xref: /freebsd/sys/kern/vfs_subr.c (revision a521f2116473fbd8c09db395518f060a27d02334)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/capsicum.h>
54 #include <sys/condvar.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/dirent.h>
58 #include <sys/event.h>
59 #include <sys/eventhandler.h>
60 #include <sys/extattr.h>
61 #include <sys/file.h>
62 #include <sys/fcntl.h>
63 #include <sys/jail.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/ktr.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smr.h>
80 #include <sys/smp.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <machine/stdarg.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_kern.h>
99 #include <vm/uma.h>
100 
101 #ifdef DDB
102 #include <ddb/ddb.h>
103 #endif
104 
105 static void	delmntque(struct vnode *vp);
106 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
107 		    int slpflag, int slptimeo);
108 static void	syncer_shutdown(void *arg, int howto);
109 static int	vtryrecycle(struct vnode *vp);
110 static void	v_init_counters(struct vnode *);
111 static void	vgonel(struct vnode *);
112 static bool	vhold_recycle_free(struct vnode *);
113 static void	vfs_knllock(void *arg);
114 static void	vfs_knlunlock(void *arg);
115 static void	vfs_knl_assert_lock(void *arg, int what);
116 static void	destroy_vpollinfo(struct vpollinfo *vi);
117 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
118 		    daddr_t startlbn, daddr_t endlbn);
119 static void	vnlru_recalc(void);
120 
121 /*
122  * These fences are intended for cases where some synchronization is
123  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
124  * and v_usecount) updates.  Access to v_iflags is generally synchronized
125  * by the interlock, but we have some internal assertions that check vnode
126  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
127  * for now.
128  */
129 #ifdef INVARIANTS
130 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
131 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
132 #else
133 #define	VNODE_REFCOUNT_FENCE_ACQ()
134 #define	VNODE_REFCOUNT_FENCE_REL()
135 #endif
136 
137 /*
138  * Number of vnodes in existence.  Increased whenever getnewvnode()
139  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140  */
141 static u_long __exclusive_cache_line numvnodes;
142 
143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144     "Number of vnodes in existence");
145 
146 static counter_u64_t vnodes_created;
147 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
148     "Number of vnodes created by getnewvnode");
149 
150 /*
151  * Conversion tables for conversion from vnode types to inode formats
152  * and back.
153  */
154 enum vtype iftovt_tab[16] = {
155 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
156 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
157 };
158 int vttoif_tab[10] = {
159 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
160 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
161 };
162 
163 /*
164  * List of allocates vnodes in the system.
165  */
166 static TAILQ_HEAD(freelst, vnode) vnode_list;
167 static struct vnode *vnode_list_free_marker;
168 static struct vnode *vnode_list_reclaim_marker;
169 
170 /*
171  * "Free" vnode target.  Free vnodes are rarely completely free, but are
172  * just ones that are cheap to recycle.  Usually they are for files which
173  * have been stat'd but not read; these usually have inode and namecache
174  * data attached to them.  This target is the preferred minimum size of a
175  * sub-cache consisting mostly of such files. The system balances the size
176  * of this sub-cache with its complement to try to prevent either from
177  * thrashing while the other is relatively inactive.  The targets express
178  * a preference for the best balance.
179  *
180  * "Above" this target there are 2 further targets (watermarks) related
181  * to recyling of free vnodes.  In the best-operating case, the cache is
182  * exactly full, the free list has size between vlowat and vhiwat above the
183  * free target, and recycling from it and normal use maintains this state.
184  * Sometimes the free list is below vlowat or even empty, but this state
185  * is even better for immediate use provided the cache is not full.
186  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
187  * ones) to reach one of these states.  The watermarks are currently hard-
188  * coded as 4% and 9% of the available space higher.  These and the default
189  * of 25% for wantfreevnodes are too large if the memory size is large.
190  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
191  * whenever vnlru_proc() becomes active.
192  */
193 static long wantfreevnodes;
194 static long __exclusive_cache_line freevnodes;
195 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
196     &freevnodes, 0, "Number of \"free\" vnodes");
197 static long freevnodes_old;
198 
199 static counter_u64_t recycles_count;
200 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
201     "Number of vnodes recycled to meet vnode cache targets");
202 
203 static counter_u64_t recycles_free_count;
204 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
205     "Number of free vnodes recycled to meet vnode cache targets");
206 
207 static counter_u64_t deferred_inact;
208 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
209     "Number of times inactive processing was deferred");
210 
211 /* To keep more than one thread at a time from running vfs_getnewfsid */
212 static struct mtx mntid_mtx;
213 
214 /*
215  * Lock for any access to the following:
216  *	vnode_list
217  *	numvnodes
218  *	freevnodes
219  */
220 static struct mtx __exclusive_cache_line vnode_list_mtx;
221 
222 /* Publicly exported FS */
223 struct nfs_public nfs_pub;
224 
225 static uma_zone_t buf_trie_zone;
226 static smr_t buf_trie_smr;
227 
228 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
229 static uma_zone_t vnode_zone;
230 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
231 
232 __read_frequently smr_t vfs_smr;
233 
234 /*
235  * The workitem queue.
236  *
237  * It is useful to delay writes of file data and filesystem metadata
238  * for tens of seconds so that quickly created and deleted files need
239  * not waste disk bandwidth being created and removed. To realize this,
240  * we append vnodes to a "workitem" queue. When running with a soft
241  * updates implementation, most pending metadata dependencies should
242  * not wait for more than a few seconds. Thus, mounted on block devices
243  * are delayed only about a half the time that file data is delayed.
244  * Similarly, directory updates are more critical, so are only delayed
245  * about a third the time that file data is delayed. Thus, there are
246  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
247  * one each second (driven off the filesystem syncer process). The
248  * syncer_delayno variable indicates the next queue that is to be processed.
249  * Items that need to be processed soon are placed in this queue:
250  *
251  *	syncer_workitem_pending[syncer_delayno]
252  *
253  * A delay of fifteen seconds is done by placing the request fifteen
254  * entries later in the queue:
255  *
256  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
257  *
258  */
259 static int syncer_delayno;
260 static long syncer_mask;
261 LIST_HEAD(synclist, bufobj);
262 static struct synclist *syncer_workitem_pending;
263 /*
264  * The sync_mtx protects:
265  *	bo->bo_synclist
266  *	sync_vnode_count
267  *	syncer_delayno
268  *	syncer_state
269  *	syncer_workitem_pending
270  *	syncer_worklist_len
271  *	rushjob
272  */
273 static struct mtx sync_mtx;
274 static struct cv sync_wakeup;
275 
276 #define SYNCER_MAXDELAY		32
277 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
278 static int syncdelay = 30;		/* max time to delay syncing data */
279 static int filedelay = 30;		/* time to delay syncing files */
280 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
281     "Time to delay syncing files (in seconds)");
282 static int dirdelay = 29;		/* time to delay syncing directories */
283 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
284     "Time to delay syncing directories (in seconds)");
285 static int metadelay = 28;		/* time to delay syncing metadata */
286 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
287     "Time to delay syncing metadata (in seconds)");
288 static int rushjob;		/* number of slots to run ASAP */
289 static int stat_rush_requests;	/* number of times I/O speeded up */
290 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
291     "Number of times I/O speeded up (rush requests)");
292 
293 #define	VDBATCH_SIZE 8
294 struct vdbatch {
295 	u_int index;
296 	long freevnodes;
297 	struct mtx lock;
298 	struct vnode *tab[VDBATCH_SIZE];
299 };
300 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
301 
302 static void	vdbatch_dequeue(struct vnode *vp);
303 
304 /*
305  * When shutting down the syncer, run it at four times normal speed.
306  */
307 #define SYNCER_SHUTDOWN_SPEEDUP		4
308 static int sync_vnode_count;
309 static int syncer_worklist_len;
310 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
311     syncer_state;
312 
313 /* Target for maximum number of vnodes. */
314 u_long desiredvnodes;
315 static u_long gapvnodes;		/* gap between wanted and desired */
316 static u_long vhiwat;		/* enough extras after expansion */
317 static u_long vlowat;		/* minimal extras before expansion */
318 static u_long vstir;		/* nonzero to stir non-free vnodes */
319 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
320 
321 static u_long vnlru_read_freevnodes(void);
322 
323 /*
324  * Note that no attempt is made to sanitize these parameters.
325  */
326 static int
327 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
328 {
329 	u_long val;
330 	int error;
331 
332 	val = desiredvnodes;
333 	error = sysctl_handle_long(oidp, &val, 0, req);
334 	if (error != 0 || req->newptr == NULL)
335 		return (error);
336 
337 	if (val == desiredvnodes)
338 		return (0);
339 	mtx_lock(&vnode_list_mtx);
340 	desiredvnodes = val;
341 	wantfreevnodes = desiredvnodes / 4;
342 	vnlru_recalc();
343 	mtx_unlock(&vnode_list_mtx);
344 	/*
345 	 * XXX There is no protection against multiple threads changing
346 	 * desiredvnodes at the same time. Locking above only helps vnlru and
347 	 * getnewvnode.
348 	 */
349 	vfs_hash_changesize(desiredvnodes);
350 	cache_changesize(desiredvnodes);
351 	return (0);
352 }
353 
354 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
355     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
356     "LU", "Target for maximum number of vnodes");
357 
358 static int
359 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
360 {
361 	u_long val;
362 	int error;
363 
364 	val = wantfreevnodes;
365 	error = sysctl_handle_long(oidp, &val, 0, req);
366 	if (error != 0 || req->newptr == NULL)
367 		return (error);
368 
369 	if (val == wantfreevnodes)
370 		return (0);
371 	mtx_lock(&vnode_list_mtx);
372 	wantfreevnodes = val;
373 	vnlru_recalc();
374 	mtx_unlock(&vnode_list_mtx);
375 	return (0);
376 }
377 
378 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
379     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
380     "LU", "Target for minimum number of \"free\" vnodes");
381 
382 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
383     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
384 static int vnlru_nowhere;
385 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
386     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
387 
388 static int
389 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
390 {
391 	struct vnode *vp;
392 	struct nameidata nd;
393 	char *buf;
394 	unsigned long ndflags;
395 	int error;
396 
397 	if (req->newptr == NULL)
398 		return (EINVAL);
399 	if (req->newlen >= PATH_MAX)
400 		return (E2BIG);
401 
402 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
403 	error = SYSCTL_IN(req, buf, req->newlen);
404 	if (error != 0)
405 		goto out;
406 
407 	buf[req->newlen] = '\0';
408 
409 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
410 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
411 	if ((error = namei(&nd)) != 0)
412 		goto out;
413 	vp = nd.ni_vp;
414 
415 	if (VN_IS_DOOMED(vp)) {
416 		/*
417 		 * This vnode is being recycled.  Return != 0 to let the caller
418 		 * know that the sysctl had no effect.  Return EAGAIN because a
419 		 * subsequent call will likely succeed (since namei will create
420 		 * a new vnode if necessary)
421 		 */
422 		error = EAGAIN;
423 		goto putvnode;
424 	}
425 
426 	counter_u64_add(recycles_count, 1);
427 	vgone(vp);
428 putvnode:
429 	NDFREE(&nd, 0);
430 out:
431 	free(buf, M_TEMP);
432 	return (error);
433 }
434 
435 static int
436 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
437 {
438 	struct thread *td = curthread;
439 	struct vnode *vp;
440 	struct file *fp;
441 	int error;
442 	int fd;
443 
444 	if (req->newptr == NULL)
445 		return (EBADF);
446 
447         error = sysctl_handle_int(oidp, &fd, 0, req);
448         if (error != 0)
449                 return (error);
450 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
451 	if (error != 0)
452 		return (error);
453 	vp = fp->f_vnode;
454 
455 	error = vn_lock(vp, LK_EXCLUSIVE);
456 	if (error != 0)
457 		goto drop;
458 
459 	counter_u64_add(recycles_count, 1);
460 	vgone(vp);
461 	VOP_UNLOCK(vp);
462 drop:
463 	fdrop(fp, td);
464 	return (error);
465 }
466 
467 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
468     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
469     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
470 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
471     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
472     sysctl_ftry_reclaim_vnode, "I",
473     "Try to reclaim a vnode by its file descriptor");
474 
475 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
476 static int vnsz2log;
477 
478 /*
479  * Support for the bufobj clean & dirty pctrie.
480  */
481 static void *
482 buf_trie_alloc(struct pctrie *ptree)
483 {
484 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
485 }
486 
487 static void
488 buf_trie_free(struct pctrie *ptree, void *node)
489 {
490 	uma_zfree_smr(buf_trie_zone, node);
491 }
492 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
493     buf_trie_smr);
494 
495 /*
496  * Initialize the vnode management data structures.
497  *
498  * Reevaluate the following cap on the number of vnodes after the physical
499  * memory size exceeds 512GB.  In the limit, as the physical memory size
500  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
501  */
502 #ifndef	MAXVNODES_MAX
503 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
504 #endif
505 
506 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
507 
508 static struct vnode *
509 vn_alloc_marker(struct mount *mp)
510 {
511 	struct vnode *vp;
512 
513 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
514 	vp->v_type = VMARKER;
515 	vp->v_mount = mp;
516 
517 	return (vp);
518 }
519 
520 static void
521 vn_free_marker(struct vnode *vp)
522 {
523 
524 	MPASS(vp->v_type == VMARKER);
525 	free(vp, M_VNODE_MARKER);
526 }
527 
528 /*
529  * Initialize a vnode as it first enters the zone.
530  */
531 static int
532 vnode_init(void *mem, int size, int flags)
533 {
534 	struct vnode *vp;
535 
536 	vp = mem;
537 	bzero(vp, size);
538 	/*
539 	 * Setup locks.
540 	 */
541 	vp->v_vnlock = &vp->v_lock;
542 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
543 	/*
544 	 * By default, don't allow shared locks unless filesystems opt-in.
545 	 */
546 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
547 	    LK_NOSHARE | LK_IS_VNODE);
548 	/*
549 	 * Initialize bufobj.
550 	 */
551 	bufobj_init(&vp->v_bufobj, vp);
552 	/*
553 	 * Initialize namecache.
554 	 */
555 	cache_vnode_init(vp);
556 	/*
557 	 * Initialize rangelocks.
558 	 */
559 	rangelock_init(&vp->v_rl);
560 
561 	vp->v_dbatchcpu = NOCPU;
562 
563 	/*
564 	 * Check vhold_recycle_free for an explanation.
565 	 */
566 	vp->v_holdcnt = VHOLD_NO_SMR;
567 	vp->v_type = VNON;
568 	mtx_lock(&vnode_list_mtx);
569 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
570 	mtx_unlock(&vnode_list_mtx);
571 	return (0);
572 }
573 
574 /*
575  * Free a vnode when it is cleared from the zone.
576  */
577 static void
578 vnode_fini(void *mem, int size)
579 {
580 	struct vnode *vp;
581 	struct bufobj *bo;
582 
583 	vp = mem;
584 	vdbatch_dequeue(vp);
585 	mtx_lock(&vnode_list_mtx);
586 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
587 	mtx_unlock(&vnode_list_mtx);
588 	rangelock_destroy(&vp->v_rl);
589 	lockdestroy(vp->v_vnlock);
590 	mtx_destroy(&vp->v_interlock);
591 	bo = &vp->v_bufobj;
592 	rw_destroy(BO_LOCKPTR(bo));
593 }
594 
595 /*
596  * Provide the size of NFS nclnode and NFS fh for calculation of the
597  * vnode memory consumption.  The size is specified directly to
598  * eliminate dependency on NFS-private header.
599  *
600  * Other filesystems may use bigger or smaller (like UFS and ZFS)
601  * private inode data, but the NFS-based estimation is ample enough.
602  * Still, we care about differences in the size between 64- and 32-bit
603  * platforms.
604  *
605  * Namecache structure size is heuristically
606  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
607  */
608 #ifdef _LP64
609 #define	NFS_NCLNODE_SZ	(528 + 64)
610 #define	NC_SZ		148
611 #else
612 #define	NFS_NCLNODE_SZ	(360 + 32)
613 #define	NC_SZ		92
614 #endif
615 
616 static void
617 vntblinit(void *dummy __unused)
618 {
619 	struct vdbatch *vd;
620 	int cpu, physvnodes, virtvnodes;
621 	u_int i;
622 
623 	/*
624 	 * Desiredvnodes is a function of the physical memory size and the
625 	 * kernel's heap size.  Generally speaking, it scales with the
626 	 * physical memory size.  The ratio of desiredvnodes to the physical
627 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
628 	 * Thereafter, the
629 	 * marginal ratio of desiredvnodes to the physical memory size is
630 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
631 	 * size.  The memory required by desiredvnodes vnodes and vm objects
632 	 * must not exceed 1/10th of the kernel's heap size.
633 	 */
634 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
635 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
636 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
637 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
638 	desiredvnodes = min(physvnodes, virtvnodes);
639 	if (desiredvnodes > MAXVNODES_MAX) {
640 		if (bootverbose)
641 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
642 			    desiredvnodes, MAXVNODES_MAX);
643 		desiredvnodes = MAXVNODES_MAX;
644 	}
645 	wantfreevnodes = desiredvnodes / 4;
646 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
647 	TAILQ_INIT(&vnode_list);
648 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
649 	/*
650 	 * The lock is taken to appease WITNESS.
651 	 */
652 	mtx_lock(&vnode_list_mtx);
653 	vnlru_recalc();
654 	mtx_unlock(&vnode_list_mtx);
655 	vnode_list_free_marker = vn_alloc_marker(NULL);
656 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
657 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
658 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
659 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
660 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
661 	uma_zone_set_smr(vnode_zone, vfs_smr);
662 	/*
663 	 * Preallocate enough nodes to support one-per buf so that
664 	 * we can not fail an insert.  reassignbuf() callers can not
665 	 * tolerate the insertion failure.
666 	 */
667 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
668 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
669 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
670 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
671 	uma_prealloc(buf_trie_zone, nbuf);
672 
673 	vnodes_created = counter_u64_alloc(M_WAITOK);
674 	recycles_count = counter_u64_alloc(M_WAITOK);
675 	recycles_free_count = counter_u64_alloc(M_WAITOK);
676 	deferred_inact = counter_u64_alloc(M_WAITOK);
677 
678 	/*
679 	 * Initialize the filesystem syncer.
680 	 */
681 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
682 	    &syncer_mask);
683 	syncer_maxdelay = syncer_mask + 1;
684 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
685 	cv_init(&sync_wakeup, "syncer");
686 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
687 		vnsz2log++;
688 	vnsz2log--;
689 
690 	CPU_FOREACH(cpu) {
691 		vd = DPCPU_ID_PTR((cpu), vd);
692 		bzero(vd, sizeof(*vd));
693 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
694 	}
695 }
696 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
697 
698 /*
699  * Mark a mount point as busy. Used to synchronize access and to delay
700  * unmounting. Eventually, mountlist_mtx is not released on failure.
701  *
702  * vfs_busy() is a custom lock, it can block the caller.
703  * vfs_busy() only sleeps if the unmount is active on the mount point.
704  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
705  * vnode belonging to mp.
706  *
707  * Lookup uses vfs_busy() to traverse mount points.
708  * root fs			var fs
709  * / vnode lock		A	/ vnode lock (/var)		D
710  * /var vnode lock	B	/log vnode lock(/var/log)	E
711  * vfs_busy lock	C	vfs_busy lock			F
712  *
713  * Within each file system, the lock order is C->A->B and F->D->E.
714  *
715  * When traversing across mounts, the system follows that lock order:
716  *
717  *        C->A->B
718  *              |
719  *              +->F->D->E
720  *
721  * The lookup() process for namei("/var") illustrates the process:
722  *  VOP_LOOKUP() obtains B while A is held
723  *  vfs_busy() obtains a shared lock on F while A and B are held
724  *  vput() releases lock on B
725  *  vput() releases lock on A
726  *  VFS_ROOT() obtains lock on D while shared lock on F is held
727  *  vfs_unbusy() releases shared lock on F
728  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
729  *    Attempt to lock A (instead of vp_crossmp) while D is held would
730  *    violate the global order, causing deadlocks.
731  *
732  * dounmount() locks B while F is drained.
733  */
734 int
735 vfs_busy(struct mount *mp, int flags)
736 {
737 	struct mount_pcpu *mpcpu;
738 
739 	MPASS((flags & ~MBF_MASK) == 0);
740 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
741 
742 	if (vfs_op_thread_enter(mp, mpcpu)) {
743 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
744 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
745 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
746 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
747 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
748 		vfs_op_thread_exit(mp, mpcpu);
749 		if (flags & MBF_MNTLSTLOCK)
750 			mtx_unlock(&mountlist_mtx);
751 		return (0);
752 	}
753 
754 	MNT_ILOCK(mp);
755 	vfs_assert_mount_counters(mp);
756 	MNT_REF(mp);
757 	/*
758 	 * If mount point is currently being unmounted, sleep until the
759 	 * mount point fate is decided.  If thread doing the unmounting fails,
760 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
761 	 * that this mount point has survived the unmount attempt and vfs_busy
762 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
763 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
764 	 * about to be really destroyed.  vfs_busy needs to release its
765 	 * reference on the mount point in this case and return with ENOENT,
766 	 * telling the caller that mount mount it tried to busy is no longer
767 	 * valid.
768 	 */
769 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
770 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
771 			MNT_REL(mp);
772 			MNT_IUNLOCK(mp);
773 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
774 			    __func__);
775 			return (ENOENT);
776 		}
777 		if (flags & MBF_MNTLSTLOCK)
778 			mtx_unlock(&mountlist_mtx);
779 		mp->mnt_kern_flag |= MNTK_MWAIT;
780 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
781 		if (flags & MBF_MNTLSTLOCK)
782 			mtx_lock(&mountlist_mtx);
783 		MNT_ILOCK(mp);
784 	}
785 	if (flags & MBF_MNTLSTLOCK)
786 		mtx_unlock(&mountlist_mtx);
787 	mp->mnt_lockref++;
788 	MNT_IUNLOCK(mp);
789 	return (0);
790 }
791 
792 /*
793  * Free a busy filesystem.
794  */
795 void
796 vfs_unbusy(struct mount *mp)
797 {
798 	struct mount_pcpu *mpcpu;
799 	int c;
800 
801 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
802 
803 	if (vfs_op_thread_enter(mp, mpcpu)) {
804 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
805 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
806 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
807 		vfs_op_thread_exit(mp, mpcpu);
808 		return;
809 	}
810 
811 	MNT_ILOCK(mp);
812 	vfs_assert_mount_counters(mp);
813 	MNT_REL(mp);
814 	c = --mp->mnt_lockref;
815 	if (mp->mnt_vfs_ops == 0) {
816 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
817 		MNT_IUNLOCK(mp);
818 		return;
819 	}
820 	if (c < 0)
821 		vfs_dump_mount_counters(mp);
822 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
823 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
824 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
825 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
826 		wakeup(&mp->mnt_lockref);
827 	}
828 	MNT_IUNLOCK(mp);
829 }
830 
831 /*
832  * Lookup a mount point by filesystem identifier.
833  */
834 struct mount *
835 vfs_getvfs(fsid_t *fsid)
836 {
837 	struct mount *mp;
838 
839 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
840 	mtx_lock(&mountlist_mtx);
841 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
842 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
843 			vfs_ref(mp);
844 			mtx_unlock(&mountlist_mtx);
845 			return (mp);
846 		}
847 	}
848 	mtx_unlock(&mountlist_mtx);
849 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
850 	return ((struct mount *) 0);
851 }
852 
853 /*
854  * Lookup a mount point by filesystem identifier, busying it before
855  * returning.
856  *
857  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
858  * cache for popular filesystem identifiers.  The cache is lockess, using
859  * the fact that struct mount's are never freed.  In worst case we may
860  * get pointer to unmounted or even different filesystem, so we have to
861  * check what we got, and go slow way if so.
862  */
863 struct mount *
864 vfs_busyfs(fsid_t *fsid)
865 {
866 #define	FSID_CACHE_SIZE	256
867 	typedef struct mount * volatile vmp_t;
868 	static vmp_t cache[FSID_CACHE_SIZE];
869 	struct mount *mp;
870 	int error;
871 	uint32_t hash;
872 
873 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
874 	hash = fsid->val[0] ^ fsid->val[1];
875 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
876 	mp = cache[hash];
877 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
878 		goto slow;
879 	if (vfs_busy(mp, 0) != 0) {
880 		cache[hash] = NULL;
881 		goto slow;
882 	}
883 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
884 		return (mp);
885 	else
886 	    vfs_unbusy(mp);
887 
888 slow:
889 	mtx_lock(&mountlist_mtx);
890 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
891 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
892 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
893 			if (error) {
894 				cache[hash] = NULL;
895 				mtx_unlock(&mountlist_mtx);
896 				return (NULL);
897 			}
898 			cache[hash] = mp;
899 			return (mp);
900 		}
901 	}
902 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
903 	mtx_unlock(&mountlist_mtx);
904 	return ((struct mount *) 0);
905 }
906 
907 /*
908  * Check if a user can access privileged mount options.
909  */
910 int
911 vfs_suser(struct mount *mp, struct thread *td)
912 {
913 	int error;
914 
915 	if (jailed(td->td_ucred)) {
916 		/*
917 		 * If the jail of the calling thread lacks permission for
918 		 * this type of file system, deny immediately.
919 		 */
920 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
921 			return (EPERM);
922 
923 		/*
924 		 * If the file system was mounted outside the jail of the
925 		 * calling thread, deny immediately.
926 		 */
927 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
928 			return (EPERM);
929 	}
930 
931 	/*
932 	 * If file system supports delegated administration, we don't check
933 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
934 	 * by the file system itself.
935 	 * If this is not the user that did original mount, we check for
936 	 * the PRIV_VFS_MOUNT_OWNER privilege.
937 	 */
938 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
939 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
940 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
941 			return (error);
942 	}
943 	return (0);
944 }
945 
946 /*
947  * Get a new unique fsid.  Try to make its val[0] unique, since this value
948  * will be used to create fake device numbers for stat().  Also try (but
949  * not so hard) make its val[0] unique mod 2^16, since some emulators only
950  * support 16-bit device numbers.  We end up with unique val[0]'s for the
951  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
952  *
953  * Keep in mind that several mounts may be running in parallel.  Starting
954  * the search one past where the previous search terminated is both a
955  * micro-optimization and a defense against returning the same fsid to
956  * different mounts.
957  */
958 void
959 vfs_getnewfsid(struct mount *mp)
960 {
961 	static uint16_t mntid_base;
962 	struct mount *nmp;
963 	fsid_t tfsid;
964 	int mtype;
965 
966 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
967 	mtx_lock(&mntid_mtx);
968 	mtype = mp->mnt_vfc->vfc_typenum;
969 	tfsid.val[1] = mtype;
970 	mtype = (mtype & 0xFF) << 24;
971 	for (;;) {
972 		tfsid.val[0] = makedev(255,
973 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
974 		mntid_base++;
975 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
976 			break;
977 		vfs_rel(nmp);
978 	}
979 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
980 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
981 	mtx_unlock(&mntid_mtx);
982 }
983 
984 /*
985  * Knob to control the precision of file timestamps:
986  *
987  *   0 = seconds only; nanoseconds zeroed.
988  *   1 = seconds and nanoseconds, accurate within 1/HZ.
989  *   2 = seconds and nanoseconds, truncated to microseconds.
990  * >=3 = seconds and nanoseconds, maximum precision.
991  */
992 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
993 
994 static int timestamp_precision = TSP_USEC;
995 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
996     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
997     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
998     "3+: sec + ns (max. precision))");
999 
1000 /*
1001  * Get a current timestamp.
1002  */
1003 void
1004 vfs_timestamp(struct timespec *tsp)
1005 {
1006 	struct timeval tv;
1007 
1008 	switch (timestamp_precision) {
1009 	case TSP_SEC:
1010 		tsp->tv_sec = time_second;
1011 		tsp->tv_nsec = 0;
1012 		break;
1013 	case TSP_HZ:
1014 		getnanotime(tsp);
1015 		break;
1016 	case TSP_USEC:
1017 		microtime(&tv);
1018 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1019 		break;
1020 	case TSP_NSEC:
1021 	default:
1022 		nanotime(tsp);
1023 		break;
1024 	}
1025 }
1026 
1027 /*
1028  * Set vnode attributes to VNOVAL
1029  */
1030 void
1031 vattr_null(struct vattr *vap)
1032 {
1033 
1034 	vap->va_type = VNON;
1035 	vap->va_size = VNOVAL;
1036 	vap->va_bytes = VNOVAL;
1037 	vap->va_mode = VNOVAL;
1038 	vap->va_nlink = VNOVAL;
1039 	vap->va_uid = VNOVAL;
1040 	vap->va_gid = VNOVAL;
1041 	vap->va_fsid = VNOVAL;
1042 	vap->va_fileid = VNOVAL;
1043 	vap->va_blocksize = VNOVAL;
1044 	vap->va_rdev = VNOVAL;
1045 	vap->va_atime.tv_sec = VNOVAL;
1046 	vap->va_atime.tv_nsec = VNOVAL;
1047 	vap->va_mtime.tv_sec = VNOVAL;
1048 	vap->va_mtime.tv_nsec = VNOVAL;
1049 	vap->va_ctime.tv_sec = VNOVAL;
1050 	vap->va_ctime.tv_nsec = VNOVAL;
1051 	vap->va_birthtime.tv_sec = VNOVAL;
1052 	vap->va_birthtime.tv_nsec = VNOVAL;
1053 	vap->va_flags = VNOVAL;
1054 	vap->va_gen = VNOVAL;
1055 	vap->va_vaflags = 0;
1056 }
1057 
1058 /*
1059  * Try to reduce the total number of vnodes.
1060  *
1061  * This routine (and its user) are buggy in at least the following ways:
1062  * - all parameters were picked years ago when RAM sizes were significantly
1063  *   smaller
1064  * - it can pick vnodes based on pages used by the vm object, but filesystems
1065  *   like ZFS don't use it making the pick broken
1066  * - since ZFS has its own aging policy it gets partially combated by this one
1067  * - a dedicated method should be provided for filesystems to let them decide
1068  *   whether the vnode should be recycled
1069  *
1070  * This routine is called when we have too many vnodes.  It attempts
1071  * to free <count> vnodes and will potentially free vnodes that still
1072  * have VM backing store (VM backing store is typically the cause
1073  * of a vnode blowout so we want to do this).  Therefore, this operation
1074  * is not considered cheap.
1075  *
1076  * A number of conditions may prevent a vnode from being reclaimed.
1077  * the buffer cache may have references on the vnode, a directory
1078  * vnode may still have references due to the namei cache representing
1079  * underlying files, or the vnode may be in active use.   It is not
1080  * desirable to reuse such vnodes.  These conditions may cause the
1081  * number of vnodes to reach some minimum value regardless of what
1082  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1083  *
1084  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1085  * 			 entries if this argument is strue
1086  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1087  *			 pages.
1088  * @param target	 How many vnodes to reclaim.
1089  * @return		 The number of vnodes that were reclaimed.
1090  */
1091 static int
1092 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1093 {
1094 	struct vnode *vp, *mvp;
1095 	struct mount *mp;
1096 	struct vm_object *object;
1097 	u_long done;
1098 	bool retried;
1099 
1100 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1101 
1102 	retried = false;
1103 	done = 0;
1104 
1105 	mvp = vnode_list_reclaim_marker;
1106 restart:
1107 	vp = mvp;
1108 	while (done < target) {
1109 		vp = TAILQ_NEXT(vp, v_vnodelist);
1110 		if (__predict_false(vp == NULL))
1111 			break;
1112 
1113 		if (__predict_false(vp->v_type == VMARKER))
1114 			continue;
1115 
1116 		/*
1117 		 * If it's been deconstructed already, it's still
1118 		 * referenced, or it exceeds the trigger, skip it.
1119 		 * Also skip free vnodes.  We are trying to make space
1120 		 * to expand the free list, not reduce it.
1121 		 */
1122 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1123 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1124 			goto next_iter;
1125 
1126 		if (vp->v_type == VBAD || vp->v_type == VNON)
1127 			goto next_iter;
1128 
1129 		object = atomic_load_ptr(&vp->v_object);
1130 		if (object == NULL || object->resident_page_count > trigger) {
1131 			goto next_iter;
1132 		}
1133 
1134 		/*
1135 		 * Handle races against vnode allocation. Filesystems lock the
1136 		 * vnode some time after it gets returned from getnewvnode,
1137 		 * despite type and hold count being manipulated earlier.
1138 		 * Resorting to checking v_mount restores guarantees present
1139 		 * before the global list was reworked to contain all vnodes.
1140 		 */
1141 		if (!VI_TRYLOCK(vp))
1142 			goto next_iter;
1143 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1144 			VI_UNLOCK(vp);
1145 			goto next_iter;
1146 		}
1147 		if (vp->v_mount == NULL) {
1148 			VI_UNLOCK(vp);
1149 			goto next_iter;
1150 		}
1151 		vholdl(vp);
1152 		VI_UNLOCK(vp);
1153 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1154 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1155 		mtx_unlock(&vnode_list_mtx);
1156 
1157 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1158 			vdrop(vp);
1159 			goto next_iter_unlocked;
1160 		}
1161 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1162 			vdrop(vp);
1163 			vn_finished_write(mp);
1164 			goto next_iter_unlocked;
1165 		}
1166 
1167 		VI_LOCK(vp);
1168 		if (vp->v_usecount > 0 ||
1169 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1170 		    (vp->v_object != NULL &&
1171 		    vp->v_object->resident_page_count > trigger)) {
1172 			VOP_UNLOCK(vp);
1173 			vdropl(vp);
1174 			vn_finished_write(mp);
1175 			goto next_iter_unlocked;
1176 		}
1177 		counter_u64_add(recycles_count, 1);
1178 		vgonel(vp);
1179 		VOP_UNLOCK(vp);
1180 		vdropl(vp);
1181 		vn_finished_write(mp);
1182 		done++;
1183 next_iter_unlocked:
1184 		if (should_yield())
1185 			kern_yield(PRI_USER);
1186 		mtx_lock(&vnode_list_mtx);
1187 		goto restart;
1188 next_iter:
1189 		MPASS(vp->v_type != VMARKER);
1190 		if (!should_yield())
1191 			continue;
1192 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1193 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1194 		mtx_unlock(&vnode_list_mtx);
1195 		kern_yield(PRI_USER);
1196 		mtx_lock(&vnode_list_mtx);
1197 		goto restart;
1198 	}
1199 	if (done == 0 && !retried) {
1200 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1201 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1202 		retried = true;
1203 		goto restart;
1204 	}
1205 	return (done);
1206 }
1207 
1208 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1209 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1210     0,
1211     "limit on vnode free requests per call to the vnlru_free routine");
1212 
1213 /*
1214  * Attempt to reduce the free list by the requested amount.
1215  */
1216 static int
1217 vnlru_free_locked(int count, struct vfsops *mnt_op)
1218 {
1219 	struct vnode *vp, *mvp;
1220 	struct mount *mp;
1221 	int ocount;
1222 
1223 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1224 	if (count > max_vnlru_free)
1225 		count = max_vnlru_free;
1226 	ocount = count;
1227 	mvp = vnode_list_free_marker;
1228 	vp = mvp;
1229 	for (;;) {
1230 		if (count == 0) {
1231 			break;
1232 		}
1233 		vp = TAILQ_NEXT(vp, v_vnodelist);
1234 		if (__predict_false(vp == NULL)) {
1235 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1236 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1237 			break;
1238 		}
1239 		if (__predict_false(vp->v_type == VMARKER))
1240 			continue;
1241 		if (vp->v_holdcnt > 0)
1242 			continue;
1243 		/*
1244 		 * Don't recycle if our vnode is from different type
1245 		 * of mount point.  Note that mp is type-safe, the
1246 		 * check does not reach unmapped address even if
1247 		 * vnode is reclaimed.
1248 		 */
1249 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1250 		    mp->mnt_op != mnt_op) {
1251 			continue;
1252 		}
1253 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1254 			continue;
1255 		}
1256 		if (!vhold_recycle_free(vp))
1257 			continue;
1258 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1259 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1260 		mtx_unlock(&vnode_list_mtx);
1261 		if (vtryrecycle(vp) == 0)
1262 			count--;
1263 		mtx_lock(&vnode_list_mtx);
1264 		vp = mvp;
1265 	}
1266 	return (ocount - count);
1267 }
1268 
1269 void
1270 vnlru_free(int count, struct vfsops *mnt_op)
1271 {
1272 
1273 	mtx_lock(&vnode_list_mtx);
1274 	vnlru_free_locked(count, mnt_op);
1275 	mtx_unlock(&vnode_list_mtx);
1276 }
1277 
1278 static void
1279 vnlru_recalc(void)
1280 {
1281 
1282 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1283 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1284 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1285 	vlowat = vhiwat / 2;
1286 }
1287 
1288 /*
1289  * Attempt to recycle vnodes in a context that is always safe to block.
1290  * Calling vlrurecycle() from the bowels of filesystem code has some
1291  * interesting deadlock problems.
1292  */
1293 static struct proc *vnlruproc;
1294 static int vnlruproc_sig;
1295 
1296 /*
1297  * The main freevnodes counter is only updated when threads requeue their vnode
1298  * batches. CPUs are conditionally walked to compute a more accurate total.
1299  *
1300  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1301  * at any given moment can still exceed slop, but it should not be by significant
1302  * margin in practice.
1303  */
1304 #define VNLRU_FREEVNODES_SLOP 128
1305 
1306 static __inline void
1307 vn_freevnodes_inc(void)
1308 {
1309 	struct vdbatch *vd;
1310 
1311 	critical_enter();
1312 	vd = DPCPU_PTR(vd);
1313 	vd->freevnodes++;
1314 	critical_exit();
1315 }
1316 
1317 static __inline void
1318 vn_freevnodes_dec(void)
1319 {
1320 	struct vdbatch *vd;
1321 
1322 	critical_enter();
1323 	vd = DPCPU_PTR(vd);
1324 	vd->freevnodes--;
1325 	critical_exit();
1326 }
1327 
1328 static u_long
1329 vnlru_read_freevnodes(void)
1330 {
1331 	struct vdbatch *vd;
1332 	long slop;
1333 	int cpu;
1334 
1335 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1336 	if (freevnodes > freevnodes_old)
1337 		slop = freevnodes - freevnodes_old;
1338 	else
1339 		slop = freevnodes_old - freevnodes;
1340 	if (slop < VNLRU_FREEVNODES_SLOP)
1341 		return (freevnodes >= 0 ? freevnodes : 0);
1342 	freevnodes_old = freevnodes;
1343 	CPU_FOREACH(cpu) {
1344 		vd = DPCPU_ID_PTR((cpu), vd);
1345 		freevnodes_old += vd->freevnodes;
1346 	}
1347 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1348 }
1349 
1350 static bool
1351 vnlru_under(u_long rnumvnodes, u_long limit)
1352 {
1353 	u_long rfreevnodes, space;
1354 
1355 	if (__predict_false(rnumvnodes > desiredvnodes))
1356 		return (true);
1357 
1358 	space = desiredvnodes - rnumvnodes;
1359 	if (space < limit) {
1360 		rfreevnodes = vnlru_read_freevnodes();
1361 		if (rfreevnodes > wantfreevnodes)
1362 			space += rfreevnodes - wantfreevnodes;
1363 	}
1364 	return (space < limit);
1365 }
1366 
1367 static bool
1368 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1369 {
1370 	long rfreevnodes, space;
1371 
1372 	if (__predict_false(rnumvnodes > desiredvnodes))
1373 		return (true);
1374 
1375 	space = desiredvnodes - rnumvnodes;
1376 	if (space < limit) {
1377 		rfreevnodes = atomic_load_long(&freevnodes);
1378 		if (rfreevnodes > wantfreevnodes)
1379 			space += rfreevnodes - wantfreevnodes;
1380 	}
1381 	return (space < limit);
1382 }
1383 
1384 static void
1385 vnlru_kick(void)
1386 {
1387 
1388 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1389 	if (vnlruproc_sig == 0) {
1390 		vnlruproc_sig = 1;
1391 		wakeup(vnlruproc);
1392 	}
1393 }
1394 
1395 static void
1396 vnlru_proc(void)
1397 {
1398 	u_long rnumvnodes, rfreevnodes, target;
1399 	unsigned long onumvnodes;
1400 	int done, force, trigger, usevnodes;
1401 	bool reclaim_nc_src, want_reread;
1402 
1403 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1404 	    SHUTDOWN_PRI_FIRST);
1405 
1406 	force = 0;
1407 	want_reread = false;
1408 	for (;;) {
1409 		kproc_suspend_check(vnlruproc);
1410 		mtx_lock(&vnode_list_mtx);
1411 		rnumvnodes = atomic_load_long(&numvnodes);
1412 
1413 		if (want_reread) {
1414 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1415 			want_reread = false;
1416 		}
1417 
1418 		/*
1419 		 * If numvnodes is too large (due to desiredvnodes being
1420 		 * adjusted using its sysctl, or emergency growth), first
1421 		 * try to reduce it by discarding from the free list.
1422 		 */
1423 		if (rnumvnodes > desiredvnodes) {
1424 			vnlru_free_locked(rnumvnodes - desiredvnodes, NULL);
1425 			rnumvnodes = atomic_load_long(&numvnodes);
1426 		}
1427 		/*
1428 		 * Sleep if the vnode cache is in a good state.  This is
1429 		 * when it is not over-full and has space for about a 4%
1430 		 * or 9% expansion (by growing its size or inexcessively
1431 		 * reducing its free list).  Otherwise, try to reclaim
1432 		 * space for a 10% expansion.
1433 		 */
1434 		if (vstir && force == 0) {
1435 			force = 1;
1436 			vstir = 0;
1437 		}
1438 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1439 			vnlruproc_sig = 0;
1440 			wakeup(&vnlruproc_sig);
1441 			msleep(vnlruproc, &vnode_list_mtx,
1442 			    PVFS|PDROP, "vlruwt", hz);
1443 			continue;
1444 		}
1445 		rfreevnodes = vnlru_read_freevnodes();
1446 
1447 		onumvnodes = rnumvnodes;
1448 		/*
1449 		 * Calculate parameters for recycling.  These are the same
1450 		 * throughout the loop to give some semblance of fairness.
1451 		 * The trigger point is to avoid recycling vnodes with lots
1452 		 * of resident pages.  We aren't trying to free memory; we
1453 		 * are trying to recycle or at least free vnodes.
1454 		 */
1455 		if (rnumvnodes <= desiredvnodes)
1456 			usevnodes = rnumvnodes - rfreevnodes;
1457 		else
1458 			usevnodes = rnumvnodes;
1459 		if (usevnodes <= 0)
1460 			usevnodes = 1;
1461 		/*
1462 		 * The trigger value is is chosen to give a conservatively
1463 		 * large value to ensure that it alone doesn't prevent
1464 		 * making progress.  The value can easily be so large that
1465 		 * it is effectively infinite in some congested and
1466 		 * misconfigured cases, and this is necessary.  Normally
1467 		 * it is about 8 to 100 (pages), which is quite large.
1468 		 */
1469 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1470 		if (force < 2)
1471 			trigger = vsmalltrigger;
1472 		reclaim_nc_src = force >= 3;
1473 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1474 		target = target / 10 + 1;
1475 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1476 		mtx_unlock(&vnode_list_mtx);
1477 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1478 			uma_reclaim(UMA_RECLAIM_DRAIN);
1479 		if (done == 0) {
1480 			if (force == 0 || force == 1) {
1481 				force = 2;
1482 				continue;
1483 			}
1484 			if (force == 2) {
1485 				force = 3;
1486 				continue;
1487 			}
1488 			want_reread = true;
1489 			force = 0;
1490 			vnlru_nowhere++;
1491 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1492 		} else {
1493 			want_reread = true;
1494 			kern_yield(PRI_USER);
1495 		}
1496 	}
1497 }
1498 
1499 static struct kproc_desc vnlru_kp = {
1500 	"vnlru",
1501 	vnlru_proc,
1502 	&vnlruproc
1503 };
1504 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1505     &vnlru_kp);
1506 
1507 /*
1508  * Routines having to do with the management of the vnode table.
1509  */
1510 
1511 /*
1512  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1513  * before we actually vgone().  This function must be called with the vnode
1514  * held to prevent the vnode from being returned to the free list midway
1515  * through vgone().
1516  */
1517 static int
1518 vtryrecycle(struct vnode *vp)
1519 {
1520 	struct mount *vnmp;
1521 
1522 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1523 	VNASSERT(vp->v_holdcnt, vp,
1524 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1525 	/*
1526 	 * This vnode may found and locked via some other list, if so we
1527 	 * can't recycle it yet.
1528 	 */
1529 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1530 		CTR2(KTR_VFS,
1531 		    "%s: impossible to recycle, vp %p lock is already held",
1532 		    __func__, vp);
1533 		vdrop(vp);
1534 		return (EWOULDBLOCK);
1535 	}
1536 	/*
1537 	 * Don't recycle if its filesystem is being suspended.
1538 	 */
1539 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1540 		VOP_UNLOCK(vp);
1541 		CTR2(KTR_VFS,
1542 		    "%s: impossible to recycle, cannot start the write for %p",
1543 		    __func__, vp);
1544 		vdrop(vp);
1545 		return (EBUSY);
1546 	}
1547 	/*
1548 	 * If we got this far, we need to acquire the interlock and see if
1549 	 * anyone picked up this vnode from another list.  If not, we will
1550 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1551 	 * will skip over it.
1552 	 */
1553 	VI_LOCK(vp);
1554 	if (vp->v_usecount) {
1555 		VOP_UNLOCK(vp);
1556 		vdropl(vp);
1557 		vn_finished_write(vnmp);
1558 		CTR2(KTR_VFS,
1559 		    "%s: impossible to recycle, %p is already referenced",
1560 		    __func__, vp);
1561 		return (EBUSY);
1562 	}
1563 	if (!VN_IS_DOOMED(vp)) {
1564 		counter_u64_add(recycles_free_count, 1);
1565 		vgonel(vp);
1566 	}
1567 	VOP_UNLOCK(vp);
1568 	vdropl(vp);
1569 	vn_finished_write(vnmp);
1570 	return (0);
1571 }
1572 
1573 /*
1574  * Allocate a new vnode.
1575  *
1576  * The operation never returns an error. Returning an error was disabled
1577  * in r145385 (dated 2005) with the following comment:
1578  *
1579  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1580  *
1581  * Given the age of this commit (almost 15 years at the time of writing this
1582  * comment) restoring the ability to fail requires a significant audit of
1583  * all codepaths.
1584  *
1585  * The routine can try to free a vnode or stall for up to 1 second waiting for
1586  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1587  */
1588 static u_long vn_alloc_cyclecount;
1589 
1590 static struct vnode * __noinline
1591 vn_alloc_hard(struct mount *mp)
1592 {
1593 	u_long rnumvnodes, rfreevnodes;
1594 
1595 	mtx_lock(&vnode_list_mtx);
1596 	rnumvnodes = atomic_load_long(&numvnodes);
1597 	if (rnumvnodes + 1 < desiredvnodes) {
1598 		vn_alloc_cyclecount = 0;
1599 		goto alloc;
1600 	}
1601 	rfreevnodes = vnlru_read_freevnodes();
1602 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1603 		vn_alloc_cyclecount = 0;
1604 		vstir = 1;
1605 	}
1606 	/*
1607 	 * Grow the vnode cache if it will not be above its target max
1608 	 * after growing.  Otherwise, if the free list is nonempty, try
1609 	 * to reclaim 1 item from it before growing the cache (possibly
1610 	 * above its target max if the reclamation failed or is delayed).
1611 	 * Otherwise, wait for some space.  In all cases, schedule
1612 	 * vnlru_proc() if we are getting short of space.  The watermarks
1613 	 * should be chosen so that we never wait or even reclaim from
1614 	 * the free list to below its target minimum.
1615 	 */
1616 	if (vnlru_free_locked(1, NULL) > 0)
1617 		goto alloc;
1618 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1619 		/*
1620 		 * Wait for space for a new vnode.
1621 		 */
1622 		vnlru_kick();
1623 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1624 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1625 		    vnlru_read_freevnodes() > 1)
1626 			vnlru_free_locked(1, NULL);
1627 	}
1628 alloc:
1629 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1630 	if (vnlru_under(rnumvnodes, vlowat))
1631 		vnlru_kick();
1632 	mtx_unlock(&vnode_list_mtx);
1633 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1634 }
1635 
1636 static struct vnode *
1637 vn_alloc(struct mount *mp)
1638 {
1639 	u_long rnumvnodes;
1640 
1641 	if (__predict_false(vn_alloc_cyclecount != 0))
1642 		return (vn_alloc_hard(mp));
1643 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1644 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1645 		atomic_subtract_long(&numvnodes, 1);
1646 		return (vn_alloc_hard(mp));
1647 	}
1648 
1649 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1650 }
1651 
1652 static void
1653 vn_free(struct vnode *vp)
1654 {
1655 
1656 	atomic_subtract_long(&numvnodes, 1);
1657 	uma_zfree_smr(vnode_zone, vp);
1658 }
1659 
1660 /*
1661  * Return the next vnode from the free list.
1662  */
1663 int
1664 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1665     struct vnode **vpp)
1666 {
1667 	struct vnode *vp;
1668 	struct thread *td;
1669 	struct lock_object *lo;
1670 
1671 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1672 
1673 	KASSERT(vops->registered,
1674 	    ("%s: not registered vector op %p\n", __func__, vops));
1675 
1676 	td = curthread;
1677 	if (td->td_vp_reserved != NULL) {
1678 		vp = td->td_vp_reserved;
1679 		td->td_vp_reserved = NULL;
1680 	} else {
1681 		vp = vn_alloc(mp);
1682 	}
1683 	counter_u64_add(vnodes_created, 1);
1684 	/*
1685 	 * Locks are given the generic name "vnode" when created.
1686 	 * Follow the historic practice of using the filesystem
1687 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1688 	 *
1689 	 * Locks live in a witness group keyed on their name. Thus,
1690 	 * when a lock is renamed, it must also move from the witness
1691 	 * group of its old name to the witness group of its new name.
1692 	 *
1693 	 * The change only needs to be made when the vnode moves
1694 	 * from one filesystem type to another. We ensure that each
1695 	 * filesystem use a single static name pointer for its tag so
1696 	 * that we can compare pointers rather than doing a strcmp().
1697 	 */
1698 	lo = &vp->v_vnlock->lock_object;
1699 #ifdef WITNESS
1700 	if (lo->lo_name != tag) {
1701 #endif
1702 		lo->lo_name = tag;
1703 #ifdef WITNESS
1704 		WITNESS_DESTROY(lo);
1705 		WITNESS_INIT(lo, tag);
1706 	}
1707 #endif
1708 	/*
1709 	 * By default, don't allow shared locks unless filesystems opt-in.
1710 	 */
1711 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1712 	/*
1713 	 * Finalize various vnode identity bits.
1714 	 */
1715 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1716 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1717 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1718 	vp->v_type = VNON;
1719 	vp->v_op = vops;
1720 	v_init_counters(vp);
1721 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1722 #ifdef DIAGNOSTIC
1723 	if (mp == NULL && vops != &dead_vnodeops)
1724 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1725 #endif
1726 #ifdef MAC
1727 	mac_vnode_init(vp);
1728 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1729 		mac_vnode_associate_singlelabel(mp, vp);
1730 #endif
1731 	if (mp != NULL) {
1732 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1733 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1734 			vp->v_vflag |= VV_NOKNOTE;
1735 	}
1736 
1737 	/*
1738 	 * For the filesystems which do not use vfs_hash_insert(),
1739 	 * still initialize v_hash to have vfs_hash_index() useful.
1740 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1741 	 * its own hashing.
1742 	 */
1743 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1744 
1745 	*vpp = vp;
1746 	return (0);
1747 }
1748 
1749 void
1750 getnewvnode_reserve(void)
1751 {
1752 	struct thread *td;
1753 
1754 	td = curthread;
1755 	MPASS(td->td_vp_reserved == NULL);
1756 	td->td_vp_reserved = vn_alloc(NULL);
1757 }
1758 
1759 void
1760 getnewvnode_drop_reserve(void)
1761 {
1762 	struct thread *td;
1763 
1764 	td = curthread;
1765 	if (td->td_vp_reserved != NULL) {
1766 		vn_free(td->td_vp_reserved);
1767 		td->td_vp_reserved = NULL;
1768 	}
1769 }
1770 
1771 static void __noinline
1772 freevnode(struct vnode *vp)
1773 {
1774 	struct bufobj *bo;
1775 
1776 	/*
1777 	 * The vnode has been marked for destruction, so free it.
1778 	 *
1779 	 * The vnode will be returned to the zone where it will
1780 	 * normally remain until it is needed for another vnode. We
1781 	 * need to cleanup (or verify that the cleanup has already
1782 	 * been done) any residual data left from its current use
1783 	 * so as not to contaminate the freshly allocated vnode.
1784 	 */
1785 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1786 	/*
1787 	 * Paired with vgone.
1788 	 */
1789 	vn_seqc_write_end_locked(vp);
1790 	VNPASS(vp->v_seqc_users == 0, vp);
1791 
1792 	bo = &vp->v_bufobj;
1793 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1794 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1795 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1796 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1797 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1798 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1799 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1800 	    ("clean blk trie not empty"));
1801 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1802 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1803 	    ("dirty blk trie not empty"));
1804 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1805 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1806 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1807 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1808 	    ("Dangling rangelock waiters"));
1809 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1810 	    ("Leaked inactivation"));
1811 	VI_UNLOCK(vp);
1812 #ifdef MAC
1813 	mac_vnode_destroy(vp);
1814 #endif
1815 	if (vp->v_pollinfo != NULL) {
1816 		destroy_vpollinfo(vp->v_pollinfo);
1817 		vp->v_pollinfo = NULL;
1818 	}
1819 #ifdef INVARIANTS
1820 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
1821 	vp->v_op = NULL;
1822 #endif
1823 	vp->v_mountedhere = NULL;
1824 	vp->v_unpcb = NULL;
1825 	vp->v_rdev = NULL;
1826 	vp->v_fifoinfo = NULL;
1827 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
1828 	vp->v_irflag = 0;
1829 	vp->v_iflag = 0;
1830 	vp->v_vflag = 0;
1831 	bo->bo_flag = 0;
1832 	vn_free(vp);
1833 }
1834 
1835 /*
1836  * Delete from old mount point vnode list, if on one.
1837  */
1838 static void
1839 delmntque(struct vnode *vp)
1840 {
1841 	struct mount *mp;
1842 
1843 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1844 
1845 	mp = vp->v_mount;
1846 	if (mp == NULL)
1847 		return;
1848 	MNT_ILOCK(mp);
1849 	VI_LOCK(vp);
1850 	vp->v_mount = NULL;
1851 	VI_UNLOCK(vp);
1852 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1853 		("bad mount point vnode list size"));
1854 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1855 	mp->mnt_nvnodelistsize--;
1856 	MNT_REL(mp);
1857 	MNT_IUNLOCK(mp);
1858 }
1859 
1860 static void
1861 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1862 {
1863 
1864 	vp->v_data = NULL;
1865 	vp->v_op = &dead_vnodeops;
1866 	vgone(vp);
1867 	vput(vp);
1868 }
1869 
1870 /*
1871  * Insert into list of vnodes for the new mount point, if available.
1872  */
1873 int
1874 insmntque1(struct vnode *vp, struct mount *mp,
1875 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1876 {
1877 
1878 	KASSERT(vp->v_mount == NULL,
1879 		("insmntque: vnode already on per mount vnode list"));
1880 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1881 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1882 
1883 	/*
1884 	 * We acquire the vnode interlock early to ensure that the
1885 	 * vnode cannot be recycled by another process releasing a
1886 	 * holdcnt on it before we get it on both the vnode list
1887 	 * and the active vnode list. The mount mutex protects only
1888 	 * manipulation of the vnode list and the vnode freelist
1889 	 * mutex protects only manipulation of the active vnode list.
1890 	 * Hence the need to hold the vnode interlock throughout.
1891 	 */
1892 	MNT_ILOCK(mp);
1893 	VI_LOCK(vp);
1894 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1895 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1896 	    mp->mnt_nvnodelistsize == 0)) &&
1897 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1898 		VI_UNLOCK(vp);
1899 		MNT_IUNLOCK(mp);
1900 		if (dtr != NULL)
1901 			dtr(vp, dtr_arg);
1902 		return (EBUSY);
1903 	}
1904 	vp->v_mount = mp;
1905 	MNT_REF(mp);
1906 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1907 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1908 		("neg mount point vnode list size"));
1909 	mp->mnt_nvnodelistsize++;
1910 	VI_UNLOCK(vp);
1911 	MNT_IUNLOCK(mp);
1912 	return (0);
1913 }
1914 
1915 int
1916 insmntque(struct vnode *vp, struct mount *mp)
1917 {
1918 
1919 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1920 }
1921 
1922 /*
1923  * Flush out and invalidate all buffers associated with a bufobj
1924  * Called with the underlying object locked.
1925  */
1926 int
1927 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1928 {
1929 	int error;
1930 
1931 	BO_LOCK(bo);
1932 	if (flags & V_SAVE) {
1933 		error = bufobj_wwait(bo, slpflag, slptimeo);
1934 		if (error) {
1935 			BO_UNLOCK(bo);
1936 			return (error);
1937 		}
1938 		if (bo->bo_dirty.bv_cnt > 0) {
1939 			BO_UNLOCK(bo);
1940 			do {
1941 				error = BO_SYNC(bo, MNT_WAIT);
1942 			} while (error == ERELOOKUP);
1943 			if (error != 0)
1944 				return (error);
1945 			/*
1946 			 * XXX We could save a lock/unlock if this was only
1947 			 * enabled under INVARIANTS
1948 			 */
1949 			BO_LOCK(bo);
1950 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1951 				panic("vinvalbuf: dirty bufs");
1952 		}
1953 	}
1954 	/*
1955 	 * If you alter this loop please notice that interlock is dropped and
1956 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1957 	 * no race conditions occur from this.
1958 	 */
1959 	do {
1960 		error = flushbuflist(&bo->bo_clean,
1961 		    flags, bo, slpflag, slptimeo);
1962 		if (error == 0 && !(flags & V_CLEANONLY))
1963 			error = flushbuflist(&bo->bo_dirty,
1964 			    flags, bo, slpflag, slptimeo);
1965 		if (error != 0 && error != EAGAIN) {
1966 			BO_UNLOCK(bo);
1967 			return (error);
1968 		}
1969 	} while (error != 0);
1970 
1971 	/*
1972 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1973 	 * have write I/O in-progress but if there is a VM object then the
1974 	 * VM object can also have read-I/O in-progress.
1975 	 */
1976 	do {
1977 		bufobj_wwait(bo, 0, 0);
1978 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
1979 			BO_UNLOCK(bo);
1980 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
1981 			BO_LOCK(bo);
1982 		}
1983 	} while (bo->bo_numoutput > 0);
1984 	BO_UNLOCK(bo);
1985 
1986 	/*
1987 	 * Destroy the copy in the VM cache, too.
1988 	 */
1989 	if (bo->bo_object != NULL &&
1990 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1991 		VM_OBJECT_WLOCK(bo->bo_object);
1992 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1993 		    OBJPR_CLEANONLY : 0);
1994 		VM_OBJECT_WUNLOCK(bo->bo_object);
1995 	}
1996 
1997 #ifdef INVARIANTS
1998 	BO_LOCK(bo);
1999 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2000 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2001 	    bo->bo_clean.bv_cnt > 0))
2002 		panic("vinvalbuf: flush failed");
2003 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2004 	    bo->bo_dirty.bv_cnt > 0)
2005 		panic("vinvalbuf: flush dirty failed");
2006 	BO_UNLOCK(bo);
2007 #endif
2008 	return (0);
2009 }
2010 
2011 /*
2012  * Flush out and invalidate all buffers associated with a vnode.
2013  * Called with the underlying object locked.
2014  */
2015 int
2016 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2017 {
2018 
2019 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2020 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2021 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2022 		return (0);
2023 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2024 }
2025 
2026 /*
2027  * Flush out buffers on the specified list.
2028  *
2029  */
2030 static int
2031 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2032     int slptimeo)
2033 {
2034 	struct buf *bp, *nbp;
2035 	int retval, error;
2036 	daddr_t lblkno;
2037 	b_xflags_t xflags;
2038 
2039 	ASSERT_BO_WLOCKED(bo);
2040 
2041 	retval = 0;
2042 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2043 		/*
2044 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2045 		 * do not skip any buffers. If we are flushing only V_NORMAL
2046 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2047 		 * flushing only V_ALT buffers then skip buffers not marked
2048 		 * as BX_ALTDATA.
2049 		 */
2050 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2051 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2052 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2053 			continue;
2054 		}
2055 		if (nbp != NULL) {
2056 			lblkno = nbp->b_lblkno;
2057 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2058 		}
2059 		retval = EAGAIN;
2060 		error = BUF_TIMELOCK(bp,
2061 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2062 		    "flushbuf", slpflag, slptimeo);
2063 		if (error) {
2064 			BO_LOCK(bo);
2065 			return (error != ENOLCK ? error : EAGAIN);
2066 		}
2067 		KASSERT(bp->b_bufobj == bo,
2068 		    ("bp %p wrong b_bufobj %p should be %p",
2069 		    bp, bp->b_bufobj, bo));
2070 		/*
2071 		 * XXX Since there are no node locks for NFS, I
2072 		 * believe there is a slight chance that a delayed
2073 		 * write will occur while sleeping just above, so
2074 		 * check for it.
2075 		 */
2076 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2077 		    (flags & V_SAVE)) {
2078 			bremfree(bp);
2079 			bp->b_flags |= B_ASYNC;
2080 			bwrite(bp);
2081 			BO_LOCK(bo);
2082 			return (EAGAIN);	/* XXX: why not loop ? */
2083 		}
2084 		bremfree(bp);
2085 		bp->b_flags |= (B_INVAL | B_RELBUF);
2086 		bp->b_flags &= ~B_ASYNC;
2087 		brelse(bp);
2088 		BO_LOCK(bo);
2089 		if (nbp == NULL)
2090 			break;
2091 		nbp = gbincore(bo, lblkno);
2092 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2093 		    != xflags)
2094 			break;			/* nbp invalid */
2095 	}
2096 	return (retval);
2097 }
2098 
2099 int
2100 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2101 {
2102 	struct buf *bp;
2103 	int error;
2104 	daddr_t lblkno;
2105 
2106 	ASSERT_BO_LOCKED(bo);
2107 
2108 	for (lblkno = startn;;) {
2109 again:
2110 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2111 		if (bp == NULL || bp->b_lblkno >= endn ||
2112 		    bp->b_lblkno < startn)
2113 			break;
2114 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2115 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2116 		if (error != 0) {
2117 			BO_RLOCK(bo);
2118 			if (error == ENOLCK)
2119 				goto again;
2120 			return (error);
2121 		}
2122 		KASSERT(bp->b_bufobj == bo,
2123 		    ("bp %p wrong b_bufobj %p should be %p",
2124 		    bp, bp->b_bufobj, bo));
2125 		lblkno = bp->b_lblkno + 1;
2126 		if ((bp->b_flags & B_MANAGED) == 0)
2127 			bremfree(bp);
2128 		bp->b_flags |= B_RELBUF;
2129 		/*
2130 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2131 		 * pages backing each buffer in the range are unlikely to be
2132 		 * reused.  Dirty buffers will have the hint applied once
2133 		 * they've been written.
2134 		 */
2135 		if ((bp->b_flags & B_VMIO) != 0)
2136 			bp->b_flags |= B_NOREUSE;
2137 		brelse(bp);
2138 		BO_RLOCK(bo);
2139 	}
2140 	return (0);
2141 }
2142 
2143 /*
2144  * Truncate a file's buffer and pages to a specified length.  This
2145  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2146  * sync activity.
2147  */
2148 int
2149 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2150 {
2151 	struct buf *bp, *nbp;
2152 	struct bufobj *bo;
2153 	daddr_t startlbn;
2154 
2155 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2156 	    vp, blksize, (uintmax_t)length);
2157 
2158 	/*
2159 	 * Round up to the *next* lbn.
2160 	 */
2161 	startlbn = howmany(length, blksize);
2162 
2163 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2164 
2165 	bo = &vp->v_bufobj;
2166 restart_unlocked:
2167 	BO_LOCK(bo);
2168 
2169 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2170 		;
2171 
2172 	if (length > 0) {
2173 restartsync:
2174 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2175 			if (bp->b_lblkno > 0)
2176 				continue;
2177 			/*
2178 			 * Since we hold the vnode lock this should only
2179 			 * fail if we're racing with the buf daemon.
2180 			 */
2181 			if (BUF_LOCK(bp,
2182 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2183 			    BO_LOCKPTR(bo)) == ENOLCK)
2184 				goto restart_unlocked;
2185 
2186 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2187 			    ("buf(%p) on dirty queue without DELWRI", bp));
2188 
2189 			bremfree(bp);
2190 			bawrite(bp);
2191 			BO_LOCK(bo);
2192 			goto restartsync;
2193 		}
2194 	}
2195 
2196 	bufobj_wwait(bo, 0, 0);
2197 	BO_UNLOCK(bo);
2198 	vnode_pager_setsize(vp, length);
2199 
2200 	return (0);
2201 }
2202 
2203 /*
2204  * Invalidate the cached pages of a file's buffer within the range of block
2205  * numbers [startlbn, endlbn).
2206  */
2207 void
2208 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2209     int blksize)
2210 {
2211 	struct bufobj *bo;
2212 	off_t start, end;
2213 
2214 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2215 
2216 	start = blksize * startlbn;
2217 	end = blksize * endlbn;
2218 
2219 	bo = &vp->v_bufobj;
2220 	BO_LOCK(bo);
2221 	MPASS(blksize == bo->bo_bsize);
2222 
2223 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2224 		;
2225 
2226 	BO_UNLOCK(bo);
2227 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2228 }
2229 
2230 static int
2231 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2232     daddr_t startlbn, daddr_t endlbn)
2233 {
2234 	struct buf *bp, *nbp;
2235 	bool anyfreed;
2236 
2237 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2238 	ASSERT_BO_LOCKED(bo);
2239 
2240 	do {
2241 		anyfreed = false;
2242 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2243 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2244 				continue;
2245 			if (BUF_LOCK(bp,
2246 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2247 			    BO_LOCKPTR(bo)) == ENOLCK) {
2248 				BO_LOCK(bo);
2249 				return (EAGAIN);
2250 			}
2251 
2252 			bremfree(bp);
2253 			bp->b_flags |= B_INVAL | B_RELBUF;
2254 			bp->b_flags &= ~B_ASYNC;
2255 			brelse(bp);
2256 			anyfreed = true;
2257 
2258 			BO_LOCK(bo);
2259 			if (nbp != NULL &&
2260 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2261 			    nbp->b_vp != vp ||
2262 			    (nbp->b_flags & B_DELWRI) != 0))
2263 				return (EAGAIN);
2264 		}
2265 
2266 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2267 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2268 				continue;
2269 			if (BUF_LOCK(bp,
2270 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2271 			    BO_LOCKPTR(bo)) == ENOLCK) {
2272 				BO_LOCK(bo);
2273 				return (EAGAIN);
2274 			}
2275 			bremfree(bp);
2276 			bp->b_flags |= B_INVAL | B_RELBUF;
2277 			bp->b_flags &= ~B_ASYNC;
2278 			brelse(bp);
2279 			anyfreed = true;
2280 
2281 			BO_LOCK(bo);
2282 			if (nbp != NULL &&
2283 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2284 			    (nbp->b_vp != vp) ||
2285 			    (nbp->b_flags & B_DELWRI) == 0))
2286 				return (EAGAIN);
2287 		}
2288 	} while (anyfreed);
2289 	return (0);
2290 }
2291 
2292 static void
2293 buf_vlist_remove(struct buf *bp)
2294 {
2295 	struct bufv *bv;
2296 	b_xflags_t flags;
2297 
2298 	flags = bp->b_xflags;
2299 
2300 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2301 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2302 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2303 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2304 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2305 
2306 	if ((flags & BX_VNDIRTY) != 0)
2307 		bv = &bp->b_bufobj->bo_dirty;
2308 	else
2309 		bv = &bp->b_bufobj->bo_clean;
2310 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2311 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2312 	bv->bv_cnt--;
2313 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2314 }
2315 
2316 /*
2317  * Add the buffer to the sorted clean or dirty block list.
2318  *
2319  * NOTE: xflags is passed as a constant, optimizing this inline function!
2320  */
2321 static void
2322 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2323 {
2324 	struct bufv *bv;
2325 	struct buf *n;
2326 	int error;
2327 
2328 	ASSERT_BO_WLOCKED(bo);
2329 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2330 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2331 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2332 	    ("dead bo %p", bo));
2333 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2334 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2335 	bp->b_xflags |= xflags;
2336 	if (xflags & BX_VNDIRTY)
2337 		bv = &bo->bo_dirty;
2338 	else
2339 		bv = &bo->bo_clean;
2340 
2341 	/*
2342 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2343 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2344 	 * than _ge.
2345 	 */
2346 	if (bv->bv_cnt == 0 ||
2347 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2348 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2349 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2350 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2351 	else
2352 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2353 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2354 	if (error)
2355 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2356 	bv->bv_cnt++;
2357 }
2358 
2359 /*
2360  * Look up a buffer using the buffer tries.
2361  */
2362 struct buf *
2363 gbincore(struct bufobj *bo, daddr_t lblkno)
2364 {
2365 	struct buf *bp;
2366 
2367 	ASSERT_BO_LOCKED(bo);
2368 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2369 	if (bp != NULL)
2370 		return (bp);
2371 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2372 }
2373 
2374 /*
2375  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2376  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2377  * stability of the result.  Like other lockless lookups, the found buf may
2378  * already be invalid by the time this function returns.
2379  */
2380 struct buf *
2381 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2382 {
2383 	struct buf *bp;
2384 
2385 	ASSERT_BO_UNLOCKED(bo);
2386 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2387 	if (bp != NULL)
2388 		return (bp);
2389 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2390 }
2391 
2392 /*
2393  * Associate a buffer with a vnode.
2394  */
2395 void
2396 bgetvp(struct vnode *vp, struct buf *bp)
2397 {
2398 	struct bufobj *bo;
2399 
2400 	bo = &vp->v_bufobj;
2401 	ASSERT_BO_WLOCKED(bo);
2402 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2403 
2404 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2405 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2406 	    ("bgetvp: bp already attached! %p", bp));
2407 
2408 	vhold(vp);
2409 	bp->b_vp = vp;
2410 	bp->b_bufobj = bo;
2411 	/*
2412 	 * Insert onto list for new vnode.
2413 	 */
2414 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2415 }
2416 
2417 /*
2418  * Disassociate a buffer from a vnode.
2419  */
2420 void
2421 brelvp(struct buf *bp)
2422 {
2423 	struct bufobj *bo;
2424 	struct vnode *vp;
2425 
2426 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2427 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2428 
2429 	/*
2430 	 * Delete from old vnode list, if on one.
2431 	 */
2432 	vp = bp->b_vp;		/* XXX */
2433 	bo = bp->b_bufobj;
2434 	BO_LOCK(bo);
2435 	buf_vlist_remove(bp);
2436 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2437 		bo->bo_flag &= ~BO_ONWORKLST;
2438 		mtx_lock(&sync_mtx);
2439 		LIST_REMOVE(bo, bo_synclist);
2440 		syncer_worklist_len--;
2441 		mtx_unlock(&sync_mtx);
2442 	}
2443 	bp->b_vp = NULL;
2444 	bp->b_bufobj = NULL;
2445 	BO_UNLOCK(bo);
2446 	vdrop(vp);
2447 }
2448 
2449 /*
2450  * Add an item to the syncer work queue.
2451  */
2452 static void
2453 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2454 {
2455 	int slot;
2456 
2457 	ASSERT_BO_WLOCKED(bo);
2458 
2459 	mtx_lock(&sync_mtx);
2460 	if (bo->bo_flag & BO_ONWORKLST)
2461 		LIST_REMOVE(bo, bo_synclist);
2462 	else {
2463 		bo->bo_flag |= BO_ONWORKLST;
2464 		syncer_worklist_len++;
2465 	}
2466 
2467 	if (delay > syncer_maxdelay - 2)
2468 		delay = syncer_maxdelay - 2;
2469 	slot = (syncer_delayno + delay) & syncer_mask;
2470 
2471 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2472 	mtx_unlock(&sync_mtx);
2473 }
2474 
2475 static int
2476 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2477 {
2478 	int error, len;
2479 
2480 	mtx_lock(&sync_mtx);
2481 	len = syncer_worklist_len - sync_vnode_count;
2482 	mtx_unlock(&sync_mtx);
2483 	error = SYSCTL_OUT(req, &len, sizeof(len));
2484 	return (error);
2485 }
2486 
2487 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2488     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2489     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2490 
2491 static struct proc *updateproc;
2492 static void sched_sync(void);
2493 static struct kproc_desc up_kp = {
2494 	"syncer",
2495 	sched_sync,
2496 	&updateproc
2497 };
2498 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2499 
2500 static int
2501 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2502 {
2503 	struct vnode *vp;
2504 	struct mount *mp;
2505 
2506 	*bo = LIST_FIRST(slp);
2507 	if (*bo == NULL)
2508 		return (0);
2509 	vp = bo2vnode(*bo);
2510 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2511 		return (1);
2512 	/*
2513 	 * We use vhold in case the vnode does not
2514 	 * successfully sync.  vhold prevents the vnode from
2515 	 * going away when we unlock the sync_mtx so that
2516 	 * we can acquire the vnode interlock.
2517 	 */
2518 	vholdl(vp);
2519 	mtx_unlock(&sync_mtx);
2520 	VI_UNLOCK(vp);
2521 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2522 		vdrop(vp);
2523 		mtx_lock(&sync_mtx);
2524 		return (*bo == LIST_FIRST(slp));
2525 	}
2526 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2527 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2528 	VOP_UNLOCK(vp);
2529 	vn_finished_write(mp);
2530 	BO_LOCK(*bo);
2531 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2532 		/*
2533 		 * Put us back on the worklist.  The worklist
2534 		 * routine will remove us from our current
2535 		 * position and then add us back in at a later
2536 		 * position.
2537 		 */
2538 		vn_syncer_add_to_worklist(*bo, syncdelay);
2539 	}
2540 	BO_UNLOCK(*bo);
2541 	vdrop(vp);
2542 	mtx_lock(&sync_mtx);
2543 	return (0);
2544 }
2545 
2546 static int first_printf = 1;
2547 
2548 /*
2549  * System filesystem synchronizer daemon.
2550  */
2551 static void
2552 sched_sync(void)
2553 {
2554 	struct synclist *next, *slp;
2555 	struct bufobj *bo;
2556 	long starttime;
2557 	struct thread *td = curthread;
2558 	int last_work_seen;
2559 	int net_worklist_len;
2560 	int syncer_final_iter;
2561 	int error;
2562 
2563 	last_work_seen = 0;
2564 	syncer_final_iter = 0;
2565 	syncer_state = SYNCER_RUNNING;
2566 	starttime = time_uptime;
2567 	td->td_pflags |= TDP_NORUNNINGBUF;
2568 
2569 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2570 	    SHUTDOWN_PRI_LAST);
2571 
2572 	mtx_lock(&sync_mtx);
2573 	for (;;) {
2574 		if (syncer_state == SYNCER_FINAL_DELAY &&
2575 		    syncer_final_iter == 0) {
2576 			mtx_unlock(&sync_mtx);
2577 			kproc_suspend_check(td->td_proc);
2578 			mtx_lock(&sync_mtx);
2579 		}
2580 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2581 		if (syncer_state != SYNCER_RUNNING &&
2582 		    starttime != time_uptime) {
2583 			if (first_printf) {
2584 				printf("\nSyncing disks, vnodes remaining... ");
2585 				first_printf = 0;
2586 			}
2587 			printf("%d ", net_worklist_len);
2588 		}
2589 		starttime = time_uptime;
2590 
2591 		/*
2592 		 * Push files whose dirty time has expired.  Be careful
2593 		 * of interrupt race on slp queue.
2594 		 *
2595 		 * Skip over empty worklist slots when shutting down.
2596 		 */
2597 		do {
2598 			slp = &syncer_workitem_pending[syncer_delayno];
2599 			syncer_delayno += 1;
2600 			if (syncer_delayno == syncer_maxdelay)
2601 				syncer_delayno = 0;
2602 			next = &syncer_workitem_pending[syncer_delayno];
2603 			/*
2604 			 * If the worklist has wrapped since the
2605 			 * it was emptied of all but syncer vnodes,
2606 			 * switch to the FINAL_DELAY state and run
2607 			 * for one more second.
2608 			 */
2609 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2610 			    net_worklist_len == 0 &&
2611 			    last_work_seen == syncer_delayno) {
2612 				syncer_state = SYNCER_FINAL_DELAY;
2613 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2614 			}
2615 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2616 		    syncer_worklist_len > 0);
2617 
2618 		/*
2619 		 * Keep track of the last time there was anything
2620 		 * on the worklist other than syncer vnodes.
2621 		 * Return to the SHUTTING_DOWN state if any
2622 		 * new work appears.
2623 		 */
2624 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2625 			last_work_seen = syncer_delayno;
2626 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2627 			syncer_state = SYNCER_SHUTTING_DOWN;
2628 		while (!LIST_EMPTY(slp)) {
2629 			error = sync_vnode(slp, &bo, td);
2630 			if (error == 1) {
2631 				LIST_REMOVE(bo, bo_synclist);
2632 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2633 				continue;
2634 			}
2635 
2636 			if (first_printf == 0) {
2637 				/*
2638 				 * Drop the sync mutex, because some watchdog
2639 				 * drivers need to sleep while patting
2640 				 */
2641 				mtx_unlock(&sync_mtx);
2642 				wdog_kern_pat(WD_LASTVAL);
2643 				mtx_lock(&sync_mtx);
2644 			}
2645 		}
2646 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2647 			syncer_final_iter--;
2648 		/*
2649 		 * The variable rushjob allows the kernel to speed up the
2650 		 * processing of the filesystem syncer process. A rushjob
2651 		 * value of N tells the filesystem syncer to process the next
2652 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2653 		 * is used by the soft update code to speed up the filesystem
2654 		 * syncer process when the incore state is getting so far
2655 		 * ahead of the disk that the kernel memory pool is being
2656 		 * threatened with exhaustion.
2657 		 */
2658 		if (rushjob > 0) {
2659 			rushjob -= 1;
2660 			continue;
2661 		}
2662 		/*
2663 		 * Just sleep for a short period of time between
2664 		 * iterations when shutting down to allow some I/O
2665 		 * to happen.
2666 		 *
2667 		 * If it has taken us less than a second to process the
2668 		 * current work, then wait. Otherwise start right over
2669 		 * again. We can still lose time if any single round
2670 		 * takes more than two seconds, but it does not really
2671 		 * matter as we are just trying to generally pace the
2672 		 * filesystem activity.
2673 		 */
2674 		if (syncer_state != SYNCER_RUNNING ||
2675 		    time_uptime == starttime) {
2676 			thread_lock(td);
2677 			sched_prio(td, PPAUSE);
2678 			thread_unlock(td);
2679 		}
2680 		if (syncer_state != SYNCER_RUNNING)
2681 			cv_timedwait(&sync_wakeup, &sync_mtx,
2682 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2683 		else if (time_uptime == starttime)
2684 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2685 	}
2686 }
2687 
2688 /*
2689  * Request the syncer daemon to speed up its work.
2690  * We never push it to speed up more than half of its
2691  * normal turn time, otherwise it could take over the cpu.
2692  */
2693 int
2694 speedup_syncer(void)
2695 {
2696 	int ret = 0;
2697 
2698 	mtx_lock(&sync_mtx);
2699 	if (rushjob < syncdelay / 2) {
2700 		rushjob += 1;
2701 		stat_rush_requests += 1;
2702 		ret = 1;
2703 	}
2704 	mtx_unlock(&sync_mtx);
2705 	cv_broadcast(&sync_wakeup);
2706 	return (ret);
2707 }
2708 
2709 /*
2710  * Tell the syncer to speed up its work and run though its work
2711  * list several times, then tell it to shut down.
2712  */
2713 static void
2714 syncer_shutdown(void *arg, int howto)
2715 {
2716 
2717 	if (howto & RB_NOSYNC)
2718 		return;
2719 	mtx_lock(&sync_mtx);
2720 	syncer_state = SYNCER_SHUTTING_DOWN;
2721 	rushjob = 0;
2722 	mtx_unlock(&sync_mtx);
2723 	cv_broadcast(&sync_wakeup);
2724 	kproc_shutdown(arg, howto);
2725 }
2726 
2727 void
2728 syncer_suspend(void)
2729 {
2730 
2731 	syncer_shutdown(updateproc, 0);
2732 }
2733 
2734 void
2735 syncer_resume(void)
2736 {
2737 
2738 	mtx_lock(&sync_mtx);
2739 	first_printf = 1;
2740 	syncer_state = SYNCER_RUNNING;
2741 	mtx_unlock(&sync_mtx);
2742 	cv_broadcast(&sync_wakeup);
2743 	kproc_resume(updateproc);
2744 }
2745 
2746 /*
2747  * Move the buffer between the clean and dirty lists of its vnode.
2748  */
2749 void
2750 reassignbuf(struct buf *bp)
2751 {
2752 	struct vnode *vp;
2753 	struct bufobj *bo;
2754 	int delay;
2755 #ifdef INVARIANTS
2756 	struct bufv *bv;
2757 #endif
2758 
2759 	vp = bp->b_vp;
2760 	bo = bp->b_bufobj;
2761 
2762 	KASSERT((bp->b_flags & B_PAGING) == 0,
2763 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2764 
2765 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2766 	    bp, bp->b_vp, bp->b_flags);
2767 
2768 	BO_LOCK(bo);
2769 	buf_vlist_remove(bp);
2770 
2771 	/*
2772 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2773 	 * of clean buffers.
2774 	 */
2775 	if (bp->b_flags & B_DELWRI) {
2776 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2777 			switch (vp->v_type) {
2778 			case VDIR:
2779 				delay = dirdelay;
2780 				break;
2781 			case VCHR:
2782 				delay = metadelay;
2783 				break;
2784 			default:
2785 				delay = filedelay;
2786 			}
2787 			vn_syncer_add_to_worklist(bo, delay);
2788 		}
2789 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2790 	} else {
2791 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2792 
2793 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2794 			mtx_lock(&sync_mtx);
2795 			LIST_REMOVE(bo, bo_synclist);
2796 			syncer_worklist_len--;
2797 			mtx_unlock(&sync_mtx);
2798 			bo->bo_flag &= ~BO_ONWORKLST;
2799 		}
2800 	}
2801 #ifdef INVARIANTS
2802 	bv = &bo->bo_clean;
2803 	bp = TAILQ_FIRST(&bv->bv_hd);
2804 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2805 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2806 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2807 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2808 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2809 	bv = &bo->bo_dirty;
2810 	bp = TAILQ_FIRST(&bv->bv_hd);
2811 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2812 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2813 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2814 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2815 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2816 #endif
2817 	BO_UNLOCK(bo);
2818 }
2819 
2820 static void
2821 v_init_counters(struct vnode *vp)
2822 {
2823 
2824 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2825 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2826 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2827 
2828 	refcount_init(&vp->v_holdcnt, 1);
2829 	refcount_init(&vp->v_usecount, 1);
2830 }
2831 
2832 /*
2833  * Grab a particular vnode from the free list, increment its
2834  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2835  * is being destroyed.  Only callers who specify LK_RETRY will
2836  * see doomed vnodes.  If inactive processing was delayed in
2837  * vput try to do it here.
2838  *
2839  * usecount is manipulated using atomics without holding any locks.
2840  *
2841  * holdcnt can be manipulated using atomics without holding any locks,
2842  * except when transitioning 1<->0, in which case the interlock is held.
2843  *
2844  * Consumers which don't guarantee liveness of the vnode can use SMR to
2845  * try to get a reference. Note this operation can fail since the vnode
2846  * may be awaiting getting freed by the time they get to it.
2847  */
2848 enum vgetstate
2849 vget_prep_smr(struct vnode *vp)
2850 {
2851 	enum vgetstate vs;
2852 
2853 	VFS_SMR_ASSERT_ENTERED();
2854 
2855 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2856 		vs = VGET_USECOUNT;
2857 	} else {
2858 		if (vhold_smr(vp))
2859 			vs = VGET_HOLDCNT;
2860 		else
2861 			vs = VGET_NONE;
2862 	}
2863 	return (vs);
2864 }
2865 
2866 enum vgetstate
2867 vget_prep(struct vnode *vp)
2868 {
2869 	enum vgetstate vs;
2870 
2871 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2872 		vs = VGET_USECOUNT;
2873 	} else {
2874 		vhold(vp);
2875 		vs = VGET_HOLDCNT;
2876 	}
2877 	return (vs);
2878 }
2879 
2880 void
2881 vget_abort(struct vnode *vp, enum vgetstate vs)
2882 {
2883 
2884 	switch (vs) {
2885 	case VGET_USECOUNT:
2886 		vrele(vp);
2887 		break;
2888 	case VGET_HOLDCNT:
2889 		vdrop(vp);
2890 		break;
2891 	default:
2892 		__assert_unreachable();
2893 	}
2894 }
2895 
2896 int
2897 vget(struct vnode *vp, int flags)
2898 {
2899 	enum vgetstate vs;
2900 
2901 	vs = vget_prep(vp);
2902 	return (vget_finish(vp, flags, vs));
2903 }
2904 
2905 int
2906 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2907 {
2908 	int error;
2909 
2910 	if ((flags & LK_INTERLOCK) != 0)
2911 		ASSERT_VI_LOCKED(vp, __func__);
2912 	else
2913 		ASSERT_VI_UNLOCKED(vp, __func__);
2914 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
2915 	VNPASS(vp->v_holdcnt > 0, vp);
2916 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
2917 
2918 	error = vn_lock(vp, flags);
2919 	if (__predict_false(error != 0)) {
2920 		vget_abort(vp, vs);
2921 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2922 		    vp);
2923 		return (error);
2924 	}
2925 
2926 	vget_finish_ref(vp, vs);
2927 	return (0);
2928 }
2929 
2930 void
2931 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
2932 {
2933 	int old;
2934 
2935 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
2936 	VNPASS(vp->v_holdcnt > 0, vp);
2937 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
2938 
2939 	if (vs == VGET_USECOUNT)
2940 		return;
2941 
2942 	/*
2943 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
2944 	 * the vnode around. Otherwise someone else lended their hold count and
2945 	 * we have to drop ours.
2946 	 */
2947 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
2948 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
2949 	if (old != 0) {
2950 #ifdef INVARIANTS
2951 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
2952 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
2953 #else
2954 		refcount_release(&vp->v_holdcnt);
2955 #endif
2956 	}
2957 }
2958 
2959 void
2960 vref(struct vnode *vp)
2961 {
2962 	enum vgetstate vs;
2963 
2964 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2965 	vs = vget_prep(vp);
2966 	vget_finish_ref(vp, vs);
2967 }
2968 
2969 void
2970 vrefact(struct vnode *vp)
2971 {
2972 
2973 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2974 #ifdef INVARIANTS
2975 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
2976 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
2977 #else
2978 	refcount_acquire(&vp->v_usecount);
2979 #endif
2980 }
2981 
2982 void
2983 vlazy(struct vnode *vp)
2984 {
2985 	struct mount *mp;
2986 
2987 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
2988 
2989 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
2990 		return;
2991 	/*
2992 	 * We may get here for inactive routines after the vnode got doomed.
2993 	 */
2994 	if (VN_IS_DOOMED(vp))
2995 		return;
2996 	mp = vp->v_mount;
2997 	mtx_lock(&mp->mnt_listmtx);
2998 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
2999 		vp->v_mflag |= VMP_LAZYLIST;
3000 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3001 		mp->mnt_lazyvnodelistsize++;
3002 	}
3003 	mtx_unlock(&mp->mnt_listmtx);
3004 }
3005 
3006 /*
3007  * This routine is only meant to be called from vgonel prior to dooming
3008  * the vnode.
3009  */
3010 static void
3011 vunlazy_gone(struct vnode *vp)
3012 {
3013 	struct mount *mp;
3014 
3015 	ASSERT_VOP_ELOCKED(vp, __func__);
3016 	ASSERT_VI_LOCKED(vp, __func__);
3017 	VNPASS(!VN_IS_DOOMED(vp), vp);
3018 
3019 	if (vp->v_mflag & VMP_LAZYLIST) {
3020 		mp = vp->v_mount;
3021 		mtx_lock(&mp->mnt_listmtx);
3022 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3023 		vp->v_mflag &= ~VMP_LAZYLIST;
3024 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3025 		mp->mnt_lazyvnodelistsize--;
3026 		mtx_unlock(&mp->mnt_listmtx);
3027 	}
3028 }
3029 
3030 static void
3031 vdefer_inactive(struct vnode *vp)
3032 {
3033 
3034 	ASSERT_VI_LOCKED(vp, __func__);
3035 	VNASSERT(vp->v_holdcnt > 0, vp,
3036 	    ("%s: vnode without hold count", __func__));
3037 	if (VN_IS_DOOMED(vp)) {
3038 		vdropl(vp);
3039 		return;
3040 	}
3041 	if (vp->v_iflag & VI_DEFINACT) {
3042 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3043 		vdropl(vp);
3044 		return;
3045 	}
3046 	if (vp->v_usecount > 0) {
3047 		vp->v_iflag &= ~VI_OWEINACT;
3048 		vdropl(vp);
3049 		return;
3050 	}
3051 	vlazy(vp);
3052 	vp->v_iflag |= VI_DEFINACT;
3053 	VI_UNLOCK(vp);
3054 	counter_u64_add(deferred_inact, 1);
3055 }
3056 
3057 static void
3058 vdefer_inactive_unlocked(struct vnode *vp)
3059 {
3060 
3061 	VI_LOCK(vp);
3062 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3063 		vdropl(vp);
3064 		return;
3065 	}
3066 	vdefer_inactive(vp);
3067 }
3068 
3069 enum vput_op { VRELE, VPUT, VUNREF };
3070 
3071 /*
3072  * Handle ->v_usecount transitioning to 0.
3073  *
3074  * By releasing the last usecount we take ownership of the hold count which
3075  * provides liveness of the vnode, meaning we have to vdrop.
3076  *
3077  * For all vnodes we may need to perform inactive processing. It requires an
3078  * exclusive lock on the vnode, while it is legal to call here with only a
3079  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3080  * inactive processing gets deferred to the syncer.
3081  *
3082  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3083  * on the lock being held all the way until VOP_INACTIVE. This in particular
3084  * happens with UFS which adds half-constructed vnodes to the hash, where they
3085  * can be found by other code.
3086  */
3087 static void
3088 vput_final(struct vnode *vp, enum vput_op func)
3089 {
3090 	int error;
3091 	bool want_unlock;
3092 
3093 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3094 	VNPASS(vp->v_holdcnt > 0, vp);
3095 
3096 	VI_LOCK(vp);
3097 
3098 	/*
3099 	 * By the time we got here someone else might have transitioned
3100 	 * the count back to > 0.
3101 	 */
3102 	if (vp->v_usecount > 0)
3103 		goto out;
3104 
3105 	/*
3106 	 * If the vnode is doomed vgone already performed inactive processing
3107 	 * (if needed).
3108 	 */
3109 	if (VN_IS_DOOMED(vp))
3110 		goto out;
3111 
3112 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3113 		goto out;
3114 
3115 	if (vp->v_iflag & VI_DOINGINACT)
3116 		goto out;
3117 
3118 	/*
3119 	 * Locking operations here will drop the interlock and possibly the
3120 	 * vnode lock, opening a window where the vnode can get doomed all the
3121 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3122 	 * perform inactive.
3123 	 */
3124 	vp->v_iflag |= VI_OWEINACT;
3125 	want_unlock = false;
3126 	error = 0;
3127 	switch (func) {
3128 	case VRELE:
3129 		switch (VOP_ISLOCKED(vp)) {
3130 		case LK_EXCLUSIVE:
3131 			break;
3132 		case LK_EXCLOTHER:
3133 		case 0:
3134 			want_unlock = true;
3135 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3136 			VI_LOCK(vp);
3137 			break;
3138 		default:
3139 			/*
3140 			 * The lock has at least one sharer, but we have no way
3141 			 * to conclude whether this is us. Play it safe and
3142 			 * defer processing.
3143 			 */
3144 			error = EAGAIN;
3145 			break;
3146 		}
3147 		break;
3148 	case VPUT:
3149 		want_unlock = true;
3150 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3151 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3152 			    LK_NOWAIT);
3153 			VI_LOCK(vp);
3154 		}
3155 		break;
3156 	case VUNREF:
3157 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3158 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3159 			VI_LOCK(vp);
3160 		}
3161 		break;
3162 	}
3163 	if (error == 0) {
3164 		vinactive(vp);
3165 		if (want_unlock)
3166 			VOP_UNLOCK(vp);
3167 		vdropl(vp);
3168 	} else {
3169 		vdefer_inactive(vp);
3170 	}
3171 	return;
3172 out:
3173 	if (func == VPUT)
3174 		VOP_UNLOCK(vp);
3175 	vdropl(vp);
3176 }
3177 
3178 /*
3179  * Decrement ->v_usecount for a vnode.
3180  *
3181  * Releasing the last use count requires additional processing, see vput_final
3182  * above for details.
3183  *
3184  * Comment above each variant denotes lock state on entry and exit.
3185  */
3186 
3187 /*
3188  * in: any
3189  * out: same as passed in
3190  */
3191 void
3192 vrele(struct vnode *vp)
3193 {
3194 
3195 	ASSERT_VI_UNLOCKED(vp, __func__);
3196 	if (!refcount_release(&vp->v_usecount))
3197 		return;
3198 	vput_final(vp, VRELE);
3199 }
3200 
3201 /*
3202  * in: locked
3203  * out: unlocked
3204  */
3205 void
3206 vput(struct vnode *vp)
3207 {
3208 
3209 	ASSERT_VOP_LOCKED(vp, __func__);
3210 	ASSERT_VI_UNLOCKED(vp, __func__);
3211 	if (!refcount_release(&vp->v_usecount)) {
3212 		VOP_UNLOCK(vp);
3213 		return;
3214 	}
3215 	vput_final(vp, VPUT);
3216 }
3217 
3218 /*
3219  * in: locked
3220  * out: locked
3221  */
3222 void
3223 vunref(struct vnode *vp)
3224 {
3225 
3226 	ASSERT_VOP_LOCKED(vp, __func__);
3227 	ASSERT_VI_UNLOCKED(vp, __func__);
3228 	if (!refcount_release(&vp->v_usecount))
3229 		return;
3230 	vput_final(vp, VUNREF);
3231 }
3232 
3233 void
3234 vhold(struct vnode *vp)
3235 {
3236 	int old;
3237 
3238 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3239 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3240 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3241 	    ("%s: wrong hold count %d", __func__, old));
3242 	if (old == 0)
3243 		vn_freevnodes_dec();
3244 }
3245 
3246 void
3247 vholdnz(struct vnode *vp)
3248 {
3249 
3250 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3251 #ifdef INVARIANTS
3252 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3253 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3254 	    ("%s: wrong hold count %d", __func__, old));
3255 #else
3256 	atomic_add_int(&vp->v_holdcnt, 1);
3257 #endif
3258 }
3259 
3260 /*
3261  * Grab a hold count unless the vnode is freed.
3262  *
3263  * Only use this routine if vfs smr is the only protection you have against
3264  * freeing the vnode.
3265  *
3266  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3267  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3268  * the thread which managed to set the flag.
3269  *
3270  * It may be tempting to replace the loop with:
3271  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3272  * if (count & VHOLD_NO_SMR) {
3273  *     backpedal and error out;
3274  * }
3275  *
3276  * However, while this is more performant, it hinders debugging by eliminating
3277  * the previously mentioned invariant.
3278  */
3279 bool
3280 vhold_smr(struct vnode *vp)
3281 {
3282 	int count;
3283 
3284 	VFS_SMR_ASSERT_ENTERED();
3285 
3286 	count = atomic_load_int(&vp->v_holdcnt);
3287 	for (;;) {
3288 		if (count & VHOLD_NO_SMR) {
3289 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3290 			    ("non-zero hold count with flags %d\n", count));
3291 			return (false);
3292 		}
3293 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3294 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3295 			if (count == 0)
3296 				vn_freevnodes_dec();
3297 			return (true);
3298 		}
3299 	}
3300 }
3301 
3302 /*
3303  * Hold a free vnode for recycling.
3304  *
3305  * Note: vnode_init references this comment.
3306  *
3307  * Attempts to recycle only need the global vnode list lock and have no use for
3308  * SMR.
3309  *
3310  * However, vnodes get inserted into the global list before they get fully
3311  * initialized and stay there until UMA decides to free the memory. This in
3312  * particular means the target can be found before it becomes usable and after
3313  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3314  * VHOLD_NO_SMR.
3315  *
3316  * Note: the vnode may gain more references after we transition the count 0->1.
3317  */
3318 static bool
3319 vhold_recycle_free(struct vnode *vp)
3320 {
3321 	int count;
3322 
3323 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3324 
3325 	count = atomic_load_int(&vp->v_holdcnt);
3326 	for (;;) {
3327 		if (count & VHOLD_NO_SMR) {
3328 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3329 			    ("non-zero hold count with flags %d\n", count));
3330 			return (false);
3331 		}
3332 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3333 		if (count > 0) {
3334 			return (false);
3335 		}
3336 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3337 			vn_freevnodes_dec();
3338 			return (true);
3339 		}
3340 	}
3341 }
3342 
3343 static void __noinline
3344 vdbatch_process(struct vdbatch *vd)
3345 {
3346 	struct vnode *vp;
3347 	int i;
3348 
3349 	mtx_assert(&vd->lock, MA_OWNED);
3350 	MPASS(curthread->td_pinned > 0);
3351 	MPASS(vd->index == VDBATCH_SIZE);
3352 
3353 	mtx_lock(&vnode_list_mtx);
3354 	critical_enter();
3355 	freevnodes += vd->freevnodes;
3356 	for (i = 0; i < VDBATCH_SIZE; i++) {
3357 		vp = vd->tab[i];
3358 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3359 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3360 		MPASS(vp->v_dbatchcpu != NOCPU);
3361 		vp->v_dbatchcpu = NOCPU;
3362 	}
3363 	mtx_unlock(&vnode_list_mtx);
3364 	vd->freevnodes = 0;
3365 	bzero(vd->tab, sizeof(vd->tab));
3366 	vd->index = 0;
3367 	critical_exit();
3368 }
3369 
3370 static void
3371 vdbatch_enqueue(struct vnode *vp)
3372 {
3373 	struct vdbatch *vd;
3374 
3375 	ASSERT_VI_LOCKED(vp, __func__);
3376 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3377 	    ("%s: deferring requeue of a doomed vnode", __func__));
3378 
3379 	if (vp->v_dbatchcpu != NOCPU) {
3380 		VI_UNLOCK(vp);
3381 		return;
3382 	}
3383 
3384 	sched_pin();
3385 	vd = DPCPU_PTR(vd);
3386 	mtx_lock(&vd->lock);
3387 	MPASS(vd->index < VDBATCH_SIZE);
3388 	MPASS(vd->tab[vd->index] == NULL);
3389 	/*
3390 	 * A hack: we depend on being pinned so that we know what to put in
3391 	 * ->v_dbatchcpu.
3392 	 */
3393 	vp->v_dbatchcpu = curcpu;
3394 	vd->tab[vd->index] = vp;
3395 	vd->index++;
3396 	VI_UNLOCK(vp);
3397 	if (vd->index == VDBATCH_SIZE)
3398 		vdbatch_process(vd);
3399 	mtx_unlock(&vd->lock);
3400 	sched_unpin();
3401 }
3402 
3403 /*
3404  * This routine must only be called for vnodes which are about to be
3405  * deallocated. Supporting dequeue for arbitrary vndoes would require
3406  * validating that the locked batch matches.
3407  */
3408 static void
3409 vdbatch_dequeue(struct vnode *vp)
3410 {
3411 	struct vdbatch *vd;
3412 	int i;
3413 	short cpu;
3414 
3415 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3416 	    ("%s: called for a used vnode\n", __func__));
3417 
3418 	cpu = vp->v_dbatchcpu;
3419 	if (cpu == NOCPU)
3420 		return;
3421 
3422 	vd = DPCPU_ID_PTR(cpu, vd);
3423 	mtx_lock(&vd->lock);
3424 	for (i = 0; i < vd->index; i++) {
3425 		if (vd->tab[i] != vp)
3426 			continue;
3427 		vp->v_dbatchcpu = NOCPU;
3428 		vd->index--;
3429 		vd->tab[i] = vd->tab[vd->index];
3430 		vd->tab[vd->index] = NULL;
3431 		break;
3432 	}
3433 	mtx_unlock(&vd->lock);
3434 	/*
3435 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3436 	 */
3437 	MPASS(vp->v_dbatchcpu == NOCPU);
3438 }
3439 
3440 /*
3441  * Drop the hold count of the vnode.  If this is the last reference to
3442  * the vnode we place it on the free list unless it has been vgone'd
3443  * (marked VIRF_DOOMED) in which case we will free it.
3444  *
3445  * Because the vnode vm object keeps a hold reference on the vnode if
3446  * there is at least one resident non-cached page, the vnode cannot
3447  * leave the active list without the page cleanup done.
3448  */
3449 static void
3450 vdrop_deactivate(struct vnode *vp)
3451 {
3452 	struct mount *mp;
3453 
3454 	ASSERT_VI_LOCKED(vp, __func__);
3455 	/*
3456 	 * Mark a vnode as free: remove it from its active list
3457 	 * and put it up for recycling on the freelist.
3458 	 */
3459 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3460 	    ("vdrop: returning doomed vnode"));
3461 	VNASSERT(vp->v_op != NULL, vp,
3462 	    ("vdrop: vnode already reclaimed."));
3463 	VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
3464 	    ("vnode with VI_OWEINACT set"));
3465 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp,
3466 	    ("vnode with VI_DEFINACT set"));
3467 	if (vp->v_mflag & VMP_LAZYLIST) {
3468 		mp = vp->v_mount;
3469 		mtx_lock(&mp->mnt_listmtx);
3470 		VNASSERT(vp->v_mflag & VMP_LAZYLIST, vp, ("lost VMP_LAZYLIST"));
3471 		/*
3472 		 * Don't remove the vnode from the lazy list if another thread
3473 		 * has increased the hold count. It may have re-enqueued the
3474 		 * vnode to the lazy list and is now responsible for its
3475 		 * removal.
3476 		 */
3477 		if (vp->v_holdcnt == 0) {
3478 			vp->v_mflag &= ~VMP_LAZYLIST;
3479 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3480 			mp->mnt_lazyvnodelistsize--;
3481 		}
3482 		mtx_unlock(&mp->mnt_listmtx);
3483 	}
3484 	vdbatch_enqueue(vp);
3485 }
3486 
3487 static void __noinline
3488 vdropl_final(struct vnode *vp)
3489 {
3490 
3491 	ASSERT_VI_LOCKED(vp, __func__);
3492 	VNPASS(VN_IS_DOOMED(vp), vp);
3493 	/*
3494 	 * Set the VHOLD_NO_SMR flag.
3495 	 *
3496 	 * We may be racing against vhold_smr. If they win we can just pretend
3497 	 * we never got this far, they will vdrop later.
3498 	 */
3499 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3500 		vn_freevnodes_inc();
3501 		VI_UNLOCK(vp);
3502 		/*
3503 		 * We lost the aforementioned race. Any subsequent access is
3504 		 * invalid as they might have managed to vdropl on their own.
3505 		 */
3506 		return;
3507 	}
3508 	/*
3509 	 * Don't bump freevnodes as this one is going away.
3510 	 */
3511 	freevnode(vp);
3512 }
3513 
3514 void
3515 vdrop(struct vnode *vp)
3516 {
3517 
3518 	ASSERT_VI_UNLOCKED(vp, __func__);
3519 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3520 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3521 		return;
3522 	VI_LOCK(vp);
3523 	vdropl(vp);
3524 }
3525 
3526 void
3527 vdropl(struct vnode *vp)
3528 {
3529 
3530 	ASSERT_VI_LOCKED(vp, __func__);
3531 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3532 	if (!refcount_release(&vp->v_holdcnt)) {
3533 		VI_UNLOCK(vp);
3534 		return;
3535 	}
3536 	if (!VN_IS_DOOMED(vp)) {
3537 		vn_freevnodes_inc();
3538 		vdrop_deactivate(vp);
3539 		/*
3540 		 * Also unlocks the interlock. We can't assert on it as we
3541 		 * released our hold and by now the vnode might have been
3542 		 * freed.
3543 		 */
3544 		return;
3545 	}
3546 	vdropl_final(vp);
3547 }
3548 
3549 /*
3550  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3551  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3552  */
3553 static void
3554 vinactivef(struct vnode *vp)
3555 {
3556 	struct vm_object *obj;
3557 
3558 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3559 	ASSERT_VI_LOCKED(vp, "vinactive");
3560 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3561 	    ("vinactive: recursed on VI_DOINGINACT"));
3562 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3563 	vp->v_iflag |= VI_DOINGINACT;
3564 	vp->v_iflag &= ~VI_OWEINACT;
3565 	VI_UNLOCK(vp);
3566 	/*
3567 	 * Before moving off the active list, we must be sure that any
3568 	 * modified pages are converted into the vnode's dirty
3569 	 * buffers, since these will no longer be checked once the
3570 	 * vnode is on the inactive list.
3571 	 *
3572 	 * The write-out of the dirty pages is asynchronous.  At the
3573 	 * point that VOP_INACTIVE() is called, there could still be
3574 	 * pending I/O and dirty pages in the object.
3575 	 */
3576 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3577 	    vm_object_mightbedirty(obj)) {
3578 		VM_OBJECT_WLOCK(obj);
3579 		vm_object_page_clean(obj, 0, 0, 0);
3580 		VM_OBJECT_WUNLOCK(obj);
3581 	}
3582 	VOP_INACTIVE(vp);
3583 	VI_LOCK(vp);
3584 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3585 	    ("vinactive: lost VI_DOINGINACT"));
3586 	vp->v_iflag &= ~VI_DOINGINACT;
3587 }
3588 
3589 void
3590 vinactive(struct vnode *vp)
3591 {
3592 
3593 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3594 	ASSERT_VI_LOCKED(vp, "vinactive");
3595 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3596 
3597 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3598 		return;
3599 	if (vp->v_iflag & VI_DOINGINACT)
3600 		return;
3601 	if (vp->v_usecount > 0) {
3602 		vp->v_iflag &= ~VI_OWEINACT;
3603 		return;
3604 	}
3605 	vinactivef(vp);
3606 }
3607 
3608 /*
3609  * Remove any vnodes in the vnode table belonging to mount point mp.
3610  *
3611  * If FORCECLOSE is not specified, there should not be any active ones,
3612  * return error if any are found (nb: this is a user error, not a
3613  * system error). If FORCECLOSE is specified, detach any active vnodes
3614  * that are found.
3615  *
3616  * If WRITECLOSE is set, only flush out regular file vnodes open for
3617  * writing.
3618  *
3619  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3620  *
3621  * `rootrefs' specifies the base reference count for the root vnode
3622  * of this filesystem. The root vnode is considered busy if its
3623  * v_usecount exceeds this value. On a successful return, vflush(, td)
3624  * will call vrele() on the root vnode exactly rootrefs times.
3625  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3626  * be zero.
3627  */
3628 #ifdef DIAGNOSTIC
3629 static int busyprt = 0;		/* print out busy vnodes */
3630 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3631 #endif
3632 
3633 int
3634 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3635 {
3636 	struct vnode *vp, *mvp, *rootvp = NULL;
3637 	struct vattr vattr;
3638 	int busy = 0, error;
3639 
3640 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3641 	    rootrefs, flags);
3642 	if (rootrefs > 0) {
3643 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3644 		    ("vflush: bad args"));
3645 		/*
3646 		 * Get the filesystem root vnode. We can vput() it
3647 		 * immediately, since with rootrefs > 0, it won't go away.
3648 		 */
3649 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3650 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3651 			    __func__, error);
3652 			return (error);
3653 		}
3654 		vput(rootvp);
3655 	}
3656 loop:
3657 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3658 		vholdl(vp);
3659 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3660 		if (error) {
3661 			vdrop(vp);
3662 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3663 			goto loop;
3664 		}
3665 		/*
3666 		 * Skip over a vnodes marked VV_SYSTEM.
3667 		 */
3668 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3669 			VOP_UNLOCK(vp);
3670 			vdrop(vp);
3671 			continue;
3672 		}
3673 		/*
3674 		 * If WRITECLOSE is set, flush out unlinked but still open
3675 		 * files (even if open only for reading) and regular file
3676 		 * vnodes open for writing.
3677 		 */
3678 		if (flags & WRITECLOSE) {
3679 			if (vp->v_object != NULL) {
3680 				VM_OBJECT_WLOCK(vp->v_object);
3681 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3682 				VM_OBJECT_WUNLOCK(vp->v_object);
3683 			}
3684 			do {
3685 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3686 			} while (error == ERELOOKUP);
3687 			if (error != 0) {
3688 				VOP_UNLOCK(vp);
3689 				vdrop(vp);
3690 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3691 				return (error);
3692 			}
3693 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3694 			VI_LOCK(vp);
3695 
3696 			if ((vp->v_type == VNON ||
3697 			    (error == 0 && vattr.va_nlink > 0)) &&
3698 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3699 				VOP_UNLOCK(vp);
3700 				vdropl(vp);
3701 				continue;
3702 			}
3703 		} else
3704 			VI_LOCK(vp);
3705 		/*
3706 		 * With v_usecount == 0, all we need to do is clear out the
3707 		 * vnode data structures and we are done.
3708 		 *
3709 		 * If FORCECLOSE is set, forcibly close the vnode.
3710 		 */
3711 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3712 			vgonel(vp);
3713 		} else {
3714 			busy++;
3715 #ifdef DIAGNOSTIC
3716 			if (busyprt)
3717 				vn_printf(vp, "vflush: busy vnode ");
3718 #endif
3719 		}
3720 		VOP_UNLOCK(vp);
3721 		vdropl(vp);
3722 	}
3723 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3724 		/*
3725 		 * If just the root vnode is busy, and if its refcount
3726 		 * is equal to `rootrefs', then go ahead and kill it.
3727 		 */
3728 		VI_LOCK(rootvp);
3729 		KASSERT(busy > 0, ("vflush: not busy"));
3730 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3731 		    ("vflush: usecount %d < rootrefs %d",
3732 		     rootvp->v_usecount, rootrefs));
3733 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3734 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3735 			vgone(rootvp);
3736 			VOP_UNLOCK(rootvp);
3737 			busy = 0;
3738 		} else
3739 			VI_UNLOCK(rootvp);
3740 	}
3741 	if (busy) {
3742 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3743 		    busy);
3744 		return (EBUSY);
3745 	}
3746 	for (; rootrefs > 0; rootrefs--)
3747 		vrele(rootvp);
3748 	return (0);
3749 }
3750 
3751 /*
3752  * Recycle an unused vnode to the front of the free list.
3753  */
3754 int
3755 vrecycle(struct vnode *vp)
3756 {
3757 	int recycled;
3758 
3759 	VI_LOCK(vp);
3760 	recycled = vrecyclel(vp);
3761 	VI_UNLOCK(vp);
3762 	return (recycled);
3763 }
3764 
3765 /*
3766  * vrecycle, with the vp interlock held.
3767  */
3768 int
3769 vrecyclel(struct vnode *vp)
3770 {
3771 	int recycled;
3772 
3773 	ASSERT_VOP_ELOCKED(vp, __func__);
3774 	ASSERT_VI_LOCKED(vp, __func__);
3775 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3776 	recycled = 0;
3777 	if (vp->v_usecount == 0) {
3778 		recycled = 1;
3779 		vgonel(vp);
3780 	}
3781 	return (recycled);
3782 }
3783 
3784 /*
3785  * Eliminate all activity associated with a vnode
3786  * in preparation for reuse.
3787  */
3788 void
3789 vgone(struct vnode *vp)
3790 {
3791 	VI_LOCK(vp);
3792 	vgonel(vp);
3793 	VI_UNLOCK(vp);
3794 }
3795 
3796 static void
3797 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3798     struct vnode *lowervp __unused)
3799 {
3800 }
3801 
3802 /*
3803  * Notify upper mounts about reclaimed or unlinked vnode.
3804  */
3805 void
3806 vfs_notify_upper(struct vnode *vp, int event)
3807 {
3808 	static struct vfsops vgonel_vfsops = {
3809 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3810 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3811 	};
3812 	struct mount *mp, *ump, *mmp;
3813 
3814 	mp = vp->v_mount;
3815 	if (mp == NULL)
3816 		return;
3817 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3818 		return;
3819 
3820 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3821 	mmp->mnt_op = &vgonel_vfsops;
3822 	mmp->mnt_kern_flag |= MNTK_MARKER;
3823 	MNT_ILOCK(mp);
3824 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3825 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3826 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3827 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3828 			continue;
3829 		}
3830 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3831 		MNT_IUNLOCK(mp);
3832 		switch (event) {
3833 		case VFS_NOTIFY_UPPER_RECLAIM:
3834 			VFS_RECLAIM_LOWERVP(ump, vp);
3835 			break;
3836 		case VFS_NOTIFY_UPPER_UNLINK:
3837 			VFS_UNLINK_LOWERVP(ump, vp);
3838 			break;
3839 		default:
3840 			KASSERT(0, ("invalid event %d", event));
3841 			break;
3842 		}
3843 		MNT_ILOCK(mp);
3844 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3845 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3846 	}
3847 	free(mmp, M_TEMP);
3848 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3849 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3850 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3851 		wakeup(&mp->mnt_uppers);
3852 	}
3853 	MNT_IUNLOCK(mp);
3854 }
3855 
3856 /*
3857  * vgone, with the vp interlock held.
3858  */
3859 static void
3860 vgonel(struct vnode *vp)
3861 {
3862 	struct thread *td;
3863 	struct mount *mp;
3864 	vm_object_t object;
3865 	bool active, doinginact, oweinact;
3866 
3867 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3868 	ASSERT_VI_LOCKED(vp, "vgonel");
3869 	VNASSERT(vp->v_holdcnt, vp,
3870 	    ("vgonel: vp %p has no reference.", vp));
3871 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3872 	td = curthread;
3873 
3874 	/*
3875 	 * Don't vgonel if we're already doomed.
3876 	 */
3877 	if (vp->v_irflag & VIRF_DOOMED)
3878 		return;
3879 	/*
3880 	 * Paired with freevnode.
3881 	 */
3882 	vn_seqc_write_begin_locked(vp);
3883 	vunlazy_gone(vp);
3884 	vp->v_irflag |= VIRF_DOOMED;
3885 
3886 	/*
3887 	 * Check to see if the vnode is in use.  If so, we have to
3888 	 * call VOP_CLOSE() and VOP_INACTIVE().
3889 	 *
3890 	 * It could be that VOP_INACTIVE() requested reclamation, in
3891 	 * which case we should avoid recursion, so check
3892 	 * VI_DOINGINACT.  This is not precise but good enough.
3893 	 */
3894 	active = vp->v_usecount > 0;
3895 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3896 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
3897 
3898 	/*
3899 	 * If we need to do inactive VI_OWEINACT will be set.
3900 	 */
3901 	if (vp->v_iflag & VI_DEFINACT) {
3902 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3903 		vp->v_iflag &= ~VI_DEFINACT;
3904 		vdropl(vp);
3905 	} else {
3906 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
3907 		VI_UNLOCK(vp);
3908 	}
3909 	cache_purge_vgone(vp);
3910 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3911 
3912 	/*
3913 	 * If purging an active vnode, it must be closed and
3914 	 * deactivated before being reclaimed.
3915 	 */
3916 	if (active)
3917 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3918 	if ((oweinact || active) && !doinginact) {
3919 		VI_LOCK(vp);
3920 		vinactivef(vp);
3921 		VI_UNLOCK(vp);
3922 	}
3923 	if (vp->v_type == VSOCK)
3924 		vfs_unp_reclaim(vp);
3925 
3926 	/*
3927 	 * Clean out any buffers associated with the vnode.
3928 	 * If the flush fails, just toss the buffers.
3929 	 */
3930 	mp = NULL;
3931 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3932 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3933 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3934 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3935 			;
3936 	}
3937 
3938 	BO_LOCK(&vp->v_bufobj);
3939 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3940 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3941 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3942 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3943 	    ("vp %p bufobj not invalidated", vp));
3944 
3945 	/*
3946 	 * For VMIO bufobj, BO_DEAD is set later, or in
3947 	 * vm_object_terminate() after the object's page queue is
3948 	 * flushed.
3949 	 */
3950 	object = vp->v_bufobj.bo_object;
3951 	if (object == NULL)
3952 		vp->v_bufobj.bo_flag |= BO_DEAD;
3953 	BO_UNLOCK(&vp->v_bufobj);
3954 
3955 	/*
3956 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
3957 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
3958 	 * should not touch the object borrowed from the lower vnode
3959 	 * (the handle check).
3960 	 */
3961 	if (object != NULL && object->type == OBJT_VNODE &&
3962 	    object->handle == vp)
3963 		vnode_destroy_vobject(vp);
3964 
3965 	/*
3966 	 * Reclaim the vnode.
3967 	 */
3968 	if (VOP_RECLAIM(vp))
3969 		panic("vgone: cannot reclaim");
3970 	if (mp != NULL)
3971 		vn_finished_secondary_write(mp);
3972 	VNASSERT(vp->v_object == NULL, vp,
3973 	    ("vop_reclaim left v_object vp=%p", vp));
3974 	/*
3975 	 * Clear the advisory locks and wake up waiting threads.
3976 	 */
3977 	(void)VOP_ADVLOCKPURGE(vp);
3978 	vp->v_lockf = NULL;
3979 	/*
3980 	 * Delete from old mount point vnode list.
3981 	 */
3982 	delmntque(vp);
3983 	/*
3984 	 * Done with purge, reset to the standard lock and invalidate
3985 	 * the vnode.
3986 	 */
3987 	VI_LOCK(vp);
3988 	vp->v_vnlock = &vp->v_lock;
3989 	vp->v_op = &dead_vnodeops;
3990 	vp->v_type = VBAD;
3991 }
3992 
3993 /*
3994  * Print out a description of a vnode.
3995  */
3996 static const char * const typename[] =
3997 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3998  "VMARKER"};
3999 
4000 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4001     "new hold count flag not added to vn_printf");
4002 
4003 void
4004 vn_printf(struct vnode *vp, const char *fmt, ...)
4005 {
4006 	va_list ap;
4007 	char buf[256], buf2[16];
4008 	u_long flags;
4009 	u_int holdcnt;
4010 
4011 	va_start(ap, fmt);
4012 	vprintf(fmt, ap);
4013 	va_end(ap);
4014 	printf("%p: ", (void *)vp);
4015 	printf("type %s\n", typename[vp->v_type]);
4016 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4017 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4018 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4019 	    vp->v_seqc_users);
4020 	switch (vp->v_type) {
4021 	case VDIR:
4022 		printf(" mountedhere %p\n", vp->v_mountedhere);
4023 		break;
4024 	case VCHR:
4025 		printf(" rdev %p\n", vp->v_rdev);
4026 		break;
4027 	case VSOCK:
4028 		printf(" socket %p\n", vp->v_unpcb);
4029 		break;
4030 	case VFIFO:
4031 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4032 		break;
4033 	default:
4034 		printf("\n");
4035 		break;
4036 	}
4037 	buf[0] = '\0';
4038 	buf[1] = '\0';
4039 	if (holdcnt & VHOLD_NO_SMR)
4040 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4041 	printf("    hold count flags (%s)\n", buf + 1);
4042 
4043 	buf[0] = '\0';
4044 	buf[1] = '\0';
4045 	if (vp->v_irflag & VIRF_DOOMED)
4046 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4047 	if (vp->v_irflag & VIRF_PGREAD)
4048 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4049 	flags = vp->v_irflag & ~(VIRF_DOOMED | VIRF_PGREAD);
4050 	if (flags != 0) {
4051 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4052 		strlcat(buf, buf2, sizeof(buf));
4053 	}
4054 	if (vp->v_vflag & VV_ROOT)
4055 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4056 	if (vp->v_vflag & VV_ISTTY)
4057 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4058 	if (vp->v_vflag & VV_NOSYNC)
4059 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4060 	if (vp->v_vflag & VV_ETERNALDEV)
4061 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4062 	if (vp->v_vflag & VV_CACHEDLABEL)
4063 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4064 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4065 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4066 	if (vp->v_vflag & VV_COPYONWRITE)
4067 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4068 	if (vp->v_vflag & VV_SYSTEM)
4069 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4070 	if (vp->v_vflag & VV_PROCDEP)
4071 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4072 	if (vp->v_vflag & VV_NOKNOTE)
4073 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
4074 	if (vp->v_vflag & VV_DELETED)
4075 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4076 	if (vp->v_vflag & VV_MD)
4077 		strlcat(buf, "|VV_MD", sizeof(buf));
4078 	if (vp->v_vflag & VV_FORCEINSMQ)
4079 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4080 	if (vp->v_vflag & VV_READLINK)
4081 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4082 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4083 	    VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
4084 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
4085 	if (flags != 0) {
4086 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4087 		strlcat(buf, buf2, sizeof(buf));
4088 	}
4089 	if (vp->v_iflag & VI_TEXT_REF)
4090 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
4091 	if (vp->v_iflag & VI_MOUNT)
4092 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4093 	if (vp->v_iflag & VI_DOINGINACT)
4094 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4095 	if (vp->v_iflag & VI_OWEINACT)
4096 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4097 	if (vp->v_iflag & VI_DEFINACT)
4098 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4099 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT |
4100 	    VI_OWEINACT | VI_DEFINACT);
4101 	if (flags != 0) {
4102 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4103 		strlcat(buf, buf2, sizeof(buf));
4104 	}
4105 	if (vp->v_mflag & VMP_LAZYLIST)
4106 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4107 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4108 	if (flags != 0) {
4109 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4110 		strlcat(buf, buf2, sizeof(buf));
4111 	}
4112 	printf("    flags (%s)\n", buf + 1);
4113 	if (mtx_owned(VI_MTX(vp)))
4114 		printf(" VI_LOCKed");
4115 	if (vp->v_object != NULL)
4116 		printf("    v_object %p ref %d pages %d "
4117 		    "cleanbuf %d dirtybuf %d\n",
4118 		    vp->v_object, vp->v_object->ref_count,
4119 		    vp->v_object->resident_page_count,
4120 		    vp->v_bufobj.bo_clean.bv_cnt,
4121 		    vp->v_bufobj.bo_dirty.bv_cnt);
4122 	printf("    ");
4123 	lockmgr_printinfo(vp->v_vnlock);
4124 	if (vp->v_data != NULL)
4125 		VOP_PRINT(vp);
4126 }
4127 
4128 #ifdef DDB
4129 /*
4130  * List all of the locked vnodes in the system.
4131  * Called when debugging the kernel.
4132  */
4133 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
4134 {
4135 	struct mount *mp;
4136 	struct vnode *vp;
4137 
4138 	/*
4139 	 * Note: because this is DDB, we can't obey the locking semantics
4140 	 * for these structures, which means we could catch an inconsistent
4141 	 * state and dereference a nasty pointer.  Not much to be done
4142 	 * about that.
4143 	 */
4144 	db_printf("Locked vnodes\n");
4145 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4146 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4147 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4148 				vn_printf(vp, "vnode ");
4149 		}
4150 	}
4151 }
4152 
4153 /*
4154  * Show details about the given vnode.
4155  */
4156 DB_SHOW_COMMAND(vnode, db_show_vnode)
4157 {
4158 	struct vnode *vp;
4159 
4160 	if (!have_addr)
4161 		return;
4162 	vp = (struct vnode *)addr;
4163 	vn_printf(vp, "vnode ");
4164 }
4165 
4166 /*
4167  * Show details about the given mount point.
4168  */
4169 DB_SHOW_COMMAND(mount, db_show_mount)
4170 {
4171 	struct mount *mp;
4172 	struct vfsopt *opt;
4173 	struct statfs *sp;
4174 	struct vnode *vp;
4175 	char buf[512];
4176 	uint64_t mflags;
4177 	u_int flags;
4178 
4179 	if (!have_addr) {
4180 		/* No address given, print short info about all mount points. */
4181 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4182 			db_printf("%p %s on %s (%s)\n", mp,
4183 			    mp->mnt_stat.f_mntfromname,
4184 			    mp->mnt_stat.f_mntonname,
4185 			    mp->mnt_stat.f_fstypename);
4186 			if (db_pager_quit)
4187 				break;
4188 		}
4189 		db_printf("\nMore info: show mount <addr>\n");
4190 		return;
4191 	}
4192 
4193 	mp = (struct mount *)addr;
4194 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4195 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4196 
4197 	buf[0] = '\0';
4198 	mflags = mp->mnt_flag;
4199 #define	MNT_FLAG(flag)	do {						\
4200 	if (mflags & (flag)) {						\
4201 		if (buf[0] != '\0')					\
4202 			strlcat(buf, ", ", sizeof(buf));		\
4203 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4204 		mflags &= ~(flag);					\
4205 	}								\
4206 } while (0)
4207 	MNT_FLAG(MNT_RDONLY);
4208 	MNT_FLAG(MNT_SYNCHRONOUS);
4209 	MNT_FLAG(MNT_NOEXEC);
4210 	MNT_FLAG(MNT_NOSUID);
4211 	MNT_FLAG(MNT_NFS4ACLS);
4212 	MNT_FLAG(MNT_UNION);
4213 	MNT_FLAG(MNT_ASYNC);
4214 	MNT_FLAG(MNT_SUIDDIR);
4215 	MNT_FLAG(MNT_SOFTDEP);
4216 	MNT_FLAG(MNT_NOSYMFOLLOW);
4217 	MNT_FLAG(MNT_GJOURNAL);
4218 	MNT_FLAG(MNT_MULTILABEL);
4219 	MNT_FLAG(MNT_ACLS);
4220 	MNT_FLAG(MNT_NOATIME);
4221 	MNT_FLAG(MNT_NOCLUSTERR);
4222 	MNT_FLAG(MNT_NOCLUSTERW);
4223 	MNT_FLAG(MNT_SUJ);
4224 	MNT_FLAG(MNT_EXRDONLY);
4225 	MNT_FLAG(MNT_EXPORTED);
4226 	MNT_FLAG(MNT_DEFEXPORTED);
4227 	MNT_FLAG(MNT_EXPORTANON);
4228 	MNT_FLAG(MNT_EXKERB);
4229 	MNT_FLAG(MNT_EXPUBLIC);
4230 	MNT_FLAG(MNT_LOCAL);
4231 	MNT_FLAG(MNT_QUOTA);
4232 	MNT_FLAG(MNT_ROOTFS);
4233 	MNT_FLAG(MNT_USER);
4234 	MNT_FLAG(MNT_IGNORE);
4235 	MNT_FLAG(MNT_UPDATE);
4236 	MNT_FLAG(MNT_DELEXPORT);
4237 	MNT_FLAG(MNT_RELOAD);
4238 	MNT_FLAG(MNT_FORCE);
4239 	MNT_FLAG(MNT_SNAPSHOT);
4240 	MNT_FLAG(MNT_BYFSID);
4241 #undef MNT_FLAG
4242 	if (mflags != 0) {
4243 		if (buf[0] != '\0')
4244 			strlcat(buf, ", ", sizeof(buf));
4245 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4246 		    "0x%016jx", mflags);
4247 	}
4248 	db_printf("    mnt_flag = %s\n", buf);
4249 
4250 	buf[0] = '\0';
4251 	flags = mp->mnt_kern_flag;
4252 #define	MNT_KERN_FLAG(flag)	do {					\
4253 	if (flags & (flag)) {						\
4254 		if (buf[0] != '\0')					\
4255 			strlcat(buf, ", ", sizeof(buf));		\
4256 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4257 		flags &= ~(flag);					\
4258 	}								\
4259 } while (0)
4260 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4261 	MNT_KERN_FLAG(MNTK_ASYNC);
4262 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4263 	MNT_KERN_FLAG(MNTK_DRAINING);
4264 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4265 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4266 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4267 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4268 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
4269 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
4270 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4271 	MNT_KERN_FLAG(MNTK_MARKER);
4272 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4273 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4274 	MNT_KERN_FLAG(MNTK_NOASYNC);
4275 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4276 	MNT_KERN_FLAG(MNTK_MWAIT);
4277 	MNT_KERN_FLAG(MNTK_SUSPEND);
4278 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4279 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4280 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4281 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4282 #undef MNT_KERN_FLAG
4283 	if (flags != 0) {
4284 		if (buf[0] != '\0')
4285 			strlcat(buf, ", ", sizeof(buf));
4286 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4287 		    "0x%08x", flags);
4288 	}
4289 	db_printf("    mnt_kern_flag = %s\n", buf);
4290 
4291 	db_printf("    mnt_opt = ");
4292 	opt = TAILQ_FIRST(mp->mnt_opt);
4293 	if (opt != NULL) {
4294 		db_printf("%s", opt->name);
4295 		opt = TAILQ_NEXT(opt, link);
4296 		while (opt != NULL) {
4297 			db_printf(", %s", opt->name);
4298 			opt = TAILQ_NEXT(opt, link);
4299 		}
4300 	}
4301 	db_printf("\n");
4302 
4303 	sp = &mp->mnt_stat;
4304 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4305 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4306 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4307 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4308 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4309 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4310 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4311 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4312 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4313 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4314 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4315 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4316 
4317 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4318 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4319 	if (jailed(mp->mnt_cred))
4320 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4321 	db_printf(" }\n");
4322 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4323 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4324 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4325 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4326 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4327 	    mp->mnt_lazyvnodelistsize);
4328 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4329 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4330 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
4331 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4332 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4333 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4334 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4335 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4336 	db_printf("    mnt_secondary_accwrites = %d\n",
4337 	    mp->mnt_secondary_accwrites);
4338 	db_printf("    mnt_gjprovider = %s\n",
4339 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4340 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4341 
4342 	db_printf("\n\nList of active vnodes\n");
4343 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4344 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4345 			vn_printf(vp, "vnode ");
4346 			if (db_pager_quit)
4347 				break;
4348 		}
4349 	}
4350 	db_printf("\n\nList of inactive vnodes\n");
4351 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4352 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4353 			vn_printf(vp, "vnode ");
4354 			if (db_pager_quit)
4355 				break;
4356 		}
4357 	}
4358 }
4359 #endif	/* DDB */
4360 
4361 /*
4362  * Fill in a struct xvfsconf based on a struct vfsconf.
4363  */
4364 static int
4365 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4366 {
4367 	struct xvfsconf xvfsp;
4368 
4369 	bzero(&xvfsp, sizeof(xvfsp));
4370 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4371 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4372 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4373 	xvfsp.vfc_flags = vfsp->vfc_flags;
4374 	/*
4375 	 * These are unused in userland, we keep them
4376 	 * to not break binary compatibility.
4377 	 */
4378 	xvfsp.vfc_vfsops = NULL;
4379 	xvfsp.vfc_next = NULL;
4380 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4381 }
4382 
4383 #ifdef COMPAT_FREEBSD32
4384 struct xvfsconf32 {
4385 	uint32_t	vfc_vfsops;
4386 	char		vfc_name[MFSNAMELEN];
4387 	int32_t		vfc_typenum;
4388 	int32_t		vfc_refcount;
4389 	int32_t		vfc_flags;
4390 	uint32_t	vfc_next;
4391 };
4392 
4393 static int
4394 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4395 {
4396 	struct xvfsconf32 xvfsp;
4397 
4398 	bzero(&xvfsp, sizeof(xvfsp));
4399 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4400 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4401 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4402 	xvfsp.vfc_flags = vfsp->vfc_flags;
4403 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4404 }
4405 #endif
4406 
4407 /*
4408  * Top level filesystem related information gathering.
4409  */
4410 static int
4411 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4412 {
4413 	struct vfsconf *vfsp;
4414 	int error;
4415 
4416 	error = 0;
4417 	vfsconf_slock();
4418 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4419 #ifdef COMPAT_FREEBSD32
4420 		if (req->flags & SCTL_MASK32)
4421 			error = vfsconf2x32(req, vfsp);
4422 		else
4423 #endif
4424 			error = vfsconf2x(req, vfsp);
4425 		if (error)
4426 			break;
4427 	}
4428 	vfsconf_sunlock();
4429 	return (error);
4430 }
4431 
4432 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4433     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4434     "S,xvfsconf", "List of all configured filesystems");
4435 
4436 #ifndef BURN_BRIDGES
4437 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4438 
4439 static int
4440 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4441 {
4442 	int *name = (int *)arg1 - 1;	/* XXX */
4443 	u_int namelen = arg2 + 1;	/* XXX */
4444 	struct vfsconf *vfsp;
4445 
4446 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4447 	    "please rebuild world\n");
4448 
4449 #if 1 || defined(COMPAT_PRELITE2)
4450 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4451 	if (namelen == 1)
4452 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4453 #endif
4454 
4455 	switch (name[1]) {
4456 	case VFS_MAXTYPENUM:
4457 		if (namelen != 2)
4458 			return (ENOTDIR);
4459 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4460 	case VFS_CONF:
4461 		if (namelen != 3)
4462 			return (ENOTDIR);	/* overloaded */
4463 		vfsconf_slock();
4464 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4465 			if (vfsp->vfc_typenum == name[2])
4466 				break;
4467 		}
4468 		vfsconf_sunlock();
4469 		if (vfsp == NULL)
4470 			return (EOPNOTSUPP);
4471 #ifdef COMPAT_FREEBSD32
4472 		if (req->flags & SCTL_MASK32)
4473 			return (vfsconf2x32(req, vfsp));
4474 		else
4475 #endif
4476 			return (vfsconf2x(req, vfsp));
4477 	}
4478 	return (EOPNOTSUPP);
4479 }
4480 
4481 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4482     CTLFLAG_MPSAFE, vfs_sysctl,
4483     "Generic filesystem");
4484 
4485 #if 1 || defined(COMPAT_PRELITE2)
4486 
4487 static int
4488 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4489 {
4490 	int error;
4491 	struct vfsconf *vfsp;
4492 	struct ovfsconf ovfs;
4493 
4494 	vfsconf_slock();
4495 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4496 		bzero(&ovfs, sizeof(ovfs));
4497 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4498 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4499 		ovfs.vfc_index = vfsp->vfc_typenum;
4500 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4501 		ovfs.vfc_flags = vfsp->vfc_flags;
4502 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4503 		if (error != 0) {
4504 			vfsconf_sunlock();
4505 			return (error);
4506 		}
4507 	}
4508 	vfsconf_sunlock();
4509 	return (0);
4510 }
4511 
4512 #endif /* 1 || COMPAT_PRELITE2 */
4513 #endif /* !BURN_BRIDGES */
4514 
4515 #define KINFO_VNODESLOP		10
4516 #ifdef notyet
4517 /*
4518  * Dump vnode list (via sysctl).
4519  */
4520 /* ARGSUSED */
4521 static int
4522 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4523 {
4524 	struct xvnode *xvn;
4525 	struct mount *mp;
4526 	struct vnode *vp;
4527 	int error, len, n;
4528 
4529 	/*
4530 	 * Stale numvnodes access is not fatal here.
4531 	 */
4532 	req->lock = 0;
4533 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4534 	if (!req->oldptr)
4535 		/* Make an estimate */
4536 		return (SYSCTL_OUT(req, 0, len));
4537 
4538 	error = sysctl_wire_old_buffer(req, 0);
4539 	if (error != 0)
4540 		return (error);
4541 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4542 	n = 0;
4543 	mtx_lock(&mountlist_mtx);
4544 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4545 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4546 			continue;
4547 		MNT_ILOCK(mp);
4548 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4549 			if (n == len)
4550 				break;
4551 			vref(vp);
4552 			xvn[n].xv_size = sizeof *xvn;
4553 			xvn[n].xv_vnode = vp;
4554 			xvn[n].xv_id = 0;	/* XXX compat */
4555 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4556 			XV_COPY(usecount);
4557 			XV_COPY(writecount);
4558 			XV_COPY(holdcnt);
4559 			XV_COPY(mount);
4560 			XV_COPY(numoutput);
4561 			XV_COPY(type);
4562 #undef XV_COPY
4563 			xvn[n].xv_flag = vp->v_vflag;
4564 
4565 			switch (vp->v_type) {
4566 			case VREG:
4567 			case VDIR:
4568 			case VLNK:
4569 				break;
4570 			case VBLK:
4571 			case VCHR:
4572 				if (vp->v_rdev == NULL) {
4573 					vrele(vp);
4574 					continue;
4575 				}
4576 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4577 				break;
4578 			case VSOCK:
4579 				xvn[n].xv_socket = vp->v_socket;
4580 				break;
4581 			case VFIFO:
4582 				xvn[n].xv_fifo = vp->v_fifoinfo;
4583 				break;
4584 			case VNON:
4585 			case VBAD:
4586 			default:
4587 				/* shouldn't happen? */
4588 				vrele(vp);
4589 				continue;
4590 			}
4591 			vrele(vp);
4592 			++n;
4593 		}
4594 		MNT_IUNLOCK(mp);
4595 		mtx_lock(&mountlist_mtx);
4596 		vfs_unbusy(mp);
4597 		if (n == len)
4598 			break;
4599 	}
4600 	mtx_unlock(&mountlist_mtx);
4601 
4602 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4603 	free(xvn, M_TEMP);
4604 	return (error);
4605 }
4606 
4607 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4608     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4609     "");
4610 #endif
4611 
4612 static void
4613 unmount_or_warn(struct mount *mp)
4614 {
4615 	int error;
4616 
4617 	error = dounmount(mp, MNT_FORCE, curthread);
4618 	if (error != 0) {
4619 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4620 		if (error == EBUSY)
4621 			printf("BUSY)\n");
4622 		else
4623 			printf("%d)\n", error);
4624 	}
4625 }
4626 
4627 /*
4628  * Unmount all filesystems. The list is traversed in reverse order
4629  * of mounting to avoid dependencies.
4630  */
4631 void
4632 vfs_unmountall(void)
4633 {
4634 	struct mount *mp, *tmp;
4635 
4636 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4637 
4638 	/*
4639 	 * Since this only runs when rebooting, it is not interlocked.
4640 	 */
4641 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4642 		vfs_ref(mp);
4643 
4644 		/*
4645 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4646 		 * unmount of the latter.
4647 		 */
4648 		if (mp == rootdevmp)
4649 			continue;
4650 
4651 		unmount_or_warn(mp);
4652 	}
4653 
4654 	if (rootdevmp != NULL)
4655 		unmount_or_warn(rootdevmp);
4656 }
4657 
4658 static void
4659 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4660 {
4661 
4662 	ASSERT_VI_LOCKED(vp, __func__);
4663 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4664 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4665 		vdropl(vp);
4666 		return;
4667 	}
4668 	if (vn_lock(vp, lkflags) == 0) {
4669 		VI_LOCK(vp);
4670 		vinactive(vp);
4671 		VOP_UNLOCK(vp);
4672 		vdropl(vp);
4673 		return;
4674 	}
4675 	vdefer_inactive_unlocked(vp);
4676 }
4677 
4678 static int
4679 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4680 {
4681 
4682 	return (vp->v_iflag & VI_DEFINACT);
4683 }
4684 
4685 static void __noinline
4686 vfs_periodic_inactive(struct mount *mp, int flags)
4687 {
4688 	struct vnode *vp, *mvp;
4689 	int lkflags;
4690 
4691 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4692 	if (flags != MNT_WAIT)
4693 		lkflags |= LK_NOWAIT;
4694 
4695 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4696 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4697 			VI_UNLOCK(vp);
4698 			continue;
4699 		}
4700 		vp->v_iflag &= ~VI_DEFINACT;
4701 		vfs_deferred_inactive(vp, lkflags);
4702 	}
4703 }
4704 
4705 static inline bool
4706 vfs_want_msync(struct vnode *vp)
4707 {
4708 	struct vm_object *obj;
4709 
4710 	/*
4711 	 * This test may be performed without any locks held.
4712 	 * We rely on vm_object's type stability.
4713 	 */
4714 	if (vp->v_vflag & VV_NOSYNC)
4715 		return (false);
4716 	obj = vp->v_object;
4717 	return (obj != NULL && vm_object_mightbedirty(obj));
4718 }
4719 
4720 static int
4721 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4722 {
4723 
4724 	if (vp->v_vflag & VV_NOSYNC)
4725 		return (false);
4726 	if (vp->v_iflag & VI_DEFINACT)
4727 		return (true);
4728 	return (vfs_want_msync(vp));
4729 }
4730 
4731 static void __noinline
4732 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4733 {
4734 	struct vnode *vp, *mvp;
4735 	struct vm_object *obj;
4736 	int lkflags, objflags;
4737 	bool seen_defer;
4738 
4739 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4740 	if (flags != MNT_WAIT) {
4741 		lkflags |= LK_NOWAIT;
4742 		objflags = OBJPC_NOSYNC;
4743 	} else {
4744 		objflags = OBJPC_SYNC;
4745 	}
4746 
4747 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4748 		seen_defer = false;
4749 		if (vp->v_iflag & VI_DEFINACT) {
4750 			vp->v_iflag &= ~VI_DEFINACT;
4751 			seen_defer = true;
4752 		}
4753 		if (!vfs_want_msync(vp)) {
4754 			if (seen_defer)
4755 				vfs_deferred_inactive(vp, lkflags);
4756 			else
4757 				VI_UNLOCK(vp);
4758 			continue;
4759 		}
4760 		if (vget(vp, lkflags) == 0) {
4761 			obj = vp->v_object;
4762 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4763 				VM_OBJECT_WLOCK(obj);
4764 				vm_object_page_clean(obj, 0, 0, objflags);
4765 				VM_OBJECT_WUNLOCK(obj);
4766 			}
4767 			vput(vp);
4768 			if (seen_defer)
4769 				vdrop(vp);
4770 		} else {
4771 			if (seen_defer)
4772 				vdefer_inactive_unlocked(vp);
4773 		}
4774 	}
4775 }
4776 
4777 void
4778 vfs_periodic(struct mount *mp, int flags)
4779 {
4780 
4781 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4782 
4783 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4784 		vfs_periodic_inactive(mp, flags);
4785 	else
4786 		vfs_periodic_msync_inactive(mp, flags);
4787 }
4788 
4789 static void
4790 destroy_vpollinfo_free(struct vpollinfo *vi)
4791 {
4792 
4793 	knlist_destroy(&vi->vpi_selinfo.si_note);
4794 	mtx_destroy(&vi->vpi_lock);
4795 	free(vi, M_VNODEPOLL);
4796 }
4797 
4798 static void
4799 destroy_vpollinfo(struct vpollinfo *vi)
4800 {
4801 
4802 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4803 	seldrain(&vi->vpi_selinfo);
4804 	destroy_vpollinfo_free(vi);
4805 }
4806 
4807 /*
4808  * Initialize per-vnode helper structure to hold poll-related state.
4809  */
4810 void
4811 v_addpollinfo(struct vnode *vp)
4812 {
4813 	struct vpollinfo *vi;
4814 
4815 	if (vp->v_pollinfo != NULL)
4816 		return;
4817 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4818 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4819 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4820 	    vfs_knlunlock, vfs_knl_assert_lock);
4821 	VI_LOCK(vp);
4822 	if (vp->v_pollinfo != NULL) {
4823 		VI_UNLOCK(vp);
4824 		destroy_vpollinfo_free(vi);
4825 		return;
4826 	}
4827 	vp->v_pollinfo = vi;
4828 	VI_UNLOCK(vp);
4829 }
4830 
4831 /*
4832  * Record a process's interest in events which might happen to
4833  * a vnode.  Because poll uses the historic select-style interface
4834  * internally, this routine serves as both the ``check for any
4835  * pending events'' and the ``record my interest in future events''
4836  * functions.  (These are done together, while the lock is held,
4837  * to avoid race conditions.)
4838  */
4839 int
4840 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4841 {
4842 
4843 	v_addpollinfo(vp);
4844 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4845 	if (vp->v_pollinfo->vpi_revents & events) {
4846 		/*
4847 		 * This leaves events we are not interested
4848 		 * in available for the other process which
4849 		 * which presumably had requested them
4850 		 * (otherwise they would never have been
4851 		 * recorded).
4852 		 */
4853 		events &= vp->v_pollinfo->vpi_revents;
4854 		vp->v_pollinfo->vpi_revents &= ~events;
4855 
4856 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4857 		return (events);
4858 	}
4859 	vp->v_pollinfo->vpi_events |= events;
4860 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4861 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4862 	return (0);
4863 }
4864 
4865 /*
4866  * Routine to create and manage a filesystem syncer vnode.
4867  */
4868 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4869 static int	sync_fsync(struct  vop_fsync_args *);
4870 static int	sync_inactive(struct  vop_inactive_args *);
4871 static int	sync_reclaim(struct  vop_reclaim_args *);
4872 
4873 static struct vop_vector sync_vnodeops = {
4874 	.vop_bypass =	VOP_EOPNOTSUPP,
4875 	.vop_close =	sync_close,		/* close */
4876 	.vop_fsync =	sync_fsync,		/* fsync */
4877 	.vop_inactive =	sync_inactive,	/* inactive */
4878 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4879 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4880 	.vop_lock1 =	vop_stdlock,	/* lock */
4881 	.vop_unlock =	vop_stdunlock,	/* unlock */
4882 	.vop_islocked =	vop_stdislocked,	/* islocked */
4883 };
4884 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4885 
4886 /*
4887  * Create a new filesystem syncer vnode for the specified mount point.
4888  */
4889 void
4890 vfs_allocate_syncvnode(struct mount *mp)
4891 {
4892 	struct vnode *vp;
4893 	struct bufobj *bo;
4894 	static long start, incr, next;
4895 	int error;
4896 
4897 	/* Allocate a new vnode */
4898 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4899 	if (error != 0)
4900 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4901 	vp->v_type = VNON;
4902 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4903 	vp->v_vflag |= VV_FORCEINSMQ;
4904 	error = insmntque(vp, mp);
4905 	if (error != 0)
4906 		panic("vfs_allocate_syncvnode: insmntque() failed");
4907 	vp->v_vflag &= ~VV_FORCEINSMQ;
4908 	VOP_UNLOCK(vp);
4909 	/*
4910 	 * Place the vnode onto the syncer worklist. We attempt to
4911 	 * scatter them about on the list so that they will go off
4912 	 * at evenly distributed times even if all the filesystems
4913 	 * are mounted at once.
4914 	 */
4915 	next += incr;
4916 	if (next == 0 || next > syncer_maxdelay) {
4917 		start /= 2;
4918 		incr /= 2;
4919 		if (start == 0) {
4920 			start = syncer_maxdelay / 2;
4921 			incr = syncer_maxdelay;
4922 		}
4923 		next = start;
4924 	}
4925 	bo = &vp->v_bufobj;
4926 	BO_LOCK(bo);
4927 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
4928 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
4929 	mtx_lock(&sync_mtx);
4930 	sync_vnode_count++;
4931 	if (mp->mnt_syncer == NULL) {
4932 		mp->mnt_syncer = vp;
4933 		vp = NULL;
4934 	}
4935 	mtx_unlock(&sync_mtx);
4936 	BO_UNLOCK(bo);
4937 	if (vp != NULL) {
4938 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4939 		vgone(vp);
4940 		vput(vp);
4941 	}
4942 }
4943 
4944 void
4945 vfs_deallocate_syncvnode(struct mount *mp)
4946 {
4947 	struct vnode *vp;
4948 
4949 	mtx_lock(&sync_mtx);
4950 	vp = mp->mnt_syncer;
4951 	if (vp != NULL)
4952 		mp->mnt_syncer = NULL;
4953 	mtx_unlock(&sync_mtx);
4954 	if (vp != NULL)
4955 		vrele(vp);
4956 }
4957 
4958 /*
4959  * Do a lazy sync of the filesystem.
4960  */
4961 static int
4962 sync_fsync(struct vop_fsync_args *ap)
4963 {
4964 	struct vnode *syncvp = ap->a_vp;
4965 	struct mount *mp = syncvp->v_mount;
4966 	int error, save;
4967 	struct bufobj *bo;
4968 
4969 	/*
4970 	 * We only need to do something if this is a lazy evaluation.
4971 	 */
4972 	if (ap->a_waitfor != MNT_LAZY)
4973 		return (0);
4974 
4975 	/*
4976 	 * Move ourselves to the back of the sync list.
4977 	 */
4978 	bo = &syncvp->v_bufobj;
4979 	BO_LOCK(bo);
4980 	vn_syncer_add_to_worklist(bo, syncdelay);
4981 	BO_UNLOCK(bo);
4982 
4983 	/*
4984 	 * Walk the list of vnodes pushing all that are dirty and
4985 	 * not already on the sync list.
4986 	 */
4987 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
4988 		return (0);
4989 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
4990 		vfs_unbusy(mp);
4991 		return (0);
4992 	}
4993 	save = curthread_pflags_set(TDP_SYNCIO);
4994 	/*
4995 	 * The filesystem at hand may be idle with free vnodes stored in the
4996 	 * batch.  Return them instead of letting them stay there indefinitely.
4997 	 */
4998 	vfs_periodic(mp, MNT_NOWAIT);
4999 	error = VFS_SYNC(mp, MNT_LAZY);
5000 	curthread_pflags_restore(save);
5001 	vn_finished_write(mp);
5002 	vfs_unbusy(mp);
5003 	return (error);
5004 }
5005 
5006 /*
5007  * The syncer vnode is no referenced.
5008  */
5009 static int
5010 sync_inactive(struct vop_inactive_args *ap)
5011 {
5012 
5013 	vgone(ap->a_vp);
5014 	return (0);
5015 }
5016 
5017 /*
5018  * The syncer vnode is no longer needed and is being decommissioned.
5019  *
5020  * Modifications to the worklist must be protected by sync_mtx.
5021  */
5022 static int
5023 sync_reclaim(struct vop_reclaim_args *ap)
5024 {
5025 	struct vnode *vp = ap->a_vp;
5026 	struct bufobj *bo;
5027 
5028 	bo = &vp->v_bufobj;
5029 	BO_LOCK(bo);
5030 	mtx_lock(&sync_mtx);
5031 	if (vp->v_mount->mnt_syncer == vp)
5032 		vp->v_mount->mnt_syncer = NULL;
5033 	if (bo->bo_flag & BO_ONWORKLST) {
5034 		LIST_REMOVE(bo, bo_synclist);
5035 		syncer_worklist_len--;
5036 		sync_vnode_count--;
5037 		bo->bo_flag &= ~BO_ONWORKLST;
5038 	}
5039 	mtx_unlock(&sync_mtx);
5040 	BO_UNLOCK(bo);
5041 
5042 	return (0);
5043 }
5044 
5045 int
5046 vn_need_pageq_flush(struct vnode *vp)
5047 {
5048 	struct vm_object *obj;
5049 	int need;
5050 
5051 	MPASS(mtx_owned(VI_MTX(vp)));
5052 	need = 0;
5053 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5054 	    vm_object_mightbedirty(obj))
5055 		need = 1;
5056 	return (need);
5057 }
5058 
5059 /*
5060  * Check if vnode represents a disk device
5061  */
5062 bool
5063 vn_isdisk_error(struct vnode *vp, int *errp)
5064 {
5065 	int error;
5066 
5067 	if (vp->v_type != VCHR) {
5068 		error = ENOTBLK;
5069 		goto out;
5070 	}
5071 	error = 0;
5072 	dev_lock();
5073 	if (vp->v_rdev == NULL)
5074 		error = ENXIO;
5075 	else if (vp->v_rdev->si_devsw == NULL)
5076 		error = ENXIO;
5077 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5078 		error = ENOTBLK;
5079 	dev_unlock();
5080 out:
5081 	*errp = error;
5082 	return (error == 0);
5083 }
5084 
5085 bool
5086 vn_isdisk(struct vnode *vp)
5087 {
5088 	int error;
5089 
5090 	return (vn_isdisk_error(vp, &error));
5091 }
5092 
5093 /*
5094  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5095  * the comment above cache_fplookup for details.
5096  */
5097 int
5098 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5099 {
5100 	int error;
5101 
5102 	VFS_SMR_ASSERT_ENTERED();
5103 
5104 	/* Check the owner. */
5105 	if (cred->cr_uid == file_uid) {
5106 		if (file_mode & S_IXUSR)
5107 			return (0);
5108 		goto out_error;
5109 	}
5110 
5111 	/* Otherwise, check the groups (first match) */
5112 	if (groupmember(file_gid, cred)) {
5113 		if (file_mode & S_IXGRP)
5114 			return (0);
5115 		goto out_error;
5116 	}
5117 
5118 	/* Otherwise, check everyone else. */
5119 	if (file_mode & S_IXOTH)
5120 		return (0);
5121 out_error:
5122 	/*
5123 	 * Permission check failed, but it is possible denial will get overwritten
5124 	 * (e.g., when root is traversing through a 700 directory owned by someone
5125 	 * else).
5126 	 *
5127 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5128 	 * modules overriding this result. It's quite unclear what semantics
5129 	 * are allowed for them to operate, thus for safety we don't call them
5130 	 * from within the SMR section. This also means if any such modules
5131 	 * are present, we have to let the regular lookup decide.
5132 	 */
5133 	error = priv_check_cred_vfs_lookup_nomac(cred);
5134 	switch (error) {
5135 	case 0:
5136 		return (0);
5137 	case EAGAIN:
5138 		/*
5139 		 * MAC modules present.
5140 		 */
5141 		return (EAGAIN);
5142 	case EPERM:
5143 		return (EACCES);
5144 	default:
5145 		return (error);
5146 	}
5147 }
5148 
5149 /*
5150  * Common filesystem object access control check routine.  Accepts a
5151  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5152  * Returns 0 on success, or an errno on failure.
5153  */
5154 int
5155 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5156     accmode_t accmode, struct ucred *cred)
5157 {
5158 	accmode_t dac_granted;
5159 	accmode_t priv_granted;
5160 
5161 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5162 	    ("invalid bit in accmode"));
5163 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5164 	    ("VAPPEND without VWRITE"));
5165 
5166 	/*
5167 	 * Look for a normal, non-privileged way to access the file/directory
5168 	 * as requested.  If it exists, go with that.
5169 	 */
5170 
5171 	dac_granted = 0;
5172 
5173 	/* Check the owner. */
5174 	if (cred->cr_uid == file_uid) {
5175 		dac_granted |= VADMIN;
5176 		if (file_mode & S_IXUSR)
5177 			dac_granted |= VEXEC;
5178 		if (file_mode & S_IRUSR)
5179 			dac_granted |= VREAD;
5180 		if (file_mode & S_IWUSR)
5181 			dac_granted |= (VWRITE | VAPPEND);
5182 
5183 		if ((accmode & dac_granted) == accmode)
5184 			return (0);
5185 
5186 		goto privcheck;
5187 	}
5188 
5189 	/* Otherwise, check the groups (first match) */
5190 	if (groupmember(file_gid, cred)) {
5191 		if (file_mode & S_IXGRP)
5192 			dac_granted |= VEXEC;
5193 		if (file_mode & S_IRGRP)
5194 			dac_granted |= VREAD;
5195 		if (file_mode & S_IWGRP)
5196 			dac_granted |= (VWRITE | VAPPEND);
5197 
5198 		if ((accmode & dac_granted) == accmode)
5199 			return (0);
5200 
5201 		goto privcheck;
5202 	}
5203 
5204 	/* Otherwise, check everyone else. */
5205 	if (file_mode & S_IXOTH)
5206 		dac_granted |= VEXEC;
5207 	if (file_mode & S_IROTH)
5208 		dac_granted |= VREAD;
5209 	if (file_mode & S_IWOTH)
5210 		dac_granted |= (VWRITE | VAPPEND);
5211 	if ((accmode & dac_granted) == accmode)
5212 		return (0);
5213 
5214 privcheck:
5215 	/*
5216 	 * Build a privilege mask to determine if the set of privileges
5217 	 * satisfies the requirements when combined with the granted mask
5218 	 * from above.  For each privilege, if the privilege is required,
5219 	 * bitwise or the request type onto the priv_granted mask.
5220 	 */
5221 	priv_granted = 0;
5222 
5223 	if (type == VDIR) {
5224 		/*
5225 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5226 		 * requests, instead of PRIV_VFS_EXEC.
5227 		 */
5228 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5229 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5230 			priv_granted |= VEXEC;
5231 	} else {
5232 		/*
5233 		 * Ensure that at least one execute bit is on. Otherwise,
5234 		 * a privileged user will always succeed, and we don't want
5235 		 * this to happen unless the file really is executable.
5236 		 */
5237 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5238 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5239 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5240 			priv_granted |= VEXEC;
5241 	}
5242 
5243 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5244 	    !priv_check_cred(cred, PRIV_VFS_READ))
5245 		priv_granted |= VREAD;
5246 
5247 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5248 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5249 		priv_granted |= (VWRITE | VAPPEND);
5250 
5251 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5252 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5253 		priv_granted |= VADMIN;
5254 
5255 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5256 		return (0);
5257 	}
5258 
5259 	return ((accmode & VADMIN) ? EPERM : EACCES);
5260 }
5261 
5262 /*
5263  * Credential check based on process requesting service, and per-attribute
5264  * permissions.
5265  */
5266 int
5267 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5268     struct thread *td, accmode_t accmode)
5269 {
5270 
5271 	/*
5272 	 * Kernel-invoked always succeeds.
5273 	 */
5274 	if (cred == NOCRED)
5275 		return (0);
5276 
5277 	/*
5278 	 * Do not allow privileged processes in jail to directly manipulate
5279 	 * system attributes.
5280 	 */
5281 	switch (attrnamespace) {
5282 	case EXTATTR_NAMESPACE_SYSTEM:
5283 		/* Potentially should be: return (EPERM); */
5284 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5285 	case EXTATTR_NAMESPACE_USER:
5286 		return (VOP_ACCESS(vp, accmode, cred, td));
5287 	default:
5288 		return (EPERM);
5289 	}
5290 }
5291 
5292 #ifdef DEBUG_VFS_LOCKS
5293 /*
5294  * This only exists to suppress warnings from unlocked specfs accesses.  It is
5295  * no longer ok to have an unlocked VFS.
5296  */
5297 #define	IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL ||		\
5298 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
5299 
5300 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5301 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5302     "Drop into debugger on lock violation");
5303 
5304 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5305 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5306     0, "Check for interlock across VOPs");
5307 
5308 int vfs_badlock_print = 1;	/* Print lock violations. */
5309 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5310     0, "Print lock violations");
5311 
5312 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5313 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5314     0, "Print vnode details on lock violations");
5315 
5316 #ifdef KDB
5317 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5318 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5319     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5320 #endif
5321 
5322 static void
5323 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5324 {
5325 
5326 #ifdef KDB
5327 	if (vfs_badlock_backtrace)
5328 		kdb_backtrace();
5329 #endif
5330 	if (vfs_badlock_vnode)
5331 		vn_printf(vp, "vnode ");
5332 	if (vfs_badlock_print)
5333 		printf("%s: %p %s\n", str, (void *)vp, msg);
5334 	if (vfs_badlock_ddb)
5335 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5336 }
5337 
5338 void
5339 assert_vi_locked(struct vnode *vp, const char *str)
5340 {
5341 
5342 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5343 		vfs_badlock("interlock is not locked but should be", str, vp);
5344 }
5345 
5346 void
5347 assert_vi_unlocked(struct vnode *vp, const char *str)
5348 {
5349 
5350 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5351 		vfs_badlock("interlock is locked but should not be", str, vp);
5352 }
5353 
5354 void
5355 assert_vop_locked(struct vnode *vp, const char *str)
5356 {
5357 	int locked;
5358 
5359 	if (!IGNORE_LOCK(vp)) {
5360 		locked = VOP_ISLOCKED(vp);
5361 		if (locked == 0 || locked == LK_EXCLOTHER)
5362 			vfs_badlock("is not locked but should be", str, vp);
5363 	}
5364 }
5365 
5366 void
5367 assert_vop_unlocked(struct vnode *vp, const char *str)
5368 {
5369 
5370 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5371 		vfs_badlock("is locked but should not be", str, vp);
5372 }
5373 
5374 void
5375 assert_vop_elocked(struct vnode *vp, const char *str)
5376 {
5377 
5378 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5379 		vfs_badlock("is not exclusive locked but should be", str, vp);
5380 }
5381 #endif /* DEBUG_VFS_LOCKS */
5382 
5383 void
5384 vop_rename_fail(struct vop_rename_args *ap)
5385 {
5386 
5387 	if (ap->a_tvp != NULL)
5388 		vput(ap->a_tvp);
5389 	if (ap->a_tdvp == ap->a_tvp)
5390 		vrele(ap->a_tdvp);
5391 	else
5392 		vput(ap->a_tdvp);
5393 	vrele(ap->a_fdvp);
5394 	vrele(ap->a_fvp);
5395 }
5396 
5397 void
5398 vop_rename_pre(void *ap)
5399 {
5400 	struct vop_rename_args *a = ap;
5401 
5402 #ifdef DEBUG_VFS_LOCKS
5403 	if (a->a_tvp)
5404 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5405 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5406 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5407 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5408 
5409 	/* Check the source (from). */
5410 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5411 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5412 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5413 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5414 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5415 
5416 	/* Check the target. */
5417 	if (a->a_tvp)
5418 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5419 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5420 #endif
5421 	/*
5422 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5423 	 * in vop_rename_post but that's not going to work out since some
5424 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5425 	 *
5426 	 * For now filesystems are expected to do the relevant calls after they
5427 	 * decide what vnodes to operate on.
5428 	 */
5429 	if (a->a_tdvp != a->a_fdvp)
5430 		vhold(a->a_fdvp);
5431 	if (a->a_tvp != a->a_fvp)
5432 		vhold(a->a_fvp);
5433 	vhold(a->a_tdvp);
5434 	if (a->a_tvp)
5435 		vhold(a->a_tvp);
5436 }
5437 
5438 #ifdef DEBUG_VFS_LOCKS
5439 void
5440 vop_fplookup_vexec_debugpre(void *ap __unused)
5441 {
5442 
5443 	VFS_SMR_ASSERT_ENTERED();
5444 }
5445 
5446 void
5447 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5448 {
5449 
5450 	VFS_SMR_ASSERT_ENTERED();
5451 }
5452 
5453 void
5454 vop_strategy_debugpre(void *ap)
5455 {
5456 	struct vop_strategy_args *a;
5457 	struct buf *bp;
5458 
5459 	a = ap;
5460 	bp = a->a_bp;
5461 
5462 	/*
5463 	 * Cluster ops lock their component buffers but not the IO container.
5464 	 */
5465 	if ((bp->b_flags & B_CLUSTER) != 0)
5466 		return;
5467 
5468 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5469 		if (vfs_badlock_print)
5470 			printf(
5471 			    "VOP_STRATEGY: bp is not locked but should be\n");
5472 		if (vfs_badlock_ddb)
5473 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5474 	}
5475 }
5476 
5477 void
5478 vop_lock_debugpre(void *ap)
5479 {
5480 	struct vop_lock1_args *a = ap;
5481 
5482 	if ((a->a_flags & LK_INTERLOCK) == 0)
5483 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5484 	else
5485 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5486 }
5487 
5488 void
5489 vop_lock_debugpost(void *ap, int rc)
5490 {
5491 	struct vop_lock1_args *a = ap;
5492 
5493 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5494 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5495 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5496 }
5497 
5498 void
5499 vop_unlock_debugpre(void *ap)
5500 {
5501 	struct vop_unlock_args *a = ap;
5502 
5503 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5504 }
5505 
5506 void
5507 vop_need_inactive_debugpre(void *ap)
5508 {
5509 	struct vop_need_inactive_args *a = ap;
5510 
5511 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5512 }
5513 
5514 void
5515 vop_need_inactive_debugpost(void *ap, int rc)
5516 {
5517 	struct vop_need_inactive_args *a = ap;
5518 
5519 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5520 }
5521 #endif
5522 
5523 void
5524 vop_create_pre(void *ap)
5525 {
5526 	struct vop_create_args *a;
5527 	struct vnode *dvp;
5528 
5529 	a = ap;
5530 	dvp = a->a_dvp;
5531 	vn_seqc_write_begin(dvp);
5532 }
5533 
5534 void
5535 vop_create_post(void *ap, int rc)
5536 {
5537 	struct vop_create_args *a;
5538 	struct vnode *dvp;
5539 
5540 	a = ap;
5541 	dvp = a->a_dvp;
5542 	vn_seqc_write_end(dvp);
5543 	if (!rc)
5544 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5545 }
5546 
5547 void
5548 vop_whiteout_pre(void *ap)
5549 {
5550 	struct vop_whiteout_args *a;
5551 	struct vnode *dvp;
5552 
5553 	a = ap;
5554 	dvp = a->a_dvp;
5555 	vn_seqc_write_begin(dvp);
5556 }
5557 
5558 void
5559 vop_whiteout_post(void *ap, int rc)
5560 {
5561 	struct vop_whiteout_args *a;
5562 	struct vnode *dvp;
5563 
5564 	a = ap;
5565 	dvp = a->a_dvp;
5566 	vn_seqc_write_end(dvp);
5567 }
5568 
5569 void
5570 vop_deleteextattr_pre(void *ap)
5571 {
5572 	struct vop_deleteextattr_args *a;
5573 	struct vnode *vp;
5574 
5575 	a = ap;
5576 	vp = a->a_vp;
5577 	vn_seqc_write_begin(vp);
5578 }
5579 
5580 void
5581 vop_deleteextattr_post(void *ap, int rc)
5582 {
5583 	struct vop_deleteextattr_args *a;
5584 	struct vnode *vp;
5585 
5586 	a = ap;
5587 	vp = a->a_vp;
5588 	vn_seqc_write_end(vp);
5589 	if (!rc)
5590 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5591 }
5592 
5593 void
5594 vop_link_pre(void *ap)
5595 {
5596 	struct vop_link_args *a;
5597 	struct vnode *vp, *tdvp;
5598 
5599 	a = ap;
5600 	vp = a->a_vp;
5601 	tdvp = a->a_tdvp;
5602 	vn_seqc_write_begin(vp);
5603 	vn_seqc_write_begin(tdvp);
5604 }
5605 
5606 void
5607 vop_link_post(void *ap, int rc)
5608 {
5609 	struct vop_link_args *a;
5610 	struct vnode *vp, *tdvp;
5611 
5612 	a = ap;
5613 	vp = a->a_vp;
5614 	tdvp = a->a_tdvp;
5615 	vn_seqc_write_end(vp);
5616 	vn_seqc_write_end(tdvp);
5617 	if (!rc) {
5618 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5619 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5620 	}
5621 }
5622 
5623 void
5624 vop_mkdir_pre(void *ap)
5625 {
5626 	struct vop_mkdir_args *a;
5627 	struct vnode *dvp;
5628 
5629 	a = ap;
5630 	dvp = a->a_dvp;
5631 	vn_seqc_write_begin(dvp);
5632 }
5633 
5634 void
5635 vop_mkdir_post(void *ap, int rc)
5636 {
5637 	struct vop_mkdir_args *a;
5638 	struct vnode *dvp;
5639 
5640 	a = ap;
5641 	dvp = a->a_dvp;
5642 	vn_seqc_write_end(dvp);
5643 	if (!rc)
5644 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5645 }
5646 
5647 #ifdef DEBUG_VFS_LOCKS
5648 void
5649 vop_mkdir_debugpost(void *ap, int rc)
5650 {
5651 	struct vop_mkdir_args *a;
5652 
5653 	a = ap;
5654 	if (!rc)
5655 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5656 }
5657 #endif
5658 
5659 void
5660 vop_mknod_pre(void *ap)
5661 {
5662 	struct vop_mknod_args *a;
5663 	struct vnode *dvp;
5664 
5665 	a = ap;
5666 	dvp = a->a_dvp;
5667 	vn_seqc_write_begin(dvp);
5668 }
5669 
5670 void
5671 vop_mknod_post(void *ap, int rc)
5672 {
5673 	struct vop_mknod_args *a;
5674 	struct vnode *dvp;
5675 
5676 	a = ap;
5677 	dvp = a->a_dvp;
5678 	vn_seqc_write_end(dvp);
5679 	if (!rc)
5680 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5681 }
5682 
5683 void
5684 vop_reclaim_post(void *ap, int rc)
5685 {
5686 	struct vop_reclaim_args *a;
5687 	struct vnode *vp;
5688 
5689 	a = ap;
5690 	vp = a->a_vp;
5691 	ASSERT_VOP_IN_SEQC(vp);
5692 	if (!rc)
5693 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5694 }
5695 
5696 void
5697 vop_remove_pre(void *ap)
5698 {
5699 	struct vop_remove_args *a;
5700 	struct vnode *dvp, *vp;
5701 
5702 	a = ap;
5703 	dvp = a->a_dvp;
5704 	vp = a->a_vp;
5705 	vn_seqc_write_begin(dvp);
5706 	vn_seqc_write_begin(vp);
5707 }
5708 
5709 void
5710 vop_remove_post(void *ap, int rc)
5711 {
5712 	struct vop_remove_args *a;
5713 	struct vnode *dvp, *vp;
5714 
5715 	a = ap;
5716 	dvp = a->a_dvp;
5717 	vp = a->a_vp;
5718 	vn_seqc_write_end(dvp);
5719 	vn_seqc_write_end(vp);
5720 	if (!rc) {
5721 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5722 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5723 	}
5724 }
5725 
5726 void
5727 vop_rename_post(void *ap, int rc)
5728 {
5729 	struct vop_rename_args *a = ap;
5730 	long hint;
5731 
5732 	if (!rc) {
5733 		hint = NOTE_WRITE;
5734 		if (a->a_fdvp == a->a_tdvp) {
5735 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5736 				hint |= NOTE_LINK;
5737 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5738 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5739 		} else {
5740 			hint |= NOTE_EXTEND;
5741 			if (a->a_fvp->v_type == VDIR)
5742 				hint |= NOTE_LINK;
5743 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5744 
5745 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5746 			    a->a_tvp->v_type == VDIR)
5747 				hint &= ~NOTE_LINK;
5748 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5749 		}
5750 
5751 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5752 		if (a->a_tvp)
5753 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5754 	}
5755 	if (a->a_tdvp != a->a_fdvp)
5756 		vdrop(a->a_fdvp);
5757 	if (a->a_tvp != a->a_fvp)
5758 		vdrop(a->a_fvp);
5759 	vdrop(a->a_tdvp);
5760 	if (a->a_tvp)
5761 		vdrop(a->a_tvp);
5762 }
5763 
5764 void
5765 vop_rmdir_pre(void *ap)
5766 {
5767 	struct vop_rmdir_args *a;
5768 	struct vnode *dvp, *vp;
5769 
5770 	a = ap;
5771 	dvp = a->a_dvp;
5772 	vp = a->a_vp;
5773 	vn_seqc_write_begin(dvp);
5774 	vn_seqc_write_begin(vp);
5775 }
5776 
5777 void
5778 vop_rmdir_post(void *ap, int rc)
5779 {
5780 	struct vop_rmdir_args *a;
5781 	struct vnode *dvp, *vp;
5782 
5783 	a = ap;
5784 	dvp = a->a_dvp;
5785 	vp = a->a_vp;
5786 	vn_seqc_write_end(dvp);
5787 	vn_seqc_write_end(vp);
5788 	if (!rc) {
5789 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5790 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5791 	}
5792 }
5793 
5794 void
5795 vop_setattr_pre(void *ap)
5796 {
5797 	struct vop_setattr_args *a;
5798 	struct vnode *vp;
5799 
5800 	a = ap;
5801 	vp = a->a_vp;
5802 	vn_seqc_write_begin(vp);
5803 }
5804 
5805 void
5806 vop_setattr_post(void *ap, int rc)
5807 {
5808 	struct vop_setattr_args *a;
5809 	struct vnode *vp;
5810 
5811 	a = ap;
5812 	vp = a->a_vp;
5813 	vn_seqc_write_end(vp);
5814 	if (!rc)
5815 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5816 }
5817 
5818 void
5819 vop_setacl_pre(void *ap)
5820 {
5821 	struct vop_setacl_args *a;
5822 	struct vnode *vp;
5823 
5824 	a = ap;
5825 	vp = a->a_vp;
5826 	vn_seqc_write_begin(vp);
5827 }
5828 
5829 void
5830 vop_setacl_post(void *ap, int rc __unused)
5831 {
5832 	struct vop_setacl_args *a;
5833 	struct vnode *vp;
5834 
5835 	a = ap;
5836 	vp = a->a_vp;
5837 	vn_seqc_write_end(vp);
5838 }
5839 
5840 void
5841 vop_setextattr_pre(void *ap)
5842 {
5843 	struct vop_setextattr_args *a;
5844 	struct vnode *vp;
5845 
5846 	a = ap;
5847 	vp = a->a_vp;
5848 	vn_seqc_write_begin(vp);
5849 }
5850 
5851 void
5852 vop_setextattr_post(void *ap, int rc)
5853 {
5854 	struct vop_setextattr_args *a;
5855 	struct vnode *vp;
5856 
5857 	a = ap;
5858 	vp = a->a_vp;
5859 	vn_seqc_write_end(vp);
5860 	if (!rc)
5861 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5862 }
5863 
5864 void
5865 vop_symlink_pre(void *ap)
5866 {
5867 	struct vop_symlink_args *a;
5868 	struct vnode *dvp;
5869 
5870 	a = ap;
5871 	dvp = a->a_dvp;
5872 	vn_seqc_write_begin(dvp);
5873 }
5874 
5875 void
5876 vop_symlink_post(void *ap, int rc)
5877 {
5878 	struct vop_symlink_args *a;
5879 	struct vnode *dvp;
5880 
5881 	a = ap;
5882 	dvp = a->a_dvp;
5883 	vn_seqc_write_end(dvp);
5884 	if (!rc)
5885 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5886 }
5887 
5888 void
5889 vop_open_post(void *ap, int rc)
5890 {
5891 	struct vop_open_args *a = ap;
5892 
5893 	if (!rc)
5894 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
5895 }
5896 
5897 void
5898 vop_close_post(void *ap, int rc)
5899 {
5900 	struct vop_close_args *a = ap;
5901 
5902 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
5903 	    !VN_IS_DOOMED(a->a_vp))) {
5904 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
5905 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
5906 	}
5907 }
5908 
5909 void
5910 vop_read_post(void *ap, int rc)
5911 {
5912 	struct vop_read_args *a = ap;
5913 
5914 	if (!rc)
5915 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5916 }
5917 
5918 void
5919 vop_read_pgcache_post(void *ap, int rc)
5920 {
5921 	struct vop_read_pgcache_args *a = ap;
5922 
5923 	if (!rc)
5924 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
5925 }
5926 
5927 void
5928 vop_readdir_post(void *ap, int rc)
5929 {
5930 	struct vop_readdir_args *a = ap;
5931 
5932 	if (!rc)
5933 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5934 }
5935 
5936 static struct knlist fs_knlist;
5937 
5938 static void
5939 vfs_event_init(void *arg)
5940 {
5941 	knlist_init_mtx(&fs_knlist, NULL);
5942 }
5943 /* XXX - correct order? */
5944 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
5945 
5946 void
5947 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
5948 {
5949 
5950 	KNOTE_UNLOCKED(&fs_knlist, event);
5951 }
5952 
5953 static int	filt_fsattach(struct knote *kn);
5954 static void	filt_fsdetach(struct knote *kn);
5955 static int	filt_fsevent(struct knote *kn, long hint);
5956 
5957 struct filterops fs_filtops = {
5958 	.f_isfd = 0,
5959 	.f_attach = filt_fsattach,
5960 	.f_detach = filt_fsdetach,
5961 	.f_event = filt_fsevent
5962 };
5963 
5964 static int
5965 filt_fsattach(struct knote *kn)
5966 {
5967 
5968 	kn->kn_flags |= EV_CLEAR;
5969 	knlist_add(&fs_knlist, kn, 0);
5970 	return (0);
5971 }
5972 
5973 static void
5974 filt_fsdetach(struct knote *kn)
5975 {
5976 
5977 	knlist_remove(&fs_knlist, kn, 0);
5978 }
5979 
5980 static int
5981 filt_fsevent(struct knote *kn, long hint)
5982 {
5983 
5984 	kn->kn_fflags |= hint;
5985 	return (kn->kn_fflags != 0);
5986 }
5987 
5988 static int
5989 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
5990 {
5991 	struct vfsidctl vc;
5992 	int error;
5993 	struct mount *mp;
5994 
5995 	error = SYSCTL_IN(req, &vc, sizeof(vc));
5996 	if (error)
5997 		return (error);
5998 	if (vc.vc_vers != VFS_CTL_VERS1)
5999 		return (EINVAL);
6000 	mp = vfs_getvfs(&vc.vc_fsid);
6001 	if (mp == NULL)
6002 		return (ENOENT);
6003 	/* ensure that a specific sysctl goes to the right filesystem. */
6004 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6005 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6006 		vfs_rel(mp);
6007 		return (EINVAL);
6008 	}
6009 	VCTLTOREQ(&vc, req);
6010 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6011 	vfs_rel(mp);
6012 	return (error);
6013 }
6014 
6015 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6016     NULL, 0, sysctl_vfs_ctl, "",
6017     "Sysctl by fsid");
6018 
6019 /*
6020  * Function to initialize a va_filerev field sensibly.
6021  * XXX: Wouldn't a random number make a lot more sense ??
6022  */
6023 u_quad_t
6024 init_va_filerev(void)
6025 {
6026 	struct bintime bt;
6027 
6028 	getbinuptime(&bt);
6029 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6030 }
6031 
6032 static int	filt_vfsread(struct knote *kn, long hint);
6033 static int	filt_vfswrite(struct knote *kn, long hint);
6034 static int	filt_vfsvnode(struct knote *kn, long hint);
6035 static void	filt_vfsdetach(struct knote *kn);
6036 static struct filterops vfsread_filtops = {
6037 	.f_isfd = 1,
6038 	.f_detach = filt_vfsdetach,
6039 	.f_event = filt_vfsread
6040 };
6041 static struct filterops vfswrite_filtops = {
6042 	.f_isfd = 1,
6043 	.f_detach = filt_vfsdetach,
6044 	.f_event = filt_vfswrite
6045 };
6046 static struct filterops vfsvnode_filtops = {
6047 	.f_isfd = 1,
6048 	.f_detach = filt_vfsdetach,
6049 	.f_event = filt_vfsvnode
6050 };
6051 
6052 static void
6053 vfs_knllock(void *arg)
6054 {
6055 	struct vnode *vp = arg;
6056 
6057 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6058 }
6059 
6060 static void
6061 vfs_knlunlock(void *arg)
6062 {
6063 	struct vnode *vp = arg;
6064 
6065 	VOP_UNLOCK(vp);
6066 }
6067 
6068 static void
6069 vfs_knl_assert_lock(void *arg, int what)
6070 {
6071 #ifdef DEBUG_VFS_LOCKS
6072 	struct vnode *vp = arg;
6073 
6074 	if (what == LA_LOCKED)
6075 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6076 	else
6077 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6078 #endif
6079 }
6080 
6081 int
6082 vfs_kqfilter(struct vop_kqfilter_args *ap)
6083 {
6084 	struct vnode *vp = ap->a_vp;
6085 	struct knote *kn = ap->a_kn;
6086 	struct knlist *knl;
6087 
6088 	switch (kn->kn_filter) {
6089 	case EVFILT_READ:
6090 		kn->kn_fop = &vfsread_filtops;
6091 		break;
6092 	case EVFILT_WRITE:
6093 		kn->kn_fop = &vfswrite_filtops;
6094 		break;
6095 	case EVFILT_VNODE:
6096 		kn->kn_fop = &vfsvnode_filtops;
6097 		break;
6098 	default:
6099 		return (EINVAL);
6100 	}
6101 
6102 	kn->kn_hook = (caddr_t)vp;
6103 
6104 	v_addpollinfo(vp);
6105 	if (vp->v_pollinfo == NULL)
6106 		return (ENOMEM);
6107 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6108 	vhold(vp);
6109 	knlist_add(knl, kn, 0);
6110 
6111 	return (0);
6112 }
6113 
6114 /*
6115  * Detach knote from vnode
6116  */
6117 static void
6118 filt_vfsdetach(struct knote *kn)
6119 {
6120 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6121 
6122 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6123 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6124 	vdrop(vp);
6125 }
6126 
6127 /*ARGSUSED*/
6128 static int
6129 filt_vfsread(struct knote *kn, long hint)
6130 {
6131 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6132 	struct vattr va;
6133 	int res;
6134 
6135 	/*
6136 	 * filesystem is gone, so set the EOF flag and schedule
6137 	 * the knote for deletion.
6138 	 */
6139 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6140 		VI_LOCK(vp);
6141 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6142 		VI_UNLOCK(vp);
6143 		return (1);
6144 	}
6145 
6146 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6147 		return (0);
6148 
6149 	VI_LOCK(vp);
6150 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6151 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6152 	VI_UNLOCK(vp);
6153 	return (res);
6154 }
6155 
6156 /*ARGSUSED*/
6157 static int
6158 filt_vfswrite(struct knote *kn, long hint)
6159 {
6160 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6161 
6162 	VI_LOCK(vp);
6163 
6164 	/*
6165 	 * filesystem is gone, so set the EOF flag and schedule
6166 	 * the knote for deletion.
6167 	 */
6168 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6169 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6170 
6171 	kn->kn_data = 0;
6172 	VI_UNLOCK(vp);
6173 	return (1);
6174 }
6175 
6176 static int
6177 filt_vfsvnode(struct knote *kn, long hint)
6178 {
6179 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6180 	int res;
6181 
6182 	VI_LOCK(vp);
6183 	if (kn->kn_sfflags & hint)
6184 		kn->kn_fflags |= hint;
6185 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6186 		kn->kn_flags |= EV_EOF;
6187 		VI_UNLOCK(vp);
6188 		return (1);
6189 	}
6190 	res = (kn->kn_fflags != 0);
6191 	VI_UNLOCK(vp);
6192 	return (res);
6193 }
6194 
6195 /*
6196  * Returns whether the directory is empty or not.
6197  * If it is empty, the return value is 0; otherwise
6198  * the return value is an error value (which may
6199  * be ENOTEMPTY).
6200  */
6201 int
6202 vfs_emptydir(struct vnode *vp)
6203 {
6204 	struct uio uio;
6205 	struct iovec iov;
6206 	struct dirent *dirent, *dp, *endp;
6207 	int error, eof;
6208 
6209 	error = 0;
6210 	eof = 0;
6211 
6212 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6213 
6214 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6215 	iov.iov_base = dirent;
6216 	iov.iov_len = sizeof(struct dirent);
6217 
6218 	uio.uio_iov = &iov;
6219 	uio.uio_iovcnt = 1;
6220 	uio.uio_offset = 0;
6221 	uio.uio_resid = sizeof(struct dirent);
6222 	uio.uio_segflg = UIO_SYSSPACE;
6223 	uio.uio_rw = UIO_READ;
6224 	uio.uio_td = curthread;
6225 
6226 	while (eof == 0 && error == 0) {
6227 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6228 		    NULL, NULL);
6229 		if (error != 0)
6230 			break;
6231 		endp = (void *)((uint8_t *)dirent +
6232 		    sizeof(struct dirent) - uio.uio_resid);
6233 		for (dp = dirent; dp < endp;
6234 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6235 			if (dp->d_type == DT_WHT)
6236 				continue;
6237 			if (dp->d_namlen == 0)
6238 				continue;
6239 			if (dp->d_type != DT_DIR &&
6240 			    dp->d_type != DT_UNKNOWN) {
6241 				error = ENOTEMPTY;
6242 				break;
6243 			}
6244 			if (dp->d_namlen > 2) {
6245 				error = ENOTEMPTY;
6246 				break;
6247 			}
6248 			if (dp->d_namlen == 1 &&
6249 			    dp->d_name[0] != '.') {
6250 				error = ENOTEMPTY;
6251 				break;
6252 			}
6253 			if (dp->d_namlen == 2 &&
6254 			    dp->d_name[1] != '.') {
6255 				error = ENOTEMPTY;
6256 				break;
6257 			}
6258 			uio.uio_resid = sizeof(struct dirent);
6259 		}
6260 	}
6261 	free(dirent, M_TEMP);
6262 	return (error);
6263 }
6264 
6265 int
6266 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6267 {
6268 	int error;
6269 
6270 	if (dp->d_reclen > ap->a_uio->uio_resid)
6271 		return (ENAMETOOLONG);
6272 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6273 	if (error) {
6274 		if (ap->a_ncookies != NULL) {
6275 			if (ap->a_cookies != NULL)
6276 				free(ap->a_cookies, M_TEMP);
6277 			ap->a_cookies = NULL;
6278 			*ap->a_ncookies = 0;
6279 		}
6280 		return (error);
6281 	}
6282 	if (ap->a_ncookies == NULL)
6283 		return (0);
6284 
6285 	KASSERT(ap->a_cookies,
6286 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6287 
6288 	*ap->a_cookies = realloc(*ap->a_cookies,
6289 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
6290 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6291 	*ap->a_ncookies += 1;
6292 	return (0);
6293 }
6294 
6295 /*
6296  * The purpose of this routine is to remove granularity from accmode_t,
6297  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6298  * VADMIN and VAPPEND.
6299  *
6300  * If it returns 0, the caller is supposed to continue with the usual
6301  * access checks using 'accmode' as modified by this routine.  If it
6302  * returns nonzero value, the caller is supposed to return that value
6303  * as errno.
6304  *
6305  * Note that after this routine runs, accmode may be zero.
6306  */
6307 int
6308 vfs_unixify_accmode(accmode_t *accmode)
6309 {
6310 	/*
6311 	 * There is no way to specify explicit "deny" rule using
6312 	 * file mode or POSIX.1e ACLs.
6313 	 */
6314 	if (*accmode & VEXPLICIT_DENY) {
6315 		*accmode = 0;
6316 		return (0);
6317 	}
6318 
6319 	/*
6320 	 * None of these can be translated into usual access bits.
6321 	 * Also, the common case for NFSv4 ACLs is to not contain
6322 	 * either of these bits. Caller should check for VWRITE
6323 	 * on the containing directory instead.
6324 	 */
6325 	if (*accmode & (VDELETE_CHILD | VDELETE))
6326 		return (EPERM);
6327 
6328 	if (*accmode & VADMIN_PERMS) {
6329 		*accmode &= ~VADMIN_PERMS;
6330 		*accmode |= VADMIN;
6331 	}
6332 
6333 	/*
6334 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6335 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6336 	 */
6337 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6338 
6339 	return (0);
6340 }
6341 
6342 /*
6343  * Clear out a doomed vnode (if any) and replace it with a new one as long
6344  * as the fs is not being unmounted. Return the root vnode to the caller.
6345  */
6346 static int __noinline
6347 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6348 {
6349 	struct vnode *vp;
6350 	int error;
6351 
6352 restart:
6353 	if (mp->mnt_rootvnode != NULL) {
6354 		MNT_ILOCK(mp);
6355 		vp = mp->mnt_rootvnode;
6356 		if (vp != NULL) {
6357 			if (!VN_IS_DOOMED(vp)) {
6358 				vrefact(vp);
6359 				MNT_IUNLOCK(mp);
6360 				error = vn_lock(vp, flags);
6361 				if (error == 0) {
6362 					*vpp = vp;
6363 					return (0);
6364 				}
6365 				vrele(vp);
6366 				goto restart;
6367 			}
6368 			/*
6369 			 * Clear the old one.
6370 			 */
6371 			mp->mnt_rootvnode = NULL;
6372 		}
6373 		MNT_IUNLOCK(mp);
6374 		if (vp != NULL) {
6375 			vfs_op_barrier_wait(mp);
6376 			vrele(vp);
6377 		}
6378 	}
6379 	error = VFS_CACHEDROOT(mp, flags, vpp);
6380 	if (error != 0)
6381 		return (error);
6382 	if (mp->mnt_vfs_ops == 0) {
6383 		MNT_ILOCK(mp);
6384 		if (mp->mnt_vfs_ops != 0) {
6385 			MNT_IUNLOCK(mp);
6386 			return (0);
6387 		}
6388 		if (mp->mnt_rootvnode == NULL) {
6389 			vrefact(*vpp);
6390 			mp->mnt_rootvnode = *vpp;
6391 		} else {
6392 			if (mp->mnt_rootvnode != *vpp) {
6393 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6394 					panic("%s: mismatch between vnode returned "
6395 					    " by VFS_CACHEDROOT and the one cached "
6396 					    " (%p != %p)",
6397 					    __func__, *vpp, mp->mnt_rootvnode);
6398 				}
6399 			}
6400 		}
6401 		MNT_IUNLOCK(mp);
6402 	}
6403 	return (0);
6404 }
6405 
6406 int
6407 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6408 {
6409 	struct mount_pcpu *mpcpu;
6410 	struct vnode *vp;
6411 	int error;
6412 
6413 	if (!vfs_op_thread_enter(mp, mpcpu))
6414 		return (vfs_cache_root_fallback(mp, flags, vpp));
6415 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6416 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6417 		vfs_op_thread_exit(mp, mpcpu);
6418 		return (vfs_cache_root_fallback(mp, flags, vpp));
6419 	}
6420 	vrefact(vp);
6421 	vfs_op_thread_exit(mp, mpcpu);
6422 	error = vn_lock(vp, flags);
6423 	if (error != 0) {
6424 		vrele(vp);
6425 		return (vfs_cache_root_fallback(mp, flags, vpp));
6426 	}
6427 	*vpp = vp;
6428 	return (0);
6429 }
6430 
6431 struct vnode *
6432 vfs_cache_root_clear(struct mount *mp)
6433 {
6434 	struct vnode *vp;
6435 
6436 	/*
6437 	 * ops > 0 guarantees there is nobody who can see this vnode
6438 	 */
6439 	MPASS(mp->mnt_vfs_ops > 0);
6440 	vp = mp->mnt_rootvnode;
6441 	if (vp != NULL)
6442 		vn_seqc_write_begin(vp);
6443 	mp->mnt_rootvnode = NULL;
6444 	return (vp);
6445 }
6446 
6447 void
6448 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6449 {
6450 
6451 	MPASS(mp->mnt_vfs_ops > 0);
6452 	vrefact(vp);
6453 	mp->mnt_rootvnode = vp;
6454 }
6455 
6456 /*
6457  * These are helper functions for filesystems to traverse all
6458  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6459  *
6460  * This interface replaces MNT_VNODE_FOREACH.
6461  */
6462 
6463 struct vnode *
6464 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6465 {
6466 	struct vnode *vp;
6467 
6468 	if (should_yield())
6469 		kern_yield(PRI_USER);
6470 	MNT_ILOCK(mp);
6471 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6472 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6473 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6474 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6475 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6476 			continue;
6477 		VI_LOCK(vp);
6478 		if (VN_IS_DOOMED(vp)) {
6479 			VI_UNLOCK(vp);
6480 			continue;
6481 		}
6482 		break;
6483 	}
6484 	if (vp == NULL) {
6485 		__mnt_vnode_markerfree_all(mvp, mp);
6486 		/* MNT_IUNLOCK(mp); -- done in above function */
6487 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6488 		return (NULL);
6489 	}
6490 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6491 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6492 	MNT_IUNLOCK(mp);
6493 	return (vp);
6494 }
6495 
6496 struct vnode *
6497 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6498 {
6499 	struct vnode *vp;
6500 
6501 	*mvp = vn_alloc_marker(mp);
6502 	MNT_ILOCK(mp);
6503 	MNT_REF(mp);
6504 
6505 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6506 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6507 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6508 			continue;
6509 		VI_LOCK(vp);
6510 		if (VN_IS_DOOMED(vp)) {
6511 			VI_UNLOCK(vp);
6512 			continue;
6513 		}
6514 		break;
6515 	}
6516 	if (vp == NULL) {
6517 		MNT_REL(mp);
6518 		MNT_IUNLOCK(mp);
6519 		vn_free_marker(*mvp);
6520 		*mvp = NULL;
6521 		return (NULL);
6522 	}
6523 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6524 	MNT_IUNLOCK(mp);
6525 	return (vp);
6526 }
6527 
6528 void
6529 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6530 {
6531 
6532 	if (*mvp == NULL) {
6533 		MNT_IUNLOCK(mp);
6534 		return;
6535 	}
6536 
6537 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6538 
6539 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6540 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6541 	MNT_REL(mp);
6542 	MNT_IUNLOCK(mp);
6543 	vn_free_marker(*mvp);
6544 	*mvp = NULL;
6545 }
6546 
6547 /*
6548  * These are helper functions for filesystems to traverse their
6549  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6550  */
6551 static void
6552 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6553 {
6554 
6555 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6556 
6557 	MNT_ILOCK(mp);
6558 	MNT_REL(mp);
6559 	MNT_IUNLOCK(mp);
6560 	vn_free_marker(*mvp);
6561 	*mvp = NULL;
6562 }
6563 
6564 /*
6565  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6566  * conventional lock order during mnt_vnode_next_lazy iteration.
6567  *
6568  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6569  * The list lock is dropped and reacquired.  On success, both locks are held.
6570  * On failure, the mount vnode list lock is held but the vnode interlock is
6571  * not, and the procedure may have yielded.
6572  */
6573 static bool
6574 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6575     struct vnode *vp)
6576 {
6577 
6578 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6579 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6580 	    ("%s: bad marker", __func__));
6581 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6582 	    ("%s: inappropriate vnode", __func__));
6583 	ASSERT_VI_UNLOCKED(vp, __func__);
6584 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6585 
6586 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6587 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6588 
6589 	/*
6590 	 * Note we may be racing against vdrop which transitioned the hold
6591 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6592 	 * if we are the only user after we get the interlock we will just
6593 	 * vdrop.
6594 	 */
6595 	vhold(vp);
6596 	mtx_unlock(&mp->mnt_listmtx);
6597 	VI_LOCK(vp);
6598 	if (VN_IS_DOOMED(vp)) {
6599 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6600 		goto out_lost;
6601 	}
6602 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6603 	/*
6604 	 * There is nothing to do if we are the last user.
6605 	 */
6606 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6607 		goto out_lost;
6608 	mtx_lock(&mp->mnt_listmtx);
6609 	return (true);
6610 out_lost:
6611 	vdropl(vp);
6612 	maybe_yield();
6613 	mtx_lock(&mp->mnt_listmtx);
6614 	return (false);
6615 }
6616 
6617 static struct vnode *
6618 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6619     void *cbarg)
6620 {
6621 	struct vnode *vp;
6622 
6623 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6624 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6625 restart:
6626 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6627 	while (vp != NULL) {
6628 		if (vp->v_type == VMARKER) {
6629 			vp = TAILQ_NEXT(vp, v_lazylist);
6630 			continue;
6631 		}
6632 		/*
6633 		 * See if we want to process the vnode. Note we may encounter a
6634 		 * long string of vnodes we don't care about and hog the list
6635 		 * as a result. Check for it and requeue the marker.
6636 		 */
6637 		VNPASS(!VN_IS_DOOMED(vp), vp);
6638 		if (!cb(vp, cbarg)) {
6639 			if (!should_yield()) {
6640 				vp = TAILQ_NEXT(vp, v_lazylist);
6641 				continue;
6642 			}
6643 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6644 			    v_lazylist);
6645 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6646 			    v_lazylist);
6647 			mtx_unlock(&mp->mnt_listmtx);
6648 			kern_yield(PRI_USER);
6649 			mtx_lock(&mp->mnt_listmtx);
6650 			goto restart;
6651 		}
6652 		/*
6653 		 * Try-lock because this is the wrong lock order.
6654 		 */
6655 		if (!VI_TRYLOCK(vp) &&
6656 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6657 			goto restart;
6658 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6659 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6660 		    ("alien vnode on the lazy list %p %p", vp, mp));
6661 		VNPASS(vp->v_mount == mp, vp);
6662 		VNPASS(!VN_IS_DOOMED(vp), vp);
6663 		break;
6664 	}
6665 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6666 
6667 	/* Check if we are done */
6668 	if (vp == NULL) {
6669 		mtx_unlock(&mp->mnt_listmtx);
6670 		mnt_vnode_markerfree_lazy(mvp, mp);
6671 		return (NULL);
6672 	}
6673 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6674 	mtx_unlock(&mp->mnt_listmtx);
6675 	ASSERT_VI_LOCKED(vp, "lazy iter");
6676 	return (vp);
6677 }
6678 
6679 struct vnode *
6680 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6681     void *cbarg)
6682 {
6683 
6684 	if (should_yield())
6685 		kern_yield(PRI_USER);
6686 	mtx_lock(&mp->mnt_listmtx);
6687 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6688 }
6689 
6690 struct vnode *
6691 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6692     void *cbarg)
6693 {
6694 	struct vnode *vp;
6695 
6696 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6697 		return (NULL);
6698 
6699 	*mvp = vn_alloc_marker(mp);
6700 	MNT_ILOCK(mp);
6701 	MNT_REF(mp);
6702 	MNT_IUNLOCK(mp);
6703 
6704 	mtx_lock(&mp->mnt_listmtx);
6705 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6706 	if (vp == NULL) {
6707 		mtx_unlock(&mp->mnt_listmtx);
6708 		mnt_vnode_markerfree_lazy(mvp, mp);
6709 		return (NULL);
6710 	}
6711 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6712 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6713 }
6714 
6715 void
6716 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6717 {
6718 
6719 	if (*mvp == NULL)
6720 		return;
6721 
6722 	mtx_lock(&mp->mnt_listmtx);
6723 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6724 	mtx_unlock(&mp->mnt_listmtx);
6725 	mnt_vnode_markerfree_lazy(mvp, mp);
6726 }
6727 
6728 int
6729 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6730 {
6731 
6732 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6733 		cnp->cn_flags &= ~NOEXECCHECK;
6734 		return (0);
6735 	}
6736 
6737 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread));
6738 }
6739 
6740 /*
6741  * Do not use this variant unless you have means other than the hold count
6742  * to prevent the vnode from getting freed.
6743  */
6744 void
6745 vn_seqc_write_begin_unheld_locked(struct vnode *vp)
6746 {
6747 
6748 	ASSERT_VI_LOCKED(vp, __func__);
6749 	VNPASS(vp->v_seqc_users >= 0, vp);
6750 	vp->v_seqc_users++;
6751 	if (vp->v_seqc_users == 1)
6752 		seqc_sleepable_write_begin(&vp->v_seqc);
6753 }
6754 
6755 void
6756 vn_seqc_write_begin_locked(struct vnode *vp)
6757 {
6758 
6759 	ASSERT_VI_LOCKED(vp, __func__);
6760 	VNPASS(vp->v_holdcnt > 0, vp);
6761 	vn_seqc_write_begin_unheld_locked(vp);
6762 }
6763 
6764 void
6765 vn_seqc_write_begin(struct vnode *vp)
6766 {
6767 
6768 	VI_LOCK(vp);
6769 	vn_seqc_write_begin_locked(vp);
6770 	VI_UNLOCK(vp);
6771 }
6772 
6773 void
6774 vn_seqc_write_begin_unheld(struct vnode *vp)
6775 {
6776 
6777 	VI_LOCK(vp);
6778 	vn_seqc_write_begin_unheld_locked(vp);
6779 	VI_UNLOCK(vp);
6780 }
6781 
6782 void
6783 vn_seqc_write_end_locked(struct vnode *vp)
6784 {
6785 
6786 	ASSERT_VI_LOCKED(vp, __func__);
6787 	VNPASS(vp->v_seqc_users > 0, vp);
6788 	vp->v_seqc_users--;
6789 	if (vp->v_seqc_users == 0)
6790 		seqc_sleepable_write_end(&vp->v_seqc);
6791 }
6792 
6793 void
6794 vn_seqc_write_end(struct vnode *vp)
6795 {
6796 
6797 	VI_LOCK(vp);
6798 	vn_seqc_write_end_locked(vp);
6799 	VI_UNLOCK(vp);
6800 }
6801