1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 39 * $FreeBSD$ 40 */ 41 42 /* 43 * External virtual filesystem routines 44 */ 45 #include "opt_ddb.h" 46 #include "opt_mac.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/conf.h> 53 #include <sys/eventhandler.h> 54 #include <sys/extattr.h> 55 #include <sys/fcntl.h> 56 #include <sys/kernel.h> 57 #include <sys/kthread.h> 58 #include <sys/mac.h> 59 #include <sys/malloc.h> 60 #include <sys/mount.h> 61 #include <sys/namei.h> 62 #include <sys/stat.h> 63 #include <sys/sysctl.h> 64 #include <sys/syslog.h> 65 #include <sys/vmmeter.h> 66 #include <sys/vnode.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_object.h> 70 #include <vm/vm_extern.h> 71 #include <vm/pmap.h> 72 #include <vm/vm_map.h> 73 #include <vm/vm_page.h> 74 #include <vm/uma.h> 75 76 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure"); 77 78 static void addalias(struct vnode *vp, dev_t nvp_rdev); 79 static void insmntque(struct vnode *vp, struct mount *mp); 80 static void vclean(struct vnode *vp, int flags, struct thread *td); 81 static void vlruvp(struct vnode *vp); 82 static int flushbuflist(struct buf *blist, int flags, struct vnode *vp, 83 int slpflag, int slptimeo, int *errorp); 84 static int vcanrecycle(struct vnode *vp, struct mount **vnmpp); 85 86 87 /* 88 * Number of vnodes in existence. Increased whenever getnewvnode() 89 * allocates a new vnode, never decreased. 90 */ 91 static unsigned long numvnodes; 92 93 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, ""); 94 95 /* 96 * Conversion tables for conversion from vnode types to inode formats 97 * and back. 98 */ 99 enum vtype iftovt_tab[16] = { 100 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 101 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 102 }; 103 int vttoif_tab[9] = { 104 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 105 S_IFSOCK, S_IFIFO, S_IFMT, 106 }; 107 108 /* 109 * List of vnodes that are ready for recycling. 110 */ 111 static TAILQ_HEAD(freelst, vnode) vnode_free_list; 112 113 /* 114 * Minimum number of free vnodes. If there are fewer than this free vnodes, 115 * getnewvnode() will return a newly allocated vnode. 116 */ 117 static u_long wantfreevnodes = 25; 118 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, ""); 119 /* Number of vnodes in the free list. */ 120 static u_long freevnodes; 121 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, ""); 122 123 /* 124 * Various variables used for debugging the new implementation of 125 * reassignbuf(). 126 * XXX these are probably of (very) limited utility now. 127 */ 128 static int reassignbufcalls; 129 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, ""); 130 static int nameileafonly; 131 SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, ""); 132 133 #ifdef ENABLE_VFS_IOOPT 134 /* See NOTES for a description of this setting. */ 135 int vfs_ioopt; 136 SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, ""); 137 #endif 138 139 /* 140 * Cache for the mount type id assigned to NFS. This is used for 141 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c. 142 */ 143 int nfs_mount_type = -1; 144 145 /* To keep more than one thread at a time from running vfs_getnewfsid */ 146 static struct mtx mntid_mtx; 147 148 /* 149 * Lock for any access to the following: 150 * vnode_free_list 151 * numvnodes 152 * freevnodes 153 */ 154 static struct mtx vnode_free_list_mtx; 155 156 /* 157 * For any iteration/modification of dev->si_hlist (linked through 158 * v_specnext) 159 */ 160 static struct mtx spechash_mtx; 161 162 /* Publicly exported FS */ 163 struct nfs_public nfs_pub; 164 165 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 166 static uma_zone_t vnode_zone; 167 static uma_zone_t vnodepoll_zone; 168 169 /* Set to 1 to print out reclaim of active vnodes */ 170 int prtactive; 171 172 /* 173 * The workitem queue. 174 * 175 * It is useful to delay writes of file data and filesystem metadata 176 * for tens of seconds so that quickly created and deleted files need 177 * not waste disk bandwidth being created and removed. To realize this, 178 * we append vnodes to a "workitem" queue. When running with a soft 179 * updates implementation, most pending metadata dependencies should 180 * not wait for more than a few seconds. Thus, mounted on block devices 181 * are delayed only about a half the time that file data is delayed. 182 * Similarly, directory updates are more critical, so are only delayed 183 * about a third the time that file data is delayed. Thus, there are 184 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 185 * one each second (driven off the filesystem syncer process). The 186 * syncer_delayno variable indicates the next queue that is to be processed. 187 * Items that need to be processed soon are placed in this queue: 188 * 189 * syncer_workitem_pending[syncer_delayno] 190 * 191 * A delay of fifteen seconds is done by placing the request fifteen 192 * entries later in the queue: 193 * 194 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 195 * 196 */ 197 static int syncer_delayno; 198 static long syncer_mask; 199 LIST_HEAD(synclist, vnode); 200 static struct synclist *syncer_workitem_pending; 201 /* 202 * The sync_mtx protects: 203 * vp->v_synclist 204 * syncer_delayno 205 * syncer_workitem_pending 206 * rushjob 207 */ 208 static struct mtx sync_mtx; 209 210 #define SYNCER_MAXDELAY 32 211 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 212 static int syncdelay = 30; /* max time to delay syncing data */ 213 static int filedelay = 30; /* time to delay syncing files */ 214 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, ""); 215 static int dirdelay = 29; /* time to delay syncing directories */ 216 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, ""); 217 static int metadelay = 28; /* time to delay syncing metadata */ 218 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, ""); 219 static int rushjob; /* number of slots to run ASAP */ 220 static int stat_rush_requests; /* number of times I/O speeded up */ 221 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, ""); 222 223 /* 224 * Number of vnodes we want to exist at any one time. This is mostly used 225 * to size hash tables in vnode-related code. It is normally not used in 226 * getnewvnode(), as wantfreevnodes is normally nonzero.) 227 * 228 * XXX desiredvnodes is historical cruft and should not exist. 229 */ 230 int desiredvnodes; 231 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, 232 &desiredvnodes, 0, "Maximum number of vnodes"); 233 static int minvnodes; 234 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 235 &minvnodes, 0, "Minimum number of vnodes"); 236 static int vnlru_nowhere; 237 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0, 238 "Number of times the vnlru process ran without success"); 239 240 /* Hook for calling soft updates */ 241 int (*softdep_process_worklist_hook)(struct mount *); 242 243 /* 244 * This only exists to supress warnings from unlocked specfs accesses. It is 245 * no longer ok to have an unlocked VFS. 246 */ 247 #define IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD) 248 249 /* Print lock violations */ 250 int vfs_badlock_print = 1; 251 252 /* Panic on violation */ 253 int vfs_badlock_panic = 1; 254 255 /* Check for interlock across VOPs */ 256 int vfs_badlock_mutex = 1; 257 258 static void 259 vfs_badlock(char *msg, char *str, struct vnode *vp) 260 { 261 if (vfs_badlock_print) 262 printf("%s: %p %s\n", str, vp, msg); 263 if (vfs_badlock_panic) 264 Debugger("Lock violation.\n"); 265 } 266 267 void 268 assert_vi_unlocked(struct vnode *vp, char *str) 269 { 270 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 271 vfs_badlock("interlock is locked but should not be", str, vp); 272 } 273 274 void 275 assert_vi_locked(struct vnode *vp, char *str) 276 { 277 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 278 vfs_badlock("interlock is not locked but should be", str, vp); 279 } 280 281 void 282 assert_vop_locked(struct vnode *vp, char *str) 283 { 284 if (vp && !IGNORE_LOCK(vp) && !VOP_ISLOCKED(vp, NULL)) 285 vfs_badlock("is not locked but should be", str, vp); 286 } 287 288 void 289 assert_vop_unlocked(struct vnode *vp, char *str) 290 { 291 if (vp && !IGNORE_LOCK(vp) && 292 VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) 293 vfs_badlock("is locked but should not be", str, vp); 294 } 295 296 void 297 assert_vop_elocked(struct vnode *vp, char *str) 298 { 299 if (vp && !IGNORE_LOCK(vp) && 300 VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE) 301 vfs_badlock("is not exclusive locked but should be", str, vp); 302 } 303 304 void 305 assert_vop_elocked_other(struct vnode *vp, char *str) 306 { 307 if (vp && !IGNORE_LOCK(vp) && 308 VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER) 309 vfs_badlock("is not exclusive locked by another thread", 310 str, vp); 311 } 312 313 void 314 assert_vop_slocked(struct vnode *vp, char *str) 315 { 316 if (vp && !IGNORE_LOCK(vp) && 317 VOP_ISLOCKED(vp, curthread) != LK_SHARED) 318 vfs_badlock("is not locked shared but should be", str, vp); 319 } 320 321 void 322 vop_rename_pre(void *ap) 323 { 324 struct vop_rename_args *a = ap; 325 326 if (a->a_tvp) 327 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 328 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 329 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 330 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 331 332 /* Check the source (from) */ 333 if (a->a_tdvp != a->a_fdvp) 334 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked.\n"); 335 if (a->a_tvp != a->a_fvp) 336 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked.\n"); 337 338 /* Check the target */ 339 if (a->a_tvp) 340 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked.\n"); 341 342 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked.\n"); 343 } 344 345 void 346 vop_strategy_pre(void *ap) 347 { 348 struct vop_strategy_args *a = ap; 349 struct buf *bp; 350 351 bp = a->a_bp; 352 353 /* 354 * Cluster ops lock their component buffers but not the IO container. 355 */ 356 if ((bp->b_flags & B_CLUSTER) != 0) 357 return; 358 359 if (BUF_REFCNT(bp) < 1) { 360 if (vfs_badlock_print) 361 printf("VOP_STRATEGY: bp is not locked but should be.\n"); 362 if (vfs_badlock_panic) 363 Debugger("Lock violation.\n"); 364 } 365 } 366 367 void 368 vop_lookup_pre(void *ap) 369 { 370 struct vop_lookup_args *a = ap; 371 struct vnode *dvp; 372 373 dvp = a->a_dvp; 374 375 ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP"); 376 ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP"); 377 } 378 379 void 380 vop_lookup_post(void *ap, int rc) 381 { 382 struct vop_lookup_args *a = ap; 383 struct componentname *cnp; 384 struct vnode *dvp; 385 struct vnode *vp; 386 int flags; 387 388 dvp = a->a_dvp; 389 cnp = a->a_cnp; 390 vp = *(a->a_vpp); 391 flags = cnp->cn_flags; 392 393 394 ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP"); 395 /* 396 * If this is the last path component for this lookup and LOCPARENT 397 * is set, OR if there is an error the directory has to be locked. 398 */ 399 if ((flags & LOCKPARENT) && (flags & ISLASTCN)) 400 ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)"); 401 else if (rc != 0) 402 ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)"); 403 else if (dvp != vp) 404 ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)"); 405 406 if (flags & PDIRUNLOCK) 407 ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)"); 408 } 409 410 void 411 vop_unlock_pre(void *ap) 412 { 413 struct vop_unlock_args *a = ap; 414 415 if (a->a_flags & LK_INTERLOCK) 416 ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK"); 417 418 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); 419 } 420 421 void 422 vop_unlock_post(void *ap, int rc) 423 { 424 struct vop_unlock_args *a = ap; 425 426 if (a->a_flags & LK_INTERLOCK) 427 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK"); 428 } 429 430 void 431 vop_lock_pre(void *ap) 432 { 433 struct vop_lock_args *a = ap; 434 435 if ((a->a_flags & LK_INTERLOCK) == 0) 436 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 437 else 438 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 439 } 440 441 void 442 vop_lock_post(void *ap, int rc) 443 { 444 struct vop_lock_args *a; 445 446 a = ap; 447 448 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 449 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 450 } 451 452 void 453 v_addpollinfo(struct vnode *vp) 454 { 455 vp->v_pollinfo = uma_zalloc(vnodepoll_zone, M_WAITOK); 456 mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 457 } 458 459 /* 460 * Initialize the vnode management data structures. 461 */ 462 static void 463 vntblinit(void *dummy __unused) 464 { 465 466 desiredvnodes = maxproc + cnt.v_page_count / 4; 467 minvnodes = desiredvnodes / 4; 468 mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF); 469 mtx_init(&mntvnode_mtx, "mntvnode", NULL, MTX_DEF); 470 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 471 mtx_init(&spechash_mtx, "spechash", NULL, MTX_DEF); 472 TAILQ_INIT(&vnode_free_list); 473 mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF); 474 vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL, 475 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 476 vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo), 477 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 478 /* 479 * Initialize the filesystem syncer. 480 */ 481 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 482 &syncer_mask); 483 syncer_maxdelay = syncer_mask + 1; 484 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 485 } 486 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL) 487 488 489 /* 490 * Mark a mount point as busy. Used to synchronize access and to delay 491 * unmounting. Interlock is not released on failure. 492 */ 493 int 494 vfs_busy(mp, flags, interlkp, td) 495 struct mount *mp; 496 int flags; 497 struct mtx *interlkp; 498 struct thread *td; 499 { 500 int lkflags; 501 502 if (mp->mnt_kern_flag & MNTK_UNMOUNT) { 503 if (flags & LK_NOWAIT) 504 return (ENOENT); 505 mp->mnt_kern_flag |= MNTK_MWAIT; 506 /* 507 * Since all busy locks are shared except the exclusive 508 * lock granted when unmounting, the only place that a 509 * wakeup needs to be done is at the release of the 510 * exclusive lock at the end of dounmount. 511 */ 512 msleep(mp, interlkp, PVFS, "vfs_busy", 0); 513 return (ENOENT); 514 } 515 lkflags = LK_SHARED | LK_NOPAUSE; 516 if (interlkp) 517 lkflags |= LK_INTERLOCK; 518 if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td)) 519 panic("vfs_busy: unexpected lock failure"); 520 return (0); 521 } 522 523 /* 524 * Free a busy filesystem. 525 */ 526 void 527 vfs_unbusy(mp, td) 528 struct mount *mp; 529 struct thread *td; 530 { 531 532 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td); 533 } 534 535 /* 536 * Lookup a mount point by filesystem identifier. 537 */ 538 struct mount * 539 vfs_getvfs(fsid) 540 fsid_t *fsid; 541 { 542 register struct mount *mp; 543 544 mtx_lock(&mountlist_mtx); 545 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 546 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 547 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 548 mtx_unlock(&mountlist_mtx); 549 return (mp); 550 } 551 } 552 mtx_unlock(&mountlist_mtx); 553 return ((struct mount *) 0); 554 } 555 556 /* 557 * Get a new unique fsid. Try to make its val[0] unique, since this value 558 * will be used to create fake device numbers for stat(). Also try (but 559 * not so hard) make its val[0] unique mod 2^16, since some emulators only 560 * support 16-bit device numbers. We end up with unique val[0]'s for the 561 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 562 * 563 * Keep in mind that several mounts may be running in parallel. Starting 564 * the search one past where the previous search terminated is both a 565 * micro-optimization and a defense against returning the same fsid to 566 * different mounts. 567 */ 568 void 569 vfs_getnewfsid(mp) 570 struct mount *mp; 571 { 572 static u_int16_t mntid_base; 573 fsid_t tfsid; 574 int mtype; 575 576 mtx_lock(&mntid_mtx); 577 mtype = mp->mnt_vfc->vfc_typenum; 578 tfsid.val[1] = mtype; 579 mtype = (mtype & 0xFF) << 24; 580 for (;;) { 581 tfsid.val[0] = makeudev(255, 582 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 583 mntid_base++; 584 if (vfs_getvfs(&tfsid) == NULL) 585 break; 586 } 587 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 588 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 589 mtx_unlock(&mntid_mtx); 590 } 591 592 /* 593 * Knob to control the precision of file timestamps: 594 * 595 * 0 = seconds only; nanoseconds zeroed. 596 * 1 = seconds and nanoseconds, accurate within 1/HZ. 597 * 2 = seconds and nanoseconds, truncated to microseconds. 598 * >=3 = seconds and nanoseconds, maximum precision. 599 */ 600 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 601 602 static int timestamp_precision = TSP_SEC; 603 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 604 ×tamp_precision, 0, ""); 605 606 /* 607 * Get a current timestamp. 608 */ 609 void 610 vfs_timestamp(tsp) 611 struct timespec *tsp; 612 { 613 struct timeval tv; 614 615 switch (timestamp_precision) { 616 case TSP_SEC: 617 tsp->tv_sec = time_second; 618 tsp->tv_nsec = 0; 619 break; 620 case TSP_HZ: 621 getnanotime(tsp); 622 break; 623 case TSP_USEC: 624 microtime(&tv); 625 TIMEVAL_TO_TIMESPEC(&tv, tsp); 626 break; 627 case TSP_NSEC: 628 default: 629 nanotime(tsp); 630 break; 631 } 632 } 633 634 /* 635 * Set vnode attributes to VNOVAL 636 */ 637 void 638 vattr_null(vap) 639 register struct vattr *vap; 640 { 641 642 vap->va_type = VNON; 643 vap->va_size = VNOVAL; 644 vap->va_bytes = VNOVAL; 645 vap->va_mode = VNOVAL; 646 vap->va_nlink = VNOVAL; 647 vap->va_uid = VNOVAL; 648 vap->va_gid = VNOVAL; 649 vap->va_fsid = VNOVAL; 650 vap->va_fileid = VNOVAL; 651 vap->va_blocksize = VNOVAL; 652 vap->va_rdev = VNOVAL; 653 vap->va_atime.tv_sec = VNOVAL; 654 vap->va_atime.tv_nsec = VNOVAL; 655 vap->va_mtime.tv_sec = VNOVAL; 656 vap->va_mtime.tv_nsec = VNOVAL; 657 vap->va_ctime.tv_sec = VNOVAL; 658 vap->va_ctime.tv_nsec = VNOVAL; 659 vap->va_birthtime.tv_sec = VNOVAL; 660 vap->va_birthtime.tv_nsec = VNOVAL; 661 vap->va_flags = VNOVAL; 662 vap->va_gen = VNOVAL; 663 vap->va_vaflags = 0; 664 } 665 666 /* 667 * This routine is called when we have too many vnodes. It attempts 668 * to free <count> vnodes and will potentially free vnodes that still 669 * have VM backing store (VM backing store is typically the cause 670 * of a vnode blowout so we want to do this). Therefore, this operation 671 * is not considered cheap. 672 * 673 * A number of conditions may prevent a vnode from being reclaimed. 674 * the buffer cache may have references on the vnode, a directory 675 * vnode may still have references due to the namei cache representing 676 * underlying files, or the vnode may be in active use. It is not 677 * desireable to reuse such vnodes. These conditions may cause the 678 * number of vnodes to reach some minimum value regardless of what 679 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 680 */ 681 static int 682 vlrureclaim(struct mount *mp, int count) 683 { 684 struct vnode *vp; 685 int done; 686 int trigger; 687 int usevnodes; 688 689 /* 690 * Calculate the trigger point, don't allow user 691 * screwups to blow us up. This prevents us from 692 * recycling vnodes with lots of resident pages. We 693 * aren't trying to free memory, we are trying to 694 * free vnodes. 695 */ 696 usevnodes = desiredvnodes; 697 if (usevnodes <= 0) 698 usevnodes = 1; 699 trigger = cnt.v_page_count * 2 / usevnodes; 700 701 done = 0; 702 mtx_lock(&mntvnode_mtx); 703 while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) { 704 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 705 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 706 707 if (vp->v_type != VNON && 708 vp->v_type != VBAD && 709 VI_TRYLOCK(vp)) { 710 if (VMIGHTFREE(vp) && /* critical path opt */ 711 (vp->v_object == NULL || 712 vp->v_object->resident_page_count < trigger)) { 713 mtx_unlock(&mntvnode_mtx); 714 vgonel(vp, curthread); 715 done++; 716 mtx_lock(&mntvnode_mtx); 717 } else 718 VI_UNLOCK(vp); 719 } 720 --count; 721 } 722 mtx_unlock(&mntvnode_mtx); 723 return done; 724 } 725 726 /* 727 * Attempt to recycle vnodes in a context that is always safe to block. 728 * Calling vlrurecycle() from the bowels of filesystem code has some 729 * interesting deadlock problems. 730 */ 731 static struct proc *vnlruproc; 732 static int vnlruproc_sig; 733 734 static void 735 vnlru_proc(void) 736 { 737 struct mount *mp, *nmp; 738 int s; 739 int done; 740 struct proc *p = vnlruproc; 741 struct thread *td = FIRST_THREAD_IN_PROC(p); /* XXXKSE */ 742 743 mtx_lock(&Giant); 744 745 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p, 746 SHUTDOWN_PRI_FIRST); 747 748 s = splbio(); 749 for (;;) { 750 kthread_suspend_check(p); 751 mtx_lock(&vnode_free_list_mtx); 752 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) { 753 mtx_unlock(&vnode_free_list_mtx); 754 vnlruproc_sig = 0; 755 tsleep(vnlruproc, PVFS, "vlruwt", 0); 756 continue; 757 } 758 mtx_unlock(&vnode_free_list_mtx); 759 done = 0; 760 mtx_lock(&mountlist_mtx); 761 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 762 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) { 763 nmp = TAILQ_NEXT(mp, mnt_list); 764 continue; 765 } 766 done += vlrureclaim(mp, 10); 767 mtx_lock(&mountlist_mtx); 768 nmp = TAILQ_NEXT(mp, mnt_list); 769 vfs_unbusy(mp, td); 770 } 771 mtx_unlock(&mountlist_mtx); 772 if (done == 0) { 773 #if 0 774 /* These messages are temporary debugging aids */ 775 if (vnlru_nowhere < 5) 776 printf("vnlru process getting nowhere..\n"); 777 else if (vnlru_nowhere == 5) 778 printf("vnlru process messages stopped.\n"); 779 #endif 780 vnlru_nowhere++; 781 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 782 } 783 } 784 splx(s); 785 } 786 787 static struct kproc_desc vnlru_kp = { 788 "vnlru", 789 vnlru_proc, 790 &vnlruproc 791 }; 792 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp) 793 794 795 /* 796 * Routines having to do with the management of the vnode table. 797 */ 798 799 /* 800 * Check to see if a free vnode can be recycled. If it can, 801 * return it locked with the vn lock, but not interlock. Also 802 * get the vn_start_write lock. Otherwise indicate the error. 803 */ 804 static int 805 vcanrecycle(struct vnode *vp, struct mount **vnmpp) 806 { 807 struct thread *td = curthread; 808 vm_object_t object; 809 int error; 810 811 /* Don't recycle if we can't get the interlock */ 812 if (!VI_TRYLOCK(vp)) 813 return (EWOULDBLOCK); 814 815 /* We should be able to immediately acquire this */ 816 /* XXX This looks like it should panic if it fails */ 817 if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td) != 0) { 818 if (VOP_ISLOCKED(vp, td)) 819 panic("vcanrecycle: locked vnode"); 820 return (EWOULDBLOCK); 821 } 822 823 /* 824 * Don't recycle if its filesystem is being suspended. 825 */ 826 if (vn_start_write(vp, vnmpp, V_NOWAIT) != 0) { 827 error = EBUSY; 828 goto done; 829 } 830 831 /* 832 * Don't recycle if we still have cached pages. 833 */ 834 if (VOP_GETVOBJECT(vp, &object) == 0 && 835 (object->resident_page_count || 836 object->ref_count)) { 837 error = EBUSY; 838 goto done; 839 } 840 if (LIST_FIRST(&vp->v_cache_src)) { 841 /* 842 * note: nameileafonly sysctl is temporary, 843 * for debugging only, and will eventually be 844 * removed. 845 */ 846 if (nameileafonly > 0) { 847 /* 848 * Do not reuse namei-cached directory 849 * vnodes that have cached 850 * subdirectories. 851 */ 852 if (cache_leaf_test(vp) < 0) { 853 error = EISDIR; 854 goto done; 855 } 856 } else if (nameileafonly < 0 || 857 vmiodirenable == 0) { 858 /* 859 * Do not reuse namei-cached directory 860 * vnodes if nameileafonly is -1 or 861 * if VMIO backing for directories is 862 * turned off (otherwise we reuse them 863 * too quickly). 864 */ 865 error = EBUSY; 866 goto done; 867 } 868 } 869 return (0); 870 done: 871 VOP_UNLOCK(vp, 0, td); 872 return (error); 873 } 874 875 /* 876 * Return the next vnode from the free list. 877 */ 878 int 879 getnewvnode(tag, mp, vops, vpp) 880 const char *tag; 881 struct mount *mp; 882 vop_t **vops; 883 struct vnode **vpp; 884 { 885 int s; 886 struct thread *td = curthread; /* XXX */ 887 struct vnode *vp = NULL; 888 struct mount *vnmp; 889 890 s = splbio(); 891 mtx_lock(&vnode_free_list_mtx); 892 893 /* 894 * Try to reuse vnodes if we hit the max. This situation only 895 * occurs in certain large-memory (2G+) situations. We cannot 896 * attempt to directly reclaim vnodes due to nasty recursion 897 * problems. 898 */ 899 if (vnlruproc_sig == 0 && numvnodes - freevnodes > desiredvnodes) { 900 vnlruproc_sig = 1; /* avoid unnecessary wakeups */ 901 wakeup(vnlruproc); 902 } 903 904 /* 905 * Attempt to reuse a vnode already on the free list, allocating 906 * a new vnode if we can't find one or if we have not reached a 907 * good minimum for good LRU performance. 908 */ 909 910 if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) { 911 int error; 912 int count; 913 914 for (count = 0; count < freevnodes; count++) { 915 vp = TAILQ_FIRST(&vnode_free_list); 916 917 KASSERT(vp->v_usecount == 0, 918 ("getnewvnode: free vnode isn't")); 919 920 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 921 /* 922 * We have to drop the free list mtx to avoid lock 923 * order reversals with interlock. 924 */ 925 mtx_unlock(&vnode_free_list_mtx); 926 error = vcanrecycle(vp, &vnmp); 927 mtx_lock(&vnode_free_list_mtx); 928 if (error == 0) 929 break; 930 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 931 vp = NULL; 932 } 933 } 934 if (vp) { 935 freevnodes--; 936 mtx_unlock(&vnode_free_list_mtx); 937 938 cache_purge(vp); 939 VI_LOCK(vp); 940 vp->v_iflag |= VI_DOOMED; 941 vp->v_iflag &= ~VI_FREE; 942 if (vp->v_type != VBAD) { 943 VOP_UNLOCK(vp, 0, td); 944 vgonel(vp, td); 945 VI_LOCK(vp); 946 } else { 947 VOP_UNLOCK(vp, 0, td); 948 } 949 vn_finished_write(vnmp); 950 951 #ifdef INVARIANTS 952 { 953 if (vp->v_data) 954 panic("cleaned vnode isn't"); 955 if (vp->v_numoutput) 956 panic("Clean vnode has pending I/O's"); 957 if (vp->v_writecount != 0) 958 panic("Non-zero write count"); 959 } 960 #endif 961 if (vp->v_pollinfo) { 962 mtx_destroy(&vp->v_pollinfo->vpi_lock); 963 uma_zfree(vnodepoll_zone, vp->v_pollinfo); 964 } 965 vp->v_pollinfo = NULL; 966 #ifdef MAC 967 mac_destroy_vnode(vp); 968 #endif 969 vp->v_iflag = 0; 970 vp->v_vflag = 0; 971 vp->v_lastw = 0; 972 vp->v_lasta = 0; 973 vp->v_cstart = 0; 974 vp->v_clen = 0; 975 vp->v_socket = 0; 976 lockdestroy(vp->v_vnlock); 977 lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE); 978 KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL")); 979 KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL")); 980 } else { 981 numvnodes++; 982 mtx_unlock(&vnode_free_list_mtx); 983 984 vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO); 985 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 986 VI_LOCK(vp); 987 vp->v_dd = vp; 988 vp->v_vnlock = &vp->v_lock; 989 lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE); 990 cache_purge(vp); 991 LIST_INIT(&vp->v_cache_src); 992 TAILQ_INIT(&vp->v_cache_dst); 993 } 994 995 TAILQ_INIT(&vp->v_cleanblkhd); 996 TAILQ_INIT(&vp->v_dirtyblkhd); 997 vp->v_type = VNON; 998 vp->v_tag = tag; 999 vp->v_op = vops; 1000 *vpp = vp; 1001 vp->v_usecount = 1; 1002 vp->v_data = 0; 1003 vp->v_cachedid = -1; 1004 VI_UNLOCK(vp); 1005 #ifdef MAC 1006 mac_init_vnode(vp); 1007 #endif 1008 insmntque(vp, mp); 1009 1010 return (0); 1011 } 1012 1013 /* 1014 * Move a vnode from one mount queue to another. 1015 */ 1016 static void 1017 insmntque(vp, mp) 1018 register struct vnode *vp; 1019 register struct mount *mp; 1020 { 1021 1022 mtx_lock(&mntvnode_mtx); 1023 /* 1024 * Delete from old mount point vnode list, if on one. 1025 */ 1026 if (vp->v_mount != NULL) 1027 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes); 1028 /* 1029 * Insert into list of vnodes for the new mount point, if available. 1030 */ 1031 if ((vp->v_mount = mp) == NULL) { 1032 mtx_unlock(&mntvnode_mtx); 1033 return; 1034 } 1035 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1036 mtx_unlock(&mntvnode_mtx); 1037 } 1038 1039 /* 1040 * Update outstanding I/O count and do wakeup if requested. 1041 */ 1042 void 1043 vwakeup(bp) 1044 register struct buf *bp; 1045 { 1046 register struct vnode *vp; 1047 1048 bp->b_flags &= ~B_WRITEINPROG; 1049 if ((vp = bp->b_vp)) { 1050 VI_LOCK(vp); 1051 vp->v_numoutput--; 1052 if (vp->v_numoutput < 0) 1053 panic("vwakeup: neg numoutput"); 1054 if ((vp->v_numoutput == 0) && (vp->v_iflag & VI_BWAIT)) { 1055 vp->v_iflag &= ~VI_BWAIT; 1056 wakeup(&vp->v_numoutput); 1057 } 1058 VI_UNLOCK(vp); 1059 } 1060 } 1061 1062 /* 1063 * Flush out and invalidate all buffers associated with a vnode. 1064 * Called with the underlying object locked. 1065 */ 1066 int 1067 vinvalbuf(vp, flags, cred, td, slpflag, slptimeo) 1068 struct vnode *vp; 1069 int flags; 1070 struct ucred *cred; 1071 struct thread *td; 1072 int slpflag, slptimeo; 1073 { 1074 struct buf *blist; 1075 int s, error; 1076 vm_object_t object; 1077 1078 GIANT_REQUIRED; 1079 1080 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 1081 1082 VI_LOCK(vp); 1083 if (flags & V_SAVE) { 1084 s = splbio(); 1085 while (vp->v_numoutput) { 1086 vp->v_iflag |= VI_BWAIT; 1087 error = msleep(&vp->v_numoutput, VI_MTX(vp), 1088 slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo); 1089 if (error) { 1090 VI_UNLOCK(vp); 1091 splx(s); 1092 return (error); 1093 } 1094 } 1095 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) { 1096 splx(s); 1097 VI_UNLOCK(vp); 1098 if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0) 1099 return (error); 1100 /* 1101 * XXX We could save a lock/unlock if this was only 1102 * enabled under INVARIANTS 1103 */ 1104 VI_LOCK(vp); 1105 s = splbio(); 1106 if (vp->v_numoutput > 0 || 1107 !TAILQ_EMPTY(&vp->v_dirtyblkhd)) 1108 panic("vinvalbuf: dirty bufs"); 1109 } 1110 splx(s); 1111 } 1112 s = splbio(); 1113 /* 1114 * If you alter this loop please notice that interlock is dropped and 1115 * reacquired in flushbuflist. Special care is needed to ensure that 1116 * no race conditions occur from this. 1117 */ 1118 for (error = 0;;) { 1119 if ((blist = TAILQ_FIRST(&vp->v_cleanblkhd)) != 0 && 1120 flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) { 1121 if (error) 1122 break; 1123 continue; 1124 } 1125 if ((blist = TAILQ_FIRST(&vp->v_dirtyblkhd)) != 0 && 1126 flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) { 1127 if (error) 1128 break; 1129 continue; 1130 } 1131 break; 1132 } 1133 if (error) { 1134 splx(s); 1135 VI_UNLOCK(vp); 1136 return (error); 1137 } 1138 1139 /* 1140 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 1141 * have write I/O in-progress but if there is a VM object then the 1142 * VM object can also have read-I/O in-progress. 1143 */ 1144 do { 1145 while (vp->v_numoutput > 0) { 1146 vp->v_iflag |= VI_BWAIT; 1147 msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vnvlbv", 0); 1148 } 1149 VI_UNLOCK(vp); 1150 if (VOP_GETVOBJECT(vp, &object) == 0) { 1151 while (object->paging_in_progress) 1152 vm_object_pip_sleep(object, "vnvlbx"); 1153 } 1154 VI_LOCK(vp); 1155 } while (vp->v_numoutput > 0); 1156 VI_UNLOCK(vp); 1157 1158 splx(s); 1159 1160 /* 1161 * Destroy the copy in the VM cache, too. 1162 */ 1163 if (VOP_GETVOBJECT(vp, &object) == 0) { 1164 vm_object_page_remove(object, 0, 0, 1165 (flags & V_SAVE) ? TRUE : FALSE); 1166 } 1167 1168 #ifdef INVARIANTS 1169 VI_LOCK(vp); 1170 if ((flags & (V_ALT | V_NORMAL)) == 0 && 1171 (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || 1172 !TAILQ_EMPTY(&vp->v_cleanblkhd))) 1173 panic("vinvalbuf: flush failed"); 1174 VI_UNLOCK(vp); 1175 #endif 1176 return (0); 1177 } 1178 1179 /* 1180 * Flush out buffers on the specified list. 1181 * 1182 */ 1183 static int 1184 flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp) 1185 struct buf *blist; 1186 int flags; 1187 struct vnode *vp; 1188 int slpflag, slptimeo; 1189 int *errorp; 1190 { 1191 struct buf *bp, *nbp; 1192 int found, error; 1193 1194 ASSERT_VI_LOCKED(vp, "flushbuflist"); 1195 1196 for (found = 0, bp = blist; bp; bp = nbp) { 1197 nbp = TAILQ_NEXT(bp, b_vnbufs); 1198 VI_UNLOCK(vp); 1199 if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) || 1200 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) { 1201 VI_LOCK(vp); 1202 continue; 1203 } 1204 found += 1; 1205 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 1206 error = BUF_TIMELOCK(bp, 1207 LK_EXCLUSIVE | LK_SLEEPFAIL, 1208 "flushbuf", slpflag, slptimeo); 1209 if (error != ENOLCK) 1210 *errorp = error; 1211 goto done; 1212 } 1213 /* 1214 * XXX Since there are no node locks for NFS, I 1215 * believe there is a slight chance that a delayed 1216 * write will occur while sleeping just above, so 1217 * check for it. Note that vfs_bio_awrite expects 1218 * buffers to reside on a queue, while BUF_WRITE and 1219 * brelse do not. 1220 */ 1221 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 1222 (flags & V_SAVE)) { 1223 1224 if (bp->b_vp == vp) { 1225 if (bp->b_flags & B_CLUSTEROK) { 1226 BUF_UNLOCK(bp); 1227 vfs_bio_awrite(bp); 1228 } else { 1229 bremfree(bp); 1230 bp->b_flags |= B_ASYNC; 1231 BUF_WRITE(bp); 1232 } 1233 } else { 1234 bremfree(bp); 1235 (void) BUF_WRITE(bp); 1236 } 1237 goto done; 1238 } 1239 bremfree(bp); 1240 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF); 1241 bp->b_flags &= ~B_ASYNC; 1242 brelse(bp); 1243 VI_LOCK(vp); 1244 } 1245 return (found); 1246 done: 1247 VI_LOCK(vp); 1248 return (found); 1249 } 1250 1251 /* 1252 * Truncate a file's buffer and pages to a specified length. This 1253 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 1254 * sync activity. 1255 */ 1256 int 1257 vtruncbuf(vp, cred, td, length, blksize) 1258 register struct vnode *vp; 1259 struct ucred *cred; 1260 struct thread *td; 1261 off_t length; 1262 int blksize; 1263 { 1264 register struct buf *bp; 1265 struct buf *nbp; 1266 int s, anyfreed; 1267 int trunclbn; 1268 1269 /* 1270 * Round up to the *next* lbn. 1271 */ 1272 trunclbn = (length + blksize - 1) / blksize; 1273 1274 s = splbio(); 1275 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 1276 restart: 1277 VI_LOCK(vp); 1278 anyfreed = 1; 1279 for (;anyfreed;) { 1280 anyfreed = 0; 1281 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 1282 nbp = TAILQ_NEXT(bp, b_vnbufs); 1283 VI_UNLOCK(vp); 1284 if (bp->b_lblkno >= trunclbn) { 1285 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 1286 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL); 1287 goto restart; 1288 } else { 1289 bremfree(bp); 1290 bp->b_flags |= (B_INVAL | B_RELBUF); 1291 bp->b_flags &= ~B_ASYNC; 1292 brelse(bp); 1293 anyfreed = 1; 1294 } 1295 if (nbp && 1296 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 1297 (nbp->b_vp != vp) || 1298 (nbp->b_flags & B_DELWRI))) { 1299 goto restart; 1300 } 1301 } 1302 VI_LOCK(vp); 1303 } 1304 1305 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1306 nbp = TAILQ_NEXT(bp, b_vnbufs); 1307 VI_UNLOCK(vp); 1308 if (bp->b_lblkno >= trunclbn) { 1309 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 1310 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL); 1311 goto restart; 1312 } else { 1313 bremfree(bp); 1314 bp->b_flags |= (B_INVAL | B_RELBUF); 1315 bp->b_flags &= ~B_ASYNC; 1316 brelse(bp); 1317 anyfreed = 1; 1318 } 1319 if (nbp && 1320 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 1321 (nbp->b_vp != vp) || 1322 (nbp->b_flags & B_DELWRI) == 0)) { 1323 goto restart; 1324 } 1325 } 1326 VI_LOCK(vp); 1327 } 1328 } 1329 1330 if (length > 0) { 1331 restartsync: 1332 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1333 nbp = TAILQ_NEXT(bp, b_vnbufs); 1334 VI_UNLOCK(vp); 1335 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) { 1336 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 1337 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL); 1338 goto restart; 1339 } else { 1340 bremfree(bp); 1341 if (bp->b_vp == vp) { 1342 bp->b_flags |= B_ASYNC; 1343 } else { 1344 bp->b_flags &= ~B_ASYNC; 1345 } 1346 BUF_WRITE(bp); 1347 } 1348 VI_LOCK(vp); 1349 goto restartsync; 1350 } 1351 VI_LOCK(vp); 1352 } 1353 } 1354 1355 while (vp->v_numoutput > 0) { 1356 vp->v_iflag |= VI_BWAIT; 1357 msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vbtrunc", 0); 1358 } 1359 VI_UNLOCK(vp); 1360 splx(s); 1361 1362 vnode_pager_setsize(vp, length); 1363 1364 return (0); 1365 } 1366 1367 /* 1368 * buf_splay() - splay tree core for the clean/dirty list of buffers in 1369 * a vnode. 1370 * 1371 * NOTE: We have to deal with the special case of a background bitmap 1372 * buffer, a situation where two buffers will have the same logical 1373 * block offset. We want (1) only the foreground buffer to be accessed 1374 * in a lookup and (2) must differentiate between the foreground and 1375 * background buffer in the splay tree algorithm because the splay 1376 * tree cannot normally handle multiple entities with the same 'index'. 1377 * We accomplish this by adding differentiating flags to the splay tree's 1378 * numerical domain. 1379 */ 1380 static 1381 struct buf * 1382 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root) 1383 { 1384 struct buf dummy; 1385 struct buf *lefttreemax, *righttreemin, *y; 1386 1387 if (root == NULL) 1388 return (NULL); 1389 lefttreemax = righttreemin = &dummy; 1390 for (;;) { 1391 if (lblkno < root->b_lblkno || 1392 (lblkno == root->b_lblkno && 1393 (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) { 1394 if ((y = root->b_left) == NULL) 1395 break; 1396 if (lblkno < y->b_lblkno) { 1397 /* Rotate right. */ 1398 root->b_left = y->b_right; 1399 y->b_right = root; 1400 root = y; 1401 if ((y = root->b_left) == NULL) 1402 break; 1403 } 1404 /* Link into the new root's right tree. */ 1405 righttreemin->b_left = root; 1406 righttreemin = root; 1407 } else if (lblkno > root->b_lblkno || 1408 (lblkno == root->b_lblkno && 1409 (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) { 1410 if ((y = root->b_right) == NULL) 1411 break; 1412 if (lblkno > y->b_lblkno) { 1413 /* Rotate left. */ 1414 root->b_right = y->b_left; 1415 y->b_left = root; 1416 root = y; 1417 if ((y = root->b_right) == NULL) 1418 break; 1419 } 1420 /* Link into the new root's left tree. */ 1421 lefttreemax->b_right = root; 1422 lefttreemax = root; 1423 } else { 1424 break; 1425 } 1426 root = y; 1427 } 1428 /* Assemble the new root. */ 1429 lefttreemax->b_right = root->b_left; 1430 righttreemin->b_left = root->b_right; 1431 root->b_left = dummy.b_right; 1432 root->b_right = dummy.b_left; 1433 return (root); 1434 } 1435 1436 static 1437 void 1438 buf_vlist_remove(struct buf *bp) 1439 { 1440 struct vnode *vp = bp->b_vp; 1441 struct buf *root; 1442 1443 ASSERT_VI_LOCKED(vp, "buf_vlist_remove"); 1444 if (bp->b_xflags & BX_VNDIRTY) { 1445 if (bp != vp->v_dirtyblkroot) { 1446 root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot); 1447 KASSERT(root == bp, ("splay lookup failed during dirty remove")); 1448 } 1449 if (bp->b_left == NULL) { 1450 root = bp->b_right; 1451 } else { 1452 root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left); 1453 root->b_right = bp->b_right; 1454 } 1455 vp->v_dirtyblkroot = root; 1456 TAILQ_REMOVE(&vp->v_dirtyblkhd, bp, b_vnbufs); 1457 } else { 1458 /* KASSERT(bp->b_xflags & BX_VNCLEAN, ("bp wasn't clean")); */ 1459 if (bp != vp->v_cleanblkroot) { 1460 root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot); 1461 KASSERT(root == bp, ("splay lookup failed during clean remove")); 1462 } 1463 if (bp->b_left == NULL) { 1464 root = bp->b_right; 1465 } else { 1466 root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left); 1467 root->b_right = bp->b_right; 1468 } 1469 vp->v_cleanblkroot = root; 1470 TAILQ_REMOVE(&vp->v_cleanblkhd, bp, b_vnbufs); 1471 } 1472 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 1473 } 1474 1475 /* 1476 * Add the buffer to the sorted clean or dirty block list using a 1477 * splay tree algorithm. 1478 * 1479 * NOTE: xflags is passed as a constant, optimizing this inline function! 1480 */ 1481 static 1482 void 1483 buf_vlist_add(struct buf *bp, struct vnode *vp, b_xflags_t xflags) 1484 { 1485 struct buf *root; 1486 1487 ASSERT_VI_LOCKED(vp, "buf_vlist_add"); 1488 bp->b_xflags |= xflags; 1489 if (xflags & BX_VNDIRTY) { 1490 root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot); 1491 if (root == NULL) { 1492 bp->b_left = NULL; 1493 bp->b_right = NULL; 1494 TAILQ_INSERT_TAIL(&vp->v_dirtyblkhd, bp, b_vnbufs); 1495 } else if (bp->b_lblkno < root->b_lblkno || 1496 (bp->b_lblkno == root->b_lblkno && 1497 (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) { 1498 bp->b_left = root->b_left; 1499 bp->b_right = root; 1500 root->b_left = NULL; 1501 TAILQ_INSERT_BEFORE(root, bp, b_vnbufs); 1502 } else { 1503 bp->b_right = root->b_right; 1504 bp->b_left = root; 1505 root->b_right = NULL; 1506 TAILQ_INSERT_AFTER(&vp->v_dirtyblkhd, 1507 root, bp, b_vnbufs); 1508 } 1509 vp->v_dirtyblkroot = bp; 1510 } else { 1511 /* KASSERT(xflags & BX_VNCLEAN, ("xflags not clean")); */ 1512 root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot); 1513 if (root == NULL) { 1514 bp->b_left = NULL; 1515 bp->b_right = NULL; 1516 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs); 1517 } else if (bp->b_lblkno < root->b_lblkno || 1518 (bp->b_lblkno == root->b_lblkno && 1519 (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) { 1520 bp->b_left = root->b_left; 1521 bp->b_right = root; 1522 root->b_left = NULL; 1523 TAILQ_INSERT_BEFORE(root, bp, b_vnbufs); 1524 } else { 1525 bp->b_right = root->b_right; 1526 bp->b_left = root; 1527 root->b_right = NULL; 1528 TAILQ_INSERT_AFTER(&vp->v_cleanblkhd, 1529 root, bp, b_vnbufs); 1530 } 1531 vp->v_cleanblkroot = bp; 1532 } 1533 } 1534 1535 #ifndef USE_BUFHASH 1536 1537 /* 1538 * Lookup a buffer using the splay tree. Note that we specifically avoid 1539 * shadow buffers used in background bitmap writes. 1540 * 1541 * This code isn't quite efficient as it could be because we are maintaining 1542 * two sorted lists and do not know which list the block resides in. 1543 */ 1544 struct buf * 1545 gbincore(struct vnode *vp, daddr_t lblkno) 1546 { 1547 struct buf *bp; 1548 1549 GIANT_REQUIRED; 1550 1551 ASSERT_VI_LOCKED(vp, "gbincore"); 1552 bp = vp->v_cleanblkroot = buf_splay(lblkno, 0, vp->v_cleanblkroot); 1553 if (bp && bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1554 return(bp); 1555 bp = vp->v_dirtyblkroot = buf_splay(lblkno, 0, vp->v_dirtyblkroot); 1556 if (bp && bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1557 return(bp); 1558 return(NULL); 1559 } 1560 1561 #endif 1562 1563 /* 1564 * Associate a buffer with a vnode. 1565 */ 1566 void 1567 bgetvp(vp, bp) 1568 register struct vnode *vp; 1569 register struct buf *bp; 1570 { 1571 int s; 1572 1573 KASSERT(bp->b_vp == NULL, ("bgetvp: not free")); 1574 1575 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 1576 ("bgetvp: bp already attached! %p", bp)); 1577 1578 VI_LOCK(vp); 1579 vholdl(vp); 1580 bp->b_vp = vp; 1581 bp->b_dev = vn_todev(vp); 1582 /* 1583 * Insert onto list for new vnode. 1584 */ 1585 s = splbio(); 1586 buf_vlist_add(bp, vp, BX_VNCLEAN); 1587 splx(s); 1588 VI_UNLOCK(vp); 1589 } 1590 1591 /* 1592 * Disassociate a buffer from a vnode. 1593 */ 1594 void 1595 brelvp(bp) 1596 register struct buf *bp; 1597 { 1598 struct vnode *vp; 1599 int s; 1600 1601 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 1602 1603 /* 1604 * Delete from old vnode list, if on one. 1605 */ 1606 vp = bp->b_vp; 1607 s = splbio(); 1608 VI_LOCK(vp); 1609 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 1610 buf_vlist_remove(bp); 1611 if ((vp->v_iflag & VI_ONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) { 1612 vp->v_iflag &= ~VI_ONWORKLST; 1613 mtx_lock(&sync_mtx); 1614 LIST_REMOVE(vp, v_synclist); 1615 mtx_unlock(&sync_mtx); 1616 } 1617 vdropl(vp); 1618 VI_UNLOCK(vp); 1619 bp->b_vp = (struct vnode *) 0; 1620 if (bp->b_object) 1621 bp->b_object = NULL; 1622 splx(s); 1623 } 1624 1625 /* 1626 * Add an item to the syncer work queue. 1627 */ 1628 static void 1629 vn_syncer_add_to_worklist(struct vnode *vp, int delay) 1630 { 1631 int s, slot; 1632 1633 s = splbio(); 1634 ASSERT_VI_LOCKED(vp, "vn_syncer_add_to_worklist"); 1635 1636 mtx_lock(&sync_mtx); 1637 if (vp->v_iflag & VI_ONWORKLST) 1638 LIST_REMOVE(vp, v_synclist); 1639 else 1640 vp->v_iflag |= VI_ONWORKLST; 1641 1642 if (delay > syncer_maxdelay - 2) 1643 delay = syncer_maxdelay - 2; 1644 slot = (syncer_delayno + delay) & syncer_mask; 1645 1646 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist); 1647 mtx_unlock(&sync_mtx); 1648 1649 splx(s); 1650 } 1651 1652 struct proc *updateproc; 1653 static void sched_sync(void); 1654 static struct kproc_desc up_kp = { 1655 "syncer", 1656 sched_sync, 1657 &updateproc 1658 }; 1659 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp) 1660 1661 /* 1662 * System filesystem synchronizer daemon. 1663 */ 1664 static void 1665 sched_sync(void) 1666 { 1667 struct synclist *slp; 1668 struct vnode *vp; 1669 struct mount *mp; 1670 long starttime; 1671 int s; 1672 struct thread *td = FIRST_THREAD_IN_PROC(updateproc); /* XXXKSE */ 1673 1674 mtx_lock(&Giant); 1675 1676 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, td->td_proc, 1677 SHUTDOWN_PRI_LAST); 1678 1679 for (;;) { 1680 kthread_suspend_check(td->td_proc); 1681 1682 starttime = time_second; 1683 1684 /* 1685 * Push files whose dirty time has expired. Be careful 1686 * of interrupt race on slp queue. 1687 */ 1688 s = splbio(); 1689 mtx_lock(&sync_mtx); 1690 slp = &syncer_workitem_pending[syncer_delayno]; 1691 syncer_delayno += 1; 1692 if (syncer_delayno == syncer_maxdelay) 1693 syncer_delayno = 0; 1694 splx(s); 1695 1696 while ((vp = LIST_FIRST(slp)) != NULL) { 1697 mtx_unlock(&sync_mtx); 1698 if (VOP_ISLOCKED(vp, NULL) == 0 && 1699 vn_start_write(vp, &mp, V_NOWAIT) == 0) { 1700 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 1701 (void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td); 1702 VOP_UNLOCK(vp, 0, td); 1703 vn_finished_write(mp); 1704 } 1705 s = splbio(); 1706 mtx_lock(&sync_mtx); 1707 if (LIST_FIRST(slp) == vp) { 1708 mtx_unlock(&sync_mtx); 1709 /* 1710 * Note: VFS vnodes can remain on the 1711 * worklist too with no dirty blocks, but 1712 * since sync_fsync() moves it to a different 1713 * slot we are safe. 1714 */ 1715 VI_LOCK(vp); 1716 if (TAILQ_EMPTY(&vp->v_dirtyblkhd) && 1717 !vn_isdisk(vp, NULL)) { 1718 panic("sched_sync: fsync failed " 1719 "vp %p tag %s", vp, vp->v_tag); 1720 } 1721 /* 1722 * Put us back on the worklist. The worklist 1723 * routine will remove us from our current 1724 * position and then add us back in at a later 1725 * position. 1726 */ 1727 vn_syncer_add_to_worklist(vp, syncdelay); 1728 VI_UNLOCK(vp); 1729 mtx_lock(&sync_mtx); 1730 } 1731 splx(s); 1732 } 1733 mtx_unlock(&sync_mtx); 1734 1735 /* 1736 * Do soft update processing. 1737 */ 1738 if (softdep_process_worklist_hook != NULL) 1739 (*softdep_process_worklist_hook)(NULL); 1740 1741 /* 1742 * The variable rushjob allows the kernel to speed up the 1743 * processing of the filesystem syncer process. A rushjob 1744 * value of N tells the filesystem syncer to process the next 1745 * N seconds worth of work on its queue ASAP. Currently rushjob 1746 * is used by the soft update code to speed up the filesystem 1747 * syncer process when the incore state is getting so far 1748 * ahead of the disk that the kernel memory pool is being 1749 * threatened with exhaustion. 1750 */ 1751 mtx_lock(&sync_mtx); 1752 if (rushjob > 0) { 1753 rushjob -= 1; 1754 mtx_unlock(&sync_mtx); 1755 continue; 1756 } 1757 mtx_unlock(&sync_mtx); 1758 /* 1759 * If it has taken us less than a second to process the 1760 * current work, then wait. Otherwise start right over 1761 * again. We can still lose time if any single round 1762 * takes more than two seconds, but it does not really 1763 * matter as we are just trying to generally pace the 1764 * filesystem activity. 1765 */ 1766 if (time_second == starttime) 1767 tsleep(&lbolt, PPAUSE, "syncer", 0); 1768 } 1769 } 1770 1771 /* 1772 * Request the syncer daemon to speed up its work. 1773 * We never push it to speed up more than half of its 1774 * normal turn time, otherwise it could take over the cpu. 1775 * XXXKSE only one update? 1776 */ 1777 int 1778 speedup_syncer() 1779 { 1780 struct thread *td; 1781 int ret = 0; 1782 1783 td = FIRST_THREAD_IN_PROC(updateproc); 1784 mtx_lock_spin(&sched_lock); 1785 if (td->td_wchan == &lbolt) { 1786 unsleep(td); 1787 TD_CLR_SLEEPING(td); 1788 setrunnable(td); 1789 } 1790 mtx_unlock_spin(&sched_lock); 1791 mtx_lock(&sync_mtx); 1792 if (rushjob < syncdelay / 2) { 1793 rushjob += 1; 1794 stat_rush_requests += 1; 1795 ret = 1; 1796 } 1797 mtx_unlock(&sync_mtx); 1798 return (ret); 1799 } 1800 1801 /* 1802 * Associate a p-buffer with a vnode. 1803 * 1804 * Also sets B_PAGING flag to indicate that vnode is not fully associated 1805 * with the buffer. i.e. the bp has not been linked into the vnode or 1806 * ref-counted. 1807 */ 1808 void 1809 pbgetvp(vp, bp) 1810 register struct vnode *vp; 1811 register struct buf *bp; 1812 { 1813 1814 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free")); 1815 1816 bp->b_vp = vp; 1817 bp->b_flags |= B_PAGING; 1818 bp->b_dev = vn_todev(vp); 1819 } 1820 1821 /* 1822 * Disassociate a p-buffer from a vnode. 1823 */ 1824 void 1825 pbrelvp(bp) 1826 register struct buf *bp; 1827 { 1828 1829 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL")); 1830 1831 /* XXX REMOVE ME */ 1832 VI_LOCK(bp->b_vp); 1833 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) { 1834 panic( 1835 "relpbuf(): b_vp was probably reassignbuf()d %p %x", 1836 bp, 1837 (int)bp->b_flags 1838 ); 1839 } 1840 VI_UNLOCK(bp->b_vp); 1841 bp->b_vp = (struct vnode *) 0; 1842 bp->b_flags &= ~B_PAGING; 1843 } 1844 1845 /* 1846 * Reassign a buffer from one vnode to another. 1847 * Used to assign file specific control information 1848 * (indirect blocks) to the vnode to which they belong. 1849 */ 1850 void 1851 reassignbuf(bp, newvp) 1852 register struct buf *bp; 1853 register struct vnode *newvp; 1854 { 1855 int delay; 1856 int s; 1857 1858 if (newvp == NULL) { 1859 printf("reassignbuf: NULL"); 1860 return; 1861 } 1862 ++reassignbufcalls; 1863 1864 /* 1865 * B_PAGING flagged buffers cannot be reassigned because their vp 1866 * is not fully linked in. 1867 */ 1868 if (bp->b_flags & B_PAGING) 1869 panic("cannot reassign paging buffer"); 1870 1871 s = splbio(); 1872 /* 1873 * Delete from old vnode list, if on one. 1874 */ 1875 VI_LOCK(bp->b_vp); 1876 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) { 1877 buf_vlist_remove(bp); 1878 if (bp->b_vp != newvp) { 1879 vdropl(bp->b_vp); 1880 bp->b_vp = NULL; /* for clarification */ 1881 } 1882 } 1883 VI_UNLOCK(bp->b_vp); 1884 /* 1885 * If dirty, put on list of dirty buffers; otherwise insert onto list 1886 * of clean buffers. 1887 */ 1888 VI_LOCK(newvp); 1889 if (bp->b_flags & B_DELWRI) { 1890 if ((newvp->v_iflag & VI_ONWORKLST) == 0) { 1891 switch (newvp->v_type) { 1892 case VDIR: 1893 delay = dirdelay; 1894 break; 1895 case VCHR: 1896 if (newvp->v_rdev->si_mountpoint != NULL) { 1897 delay = metadelay; 1898 break; 1899 } 1900 /* FALLTHROUGH */ 1901 default: 1902 delay = filedelay; 1903 } 1904 vn_syncer_add_to_worklist(newvp, delay); 1905 } 1906 buf_vlist_add(bp, newvp, BX_VNDIRTY); 1907 } else { 1908 buf_vlist_add(bp, newvp, BX_VNCLEAN); 1909 1910 if ((newvp->v_iflag & VI_ONWORKLST) && 1911 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) { 1912 mtx_lock(&sync_mtx); 1913 LIST_REMOVE(newvp, v_synclist); 1914 mtx_unlock(&sync_mtx); 1915 newvp->v_iflag &= ~VI_ONWORKLST; 1916 } 1917 } 1918 if (bp->b_vp != newvp) { 1919 bp->b_vp = newvp; 1920 vholdl(bp->b_vp); 1921 } 1922 VI_UNLOCK(newvp); 1923 splx(s); 1924 } 1925 1926 /* 1927 * Create a vnode for a device. 1928 * Used for mounting the root filesystem. 1929 */ 1930 int 1931 bdevvp(dev, vpp) 1932 dev_t dev; 1933 struct vnode **vpp; 1934 { 1935 register struct vnode *vp; 1936 struct vnode *nvp; 1937 int error; 1938 1939 if (dev == NODEV) { 1940 *vpp = NULLVP; 1941 return (ENXIO); 1942 } 1943 if (vfinddev(dev, VCHR, vpp)) 1944 return (0); 1945 error = getnewvnode("none", (struct mount *)0, spec_vnodeop_p, &nvp); 1946 if (error) { 1947 *vpp = NULLVP; 1948 return (error); 1949 } 1950 vp = nvp; 1951 vp->v_type = VCHR; 1952 addalias(vp, dev); 1953 *vpp = vp; 1954 return (0); 1955 } 1956 1957 static void 1958 v_incr_usecount(struct vnode *vp, int delta) 1959 { 1960 vp->v_usecount += delta; 1961 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 1962 mtx_lock(&spechash_mtx); 1963 vp->v_rdev->si_usecount += delta; 1964 mtx_unlock(&spechash_mtx); 1965 } 1966 } 1967 1968 /* 1969 * Add vnode to the alias list hung off the dev_t. 1970 * 1971 * The reason for this gunk is that multiple vnodes can reference 1972 * the same physical device, so checking vp->v_usecount to see 1973 * how many users there are is inadequate; the v_usecount for 1974 * the vnodes need to be accumulated. vcount() does that. 1975 */ 1976 struct vnode * 1977 addaliasu(nvp, nvp_rdev) 1978 struct vnode *nvp; 1979 udev_t nvp_rdev; 1980 { 1981 struct vnode *ovp; 1982 vop_t **ops; 1983 dev_t dev; 1984 1985 if (nvp->v_type == VBLK) 1986 return (nvp); 1987 if (nvp->v_type != VCHR) 1988 panic("addaliasu on non-special vnode"); 1989 dev = udev2dev(nvp_rdev, 0); 1990 /* 1991 * Check to see if we have a bdevvp vnode with no associated 1992 * filesystem. If so, we want to associate the filesystem of 1993 * the new newly instigated vnode with the bdevvp vnode and 1994 * discard the newly created vnode rather than leaving the 1995 * bdevvp vnode lying around with no associated filesystem. 1996 */ 1997 if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) { 1998 addalias(nvp, dev); 1999 return (nvp); 2000 } 2001 /* 2002 * Discard unneeded vnode, but save its node specific data. 2003 * Note that if there is a lock, it is carried over in the 2004 * node specific data to the replacement vnode. 2005 */ 2006 vref(ovp); 2007 ovp->v_data = nvp->v_data; 2008 ovp->v_tag = nvp->v_tag; 2009 nvp->v_data = NULL; 2010 lockdestroy(ovp->v_vnlock); 2011 lockinit(ovp->v_vnlock, PVFS, nvp->v_vnlock->lk_wmesg, 2012 nvp->v_vnlock->lk_timo, nvp->v_vnlock->lk_flags & LK_EXTFLG_MASK); 2013 ops = ovp->v_op; 2014 ovp->v_op = nvp->v_op; 2015 if (VOP_ISLOCKED(nvp, curthread)) { 2016 VOP_UNLOCK(nvp, 0, curthread); 2017 vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread); 2018 } 2019 nvp->v_op = ops; 2020 insmntque(ovp, nvp->v_mount); 2021 vrele(nvp); 2022 vgone(nvp); 2023 return (ovp); 2024 } 2025 2026 /* This is a local helper function that do the same as addaliasu, but for a 2027 * dev_t instead of an udev_t. */ 2028 static void 2029 addalias(nvp, dev) 2030 struct vnode *nvp; 2031 dev_t dev; 2032 { 2033 2034 KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode")); 2035 nvp->v_rdev = dev; 2036 VI_LOCK(nvp); 2037 mtx_lock(&spechash_mtx); 2038 SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext); 2039 dev->si_usecount += nvp->v_usecount; 2040 mtx_unlock(&spechash_mtx); 2041 VI_UNLOCK(nvp); 2042 } 2043 2044 /* 2045 * Grab a particular vnode from the free list, increment its 2046 * reference count and lock it. The vnode lock bit is set if the 2047 * vnode is being eliminated in vgone. The process is awakened 2048 * when the transition is completed, and an error returned to 2049 * indicate that the vnode is no longer usable (possibly having 2050 * been changed to a new filesystem type). 2051 */ 2052 int 2053 vget(vp, flags, td) 2054 register struct vnode *vp; 2055 int flags; 2056 struct thread *td; 2057 { 2058 int error; 2059 2060 /* 2061 * If the vnode is in the process of being cleaned out for 2062 * another use, we wait for the cleaning to finish and then 2063 * return failure. Cleaning is determined by checking that 2064 * the VI_XLOCK flag is set. 2065 */ 2066 if ((flags & LK_INTERLOCK) == 0) 2067 VI_LOCK(vp); 2068 if (vp->v_iflag & VI_XLOCK && vp->v_vxproc != curthread) { 2069 vp->v_iflag |= VI_XWANT; 2070 msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0); 2071 return (ENOENT); 2072 } 2073 2074 v_incr_usecount(vp, 1); 2075 2076 if (VSHOULDBUSY(vp)) 2077 vbusy(vp); 2078 if (flags & LK_TYPE_MASK) { 2079 if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) { 2080 /* 2081 * must expand vrele here because we do not want 2082 * to call VOP_INACTIVE if the reference count 2083 * drops back to zero since it was never really 2084 * active. We must remove it from the free list 2085 * before sleeping so that multiple processes do 2086 * not try to recycle it. 2087 */ 2088 VI_LOCK(vp); 2089 v_incr_usecount(vp, -1); 2090 if (VSHOULDFREE(vp)) 2091 vfree(vp); 2092 else 2093 vlruvp(vp); 2094 VI_UNLOCK(vp); 2095 } 2096 return (error); 2097 } 2098 VI_UNLOCK(vp); 2099 return (0); 2100 } 2101 2102 /* 2103 * Increase the reference count of a vnode. 2104 */ 2105 void 2106 vref(struct vnode *vp) 2107 { 2108 VI_LOCK(vp); 2109 v_incr_usecount(vp, 1); 2110 VI_UNLOCK(vp); 2111 } 2112 2113 /* 2114 * Return reference count of a vnode. 2115 * 2116 * The results of this call are only guaranteed when some mechanism other 2117 * than the VI lock is used to stop other processes from gaining references 2118 * to the vnode. This may be the case if the caller holds the only reference. 2119 * This is also useful when stale data is acceptable as race conditions may 2120 * be accounted for by some other means. 2121 */ 2122 int 2123 vrefcnt(struct vnode *vp) 2124 { 2125 int usecnt; 2126 2127 VI_LOCK(vp); 2128 usecnt = vp->v_usecount; 2129 VI_UNLOCK(vp); 2130 2131 return (usecnt); 2132 } 2133 2134 2135 /* 2136 * Vnode put/release. 2137 * If count drops to zero, call inactive routine and return to freelist. 2138 */ 2139 void 2140 vrele(vp) 2141 struct vnode *vp; 2142 { 2143 struct thread *td = curthread; /* XXX */ 2144 2145 KASSERT(vp != NULL, ("vrele: null vp")); 2146 2147 VI_LOCK(vp); 2148 2149 /* Skip this v_writecount check if we're going to panic below. */ 2150 KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, 2151 ("vrele: missed vn_close")); 2152 2153 if (vp->v_usecount > 1) { 2154 2155 v_incr_usecount(vp, -1); 2156 VI_UNLOCK(vp); 2157 2158 return; 2159 } 2160 2161 if (vp->v_usecount == 1) { 2162 v_incr_usecount(vp, -1); 2163 /* 2164 * We must call VOP_INACTIVE with the node locked. 2165 * If we are doing a vput, the node is already locked, 2166 * but, in the case of vrele, we must explicitly lock 2167 * the vnode before calling VOP_INACTIVE. 2168 */ 2169 if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) 2170 VOP_INACTIVE(vp, td); 2171 VI_LOCK(vp); 2172 if (VSHOULDFREE(vp)) 2173 vfree(vp); 2174 else 2175 vlruvp(vp); 2176 VI_UNLOCK(vp); 2177 2178 } else { 2179 #ifdef DIAGNOSTIC 2180 vprint("vrele: negative ref count", vp); 2181 #endif 2182 VI_UNLOCK(vp); 2183 panic("vrele: negative ref cnt"); 2184 } 2185 } 2186 2187 /* 2188 * Release an already locked vnode. This give the same effects as 2189 * unlock+vrele(), but takes less time and avoids releasing and 2190 * re-aquiring the lock (as vrele() aquires the lock internally.) 2191 */ 2192 void 2193 vput(vp) 2194 struct vnode *vp; 2195 { 2196 struct thread *td = curthread; /* XXX */ 2197 2198 GIANT_REQUIRED; 2199 2200 KASSERT(vp != NULL, ("vput: null vp")); 2201 VI_LOCK(vp); 2202 /* Skip this v_writecount check if we're going to panic below. */ 2203 KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, 2204 ("vput: missed vn_close")); 2205 2206 if (vp->v_usecount > 1) { 2207 v_incr_usecount(vp, -1); 2208 VOP_UNLOCK(vp, LK_INTERLOCK, td); 2209 return; 2210 } 2211 2212 if (vp->v_usecount == 1) { 2213 v_incr_usecount(vp, -1); 2214 /* 2215 * We must call VOP_INACTIVE with the node locked. 2216 * If we are doing a vput, the node is already locked, 2217 * so we just need to release the vnode mutex. 2218 */ 2219 VI_UNLOCK(vp); 2220 VOP_INACTIVE(vp, td); 2221 VI_LOCK(vp); 2222 if (VSHOULDFREE(vp)) 2223 vfree(vp); 2224 else 2225 vlruvp(vp); 2226 VI_UNLOCK(vp); 2227 2228 } else { 2229 #ifdef DIAGNOSTIC 2230 vprint("vput: negative ref count", vp); 2231 #endif 2232 panic("vput: negative ref cnt"); 2233 } 2234 } 2235 2236 /* 2237 * Somebody doesn't want the vnode recycled. 2238 */ 2239 void 2240 vhold(struct vnode *vp) 2241 { 2242 VI_LOCK(vp); 2243 vholdl(vp); 2244 VI_UNLOCK(vp); 2245 } 2246 2247 void 2248 vholdl(vp) 2249 register struct vnode *vp; 2250 { 2251 int s; 2252 2253 s = splbio(); 2254 vp->v_holdcnt++; 2255 if (VSHOULDBUSY(vp)) 2256 vbusy(vp); 2257 splx(s); 2258 } 2259 2260 /* 2261 * Note that there is one less who cares about this vnode. vdrop() is the 2262 * opposite of vhold(). 2263 */ 2264 void 2265 vdrop(struct vnode *vp) 2266 { 2267 VI_LOCK(vp); 2268 vdropl(vp); 2269 VI_UNLOCK(vp); 2270 } 2271 2272 void 2273 vdropl(vp) 2274 register struct vnode *vp; 2275 { 2276 int s; 2277 2278 s = splbio(); 2279 if (vp->v_holdcnt <= 0) 2280 panic("vdrop: holdcnt"); 2281 vp->v_holdcnt--; 2282 if (VSHOULDFREE(vp)) 2283 vfree(vp); 2284 else 2285 vlruvp(vp); 2286 splx(s); 2287 } 2288 2289 /* 2290 * Remove any vnodes in the vnode table belonging to mount point mp. 2291 * 2292 * If FORCECLOSE is not specified, there should not be any active ones, 2293 * return error if any are found (nb: this is a user error, not a 2294 * system error). If FORCECLOSE is specified, detach any active vnodes 2295 * that are found. 2296 * 2297 * If WRITECLOSE is set, only flush out regular file vnodes open for 2298 * writing. 2299 * 2300 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 2301 * 2302 * `rootrefs' specifies the base reference count for the root vnode 2303 * of this filesystem. The root vnode is considered busy if its 2304 * v_usecount exceeds this value. On a successful return, vflush() 2305 * will call vrele() on the root vnode exactly rootrefs times. 2306 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 2307 * be zero. 2308 */ 2309 #ifdef DIAGNOSTIC 2310 static int busyprt = 0; /* print out busy vnodes */ 2311 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, ""); 2312 #endif 2313 2314 int 2315 vflush(mp, rootrefs, flags) 2316 struct mount *mp; 2317 int rootrefs; 2318 int flags; 2319 { 2320 struct thread *td = curthread; /* XXX */ 2321 struct vnode *vp, *nvp, *rootvp = NULL; 2322 struct vattr vattr; 2323 int busy = 0, error; 2324 2325 if (rootrefs > 0) { 2326 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 2327 ("vflush: bad args")); 2328 /* 2329 * Get the filesystem root vnode. We can vput() it 2330 * immediately, since with rootrefs > 0, it won't go away. 2331 */ 2332 if ((error = VFS_ROOT(mp, &rootvp)) != 0) 2333 return (error); 2334 vput(rootvp); 2335 2336 } 2337 mtx_lock(&mntvnode_mtx); 2338 loop: 2339 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) { 2340 /* 2341 * Make sure this vnode wasn't reclaimed in getnewvnode(). 2342 * Start over if it has (it won't be on the list anymore). 2343 */ 2344 if (vp->v_mount != mp) 2345 goto loop; 2346 nvp = TAILQ_NEXT(vp, v_nmntvnodes); 2347 2348 VI_LOCK(vp); 2349 mtx_unlock(&mntvnode_mtx); 2350 vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY, td); 2351 /* 2352 * Skip over a vnodes marked VV_SYSTEM. 2353 */ 2354 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 2355 VOP_UNLOCK(vp, 0, td); 2356 mtx_lock(&mntvnode_mtx); 2357 continue; 2358 } 2359 /* 2360 * If WRITECLOSE is set, flush out unlinked but still open 2361 * files (even if open only for reading) and regular file 2362 * vnodes open for writing. 2363 */ 2364 if (flags & WRITECLOSE) { 2365 error = VOP_GETATTR(vp, &vattr, td->td_ucred, td); 2366 VI_LOCK(vp); 2367 2368 if ((vp->v_type == VNON || 2369 (error == 0 && vattr.va_nlink > 0)) && 2370 (vp->v_writecount == 0 || vp->v_type != VREG)) { 2371 VOP_UNLOCK(vp, LK_INTERLOCK, td); 2372 mtx_lock(&mntvnode_mtx); 2373 continue; 2374 } 2375 } else 2376 VI_LOCK(vp); 2377 2378 VOP_UNLOCK(vp, 0, td); 2379 2380 /* 2381 * With v_usecount == 0, all we need to do is clear out the 2382 * vnode data structures and we are done. 2383 */ 2384 if (vp->v_usecount == 0) { 2385 vgonel(vp, td); 2386 mtx_lock(&mntvnode_mtx); 2387 continue; 2388 } 2389 2390 /* 2391 * If FORCECLOSE is set, forcibly close the vnode. For block 2392 * or character devices, revert to an anonymous device. For 2393 * all other files, just kill them. 2394 */ 2395 if (flags & FORCECLOSE) { 2396 if (vp->v_type != VCHR) { 2397 vgonel(vp, td); 2398 } else { 2399 vclean(vp, 0, td); 2400 VI_UNLOCK(vp); 2401 vp->v_op = spec_vnodeop_p; 2402 insmntque(vp, (struct mount *) 0); 2403 } 2404 mtx_lock(&mntvnode_mtx); 2405 continue; 2406 } 2407 #ifdef DIAGNOSTIC 2408 if (busyprt) 2409 vprint("vflush: busy vnode", vp); 2410 #endif 2411 VI_UNLOCK(vp); 2412 mtx_lock(&mntvnode_mtx); 2413 busy++; 2414 } 2415 mtx_unlock(&mntvnode_mtx); 2416 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 2417 /* 2418 * If just the root vnode is busy, and if its refcount 2419 * is equal to `rootrefs', then go ahead and kill it. 2420 */ 2421 VI_LOCK(rootvp); 2422 KASSERT(busy > 0, ("vflush: not busy")); 2423 KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs")); 2424 if (busy == 1 && rootvp->v_usecount == rootrefs) { 2425 vgonel(rootvp, td); 2426 busy = 0; 2427 } else 2428 VI_UNLOCK(rootvp); 2429 } 2430 if (busy) 2431 return (EBUSY); 2432 for (; rootrefs > 0; rootrefs--) 2433 vrele(rootvp); 2434 return (0); 2435 } 2436 2437 /* 2438 * This moves a now (likely recyclable) vnode to the end of the 2439 * mountlist. XXX However, it is temporarily disabled until we 2440 * can clean up ffs_sync() and friends, which have loop restart 2441 * conditions which this code causes to operate O(N^2). 2442 */ 2443 static void 2444 vlruvp(struct vnode *vp) 2445 { 2446 #if 0 2447 struct mount *mp; 2448 2449 if ((mp = vp->v_mount) != NULL) { 2450 mtx_lock(&mntvnode_mtx); 2451 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2452 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2453 mtx_unlock(&mntvnode_mtx); 2454 } 2455 #endif 2456 } 2457 2458 /* 2459 * Disassociate the underlying filesystem from a vnode. 2460 */ 2461 static void 2462 vclean(vp, flags, td) 2463 struct vnode *vp; 2464 int flags; 2465 struct thread *td; 2466 { 2467 int active; 2468 2469 ASSERT_VI_LOCKED(vp, "vclean"); 2470 /* 2471 * Check to see if the vnode is in use. If so we have to reference it 2472 * before we clean it out so that its count cannot fall to zero and 2473 * generate a race against ourselves to recycle it. 2474 */ 2475 if ((active = vp->v_usecount)) 2476 v_incr_usecount(vp, 1); 2477 2478 /* 2479 * Prevent the vnode from being recycled or brought into use while we 2480 * clean it out. 2481 */ 2482 if (vp->v_iflag & VI_XLOCK) 2483 panic("vclean: deadlock"); 2484 vp->v_iflag |= VI_XLOCK; 2485 vp->v_vxproc = curthread; 2486 /* 2487 * Even if the count is zero, the VOP_INACTIVE routine may still 2488 * have the object locked while it cleans it out. The VOP_LOCK 2489 * ensures that the VOP_INACTIVE routine is done with its work. 2490 * For active vnodes, it ensures that no other activity can 2491 * occur while the underlying object is being cleaned out. 2492 */ 2493 VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td); 2494 2495 /* 2496 * Clean out any buffers associated with the vnode. 2497 * If the flush fails, just toss the buffers. 2498 */ 2499 if (flags & DOCLOSE) { 2500 struct buf *bp; 2501 VI_LOCK(vp); 2502 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 2503 VI_UNLOCK(vp); 2504 if (bp != NULL) 2505 (void) vn_write_suspend_wait(vp, NULL, V_WAIT); 2506 if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0) 2507 vinvalbuf(vp, 0, NOCRED, td, 0, 0); 2508 } 2509 2510 VOP_DESTROYVOBJECT(vp); 2511 2512 /* 2513 * Any other processes trying to obtain this lock must first 2514 * wait for VXLOCK to clear, then call the new lock operation. 2515 */ 2516 VOP_UNLOCK(vp, 0, td); 2517 2518 /* 2519 * If purging an active vnode, it must be closed and 2520 * deactivated before being reclaimed. Note that the 2521 * VOP_INACTIVE will unlock the vnode. 2522 */ 2523 if (active) { 2524 if (flags & DOCLOSE) 2525 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 2526 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0) 2527 panic("vclean: cannot relock."); 2528 VOP_INACTIVE(vp, td); 2529 } 2530 2531 /* 2532 * Reclaim the vnode. 2533 */ 2534 if (VOP_RECLAIM(vp, td)) 2535 panic("vclean: cannot reclaim"); 2536 2537 if (active) { 2538 /* 2539 * Inline copy of vrele() since VOP_INACTIVE 2540 * has already been called. 2541 */ 2542 VI_LOCK(vp); 2543 v_incr_usecount(vp, -1); 2544 if (vp->v_usecount <= 0) { 2545 #ifdef DIAGNOSTIC 2546 if (vp->v_usecount < 0 || vp->v_writecount != 0) { 2547 vprint("vclean: bad ref count", vp); 2548 panic("vclean: ref cnt"); 2549 } 2550 #endif 2551 vfree(vp); 2552 } 2553 VI_UNLOCK(vp); 2554 } 2555 2556 cache_purge(vp); 2557 VI_LOCK(vp); 2558 if (VSHOULDFREE(vp)) 2559 vfree(vp); 2560 2561 /* 2562 * Done with purge, reset to the standard lock and 2563 * notify sleepers of the grim news. 2564 */ 2565 vp->v_vnlock = &vp->v_lock; 2566 vp->v_op = dead_vnodeop_p; 2567 if (vp->v_pollinfo != NULL) 2568 vn_pollgone(vp); 2569 vp->v_tag = "none"; 2570 vp->v_iflag &= ~VI_XLOCK; 2571 vp->v_vxproc = NULL; 2572 if (vp->v_iflag & VI_XWANT) { 2573 vp->v_iflag &= ~VI_XWANT; 2574 wakeup(vp); 2575 } 2576 } 2577 2578 /* 2579 * Eliminate all activity associated with the requested vnode 2580 * and with all vnodes aliased to the requested vnode. 2581 */ 2582 int 2583 vop_revoke(ap) 2584 struct vop_revoke_args /* { 2585 struct vnode *a_vp; 2586 int a_flags; 2587 } */ *ap; 2588 { 2589 struct vnode *vp, *vq; 2590 dev_t dev; 2591 2592 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke")); 2593 2594 vp = ap->a_vp; 2595 VI_LOCK(vp); 2596 /* 2597 * If a vgone (or vclean) is already in progress, 2598 * wait until it is done and return. 2599 */ 2600 if (vp->v_iflag & VI_XLOCK) { 2601 vp->v_iflag |= VI_XWANT; 2602 msleep(vp, VI_MTX(vp), PINOD | PDROP, 2603 "vop_revokeall", 0); 2604 return (0); 2605 } 2606 VI_UNLOCK(vp); 2607 dev = vp->v_rdev; 2608 for (;;) { 2609 mtx_lock(&spechash_mtx); 2610 vq = SLIST_FIRST(&dev->si_hlist); 2611 mtx_unlock(&spechash_mtx); 2612 if (!vq) 2613 break; 2614 vgone(vq); 2615 } 2616 return (0); 2617 } 2618 2619 /* 2620 * Recycle an unused vnode to the front of the free list. 2621 * Release the passed interlock if the vnode will be recycled. 2622 */ 2623 int 2624 vrecycle(vp, inter_lkp, td) 2625 struct vnode *vp; 2626 struct mtx *inter_lkp; 2627 struct thread *td; 2628 { 2629 2630 VI_LOCK(vp); 2631 if (vp->v_usecount == 0) { 2632 if (inter_lkp) { 2633 mtx_unlock(inter_lkp); 2634 } 2635 vgonel(vp, td); 2636 return (1); 2637 } 2638 VI_UNLOCK(vp); 2639 return (0); 2640 } 2641 2642 /* 2643 * Eliminate all activity associated with a vnode 2644 * in preparation for reuse. 2645 */ 2646 void 2647 vgone(vp) 2648 register struct vnode *vp; 2649 { 2650 struct thread *td = curthread; /* XXX */ 2651 2652 VI_LOCK(vp); 2653 vgonel(vp, td); 2654 } 2655 2656 /* 2657 * vgone, with the vp interlock held. 2658 */ 2659 void 2660 vgonel(vp, td) 2661 struct vnode *vp; 2662 struct thread *td; 2663 { 2664 int s; 2665 2666 /* 2667 * If a vgone (or vclean) is already in progress, 2668 * wait until it is done and return. 2669 */ 2670 ASSERT_VI_LOCKED(vp, "vgonel"); 2671 if (vp->v_iflag & VI_XLOCK) { 2672 vp->v_iflag |= VI_XWANT; 2673 msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0); 2674 return; 2675 } 2676 2677 /* 2678 * Clean out the filesystem specific data. 2679 */ 2680 vclean(vp, DOCLOSE, td); 2681 VI_UNLOCK(vp); 2682 2683 /* 2684 * Delete from old mount point vnode list, if on one. 2685 */ 2686 if (vp->v_mount != NULL) 2687 insmntque(vp, (struct mount *)0); 2688 /* 2689 * If special device, remove it from special device alias list 2690 * if it is on one. 2691 */ 2692 if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) { 2693 VI_LOCK(vp); 2694 mtx_lock(&spechash_mtx); 2695 SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext); 2696 vp->v_rdev->si_usecount -= vp->v_usecount; 2697 mtx_unlock(&spechash_mtx); 2698 VI_UNLOCK(vp); 2699 vp->v_rdev = NULL; 2700 } 2701 2702 /* 2703 * If it is on the freelist and not already at the head, 2704 * move it to the head of the list. The test of the 2705 * VDOOMED flag and the reference count of zero is because 2706 * it will be removed from the free list by getnewvnode, 2707 * but will not have its reference count incremented until 2708 * after calling vgone. If the reference count were 2709 * incremented first, vgone would (incorrectly) try to 2710 * close the previous instance of the underlying object. 2711 */ 2712 VI_LOCK(vp); 2713 if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) { 2714 s = splbio(); 2715 mtx_lock(&vnode_free_list_mtx); 2716 if (vp->v_iflag & VI_FREE) { 2717 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 2718 } else { 2719 vp->v_iflag |= VI_FREE; 2720 freevnodes++; 2721 } 2722 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 2723 mtx_unlock(&vnode_free_list_mtx); 2724 splx(s); 2725 } 2726 2727 vp->v_type = VBAD; 2728 VI_UNLOCK(vp); 2729 } 2730 2731 /* 2732 * Lookup a vnode by device number. 2733 */ 2734 int 2735 vfinddev(dev, type, vpp) 2736 dev_t dev; 2737 enum vtype type; 2738 struct vnode **vpp; 2739 { 2740 struct vnode *vp; 2741 2742 mtx_lock(&spechash_mtx); 2743 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) { 2744 if (type == vp->v_type) { 2745 *vpp = vp; 2746 mtx_unlock(&spechash_mtx); 2747 return (1); 2748 } 2749 } 2750 mtx_unlock(&spechash_mtx); 2751 return (0); 2752 } 2753 2754 /* 2755 * Calculate the total number of references to a special device. 2756 */ 2757 int 2758 vcount(vp) 2759 struct vnode *vp; 2760 { 2761 int count; 2762 2763 mtx_lock(&spechash_mtx); 2764 count = vp->v_rdev->si_usecount; 2765 mtx_unlock(&spechash_mtx); 2766 return (count); 2767 } 2768 2769 /* 2770 * Same as above, but using the dev_t as argument 2771 */ 2772 int 2773 count_dev(dev) 2774 dev_t dev; 2775 { 2776 struct vnode *vp; 2777 2778 vp = SLIST_FIRST(&dev->si_hlist); 2779 if (vp == NULL) 2780 return (0); 2781 return(vcount(vp)); 2782 } 2783 2784 /* 2785 * Print out a description of a vnode. 2786 */ 2787 static char *typename[] = 2788 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"}; 2789 2790 void 2791 vprint(label, vp) 2792 char *label; 2793 struct vnode *vp; 2794 { 2795 char buf[96]; 2796 2797 if (label != NULL) 2798 printf("%s: %p: ", label, (void *)vp); 2799 else 2800 printf("%p: ", (void *)vp); 2801 printf("tag %s, type %s, usecount %d, writecount %d, refcount %d,", 2802 vp->v_tag, typename[vp->v_type], vp->v_usecount, 2803 vp->v_writecount, vp->v_holdcnt); 2804 buf[0] = '\0'; 2805 if (vp->v_vflag & VV_ROOT) 2806 strcat(buf, "|VV_ROOT"); 2807 if (vp->v_vflag & VV_TEXT) 2808 strcat(buf, "|VV_TEXT"); 2809 if (vp->v_vflag & VV_SYSTEM) 2810 strcat(buf, "|VV_SYSTEM"); 2811 if (vp->v_iflag & VI_XLOCK) 2812 strcat(buf, "|VI_XLOCK"); 2813 if (vp->v_iflag & VI_XWANT) 2814 strcat(buf, "|VI_XWANT"); 2815 if (vp->v_iflag & VI_BWAIT) 2816 strcat(buf, "|VI_BWAIT"); 2817 if (vp->v_iflag & VI_DOOMED) 2818 strcat(buf, "|VI_DOOMED"); 2819 if (vp->v_iflag & VI_FREE) 2820 strcat(buf, "|VI_FREE"); 2821 if (vp->v_vflag & VV_OBJBUF) 2822 strcat(buf, "|VV_OBJBUF"); 2823 if (buf[0] != '\0') 2824 printf(" flags (%s),", &buf[1]); 2825 lockmgr_printinfo(vp->v_vnlock); 2826 printf("\n"); 2827 if (vp->v_data != NULL) { 2828 printf("\t"); 2829 VOP_PRINT(vp); 2830 } 2831 } 2832 2833 #ifdef DDB 2834 #include <ddb/ddb.h> 2835 /* 2836 * List all of the locked vnodes in the system. 2837 * Called when debugging the kernel. 2838 */ 2839 DB_SHOW_COMMAND(lockedvnods, lockedvnodes) 2840 { 2841 struct thread *td = curthread; /* XXX */ 2842 struct mount *mp, *nmp; 2843 struct vnode *vp; 2844 2845 printf("Locked vnodes\n"); 2846 mtx_lock(&mountlist_mtx); 2847 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 2848 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) { 2849 nmp = TAILQ_NEXT(mp, mnt_list); 2850 continue; 2851 } 2852 mtx_lock(&mntvnode_mtx); 2853 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 2854 if (VOP_ISLOCKED(vp, NULL)) 2855 vprint((char *)0, vp); 2856 } 2857 mtx_unlock(&mntvnode_mtx); 2858 mtx_lock(&mountlist_mtx); 2859 nmp = TAILQ_NEXT(mp, mnt_list); 2860 vfs_unbusy(mp, td); 2861 } 2862 mtx_unlock(&mountlist_mtx); 2863 } 2864 #endif 2865 2866 /* 2867 * Fill in a struct xvfsconf based on a struct vfsconf. 2868 */ 2869 static void 2870 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp) 2871 { 2872 2873 strcpy(xvfsp->vfc_name, vfsp->vfc_name); 2874 xvfsp->vfc_typenum = vfsp->vfc_typenum; 2875 xvfsp->vfc_refcount = vfsp->vfc_refcount; 2876 xvfsp->vfc_flags = vfsp->vfc_flags; 2877 /* 2878 * These are unused in userland, we keep them 2879 * to not break binary compatibility. 2880 */ 2881 xvfsp->vfc_vfsops = NULL; 2882 xvfsp->vfc_next = NULL; 2883 } 2884 2885 static int 2886 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 2887 { 2888 struct vfsconf *vfsp; 2889 struct xvfsconf *xvfsp; 2890 int cnt, error, i; 2891 2892 cnt = 0; 2893 for (vfsp = vfsconf; vfsp != NULL; vfsp = vfsp->vfc_next) 2894 cnt++; 2895 xvfsp = malloc(sizeof(struct xvfsconf) * cnt, M_TEMP, M_WAITOK); 2896 /* 2897 * Handle the race that we will have here when struct vfsconf 2898 * will be locked down by using both cnt and checking vfc_next 2899 * against NULL to determine the end of the loop. The race will 2900 * happen because we will have to unlock before calling malloc(). 2901 * We are protected by Giant for now. 2902 */ 2903 i = 0; 2904 for (vfsp = vfsconf; vfsp != NULL && i < cnt; vfsp = vfsp->vfc_next) { 2905 vfsconf2x(vfsp, xvfsp + i); 2906 i++; 2907 } 2908 error = SYSCTL_OUT(req, xvfsp, sizeof(struct xvfsconf) * i); 2909 free(xvfsp, M_TEMP); 2910 return (error); 2911 } 2912 2913 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist, 2914 "S,xvfsconf", "List of all configured filesystems"); 2915 2916 /* 2917 * Top level filesystem related information gathering. 2918 */ 2919 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 2920 2921 static int 2922 vfs_sysctl(SYSCTL_HANDLER_ARGS) 2923 { 2924 int *name = (int *)arg1 - 1; /* XXX */ 2925 u_int namelen = arg2 + 1; /* XXX */ 2926 struct vfsconf *vfsp; 2927 struct xvfsconf xvfsp; 2928 2929 printf("WARNING: userland calling deprecated sysctl, " 2930 "please rebuild world\n"); 2931 2932 #if 1 || defined(COMPAT_PRELITE2) 2933 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 2934 if (namelen == 1) 2935 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 2936 #endif 2937 2938 switch (name[1]) { 2939 case VFS_MAXTYPENUM: 2940 if (namelen != 2) 2941 return (ENOTDIR); 2942 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 2943 case VFS_CONF: 2944 if (namelen != 3) 2945 return (ENOTDIR); /* overloaded */ 2946 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) 2947 if (vfsp->vfc_typenum == name[2]) 2948 break; 2949 if (vfsp == NULL) 2950 return (EOPNOTSUPP); 2951 vfsconf2x(vfsp, &xvfsp); 2952 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 2953 } 2954 return (EOPNOTSUPP); 2955 } 2956 2957 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl, 2958 "Generic filesystem"); 2959 2960 #if 1 || defined(COMPAT_PRELITE2) 2961 2962 static int 2963 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 2964 { 2965 int error; 2966 struct vfsconf *vfsp; 2967 struct ovfsconf ovfs; 2968 2969 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) { 2970 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 2971 strcpy(ovfs.vfc_name, vfsp->vfc_name); 2972 ovfs.vfc_index = vfsp->vfc_typenum; 2973 ovfs.vfc_refcount = vfsp->vfc_refcount; 2974 ovfs.vfc_flags = vfsp->vfc_flags; 2975 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 2976 if (error) 2977 return error; 2978 } 2979 return 0; 2980 } 2981 2982 #endif /* 1 || COMPAT_PRELITE2 */ 2983 2984 #define KINFO_VNODESLOP 10 2985 /* 2986 * Dump vnode list (via sysctl). 2987 */ 2988 /* ARGSUSED */ 2989 static int 2990 sysctl_vnode(SYSCTL_HANDLER_ARGS) 2991 { 2992 struct xvnode *xvn; 2993 struct thread *td = req->td; 2994 struct mount *mp; 2995 struct vnode *vp; 2996 int error, len, n; 2997 2998 /* 2999 * Stale numvnodes access is not fatal here. 3000 */ 3001 req->lock = 0; 3002 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; 3003 if (!req->oldptr) 3004 /* Make an estimate */ 3005 return (SYSCTL_OUT(req, 0, len)); 3006 3007 sysctl_wire_old_buffer(req, 0); 3008 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); 3009 n = 0; 3010 mtx_lock(&mountlist_mtx); 3011 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3012 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) 3013 continue; 3014 mtx_lock(&mntvnode_mtx); 3015 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3016 if (n == len) 3017 break; 3018 vref(vp); 3019 xvn[n].xv_size = sizeof *xvn; 3020 xvn[n].xv_vnode = vp; 3021 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field 3022 XV_COPY(usecount); 3023 XV_COPY(writecount); 3024 XV_COPY(holdcnt); 3025 XV_COPY(id); 3026 XV_COPY(mount); 3027 XV_COPY(numoutput); 3028 XV_COPY(type); 3029 #undef XV_COPY 3030 xvn[n].xv_flag = vp->v_vflag; 3031 3032 switch (vp->v_type) { 3033 case VREG: 3034 case VDIR: 3035 case VLNK: 3036 xvn[n].xv_dev = vp->v_cachedfs; 3037 xvn[n].xv_ino = vp->v_cachedid; 3038 break; 3039 case VBLK: 3040 case VCHR: 3041 if (vp->v_rdev == NULL) { 3042 vrele(vp); 3043 continue; 3044 } 3045 xvn[n].xv_dev = dev2udev(vp->v_rdev); 3046 break; 3047 case VSOCK: 3048 xvn[n].xv_socket = vp->v_socket; 3049 break; 3050 case VFIFO: 3051 xvn[n].xv_fifo = vp->v_fifoinfo; 3052 break; 3053 case VNON: 3054 case VBAD: 3055 default: 3056 /* shouldn't happen? */ 3057 vrele(vp); 3058 continue; 3059 } 3060 vrele(vp); 3061 ++n; 3062 } 3063 mtx_unlock(&mntvnode_mtx); 3064 mtx_lock(&mountlist_mtx); 3065 vfs_unbusy(mp, td); 3066 if (n == len) 3067 break; 3068 } 3069 mtx_unlock(&mountlist_mtx); 3070 3071 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); 3072 free(xvn, M_TEMP); 3073 return (error); 3074 } 3075 3076 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD, 3077 0, 0, sysctl_vnode, "S,xvnode", ""); 3078 3079 /* 3080 * Check to see if a filesystem is mounted on a block device. 3081 */ 3082 int 3083 vfs_mountedon(vp) 3084 struct vnode *vp; 3085 { 3086 3087 if (vp->v_rdev->si_mountpoint != NULL) 3088 return (EBUSY); 3089 return (0); 3090 } 3091 3092 /* 3093 * Unmount all filesystems. The list is traversed in reverse order 3094 * of mounting to avoid dependencies. 3095 */ 3096 void 3097 vfs_unmountall() 3098 { 3099 struct mount *mp; 3100 struct thread *td; 3101 int error; 3102 3103 if (curthread != NULL) 3104 td = curthread; 3105 else 3106 td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */ 3107 /* 3108 * Since this only runs when rebooting, it is not interlocked. 3109 */ 3110 while(!TAILQ_EMPTY(&mountlist)) { 3111 mp = TAILQ_LAST(&mountlist, mntlist); 3112 error = dounmount(mp, MNT_FORCE, td); 3113 if (error) { 3114 TAILQ_REMOVE(&mountlist, mp, mnt_list); 3115 printf("unmount of %s failed (", 3116 mp->mnt_stat.f_mntonname); 3117 if (error == EBUSY) 3118 printf("BUSY)\n"); 3119 else 3120 printf("%d)\n", error); 3121 } else { 3122 /* The unmount has removed mp from the mountlist */ 3123 } 3124 } 3125 } 3126 3127 /* 3128 * perform msync on all vnodes under a mount point 3129 * the mount point must be locked. 3130 */ 3131 void 3132 vfs_msync(struct mount *mp, int flags) 3133 { 3134 struct vnode *vp, *nvp; 3135 struct vm_object *obj; 3136 int tries; 3137 3138 GIANT_REQUIRED; 3139 3140 tries = 5; 3141 mtx_lock(&mntvnode_mtx); 3142 loop: 3143 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) { 3144 if (vp->v_mount != mp) { 3145 if (--tries > 0) 3146 goto loop; 3147 break; 3148 } 3149 nvp = TAILQ_NEXT(vp, v_nmntvnodes); 3150 3151 VI_LOCK(vp); 3152 if (vp->v_iflag & VI_XLOCK) { /* XXX: what if MNT_WAIT? */ 3153 VI_UNLOCK(vp); 3154 continue; 3155 } 3156 3157 if ((vp->v_iflag & VI_OBJDIRTY) && 3158 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) { 3159 mtx_unlock(&mntvnode_mtx); 3160 if (!vget(vp, 3161 LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, 3162 curthread)) { 3163 if (vp->v_vflag & VV_NOSYNC) { /* unlinked */ 3164 vput(vp); 3165 mtx_lock(&mntvnode_mtx); 3166 continue; 3167 } 3168 3169 if (VOP_GETVOBJECT(vp, &obj) == 0) { 3170 vm_object_page_clean(obj, 0, 0, 3171 flags == MNT_WAIT ? 3172 OBJPC_SYNC : OBJPC_NOSYNC); 3173 } 3174 vput(vp); 3175 } 3176 mtx_lock(&mntvnode_mtx); 3177 if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) { 3178 if (--tries > 0) 3179 goto loop; 3180 break; 3181 } 3182 } else 3183 VI_UNLOCK(vp); 3184 } 3185 mtx_unlock(&mntvnode_mtx); 3186 } 3187 3188 /* 3189 * Create the VM object needed for VMIO and mmap support. This 3190 * is done for all VREG files in the system. Some filesystems might 3191 * afford the additional metadata buffering capability of the 3192 * VMIO code by making the device node be VMIO mode also. 3193 * 3194 * vp must be locked when vfs_object_create is called. 3195 */ 3196 int 3197 vfs_object_create(vp, td, cred) 3198 struct vnode *vp; 3199 struct thread *td; 3200 struct ucred *cred; 3201 { 3202 GIANT_REQUIRED; 3203 return (VOP_CREATEVOBJECT(vp, cred, td)); 3204 } 3205 3206 /* 3207 * Mark a vnode as free, putting it up for recycling. 3208 */ 3209 void 3210 vfree(vp) 3211 struct vnode *vp; 3212 { 3213 int s; 3214 3215 ASSERT_VI_LOCKED(vp, "vfree"); 3216 s = splbio(); 3217 mtx_lock(&vnode_free_list_mtx); 3218 KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free")); 3219 if (vp->v_iflag & VI_AGE) { 3220 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 3221 } else { 3222 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 3223 } 3224 freevnodes++; 3225 mtx_unlock(&vnode_free_list_mtx); 3226 vp->v_iflag &= ~VI_AGE; 3227 vp->v_iflag |= VI_FREE; 3228 splx(s); 3229 } 3230 3231 /* 3232 * Opposite of vfree() - mark a vnode as in use. 3233 */ 3234 void 3235 vbusy(vp) 3236 struct vnode *vp; 3237 { 3238 int s; 3239 3240 s = splbio(); 3241 ASSERT_VI_LOCKED(vp, "vbusy"); 3242 KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free")); 3243 3244 mtx_lock(&vnode_free_list_mtx); 3245 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 3246 freevnodes--; 3247 mtx_unlock(&vnode_free_list_mtx); 3248 3249 vp->v_iflag &= ~(VI_FREE|VI_AGE); 3250 splx(s); 3251 } 3252 3253 /* 3254 * Record a process's interest in events which might happen to 3255 * a vnode. Because poll uses the historic select-style interface 3256 * internally, this routine serves as both the ``check for any 3257 * pending events'' and the ``record my interest in future events'' 3258 * functions. (These are done together, while the lock is held, 3259 * to avoid race conditions.) 3260 */ 3261 int 3262 vn_pollrecord(vp, td, events) 3263 struct vnode *vp; 3264 struct thread *td; 3265 short events; 3266 { 3267 3268 if (vp->v_pollinfo == NULL) 3269 v_addpollinfo(vp); 3270 mtx_lock(&vp->v_pollinfo->vpi_lock); 3271 if (vp->v_pollinfo->vpi_revents & events) { 3272 /* 3273 * This leaves events we are not interested 3274 * in available for the other process which 3275 * which presumably had requested them 3276 * (otherwise they would never have been 3277 * recorded). 3278 */ 3279 events &= vp->v_pollinfo->vpi_revents; 3280 vp->v_pollinfo->vpi_revents &= ~events; 3281 3282 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3283 return events; 3284 } 3285 vp->v_pollinfo->vpi_events |= events; 3286 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 3287 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3288 return 0; 3289 } 3290 3291 /* 3292 * Note the occurrence of an event. If the VN_POLLEVENT macro is used, 3293 * it is possible for us to miss an event due to race conditions, but 3294 * that condition is expected to be rare, so for the moment it is the 3295 * preferred interface. 3296 */ 3297 void 3298 vn_pollevent(vp, events) 3299 struct vnode *vp; 3300 short events; 3301 { 3302 3303 if (vp->v_pollinfo == NULL) 3304 v_addpollinfo(vp); 3305 mtx_lock(&vp->v_pollinfo->vpi_lock); 3306 if (vp->v_pollinfo->vpi_events & events) { 3307 /* 3308 * We clear vpi_events so that we don't 3309 * call selwakeup() twice if two events are 3310 * posted before the polling process(es) is 3311 * awakened. This also ensures that we take at 3312 * most one selwakeup() if the polling process 3313 * is no longer interested. However, it does 3314 * mean that only one event can be noticed at 3315 * a time. (Perhaps we should only clear those 3316 * event bits which we note?) XXX 3317 */ 3318 vp->v_pollinfo->vpi_events = 0; /* &= ~events ??? */ 3319 vp->v_pollinfo->vpi_revents |= events; 3320 selwakeup(&vp->v_pollinfo->vpi_selinfo); 3321 } 3322 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3323 } 3324 3325 /* 3326 * Wake up anyone polling on vp because it is being revoked. 3327 * This depends on dead_poll() returning POLLHUP for correct 3328 * behavior. 3329 */ 3330 void 3331 vn_pollgone(vp) 3332 struct vnode *vp; 3333 { 3334 3335 mtx_lock(&vp->v_pollinfo->vpi_lock); 3336 VN_KNOTE(vp, NOTE_REVOKE); 3337 if (vp->v_pollinfo->vpi_events) { 3338 vp->v_pollinfo->vpi_events = 0; 3339 selwakeup(&vp->v_pollinfo->vpi_selinfo); 3340 } 3341 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3342 } 3343 3344 3345 3346 /* 3347 * Routine to create and manage a filesystem syncer vnode. 3348 */ 3349 #define sync_close ((int (*)(struct vop_close_args *))nullop) 3350 static int sync_fsync(struct vop_fsync_args *); 3351 static int sync_inactive(struct vop_inactive_args *); 3352 static int sync_reclaim(struct vop_reclaim_args *); 3353 static int sync_print(struct vop_print_args *); 3354 3355 static vop_t **sync_vnodeop_p; 3356 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = { 3357 { &vop_default_desc, (vop_t *) vop_eopnotsupp }, 3358 { &vop_close_desc, (vop_t *) sync_close }, /* close */ 3359 { &vop_fsync_desc, (vop_t *) sync_fsync }, /* fsync */ 3360 { &vop_inactive_desc, (vop_t *) sync_inactive }, /* inactive */ 3361 { &vop_reclaim_desc, (vop_t *) sync_reclaim }, /* reclaim */ 3362 { &vop_lock_desc, (vop_t *) vop_stdlock }, /* lock */ 3363 { &vop_unlock_desc, (vop_t *) vop_stdunlock }, /* unlock */ 3364 { &vop_print_desc, (vop_t *) sync_print }, /* print */ 3365 { &vop_islocked_desc, (vop_t *) vop_stdislocked }, /* islocked */ 3366 { NULL, NULL } 3367 }; 3368 static struct vnodeopv_desc sync_vnodeop_opv_desc = 3369 { &sync_vnodeop_p, sync_vnodeop_entries }; 3370 3371 VNODEOP_SET(sync_vnodeop_opv_desc); 3372 3373 /* 3374 * Create a new filesystem syncer vnode for the specified mount point. 3375 */ 3376 int 3377 vfs_allocate_syncvnode(mp) 3378 struct mount *mp; 3379 { 3380 struct vnode *vp; 3381 static long start, incr, next; 3382 int error; 3383 3384 /* Allocate a new vnode */ 3385 if ((error = getnewvnode("vfs", mp, sync_vnodeop_p, &vp)) != 0) { 3386 mp->mnt_syncer = NULL; 3387 return (error); 3388 } 3389 vp->v_type = VNON; 3390 /* 3391 * Place the vnode onto the syncer worklist. We attempt to 3392 * scatter them about on the list so that they will go off 3393 * at evenly distributed times even if all the filesystems 3394 * are mounted at once. 3395 */ 3396 next += incr; 3397 if (next == 0 || next > syncer_maxdelay) { 3398 start /= 2; 3399 incr /= 2; 3400 if (start == 0) { 3401 start = syncer_maxdelay / 2; 3402 incr = syncer_maxdelay; 3403 } 3404 next = start; 3405 } 3406 VI_LOCK(vp); 3407 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0); 3408 VI_UNLOCK(vp); 3409 mp->mnt_syncer = vp; 3410 return (0); 3411 } 3412 3413 /* 3414 * Do a lazy sync of the filesystem. 3415 */ 3416 static int 3417 sync_fsync(ap) 3418 struct vop_fsync_args /* { 3419 struct vnode *a_vp; 3420 struct ucred *a_cred; 3421 int a_waitfor; 3422 struct thread *a_td; 3423 } */ *ap; 3424 { 3425 struct vnode *syncvp = ap->a_vp; 3426 struct mount *mp = syncvp->v_mount; 3427 struct thread *td = ap->a_td; 3428 int error, asyncflag; 3429 3430 /* 3431 * We only need to do something if this is a lazy evaluation. 3432 */ 3433 if (ap->a_waitfor != MNT_LAZY) 3434 return (0); 3435 3436 /* 3437 * Move ourselves to the back of the sync list. 3438 */ 3439 VI_LOCK(syncvp); 3440 vn_syncer_add_to_worklist(syncvp, syncdelay); 3441 VI_UNLOCK(syncvp); 3442 3443 /* 3444 * Walk the list of vnodes pushing all that are dirty and 3445 * not already on the sync list. 3446 */ 3447 mtx_lock(&mountlist_mtx); 3448 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) { 3449 mtx_unlock(&mountlist_mtx); 3450 return (0); 3451 } 3452 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 3453 vfs_unbusy(mp, td); 3454 return (0); 3455 } 3456 asyncflag = mp->mnt_flag & MNT_ASYNC; 3457 mp->mnt_flag &= ~MNT_ASYNC; 3458 vfs_msync(mp, MNT_NOWAIT); 3459 error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td); 3460 if (asyncflag) 3461 mp->mnt_flag |= MNT_ASYNC; 3462 vn_finished_write(mp); 3463 vfs_unbusy(mp, td); 3464 return (error); 3465 } 3466 3467 /* 3468 * The syncer vnode is no referenced. 3469 */ 3470 static int 3471 sync_inactive(ap) 3472 struct vop_inactive_args /* { 3473 struct vnode *a_vp; 3474 struct thread *a_td; 3475 } */ *ap; 3476 { 3477 3478 VOP_UNLOCK(ap->a_vp, 0, ap->a_td); 3479 vgone(ap->a_vp); 3480 return (0); 3481 } 3482 3483 /* 3484 * The syncer vnode is no longer needed and is being decommissioned. 3485 * 3486 * Modifications to the worklist must be protected at splbio(). 3487 */ 3488 static int 3489 sync_reclaim(ap) 3490 struct vop_reclaim_args /* { 3491 struct vnode *a_vp; 3492 } */ *ap; 3493 { 3494 struct vnode *vp = ap->a_vp; 3495 int s; 3496 3497 s = splbio(); 3498 vp->v_mount->mnt_syncer = NULL; 3499 VI_LOCK(vp); 3500 if (vp->v_iflag & VI_ONWORKLST) { 3501 mtx_lock(&sync_mtx); 3502 LIST_REMOVE(vp, v_synclist); 3503 mtx_unlock(&sync_mtx); 3504 vp->v_iflag &= ~VI_ONWORKLST; 3505 } 3506 VI_UNLOCK(vp); 3507 splx(s); 3508 3509 return (0); 3510 } 3511 3512 /* 3513 * Print out a syncer vnode. 3514 */ 3515 static int 3516 sync_print(ap) 3517 struct vop_print_args /* { 3518 struct vnode *a_vp; 3519 } */ *ap; 3520 { 3521 struct vnode *vp = ap->a_vp; 3522 3523 printf("syncer vnode"); 3524 if (vp->v_vnlock != NULL) 3525 lockmgr_printinfo(vp->v_vnlock); 3526 printf("\n"); 3527 return (0); 3528 } 3529 3530 /* 3531 * extract the dev_t from a VCHR 3532 */ 3533 dev_t 3534 vn_todev(vp) 3535 struct vnode *vp; 3536 { 3537 if (vp->v_type != VCHR) 3538 return (NODEV); 3539 return (vp->v_rdev); 3540 } 3541 3542 /* 3543 * Check if vnode represents a disk device 3544 */ 3545 int 3546 vn_isdisk(vp, errp) 3547 struct vnode *vp; 3548 int *errp; 3549 { 3550 struct cdevsw *cdevsw; 3551 3552 if (vp->v_type != VCHR) { 3553 if (errp != NULL) 3554 *errp = ENOTBLK; 3555 return (0); 3556 } 3557 if (vp->v_rdev == NULL) { 3558 if (errp != NULL) 3559 *errp = ENXIO; 3560 return (0); 3561 } 3562 cdevsw = devsw(vp->v_rdev); 3563 if (cdevsw == NULL) { 3564 if (errp != NULL) 3565 *errp = ENXIO; 3566 return (0); 3567 } 3568 if (!(cdevsw->d_flags & D_DISK)) { 3569 if (errp != NULL) 3570 *errp = ENOTBLK; 3571 return (0); 3572 } 3573 if (errp != NULL) 3574 *errp = 0; 3575 return (1); 3576 } 3577 3578 /* 3579 * Free data allocated by namei(); see namei(9) for details. 3580 */ 3581 void 3582 NDFREE(ndp, flags) 3583 struct nameidata *ndp; 3584 const uint flags; 3585 { 3586 if (!(flags & NDF_NO_FREE_PNBUF) && 3587 (ndp->ni_cnd.cn_flags & HASBUF)) { 3588 uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf); 3589 ndp->ni_cnd.cn_flags &= ~HASBUF; 3590 } 3591 if (!(flags & NDF_NO_DVP_UNLOCK) && 3592 (ndp->ni_cnd.cn_flags & LOCKPARENT) && 3593 ndp->ni_dvp != ndp->ni_vp) 3594 VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread); 3595 if (!(flags & NDF_NO_DVP_RELE) && 3596 (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) { 3597 vrele(ndp->ni_dvp); 3598 ndp->ni_dvp = NULL; 3599 } 3600 if (!(flags & NDF_NO_VP_UNLOCK) && 3601 (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp) 3602 VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread); 3603 if (!(flags & NDF_NO_VP_RELE) && 3604 ndp->ni_vp) { 3605 vrele(ndp->ni_vp); 3606 ndp->ni_vp = NULL; 3607 } 3608 if (!(flags & NDF_NO_STARTDIR_RELE) && 3609 (ndp->ni_cnd.cn_flags & SAVESTART)) { 3610 vrele(ndp->ni_startdir); 3611 ndp->ni_startdir = NULL; 3612 } 3613 } 3614 3615 /* 3616 * Common filesystem object access control check routine. Accepts a 3617 * vnode's type, "mode", uid and gid, requested access mode, credentials, 3618 * and optional call-by-reference privused argument allowing vaccess() 3619 * to indicate to the caller whether privilege was used to satisfy the 3620 * request (obsoleted). Returns 0 on success, or an errno on failure. 3621 */ 3622 int 3623 vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused) 3624 enum vtype type; 3625 mode_t file_mode; 3626 uid_t file_uid; 3627 gid_t file_gid; 3628 mode_t acc_mode; 3629 struct ucred *cred; 3630 int *privused; 3631 { 3632 mode_t dac_granted; 3633 #ifdef CAPABILITIES 3634 mode_t cap_granted; 3635 #endif 3636 3637 /* 3638 * Look for a normal, non-privileged way to access the file/directory 3639 * as requested. If it exists, go with that. 3640 */ 3641 3642 if (privused != NULL) 3643 *privused = 0; 3644 3645 dac_granted = 0; 3646 3647 /* Check the owner. */ 3648 if (cred->cr_uid == file_uid) { 3649 dac_granted |= VADMIN; 3650 if (file_mode & S_IXUSR) 3651 dac_granted |= VEXEC; 3652 if (file_mode & S_IRUSR) 3653 dac_granted |= VREAD; 3654 if (file_mode & S_IWUSR) 3655 dac_granted |= (VWRITE | VAPPEND); 3656 3657 if ((acc_mode & dac_granted) == acc_mode) 3658 return (0); 3659 3660 goto privcheck; 3661 } 3662 3663 /* Otherwise, check the groups (first match) */ 3664 if (groupmember(file_gid, cred)) { 3665 if (file_mode & S_IXGRP) 3666 dac_granted |= VEXEC; 3667 if (file_mode & S_IRGRP) 3668 dac_granted |= VREAD; 3669 if (file_mode & S_IWGRP) 3670 dac_granted |= (VWRITE | VAPPEND); 3671 3672 if ((acc_mode & dac_granted) == acc_mode) 3673 return (0); 3674 3675 goto privcheck; 3676 } 3677 3678 /* Otherwise, check everyone else. */ 3679 if (file_mode & S_IXOTH) 3680 dac_granted |= VEXEC; 3681 if (file_mode & S_IROTH) 3682 dac_granted |= VREAD; 3683 if (file_mode & S_IWOTH) 3684 dac_granted |= (VWRITE | VAPPEND); 3685 if ((acc_mode & dac_granted) == acc_mode) 3686 return (0); 3687 3688 privcheck: 3689 if (!suser_cred(cred, PRISON_ROOT)) { 3690 /* XXX audit: privilege used */ 3691 if (privused != NULL) 3692 *privused = 1; 3693 return (0); 3694 } 3695 3696 #ifdef CAPABILITIES 3697 /* 3698 * Build a capability mask to determine if the set of capabilities 3699 * satisfies the requirements when combined with the granted mask 3700 * from above. 3701 * For each capability, if the capability is required, bitwise 3702 * or the request type onto the cap_granted mask. 3703 */ 3704 cap_granted = 0; 3705 3706 if (type == VDIR) { 3707 /* 3708 * For directories, use CAP_DAC_READ_SEARCH to satisfy 3709 * VEXEC requests, instead of CAP_DAC_EXECUTE. 3710 */ 3711 if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3712 !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT)) 3713 cap_granted |= VEXEC; 3714 } else { 3715 if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3716 !cap_check(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT)) 3717 cap_granted |= VEXEC; 3718 } 3719 3720 if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) && 3721 !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT)) 3722 cap_granted |= VREAD; 3723 3724 if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) && 3725 !cap_check(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT)) 3726 cap_granted |= (VWRITE | VAPPEND); 3727 3728 if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) && 3729 !cap_check(cred, NULL, CAP_FOWNER, PRISON_ROOT)) 3730 cap_granted |= VADMIN; 3731 3732 if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) { 3733 /* XXX audit: privilege used */ 3734 if (privused != NULL) 3735 *privused = 1; 3736 return (0); 3737 } 3738 #endif 3739 3740 return ((acc_mode & VADMIN) ? EPERM : EACCES); 3741 } 3742 3743 /* 3744 * Credential check based on process requesting service, and per-attribute 3745 * permissions. 3746 */ 3747 int 3748 extattr_check_cred(struct vnode *vp, int attrnamespace, 3749 struct ucred *cred, struct thread *td, int access) 3750 { 3751 3752 /* 3753 * Kernel-invoked always succeeds. 3754 */ 3755 if (cred == NOCRED) 3756 return (0); 3757 3758 /* 3759 * Do not allow privileged processes in jail to directly 3760 * manipulate system attributes. 3761 * 3762 * XXX What capability should apply here? 3763 * Probably CAP_SYS_SETFFLAG. 3764 */ 3765 switch (attrnamespace) { 3766 case EXTATTR_NAMESPACE_SYSTEM: 3767 /* Potentially should be: return (EPERM); */ 3768 return (suser_cred(cred, 0)); 3769 case EXTATTR_NAMESPACE_USER: 3770 return (VOP_ACCESS(vp, access, cred, td)); 3771 default: 3772 return (EPERM); 3773 } 3774 } 3775