 	rangelock_destroy(&vp->v_rl);
684 	lockdestroy(vp->v_vnlock);
685 	mtx_destroy(&vp->v_interlock);
686 	bo = &vp->v_bufobj;
687 	rw_destroy(BO_LOCKPTR(bo));
688 
689 	kasan_mark(mem, size, size, 0);
690 }
691 
692 /*
693  * Provide the size of NFS nclnode and NFS fh for calculation of the
694  * vnode memory consumption.  The size is specified directly to
695  * eliminate dependency on NFS-private header.
696  *
697  * Other filesystems may use bigger or smaller (like UFS and ZFS)
698  * private inode data, but the NFS-based estimation is ample enough.
699  * Still, we care about differences in the size between 64- and 32-bit
700  * platforms.
701  *
702  * Namecache structure size is heuristically
703  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
704  */
705 #ifdef _LP64
706 #define	NFS_NCLNODE_SZ	(528 + 64)
707 #define	NC_SZ		148
708 #else
709 #define	NFS_NCLNODE_SZ	(360 + 32)
710 #define	NC_SZ		92
711 #endif
712 
713 static void
714 vntblinit(void *dummy __unused)
715 {
716 	struct vdbatch *vd;
717 	uma_ctor ctor;
718 	uma_dtor dtor;
719 	int cpu, physvnodes, virtvnodes;
720 
721 	/*
722 	 * Desiredvnodes is a function of the physical memory size and the
723 	 * kernel's heap size.  Generally speaking, it scales with the
724 	 * physical memory size.  The ratio of desiredvnodes to the physical
725 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
726 	 * Thereafter, the
727 	 * marginal ratio of desiredvnodes to the physical memory size is
728 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
729 	 * size.  The memory required by desiredvnodes vnodes and vm objects
730 	 * must not exceed 1/10th of the kernel's heap size.
731 	 */
732 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
733 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
734 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
735 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
736 	desiredvnodes = min(physvnodes, virtvnodes);
737 	if (desiredvnodes > MAXVNODES_MAX) {
738 		if (bootverbose)
739 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
740 			    desiredvnodes, MAXVNODES_MAX);
741 		desiredvnodes = MAXVNODES_MAX;
742 	}
743 	wantfreevnodes = desiredvnodes / 4;
744 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
745 	TAILQ_INIT(&vnode_list);
746 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
747 	/*
748 	 * The lock is taken to appease WITNESS.
749 	 */
750 	mtx_lock(&vnode_list_mtx);
751 	vnlru_recalc();
752 	mtx_unlock(&vnode_list_mtx);
753 	vnode_list_free_marker = vn_alloc_marker(NULL);
754 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
755 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
756 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
757 
758 #ifdef KASAN
759 	ctor = vnode_ctor;
760 	dtor = vnode_dtor;
761 #else
762 	ctor = NULL;
763 	dtor = NULL;
764 #endif
765 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
766 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
767 	uma_zone_set_smr(vnode_zone, vfs_smr);
768 
769 	/*
770 	 * Preallocate enough nodes to support one-per buf so that
771 	 * we can not fail an insert.  reassignbuf() callers can not
772 	 * tolerate the insertion failure.
773 	 */
774 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
775 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
776 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
777 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
778 	uma_prealloc(buf_trie_zone, nbuf);
779 
780 	vnodes_created = counter_u64_alloc(M_WAITOK);
781 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
782 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
783 
784 	/*
785 	 * Initialize the filesystem syncer.
786 	 */
787 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
788 	    &syncer_mask);
789 	syncer_maxdelay = syncer_mask + 1;
790 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
791 	cv_init(&sync_wakeup, "syncer");
792 
793 	CPU_FOREACH(cpu) {
794 		vd = DPCPU_ID_PTR((cpu), vd);
795 		bzero(vd, sizeof(*vd));
796 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
797 	}
798 }
799 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
800 
801 /*
802  * Mark a mount point as busy. Used to synchronize access and to delay
803  * unmounting. Eventually, mountlist_mtx is not released on failure.
804  *
805  * vfs_busy() is a custom lock, it can block the caller.
806  * vfs_busy() only sleeps if the unmount is active on the mount point.
807  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
808  * vnode belonging to mp.
809  *
810  * Lookup uses vfs_busy() to traverse mount points.
811  * root fs			var fs
812  * / vnode lock		A	/ vnode lock (/var)		D
813  * /var vnode lock	B	/log vnode lock(/var/log)	E
814  * vfs_busy lock	C	vfs_busy lock			F
815  *
816  * Within each file system, the lock order is C->A->B and F->D->E.
817  *
818  * When traversing across mounts, the system follows that lock order:
819  *
820  *        C->A->B
821  *              |
822  *              +->F->D->E
823  *
824  * The lookup() process for namei("/var") illustrates the process:
825  *  1. VOP_LOOKUP() obtains B while A is held
826  *  2. vfs_busy() obtains a shared lock on F while A and B are held
827  *  3. vput() releases lock on B
828  *  4. vput() releases lock on A
829  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
830  *  6. vfs_unbusy() releases shared lock on F
831  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
832  *     Attempt to lock A (instead of vp_crossmp) while D is held would
833  *     violate the global order, causing deadlocks.
834  *
835  * dounmount() locks B while F is drained.  Note that for stacked
836  * filesystems, D and B in the example above may be the same lock,
837  * which introdues potential lock order reversal deadlock between
838  * dounmount() and step 5 above.  These filesystems may avoid the LOR
839  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
840  * remain held until after step 5.
841  */
842 int
843 vfs_busy(struct mount *mp, int flags)
844 {
845 	struct mount_pcpu *mpcpu;
846 
847 	MPASS((flags & ~MBF_MASK) == 0);
848 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
849 
850 	if (vfs_op_thread_enter(mp, mpcpu)) {
851 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
852 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
853 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
854 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
855 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
856 		vfs_op_thread_exit(mp, mpcpu);
857 		if (flags & MBF_MNTLSTLOCK)
858 			mtx_unlock(&mountlist_mtx);
859 		return (0);
860 	}
861 
862 	MNT_ILOCK(mp);
863 	vfs_assert_mount_counters(mp);
864 	MNT_REF(mp);
865 	/*
866 	 * If mount point is currently being unmounted, sleep until the
867 	 * mount point fate is decided.  If thread doing the unmounting fails,
868 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
869 	 * that this mount point has survived the unmount attempt and vfs_busy
870 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
871 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
872 	 * about to be really destroyed.  vfs_busy needs to release its
873 	 * reference on the mount point in this case and return with ENOENT,
874 	 * telling the caller the mount it tried to busy is no longer valid.
875 	 */
876 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
877 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
878 		    ("%s: non-empty upper mount list with pending unmount",
879 		    __func__));
880 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
881 			MNT_REL(mp);
882 			MNT_IUNLOCK(mp);
883 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
884 			    __func__);
885 			return (ENOENT);
886 		}
887 		if (flags & MBF_MNTLSTLOCK)
888 			mtx_unlock(&mountlist_mtx);
889 		mp->mnt_kern_flag |= MNTK_MWAIT;
890 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
891 		if (flags & MBF_MNTLSTLOCK)
892 			mtx_lock(&mountlist_mtx);
893 		MNT_ILOCK(mp);
894 	}
895 	if (flags & MBF_MNTLSTLOCK)
896 		mtx_unlock(&mountlist_mtx);
897 	mp->mnt_lockref++;
898 	MNT_IUNLOCK(mp);
899 	return (0);
900 }
901 
902 /*
903  * Free a busy filesystem.
904  */
905 void
906 vfs_unbusy(struct mount *mp)
907 {
908 	struct mount_pcpu *mpcpu;
909 	int c;
910 
911 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
912 
913 	if (vfs_op_thread_enter(mp, mpcpu)) {
914 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
915 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
916 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
917 		vfs_op_thread_exit(mp, mpcpu);
918 		return;
919 	}
920 
921 	MNT_ILOCK(mp);
922 	vfs_assert_mount_counters(mp);
923 	MNT_REL(mp);
924 	c = --mp->mnt_lockref;
925 	if (mp->mnt_vfs_ops == 0) {
926 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
927 		MNT_IUNLOCK(mp);
928 		return;
929 	}
930 	if (c < 0)
931 		vfs_dump_mount_counters(mp);
932 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
933 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
934 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
935 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
936 		wakeup(&mp->mnt_lockref);
937 	}
938 	MNT_IUNLOCK(mp);
939 }
940 
941 /*
942  * Lookup a mount point by filesystem identifier.
943  */
944 struct mount *
945 vfs_getvfs(fsid_t *fsid)
946 {
947 	struct mount *mp;
948 
949 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
950 	mtx_lock(&mountlist_mtx);
951 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
952 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
953 			vfs_ref(mp);
954 			mtx_unlock(&mountlist_mtx);
955 			return (mp);
956 		}
957 	}
958 	mtx_unlock(&mountlist_mtx);
959 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
960 	return ((struct mount *) 0);
961 }
962 
963 /*
964  * Lookup a mount point by filesystem identifier, busying it before
965  * returning.
966  *
967  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
968  * cache for popular filesystem identifiers.  The cache is lockess, using
969  * the fact that struct mount's are never freed.  In worst case we may
970  * get pointer to unmounted or even different filesystem, so we have to
971  * check what we got, and go slow way if so.
972  */
973 struct mount *
974 vfs_busyfs(fsid_t *fsid)
975 {
976 #define	FSID_CACHE_SIZE	256
977 	typedef struct mount * volatile vmp_t;
978 	static vmp_t cache[FSID_CACHE_SIZE];
979 	struct mount *mp;
980 	int error;
981 	uint32_t hash;
982 
983 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
984 	hash = fsid->val[0] ^ fsid->val[1];
985 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
986 	mp = cache[hash];
987 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
988 		goto slow;
989 	if (vfs_busy(mp, 0) != 0) {
990 		cache[hash] = NULL;
991 		goto slow;
992 	}
993 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
994 		return (mp);
995 	else
996 	    vfs_unbusy(mp);
997 
998 slow:
999 	mtx_lock(&mountlist_mtx);
1000 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1001 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1002 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
1003 			if (error) {
1004 				cache[hash] = NULL;
1005 				mtx_unlock(&mountlist_mtx);
1006 				return (NULL);
1007 			}
1008 			cache[hash] = mp;
1009 			return (mp);
1010 		}
1011 	}
1012 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1013 	mtx_unlock(&mountlist_mtx);
1014 	return ((struct mount *) 0);
1015 }
1016 
1017 /*
1018  * Check if a user can access privileged mount options.
1019  */
1020 int
1021 vfs_suser(struct mount *mp, struct thread *td)
1022 {
1023 	int error;
1024 
1025 	if (jailed(td->td_ucred)) {
1026 		/*
1027 		 * If the jail of the calling thread lacks permission for
1028 		 * this type of file system, deny immediately.
1029 		 */
1030 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1031 			return (EPERM);
1032 
1033 		/*
1034 		 * If the file system was mounted outside the jail of the
1035 		 * calling thread, deny immediately.
1036 		 */
1037 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1038 			return (EPERM);
1039 	}
1040 
1041 	/*
1042 	 * If file system supports delegated administration, we don't check
1043 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1044 	 * by the file system itself.
1045 	 * If this is not the user that did original mount, we check for
1046 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1047 	 */
1048 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1049 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1050 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1051 			return (error);
1052 	}
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1058  * will be used to create fake device numbers for stat().  Also try (but
1059  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1060  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1061  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1062  *
1063  * Keep in mind that several mounts may be running in parallel.  Starting
1064  * the search one past where the previous search terminated is both a
1065  * micro-optimization and a defense against returning the same fsid to
1066  * different mounts.
1067  */
1068 void
1069 vfs_getnewfsid(struct mount *mp)
1070 {
1071 	static uint16_t mntid_base;
1072 	struct mount *nmp;
1073 	fsid_t tfsid;
1074 	int mtype;
1075 
1076 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1077 	mtx_lock(&mntid_mtx);
1078 	mtype = mp->mnt_vfc->vfc_typenum;
1079 	tfsid.val[1] = mtype;
1080 	mtype = (mtype & 0xFF) << 24;
1081 	for (;;) {
1082 		tfsid.val[0] = makedev(255,
1083 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1084 		mntid_base++;
1085 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1086 			break;
1087 		vfs_rel(nmp);
1088 	}
1089 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1090 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1091 	mtx_unlock(&mntid_mtx);
1092 }
1093 
1094 /*
1095  * Knob to control the precision of file timestamps:
1096  *
1097  *   0 = seconds only; nanoseconds zeroed.
1098  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1099  *   2 = seconds and nanoseconds, truncated to microseconds.
1100  * >=3 = seconds and nanoseconds, maximum precision.
1101  */
1102 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1103 
1104 static int timestamp_precision = TSP_USEC;
1105 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1106     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1107     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1108     "3+: sec + ns (max. precision))");
1109 
1110 /*
1111  * Get a current timestamp.
1112  */
1113 void
1114 vfs_timestamp(struct timespec *tsp)
1115 {
1116 	struct timeval tv;
1117 
1118 	switch (timestamp_precision) {
1119 	case TSP_SEC:
1120 		tsp->tv_sec = time_second;
1121 		tsp->tv_nsec = 0;
1122 		break;
1123 	case TSP_HZ:
1124 		getnanotime(tsp);
1125 		break;
1126 	case TSP_USEC:
1127 		microtime(&tv);
1128 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1129 		break;
1130 	case TSP_NSEC:
1131 	default:
1132 		nanotime(tsp);
1133 		break;
1134 	}
1135 }
1136 
1137 /*
1138  * Set vnode attributes to VNOVAL
1139  */
1140 void
1141 vattr_null(struct vattr *vap)
1142 {
1143 
1144 	vap->va_type = VNON;
1145 	vap->va_size = VNOVAL;
1146 	vap->va_bytes = VNOVAL;
1147 	vap->va_mode = VNOVAL;
1148 	vap->va_nlink = VNOVAL;
1149 	vap->va_uid = VNOVAL;
1150 	vap->va_gid = VNOVAL;
1151 	vap->va_fsid = VNOVAL;
1152 	vap->va_fileid = VNOVAL;
1153 	vap->va_blocksize = VNOVAL;
1154 	vap->va_rdev = VNOVAL;
1155 	vap->va_atime.tv_sec = VNOVAL;
1156 	vap->va_atime.tv_nsec = VNOVAL;
1157 	vap->va_mtime.tv_sec = VNOVAL;
1158 	vap->va_mtime.tv_nsec = VNOVAL;
1159 	vap->va_ctime.tv_sec = VNOVAL;
1160 	vap->va_ctime.tv_nsec = VNOVAL;
1161 	vap->va_birthtime.tv_sec = VNOVAL;
1162 	vap->va_birthtime.tv_nsec = VNOVAL;
1163 	vap->va_flags = VNOVAL;
1164 	vap->va_gen = VNOVAL;
1165 	vap->va_vaflags = 0;
1166 }
1167 
1168 /*
1169  * Try to reduce the total number of vnodes.
1170  *
1171  * This routine (and its user) are buggy in at least the following ways:
1172  * - all parameters were picked years ago when RAM sizes were significantly
1173  *   smaller
1174  * - it can pick vnodes based on pages used by the vm object, but filesystems
1175  *   like ZFS don't use it making the pick broken
1176  * - since ZFS has its own aging policy it gets partially combated by this one
1177  * - a dedicated method should be provided for filesystems to let them decide
1178  *   whether the vnode should be recycled
1179  *
1180  * This routine is called when we have too many vnodes.  It attempts
1181  * to free <count> vnodes and will potentially free vnodes that still
1182  * have VM backing store (VM backing store is typically the cause
1183  * of a vnode blowout so we want to do this).  Therefore, this operation
1184  * is not considered cheap.
1185  *
1186  * A number of conditions may prevent a vnode from being reclaimed.
1187  * the buffer cache may have references on the vnode, a directory
1188  * vnode may still have references due to the namei cache representing
1189  * underlying files, or the vnode may be in active use.   It is not
1190  * desirable to reuse such vnodes.  These conditions may cause the
1191  * number of vnodes to reach some minimum value regardless of what
1192  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1193  *
1194  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1195  * 			 entries if this argument is strue
1196  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1197  *			 pages.
1198  * @param target	 How many vnodes to reclaim.
1199  * @return		 The number of vnodes that were reclaimed.
1200  */
1201 static int
1202 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1203 {
1204 	struct vnode *vp, *mvp;
1205 	struct mount *mp;
1206 	struct vm_object *object;
1207 	u_long done;
1208 	bool retried;
1209 
1210 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1211 
1212 	retried = false;
1213 	done = 0;
1214 
1215 	mvp = vnode_list_reclaim_marker;
1216 restart:
1217 	vp = mvp;
1218 	while (done < target) {
1219 		vp = TAILQ_NEXT(vp, v_vnodelist);
1220 		if (__predict_false(vp == NULL))
1221 			break;
1222 
1223 		if (__predict_false(vp->v_type == VMARKER))
1224 			continue;
1225 
1226 		/*
1227 		 * If it's been deconstructed already, it's still
1228 		 * referenced, or it exceeds the trigger, skip it.
1229 		 * Also skip free vnodes.  We are trying to make space
1230 		 * for more free vnodes, not reduce their count.
1231 		 */
1232 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1233 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1234 			goto next_iter;
1235 
1236 		if (vp->v_type == VBAD || vp->v_type == VNON)
1237 			goto next_iter;
1238 
1239 		object = atomic_load_ptr(&vp->v_object);
1240 		if (object == NULL || object->resident_page_count > trigger) {
1241 			goto next_iter;
1242 		}
1243 
1244 		/*
1245 		 * Handle races against vnode allocation. Filesystems lock the
1246 		 * vnode some time after it gets returned from getnewvnode,
1247 		 * despite type and hold count being manipulated earlier.
1248 		 * Resorting to checking v_mount restores guarantees present
1249 		 * before the global list was reworked to contain all vnodes.
1250 		 */
1251 		if (!VI_TRYLOCK(vp))
1252 			goto next_iter;
1253 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1254 			VI_UNLOCK(vp);
1255 			goto next_iter;
1256 		}
1257 		if (vp->v_mount == NULL) {
1258 			VI_UNLOCK(vp);
1259 			goto next_iter;
1260 		}
1261 		vholdl(vp);
1262 		VI_UNLOCK(vp);
1263 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1264 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1265 		mtx_unlock(&vnode_list_mtx);
1266 
1267 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1268 			vdrop_recycle(vp);
1269 			goto next_iter_unlocked;
1270 		}
1271 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1272 			vdrop_recycle(vp);
1273 			vn_finished_write(mp);
1274 			goto next_iter_unlocked;
1275 		}
1276 
1277 		VI_LOCK(vp);
1278 		if (vp->v_usecount > 0 ||
1279 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1280 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1281 		    vp->v_object->resident_page_count > trigger)) {
1282 			VOP_UNLOCK(vp);
1283 			vdropl_recycle(vp);
1284 			vn_finished_write(mp);
1285 			goto next_iter_unlocked;
1286 		}
1287 		recycles_count++;
1288 		vgonel(vp);
1289 		VOP_UNLOCK(vp);
1290 		vdropl_recycle(vp);
1291 		vn_finished_write(mp);
1292 		done++;
1293 next_iter_unlocked:
1294 		maybe_yield();
1295 		mtx_lock(&vnode_list_mtx);
1296 		goto restart;
1297 next_iter:
1298 		MPASS(vp->v_type != VMARKER);
1299 		if (!should_yield())
1300 			continue;
1301 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1303 		mtx_unlock(&vnode_list_mtx);
1304 		kern_yield(PRI_USER);
1305 		mtx_lock(&vnode_list_mtx);
1306 		goto restart;
1307 	}
1308 	if (done == 0 && !retried) {
1309 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1310 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1311 		retried = true;
1312 		goto restart;
1313 	}
1314 	return (done);
1315 }
1316 
1317 static int max_free_per_call = 10000;
1318 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1319     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1320 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1321     &max_free_per_call, 0,
1322     "limit on vnode free requests per call to the vnlru_free routine");
1323 
1324 /*
1325  * Attempt to recycle requested amount of free vnodes.
1326  */
1327 static int
1328 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1329 {
1330 	struct vnode *vp;
1331 	struct mount *mp;
1332 	int ocount;
1333 	bool retried;
1334 
1335 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1336 	if (count > max_free_per_call)
1337 		count = max_free_per_call;
1338 	if (count == 0) {
1339 		mtx_unlock(&vnode_list_mtx);
1340 		return (0);
1341 	}
1342 	ocount = count;
1343 	retried = false;
1344 	vp = mvp;
1345 	for (;;) {
1346 		vp = TAILQ_NEXT(vp, v_vnodelist);
1347 		if (__predict_false(vp == NULL)) {
1348 			/*
1349 			 * The free vnode marker can be past eligible vnodes:
1350 			 * 1. if vdbatch_process trylock failed
1351 			 * 2. if vtryrecycle failed
1352 			 *
1353 			 * If so, start the scan from scratch.
1354 			 */
1355 			if (!retried && vnlru_read_freevnodes() > 0) {
1356 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1357 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1358 				vp = mvp;
1359 				retried = true;
1360 				continue;
1361 			}
1362 
1363 			/*
1364 			 * Give up
1365 			 */
1366 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1367 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1368 			mtx_unlock(&vnode_list_mtx);
1369 			break;
1370 		}
1371 		if (__predict_false(vp->v_type == VMARKER))
1372 			continue;
1373 		if (vp->v_holdcnt > 0)
1374 			continue;
1375 		/*
1376 		 * Don't recycle if our vnode is from different type
1377 		 * of mount point.  Note that mp is type-safe, the
1378 		 * check does not reach unmapped address even if
1379 		 * vnode is reclaimed.
1380 		 */
1381 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1382 		    mp->mnt_op != mnt_op) {
1383 			continue;
1384 		}
1385 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1386 			continue;
1387 		}
1388 		if (!vhold_recycle_free(vp))
1389 			continue;
1390 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1392 		mtx_unlock(&vnode_list_mtx);
1393 		/*
1394 		 * FIXME: ignores the return value, meaning it may be nothing
1395 		 * got recycled but it claims otherwise to the caller.
1396 		 *
1397 		 * Originally the value started being ignored in 2005 with
1398 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1399 		 *
1400 		 * Respecting the value can run into significant stalls if most
1401 		 * vnodes belong to one file system and it has writes
1402 		 * suspended.  In presence of many threads and millions of
1403 		 * vnodes they keep contending on the vnode_list_mtx lock only
1404 		 * to find vnodes they can't recycle.
1405 		 *
1406 		 * The solution would be to pre-check if the vnode is likely to
1407 		 * be recycle-able, but it needs to happen with the
1408 		 * vnode_list_mtx lock held. This runs into a problem where
1409 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1410 		 * writes are frozen) can take locks which LOR against it.
1411 		 *
1412 		 * Check nullfs for one example (null_getwritemount).
1413 		 */
1414 		vtryrecycle(vp, isvnlru);
1415 		count--;
1416 		if (count == 0) {
1417 			break;
1418 		}
1419 		mtx_lock(&vnode_list_mtx);
1420 		vp = mvp;
1421 	}
1422 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1423 	return (ocount - count);
1424 }
1425 
1426 /*
1427  * XXX: returns without vnode_list_mtx locked!
1428  */
1429 static int
1430 vnlru_free_locked_direct(int count)
1431 {
1432 	int ret;
1433 
1434 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1435 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1436 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1437 	return (ret);
1438 }
1439 
1440 static int
1441 vnlru_free_locked_vnlru(int count)
1442 {
1443 	int ret;
1444 
1445 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1446 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1447 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1448 	return (ret);
1449 }
1450 
1451 static int
1452 vnlru_free_vnlru(int count)
1453 {
1454 
1455 	mtx_lock(&vnode_list_mtx);
1456 	return (vnlru_free_locked_vnlru(count));
1457 }
1458 
1459 void
1460 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1461 {
1462 
1463 	MPASS(mnt_op != NULL);
1464 	MPASS(mvp != NULL);
1465 	VNPASS(mvp->v_type == VMARKER, mvp);
1466 	mtx_lock(&vnode_list_mtx);
1467 	vnlru_free_impl(count, mnt_op, mvp, true);
1468 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1469 }
1470 
1471 struct vnode *
1472 vnlru_alloc_marker(void)
1473 {
1474 	struct vnode *mvp;
1475 
1476 	mvp = vn_alloc_marker(NULL);
1477 	mtx_lock(&vnode_list_mtx);
1478 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1479 	mtx_unlock(&vnode_list_mtx);
1480 	return (mvp);
1481 }
1482 
1483 void
1484 vnlru_free_marker(struct vnode *mvp)
1485 {
1486 	mtx_lock(&vnode_list_mtx);
1487 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1488 	mtx_unlock(&vnode_list_mtx);
1489 	vn_free_marker(mvp);
1490 }
1491 
1492 static void
1493 vnlru_recalc(void)
1494 {
1495 
1496 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1497 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1498 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1499 	vlowat = vhiwat / 2;
1500 }
1501 
1502 /*
1503  * Attempt to recycle vnodes in a context that is always safe to block.
1504  * Calling vlrurecycle() from the bowels of filesystem code has some
1505  * interesting deadlock problems.
1506  */
1507 static struct proc *vnlruproc;
1508 static int vnlruproc_sig;
1509 static u_long vnlruproc_kicks;
1510 
1511 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1512     "Number of times vnlru awakened due to vnode shortage");
1513 
1514 #define VNLRU_COUNT_SLOP 100
1515 
1516 /*
1517  * The main freevnodes counter is only updated when a counter local to CPU
1518  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1519  * walked to compute a more accurate total.
1520  *
1521  * Note: the actual value at any given moment can still exceed slop, but it
1522  * should not be by significant margin in practice.
1523  */
1524 #define VNLRU_FREEVNODES_SLOP 126
1525 
1526 static void __noinline
1527 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1528 {
1529 
1530 	atomic_add_long(&freevnodes, *lfreevnodes);
1531 	*lfreevnodes = 0;
1532 	critical_exit();
1533 }
1534 
1535 static __inline void
1536 vfs_freevnodes_inc(void)
1537 {
1538 	int8_t *lfreevnodes;
1539 
1540 	critical_enter();
1541 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1542 	(*lfreevnodes)++;
1543 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1544 		vfs_freevnodes_rollup(lfreevnodes);
1545 	else
1546 		critical_exit();
1547 }
1548 
1549 static __inline void
1550 vfs_freevnodes_dec(void)
1551 {
1552 	int8_t *lfreevnodes;
1553 
1554 	critical_enter();
1555 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1556 	(*lfreevnodes)--;
1557 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1558 		vfs_freevnodes_rollup(lfreevnodes);
1559 	else
1560 		critical_exit();
1561 }
1562 
1563 static u_long
1564 vnlru_read_freevnodes(void)
1565 {
1566 	long slop, rfreevnodes, rfreevnodes_old;
1567 	int cpu;
1568 
1569 	rfreevnodes = atomic_load_long(&freevnodes);
1570 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1571 
1572 	if (rfreevnodes > rfreevnodes_old)
1573 		slop = rfreevnodes - rfreevnodes_old;
1574 	else
1575 		slop = rfreevnodes_old - rfreevnodes;
1576 	if (slop < VNLRU_FREEVNODES_SLOP)
1577 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1578 	CPU_FOREACH(cpu) {
1579 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1580 	}
1581 	atomic_store_long(&freevnodes_old, rfreevnodes);
1582 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1583 }
1584 
1585 static bool
1586 vnlru_under(u_long rnumvnodes, u_long limit)
1587 {
1588 	u_long rfreevnodes, space;
1589 
1590 	if (__predict_false(rnumvnodes > desiredvnodes))
1591 		return (true);
1592 
1593 	space = desiredvnodes - rnumvnodes;
1594 	if (space < limit) {
1595 		rfreevnodes = vnlru_read_freevnodes();
1596 		if (rfreevnodes > wantfreevnodes)
1597 			space += rfreevnodes - wantfreevnodes;
1598 	}
1599 	return (space < limit);
1600 }
1601 
1602 static void
1603 vnlru_kick_locked(void)
1604 {
1605 
1606 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1607 	if (vnlruproc_sig == 0) {
1608 		vnlruproc_sig = 1;
1609 		vnlruproc_kicks++;
1610 		wakeup(vnlruproc);
1611 	}
1612 }
1613 
1614 static void
1615 vnlru_kick_cond(void)
1616 {
1617 
1618 	if (vnlru_read_freevnodes() > wantfreevnodes)
1619 		return;
1620 
1621 	if (vnlruproc_sig)
1622 		return;
1623 	mtx_lock(&vnode_list_mtx);
1624 	vnlru_kick_locked();
1625 	mtx_unlock(&vnode_list_mtx);
1626 }
1627 
1628 static void
1629 vnlru_proc_sleep(void)
1630 {
1631 
1632 	if (vnlruproc_sig) {
1633 		vnlruproc_sig = 0;
1634 		wakeup(&vnlruproc_sig);
1635 	}
1636 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1637 }
1638 
1639 /*
1640  * A lighter version of the machinery below.
1641  *
1642  * Tries to reach goals only by recycling free vnodes and does not invoke
1643  * uma_reclaim(UMA_RECLAIM_DRAIN).
1644  *
1645  * This works around pathological behavior in vnlru in presence of tons of free
1646  * vnodes, but without having to rewrite the machinery at this time. Said
1647  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1648  * (cycling through all levels of "force") when the count is transiently above
1649  * limit. This happens a lot when all vnodes are used up and vn_alloc
1650  * speculatively increments the counter.
1651  *
1652  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1653  * 1 million files in total and 20 find(1) processes stating them in parallel
1654  * (one per each tree).
1655  *
1656  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1657  * seconds to execute (time varies *wildly* between runs). With the workaround
1658  * it consistently stays around 20 seconds [it got further down with later
1659  * changes].
1660  *
1661  * That is to say the entire thing needs a fundamental redesign (most notably
1662  * to accommodate faster recycling), the above only tries to get it ouf the way.
1663  *
1664  * Return values are:
1665  * -1 -- fallback to regular vnlru loop
1666  *  0 -- do nothing, go to sleep
1667  * >0 -- recycle this many vnodes
1668  */
1669 static long
1670 vnlru_proc_light_pick(void)
1671 {
1672 	u_long rnumvnodes, rfreevnodes;
1673 
1674 	if (vstir || vnlruproc_sig == 1)
1675 		return (-1);
1676 
1677 	rnumvnodes = atomic_load_long(&numvnodes);
1678 	rfreevnodes = vnlru_read_freevnodes();
1679 
1680 	/*
1681 	 * vnode limit might have changed and now we may be at a significant
1682 	 * excess. Bail if we can't sort it out with free vnodes.
1683 	 *
1684 	 * Due to atomic updates the count can legitimately go above
1685 	 * the limit for a short period, don't bother doing anything in
1686 	 * that case.
1687 	 */
1688 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1689 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1690 		    rfreevnodes <= wantfreevnodes) {
1691 			return (-1);
1692 		}
1693 
1694 		return (rnumvnodes - desiredvnodes);
1695 	}
1696 
1697 	/*
1698 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1699 	 * to begin with.
1700 	 */
1701 	if (rnumvnodes < wantfreevnodes) {
1702 		return (0);
1703 	}
1704 
1705 	if (rfreevnodes < wantfreevnodes) {
1706 		return (-1);
1707 	}
1708 
1709 	return (0);
1710 }
1711 
1712 static bool
1713 vnlru_proc_light(void)
1714 {
1715 	long freecount;
1716 
1717 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1718 
1719 	freecount = vnlru_proc_light_pick();
1720 	if (freecount == -1)
1721 		return (false);
1722 
1723 	if (freecount != 0) {
1724 		vnlru_free_vnlru(freecount);
1725 	}
1726 
1727 	mtx_lock(&vnode_list_mtx);
1728 	vnlru_proc_sleep();
1729 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1730 	return (true);
1731 }
1732 
1733 static u_long uma_reclaim_calls;
1734 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1735     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1736 
1737 static void
1738 vnlru_proc(void)
1739 {
1740 	u_long rnumvnodes, rfreevnodes, target;
1741 	unsigned long onumvnodes;
1742 	int done, force, trigger, usevnodes;
1743 	bool reclaim_nc_src, want_reread;
1744 
1745 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1746 	    SHUTDOWN_PRI_FIRST);
1747 
1748 	force = 0;
1749 	want_reread = false;
1750 	for (;;) {
1751 		kproc_suspend_check(vnlruproc);
1752 
1753 		if (force == 0 && vnlru_proc_light())
1754 			continue;
1755 
1756 		mtx_lock(&vnode_list_mtx);
1757 		rnumvnodes = atomic_load_long(&numvnodes);
1758 
1759 		if (want_reread) {
1760 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1761 			want_reread = false;
1762 		}
1763 
1764 		/*
1765 		 * If numvnodes is too large (due to desiredvnodes being
1766 		 * adjusted using its sysctl, or emergency growth), first
1767 		 * try to reduce it by discarding free vnodes.
1768 		 */
1769 		if (rnumvnodes > desiredvnodes + 10) {
1770 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1771 			mtx_lock(&vnode_list_mtx);
1772 			rnumvnodes = atomic_load_long(&numvnodes);
1773 		}
1774 		/*
1775 		 * Sleep if the vnode cache is in a good state.  This is
1776 		 * when it is not over-full and has space for about a 4%
1777 		 * or 9% expansion (by growing its size or inexcessively
1778 		 * reducing free vnode count).  Otherwise, try to reclaim
1779 		 * space for a 10% expansion.
1780 		 */
1781 		if (vstir && force == 0) {
1782 			force = 1;
1783 			vstir = false;
1784 		}
1785 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1786 			vnlru_proc_sleep();
1787 			continue;
1788 		}
1789 		rfreevnodes = vnlru_read_freevnodes();
1790 
1791 		onumvnodes = rnumvnodes;
1792 		/*
1793 		 * Calculate parameters for recycling.  These are the same
1794 		 * throughout the loop to give some semblance of fairness.
1795 		 * The trigger point is to avoid recycling vnodes with lots
1796 		 * of resident pages.  We aren't trying to free memory; we
1797 		 * are trying to recycle or at least free vnodes.
1798 		 */
1799 		if (rnumvnodes <= desiredvnodes)
1800 			usevnodes = rnumvnodes - rfreevnodes;
1801 		else
1802 			usevnodes = rnumvnodes;
1803 		if (usevnodes <= 0)
1804 			usevnodes = 1;
1805 		/*
1806 		 * The trigger value is chosen to give a conservatively
1807 		 * large value to ensure that it alone doesn't prevent
1808 		 * making progress.  The value can easily be so large that
1809 		 * it is effectively infinite in some congested and
1810 		 * misconfigured cases, and this is necessary.  Normally
1811 		 * it is about 8 to 100 (pages), which is quite large.
1812 		 */
1813 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1814 		if (force < 2)
1815 			trigger = vsmalltrigger;
1816 		reclaim_nc_src = force >= 3;
1817 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1818 		target = target / 10 + 1;
1819 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1820 		mtx_unlock(&vnode_list_mtx);
1821 		/*
1822 		 * Total number of vnodes can transiently go slightly above the
1823 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1824 		 * this happens.
1825 		 */
1826 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1827 		    numvnodes <= desiredvnodes) {
1828 			uma_reclaim_calls++;
1829 			uma_reclaim(UMA_RECLAIM_DRAIN);
1830 		}
1831 		if (done == 0) {
1832 			if (force == 0 || force == 1) {
1833 				force = 2;
1834 				continue;
1835 			}
1836 			if (force == 2) {
1837 				force = 3;
1838 				continue;
1839 			}
1840 			want_reread = true;
1841 			force = 0;
1842 			vnlru_nowhere++;
1843 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1844 		} else {
1845 			want_reread = true;
1846 			kern_yield(PRI_USER);
1847 		}
1848 	}
1849 }
1850 
1851 static struct kproc_desc vnlru_kp = {
1852 	"vnlru",
1853 	vnlru_proc,
1854 	&vnlruproc
1855 };
1856 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1857     &vnlru_kp);
1858 
1859 /*
1860  * Routines having to do with the management of the vnode table.
1861  */
1862 
1863 /*
1864  * Try to recycle a freed vnode.
1865  */
1866 static int
1867 vtryrecycle(struct vnode *vp, bool isvnlru)
1868 {
1869 	struct mount *vnmp;
1870 
1871 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1872 	VNPASS(vp->v_holdcnt > 0, vp);
1873 	/*
1874 	 * This vnode may found and locked via some other list, if so we
1875 	 * can't recycle it yet.
1876 	 */
1877 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1878 		CTR2(KTR_VFS,
1879 		    "%s: impossible to recycle, vp %p lock is already held",
1880 		    __func__, vp);
1881 		vdrop_recycle(vp);
1882 		return (EWOULDBLOCK);
1883 	}
1884 	/*
1885 	 * Don't recycle if its filesystem is being suspended.
1886 	 */
1887 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1888 		VOP_UNLOCK(vp);
1889 		CTR2(KTR_VFS,
1890 		    "%s: impossible to recycle, cannot start the write for %p",
1891 		    __func__, vp);
1892 		vdrop_recycle(vp);
1893 		return (EBUSY);
1894 	}
1895 	/*
1896 	 * If we got this far, we need to acquire the interlock and see if
1897 	 * anyone picked up this vnode from another list.  If not, we will
1898 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1899 	 * will skip over it.
1900 	 */
1901 	VI_LOCK(vp);
1902 	if (vp->v_usecount) {
1903 		VOP_UNLOCK(vp);
1904 		vdropl_recycle(vp);
1905 		vn_finished_write(vnmp);
1906 		CTR2(KTR_VFS,
1907 		    "%s: impossible to recycle, %p is already referenced",
1908 		    __func__, vp);
1909 		return (EBUSY);
1910 	}
1911 	if (!VN_IS_DOOMED(vp)) {
1912 		if (isvnlru)
1913 			recycles_free_count++;
1914 		else
1915 			counter_u64_add(direct_recycles_free_count, 1);
1916 		vgonel(vp);
1917 	}
1918 	VOP_UNLOCK(vp);
1919 	vdropl_recycle(vp);
1920 	vn_finished_write(vnmp);
1921 	return (0);
1922 }
1923 
1924 /*
1925  * Allocate a new vnode.
1926  *
1927  * The operation never returns an error. Returning an error was disabled
1928  * in r145385 (dated 2005) with the following comment:
1929  *
1930  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1931  *
1932  * Given the age of this commit (almost 15 years at the time of writing this
1933  * comment) restoring the ability to fail requires a significant audit of
1934  * all codepaths.
1935  *
1936  * The routine can try to free a vnode or stall for up to 1 second waiting for
1937  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1938  */
1939 static u_long vn_alloc_cyclecount;
1940 static u_long vn_alloc_sleeps;
1941 
1942 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1943     "Number of times vnode allocation blocked waiting on vnlru");
1944 
1945 static struct vnode * __noinline
1946 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1947 {
1948 	u_long rfreevnodes;
1949 
1950 	if (bumped) {
1951 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1952 			atomic_subtract_long(&numvnodes, 1);
1953 			bumped = false;
1954 		}
1955 	}
1956 
1957 	mtx_lock(&vnode_list_mtx);
1958 
1959 	if (vn_alloc_cyclecount != 0) {
1960 		rnumvnodes = atomic_load_long(&numvnodes);
1961 		if (rnumvnodes + 1 < desiredvnodes) {
1962 			vn_alloc_cyclecount = 0;
1963 			mtx_unlock(&vnode_list_mtx);
1964 			goto alloc;
1965 		}
1966 
1967 		rfreevnodes = vnlru_read_freevnodes();
1968 		if (rfreevnodes < wantfreevnodes) {
1969 			if (vn_alloc_cyclecount++ >= rfreevnodes) {
1970 				vn_alloc_cyclecount = 0;
1971 				vstir = true;
1972 			}
1973 		} else {
1974 			vn_alloc_cyclecount = 0;
1975 		}
1976 	}
1977 
1978 	/*
1979 	 * Grow the vnode cache if it will not be above its target max after
1980 	 * growing.  Otherwise, if there is at least one free vnode, try to
1981 	 * reclaim 1 item from it before growing the cache (possibly above its
1982 	 * target max if the reclamation failed or is delayed).
1983 	 */
1984 	if (vnlru_free_locked_direct(1) > 0)
1985 		goto alloc;
1986 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1987 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1988 		/*
1989 		 * Wait for space for a new vnode.
1990 		 */
1991 		if (bumped) {
1992 			atomic_subtract_long(&numvnodes, 1);
1993 			bumped = false;
1994 		}
1995 		mtx_lock(&vnode_list_mtx);
1996 		vnlru_kick_locked();
1997 		vn_alloc_sleeps++;
1998 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1999 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2000 		    vnlru_read_freevnodes() > 1)
2001 			vnlru_free_locked_direct(1);
2002 		else
2003 			mtx_unlock(&vnode_list_mtx);
2004 	}
2005 alloc:
2006 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2007 	if (!bumped)
2008 		atomic_add_long(&numvnodes, 1);
2009 	vnlru_kick_cond();
2010 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2011 }
2012 
2013 static struct vnode *
2014 vn_alloc(struct mount *mp)
2015 {
2016 	u_long rnumvnodes;
2017 
2018 	if (__predict_false(vn_alloc_cyclecount != 0))
2019 		return (vn_alloc_hard(mp, 0, false));
2020 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2021 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2022 		return (vn_alloc_hard(mp, rnumvnodes, true));
2023 	}
2024 
2025 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2026 }
2027 
2028 static void
2029 vn_free(struct vnode *vp)
2030 {
2031 
2032 	atomic_subtract_long(&numvnodes, 1);
2033 	uma_zfree_smr(vnode_zone, vp);
2034 }
2035 
2036 /*
2037  * Allocate a new vnode.
2038  */
2039 int
2040 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2041     struct vnode **vpp)
2042 {
2043 	struct vnode *vp;
2044 	struct thread *td;
2045 	struct lock_object *lo;
2046 
2047 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2048 
2049 	KASSERT(vops->registered,
2050 	    ("%s: not registered vector op %p\n", __func__, vops));
2051 	cache_validate_vop_vector(mp, vops);
2052 
2053 	td = curthread;
2054 	if (td->td_vp_reserved != NULL) {
2055 		vp = td->td_vp_reserved;
2056 		td->td_vp_reserved = NULL;
2057 	} else {
2058 		vp = vn_alloc(mp);
2059 	}
2060 	counter_u64_add(vnodes_created, 1);
2061 
2062 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2063 
2064 	/*
2065 	 * Locks are given the generic name "vnode" when created.
2066 	 * Follow the historic practice of using the filesystem
2067 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2068 	 *
2069 	 * Locks live in a witness group keyed on their name. Thus,
2070 	 * when a lock is renamed, it must also move from the witness
2071 	 * group of its old name to the witness group of its new name.
2072 	 *
2073 	 * The change only needs to be made when the vnode moves
2074 	 * from one filesystem type to another. We ensure that each
2075 	 * filesystem use a single static name pointer for its tag so
2076 	 * that we can compare pointers rather than doing a strcmp().
2077 	 */
2078 	lo = &vp->v_vnlock->lock_object;
2079 #ifdef WITNESS
2080 	if (lo->lo_name != tag) {
2081 #endif
2082 		lo->lo_name = tag;
2083 #ifdef WITNESS
2084 		WITNESS_DESTROY(lo);
2085 		WITNESS_INIT(lo, tag);
2086 	}
2087 #endif
2088 	/*
2089 	 * By default, don't allow shared locks unless filesystems opt-in.
2090 	 */
2091 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2092 	/*
2093 	 * Finalize various vnode identity bits.
2094 	 */
2095 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2096 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2097 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2098 	vp->v_type = VNON;
2099 	vp->v_op = vops;
2100 	vp->v_irflag = 0;
2101 	v_init_counters(vp);
2102 	vn_seqc_init(vp);
2103 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2104 #ifdef DIAGNOSTIC
2105 	if (mp == NULL && vops != &dead_vnodeops)
2106 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2107 #endif
2108 #ifdef MAC
2109 	mac_vnode_init(vp);
2110 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2111 		mac_vnode_associate_singlelabel(mp, vp);
2112 #endif
2113 	if (mp != NULL) {
2114 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2115 	}
2116 
2117 	/*
2118 	 * For the filesystems which do not use vfs_hash_insert(),
2119 	 * still initialize v_hash to have vfs_hash_index() useful.
2120 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2121 	 * its own hashing.
2122 	 */
2123 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2124 
2125 	*vpp = vp;
2126 	return (0);
2127 }
2128 
2129 void
2130 getnewvnode_reserve(void)
2131 {
2132 	struct thread *td;
2133 
2134 	td = curthread;
2135 	MPASS(td->td_vp_reserved == NULL);
2136 	td->td_vp_reserved = vn_alloc(NULL);
2137 }
2138 
2139 void
2140 getnewvnode_drop_reserve(void)
2141 {
2142 	struct thread *td;
2143 
2144 	td = curthread;
2145 	if (td->td_vp_reserved != NULL) {
2146 		vn_free(td->td_vp_reserved);
2147 		td->td_vp_reserved = NULL;
2148 	}
2149 }
2150 
2151 static void __noinline
2152 freevnode(struct vnode *vp)
2153 {
2154 	struct bufobj *bo;
2155 
2156 	/*
2157 	 * The vnode has been marked for destruction, so free it.
2158 	 *
2159 	 * The vnode will be returned to the zone where it will
2160 	 * normally remain until it is needed for another vnode. We
2161 	 * need to cleanup (or verify that the cleanup has already
2162 	 * been done) any residual data left from its current use
2163 	 * so as not to contaminate the freshly allocated vnode.
2164 	 */
2165 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2166 	/*
2167 	 * Paired with vgone.
2168 	 */
2169 	vn_seqc_write_end_free(vp);
2170 
2171 	bo = &vp->v_bufobj;
2172 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2173 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2174 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2175 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2176 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2177 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2178 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2179 	    ("clean blk trie not empty"));
2180 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2181 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2182 	    ("dirty blk trie not empty"));
2183 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2184 	    ("Leaked inactivation"));
2185 	VI_UNLOCK(vp);
2186 	cache_assert_no_entries(vp);
2187 
2188 #ifdef MAC
2189 	mac_vnode_destroy(vp);
2190 #endif
2191 	if (vp->v_pollinfo != NULL) {
2192 		/*
2193 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2194 		 * here while having another vnode locked when trying to
2195 		 * satisfy a lookup and needing to recycle.
2196 		 */
2197 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2198 		destroy_vpollinfo(vp->v_pollinfo);
2199 		VOP_UNLOCK(vp);
2200 		vp->v_pollinfo = NULL;
2201 	}
2202 	vp->v_mountedhere = NULL;
2203 	vp->v_unpcb = NULL;
2204 	vp->v_rdev = NULL;
2205 	vp->v_fifoinfo = NULL;
2206 	vp->v_iflag = 0;
2207 	vp->v_vflag = 0;
2208 	bo->bo_flag = 0;
2209 	vn_free(vp);
2210 }
2211 
2212 /*
2213  * Delete from old mount point vnode list, if on one.
2214  */
2215 static void
2216 delmntque(struct vnode *vp)
2217 {
2218 	struct mount *mp;
2219 
2220 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2221 
2222 	mp = vp->v_mount;
2223 	MNT_ILOCK(mp);
2224 	VI_LOCK(vp);
2225 	vp->v_mount = NULL;
2226 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2227 		("bad mount point vnode list size"));
2228 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2229 	mp->mnt_nvnodelistsize--;
2230 	MNT_REL(mp);
2231 	MNT_IUNLOCK(mp);
2232 	/*
2233 	 * The caller expects the interlock to be still held.
2234 	 */
2235 	ASSERT_VI_LOCKED(vp, __func__);
2236 }
2237 
2238 static int
2239 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2240 {
2241 
2242 	KASSERT(vp->v_mount == NULL,
2243 		("insmntque: vnode already on per mount vnode list"));
2244 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2245 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2246 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2247 	} else {
2248 		KASSERT(!dtr,
2249 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2250 		    __func__));
2251 	}
2252 
2253 	/*
2254 	 * We acquire the vnode interlock early to ensure that the
2255 	 * vnode cannot be recycled by another process releasing a
2256 	 * holdcnt on it before we get it on both the vnode list
2257 	 * and the active vnode list. The mount mutex protects only
2258 	 * manipulation of the vnode list and the vnode freelist
2259 	 * mutex protects only manipulation of the active vnode list.
2260 	 * Hence the need to hold the vnode interlock throughout.
2261 	 */
2262 	MNT_ILOCK(mp);
2263 	VI_LOCK(vp);
2264 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2265 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2266 	    mp->mnt_nvnodelistsize == 0)) &&
2267 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2268 		VI_UNLOCK(vp);
2269 		MNT_IUNLOCK(mp);
2270 		if (dtr) {
2271 			vp->v_data = NULL;
2272 			vp->v_op = &dead_vnodeops;
2273 			vgone(vp);
2274 			vput(vp);
2275 		}
2276 		return (EBUSY);
2277 	}
2278 	vp->v_mount = mp;
2279 	MNT_REF(mp);
2280 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2281 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2282 		("neg mount point vnode list size"));
2283 	mp->mnt_nvnodelistsize++;
2284 	VI_UNLOCK(vp);
2285 	MNT_IUNLOCK(mp);
2286 	return (0);
2287 }
2288 
2289 /*
2290  * Insert into list of vnodes for the new mount point, if available.
2291  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2292  * leaves handling of the vnode to the caller.
2293  */
2294 int
2295 insmntque(struct vnode *vp, struct mount *mp)
2296 {
2297 	return (insmntque1_int(vp, mp, true));
2298 }
2299 
2300 int
2301 insmntque1(struct vnode *vp, struct mount *mp)
2302 {
2303 	return (insmntque1_int(vp, mp, false));
2304 }
2305 
2306 /*
2307  * Flush out and invalidate all buffers associated with a bufobj
2308  * Called with the underlying object locked.
2309  */
2310 int
2311 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2312 {
2313 	int error;
2314 
2315 	BO_LOCK(bo);
2316 	if (flags & V_SAVE) {
2317 		error = bufobj_wwait(bo, slpflag, slptimeo);
2318 		if (error) {
2319 			BO_UNLOCK(bo);
2320 			return (error);
2321 		}
2322 		if (bo->bo_dirty.bv_cnt > 0) {
2323 			BO_UNLOCK(bo);
2324 			do {
2325 				error = BO_SYNC(bo, MNT_WAIT);
2326 			} while (error == ERELOOKUP);
2327 			if (error != 0)
2328 				return (error);
2329 			BO_LOCK(bo);
2330 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2331 				BO_UNLOCK(bo);
2332 				return (EBUSY);
2333 			}
2334 		}
2335 	}
2336 	/*
2337 	 * If you alter this loop please notice that interlock is dropped and
2338 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2339 	 * no race conditions occur from this.
2340 	 */
2341 	do {
2342 		error = flushbuflist(&bo->bo_clean,
2343 		    flags, bo, slpflag, slptimeo);
2344 		if (error == 0 && !(flags & V_CLEANONLY))
2345 			error = flushbuflist(&bo->bo_dirty,
2346 			    flags, bo, slpflag, slptimeo);
2347 		if (error != 0 && error != EAGAIN) {
2348 			BO_UNLOCK(bo);
2349 			return (error);
2350 		}
2351 	} while (error != 0);
2352 
2353 	/*
2354 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2355 	 * have write I/O in-progress but if there is a VM object then the
2356 	 * VM object can also have read-I/O in-progress.
2357 	 */
2358 	do {
2359 		bufobj_wwait(bo, 0, 0);
2360 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2361 			BO_UNLOCK(bo);
2362 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2363 			BO_LOCK(bo);
2364 		}
2365 	} while (bo->bo_numoutput > 0);
2366 	BO_UNLOCK(bo);
2367 
2368 	/*
2369 	 * Destroy the copy in the VM cache, too.
2370 	 */
2371 	if (bo->bo_object != NULL &&
2372 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2373 		VM_OBJECT_WLOCK(bo->bo_object);
2374 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2375 		    OBJPR_CLEANONLY : 0);
2376 		VM_OBJECT_WUNLOCK(bo->bo_object);
2377 	}
2378 
2379 #ifdef INVARIANTS
2380 	BO_LOCK(bo);
2381 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2382 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2383 	    bo->bo_clean.bv_cnt > 0))
2384 		panic("vinvalbuf: flush failed");
2385 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2386 	    bo->bo_dirty.bv_cnt > 0)
2387 		panic("vinvalbuf: flush dirty failed");
2388 	BO_UNLOCK(bo);
2389 #endif
2390 	return (0);
2391 }
2392 
2393 /*
2394  * Flush out and invalidate all buffers associated with a vnode.
2395  * Called with the underlying object locked.
2396  */
2397 int
2398 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2399 {
2400 
2401 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2402 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2403 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2404 		return (0);
2405 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2406 }
2407 
2408 /*
2409  * Flush out buffers on the specified list.
2410  *
2411  */
2412 static int
2413 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2414     int slptimeo)
2415 {
2416 	struct buf *bp, *nbp;
2417 	int retval, error;
2418 	daddr_t lblkno;
2419 	b_xflags_t xflags;
2420 
2421 	ASSERT_BO_WLOCKED(bo);
2422 
2423 	retval = 0;
2424 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2425 		/*
2426 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2427 		 * do not skip any buffers. If we are flushing only V_NORMAL
2428 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2429 		 * flushing only V_ALT buffers then skip buffers not marked
2430 		 * as BX_ALTDATA.
2431 		 */
2432 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2433 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2434 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2435 			continue;
2436 		}
2437 		if (nbp != NULL) {
2438 			lblkno = nbp->b_lblkno;
2439 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2440 		}
2441 		retval = EAGAIN;
2442 		error = BUF_TIMELOCK(bp,
2443 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2444 		    "flushbuf", slpflag, slptimeo);
2445 		if (error) {
2446 			BO_LOCK(bo);
2447 			return (error != ENOLCK ? error : EAGAIN);
2448 		}
2449 		KASSERT(bp->b_bufobj == bo,
2450 		    ("bp %p wrong b_bufobj %p should be %p",
2451 		    bp, bp->b_bufobj, bo));
2452 		/*
2453 		 * XXX Since there are no node locks for NFS, I
2454 		 * believe there is a slight chance that a delayed
2455 		 * write will occur while sleeping just above, so
2456 		 * check for it.
2457 		 */
2458 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2459 		    (flags & V_SAVE)) {
2460 			bremfree(bp);
2461 			bp->b_flags |= B_ASYNC;
2462 			bwrite(bp);
2463 			BO_LOCK(bo);
2464 			return (EAGAIN);	/* XXX: why not loop ? */
2465 		}
2466 		bremfree(bp);
2467 		bp->b_flags |= (B_INVAL | B_RELBUF);
2468 		bp->b_flags &= ~B_ASYNC;
2469 		brelse(bp);
2470 		BO_LOCK(bo);
2471 		if (nbp == NULL)
2472 			break;
2473 		nbp = gbincore(bo, lblkno);
2474 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2475 		    != xflags)
2476 			break;			/* nbp invalid */
2477 	}
2478 	return (retval);
2479 }
2480 
2481 int
2482 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2483 {
2484 	struct buf *bp;
2485 	int error;
2486 	daddr_t lblkno;
2487 
2488 	ASSERT_BO_LOCKED(bo);
2489 
2490 	for (lblkno = startn;;) {
2491 again:
2492 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2493 		if (bp == NULL || bp->b_lblkno >= endn ||
2494 		    bp->b_lblkno < startn)
2495 			break;
2496 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2497 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2498 		if (error != 0) {
2499 			BO_RLOCK(bo);
2500 			if (error == ENOLCK)
2501 				goto again;
2502 			return (error);
2503 		}
2504 		KASSERT(bp->b_bufobj == bo,
2505 		    ("bp %p wrong b_bufobj %p should be %p",
2506 		    bp, bp->b_bufobj, bo));
2507 		lblkno = bp->b_lblkno + 1;
2508 		if ((bp->b_flags & B_MANAGED) == 0)
2509 			bremfree(bp);
2510 		bp->b_flags |= B_RELBUF;
2511 		/*
2512 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2513 		 * pages backing each buffer in the range are unlikely to be
2514 		 * reused.  Dirty buffers will have the hint applied once
2515 		 * they've been written.
2516 		 */
2517 		if ((bp->b_flags & B_VMIO) != 0)
2518 			bp->b_flags |= B_NOREUSE;
2519 		brelse(bp);
2520 		BO_RLOCK(bo);
2521 	}
2522 	return (0);
2523 }
2524 
2525 /*
2526  * Truncate a file's buffer and pages to a specified length.  This
2527  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2528  * sync activity.
2529  */
2530 int
2531 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2532 {
2533 	struct buf *bp, *nbp;
2534 	struct bufobj *bo;
2535 	daddr_t startlbn;
2536 
2537 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2538 	    vp, blksize, (uintmax_t)length);
2539 
2540 	/*
2541 	 * Round up to the *next* lbn.
2542 	 */
2543 	startlbn = howmany(length, blksize);
2544 
2545 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2546 
2547 	bo = &vp->v_bufobj;
2548 restart_unlocked:
2549 	BO_LOCK(bo);
2550 
2551 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2552 		;
2553 
2554 	if (length > 0) {
2555 		/*
2556 		 * Write out vnode metadata, e.g. indirect blocks.
2557 		 */
2558 restartsync:
2559 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2560 			if (bp->b_lblkno >= 0)
2561 				continue;
2562 			/*
2563 			 * Since we hold the vnode lock this should only
2564 			 * fail if we're racing with the buf daemon.
2565 			 */
2566 			if (BUF_LOCK(bp,
2567 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2568 			    BO_LOCKPTR(bo)) == ENOLCK)
2569 				goto restart_unlocked;
2570 
2571 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2572 			    ("buf(%p) on dirty queue without DELWRI", bp));
2573 
2574 			bremfree(bp);
2575 			bawrite(bp);
2576 			BO_LOCK(bo);
2577 			goto restartsync;
2578 		}
2579 	}
2580 
2581 	bufobj_wwait(bo, 0, 0);
2582 	BO_UNLOCK(bo);
2583 	vnode_pager_setsize(vp, length);
2584 
2585 	return (0);
2586 }
2587 
2588 /*
2589  * Invalidate the cached pages of a file's buffer within the range of block
2590  * numbers [startlbn, endlbn).
2591  */
2592 void
2593 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2594     int blksize)
2595 {
2596 	struct bufobj *bo;
2597 	off_t start, end;
2598 
2599 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2600 
2601 	start = blksize * startlbn;
2602 	end = blksize * endlbn;
2603 
2604 	bo = &vp->v_bufobj;
2605 	BO_LOCK(bo);
2606 	MPASS(blksize == bo->bo_bsize);
2607 
2608 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2609 		;
2610 
2611 	BO_UNLOCK(bo);
2612 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2613 }
2614 
2615 static int
2616 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2617     daddr_t startlbn, daddr_t endlbn)
2618 {
2619 	struct bufv *bv;
2620 	struct buf *bp, *nbp;
2621 	uint8_t anyfreed;
2622 	bool clean;
2623 
2624 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2625 	ASSERT_BO_LOCKED(bo);
2626 
2627 	anyfreed = 1;
2628 	clean = true;
2629 	do {
2630 		bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2631 		bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, startlbn);
2632 		if (bp == NULL || bp->b_lblkno >= endlbn ||
2633 		    bp->b_lblkno < startlbn)
2634 			continue;
2635 		TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2636 			if (bp->b_lblkno >= endlbn)
2637 				break;
2638 			if (BUF_LOCK(bp,
2639 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2640 			    BO_LOCKPTR(bo)) == ENOLCK) {
2641 				BO_LOCK(bo);
2642 				return (EAGAIN);
2643 			}
2644 
2645 			bremfree(bp);
2646 			bp->b_flags |= B_INVAL | B_RELBUF;
2647 			bp->b_flags &= ~B_ASYNC;
2648 			brelse(bp);
2649 			anyfreed = 2;
2650 
2651 			BO_LOCK(bo);
2652 			if (nbp != NULL &&
2653 			    (((nbp->b_xflags &
2654 			    (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2655 			    nbp->b_vp != vp ||
2656 			    (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2657 				return (EAGAIN);
2658 		}
2659 	} while (clean = !clean, anyfreed-- > 0);
2660 	return (0);
2661 }
2662 
2663 static void
2664 buf_vlist_remove(struct buf *bp)
2665 {
2666 	struct bufv *bv;
2667 	b_xflags_t flags;
2668 
2669 	flags = bp->b_xflags;
2670 
2671 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2672 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2673 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2674 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2675 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2676 
2677 	if ((flags & BX_VNDIRTY) != 0)
2678 		bv = &bp->b_bufobj->bo_dirty;
2679 	else
2680 		bv = &bp->b_bufobj->bo_clean;
2681 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2682 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2683 	bv->bv_cnt--;
2684 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2685 }
2686 
2687 /*
2688  * Add the buffer to the sorted clean or dirty block list.  Return zero on
2689  * success, EEXIST if a buffer with this identity already exists, or another
2690  * error on allocation failure.
2691  */
2692 static inline int
2693 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2694 {
2695 	struct bufv *bv;
2696 	struct buf *n;
2697 	int error;
2698 
2699 	ASSERT_BO_WLOCKED(bo);
2700 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2701 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2702 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2703 	    ("dead bo %p", bo));
2704 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2705 	    ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2706 
2707 	if (xflags & BX_VNDIRTY)
2708 		bv = &bo->bo_dirty;
2709 	else
2710 		bv = &bo->bo_clean;
2711 
2712 	error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, &n);
2713 	if (n == NULL) {
2714 		KASSERT(error != EEXIST,
2715 		    ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2716 		    bp));
2717 	} else {
2718 		KASSERT((uint64_t)n->b_lblkno <= (uint64_t)bp->b_lblkno,
2719 		    ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2720 		    bp, n));
2721 		KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2722 		    ("buf_vlist_add: inconsistent result for existing buf: "
2723 		    "error %d bp %p n %p", error, bp, n));
2724 	}
2725 	if (error != 0)
2726 		return (error);
2727 
2728 	/* Keep the list ordered. */
2729 	if (n == NULL) {
2730 		KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2731 		    (uint64_t)bp->b_lblkno <
2732 		    (uint64_t)TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2733 		    ("buf_vlist_add: queue order: "
2734 		    "%p should be before first %p",
2735 		    bp, TAILQ_FIRST(&bv->bv_hd)));
2736 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2737 	} else {
2738 		KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2739 		    (uint64_t)bp->b_lblkno <
2740 		    (uint64_t)TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2741 		    ("buf_vlist_add: queue order: "
2742 		    "%p should be before next %p",
2743 		    bp, TAILQ_NEXT(n, b_bobufs)));
2744 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2745 	}
2746 
2747 	bv->bv_cnt++;
2748 	return (0);
2749 }
2750 
2751 /*
2752  * Add the buffer to the sorted clean or dirty block list.
2753  *
2754  * NOTE: xflags is passed as a constant, optimizing this inline function!
2755  */
2756 static void
2757 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2758 {
2759 	int error;
2760 
2761 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2762 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2763 	bp->b_xflags |= xflags;
2764 	error = buf_vlist_find_or_add(bp, bo, xflags);
2765 	if (error)
2766 		panic("buf_vlist_add: error=%d", error);
2767 }
2768 
2769 /*
2770  * Look up a buffer using the buffer tries.
2771  */
2772 struct buf *
2773 gbincore(struct bufobj *bo, daddr_t lblkno)
2774 {
2775 	struct buf *bp;
2776 
2777 	ASSERT_BO_LOCKED(bo);
2778 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2779 	if (bp != NULL)
2780 		return (bp);
2781 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2782 }
2783 
2784 /*
2785  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2786  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2787  * stability of the result.  Like other lockless lookups, the found buf may
2788  * already be invalid by the time this function returns.
2789  */
2790 struct buf *
2791 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2792 {
2793 	struct buf *bp;
2794 
2795 	ASSERT_BO_UNLOCKED(bo);
2796 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2797 	if (bp != NULL)
2798 		return (bp);
2799 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2800 }
2801 
2802 /*
2803  * Associate a buffer with a vnode.
2804  */
2805 int
2806 bgetvp(struct vnode *vp, struct buf *bp)
2807 {
2808 	struct bufobj *bo;
2809 	int error;
2810 
2811 	bo = &vp->v_bufobj;
2812 	ASSERT_BO_UNLOCKED(bo);
2813 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2814 
2815 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2816 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2817 	    ("bgetvp: bp already attached! %p", bp));
2818 
2819 	/*
2820 	 * Add the buf to the vnode's clean list unless we lost a race and find
2821 	 * an existing buf in either dirty or clean.
2822 	 */
2823 	bp->b_vp = vp;
2824 	bp->b_bufobj = bo;
2825 	bp->b_xflags |= BX_VNCLEAN;
2826 	error = EEXIST;
2827 	BO_LOCK(bo);
2828 	if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2829 		error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2830 	BO_UNLOCK(bo);
2831 	if (__predict_true(error == 0)) {
2832 		vhold(vp);
2833 		return (0);
2834 	}
2835 	if (error != EEXIST)
2836 		panic("bgetvp: buf_vlist_add error: %d", error);
2837 	bp->b_vp = NULL;
2838 	bp->b_bufobj = NULL;
2839 	bp->b_xflags &= ~BX_VNCLEAN;
2840 	return (error);
2841 }
2842 
2843 /*
2844  * Disassociate a buffer from a vnode.
2845  */
2846 void
2847 brelvp(struct buf *bp)
2848 {
2849 	struct bufobj *bo;
2850 	struct vnode *vp;
2851 
2852 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2853 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2854 
2855 	/*
2856 	 * Delete from old vnode list, if on one.
2857 	 */
2858 	vp = bp->b_vp;		/* XXX */
2859 	bo = bp->b_bufobj;
2860 	BO_LOCK(bo);
2861 	buf_vlist_remove(bp);
2862 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2863 		bo->bo_flag &= ~BO_ONWORKLST;
2864 		mtx_lock(&sync_mtx);
2865 		LIST_REMOVE(bo, bo_synclist);
2866 		syncer_worklist_len--;
2867 		mtx_unlock(&sync_mtx);
2868 	}
2869 	bp->b_vp = NULL;
2870 	bp->b_bufobj = NULL;
2871 	BO_UNLOCK(bo);
2872 	vdrop(vp);
2873 }
2874 
2875 /*
2876  * Add an item to the syncer work queue.
2877  */
2878 static void
2879 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2880 {
2881 	int slot;
2882 
2883 	ASSERT_BO_WLOCKED(bo);
2884 
2885 	mtx_lock(&sync_mtx);
2886 	if (bo->bo_flag & BO_ONWORKLST)
2887 		LIST_REMOVE(bo, bo_synclist);
2888 	else {
2889 		bo->bo_flag |= BO_ONWORKLST;
2890 		syncer_worklist_len++;
2891 	}
2892 
2893 	if (delay > syncer_maxdelay - 2)
2894 		delay = syncer_maxdelay - 2;
2895 	slot = (syncer_delayno + delay) & syncer_mask;
2896 
2897 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2898 	mtx_unlock(&sync_mtx);
2899 }
2900 
2901 static int
2902 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2903 {
2904 	int error, len;
2905 
2906 	mtx_lock(&sync_mtx);
2907 	len = syncer_worklist_len - sync_vnode_count;
2908 	mtx_unlock(&sync_mtx);
2909 	error = SYSCTL_OUT(req, &len, sizeof(len));
2910 	return (error);
2911 }
2912 
2913 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2914     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2915     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2916 
2917 static struct proc *updateproc;
2918 static void sched_sync(void);
2919 static struct kproc_desc up_kp = {
2920 	"syncer",
2921 	sched_sync,
2922 	&updateproc
2923 };
2924 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2925 
2926 static int
2927 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2928 {
2929 	struct vnode *vp;
2930 	struct mount *mp;
2931 
2932 	*bo = LIST_FIRST(slp);
2933 	if (*bo == NULL)
2934 		return (0);
2935 	vp = bo2vnode(*bo);
2936 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2937 		return (1);
2938 	/*
2939 	 * We use vhold in case the vnode does not
2940 	 * successfully sync.  vhold prevents the vnode from
2941 	 * going away when we unlock the sync_mtx so that
2942 	 * we can acquire the vnode interlock.
2943 	 */
2944 	vholdl(vp);
2945 	mtx_unlock(&sync_mtx);
2946 	VI_UNLOCK(vp);
2947 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2948 		vdrop(vp);
2949 		mtx_lock(&sync_mtx);
2950 		return (*bo == LIST_FIRST(slp));
2951 	}
2952 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2953 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2954 	    ("suspended mp syncing vp %p", vp));
2955 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2956 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2957 	VOP_UNLOCK(vp);
2958 	vn_finished_write(mp);
2959 	BO_LOCK(*bo);
2960 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2961 		/*
2962 		 * Put us back on the worklist.  The worklist
2963 		 * routine will remove us from our current
2964 		 * position and then add us back in at a later
2965 		 * position.
2966 		 */
2967 		vn_syncer_add_to_worklist(*bo, syncdelay);
2968 	}
2969 	BO_UNLOCK(*bo);
2970 	vdrop(vp);
2971 	mtx_lock(&sync_mtx);
2972 	return (0);
2973 }
2974 
2975 static int first_printf = 1;
2976 
2977 /*
2978  * System filesystem synchronizer daemon.
2979  */
2980 static void
2981 sched_sync(void)
2982 {
2983 	struct synclist *next, *slp;
2984 	struct bufobj *bo;
2985 	long starttime;
2986 	struct thread *td = curthread;
2987 	int last_work_seen;
2988 	int net_worklist_len;
2989 	int syncer_final_iter;
2990 	int error;
2991 
2992 	last_work_seen = 0;
2993 	syncer_final_iter = 0;
2994 	syncer_state = SYNCER_RUNNING;
2995 	starttime = time_uptime;
2996 	td->td_pflags |= TDP_NORUNNINGBUF;
2997 
2998 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2999 	    SHUTDOWN_PRI_LAST);
3000 
3001 	mtx_lock(&sync_mtx);
3002 	for (;;) {
3003 		if (syncer_state == SYNCER_FINAL_DELAY &&
3004 		    syncer_final_iter == 0) {
3005 			mtx_unlock(&sync_mtx);
3006 			kproc_suspend_check(td->td_proc);
3007 			mtx_lock(&sync_mtx);
3008 		}
3009 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
3010 		if (syncer_state != SYNCER_RUNNING &&
3011 		    starttime != time_uptime) {
3012 			if (first_printf) {
3013 				printf("\nSyncing disks, vnodes remaining... ");
3014 				first_printf = 0;
3015 			}
3016 			printf("%d ", net_worklist_len);
3017 		}
3018 		starttime = time_uptime;
3019 
3020 		/*
3021 		 * Push files whose dirty time has expired.  Be careful
3022 		 * of interrupt race on slp queue.
3023 		 *
3024 		 * Skip over empty worklist slots when shutting down.
3025 		 */
3026 		do {
3027 			slp = &syncer_workitem_pending[syncer_delayno];
3028 			syncer_delayno += 1;
3029 			if (syncer_delayno == syncer_maxdelay)
3030 				syncer_delayno = 0;
3031 			next = &syncer_workitem_pending[syncer_delayno];
3032 			/*
3033 			 * If the worklist has wrapped since the
3034 			 * it was emptied of all but syncer vnodes,
3035 			 * switch to the FINAL_DELAY state and run
3036 			 * for one more second.
3037 			 */
3038 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
3039 			    net_worklist_len == 0 &&
3040 			    last_work_seen == syncer_delayno) {
3041 				syncer_state = SYNCER_FINAL_DELAY;
3042 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3043 			}
3044 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3045 		    syncer_worklist_len > 0);
3046 
3047 		/*
3048 		 * Keep track of the last time there was anything
3049 		 * on the worklist other than syncer vnodes.
3050 		 * Return to the SHUTTING_DOWN state if any
3051 		 * new work appears.
3052 		 */
3053 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3054 			last_work_seen = syncer_delayno;
3055 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3056 			syncer_state = SYNCER_SHUTTING_DOWN;
3057 		while (!LIST_EMPTY(slp)) {
3058 			error = sync_vnode(slp, &bo, td);
3059 			if (error == 1) {
3060 				LIST_REMOVE(bo, bo_synclist);
3061 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3062 				continue;
3063 			}
3064 
3065 			if (first_printf == 0) {
3066 				/*
3067 				 * Drop the sync mutex, because some watchdog
3068 				 * drivers need to sleep while patting
3069 				 */
3070 				mtx_unlock(&sync_mtx);
3071 				wdog_kern_pat(WD_LASTVAL);
3072 				mtx_lock(&sync_mtx);
3073 			}
3074 		}
3075 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3076 			syncer_final_iter--;
3077 		/*
3078 		 * The variable rushjob allows the kernel to speed up the
3079 		 * processing of the filesystem syncer process. A rushjob
3080 		 * value of N tells the filesystem syncer to process the next
3081 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3082 		 * is used by the soft update code to speed up the filesystem
3083 		 * syncer process when the incore state is getting so far
3084 		 * ahead of the disk that the kernel memory pool is being
3085 		 * threatened with exhaustion.
3086 		 */
3087 		if (rushjob > 0) {
3088 			rushjob -= 1;
3089 			continue;
3090 		}
3091 		/*
3092 		 * Just sleep for a short period of time between
3093 		 * iterations when shutting down to allow some I/O
3094 		 * to happen.
3095 		 *
3096 		 * If it has taken us less than a second to process the
3097 		 * current work, then wait. Otherwise start right over
3098 		 * again. We can still lose time if any single round
3099 		 * takes more than two seconds, but it does not really
3100 		 * matter as we are just trying to generally pace the
3101 		 * filesystem activity.
3102 		 */
3103 		if (syncer_state != SYNCER_RUNNING ||
3104 		    time_uptime == starttime) {
3105 			thread_lock(td);
3106 			sched_prio(td, PPAUSE);
3107 			thread_unlock(td);
3108 		}
3109 		if (syncer_state != SYNCER_RUNNING)
3110 			cv_timedwait(&sync_wakeup, &sync_mtx,
3111 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3112 		else if (time_uptime == starttime)
3113 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3114 	}
3115 }
3116 
3117 /*
3118  * Request the syncer daemon to speed up its work.
3119  * We never push it to speed up more than half of its
3120  * normal turn time, otherwise it could take over the cpu.
3121  */
3122 int
3123 speedup_syncer(void)
3124 {
3125 	int ret = 0;
3126 
3127 	mtx_lock(&sync_mtx);
3128 	if (rushjob < syncdelay / 2) {
3129 		rushjob += 1;
3130 		stat_rush_requests += 1;
3131 		ret = 1;
3132 	}
3133 	mtx_unlock(&sync_mtx);
3134 	cv_broadcast(&sync_wakeup);
3135 	return (ret);
3136 }
3137 
3138 /*
3139  * Tell the syncer to speed up its work and run though its work
3140  * list several times, then tell it to shut down.
3141  */
3142 static void
3143 syncer_shutdown(void *arg, int howto)
3144 {
3145 
3146 	if (howto & RB_NOSYNC)
3147 		return;
3148 	mtx_lock(&sync_mtx);
3149 	syncer_state = SYNCER_SHUTTING_DOWN;
3150 	rushjob = 0;
3151 	mtx_unlock(&sync_mtx);
3152 	cv_broadcast(&sync_wakeup);
3153 	kproc_shutdown(arg, howto);
3154 }
3155 
3156 void
3157 syncer_suspend(void)
3158 {
3159 
3160 	syncer_shutdown(updateproc, 0);
3161 }
3162 
3163 void
3164 syncer_resume(void)
3165 {
3166 
3167 	mtx_lock(&sync_mtx);
3168 	first_printf = 1;
3169 	syncer_state = SYNCER_RUNNING;
3170 	mtx_unlock(&sync_mtx);
3171 	cv_broadcast(&sync_wakeup);
3172 	kproc_resume(updateproc);
3173 }
3174 
3175 /*
3176  * Move the buffer between the clean and dirty lists of its vnode.
3177  */
3178 void
3179 reassignbuf(struct buf *bp)
3180 {
3181 	struct vnode *vp;
3182 	struct bufobj *bo;
3183 	int delay;
3184 #ifdef INVARIANTS
3185 	struct bufv *bv;
3186 #endif
3187 
3188 	vp = bp->b_vp;
3189 	bo = bp->b_bufobj;
3190 
3191 	KASSERT((bp->b_flags & B_PAGING) == 0,
3192 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3193 
3194 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3195 	    bp, bp->b_vp, bp->b_flags);
3196 
3197 	BO_LOCK(bo);
3198 	if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3199 		/*
3200 		 * Coordinate with getblk's unlocked lookup.  Make
3201 		 * BO_NONSTERILE visible before the first reassignbuf produces
3202 		 * any side effect.  This could be outside the bo lock if we
3203 		 * used a separate atomic flag field.
3204 		 */
3205 		bo->bo_flag |= BO_NONSTERILE;
3206 		atomic_thread_fence_rel();
3207 	}
3208 	buf_vlist_remove(bp);
3209 
3210 	/*
3211 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3212 	 * of clean buffers.
3213 	 */
3214 	if (bp->b_flags & B_DELWRI) {
3215 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3216 			switch (vp->v_type) {
3217 			case VDIR:
3218 				delay = dirdelay;
3219 				break;
3220 			case VCHR:
3221 				delay = metadelay;
3222 				break;
3223 			default:
3224 				delay = filedelay;
3225 			}
3226 			vn_syncer_add_to_worklist(bo, delay);
3227 		}
3228 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3229 	} else {
3230 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3231 
3232 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3233 			mtx_lock(&sync_mtx);
3234 			LIST_REMOVE(bo, bo_synclist);
3235 			syncer_worklist_len--;
3236 			mtx_unlock(&sync_mtx);
3237 			bo->bo_flag &= ~BO_ONWORKLST;
3238 		}
3239 	}
3240 #ifdef INVARIANTS
3241 	bv = &bo->bo_clean;
3242 	bp = TAILQ_FIRST(&bv->bv_hd);
3243 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3244 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3245 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3246 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3247 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3248 	bv = &bo->bo_dirty;
3249 	bp = TAILQ_FIRST(&bv->bv_hd);
3250 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3251 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3252 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3253 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3254 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3255 #endif
3256 	BO_UNLOCK(bo);
3257 }
3258 
3259 static void
3260 v_init_counters(struct vnode *vp)
3261 {
3262 
3263 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3264 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3265 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3266 
3267 	refcount_init(&vp->v_holdcnt, 1);
3268 	refcount_init(&vp->v_usecount, 1);
3269 }
3270 
3271 /*
3272  * Get a usecount on a vnode.
3273  *
3274  * vget and vget_finish may fail to lock the vnode if they lose a race against
3275  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3276  *
3277  * Consumers which don't guarantee liveness of the vnode can use SMR to
3278  * try to get a reference. Note this operation can fail since the vnode
3279  * may be awaiting getting freed by the time they get to it.
3280  */
3281 enum vgetstate
3282 vget_prep_smr(struct vnode *vp)
3283 {
3284 	enum vgetstate vs;
3285 
3286 	VFS_SMR_ASSERT_ENTERED();
3287 
3288 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3289 		vs = VGET_USECOUNT;
3290 	} else {
3291 		if (vhold_smr(vp))
3292 			vs = VGET_HOLDCNT;
3293 		else
3294 			vs = VGET_NONE;
3295 	}
3296 	return (vs);
3297 }
3298 
3299 enum vgetstate
3300 vget_prep(struct vnode *vp)
3301 {
3302 	enum vgetstate vs;
3303 
3304 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3305 		vs = VGET_USECOUNT;
3306 	} else {
3307 		vhold(vp);
3308 		vs = VGET_HOLDCNT;
3309 	}
3310 	return (vs);
3311 }
3312 
3313 void
3314 vget_abort(struct vnode *vp, enum vgetstate vs)
3315 {
3316 
3317 	switch (vs) {
3318 	case VGET_USECOUNT:
3319 		vrele(vp);
3320 		break;
3321 	case VGET_HOLDCNT:
3322 		vdrop(vp);
3323 		break;
3324 	default:
3325 		__assert_unreachable();
3326 	}
3327 }
3328 
3329 int
3330 vget(struct vnode *vp, int flags)
3331 {
3332 	enum vgetstate vs;
3333 
3334 	vs = vget_prep(vp);
3335 	return (vget_finish(vp, flags, vs));
3336 }
3337 
3338 int
3339 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3340 {
3341 	int error;
3342 
3343 	if ((flags & LK_INTERLOCK) != 0)
3344 		ASSERT_VI_LOCKED(vp, __func__);
3345 	else
3346 		ASSERT_VI_UNLOCKED(vp, __func__);
3347 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3348 	VNPASS(vp->v_holdcnt > 0, vp);
3349 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3350 
3351 	error = vn_lock(vp, flags);
3352 	if (__predict_false(error != 0)) {
3353 		vget_abort(vp, vs);
3354 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3355 		    vp);
3356 		return (error);
3357 	}
3358 
3359 	vget_finish_ref(vp, vs);
3360 	return (0);
3361 }
3362 
3363 void
3364 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3365 {
3366 	int old;
3367 
3368 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3369 	VNPASS(vp->v_holdcnt > 0, vp);
3370 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3371 
3372 	if (vs == VGET_USECOUNT)
3373 		return;
3374 
3375 	/*
3376 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3377 	 * the vnode around. Otherwise someone else lended their hold count and
3378 	 * we have to drop ours.
3379 	 */
3380 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3381 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3382 	if (old != 0) {
3383 #ifdef INVARIANTS
3384 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3385 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3386 #else
3387 		refcount_release(&vp->v_holdcnt);
3388 #endif
3389 	}
3390 }
3391 
3392 void
3393 vref(struct vnode *vp)
3394 {
3395 	enum vgetstate vs;
3396 
3397 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3398 	vs = vget_prep(vp);
3399 	vget_finish_ref(vp, vs);
3400 }
3401 
3402 void
3403 vrefact(struct vnode *vp)
3404 {
3405 	int old __diagused;
3406 
3407 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3408 	old = refcount_acquire(&vp->v_usecount);
3409 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3410 }
3411 
3412 void
3413 vlazy(struct vnode *vp)
3414 {
3415 	struct mount *mp;
3416 
3417 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3418 
3419 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3420 		return;
3421 	/*
3422 	 * We may get here for inactive routines after the vnode got doomed.
3423 	 */
3424 	if (VN_IS_DOOMED(vp))
3425 		return;
3426 	mp = vp->v_mount;
3427 	mtx_lock(&mp->mnt_listmtx);
3428 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3429 		vp->v_mflag |= VMP_LAZYLIST;
3430 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3431 		mp->mnt_lazyvnodelistsize++;
3432 	}
3433 	mtx_unlock(&mp->mnt_listmtx);
3434 }
3435 
3436 static void
3437 vunlazy(struct vnode *vp)
3438 {
3439 	struct mount *mp;
3440 
3441 	ASSERT_VI_LOCKED(vp, __func__);
3442 	VNPASS(!VN_IS_DOOMED(vp), vp);
3443 
3444 	mp = vp->v_mount;
3445 	mtx_lock(&mp->mnt_listmtx);
3446 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3447 	/*
3448 	 * Don't remove the vnode from the lazy list if another thread
3449 	 * has increased the hold count. It may have re-enqueued the
3450 	 * vnode to the lazy list and is now responsible for its
3451 	 * removal.
3452 	 */
3453 	if (vp->v_holdcnt == 0) {
3454 		vp->v_mflag &= ~VMP_LAZYLIST;
3455 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3456 		mp->mnt_lazyvnodelistsize--;
3457 	}
3458 	mtx_unlock(&mp->mnt_listmtx);
3459 }
3460 
3461 /*
3462  * This routine is only meant to be called from vgonel prior to dooming
3463  * the vnode.
3464  */
3465 static void
3466 vunlazy_gone(struct vnode *vp)
3467 {
3468 	struct mount *mp;
3469 
3470 	ASSERT_VOP_ELOCKED(vp, __func__);
3471 	ASSERT_VI_LOCKED(vp, __func__);
3472 	VNPASS(!VN_IS_DOOMED(vp), vp);
3473 
3474 	if (vp->v_mflag & VMP_LAZYLIST) {
3475 		mp = vp->v_mount;
3476 		mtx_lock(&mp->mnt_listmtx);
3477 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3478 		vp->v_mflag &= ~VMP_LAZYLIST;
3479 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3480 		mp->mnt_lazyvnodelistsize--;
3481 		mtx_unlock(&mp->mnt_listmtx);
3482 	}
3483 }
3484 
3485 static void
3486 vdefer_inactive(struct vnode *vp)
3487 {
3488 
3489 	ASSERT_VI_LOCKED(vp, __func__);
3490 	VNPASS(vp->v_holdcnt > 0, vp);
3491 	if (VN_IS_DOOMED(vp)) {
3492 		vdropl(vp);
3493 		return;
3494 	}
3495 	if (vp->v_iflag & VI_DEFINACT) {
3496 		VNPASS(vp->v_holdcnt > 1, vp);
3497 		vdropl(vp);
3498 		return;
3499 	}
3500 	if (vp->v_usecount > 0) {
3501 		vp->v_iflag &= ~VI_OWEINACT;
3502 		vdropl(vp);
3503 		return;
3504 	}
3505 	vlazy(vp);
3506 	vp->v_iflag |= VI_DEFINACT;
3507 	VI_UNLOCK(vp);
3508 	atomic_add_long(&deferred_inact, 1);
3509 }
3510 
3511 static void
3512 vdefer_inactive_unlocked(struct vnode *vp)
3513 {
3514 
3515 	VI_LOCK(vp);
3516 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3517 		vdropl(vp);
3518 		return;
3519 	}
3520 	vdefer_inactive(vp);
3521 }
3522 
3523 enum vput_op { VRELE, VPUT, VUNREF };
3524 
3525 /*
3526  * Handle ->v_usecount transitioning to 0.
3527  *
3528  * By releasing the last usecount we take ownership of the hold count which
3529  * provides liveness of the vnode, meaning we have to vdrop.
3530  *
3531  * For all vnodes we may need to perform inactive processing. It requires an
3532  * exclusive lock on the vnode, while it is legal to call here with only a
3533  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3534  * inactive processing gets deferred to the syncer.
3535  *
3536  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3537  * on the lock being held all the way until VOP_INACTIVE. This in particular
3538  * happens with UFS which adds half-constructed vnodes to the hash, where they
3539  * can be found by other code.
3540  */
3541 static void
3542 vput_final(struct vnode *vp, enum vput_op func)
3543 {
3544 	int error;
3545 	bool want_unlock;
3546 
3547 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3548 	VNPASS(vp->v_holdcnt > 0, vp);
3549 
3550 	VI_LOCK(vp);
3551 
3552 	/*
3553 	 * By the time we got here someone else might have transitioned
3554 	 * the count back to > 0.
3555 	 */
3556 	if (vp->v_usecount > 0)
3557 		goto out;
3558 
3559 	/*
3560 	 * If the vnode is doomed vgone already performed inactive processing
3561 	 * (if needed).
3562 	 */
3563 	if (VN_IS_DOOMED(vp))
3564 		goto out;
3565 
3566 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3567 		goto out;
3568 
3569 	if (vp->v_iflag & VI_DOINGINACT)
3570 		goto out;
3571 
3572 	/*
3573 	 * Locking operations here will drop the interlock and possibly the
3574 	 * vnode lock, opening a window where the vnode can get doomed all the
3575 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3576 	 * perform inactive.
3577 	 */
3578 	vp->v_iflag |= VI_OWEINACT;
3579 	want_unlock = false;
3580 	error = 0;
3581 	switch (func) {
3582 	case VRELE:
3583 		switch (VOP_ISLOCKED(vp)) {
3584 		case LK_EXCLUSIVE:
3585 			break;
3586 		case LK_EXCLOTHER:
3587 		case 0:
3588 			want_unlock = true;
3589 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3590 			VI_LOCK(vp);
3591 			break;
3592 		default:
3593 			/*
3594 			 * The lock has at least one sharer, but we have no way
3595 			 * to conclude whether this is us. Play it safe and
3596 			 * defer processing.
3597 			 */
3598 			error = EAGAIN;
3599 			break;
3600 		}
3601 		break;
3602 	case VPUT:
3603 		want_unlock = true;
3604 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3605 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3606 			    LK_NOWAIT);
3607 			VI_LOCK(vp);
3608 		}
3609 		break;
3610 	case VUNREF:
3611 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3612 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3613 			VI_LOCK(vp);
3614 		}
3615 		break;
3616 	}
3617 	if (error == 0) {
3618 		if (func == VUNREF) {
3619 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3620 			    ("recursive vunref"));
3621 			vp->v_vflag |= VV_UNREF;
3622 		}
3623 		for (;;) {
3624 			error = vinactive(vp);
3625 			if (want_unlock)
3626 				VOP_UNLOCK(vp);
3627 			if (error != ERELOOKUP || !want_unlock)
3628 				break;
3629 			VOP_LOCK(vp, LK_EXCLUSIVE);
3630 		}
3631 		if (func == VUNREF)
3632 			vp->v_vflag &= ~VV_UNREF;
3633 		vdropl(vp);
3634 	} else {
3635 		vdefer_inactive(vp);
3636 	}
3637 	return;
3638 out:
3639 	if (func == VPUT)
3640 		VOP_UNLOCK(vp);
3641 	vdropl(vp);
3642 }
3643 
3644 /*
3645  * Decrement ->v_usecount for a vnode.
3646  *
3647  * Releasing the last use count requires additional processing, see vput_final
3648  * above for details.
3649  *
3650  * Comment above each variant denotes lock state on entry and exit.
3651  */
3652 
3653 /*
3654  * in: any
3655  * out: same as passed in
3656  */
3657 void
3658 vrele(struct vnode *vp)
3659 {
3660 
3661 	ASSERT_VI_UNLOCKED(vp, __func__);
3662 	if (!refcount_release(&vp->v_usecount))
3663 		return;
3664 	vput_final(vp, VRELE);
3665 }
3666 
3667 /*
3668  * in: locked
3669  * out: unlocked
3670  */
3671 void
3672 vput(struct vnode *vp)
3673 {
3674 
3675 	ASSERT_VOP_LOCKED(vp, __func__);
3676 	ASSERT_VI_UNLOCKED(vp, __func__);
3677 	if (!refcount_release(&vp->v_usecount)) {
3678 		VOP_UNLOCK(vp);
3679 		return;
3680 	}
3681 	vput_final(vp, VPUT);
3682 }
3683 
3684 /*
3685  * in: locked
3686  * out: locked
3687  */
3688 void
3689 vunref(struct vnode *vp)
3690 {
3691 
3692 	ASSERT_VOP_LOCKED(vp, __func__);
3693 	ASSERT_VI_UNLOCKED(vp, __func__);
3694 	if (!refcount_release(&vp->v_usecount))
3695 		return;
3696 	vput_final(vp, VUNREF);
3697 }
3698 
3699 void
3700 vhold(struct vnode *vp)
3701 {
3702 	int old;
3703 
3704 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3705 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3706 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3707 	    ("%s: wrong hold count %d", __func__, old));
3708 	if (old == 0)
3709 		vfs_freevnodes_dec();
3710 }
3711 
3712 void
3713 vholdnz(struct vnode *vp)
3714 {
3715 
3716 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3717 #ifdef INVARIANTS
3718 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3719 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3720 	    ("%s: wrong hold count %d", __func__, old));
3721 #else
3722 	atomic_add_int(&vp->v_holdcnt, 1);
3723 #endif
3724 }
3725 
3726 /*
3727  * Grab a hold count unless the vnode is freed.
3728  *
3729  * Only use this routine if vfs smr is the only protection you have against
3730  * freeing the vnode.
3731  *
3732  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3733  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3734  * the thread which managed to set the flag.
3735  *
3736  * It may be tempting to replace the loop with:
3737  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3738  * if (count & VHOLD_NO_SMR) {
3739  *     backpedal and error out;
3740  * }
3741  *
3742  * However, while this is more performant, it hinders debugging by eliminating
3743  * the previously mentioned invariant.
3744  */
3745 bool
3746 vhold_smr(struct vnode *vp)
3747 {
3748 	int count;
3749 
3750 	VFS_SMR_ASSERT_ENTERED();
3751 
3752 	count = atomic_load_int(&vp->v_holdcnt);
3753 	for (;;) {
3754 		if (count & VHOLD_NO_SMR) {
3755 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3756 			    ("non-zero hold count with flags %d\n", count));
3757 			return (false);
3758 		}
3759 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3760 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3761 			if (count == 0)
3762 				vfs_freevnodes_dec();
3763 			return (true);
3764 		}
3765 	}
3766 }
3767 
3768 /*
3769  * Hold a free vnode for recycling.
3770  *
3771  * Note: vnode_init references this comment.
3772  *
3773  * Attempts to recycle only need the global vnode list lock and have no use for
3774  * SMR.
3775  *
3776  * However, vnodes get inserted into the global list before they get fully
3777  * initialized and stay there until UMA decides to free the memory. This in
3778  * particular means the target can be found before it becomes usable and after
3779  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3780  * VHOLD_NO_SMR.
3781  *
3782  * Note: the vnode may gain more references after we transition the count 0->1.
3783  */
3784 static bool
3785 vhold_recycle_free(struct vnode *vp)
3786 {
3787 	int count;
3788 
3789 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3790 
3791 	count = atomic_load_int(&vp->v_holdcnt);
3792 	for (;;) {
3793 		if (count & VHOLD_NO_SMR) {
3794 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3795 			    ("non-zero hold count with flags %d\n", count));
3796 			return (false);
3797 		}
3798 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3799 		if (count > 0) {
3800 			return (false);
3801 		}
3802 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3803 			vfs_freevnodes_dec();
3804 			return (true);
3805 		}
3806 	}
3807 }
3808 
3809 static void __noinline
3810 vdbatch_process(struct vdbatch *vd)
3811 {
3812 	struct vnode *vp;
3813 	int i;
3814 
3815 	mtx_assert(&vd->lock, MA_OWNED);
3816 	MPASS(curthread->td_pinned > 0);
3817 	MPASS(vd->index == VDBATCH_SIZE);
3818 
3819 	/*
3820 	 * Attempt to requeue the passed batch, but give up easily.
3821 	 *
3822 	 * Despite batching the mechanism is prone to transient *significant*
3823 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3824 	 * if multiple CPUs get here (one real-world example is highly parallel
3825 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3826 	 * quasi-LRU (read: not that great even if fully honoured) provide an
3827 	 * option to just dodge the problem. Parties which don't like it are
3828 	 * welcome to implement something better.
3829 	 */
3830 	if (vnode_can_skip_requeue) {
3831 		if (!mtx_trylock(&vnode_list_mtx)) {
3832 			counter_u64_add(vnode_skipped_requeues, 1);
3833 			critical_enter();
3834 			for (i = 0; i < VDBATCH_SIZE; i++) {
3835 				vp = vd->tab[i];
3836 				vd->tab[i] = NULL;
3837 				MPASS(vp->v_dbatchcpu != NOCPU);
3838 				vp->v_dbatchcpu = NOCPU;
3839 			}
3840 			vd->index = 0;
3841 			critical_exit();
3842 			return;
3843 
3844 		}
3845 		/* fallthrough to locked processing */
3846 	} else {
3847 		mtx_lock(&vnode_list_mtx);
3848 	}
3849 
3850 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3851 	critical_enter();
3852 	for (i = 0; i < VDBATCH_SIZE; i++) {
3853 		vp = vd->tab[i];
3854 		vd->tab[i] = NULL;
3855 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3856 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3857 		MPASS(vp->v_dbatchcpu != NOCPU);
3858 		vp->v_dbatchcpu = NOCPU;
3859 	}
3860 	mtx_unlock(&vnode_list_mtx);
3861 	vd->index = 0;
3862 	critical_exit();
3863 }
3864 
3865 static void
3866 vdbatch_enqueue(struct vnode *vp)
3867 {
3868 	struct vdbatch *vd;
3869 
3870 	ASSERT_VI_LOCKED(vp, __func__);
3871 	VNPASS(!VN_IS_DOOMED(vp), vp);
3872 
3873 	if (vp->v_dbatchcpu != NOCPU) {
3874 		VI_UNLOCK(vp);
3875 		return;
3876 	}
3877 
3878 	sched_pin();
3879 	vd = DPCPU_PTR(vd);
3880 	mtx_lock(&vd->lock);
3881 	MPASS(vd->index < VDBATCH_SIZE);
3882 	MPASS(vd->tab[vd->index] == NULL);
3883 	/*
3884 	 * A hack: we depend on being pinned so that we know what to put in
3885 	 * ->v_dbatchcpu.
3886 	 */
3887 	vp->v_dbatchcpu = curcpu;
3888 	vd->tab[vd->index] = vp;
3889 	vd->index++;
3890 	VI_UNLOCK(vp);
3891 	if (vd->index == VDBATCH_SIZE)
3892 		vdbatch_process(vd);
3893 	mtx_unlock(&vd->lock);
3894 	sched_unpin();
3895 }
3896 
3897 /*
3898  * This routine must only be called for vnodes which are about to be
3899  * deallocated. Supporting dequeue for arbitrary vndoes would require
3900  * validating that the locked batch matches.
3901  */
3902 static void
3903 vdbatch_dequeue(struct vnode *vp)
3904 {
3905 	struct vdbatch *vd;
3906 	int i;
3907 	short cpu;
3908 
3909 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3910 
3911 	cpu = vp->v_dbatchcpu;
3912 	if (cpu == NOCPU)
3913 		return;
3914 
3915 	vd = DPCPU_ID_PTR(cpu, vd);
3916 	mtx_lock(&vd->lock);
3917 	for (i = 0; i < vd->index; i++) {
3918 		if (vd->tab[i] != vp)
3919 			continue;
3920 		vp->v_dbatchcpu = NOCPU;
3921 		vd->index--;
3922 		vd->tab[i] = vd->tab[vd->index];
3923 		vd->tab[vd->index] = NULL;
3924 		break;
3925 	}
3926 	mtx_unlock(&vd->lock);
3927 	/*
3928 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3929 	 */
3930 	MPASS(vp->v_dbatchcpu == NOCPU);
3931 }
3932 
3933 /*
3934  * Drop the hold count of the vnode.
3935  *
3936  * It will only get freed if this is the last hold *and* it has been vgone'd.
3937  *
3938  * Because the vnode vm object keeps a hold reference on the vnode if
3939  * there is at least one resident non-cached page, the vnode cannot
3940  * leave the active list without the page cleanup done.
3941  */
3942 static void __noinline
3943 vdropl_final(struct vnode *vp)
3944 {
3945 
3946 	ASSERT_VI_LOCKED(vp, __func__);
3947 	VNPASS(VN_IS_DOOMED(vp), vp);
3948 	/*
3949 	 * Set the VHOLD_NO_SMR flag.
3950 	 *
3951 	 * We may be racing against vhold_smr. If they win we can just pretend
3952 	 * we never got this far, they will vdrop later.
3953 	 */
3954 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3955 		vfs_freevnodes_inc();
3956 		VI_UNLOCK(vp);
3957 		/*
3958 		 * We lost the aforementioned race. Any subsequent access is
3959 		 * invalid as they might have managed to vdropl on their own.
3960 		 */
3961 		return;
3962 	}
3963 	/*
3964 	 * Don't bump freevnodes as this one is going away.
3965 	 */
3966 	freevnode(vp);
3967 }
3968 
3969 void
3970 vdrop(struct vnode *vp)
3971 {
3972 
3973 	ASSERT_VI_UNLOCKED(vp, __func__);
3974 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3975 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3976 		return;
3977 	VI_LOCK(vp);
3978 	vdropl(vp);
3979 }
3980 
3981 static __always_inline void
3982 vdropl_impl(struct vnode *vp, bool enqueue)
3983 {
3984 
3985 	ASSERT_VI_LOCKED(vp, __func__);
3986 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3987 	if (!refcount_release(&vp->v_holdcnt)) {
3988 		VI_UNLOCK(vp);
3989 		return;
3990 	}
3991 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3992 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3993 	if (VN_IS_DOOMED(vp)) {
3994 		vdropl_final(vp);
3995 		return;
3996 	}
3997 
3998 	vfs_freevnodes_inc();
3999 	if (vp->v_mflag & VMP_LAZYLIST) {
4000 		vunlazy(vp);
4001 	}
4002 
4003 	if (!enqueue) {
4004 		VI_UNLOCK(vp);
4005 		return;
4006 	}
4007 
4008 	/*
4009 	 * Also unlocks the interlock. We can't assert on it as we
4010 	 * released our hold and by now the vnode might have been
4011 	 * freed.
4012 	 */
4013 	vdbatch_enqueue(vp);
4014 }
4015 
4016 void
4017 vdropl(struct vnode *vp)
4018 {
4019 
4020 	vdropl_impl(vp, true);
4021 }
4022 
4023 /*
4024  * vdrop a vnode when recycling
4025  *
4026  * This is a special case routine only to be used when recycling, differs from
4027  * regular vdrop by not requeieing the vnode on LRU.
4028  *
4029  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4030  * e.g., frozen writes on the filesystem), filling the batch and causing it to
4031  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4032  * loop which can last for as long as writes are frozen.
4033  */
4034 static void
4035 vdropl_recycle(struct vnode *vp)
4036 {
4037 
4038 	vdropl_impl(vp, false);
4039 }
4040 
4041 static void
4042 vdrop_recycle(struct vnode *vp)
4043 {
4044 
4045 	VI_LOCK(vp);
4046 	vdropl_recycle(vp);
4047 }
4048 
4049 /*
4050  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4051  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4052  */
4053 static int
4054 vinactivef(struct vnode *vp)
4055 {
4056 	int error;
4057 
4058 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4059 	ASSERT_VI_LOCKED(vp, "vinactive");
4060 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4061 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4062 	vp->v_iflag |= VI_DOINGINACT;
4063 	vp->v_iflag &= ~VI_OWEINACT;
4064 	VI_UNLOCK(vp);
4065 
4066 	/*
4067 	 * Before moving off the active list, we must be sure that any
4068 	 * modified pages are converted into the vnode's dirty
4069 	 * buffers, since these will no longer be checked once the
4070 	 * vnode is on the inactive list.
4071 	 *
4072 	 * The write-out of the dirty pages is asynchronous.  At the
4073 	 * point that VOP_INACTIVE() is called, there could still be
4074 	 * pending I/O and dirty pages in the object.
4075 	 */
4076 	if ((vp->v_vflag & VV_NOSYNC) == 0)
4077 		vnode_pager_clean_async(vp);
4078 
4079 	error = VOP_INACTIVE(vp);
4080 	VI_LOCK(vp);
4081 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4082 	vp->v_iflag &= ~VI_DOINGINACT;
4083 	return (error);
4084 }
4085 
4086 int
4087 vinactive(struct vnode *vp)
4088 {
4089 
4090 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4091 	ASSERT_VI_LOCKED(vp, "vinactive");
4092 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4093 
4094 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4095 		return (0);
4096 	if (vp->v_iflag & VI_DOINGINACT)
4097 		return (0);
4098 	if (vp->v_usecount > 0) {
4099 		vp->v_iflag &= ~VI_OWEINACT;
4100 		return (0);
4101 	}
4102 	return (vinactivef(vp));
4103 }
4104 
4105 /*
4106  * Remove any vnodes in the vnode table belonging to mount point mp.
4107  *
4108  * If FORCECLOSE is not specified, there should not be any active ones,
4109  * return error if any are found (nb: this is a user error, not a
4110  * system error). If FORCECLOSE is specified, detach any active vnodes
4111  * that are found.
4112  *
4113  * If WRITECLOSE is set, only flush out regular file vnodes open for
4114  * writing.
4115  *
4116  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4117  *
4118  * `rootrefs' specifies the base reference count for the root vnode
4119  * of this filesystem. The root vnode is considered busy if its
4120  * v_usecount exceeds this value. On a successful return, vflush(, td)
4121  * will call vrele() on the root vnode exactly rootrefs times.
4122  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4123  * be zero.
4124  */
4125 #ifdef DIAGNOSTIC
4126 static int busyprt = 0;		/* print out busy vnodes */
4127 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4128 #endif
4129 
4130 int
4131 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4132 {
4133 	struct vnode *vp, *mvp, *rootvp = NULL;
4134 	struct vattr vattr;
4135 	int busy = 0, error;
4136 
4137 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4138 	    rootrefs, flags);
4139 	if (rootrefs > 0) {
4140 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4141 		    ("vflush: bad args"));
4142 		/*
4143 		 * Get the filesystem root vnode. We can vput() it
4144 		 * immediately, since with rootrefs > 0, it won't go away.
4145 		 */
4146 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4147 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4148 			    __func__, error);
4149 			return (error);
4150 		}
4151 		vput(rootvp);
4152 	}
4153 loop:
4154 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4155 		vholdl(vp);
4156 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4157 		if (error) {
4158 			vdrop(vp);
4159 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4160 			goto loop;
4161 		}
4162 		/*
4163 		 * Skip over a vnodes marked VV_SYSTEM.
4164 		 */
4165 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4166 			VOP_UNLOCK(vp);
4167 			vdrop(vp);
4168 			continue;
4169 		}
4170 		/*
4171 		 * If WRITECLOSE is set, flush out unlinked but still open
4172 		 * files (even if open only for reading) and regular file
4173 		 * vnodes open for writing.
4174 		 */
4175 		if (flags & WRITECLOSE) {
4176 			vnode_pager_clean_async(vp);
4177 			do {
4178 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4179 			} while (error == ERELOOKUP);
4180 			if (error != 0) {
4181 				VOP_UNLOCK(vp);
4182 				vdrop(vp);
4183 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4184 				return (error);
4185 			}
4186 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4187 			VI_LOCK(vp);
4188 
4189 			if ((vp->v_type == VNON ||
4190 			    (error == 0 && vattr.va_nlink > 0)) &&
4191 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4192 				VOP_UNLOCK(vp);
4193 				vdropl(vp);
4194 				continue;
4195 			}
4196 		} else
4197 			VI_LOCK(vp);
4198 		/*
4199 		 * With v_usecount == 0, all we need to do is clear out the
4200 		 * vnode data structures and we are done.
4201 		 *
4202 		 * If FORCECLOSE is set, forcibly close the vnode.
4203 		 */
4204 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4205 			vgonel(vp);
4206 		} else {
4207 			busy++;
4208 #ifdef DIAGNOSTIC
4209 			if (busyprt)
4210 				vn_printf(vp, "vflush: busy vnode ");
4211 #endif
4212 		}
4213 		VOP_UNLOCK(vp);
4214 		vdropl(vp);
4215 	}
4216 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4217 		/*
4218 		 * If just the root vnode is busy, and if its refcount
4219 		 * is equal to `rootrefs', then go ahead and kill it.
4220 		 */
4221 		VI_LOCK(rootvp);
4222 		KASSERT(busy > 0, ("vflush: not busy"));
4223 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4224 		    ("vflush: usecount %d < rootrefs %d",
4225 		     rootvp->v_usecount, rootrefs));
4226 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4227 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4228 			vgone(rootvp);
4229 			VOP_UNLOCK(rootvp);
4230 			busy = 0;
4231 		} else
4232 			VI_UNLOCK(rootvp);
4233 	}
4234 	if (busy) {
4235 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4236 		    busy);
4237 		return (EBUSY);
4238 	}
4239 	for (; rootrefs > 0; rootrefs--)
4240 		vrele(rootvp);
4241 	return (0);
4242 }
4243 
4244 /*
4245  * Recycle an unused vnode.
4246  */
4247 int
4248 vrecycle(struct vnode *vp)
4249 {
4250 	int recycled;
4251 
4252 	VI_LOCK(vp);
4253 	recycled = vrecyclel(vp);
4254 	VI_UNLOCK(vp);
4255 	return (recycled);
4256 }
4257 
4258 /*
4259  * vrecycle, with the vp interlock held.
4260  */
4261 int
4262 vrecyclel(struct vnode *vp)
4263 {
4264 	int recycled;
4265 
4266 	ASSERT_VOP_ELOCKED(vp, __func__);
4267 	ASSERT_VI_LOCKED(vp, __func__);
4268 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4269 	recycled = 0;
4270 	if (vp->v_usecount == 0) {
4271 		recycled = 1;
4272 		vgonel(vp);
4273 	}
4274 	return (recycled);
4275 }
4276 
4277 /*
4278  * Eliminate all activity associated with a vnode
4279  * in preparation for reuse.
4280  */
4281 void
4282 vgone(struct vnode *vp)
4283 {
4284 	VI_LOCK(vp);
4285 	vgonel(vp);
4286 	VI_UNLOCK(vp);
4287 }
4288 
4289 /*
4290  * Notify upper mounts about reclaimed or unlinked vnode.
4291  */
4292 void
4293 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4294 {
4295 	struct mount *mp;
4296 	struct mount_upper_node *ump;
4297 
4298 	mp = atomic_load_ptr(&vp->v_mount);
4299 	if (mp == NULL)
4300 		return;
4301 	if (TAILQ_EMPTY(&mp->mnt_notify))
4302 		return;
4303 
4304 	MNT_ILOCK(mp);
4305 	mp->mnt_upper_pending++;
4306 	KASSERT(mp->mnt_upper_pending > 0,
4307 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4308 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4309 		MNT_IUNLOCK(mp);
4310 		switch (event) {
4311 		case VFS_NOTIFY_UPPER_RECLAIM:
4312 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4313 			break;
4314 		case VFS_NOTIFY_UPPER_UNLINK:
4315 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4316 			break;
4317 		}
4318 		MNT_ILOCK(mp);
4319 	}
4320 	mp->mnt_upper_pending--;
4321 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4322 	    mp->mnt_upper_pending == 0) {
4323 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4324 		wakeup(&mp->mnt_uppers);
4325 	}
4326 	MNT_IUNLOCK(mp);
4327 }
4328 
4329 /*
4330  * vgone, with the vp interlock held.
4331  */
4332 static void
4333 vgonel(struct vnode *vp)
4334 {
4335 	struct thread *td;
4336 	struct mount *mp;
4337 	vm_object_t object;
4338 	bool active, doinginact, oweinact;
4339 
4340 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4341 	ASSERT_VI_LOCKED(vp, "vgonel");
4342 	VNASSERT(vp->v_holdcnt, vp,
4343 	    ("vgonel: vp %p has no reference.", vp));
4344 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4345 	td = curthread;
4346 
4347 	/*
4348 	 * Don't vgonel if we're already doomed.
4349 	 */
4350 	if (VN_IS_DOOMED(vp)) {
4351 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4352 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4353 		return;
4354 	}
4355 	/*
4356 	 * Paired with freevnode.
4357 	 */
4358 	vn_seqc_write_begin_locked(vp);
4359 	vunlazy_gone(vp);
4360 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4361 	vn_set_state(vp, VSTATE_DESTROYING);
4362 
4363 	/*
4364 	 * Check to see if the vnode is in use.  If so, we have to
4365 	 * call VOP_CLOSE() and VOP_INACTIVE().
4366 	 *
4367 	 * It could be that VOP_INACTIVE() requested reclamation, in
4368 	 * which case we should avoid recursion, so check
4369 	 * VI_DOINGINACT.  This is not precise but good enough.
4370 	 */
4371 	active = vp->v_usecount > 0;
4372 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4373 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4374 
4375 	/*
4376 	 * If we need to do inactive VI_OWEINACT will be set.
4377 	 */
4378 	if (vp->v_iflag & VI_DEFINACT) {
4379 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4380 		vp->v_iflag &= ~VI_DEFINACT;
4381 		vdropl(vp);
4382 	} else {
4383 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4384 		VI_UNLOCK(vp);
4385 	}
4386 	cache_purge_vgone(vp);
4387 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4388 
4389 	/*
4390 	 * If purging an active vnode, it must be closed and
4391 	 * deactivated before being reclaimed.
4392 	 */
4393 	if (active)
4394 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4395 	if (!doinginact) {
4396 		do {
4397 			if (oweinact || active) {
4398 				VI_LOCK(vp);
4399 				vinactivef(vp);
4400 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4401 				VI_UNLOCK(vp);
4402 			}
4403 		} while (oweinact);
4404 	}
4405 	if (vp->v_type == VSOCK)
4406 		vfs_unp_reclaim(vp);
4407 
4408 	/*
4409 	 * Clean out any buffers associated with the vnode.
4410 	 * If the flush fails, just toss the buffers.
4411 	 */
4412 	mp = NULL;
4413 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4414 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4415 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4416 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4417 			;
4418 	}
4419 
4420 	BO_LOCK(&vp->v_bufobj);
4421 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4422 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4423 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4424 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4425 	    ("vp %p bufobj not invalidated", vp));
4426 
4427 	/*
4428 	 * For VMIO bufobj, BO_DEAD is set later, or in
4429 	 * vm_object_terminate() after the object's page queue is
4430 	 * flushed.
4431 	 */
4432 	object = vp->v_bufobj.bo_object;
4433 	if (object == NULL)
4434 		vp->v_bufobj.bo_flag |= BO_DEAD;
4435 	BO_UNLOCK(&vp->v_bufobj);
4436 
4437 	/*
4438 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4439 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4440 	 * should not touch the object borrowed from the lower vnode
4441 	 * (the handle check).
4442 	 */
4443 	if (object != NULL && object->type == OBJT_VNODE &&
4444 	    object->handle == vp)
4445 		vnode_destroy_vobject(vp);
4446 
4447 	/*
4448 	 * Reclaim the vnode.
4449 	 */
4450 	if (VOP_RECLAIM(vp))
4451 		panic("vgone: cannot reclaim");
4452 	if (mp != NULL)
4453 		vn_finished_secondary_write(mp);
4454 	VNASSERT(vp->v_object == NULL, vp,
4455 	    ("vop_reclaim left v_object vp=%p", vp));
4456 	/*
4457 	 * Clear the advisory locks and wake up waiting threads.
4458 	 */
4459 	if (vp->v_lockf != NULL) {
4460 		(void)VOP_ADVLOCKPURGE(vp);
4461 		vp->v_lockf = NULL;
4462 	}
4463 	/*
4464 	 * Delete from old mount point vnode list.
4465 	 */
4466 	if (vp->v_mount == NULL) {
4467 		VI_LOCK(vp);
4468 	} else {
4469 		delmntque(vp);
4470 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4471 	}
4472 	/*
4473 	 * Done with purge, reset to the standard lock and invalidate
4474 	 * the vnode.
4475 	 */
4476 	vp->v_vnlock = &vp->v_lock;
4477 	vp->v_op = &dead_vnodeops;
4478 	vp->v_type = VBAD;
4479 	vn_set_state(vp, VSTATE_DEAD);
4480 }
4481 
4482 /*
4483  * Print out a description of a vnode.
4484  */
4485 static const char *const vtypename[] = {
4486 	[VNON] = "VNON",
4487 	[VREG] = "VREG",
4488 	[VDIR] = "VDIR",
4489 	[VBLK] = "VBLK",
4490 	[VCHR] = "VCHR",
4491 	[VLNK] = "VLNK",
4492 	[VSOCK] = "VSOCK",
4493 	[VFIFO] = "VFIFO",
4494 	[VBAD] = "VBAD",
4495 	[VMARKER] = "VMARKER",
4496 };
4497 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4498     "vnode type name not added to vtypename");
4499 
4500 static const char *const vstatename[] = {
4501 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4502 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4503 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4504 	[VSTATE_DEAD] = "VSTATE_DEAD",
4505 };
4506 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4507     "vnode state name not added to vstatename");
4508 
4509 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4510     "new hold count flag not added to vn_printf");
4511 
4512 void
4513 vn_printf(struct vnode *vp, const char *fmt, ...)
4514 {
4515 	va_list ap;
4516 	char buf[256], buf2[16];
4517 	u_long flags;
4518 	u_int holdcnt;
4519 	short irflag;
4520 
4521 	va_start(ap, fmt);
4522 	vprintf(fmt, ap);
4523 	va_end(ap);
4524 	printf("%p: ", (void *)vp);
4525 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4526 	    vstatename[vp->v_state], vp->v_op);
4527 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4528 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4529 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4530 	    vp->v_seqc_users);
4531 	switch (vp->v_type) {
4532 	case VDIR:
4533 		printf(" mountedhere %p\n", vp->v_mountedhere);
4534 		break;
4535 	case VCHR:
4536 		printf(" rdev %p\n", vp->v_rdev);
4537 		break;
4538 	case VSOCK:
4539 		printf(" socket %p\n", vp->v_unpcb);
4540 		break;
4541 	case VFIFO:
4542 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4543 		break;
4544 	default:
4545 		printf("\n");
4546 		break;
4547 	}
4548 	buf[0] = '\0';
4549 	buf[1] = '\0';
4550 	if (holdcnt & VHOLD_NO_SMR)
4551 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4552 	printf("    hold count flags (%s)\n", buf + 1);
4553 
4554 	buf[0] = '\0';
4555 	buf[1] = '\0';
4556 	irflag = vn_irflag_read(vp);
4557 	if (irflag & VIRF_DOOMED)
4558 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4559 	if (irflag & VIRF_PGREAD)
4560 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4561 	if (irflag & VIRF_MOUNTPOINT)
4562 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4563 	if (irflag & VIRF_TEXT_REF)
4564 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4565 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4566 	if (flags != 0) {
4567 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4568 		strlcat(buf, buf2, sizeof(buf));
4569 	}
4570 	if (vp->v_vflag & VV_ROOT)
4571 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4572 	if (vp->v_vflag & VV_ISTTY)
4573 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4574 	if (vp->v_vflag & VV_NOSYNC)
4575 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4576 	if (vp->v_vflag & VV_ETERNALDEV)
4577 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4578 	if (vp->v_vflag & VV_CACHEDLABEL)
4579 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4580 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4581 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4582 	if (vp->v_vflag & VV_COPYONWRITE)
4583 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4584 	if (vp->v_vflag & VV_SYSTEM)
4585 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4586 	if (vp->v_vflag & VV_PROCDEP)
4587 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4588 	if (vp->v_vflag & VV_DELETED)
4589 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4590 	if (vp->v_vflag & VV_MD)
4591 		strlcat(buf, "|VV_MD", sizeof(buf));
4592 	if (vp->v_vflag & VV_FORCEINSMQ)
4593 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4594 	if (vp->v_vflag & VV_READLINK)
4595 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4596 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4597 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4598 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4599 	if (flags != 0) {
4600 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4601 		strlcat(buf, buf2, sizeof(buf));
4602 	}
4603 	if (vp->v_iflag & VI_MOUNT)
4604 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4605 	if (vp->v_iflag & VI_DOINGINACT)
4606 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4607 	if (vp->v_iflag & VI_OWEINACT)
4608 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4609 	if (vp->v_iflag & VI_DEFINACT)
4610 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4611 	if (vp->v_iflag & VI_FOPENING)
4612 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4613 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4614 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4615 	if (flags != 0) {
4616 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4617 		strlcat(buf, buf2, sizeof(buf));
4618 	}
4619 	if (vp->v_mflag & VMP_LAZYLIST)
4620 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4621 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4622 	if (flags != 0) {
4623 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4624 		strlcat(buf, buf2, sizeof(buf));
4625 	}
4626 	printf("    flags (%s)", buf + 1);
4627 	if (mtx_owned(VI_MTX(vp)))
4628 		printf(" VI_LOCKed");
4629 	printf("\n");
4630 	if (vp->v_object != NULL)
4631 		printf("    v_object %p ref %d pages %d "
4632 		    "cleanbuf %d dirtybuf %d\n",
4633 		    vp->v_object, vp->v_object->ref_count,
4634 		    vp->v_object->resident_page_count,
4635 		    vp->v_bufobj.bo_clean.bv_cnt,
4636 		    vp->v_bufobj.bo_dirty.bv_cnt);
4637 	printf("    ");
4638 	lockmgr_printinfo(vp->v_vnlock);
4639 	if (vp->v_data != NULL)
4640 		VOP_PRINT(vp);
4641 }
4642 
4643 #ifdef DDB
4644 /*
4645  * List all of the locked vnodes in the system.
4646  * Called when debugging the kernel.
4647  */
4648 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4649 {
4650 	struct mount *mp;
4651 	struct vnode *vp;
4652 
4653 	/*
4654 	 * Note: because this is DDB, we can't obey the locking semantics
4655 	 * for these structures, which means we could catch an inconsistent
4656 	 * state and dereference a nasty pointer.  Not much to be done
4657 	 * about that.
4658 	 */
4659 	db_printf("Locked vnodes\n");
4660 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4661 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4662 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4663 				vn_printf(vp, "vnode ");
4664 		}
4665 	}
4666 }
4667 
4668 /*
4669  * Show details about the given vnode.
4670  */
4671 DB_SHOW_COMMAND(vnode, db_show_vnode)
4672 {
4673 	struct vnode *vp;
4674 
4675 	if (!have_addr)
4676 		return;
4677 	vp = (struct vnode *)addr;
4678 	vn_printf(vp, "vnode ");
4679 }
4680 
4681 /*
4682  * Show details about the given mount point.
4683  */
4684 DB_SHOW_COMMAND(mount, db_show_mount)
4685 {
4686 	struct mount *mp;
4687 	struct vfsopt *opt;
4688 	struct statfs *sp;
4689 	struct vnode *vp;
4690 	char buf[512];
4691 	uint64_t mflags;
4692 	u_int flags;
4693 
4694 	if (!have_addr) {
4695 		/* No address given, print short info about all mount points. */
4696 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4697 			db_printf("%p %s on %s (%s)\n", mp,
4698 			    mp->mnt_stat.f_mntfromname,
4699 			    mp->mnt_stat.f_mntonname,
4700 			    mp->mnt_stat.f_fstypename);
4701 			if (db_pager_quit)
4702 				break;
4703 		}
4704 		db_printf("\nMore info: show mount <addr>\n");
4705 		return;
4706 	}
4707 
4708 	mp = (struct mount *)addr;
4709 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4710 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4711 
4712 	buf[0] = '\0';
4713 	mflags = mp->mnt_flag;
4714 #define	MNT_FLAG(flag)	do {						\
4715 	if (mflags & (flag)) {						\
4716 		if (buf[0] != '\0')					\
4717 			strlcat(buf, ", ", sizeof(buf));		\
4718 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4719 		mflags &= ~(flag);					\
4720 	}								\
4721 } while (0)
4722 	MNT_FLAG(MNT_RDONLY);
4723 	MNT_FLAG(MNT_SYNCHRONOUS);
4724 	MNT_FLAG(MNT_NOEXEC);
4725 	MNT_FLAG(MNT_NOSUID);
4726 	MNT_FLAG(MNT_NFS4ACLS);
4727 	MNT_FLAG(MNT_UNION);
4728 	MNT_FLAG(MNT_ASYNC);
4729 	MNT_FLAG(MNT_SUIDDIR);
4730 	MNT_FLAG(MNT_SOFTDEP);
4731 	MNT_FLAG(MNT_NOSYMFOLLOW);
4732 	MNT_FLAG(MNT_GJOURNAL);
4733 	MNT_FLAG(MNT_MULTILABEL);
4734 	MNT_FLAG(MNT_ACLS);
4735 	MNT_FLAG(MNT_NOATIME);
4736 	MNT_FLAG(MNT_NOCLUSTERR);
4737 	MNT_FLAG(MNT_NOCLUSTERW);
4738 	MNT_FLAG(MNT_SUJ);
4739 	MNT_FLAG(MNT_EXRDONLY);
4740 	MNT_FLAG(MNT_EXPORTED);
4741 	MNT_FLAG(MNT_DEFEXPORTED);
4742 	MNT_FLAG(MNT_EXPORTANON);
4743 	MNT_FLAG(MNT_EXKERB);
4744 	MNT_FLAG(MNT_EXPUBLIC);
4745 	MNT_FLAG(MNT_LOCAL);
4746 	MNT_FLAG(MNT_QUOTA);
4747 	MNT_FLAG(MNT_ROOTFS);
4748 	MNT_FLAG(MNT_USER);
4749 	MNT_FLAG(MNT_IGNORE);
4750 	MNT_FLAG(MNT_UPDATE);
4751 	MNT_FLAG(MNT_DELEXPORT);
4752 	MNT_FLAG(MNT_RELOAD);
4753 	MNT_FLAG(MNT_FORCE);
4754 	MNT_FLAG(MNT_SNAPSHOT);
4755 	MNT_FLAG(MNT_BYFSID);
4756 #undef MNT_FLAG
4757 	if (mflags != 0) {
4758 		if (buf[0] != '\0')
4759 			strlcat(buf, ", ", sizeof(buf));
4760 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4761 		    "0x%016jx", mflags);
4762 	}
4763 	db_printf("    mnt_flag = %s\n", buf);
4764 
4765 	buf[0] = '\0';
4766 	flags = mp->mnt_kern_flag;
4767 #define	MNT_KERN_FLAG(flag)	do {					\
4768 	if (flags & (flag)) {						\
4769 		if (buf[0] != '\0')					\
4770 			strlcat(buf, ", ", sizeof(buf));		\
4771 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4772 		flags &= ~(flag);					\
4773 	}								\
4774 } while (0)
4775 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4776 	MNT_KERN_FLAG(MNTK_ASYNC);
4777 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4778 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4779 	MNT_KERN_FLAG(MNTK_DRAINING);
4780 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4781 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4782 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4783 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4784 	MNT_KERN_FLAG(MNTK_RECURSE);
4785 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4786 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4787 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4788 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4789 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4790 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4791 	MNT_KERN_FLAG(MNTK_NOASYNC);
4792 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4793 	MNT_KERN_FLAG(MNTK_MWAIT);
4794 	MNT_KERN_FLAG(MNTK_SUSPEND);
4795 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4796 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4797 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4798 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4799 #undef MNT_KERN_FLAG
4800 	if (flags != 0) {
4801 		if (buf[0] != '\0')
4802 			strlcat(buf, ", ", sizeof(buf));
4803 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4804 		    "0x%08x", flags);
4805 	}
4806 	db_printf("    mnt_kern_flag = %s\n", buf);
4807 
4808 	db_printf("    mnt_opt = ");
4809 	opt = TAILQ_FIRST(mp->mnt_opt);
4810 	if (opt != NULL) {
4811 		db_printf("%s", opt->name);
4812 		opt = TAILQ_NEXT(opt, link);
4813 		while (opt != NULL) {
4814 			db_printf(", %s", opt->name);
4815 			opt = TAILQ_NEXT(opt, link);
4816 		}
4817 	}
4818 	db_printf("\n");
4819 
4820 	sp = &mp->mnt_stat;
4821 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4822 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4823 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4824 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4825 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4826 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4827 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4828 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4829 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4830 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4831 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4832 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4833 
4834 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4835 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4836 	if (jailed(mp->mnt_cred))
4837 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4838 	db_printf(" }\n");
4839 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4840 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4841 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4842 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4843 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4844 	    mp->mnt_lazyvnodelistsize);
4845 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4846 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4847 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4848 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4849 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4850 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4851 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4852 	db_printf("    mnt_secondary_accwrites = %d\n",
4853 	    mp->mnt_secondary_accwrites);
4854 	db_printf("    mnt_gjprovider = %s\n",
4855 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4856 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4857 
4858 	db_printf("\n\nList of active vnodes\n");
4859 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4860 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4861 			vn_printf(vp, "vnode ");
4862 			if (db_pager_quit)
4863 				break;
4864 		}
4865 	}
4866 	db_printf("\n\nList of inactive vnodes\n");
4867 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4868 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4869 			vn_printf(vp, "vnode ");
4870 			if (db_pager_quit)
4871 				break;
4872 		}
4873 	}
4874 }
4875 #endif	/* DDB */
4876 
4877 /*
4878  * Fill in a struct xvfsconf based on a struct vfsconf.
4879  */
4880 static int
4881 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4882 {
4883 	struct xvfsconf xvfsp;
4884 
4885 	bzero(&xvfsp, sizeof(xvfsp));
4886 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4887 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4888 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4889 	xvfsp.vfc_flags = vfsp->vfc_flags;
4890 	/*
4891 	 * These are unused in userland, we keep them
4892 	 * to not break binary compatibility.
4893 	 */
4894 	xvfsp.vfc_vfsops = NULL;
4895 	xvfsp.vfc_next = NULL;
4896 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4897 }
4898 
4899 #ifdef COMPAT_FREEBSD32
4900 struct xvfsconf32 {
4901 	uint32_t	vfc_vfsops;
4902 	char		vfc_name[MFSNAMELEN];
4903 	int32_t		vfc_typenum;
4904 	int32_t		vfc_refcount;
4905 	int32_t		vfc_flags;
4906 	uint32_t	vfc_next;
4907 };
4908 
4909 static int
4910 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4911 {
4912 	struct xvfsconf32 xvfsp;
4913 
4914 	bzero(&xvfsp, sizeof(xvfsp));
4915 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4916 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4917 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4918 	xvfsp.vfc_flags = vfsp->vfc_flags;
4919 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4920 }
4921 #endif
4922 
4923 /*
4924  * Top level filesystem related information gathering.
4925  */
4926 static int
4927 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4928 {
4929 	struct vfsconf *vfsp;
4930 	int error;
4931 
4932 	error = 0;
4933 	vfsconf_slock();
4934 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4935 #ifdef COMPAT_FREEBSD32
4936 		if (req->flags & SCTL_MASK32)
4937 			error = vfsconf2x32(req, vfsp);
4938 		else
4939 #endif
4940 			error = vfsconf2x(req, vfsp);
4941 		if (error)
4942 			break;
4943 	}
4944 	vfsconf_sunlock();
4945 	return (error);
4946 }
4947 
4948 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4949     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4950     "S,xvfsconf", "List of all configured filesystems");
4951 
4952 #ifndef BURN_BRIDGES
4953 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4954 
4955 static int
4956 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4957 {
4958 	int *name = (int *)arg1 - 1;	/* XXX */
4959 	u_int namelen = arg2 + 1;	/* XXX */
4960 	struct vfsconf *vfsp;
4961 
4962 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4963 	    "please rebuild world\n");
4964 
4965 #if 1 || defined(COMPAT_PRELITE2)
4966 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4967 	if (namelen == 1)
4968 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4969 #endif
4970 
4971 	switch (name[1]) {
4972 	case VFS_MAXTYPENUM:
4973 		if (namelen != 2)
4974 			return (ENOTDIR);
4975 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4976 	case VFS_CONF:
4977 		if (namelen != 3)
4978 			return (ENOTDIR);	/* overloaded */
4979 		vfsconf_slock();
4980 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4981 			if (vfsp->vfc_typenum == name[2])
4982 				break;
4983 		}
4984 		vfsconf_sunlock();
4985 		if (vfsp == NULL)
4986 			return (EOPNOTSUPP);
4987 #ifdef COMPAT_FREEBSD32
4988 		if (req->flags & SCTL_MASK32)
4989 			return (vfsconf2x32(req, vfsp));
4990 		else
4991 #endif
4992 			return (vfsconf2x(req, vfsp));
4993 	}
4994 	return (EOPNOTSUPP);
4995 }
4996 
4997 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4998     CTLFLAG_MPSAFE, vfs_sysctl,
4999     "Generic filesystem");
5000 
5001 #if 1 || defined(COMPAT_PRELITE2)
5002 
5003 static int
5004 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5005 {
5006 	int error;
5007 	struct vfsconf *vfsp;
5008 	struct ovfsconf ovfs;
5009 
5010 	vfsconf_slock();
5011 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5012 		bzero(&ovfs, sizeof(ovfs));
5013 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
5014 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
5015 		ovfs.vfc_index = vfsp->vfc_typenum;
5016 		ovfs.vfc_refcount = vfsp->vfc_refcount;
5017 		ovfs.vfc_flags = vfsp->vfc_flags;
5018 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5019 		if (error != 0) {
5020 			vfsconf_sunlock();
5021 			return (error);
5022 		}
5023 	}
5024 	vfsconf_sunlock();
5025 	return (0);
5026 }
5027 
5028 #endif /* 1 || COMPAT_PRELITE2 */
5029 #endif /* !BURN_BRIDGES */
5030 
5031 static void
5032 unmount_or_warn(struct mount *mp)
5033 {
5034 	int error;
5035 
5036 	error = dounmount(mp, MNT_FORCE, curthread);
5037 	if (error != 0) {
5038 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5039 		if (error == EBUSY)
5040 			printf("BUSY)\n");
5041 		else
5042 			printf("%d)\n", error);
5043 	}
5044 }
5045 
5046 /*
5047  * Unmount all filesystems. The list is traversed in reverse order
5048  * of mounting to avoid dependencies.
5049  */
5050 void
5051 vfs_unmountall(void)
5052 {
5053 	struct mount *mp, *tmp;
5054 
5055 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5056 
5057 	/*
5058 	 * Since this only runs when rebooting, it is not interlocked.
5059 	 */
5060 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5061 		vfs_ref(mp);
5062 
5063 		/*
5064 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5065 		 * unmount of the latter.
5066 		 */
5067 		if (mp == rootdevmp)
5068 			continue;
5069 
5070 		unmount_or_warn(mp);
5071 	}
5072 
5073 	if (rootdevmp != NULL)
5074 		unmount_or_warn(rootdevmp);
5075 }
5076 
5077 static void
5078 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5079 {
5080 
5081 	ASSERT_VI_LOCKED(vp, __func__);
5082 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5083 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5084 		vdropl(vp);
5085 		return;
5086 	}
5087 	if (vn_lock(vp, lkflags) == 0) {
5088 		VI_LOCK(vp);
5089 		vinactive(vp);
5090 		VOP_UNLOCK(vp);
5091 		vdropl(vp);
5092 		return;
5093 	}
5094 	vdefer_inactive_unlocked(vp);
5095 }
5096 
5097 static int
5098 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5099 {
5100 
5101 	return (vp->v_iflag & VI_DEFINACT);
5102 }
5103 
5104 static void __noinline
5105 vfs_periodic_inactive(struct mount *mp, int flags)
5106 {
5107 	struct vnode *vp, *mvp;
5108 	int lkflags;
5109 
5110 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5111 	if (flags != MNT_WAIT)
5112 		lkflags |= LK_NOWAIT;
5113 
5114 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5115 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5116 			VI_UNLOCK(vp);
5117 			continue;
5118 		}
5119 		vp->v_iflag &= ~VI_DEFINACT;
5120 		vfs_deferred_inactive(vp, lkflags);
5121 	}
5122 }
5123 
5124 static inline bool
5125 vfs_want_msync(struct vnode *vp)
5126 {
5127 	struct vm_object *obj;
5128 
5129 	/*
5130 	 * This test may be performed without any locks held.
5131 	 * We rely on vm_object's type stability.
5132 	 */
5133 	if (vp->v_vflag & VV_NOSYNC)
5134 		return (false);
5135 	obj = vp->v_object;
5136 	return (obj != NULL && vm_object_mightbedirty(obj));
5137 }
5138 
5139 static int
5140 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5141 {
5142 
5143 	if (vp->v_vflag & VV_NOSYNC)
5144 		return (false);
5145 	if (vp->v_iflag & VI_DEFINACT)
5146 		return (true);
5147 	return (vfs_want_msync(vp));
5148 }
5149 
5150 static void __noinline
5151 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5152 {
5153 	struct vnode *vp, *mvp;
5154 	int lkflags;
5155 	bool seen_defer;
5156 
5157 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5158 	if (flags != MNT_WAIT)
5159 		lkflags |= LK_NOWAIT;
5160 
5161 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5162 		seen_defer = false;
5163 		if (vp->v_iflag & VI_DEFINACT) {
5164 			vp->v_iflag &= ~VI_DEFINACT;
5165 			seen_defer = true;
5166 		}
5167 		if (!vfs_want_msync(vp)) {
5168 			if (seen_defer)
5169 				vfs_deferred_inactive(vp, lkflags);
5170 			else
5171 				VI_UNLOCK(vp);
5172 			continue;
5173 		}
5174 		if (vget(vp, lkflags) == 0) {
5175 			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5176 				if (flags == MNT_WAIT)
5177 					vnode_pager_clean_sync(vp);
5178 				else
5179 					vnode_pager_clean_async(vp);
5180 			}
5181 			vput(vp);
5182 			if (seen_defer)
5183 				vdrop(vp);
5184 		} else {
5185 			if (seen_defer)
5186 				vdefer_inactive_unlocked(vp);
5187 		}
5188 	}
5189 }
5190 
5191 void
5192 vfs_periodic(struct mount *mp, int flags)
5193 {
5194 
5195 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5196 
5197 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5198 		vfs_periodic_inactive(mp, flags);
5199 	else
5200 		vfs_periodic_msync_inactive(mp, flags);
5201 }
5202 
5203 static void
5204 destroy_vpollinfo_free(struct vpollinfo *vi)
5205 {
5206 
5207 	knlist_destroy(&vi->vpi_selinfo.si_note);
5208 	mtx_destroy(&vi->vpi_lock);
5209 	free(vi, M_VNODEPOLL);
5210 }
5211 
5212 static void
5213 destroy_vpollinfo(struct vpollinfo *vi)
5214 {
5215 
5216 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5217 	seldrain(&vi->vpi_selinfo);
5218 	destroy_vpollinfo_free(vi);
5219 }
5220 
5221 /*
5222  * Initialize per-vnode helper structure to hold poll-related state.
5223  */
5224 void
5225 v_addpollinfo(struct vnode *vp)
5226 {
5227 	struct vpollinfo *vi;
5228 
5229 	if (vp->v_pollinfo != NULL)
5230 		return;
5231 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5232 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5233 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5234 	    vfs_knlunlock, vfs_knl_assert_lock);
5235 	VI_LOCK(vp);
5236 	if (vp->v_pollinfo != NULL) {
5237 		VI_UNLOCK(vp);
5238 		destroy_vpollinfo_free(vi);
5239 		return;
5240 	}
5241 	vp->v_pollinfo = vi;
5242 	VI_UNLOCK(vp);
5243 }
5244 
5245 /*
5246  * Record a process's interest in events which might happen to
5247  * a vnode.  Because poll uses the historic select-style interface
5248  * internally, this routine serves as both the ``check for any
5249  * pending events'' and the ``record my interest in future events''
5250  * functions.  (These are done together, while the lock is held,
5251  * to avoid race conditions.)
5252  */
5253 int
5254 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5255 {
5256 
5257 	v_addpollinfo(vp);
5258 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5259 	if (vp->v_pollinfo->vpi_revents & events) {
5260 		/*
5261 		 * This leaves events we are not interested
5262 		 * in available for the other process which
5263 		 * which presumably had requested them
5264 		 * (otherwise they would never have been
5265 		 * recorded).
5266 		 */
5267 		events &= vp->v_pollinfo->vpi_revents;
5268 		vp->v_pollinfo->vpi_revents &= ~events;
5269 
5270 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5271 		return (events);
5272 	}
5273 	vp->v_pollinfo->vpi_events |= events;
5274 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5275 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5276 	return (0);
5277 }
5278 
5279 /*
5280  * Routine to create and manage a filesystem syncer vnode.
5281  */
5282 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5283 static int	sync_fsync(struct  vop_fsync_args *);
5284 static int	sync_inactive(struct  vop_inactive_args *);
5285 static int	sync_reclaim(struct  vop_reclaim_args *);
5286 
5287 static struct vop_vector sync_vnodeops = {
5288 	.vop_bypass =	VOP_EOPNOTSUPP,
5289 	.vop_close =	sync_close,
5290 	.vop_fsync =	sync_fsync,
5291 	.vop_getwritemount = vop_stdgetwritemount,
5292 	.vop_inactive =	sync_inactive,
5293 	.vop_need_inactive = vop_stdneed_inactive,
5294 	.vop_reclaim =	sync_reclaim,
5295 	.vop_lock1 =	vop_stdlock,
5296 	.vop_unlock =	vop_stdunlock,
5297 	.vop_islocked =	vop_stdislocked,
5298 	.vop_fplookup_vexec = VOP_EAGAIN,
5299 	.vop_fplookup_symlink = VOP_EAGAIN,
5300 };
5301 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5302 
5303 /*
5304  * Create a new filesystem syncer vnode for the specified mount point.
5305  */
5306 void
5307 vfs_allocate_syncvnode(struct mount *mp)
5308 {
5309 	struct vnode *vp;
5310 	struct bufobj *bo;
5311 	static long start, incr, next;
5312 	int error;
5313 
5314 	/* Allocate a new vnode */
5315 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5316 	if (error != 0)
5317 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5318 	vp->v_type = VNON;
5319 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5320 	vp->v_vflag |= VV_FORCEINSMQ;
5321 	error = insmntque1(vp, mp);
5322 	if (error != 0)
5323 		panic("vfs_allocate_syncvnode: insmntque() failed");
5324 	vp->v_vflag &= ~VV_FORCEINSMQ;
5325 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5326 	VOP_UNLOCK(vp);
5327 	/*
5328 	 * Place the vnode onto the syncer worklist. We attempt to
5329 	 * scatter them about on the list so that they will go off
5330 	 * at evenly distributed times even if all the filesystems
5331 	 * are mounted at once.
5332 	 */
5333 	next += incr;
5334 	if (next == 0 || next > syncer_maxdelay) {
5335 		start /= 2;
5336 		incr /= 2;
5337 		if (start == 0) {
5338 			start = syncer_maxdelay / 2;
5339 			incr = syncer_maxdelay;
5340 		}
5341 		next = start;
5342 	}
5343 	bo = &vp->v_bufobj;
5344 	BO_LOCK(bo);
5345 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5346 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5347 	mtx_lock(&sync_mtx);
5348 	sync_vnode_count++;
5349 	if (mp->mnt_syncer == NULL) {
5350 		mp->mnt_syncer = vp;
5351 		vp = NULL;
5352 	}
5353 	mtx_unlock(&sync_mtx);
5354 	BO_UNLOCK(bo);
5355 	if (vp != NULL) {
5356 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5357 		vgone(vp);
5358 		vput(vp);
5359 	}
5360 }
5361 
5362 void
5363 vfs_deallocate_syncvnode(struct mount *mp)
5364 {
5365 	struct vnode *vp;
5366 
5367 	mtx_lock(&sync_mtx);
5368 	vp = mp->mnt_syncer;
5369 	if (vp != NULL)
5370 		mp->mnt_syncer = NULL;
5371 	mtx_unlock(&sync_mtx);
5372 	if (vp != NULL)
5373 		vrele(vp);
5374 }
5375 
5376 /*
5377  * Do a lazy sync of the filesystem.
5378  */
5379 static int
5380 sync_fsync(struct vop_fsync_args *ap)
5381 {
5382 	struct vnode *syncvp = ap->a_vp;
5383 	struct mount *mp = syncvp->v_mount;
5384 	int error, save;
5385 	struct bufobj *bo;
5386 
5387 	/*
5388 	 * We only need to do something if this is a lazy evaluation.
5389 	 */
5390 	if (ap->a_waitfor != MNT_LAZY)
5391 		return (0);
5392 
5393 	/*
5394 	 * Move ourselves to the back of the sync list.
5395 	 */
5396 	bo = &syncvp->v_bufobj;
5397 	BO_LOCK(bo);
5398 	vn_syncer_add_to_worklist(bo, syncdelay);
5399 	BO_UNLOCK(bo);
5400 
5401 	/*
5402 	 * Walk the list of vnodes pushing all that are dirty and
5403 	 * not already on the sync list.
5404 	 */
5405 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5406 		return (0);
5407 	VOP_UNLOCK(syncvp);
5408 	save = curthread_pflags_set(TDP_SYNCIO);
5409 	/*
5410 	 * The filesystem at hand may be idle with free vnodes stored in the
5411 	 * batch.  Return them instead of letting them stay there indefinitely.
5412 	 */
5413 	vfs_periodic(mp, MNT_NOWAIT);
5414 	error = VFS_SYNC(mp, MNT_LAZY);
5415 	curthread_pflags_restore(save);
5416 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5417 	vfs_unbusy(mp);
5418 	return (error);
5419 }
5420 
5421 /*
5422  * The syncer vnode is no referenced.
5423  */
5424 static int
5425 sync_inactive(struct vop_inactive_args *ap)
5426 {
5427 
5428 	vgone(ap->a_vp);
5429 	return (0);
5430 }
5431 
5432 /*
5433  * The syncer vnode is no longer needed and is being decommissioned.
5434  *
5435  * Modifications to the worklist must be protected by sync_mtx.
5436  */
5437 static int
5438 sync_reclaim(struct vop_reclaim_args *ap)
5439 {
5440 	struct vnode *vp = ap->a_vp;
5441 	struct bufobj *bo;
5442 
5443 	bo = &vp->v_bufobj;
5444 	BO_LOCK(bo);
5445 	mtx_lock(&sync_mtx);
5446 	if (vp->v_mount->mnt_syncer == vp)
5447 		vp->v_mount->mnt_syncer = NULL;
5448 	if (bo->bo_flag & BO_ONWORKLST) {
5449 		LIST_REMOVE(bo, bo_synclist);
5450 		syncer_worklist_len--;
5451 		sync_vnode_count--;
5452 		bo->bo_flag &= ~BO_ONWORKLST;
5453 	}
5454 	mtx_unlock(&sync_mtx);
5455 	BO_UNLOCK(bo);
5456 
5457 	return (0);
5458 }
5459 
5460 int
5461 vn_need_pageq_flush(struct vnode *vp)
5462 {
5463 	struct vm_object *obj;
5464 
5465 	obj = vp->v_object;
5466 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5467 	    vm_object_mightbedirty(obj));
5468 }
5469 
5470 /*
5471  * Check if vnode represents a disk device
5472  */
5473 bool
5474 vn_isdisk_error(struct vnode *vp, int *errp)
5475 {
5476 	int error;
5477 
5478 	if (vp->v_type != VCHR) {
5479 		error = ENOTBLK;
5480 		goto out;
5481 	}
5482 	error = 0;
5483 	dev_lock();
5484 	if (vp->v_rdev == NULL)
5485 		error = ENXIO;
5486 	else if (vp->v_rdev->si_devsw == NULL)
5487 		error = ENXIO;
5488 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5489 		error = ENOTBLK;
5490 	dev_unlock();
5491 out:
5492 	*errp = error;
5493 	return (error == 0);
5494 }
5495 
5496 bool
5497 vn_isdisk(struct vnode *vp)
5498 {
5499 	int error;
5500 
5501 	return (vn_isdisk_error(vp, &error));
5502 }
5503 
5504 /*
5505  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5506  * the comment above cache_fplookup for details.
5507  */
5508 int
5509 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5510 {
5511 	int error;
5512 
5513 	VFS_SMR_ASSERT_ENTERED();
5514 
5515 	/* Check the owner. */
5516 	if (cred->cr_uid == file_uid) {
5517 		if (file_mode & S_IXUSR)
5518 			return (0);
5519 		goto out_error;
5520 	}
5521 
5522 	/* Otherwise, check the groups (first match) */
5523 	if (groupmember(file_gid, cred)) {
5524 		if (file_mode & S_IXGRP)
5525 			return (0);
5526 		goto out_error;
5527 	}
5528 
5529 	/* Otherwise, check everyone else. */
5530 	if (file_mode & S_IXOTH)
5531 		return (0);
5532 out_error:
5533 	/*
5534 	 * Permission check failed, but it is possible denial will get overwritten
5535 	 * (e.g., when root is traversing through a 700 directory owned by someone
5536 	 * else).
5537 	 *
5538 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5539 	 * modules overriding this result. It's quite unclear what semantics
5540 	 * are allowed for them to operate, thus for safety we don't call them
5541 	 * from within the SMR section. This also means if any such modules
5542 	 * are present, we have to let the regular lookup decide.
5543 	 */
5544 	error = priv_check_cred_vfs_lookup_nomac(cred);
5545 	switch (error) {
5546 	case 0:
5547 		return (0);
5548 	case EAGAIN:
5549 		/*
5550 		 * MAC modules present.
5551 		 */
5552 		return (EAGAIN);
5553 	case EPERM:
5554 		return (EACCES);
5555 	default:
5556 		return (error);
5557 	}
5558 }
5559 
5560 /*
5561  * Common filesystem object access control check routine.  Accepts a
5562  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5563  * Returns 0 on success, or an errno on failure.
5564  */
5565 int
5566 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5567     accmode_t accmode, struct ucred *cred)
5568 {
5569 	accmode_t dac_granted;
5570 	accmode_t priv_granted;
5571 
5572 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5573 	    ("invalid bit in accmode"));
5574 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5575 	    ("VAPPEND without VWRITE"));
5576 
5577 	/*
5578 	 * Look for a normal, non-privileged way to access the file/directory
5579 	 * as requested.  If it exists, go with that.
5580 	 */
5581 
5582 	dac_granted = 0;
5583 
5584 	/* Check the owner. */
5585 	if (cred->cr_uid == file_uid) {
5586 		dac_granted |= VADMIN;
5587 		if (file_mode & S_IXUSR)
5588 			dac_granted |= VEXEC;
5589 		if (file_mode & S_IRUSR)
5590 			dac_granted |= VREAD;
5591 		if (file_mode & S_IWUSR)
5592 			dac_granted |= (VWRITE | VAPPEND);
5593 
5594 		if ((accmode & dac_granted) == accmode)
5595 			return (0);
5596 
5597 		goto privcheck;
5598 	}
5599 
5600 	/* Otherwise, check the groups (first match) */
5601 	if (groupmember(file_gid, cred)) {
5602 		if (file_mode & S_IXGRP)
5603 			dac_granted |= VEXEC;
5604 		if (file_mode & S_IRGRP)
5605 			dac_granted |= VREAD;
5606 		if (file_mode & S_IWGRP)
5607 			dac_granted |= (VWRITE | VAPPEND);
5608 
5609 		if ((accmode & dac_granted) == accmode)
5610 			return (0);
5611 
5612 		goto privcheck;
5613 	}
5614 
5615 	/* Otherwise, check everyone else. */
5616 	if (file_mode & S_IXOTH)
5617 		dac_granted |= VEXEC;
5618 	if (file_mode & S_IROTH)
5619 		dac_granted |= VREAD;
5620 	if (file_mode & S_IWOTH)
5621 		dac_granted |= (VWRITE | VAPPEND);
5622 	if ((accmode & dac_granted) == accmode)
5623 		return (0);
5624 
5625 privcheck:
5626 	/*
5627 	 * Build a privilege mask to determine if the set of privileges
5628 	 * satisfies the requirements when combined with the granted mask
5629 	 * from above.  For each privilege, if the privilege is required,
5630 	 * bitwise or the request type onto the priv_granted mask.
5631 	 */
5632 	priv_granted = 0;
5633 
5634 	if (type == VDIR) {
5635 		/*
5636 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5637 		 * requests, instead of PRIV_VFS_EXEC.
5638 		 */
5639 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5640 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5641 			priv_granted |= VEXEC;
5642 	} else {
5643 		/*
5644 		 * Ensure that at least one execute bit is on. Otherwise,
5645 		 * a privileged user will always succeed, and we don't want
5646 		 * this to happen unless the file really is executable.
5647 		 */
5648 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5649 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5650 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5651 			priv_granted |= VEXEC;
5652 	}
5653 
5654 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5655 	    !priv_check_cred(cred, PRIV_VFS_READ))
5656 		priv_granted |= VREAD;
5657 
5658 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5659 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5660 		priv_granted |= (VWRITE | VAPPEND);
5661 
5662 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5663 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5664 		priv_granted |= VADMIN;
5665 
5666 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5667 		return (0);
5668 	}
5669 
5670 	return ((accmode & VADMIN) ? EPERM : EACCES);
5671 }
5672 
5673 /*
5674  * Credential check based on process requesting service, and per-attribute
5675  * permissions.
5676  */
5677 int
5678 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5679     struct thread *td, accmode_t accmode)
5680 {
5681 
5682 	/*
5683 	 * Kernel-invoked always succeeds.
5684 	 */
5685 	if (cred == NOCRED)
5686 		return (0);
5687 
5688 	/*
5689 	 * Do not allow privileged processes in jail to directly manipulate
5690 	 * system attributes.
5691 	 */
5692 	switch (attrnamespace) {
5693 	case EXTATTR_NAMESPACE_SYSTEM:
5694 		/* Potentially should be: return (EPERM); */
5695 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5696 	case EXTATTR_NAMESPACE_USER:
5697 		return (VOP_ACCESS(vp, accmode, cred, td));
5698 	default:
5699 		return (EPERM);
5700 	}
5701 }
5702 
5703 #ifdef DEBUG_VFS_LOCKS
5704 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5705 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5706     "Drop into debugger on lock violation");
5707 
5708 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5709 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5710     0, "Check for interlock across VOPs");
5711 
5712 int vfs_badlock_print = 1;	/* Print lock violations. */
5713 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5714     0, "Print lock violations");
5715 
5716 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5717 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5718     0, "Print vnode details on lock violations");
5719 
5720 #ifdef KDB
5721 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5722 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5723     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5724 #endif
5725 
5726 static void
5727 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5728 {
5729 
5730 #ifdef KDB
5731 	if (vfs_badlock_backtrace)
5732 		kdb_backtrace();
5733 #endif
5734 	if (vfs_badlock_vnode)
5735 		vn_printf(vp, "vnode ");
5736 	if (vfs_badlock_print)
5737 		printf("%s: %p %s\n", str, (void *)vp, msg);
5738 	if (vfs_badlock_ddb)
5739 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5740 }
5741 
5742 void
5743 assert_vi_locked(struct vnode *vp, const char *str)
5744 {
5745 
5746 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5747 		vfs_badlock("interlock is not locked but should be", str, vp);
5748 }
5749 
5750 void
5751 assert_vi_unlocked(struct vnode *vp, const char *str)
5752 {
5753 
5754 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5755 		vfs_badlock("interlock is locked but should not be", str, vp);
5756 }
5757 
5758 void
5759 assert_vop_locked(struct vnode *vp, const char *str)
5760 {
5761 	if (KERNEL_PANICKED() || vp == NULL)
5762 		return;
5763 
5764 #ifdef WITNESS
5765 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5766 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5767 #else
5768 	int locked = VOP_ISLOCKED(vp);
5769 	if (locked == 0 || locked == LK_EXCLOTHER)
5770 #endif
5771 		vfs_badlock("is not locked but should be", str, vp);
5772 }
5773 
5774 void
5775 assert_vop_unlocked(struct vnode *vp, const char *str)
5776 {
5777 	if (KERNEL_PANICKED() || vp == NULL)
5778 		return;
5779 
5780 #ifdef WITNESS
5781 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5782 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5783 #else
5784 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5785 #endif
5786 		vfs_badlock("is locked but should not be", str, vp);
5787 }
5788 
5789 void
5790 assert_vop_elocked(struct vnode *vp, const char *str)
5791 {
5792 	if (KERNEL_PANICKED() || vp == NULL)
5793 		return;
5794 
5795 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5796 		vfs_badlock("is not exclusive locked but should be", str, vp);
5797 }
5798 #endif /* DEBUG_VFS_LOCKS */
5799 
5800 void
5801 vop_rename_fail(struct vop_rename_args *ap)
5802 {
5803 
5804 	if (ap->a_tvp != NULL)
5805 		vput(ap->a_tvp);
5806 	if (ap->a_tdvp == ap->a_tvp)
5807 		vrele(ap->a_tdvp);
5808 	else
5809 		vput(ap->a_tdvp);
5810 	vrele(ap->a_fdvp);
5811 	vrele(ap->a_fvp);
5812 }
5813 
5814 void
5815 vop_rename_pre(void *ap)
5816 {
5817 	struct vop_rename_args *a = ap;
5818 
5819 #ifdef DEBUG_VFS_LOCKS
5820 	if (a->a_tvp)
5821 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5822 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5823 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5824 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5825 
5826 	/* Check the source (from). */
5827 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5828 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5829 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5830 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5831 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5832 
5833 	/* Check the target. */
5834 	if (a->a_tvp)
5835 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5836 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5837 #endif
5838 	/*
5839 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5840 	 * in vop_rename_post but that's not going to work out since some
5841 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5842 	 *
5843 	 * For now filesystems are expected to do the relevant calls after they
5844 	 * decide what vnodes to operate on.
5845 	 */
5846 	if (a->a_tdvp != a->a_fdvp)
5847 		vhold(a->a_fdvp);
5848 	if (a->a_tvp != a->a_fvp)
5849 		vhold(a->a_fvp);
5850 	vhold(a->a_tdvp);
5851 	if (a->a_tvp)
5852 		vhold(a->a_tvp);
5853 }
5854 
5855 #ifdef DEBUG_VFS_LOCKS
5856 void
5857 vop_fplookup_vexec_debugpre(void *ap __unused)
5858 {
5859 
5860 	VFS_SMR_ASSERT_ENTERED();
5861 }
5862 
5863 void
5864 vop_fplookup_vexec_debugpost(void *ap, int rc)
5865 {
5866 	struct vop_fplookup_vexec_args *a;
5867 	struct vnode *vp;
5868 
5869 	a = ap;
5870 	vp = a->a_vp;
5871 
5872 	VFS_SMR_ASSERT_ENTERED();
5873 	if (rc == EOPNOTSUPP)
5874 		VNPASS(VN_IS_DOOMED(vp), vp);
5875 }
5876 
5877 void
5878 vop_fplookup_symlink_debugpre(void *ap __unused)
5879 {
5880 
5881 	VFS_SMR_ASSERT_ENTERED();
5882 }
5883 
5884 void
5885 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5886 {
5887 
5888 	VFS_SMR_ASSERT_ENTERED();
5889 }
5890 
5891 static void
5892 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5893 {
5894 	if (vp->v_type == VCHR)
5895 		;
5896 	/*
5897 	 * The shared vs. exclusive locking policy for fsync()
5898 	 * is actually determined by vp's write mount as indicated
5899 	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5900 	 * may not be the same as vp->v_mount.  However, if the
5901 	 * underlying filesystem which really handles the fsync()
5902 	 * supports shared locking, the stacked filesystem must also
5903 	 * be prepared for its VOP_FSYNC() operation to be called
5904 	 * with only a shared lock.  On the other hand, if the
5905 	 * stacked filesystem claims support for shared write
5906 	 * locking but the underlying filesystem does not, and the
5907 	 * caller incorrectly uses a shared lock, this condition
5908 	 * should still be caught when the stacked filesystem
5909 	 * invokes VOP_FSYNC() on the underlying filesystem.
5910 	 */
5911 	else if (MNT_SHARED_WRITES(vp->v_mount))
5912 		ASSERT_VOP_LOCKED(vp, name);
5913 	else
5914 		ASSERT_VOP_ELOCKED(vp, name);
5915 }
5916 
5917 void
5918 vop_fsync_debugpre(void *a)
5919 {
5920 	struct vop_fsync_args *ap;
5921 
5922 	ap = a;
5923 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5924 }
5925 
5926 void
5927 vop_fsync_debugpost(void *a, int rc __unused)
5928 {
5929 	struct vop_fsync_args *ap;
5930 
5931 	ap = a;
5932 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5933 }
5934 
5935 void
5936 vop_fdatasync_debugpre(void *a)
5937 {
5938 	struct vop_fdatasync_args *ap;
5939 
5940 	ap = a;
5941 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5942 }
5943 
5944 void
5945 vop_fdatasync_debugpost(void *a, int rc __unused)
5946 {
5947 	struct vop_fdatasync_args *ap;
5948 
5949 	ap = a;
5950 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5951 }
5952 
5953 void
5954 vop_strategy_debugpre(void *ap)
5955 {
5956 	struct vop_strategy_args *a;
5957 	struct buf *bp;
5958 
5959 	a = ap;
5960 	bp = a->a_bp;
5961 
5962 	/*
5963 	 * Cluster ops lock their component buffers but not the IO container.
5964 	 */
5965 	if ((bp->b_flags & B_CLUSTER) != 0)
5966 		return;
5967 
5968 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5969 		if (vfs_badlock_print)
5970 			printf(
5971 			    "VOP_STRATEGY: bp is not locked but should be\n");
5972 		if (vfs_badlock_ddb)
5973 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5974 	}
5975 }
5976 
5977 void
5978 vop_lock_debugpre(void *ap)
5979 {
5980 	struct vop_lock1_args *a = ap;
5981 
5982 	if ((a->a_flags & LK_INTERLOCK) == 0)
5983 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5984 	else
5985 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5986 }
5987 
5988 void
5989 vop_lock_debugpost(void *ap, int rc)
5990 {
5991 	struct vop_lock1_args *a = ap;
5992 
5993 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5994 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5995 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5996 }
5997 
5998 void
5999 vop_unlock_debugpre(void *ap)
6000 {
6001 	struct vop_unlock_args *a = ap;
6002 	struct vnode *vp = a->a_vp;
6003 
6004 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6005 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6006 }
6007 
6008 void
6009 vop_need_inactive_debugpre(void *ap)
6010 {
6011 	struct vop_need_inactive_args *a = ap;
6012 
6013 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6014 }
6015 
6016 void
6017 vop_need_inactive_debugpost(void *ap, int rc)
6018 {
6019 	struct vop_need_inactive_args *a = ap;
6020 
6021 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6022 }
6023 #endif
6024 
6025 void
6026 vop_create_pre(void *ap)
6027 {
6028 	struct vop_create_args *a;
6029 	struct vnode *dvp;
6030 
6031 	a = ap;
6032 	dvp = a->a_dvp;
6033 	vn_seqc_write_begin(dvp);
6034 }
6035 
6036 void
6037 vop_create_post(void *ap, int rc)
6038 {
6039 	struct vop_create_args *a;
6040 	struct vnode *dvp;
6041 
6042 	a = ap;
6043 	dvp = a->a_dvp;
6044 	vn_seqc_write_end(dvp);
6045 	if (!rc)
6046 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6047 }
6048 
6049 void
6050 vop_whiteout_pre(void *ap)
6051 {
6052 	struct vop_whiteout_args *a;
6053 	struct vnode *dvp;
6054 
6055 	a = ap;
6056 	dvp = a->a_dvp;
6057 	vn_seqc_write_begin(dvp);
6058 }
6059 
6060 void
6061 vop_whiteout_post(void *ap, int rc)
6062 {
6063 	struct vop_whiteout_args *a;
6064 	struct vnode *dvp;
6065 
6066 	a = ap;
6067 	dvp = a->a_dvp;
6068 	vn_seqc_write_end(dvp);
6069 }
6070 
6071 void
6072 vop_deleteextattr_pre(void *ap)
6073 {
6074 	struct vop_deleteextattr_args *a;
6075 	struct vnode *vp;
6076 
6077 	a = ap;
6078 	vp = a->a_vp;
6079 	vn_seqc_write_begin(vp);
6080 }
6081 
6082 void
6083 vop_deleteextattr_post(void *ap, int rc)
6084 {
6085 	struct vop_deleteextattr_args *a;
6086 	struct vnode *vp;
6087 
6088 	a = ap;
6089 	vp = a->a_vp;
6090 	vn_seqc_write_end(vp);
6091 	if (!rc)
6092 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6093 }
6094 
6095 void
6096 vop_link_pre(void *ap)
6097 {
6098 	struct vop_link_args *a;
6099 	struct vnode *vp, *tdvp;
6100 
6101 	a = ap;
6102 	vp = a->a_vp;
6103 	tdvp = a->a_tdvp;
6104 	vn_seqc_write_begin(vp);
6105 	vn_seqc_write_begin(tdvp);
6106 }
6107 
6108 void
6109 vop_link_post(void *ap, int rc)
6110 {
6111 	struct vop_link_args *a;
6112 	struct vnode *vp, *tdvp;
6113 
6114 	a = ap;
6115 	vp = a->a_vp;
6116 	tdvp = a->a_tdvp;
6117 	vn_seqc_write_end(vp);
6118 	vn_seqc_write_end(tdvp);
6119 	if (!rc) {
6120 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6121 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6122 	}
6123 }
6124 
6125 void
6126 vop_mkdir_pre(void *ap)
6127 {
6128 	struct vop_mkdir_args *a;
6129 	struct vnode *dvp;
6130 
6131 	a = ap;
6132 	dvp = a->a_dvp;
6133 	vn_seqc_write_begin(dvp);
6134 }
6135 
6136 void
6137 vop_mkdir_post(void *ap, int rc)
6138 {
6139 	struct vop_mkdir_args *a;
6140 	struct vnode *dvp;
6141 
6142 	a = ap;
6143 	dvp = a->a_dvp;
6144 	vn_seqc_write_end(dvp);
6145 	if (!rc)
6146 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6147 }
6148 
6149 #ifdef DEBUG_VFS_LOCKS
6150 void
6151 vop_mkdir_debugpost(void *ap, int rc)
6152 {
6153 	struct vop_mkdir_args *a;
6154 
6155 	a = ap;
6156 	if (!rc)
6157 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6158 }
6159 #endif
6160 
6161 void
6162 vop_mknod_pre(void *ap)
6163 {
6164 	struct vop_mknod_args *a;
6165 	struct vnode *dvp;
6166 
6167 	a = ap;
6168 	dvp = a->a_dvp;
6169 	vn_seqc_write_begin(dvp);
6170 }
6171 
6172 void
6173 vop_mknod_post(void *ap, int rc)
6174 {
6175 	struct vop_mknod_args *a;
6176 	struct vnode *dvp;
6177 
6178 	a = ap;
6179 	dvp = a->a_dvp;
6180 	vn_seqc_write_end(dvp);
6181 	if (!rc)
6182 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6183 }
6184 
6185 void
6186 vop_reclaim_post(void *ap, int rc)
6187 {
6188 	struct vop_reclaim_args *a;
6189 	struct vnode *vp;
6190 
6191 	a = ap;
6192 	vp = a->a_vp;
6193 	ASSERT_VOP_IN_SEQC(vp);
6194 	if (!rc)
6195 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6196 }
6197 
6198 void
6199 vop_remove_pre(void *ap)
6200 {
6201 	struct vop_remove_args *a;
6202 	struct vnode *dvp, *vp;
6203 
6204 	a = ap;
6205 	dvp = a->a_dvp;
6206 	vp = a->a_vp;
6207 	vn_seqc_write_begin(dvp);
6208 	vn_seqc_write_begin(vp);
6209 }
6210 
6211 void
6212 vop_remove_post(void *ap, int rc)
6213 {
6214 	struct vop_remove_args *a;
6215 	struct vnode *dvp, *vp;
6216 
6217 	a = ap;
6218 	dvp = a->a_dvp;
6219 	vp = a->a_vp;
6220 	vn_seqc_write_end(dvp);
6221 	vn_seqc_write_end(vp);
6222 	if (!rc) {
6223 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6224 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6225 	}
6226 }
6227 
6228 void
6229 vop_rename_post(void *ap, int rc)
6230 {
6231 	struct vop_rename_args *a = ap;
6232 	long hint;
6233 
6234 	if (!rc) {
6235 		hint = NOTE_WRITE;
6236 		if (a->a_fdvp == a->a_tdvp) {
6237 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6238 				hint |= NOTE_LINK;
6239 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6240 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6241 		} else {
6242 			hint |= NOTE_EXTEND;
6243 			if (a->a_fvp->v_type == VDIR)
6244 				hint |= NOTE_LINK;
6245 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6246 
6247 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6248 			    a->a_tvp->v_type == VDIR)
6249 				hint &= ~NOTE_LINK;
6250 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6251 		}
6252 
6253 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6254 		if (a->a_tvp)
6255 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6256 	}
6257 	if (a->a_tdvp != a->a_fdvp)
6258 		vdrop(a->a_fdvp);
6259 	if (a->a_tvp != a->a_fvp)
6260 		vdrop(a->a_fvp);
6261 	vdrop(a->a_tdvp);
6262 	if (a->a_tvp)
6263 		vdrop(a->a_tvp);
6264 }
6265 
6266 void
6267 vop_rmdir_pre(void *ap)
6268 {
6269 	struct vop_rmdir_args *a;
6270 	struct vnode *dvp, *vp;
6271 
6272 	a = ap;
6273 	dvp = a->a_dvp;
6274 	vp = a->a_vp;
6275 	vn_seqc_write_begin(dvp);
6276 	vn_seqc_write_begin(vp);
6277 }
6278 
6279 void
6280 vop_rmdir_post(void *ap, int rc)
6281 {
6282 	struct vop_rmdir_args *a;
6283 	struct vnode *dvp, *vp;
6284 
6285 	a = ap;
6286 	dvp = a->a_dvp;
6287 	vp = a->a_vp;
6288 	vn_seqc_write_end(dvp);
6289 	vn_seqc_write_end(vp);
6290 	if (!rc) {
6291 		vp->v_vflag |= VV_UNLINKED;
6292 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6293 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6294 	}
6295 }
6296 
6297 void
6298 vop_setattr_pre(void *ap)
6299 {
6300 	struct vop_setattr_args *a;
6301 	struct vnode *vp;
6302 
6303 	a = ap;
6304 	vp = a->a_vp;
6305 	vn_seqc_write_begin(vp);
6306 }
6307 
6308 void
6309 vop_setattr_post(void *ap, int rc)
6310 {
6311 	struct vop_setattr_args *a;
6312 	struct vnode *vp;
6313 
6314 	a = ap;
6315 	vp = a->a_vp;
6316 	vn_seqc_write_end(vp);
6317 	if (!rc)
6318 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6319 }
6320 
6321 void
6322 vop_setacl_pre(void *ap)
6323 {
6324 	struct vop_setacl_args *a;
6325 	struct vnode *vp;
6326 
6327 	a = ap;
6328 	vp = a->a_vp;
6329 	vn_seqc_write_begin(vp);
6330 }
6331 
6332 void
6333 vop_setacl_post(void *ap, int rc __unused)
6334 {
6335 	struct vop_setacl_args *a;
6336 	struct vnode *vp;
6337 
6338 	a = ap;
6339 	vp = a->a_vp;
6340 	vn_seqc_write_end(vp);
6341 }
6342 
6343 void
6344 vop_setextattr_pre(void *ap)
6345 {
6346 	struct vop_setextattr_args *a;
6347 	struct vnode *vp;
6348 
6349 	a = ap;
6350 	vp = a->a_vp;
6351 	vn_seqc_write_begin(vp);
6352 }
6353 
6354 void
6355 vop_setextattr_post(void *ap, int rc)
6356 {
6357 	struct vop_setextattr_args *a;
6358 	struct vnode *vp;
6359 
6360 	a = ap;
6361 	vp = a->a_vp;
6362 	vn_seqc_write_end(vp);
6363 	if (!rc)
6364 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6365 }
6366 
6367 void
6368 vop_symlink_pre(void *ap)
6369 {
6370 	struct vop_symlink_args *a;
6371 	struct vnode *dvp;
6372 
6373 	a = ap;
6374 	dvp = a->a_dvp;
6375 	vn_seqc_write_begin(dvp);
6376 }
6377 
6378 void
6379 vop_symlink_post(void *ap, int rc)
6380 {
6381 	struct vop_symlink_args *a;
6382 	struct vnode *dvp;
6383 
6384 	a = ap;
6385 	dvp = a->a_dvp;
6386 	vn_seqc_write_end(dvp);
6387 	if (!rc)
6388 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6389 }
6390 
6391 void
6392 vop_open_post(void *ap, int rc)
6393 {
6394 	struct vop_open_args *a = ap;
6395 
6396 	if (!rc)
6397 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6398 }
6399 
6400 void
6401 vop_close_post(void *ap, int rc)
6402 {
6403 	struct vop_close_args *a = ap;
6404 
6405 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6406 	    !VN_IS_DOOMED(a->a_vp))) {
6407 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6408 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6409 	}
6410 }
6411 
6412 void
6413 vop_read_post(void *ap, int rc)
6414 {
6415 	struct vop_read_args *a = ap;
6416 
6417 	if (!rc)
6418 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6419 }
6420 
6421 void
6422 vop_read_pgcache_post(void *ap, int rc)
6423 {
6424 	struct vop_read_pgcache_args *a = ap;
6425 
6426 	if (!rc)
6427 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6428 }
6429 
6430 void
6431 vop_readdir_post(void *ap, int rc)
6432 {
6433 	struct vop_readdir_args *a = ap;
6434 
6435 	if (!rc)
6436 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6437 }
6438 
6439 static struct knlist fs_knlist;
6440 
6441 static void
6442 vfs_event_init(void *arg)
6443 {
6444 	knlist_init_mtx(&fs_knlist, NULL);
6445 }
6446 /* XXX - correct order? */
6447 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6448 
6449 void
6450 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6451 {
6452 
6453 	KNOTE_UNLOCKED(&fs_knlist, event);
6454 }
6455 
6456 static int	filt_fsattach(struct knote *kn);
6457 static void	filt_fsdetach(struct knote *kn);
6458 static int	filt_fsevent(struct knote *kn, long hint);
6459 
6460 struct filterops fs_filtops = {
6461 	.f_isfd = 0,
6462 	.f_attach = filt_fsattach,
6463 	.f_detach = filt_fsdetach,
6464 	.f_event = filt_fsevent
6465 };
6466 
6467 static int
6468 filt_fsattach(struct knote *kn)
6469 {
6470 
6471 	kn->kn_flags |= EV_CLEAR;
6472 	knlist_add(&fs_knlist, kn, 0);
6473 	return (0);
6474 }
6475 
6476 static void
6477 filt_fsdetach(struct knote *kn)
6478 {
6479 
6480 	knlist_remove(&fs_knlist, kn, 0);
6481 }
6482 
6483 static int
6484 filt_fsevent(struct knote *kn, long hint)
6485 {
6486 
6487 	kn->kn_fflags |= kn->kn_sfflags & hint;
6488 
6489 	return (kn->kn_fflags != 0);
6490 }
6491 
6492 static int
6493 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6494 {
6495 	struct vfsidctl vc;
6496 	int error;
6497 	struct mount *mp;
6498 
6499 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6500 	if (error)
6501 		return (error);
6502 	if (vc.vc_vers != VFS_CTL_VERS1)
6503 		return (EINVAL);
6504 	mp = vfs_getvfs(&vc.vc_fsid);
6505 	if (mp == NULL)
6506 		return (ENOENT);
6507 	/* ensure that a specific sysctl goes to the right filesystem. */
6508 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6509 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6510 		vfs_rel(mp);
6511 		return (EINVAL);
6512 	}
6513 	VCTLTOREQ(&vc, req);
6514 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6515 	vfs_rel(mp);
6516 	return (error);
6517 }
6518 
6519 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6520     NULL, 0, sysctl_vfs_ctl, "",
6521     "Sysctl by fsid");
6522 
6523 /*
6524  * Function to initialize a va_filerev field sensibly.
6525  * XXX: Wouldn't a random number make a lot more sense ??
6526  */
6527 u_quad_t
6528 init_va_filerev(void)
6529 {
6530 	struct bintime bt;
6531 
6532 	getbinuptime(&bt);
6533 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6534 }
6535 
6536 static int	filt_vfsread(struct knote *kn, long hint);
6537 static int	filt_vfswrite(struct knote *kn, long hint);
6538 static int	filt_vfsvnode(struct knote *kn, long hint);
6539 static void	filt_vfsdetach(struct knote *kn);
6540 static struct filterops vfsread_filtops = {
6541 	.f_isfd = 1,
6542 	.f_detach = filt_vfsdetach,
6543 	.f_event = filt_vfsread
6544 };
6545 static struct filterops vfswrite_filtops = {
6546 	.f_isfd = 1,
6547 	.f_detach = filt_vfsdetach,
6548 	.f_event = filt_vfswrite
6549 };
6550 static struct filterops vfsvnode_filtops = {
6551 	.f_isfd = 1,
6552 	.f_detach = filt_vfsdetach,
6553 	.f_event = filt_vfsvnode
6554 };
6555 
6556 static void
6557 vfs_knllock(void *arg)
6558 {
6559 	struct vnode *vp = arg;
6560 
6561 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6562 }
6563 
6564 static void
6565 vfs_knlunlock(void *arg)
6566 {
6567 	struct vnode *vp = arg;
6568 
6569 	VOP_UNLOCK(vp);
6570 }
6571 
6572 static void
6573 vfs_knl_assert_lock(void *arg, int what)
6574 {
6575 #ifdef DEBUG_VFS_LOCKS
6576 	struct vnode *vp = arg;
6577 
6578 	if (what == LA_LOCKED)
6579 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6580 	else
6581 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6582 #endif
6583 }
6584 
6585 int
6586 vfs_kqfilter(struct vop_kqfilter_args *ap)
6587 {
6588 	struct vnode *vp = ap->a_vp;
6589 	struct knote *kn = ap->a_kn;
6590 	struct knlist *knl;
6591 
6592 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6593 	    kn->kn_filter != EVFILT_WRITE),
6594 	    ("READ/WRITE filter on a FIFO leaked through"));
6595 	switch (kn->kn_filter) {
6596 	case EVFILT_READ:
6597 		kn->kn_fop = &vfsread_filtops;
6598 		break;
6599 	case EVFILT_WRITE:
6600 		kn->kn_fop = &vfswrite_filtops;
6601 		break;
6602 	case EVFILT_VNODE:
6603 		kn->kn_fop = &vfsvnode_filtops;
6604 		break;
6605 	default:
6606 		return (EINVAL);
6607 	}
6608 
6609 	kn->kn_hook = (caddr_t)vp;
6610 
6611 	v_addpollinfo(vp);
6612 	if (vp->v_pollinfo == NULL)
6613 		return (ENOMEM);
6614 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6615 	vhold(vp);
6616 	knlist_add(knl, kn, 0);
6617 
6618 	return (0);
6619 }
6620 
6621 /*
6622  * Detach knote from vnode
6623  */
6624 static void
6625 filt_vfsdetach(struct knote *kn)
6626 {
6627 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6628 
6629 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6630 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6631 	vdrop(vp);
6632 }
6633 
6634 /*ARGSUSED*/
6635 static int
6636 filt_vfsread(struct knote *kn, long hint)
6637 {
6638 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6639 	off_t size;
6640 	int res;
6641 
6642 	/*
6643 	 * filesystem is gone, so set the EOF flag and schedule
6644 	 * the knote for deletion.
6645 	 */
6646 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6647 		VI_LOCK(vp);
6648 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6649 		VI_UNLOCK(vp);
6650 		return (1);
6651 	}
6652 
6653 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6654 		return (0);
6655 
6656 	VI_LOCK(vp);
6657 	kn->kn_data = size - kn->kn_fp->f_offset;
6658 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6659 	VI_UNLOCK(vp);
6660 	return (res);
6661 }
6662 
6663 /*ARGSUSED*/
6664 static int
6665 filt_vfswrite(struct knote *kn, long hint)
6666 {
6667 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6668 
6669 	VI_LOCK(vp);
6670 
6671 	/*
6672 	 * filesystem is gone, so set the EOF flag and schedule
6673 	 * the knote for deletion.
6674 	 */
6675 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6676 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6677 
6678 	kn->kn_data = 0;
6679 	VI_UNLOCK(vp);
6680 	return (1);
6681 }
6682 
6683 static int
6684 filt_vfsvnode(struct knote *kn, long hint)
6685 {
6686 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6687 	int res;
6688 
6689 	VI_LOCK(vp);
6690 	if (kn->kn_sfflags & hint)
6691 		kn->kn_fflags |= hint;
6692 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6693 		kn->kn_flags |= EV_EOF;
6694 		VI_UNLOCK(vp);
6695 		return (1);
6696 	}
6697 	res = (kn->kn_fflags != 0);
6698 	VI_UNLOCK(vp);
6699 	return (res);
6700 }
6701 
6702 int
6703 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6704 {
6705 	int error;
6706 
6707 	if (dp->d_reclen > ap->a_uio->uio_resid)
6708 		return (ENAMETOOLONG);
6709 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6710 	if (error) {
6711 		if (ap->a_ncookies != NULL) {
6712 			if (ap->a_cookies != NULL)
6713 				free(ap->a_cookies, M_TEMP);
6714 			ap->a_cookies = NULL;
6715 			*ap->a_ncookies = 0;
6716 		}
6717 		return (error);
6718 	}
6719 	if (ap->a_ncookies == NULL)
6720 		return (0);
6721 
6722 	KASSERT(ap->a_cookies,
6723 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6724 
6725 	*ap->a_cookies = realloc(*ap->a_cookies,
6726 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6727 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6728 	*ap->a_ncookies += 1;
6729 	return (0);
6730 }
6731 
6732 /*
6733  * The purpose of this routine is to remove granularity from accmode_t,
6734  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6735  * VADMIN and VAPPEND.
6736  *
6737  * If it returns 0, the caller is supposed to continue with the usual
6738  * access checks using 'accmode' as modified by this routine.  If it
6739  * returns nonzero value, the caller is supposed to return that value
6740  * as errno.
6741  *
6742  * Note that after this routine runs, accmode may be zero.
6743  */
6744 int
6745 vfs_unixify_accmode(accmode_t *accmode)
6746 {
6747 	/*
6748 	 * There is no way to specify explicit "deny" rule using
6749 	 * file mode or POSIX.1e ACLs.
6750 	 */
6751 	if (*accmode & VEXPLICIT_DENY) {
6752 		*accmode = 0;
6753 		return (0);
6754 	}
6755 
6756 	/*
6757 	 * None of these can be translated into usual access bits.
6758 	 * Also, the common case for NFSv4 ACLs is to not contain
6759 	 * either of these bits. Caller should check for VWRITE
6760 	 * on the containing directory instead.
6761 	 */
6762 	if (*accmode & (VDELETE_CHILD | VDELETE))
6763 		return (EPERM);
6764 
6765 	if (*accmode & VADMIN_PERMS) {
6766 		*accmode &= ~VADMIN_PERMS;
6767 		*accmode |= VADMIN;
6768 	}
6769 
6770 	/*
6771 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6772 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6773 	 */
6774 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6775 
6776 	return (0);
6777 }
6778 
6779 /*
6780  * Clear out a doomed vnode (if any) and replace it with a new one as long
6781  * as the fs is not being unmounted. Return the root vnode to the caller.
6782  */
6783 static int __noinline
6784 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6785 {
6786 	struct vnode *vp;
6787 	int error;
6788 
6789 restart:
6790 	if (mp->mnt_rootvnode != NULL) {
6791 		MNT_ILOCK(mp);
6792 		vp = mp->mnt_rootvnode;
6793 		if (vp != NULL) {
6794 			if (!VN_IS_DOOMED(vp)) {
6795 				vrefact(vp);
6796 				MNT_IUNLOCK(mp);
6797 				error = vn_lock(vp, flags);
6798 				if (error == 0) {
6799 					*vpp = vp;
6800 					return (0);
6801 				}
6802 				vrele(vp);
6803 				goto restart;
6804 			}
6805 			/*
6806 			 * Clear the old one.
6807 			 */
6808 			mp->mnt_rootvnode = NULL;
6809 		}
6810 		MNT_IUNLOCK(mp);
6811 		if (vp != NULL) {
6812 			vfs_op_barrier_wait(mp);
6813 			vrele(vp);
6814 		}
6815 	}
6816 	error = VFS_CACHEDROOT(mp, flags, vpp);
6817 	if (error != 0)
6818 		return (error);
6819 	if (mp->mnt_vfs_ops == 0) {
6820 		MNT_ILOCK(mp);
6821 		if (mp->mnt_vfs_ops != 0) {
6822 			MNT_IUNLOCK(mp);
6823 			return (0);
6824 		}
6825 		if (mp->mnt_rootvnode == NULL) {
6826 			vrefact(*vpp);
6827 			mp->mnt_rootvnode = *vpp;
6828 		} else {
6829 			if (mp->mnt_rootvnode != *vpp) {
6830 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6831 					panic("%s: mismatch between vnode returned "
6832 					    " by VFS_CACHEDROOT and the one cached "
6833 					    " (%p != %p)",
6834 					    __func__, *vpp, mp->mnt_rootvnode);
6835 				}
6836 			}
6837 		}
6838 		MNT_IUNLOCK(mp);
6839 	}
6840 	return (0);
6841 }
6842 
6843 int
6844 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6845 {
6846 	struct mount_pcpu *mpcpu;
6847 	struct vnode *vp;
6848 	int error;
6849 
6850 	if (!vfs_op_thread_enter(mp, mpcpu))
6851 		return (vfs_cache_root_fallback(mp, flags, vpp));
6852 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6853 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6854 		vfs_op_thread_exit(mp, mpcpu);
6855 		return (vfs_cache_root_fallback(mp, flags, vpp));
6856 	}
6857 	vrefact(vp);
6858 	vfs_op_thread_exit(mp, mpcpu);
6859 	error = vn_lock(vp, flags);
6860 	if (error != 0) {
6861 		vrele(vp);
6862 		return (vfs_cache_root_fallback(mp, flags, vpp));
6863 	}
6864 	*vpp = vp;
6865 	return (0);
6866 }
6867 
6868 struct vnode *
6869 vfs_cache_root_clear(struct mount *mp)
6870 {
6871 	struct vnode *vp;
6872 
6873 	/*
6874 	 * ops > 0 guarantees there is nobody who can see this vnode
6875 	 */
6876 	MPASS(mp->mnt_vfs_ops > 0);
6877 	vp = mp->mnt_rootvnode;
6878 	if (vp != NULL)
6879 		vn_seqc_write_begin(vp);
6880 	mp->mnt_rootvnode = NULL;
6881 	return (vp);
6882 }
6883 
6884 void
6885 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6886 {
6887 
6888 	MPASS(mp->mnt_vfs_ops > 0);
6889 	vrefact(vp);
6890 	mp->mnt_rootvnode = vp;
6891 }
6892 
6893 /*
6894  * These are helper functions for filesystems to traverse all
6895  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6896  *
6897  * This interface replaces MNT_VNODE_FOREACH.
6898  */
6899 
6900 struct vnode *
6901 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6902 {
6903 	struct vnode *vp;
6904 
6905 	maybe_yield();
6906 	MNT_ILOCK(mp);
6907 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6908 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6909 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6910 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6911 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6912 			continue;
6913 		VI_LOCK(vp);
6914 		if (VN_IS_DOOMED(vp)) {
6915 			VI_UNLOCK(vp);
6916 			continue;
6917 		}
6918 		break;
6919 	}
6920 	if (vp == NULL) {
6921 		__mnt_vnode_markerfree_all(mvp, mp);
6922 		/* MNT_IUNLOCK(mp); -- done in above function */
6923 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6924 		return (NULL);
6925 	}
6926 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6927 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6928 	MNT_IUNLOCK(mp);
6929 	return (vp);
6930 }
6931 
6932 struct vnode *
6933 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6934 {
6935 	struct vnode *vp;
6936 
6937 	*mvp = vn_alloc_marker(mp);
6938 	MNT_ILOCK(mp);
6939 	MNT_REF(mp);
6940 
6941 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6942 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6943 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6944 			continue;
6945 		VI_LOCK(vp);
6946 		if (VN_IS_DOOMED(vp)) {
6947 			VI_UNLOCK(vp);
6948 			continue;
6949 		}
6950 		break;
6951 	}
6952 	if (vp == NULL) {
6953 		MNT_REL(mp);
6954 		MNT_IUNLOCK(mp);
6955 		vn_free_marker(*mvp);
6956 		*mvp = NULL;
6957 		return (NULL);
6958 	}
6959 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6960 	MNT_IUNLOCK(mp);
6961 	return (vp);
6962 }
6963 
6964 void
6965 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6966 {
6967 
6968 	if (*mvp == NULL) {
6969 		MNT_IUNLOCK(mp);
6970 		return;
6971 	}
6972 
6973 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6974 
6975 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6976 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6977 	MNT_REL(mp);
6978 	MNT_IUNLOCK(mp);
6979 	vn_free_marker(*mvp);
6980 	*mvp = NULL;
6981 }
6982 
6983 /*
6984  * These are helper functions for filesystems to traverse their
6985  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6986  */
6987 static void
6988 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6989 {
6990 
6991 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6992 
6993 	MNT_ILOCK(mp);
6994 	MNT_REL(mp);
6995 	MNT_IUNLOCK(mp);
6996 	vn_free_marker(*mvp);
6997 	*mvp = NULL;
6998 }
6999 
7000 /*
7001  * Relock the mp mount vnode list lock with the vp vnode interlock in the
7002  * conventional lock order during mnt_vnode_next_lazy iteration.
7003  *
7004  * On entry, the mount vnode list lock is held and the vnode interlock is not.
7005  * The list lock is dropped and reacquired.  On success, both locks are held.
7006  * On failure, the mount vnode list lock is held but the vnode interlock is
7007  * not, and the procedure may have yielded.
7008  */
7009 static bool
7010 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7011     struct vnode *vp)
7012 {
7013 
7014 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7015 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7016 	    ("%s: bad marker", __func__));
7017 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7018 	    ("%s: inappropriate vnode", __func__));
7019 	ASSERT_VI_UNLOCKED(vp, __func__);
7020 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7021 
7022 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7023 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7024 
7025 	/*
7026 	 * Note we may be racing against vdrop which transitioned the hold
7027 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7028 	 * if we are the only user after we get the interlock we will just
7029 	 * vdrop.
7030 	 */
7031 	vhold(vp);
7032 	mtx_unlock(&mp->mnt_listmtx);
7033 	VI_LOCK(vp);
7034 	if (VN_IS_DOOMED(vp)) {
7035 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7036 		goto out_lost;
7037 	}
7038 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7039 	/*
7040 	 * There is nothing to do if we are the last user.
7041 	 */
7042 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
7043 		goto out_lost;
7044 	mtx_lock(&mp->mnt_listmtx);
7045 	return (true);
7046 out_lost:
7047 	vdropl(vp);
7048 	maybe_yield();
7049 	mtx_lock(&mp->mnt_listmtx);
7050 	return (false);
7051 }
7052 
7053 static struct vnode *
7054 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7055     void *cbarg)
7056 {
7057 	struct vnode *vp;
7058 
7059 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7060 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7061 restart:
7062 	vp = TAILQ_NEXT(*mvp, v_lazylist);
7063 	while (vp != NULL) {
7064 		if (vp->v_type == VMARKER) {
7065 			vp = TAILQ_NEXT(vp, v_lazylist);
7066 			continue;
7067 		}
7068 		/*
7069 		 * See if we want to process the vnode. Note we may encounter a
7070 		 * long string of vnodes we don't care about and hog the list
7071 		 * as a result. Check for it and requeue the marker.
7072 		 */
7073 		VNPASS(!VN_IS_DOOMED(vp), vp);
7074 		if (!cb(vp, cbarg)) {
7075 			if (!should_yield()) {
7076 				vp = TAILQ_NEXT(vp, v_lazylist);
7077 				continue;
7078 			}
7079 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7080 			    v_lazylist);
7081 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7082 			    v_lazylist);
7083 			mtx_unlock(&mp->mnt_listmtx);
7084 			kern_yield(PRI_USER);
7085 			mtx_lock(&mp->mnt_listmtx);
7086 			goto restart;
7087 		}
7088 		/*
7089 		 * Try-lock because this is the wrong lock order.
7090 		 */
7091 		if (!VI_TRYLOCK(vp) &&
7092 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7093 			goto restart;
7094 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7095 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7096 		    ("alien vnode on the lazy list %p %p", vp, mp));
7097 		VNPASS(vp->v_mount == mp, vp);
7098 		VNPASS(!VN_IS_DOOMED(vp), vp);
7099 		break;
7100 	}
7101 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7102 
7103 	/* Check if we are done */
7104 	if (vp == NULL) {
7105 		mtx_unlock(&mp->mnt_listmtx);
7106 		mnt_vnode_markerfree_lazy(mvp, mp);
7107 		return (NULL);
7108 	}
7109 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7110 	mtx_unlock(&mp->mnt_listmtx);
7111 	ASSERT_VI_LOCKED(vp, "lazy iter");
7112 	return (vp);
7113 }
7114 
7115 struct vnode *
7116 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7117     void *cbarg)
7118 {
7119 
7120 	maybe_yield();
7121 	mtx_lock(&mp->mnt_listmtx);
7122 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7123 }
7124 
7125 struct vnode *
7126 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7127     void *cbarg)
7128 {
7129 	struct vnode *vp;
7130 
7131 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7132 		return (NULL);
7133 
7134 	*mvp = vn_alloc_marker(mp);
7135 	MNT_ILOCK(mp);
7136 	MNT_REF(mp);
7137 	MNT_IUNLOCK(mp);
7138 
7139 	mtx_lock(&mp->mnt_listmtx);
7140 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7141 	if (vp == NULL) {
7142 		mtx_unlock(&mp->mnt_listmtx);
7143 		mnt_vnode_markerfree_lazy(mvp, mp);
7144 		return (NULL);
7145 	}
7146 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7147 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7148 }
7149 
7150 void
7151 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7152 {
7153 
7154 	if (*mvp == NULL)
7155 		return;
7156 
7157 	mtx_lock(&mp->mnt_listmtx);
7158 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7159 	mtx_unlock(&mp->mnt_listmtx);
7160 	mnt_vnode_markerfree_lazy(mvp, mp);
7161 }
7162 
7163 int
7164 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7165 {
7166 
7167 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7168 		cnp->cn_flags &= ~NOEXECCHECK;
7169 		return (0);
7170 	}
7171 
7172 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7173 }
7174 
7175 /*
7176  * Do not use this variant unless you have means other than the hold count
7177  * to prevent the vnode from getting freed.
7178  */
7179 void
7180 vn_seqc_write_begin_locked(struct vnode *vp)
7181 {
7182 
7183 	ASSERT_VI_LOCKED(vp, __func__);
7184 	VNPASS(vp->v_holdcnt > 0, vp);
7185 	VNPASS(vp->v_seqc_users >= 0, vp);
7186 	vp->v_seqc_users++;
7187 	if (vp->v_seqc_users == 1)
7188 		seqc_sleepable_write_begin(&vp->v_seqc);
7189 }
7190 
7191 void
7192 vn_seqc_write_begin(struct vnode *vp)
7193 {
7194 
7195 	VI_LOCK(vp);
7196 	vn_seqc_write_begin_locked(vp);
7197 	VI_UNLOCK(vp);
7198 }
7199 
7200 void
7201 vn_seqc_write_end_locked(struct vnode *vp)
7202 {
7203 
7204 	ASSERT_VI_LOCKED(vp, __func__);
7205 	VNPASS(vp->v_seqc_users > 0, vp);
7206 	vp->v_seqc_users--;
7207 	if (vp->v_seqc_users == 0)
7208 		seqc_sleepable_write_end(&vp->v_seqc);
7209 }
7210 
7211 void
7212 vn_seqc_write_end(struct vnode *vp)
7213 {
7214 
7215 	VI_LOCK(vp);
7216 	vn_seqc_write_end_locked(vp);
7217 	VI_UNLOCK(vp);
7218 }
7219 
7220 /*
7221  * Special case handling for allocating and freeing vnodes.
7222  *
7223  * The counter remains unchanged on free so that a doomed vnode will
7224  * keep testing as in modify as long as it is accessible with SMR.
7225  */
7226 static void
7227 vn_seqc_init(struct vnode *vp)
7228 {
7229 
7230 	vp->v_seqc = 0;
7231 	vp->v_seqc_users = 0;
7232 }
7233 
7234 static void
7235 vn_seqc_write_end_free(struct vnode *vp)
7236 {
7237 
7238 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7239 	VNPASS(vp->v_seqc_users == 1, vp);
7240 }
7241 
7242 void
7243 vn_irflag_set_locked(struct vnode *vp, short toset)
7244 {
7245 	short flags;
7246 
7247 	ASSERT_VI_LOCKED(vp, __func__);
7248 	flags = vn_irflag_read(vp);
7249 	VNASSERT((flags & toset) == 0, vp,
7250 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7251 	    __func__, flags, toset));
7252 	atomic_store_short(&vp->v_irflag, flags | toset);
7253 }
7254 
7255 void
7256 vn_irflag_set(struct vnode *vp, short toset)
7257 {
7258 
7259 	VI_LOCK(vp);
7260 	vn_irflag_set_locked(vp, toset);
7261 	VI_UNLOCK(vp);
7262 }
7263 
7264 void
7265 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7266 {
7267 	short flags;
7268 
7269 	ASSERT_VI_LOCKED(vp, __func__);
7270 	flags = vn_irflag_read(vp);
7271 	atomic_store_short(&vp->v_irflag, flags | toset);
7272 }
7273 
7274 void
7275 vn_irflag_set_cond(struct vnode *vp, short toset)
7276 {
7277 
7278 	VI_LOCK(vp);
7279 	vn_irflag_set_cond_locked(vp, toset);
7280 	VI_UNLOCK(vp);
7281 }
7282 
7283 void
7284 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7285 {
7286 	short flags;
7287 
7288 	ASSERT_VI_LOCKED(vp, __func__);
7289 	flags = vn_irflag_read(vp);
7290 	VNASSERT((flags & tounset) == tounset, vp,
7291 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7292 	    __func__, flags, tounset));
7293 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7294 }
7295 
7296 void
7297 vn_irflag_unset(struct vnode *vp, short tounset)
7298 {
7299 
7300 	VI_LOCK(vp);
7301 	vn_irflag_unset_locked(vp, tounset);
7302 	VI_UNLOCK(vp);
7303 }
7304 
7305 int
7306 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7307 {
7308 	struct vattr vattr;
7309 	int error;
7310 
7311 	ASSERT_VOP_LOCKED(vp, __func__);
7312 	error = VOP_GETATTR(vp, &vattr, cred);
7313 	if (__predict_true(error == 0)) {
7314 		if (vattr.va_size <= OFF_MAX)
7315 			*size = vattr.va_size;
7316 		else
7317 			error = EFBIG;
7318 	}
7319 	return (error);
7320 }
7321 
7322 int
7323 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7324 {
7325 	int error;
7326 
7327 	VOP_LOCK(vp, LK_SHARED);
7328 	error = vn_getsize_locked(vp, size, cred);
7329 	VOP_UNLOCK(vp);
7330 	return (error);
7331 }
7332 
7333 #ifdef INVARIANTS
7334 void
7335 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7336 {
7337 
7338 	switch (vp->v_state) {
7339 	case VSTATE_UNINITIALIZED:
7340 		switch (state) {
7341 		case VSTATE_CONSTRUCTED:
7342 		case VSTATE_DESTROYING:
7343 			return;
7344 		default:
7345 			break;
7346 		}
7347 		break;
7348 	case VSTATE_CONSTRUCTED:
7349 		ASSERT_VOP_ELOCKED(vp, __func__);
7350 		switch (state) {
7351 		case VSTATE_DESTROYING:
7352 			return;
7353 		default:
7354 			break;
7355 		}
7356 		break;
7357 	case VSTATE_DESTROYING:
7358 		ASSERT_VOP_ELOCKED(vp, __func__);
7359 		switch (state) {
7360 		case VSTATE_DEAD:
7361 			return;
7362 		default:
7363 			break;
7364 		}
7365 		break;
7366 	case VSTATE_DEAD:
7367 		switch (state) {
7368 		case VSTATE_UNINITIALIZED:
7369 			return;
7370 		default:
7371 			break;
7372 		}
7373 		break;
7374 	}
7375 
7376 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7377 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7378 }
7379 #endif
7380