xref: /freebsd/sys/kern/vfs_subr.c (revision a12eb9e4ae534557867d49803a1e28bfe519a207)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/lockf.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/namei.h>
73 #include <sys/pctrie.h>
74 #include <sys/priv.h>
75 #include <sys/reboot.h>
76 #include <sys/refcount.h>
77 #include <sys/rwlock.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smr.h>
81 #include <sys/smp.h>
82 #include <sys/stat.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 #include <sys/watchdog.h>
88 
89 #include <machine/stdarg.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_kern.h>
100 #include <vm/uma.h>
101 
102 #ifdef DDB
103 #include <ddb/ddb.h>
104 #endif
105 
106 static void	delmntque(struct vnode *vp);
107 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 		    int slpflag, int slptimeo);
109 static void	syncer_shutdown(void *arg, int howto);
110 static int	vtryrecycle(struct vnode *vp);
111 static void	v_init_counters(struct vnode *);
112 static void	vn_seqc_init(struct vnode *);
113 static void	vn_seqc_write_end_free(struct vnode *vp);
114 static void	vgonel(struct vnode *);
115 static bool	vhold_recycle_free(struct vnode *);
116 static void	vdropl_recycle(struct vnode *vp);
117 static void	vdrop_recycle(struct vnode *vp);
118 static void	vfs_knllock(void *arg);
119 static void	vfs_knlunlock(void *arg);
120 static void	vfs_knl_assert_lock(void *arg, int what);
121 static void	destroy_vpollinfo(struct vpollinfo *vi);
122 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
123 		    daddr_t startlbn, daddr_t endlbn);
124 static void	vnlru_recalc(void);
125 
126 /*
127  * Number of vnodes in existence.  Increased whenever getnewvnode()
128  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
129  */
130 static u_long __exclusive_cache_line numvnodes;
131 
132 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
133     "Number of vnodes in existence");
134 
135 static counter_u64_t vnodes_created;
136 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
137     "Number of vnodes created by getnewvnode");
138 
139 /*
140  * Conversion tables for conversion from vnode types to inode formats
141  * and back.
142  */
143 enum vtype iftovt_tab[16] = {
144 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
145 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
146 };
147 int vttoif_tab[10] = {
148 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
149 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
150 };
151 
152 /*
153  * List of allocates vnodes in the system.
154  */
155 static TAILQ_HEAD(freelst, vnode) vnode_list;
156 static struct vnode *vnode_list_free_marker;
157 static struct vnode *vnode_list_reclaim_marker;
158 
159 /*
160  * "Free" vnode target.  Free vnodes are rarely completely free, but are
161  * just ones that are cheap to recycle.  Usually they are for files which
162  * have been stat'd but not read; these usually have inode and namecache
163  * data attached to them.  This target is the preferred minimum size of a
164  * sub-cache consisting mostly of such files. The system balances the size
165  * of this sub-cache with its complement to try to prevent either from
166  * thrashing while the other is relatively inactive.  The targets express
167  * a preference for the best balance.
168  *
169  * "Above" this target there are 2 further targets (watermarks) related
170  * to recyling of free vnodes.  In the best-operating case, the cache is
171  * exactly full, the free list has size between vlowat and vhiwat above the
172  * free target, and recycling from it and normal use maintains this state.
173  * Sometimes the free list is below vlowat or even empty, but this state
174  * is even better for immediate use provided the cache is not full.
175  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
176  * ones) to reach one of these states.  The watermarks are currently hard-
177  * coded as 4% and 9% of the available space higher.  These and the default
178  * of 25% for wantfreevnodes are too large if the memory size is large.
179  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
180  * whenever vnlru_proc() becomes active.
181  */
182 static long wantfreevnodes;
183 static long __exclusive_cache_line freevnodes;
184 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
185     &freevnodes, 0, "Number of \"free\" vnodes");
186 static long freevnodes_old;
187 
188 static counter_u64_t recycles_count;
189 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
190     "Number of vnodes recycled to meet vnode cache targets");
191 
192 static counter_u64_t recycles_free_count;
193 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
194     "Number of free vnodes recycled to meet vnode cache targets");
195 
196 static counter_u64_t deferred_inact;
197 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
198     "Number of times inactive processing was deferred");
199 
200 /* To keep more than one thread at a time from running vfs_getnewfsid */
201 static struct mtx mntid_mtx;
202 
203 /*
204  * Lock for any access to the following:
205  *	vnode_list
206  *	numvnodes
207  *	freevnodes
208  */
209 static struct mtx __exclusive_cache_line vnode_list_mtx;
210 
211 /* Publicly exported FS */
212 struct nfs_public nfs_pub;
213 
214 static uma_zone_t buf_trie_zone;
215 static smr_t buf_trie_smr;
216 
217 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
218 static uma_zone_t vnode_zone;
219 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
220 
221 __read_frequently smr_t vfs_smr;
222 
223 /*
224  * The workitem queue.
225  *
226  * It is useful to delay writes of file data and filesystem metadata
227  * for tens of seconds so that quickly created and deleted files need
228  * not waste disk bandwidth being created and removed. To realize this,
229  * we append vnodes to a "workitem" queue. When running with a soft
230  * updates implementation, most pending metadata dependencies should
231  * not wait for more than a few seconds. Thus, mounted on block devices
232  * are delayed only about a half the time that file data is delayed.
233  * Similarly, directory updates are more critical, so are only delayed
234  * about a third the time that file data is delayed. Thus, there are
235  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
236  * one each second (driven off the filesystem syncer process). The
237  * syncer_delayno variable indicates the next queue that is to be processed.
238  * Items that need to be processed soon are placed in this queue:
239  *
240  *	syncer_workitem_pending[syncer_delayno]
241  *
242  * A delay of fifteen seconds is done by placing the request fifteen
243  * entries later in the queue:
244  *
245  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
246  *
247  */
248 static int syncer_delayno;
249 static long syncer_mask;
250 LIST_HEAD(synclist, bufobj);
251 static struct synclist *syncer_workitem_pending;
252 /*
253  * The sync_mtx protects:
254  *	bo->bo_synclist
255  *	sync_vnode_count
256  *	syncer_delayno
257  *	syncer_state
258  *	syncer_workitem_pending
259  *	syncer_worklist_len
260  *	rushjob
261  */
262 static struct mtx sync_mtx;
263 static struct cv sync_wakeup;
264 
265 #define SYNCER_MAXDELAY		32
266 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
267 static int syncdelay = 30;		/* max time to delay syncing data */
268 static int filedelay = 30;		/* time to delay syncing files */
269 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
270     "Time to delay syncing files (in seconds)");
271 static int dirdelay = 29;		/* time to delay syncing directories */
272 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
273     "Time to delay syncing directories (in seconds)");
274 static int metadelay = 28;		/* time to delay syncing metadata */
275 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
276     "Time to delay syncing metadata (in seconds)");
277 static int rushjob;		/* number of slots to run ASAP */
278 static int stat_rush_requests;	/* number of times I/O speeded up */
279 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
280     "Number of times I/O speeded up (rush requests)");
281 
282 #define	VDBATCH_SIZE 8
283 struct vdbatch {
284 	u_int index;
285 	long freevnodes;
286 	struct mtx lock;
287 	struct vnode *tab[VDBATCH_SIZE];
288 };
289 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
290 
291 static void	vdbatch_dequeue(struct vnode *vp);
292 
293 /*
294  * When shutting down the syncer, run it at four times normal speed.
295  */
296 #define SYNCER_SHUTDOWN_SPEEDUP		4
297 static int sync_vnode_count;
298 static int syncer_worklist_len;
299 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
300     syncer_state;
301 
302 /* Target for maximum number of vnodes. */
303 u_long desiredvnodes;
304 static u_long gapvnodes;		/* gap between wanted and desired */
305 static u_long vhiwat;		/* enough extras after expansion */
306 static u_long vlowat;		/* minimal extras before expansion */
307 static u_long vstir;		/* nonzero to stir non-free vnodes */
308 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
309 
310 static u_long vnlru_read_freevnodes(void);
311 
312 /*
313  * Note that no attempt is made to sanitize these parameters.
314  */
315 static int
316 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
317 {
318 	u_long val;
319 	int error;
320 
321 	val = desiredvnodes;
322 	error = sysctl_handle_long(oidp, &val, 0, req);
323 	if (error != 0 || req->newptr == NULL)
324 		return (error);
325 
326 	if (val == desiredvnodes)
327 		return (0);
328 	mtx_lock(&vnode_list_mtx);
329 	desiredvnodes = val;
330 	wantfreevnodes = desiredvnodes / 4;
331 	vnlru_recalc();
332 	mtx_unlock(&vnode_list_mtx);
333 	/*
334 	 * XXX There is no protection against multiple threads changing
335 	 * desiredvnodes at the same time. Locking above only helps vnlru and
336 	 * getnewvnode.
337 	 */
338 	vfs_hash_changesize(desiredvnodes);
339 	cache_changesize(desiredvnodes);
340 	return (0);
341 }
342 
343 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
344     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
345     "LU", "Target for maximum number of vnodes");
346 
347 static int
348 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = wantfreevnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == wantfreevnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	wantfreevnodes = val;
362 	vnlru_recalc();
363 	mtx_unlock(&vnode_list_mtx);
364 	return (0);
365 }
366 
367 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
369     "LU", "Target for minimum number of \"free\" vnodes");
370 
371 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
372     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
373 static int vnlru_nowhere;
374 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
375     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
376 
377 static int
378 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
379 {
380 	struct vnode *vp;
381 	struct nameidata nd;
382 	char *buf;
383 	unsigned long ndflags;
384 	int error;
385 
386 	if (req->newptr == NULL)
387 		return (EINVAL);
388 	if (req->newlen >= PATH_MAX)
389 		return (E2BIG);
390 
391 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
392 	error = SYSCTL_IN(req, buf, req->newlen);
393 	if (error != 0)
394 		goto out;
395 
396 	buf[req->newlen] = '\0';
397 
398 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
399 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
400 	if ((error = namei(&nd)) != 0)
401 		goto out;
402 	vp = nd.ni_vp;
403 
404 	if (VN_IS_DOOMED(vp)) {
405 		/*
406 		 * This vnode is being recycled.  Return != 0 to let the caller
407 		 * know that the sysctl had no effect.  Return EAGAIN because a
408 		 * subsequent call will likely succeed (since namei will create
409 		 * a new vnode if necessary)
410 		 */
411 		error = EAGAIN;
412 		goto putvnode;
413 	}
414 
415 	counter_u64_add(recycles_count, 1);
416 	vgone(vp);
417 putvnode:
418 	NDFREE(&nd, 0);
419 out:
420 	free(buf, M_TEMP);
421 	return (error);
422 }
423 
424 static int
425 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
426 {
427 	struct thread *td = curthread;
428 	struct vnode *vp;
429 	struct file *fp;
430 	int error;
431 	int fd;
432 
433 	if (req->newptr == NULL)
434 		return (EBADF);
435 
436         error = sysctl_handle_int(oidp, &fd, 0, req);
437         if (error != 0)
438                 return (error);
439 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
440 	if (error != 0)
441 		return (error);
442 	vp = fp->f_vnode;
443 
444 	error = vn_lock(vp, LK_EXCLUSIVE);
445 	if (error != 0)
446 		goto drop;
447 
448 	counter_u64_add(recycles_count, 1);
449 	vgone(vp);
450 	VOP_UNLOCK(vp);
451 drop:
452 	fdrop(fp, td);
453 	return (error);
454 }
455 
456 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
457     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
458     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
459 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
460     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
461     sysctl_ftry_reclaim_vnode, "I",
462     "Try to reclaim a vnode by its file descriptor");
463 
464 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
465 #define vnsz2log 8
466 #ifndef DEBUG_LOCKS
467 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
468     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
469     "vnsz2log needs to be updated");
470 #endif
471 
472 /*
473  * Support for the bufobj clean & dirty pctrie.
474  */
475 static void *
476 buf_trie_alloc(struct pctrie *ptree)
477 {
478 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
479 }
480 
481 static void
482 buf_trie_free(struct pctrie *ptree, void *node)
483 {
484 	uma_zfree_smr(buf_trie_zone, node);
485 }
486 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
487     buf_trie_smr);
488 
489 /*
490  * Initialize the vnode management data structures.
491  *
492  * Reevaluate the following cap on the number of vnodes after the physical
493  * memory size exceeds 512GB.  In the limit, as the physical memory size
494  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
495  */
496 #ifndef	MAXVNODES_MAX
497 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
498 #endif
499 
500 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
501 
502 static struct vnode *
503 vn_alloc_marker(struct mount *mp)
504 {
505 	struct vnode *vp;
506 
507 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
508 	vp->v_type = VMARKER;
509 	vp->v_mount = mp;
510 
511 	return (vp);
512 }
513 
514 static void
515 vn_free_marker(struct vnode *vp)
516 {
517 
518 	MPASS(vp->v_type == VMARKER);
519 	free(vp, M_VNODE_MARKER);
520 }
521 
522 #ifdef KASAN
523 static int
524 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
525 {
526 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
527 	return (0);
528 }
529 
530 static void
531 vnode_dtor(void *mem, int size, void *arg __unused)
532 {
533 	size_t end1, end2, off1, off2;
534 
535 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
536 	    offsetof(struct vnode, v_dbatchcpu),
537 	    "KASAN marks require updating");
538 
539 	off1 = offsetof(struct vnode, v_vnodelist);
540 	off2 = offsetof(struct vnode, v_dbatchcpu);
541 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
542 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
543 
544 	/*
545 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
546 	 * after the vnode has been freed.  Try to get some KASAN coverage by
547 	 * marking everything except those two fields as invalid.  Because
548 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
549 	 * the same 8-byte aligned word must also be marked valid.
550 	 */
551 
552 	/* Handle the area from the start until v_vnodelist... */
553 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
554 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
555 
556 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
557 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
558 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
559 	if (off2 > off1)
560 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
561 		    off2 - off1, KASAN_UMA_FREED);
562 
563 	/* ... and finally the area from v_dbatchcpu to the end. */
564 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
565 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
566 	    KASAN_UMA_FREED);
567 }
568 #endif /* KASAN */
569 
570 /*
571  * Initialize a vnode as it first enters the zone.
572  */
573 static int
574 vnode_init(void *mem, int size, int flags)
575 {
576 	struct vnode *vp;
577 
578 	vp = mem;
579 	bzero(vp, size);
580 	/*
581 	 * Setup locks.
582 	 */
583 	vp->v_vnlock = &vp->v_lock;
584 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
585 	/*
586 	 * By default, don't allow shared locks unless filesystems opt-in.
587 	 */
588 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
589 	    LK_NOSHARE | LK_IS_VNODE);
590 	/*
591 	 * Initialize bufobj.
592 	 */
593 	bufobj_init(&vp->v_bufobj, vp);
594 	/*
595 	 * Initialize namecache.
596 	 */
597 	cache_vnode_init(vp);
598 	/*
599 	 * Initialize rangelocks.
600 	 */
601 	rangelock_init(&vp->v_rl);
602 
603 	vp->v_dbatchcpu = NOCPU;
604 
605 	/*
606 	 * Check vhold_recycle_free for an explanation.
607 	 */
608 	vp->v_holdcnt = VHOLD_NO_SMR;
609 	vp->v_type = VNON;
610 	mtx_lock(&vnode_list_mtx);
611 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
612 	mtx_unlock(&vnode_list_mtx);
613 	return (0);
614 }
615 
616 /*
617  * Free a vnode when it is cleared from the zone.
618  */
619 static void
620 vnode_fini(void *mem, int size)
621 {
622 	struct vnode *vp;
623 	struct bufobj *bo;
624 
625 	vp = mem;
626 	vdbatch_dequeue(vp);
627 	mtx_lock(&vnode_list_mtx);
628 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
629 	mtx_unlock(&vnode_list_mtx);
630 	rangelock_destroy(&vp->v_rl);
631 	lockdestroy(vp->v_vnlock);
632 	mtx_destroy(&vp->v_interlock);
633 	bo = &vp->v_bufobj;
634 	rw_destroy(BO_LOCKPTR(bo));
635 
636 	kasan_mark(mem, size, size, 0);
637 }
638 
639 /*
640  * Provide the size of NFS nclnode and NFS fh for calculation of the
641  * vnode memory consumption.  The size is specified directly to
642  * eliminate dependency on NFS-private header.
643  *
644  * Other filesystems may use bigger or smaller (like UFS and ZFS)
645  * private inode data, but the NFS-based estimation is ample enough.
646  * Still, we care about differences in the size between 64- and 32-bit
647  * platforms.
648  *
649  * Namecache structure size is heuristically
650  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
651  */
652 #ifdef _LP64
653 #define	NFS_NCLNODE_SZ	(528 + 64)
654 #define	NC_SZ		148
655 #else
656 #define	NFS_NCLNODE_SZ	(360 + 32)
657 #define	NC_SZ		92
658 #endif
659 
660 static void
661 vntblinit(void *dummy __unused)
662 {
663 	struct vdbatch *vd;
664 	uma_ctor ctor;
665 	uma_dtor dtor;
666 	int cpu, physvnodes, virtvnodes;
667 
668 	/*
669 	 * Desiredvnodes is a function of the physical memory size and the
670 	 * kernel's heap size.  Generally speaking, it scales with the
671 	 * physical memory size.  The ratio of desiredvnodes to the physical
672 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
673 	 * Thereafter, the
674 	 * marginal ratio of desiredvnodes to the physical memory size is
675 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
676 	 * size.  The memory required by desiredvnodes vnodes and vm objects
677 	 * must not exceed 1/10th of the kernel's heap size.
678 	 */
679 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
680 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
681 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
682 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
683 	desiredvnodes = min(physvnodes, virtvnodes);
684 	if (desiredvnodes > MAXVNODES_MAX) {
685 		if (bootverbose)
686 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
687 			    desiredvnodes, MAXVNODES_MAX);
688 		desiredvnodes = MAXVNODES_MAX;
689 	}
690 	wantfreevnodes = desiredvnodes / 4;
691 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
692 	TAILQ_INIT(&vnode_list);
693 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
694 	/*
695 	 * The lock is taken to appease WITNESS.
696 	 */
697 	mtx_lock(&vnode_list_mtx);
698 	vnlru_recalc();
699 	mtx_unlock(&vnode_list_mtx);
700 	vnode_list_free_marker = vn_alloc_marker(NULL);
701 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
702 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
703 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
704 
705 #ifdef KASAN
706 	ctor = vnode_ctor;
707 	dtor = vnode_dtor;
708 #else
709 	ctor = NULL;
710 	dtor = NULL;
711 #endif
712 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
713 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
714 	uma_zone_set_smr(vnode_zone, vfs_smr);
715 
716 	/*
717 	 * Preallocate enough nodes to support one-per buf so that
718 	 * we can not fail an insert.  reassignbuf() callers can not
719 	 * tolerate the insertion failure.
720 	 */
721 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
722 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
723 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
724 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
725 	uma_prealloc(buf_trie_zone, nbuf);
726 
727 	vnodes_created = counter_u64_alloc(M_WAITOK);
728 	recycles_count = counter_u64_alloc(M_WAITOK);
729 	recycles_free_count = counter_u64_alloc(M_WAITOK);
730 	deferred_inact = counter_u64_alloc(M_WAITOK);
731 
732 	/*
733 	 * Initialize the filesystem syncer.
734 	 */
735 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
736 	    &syncer_mask);
737 	syncer_maxdelay = syncer_mask + 1;
738 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
739 	cv_init(&sync_wakeup, "syncer");
740 
741 	CPU_FOREACH(cpu) {
742 		vd = DPCPU_ID_PTR((cpu), vd);
743 		bzero(vd, sizeof(*vd));
744 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
745 	}
746 }
747 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
748 
749 /*
750  * Mark a mount point as busy. Used to synchronize access and to delay
751  * unmounting. Eventually, mountlist_mtx is not released on failure.
752  *
753  * vfs_busy() is a custom lock, it can block the caller.
754  * vfs_busy() only sleeps if the unmount is active on the mount point.
755  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
756  * vnode belonging to mp.
757  *
758  * Lookup uses vfs_busy() to traverse mount points.
759  * root fs			var fs
760  * / vnode lock		A	/ vnode lock (/var)		D
761  * /var vnode lock	B	/log vnode lock(/var/log)	E
762  * vfs_busy lock	C	vfs_busy lock			F
763  *
764  * Within each file system, the lock order is C->A->B and F->D->E.
765  *
766  * When traversing across mounts, the system follows that lock order:
767  *
768  *        C->A->B
769  *              |
770  *              +->F->D->E
771  *
772  * The lookup() process for namei("/var") illustrates the process:
773  *  VOP_LOOKUP() obtains B while A is held
774  *  vfs_busy() obtains a shared lock on F while A and B are held
775  *  vput() releases lock on B
776  *  vput() releases lock on A
777  *  VFS_ROOT() obtains lock on D while shared lock on F is held
778  *  vfs_unbusy() releases shared lock on F
779  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
780  *    Attempt to lock A (instead of vp_crossmp) while D is held would
781  *    violate the global order, causing deadlocks.
782  *
783  * dounmount() locks B while F is drained.
784  */
785 int
786 vfs_busy(struct mount *mp, int flags)
787 {
788 	struct mount_pcpu *mpcpu;
789 
790 	MPASS((flags & ~MBF_MASK) == 0);
791 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
792 
793 	if (vfs_op_thread_enter(mp, mpcpu)) {
794 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
795 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
796 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
797 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
798 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
799 		vfs_op_thread_exit(mp, mpcpu);
800 		if (flags & MBF_MNTLSTLOCK)
801 			mtx_unlock(&mountlist_mtx);
802 		return (0);
803 	}
804 
805 	MNT_ILOCK(mp);
806 	vfs_assert_mount_counters(mp);
807 	MNT_REF(mp);
808 	/*
809 	 * If mount point is currently being unmounted, sleep until the
810 	 * mount point fate is decided.  If thread doing the unmounting fails,
811 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
812 	 * that this mount point has survived the unmount attempt and vfs_busy
813 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
814 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
815 	 * about to be really destroyed.  vfs_busy needs to release its
816 	 * reference on the mount point in this case and return with ENOENT,
817 	 * telling the caller that mount mount it tried to busy is no longer
818 	 * valid.
819 	 */
820 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
821 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
822 		    ("%s: non-empty upper mount list with pending unmount",
823 		    __func__));
824 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
825 			MNT_REL(mp);
826 			MNT_IUNLOCK(mp);
827 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
828 			    __func__);
829 			return (ENOENT);
830 		}
831 		if (flags & MBF_MNTLSTLOCK)
832 			mtx_unlock(&mountlist_mtx);
833 		mp->mnt_kern_flag |= MNTK_MWAIT;
834 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
835 		if (flags & MBF_MNTLSTLOCK)
836 			mtx_lock(&mountlist_mtx);
837 		MNT_ILOCK(mp);
838 	}
839 	if (flags & MBF_MNTLSTLOCK)
840 		mtx_unlock(&mountlist_mtx);
841 	mp->mnt_lockref++;
842 	MNT_IUNLOCK(mp);
843 	return (0);
844 }
845 
846 /*
847  * Free a busy filesystem.
848  */
849 void
850 vfs_unbusy(struct mount *mp)
851 {
852 	struct mount_pcpu *mpcpu;
853 	int c;
854 
855 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
856 
857 	if (vfs_op_thread_enter(mp, mpcpu)) {
858 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
859 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
860 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
861 		vfs_op_thread_exit(mp, mpcpu);
862 		return;
863 	}
864 
865 	MNT_ILOCK(mp);
866 	vfs_assert_mount_counters(mp);
867 	MNT_REL(mp);
868 	c = --mp->mnt_lockref;
869 	if (mp->mnt_vfs_ops == 0) {
870 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
871 		MNT_IUNLOCK(mp);
872 		return;
873 	}
874 	if (c < 0)
875 		vfs_dump_mount_counters(mp);
876 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
877 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
878 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
879 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
880 		wakeup(&mp->mnt_lockref);
881 	}
882 	MNT_IUNLOCK(mp);
883 }
884 
885 /*
886  * Lookup a mount point by filesystem identifier.
887  */
888 struct mount *
889 vfs_getvfs(fsid_t *fsid)
890 {
891 	struct mount *mp;
892 
893 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
894 	mtx_lock(&mountlist_mtx);
895 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
896 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
897 			vfs_ref(mp);
898 			mtx_unlock(&mountlist_mtx);
899 			return (mp);
900 		}
901 	}
902 	mtx_unlock(&mountlist_mtx);
903 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
904 	return ((struct mount *) 0);
905 }
906 
907 /*
908  * Lookup a mount point by filesystem identifier, busying it before
909  * returning.
910  *
911  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
912  * cache for popular filesystem identifiers.  The cache is lockess, using
913  * the fact that struct mount's are never freed.  In worst case we may
914  * get pointer to unmounted or even different filesystem, so we have to
915  * check what we got, and go slow way if so.
916  */
917 struct mount *
918 vfs_busyfs(fsid_t *fsid)
919 {
920 #define	FSID_CACHE_SIZE	256
921 	typedef struct mount * volatile vmp_t;
922 	static vmp_t cache[FSID_CACHE_SIZE];
923 	struct mount *mp;
924 	int error;
925 	uint32_t hash;
926 
927 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
928 	hash = fsid->val[0] ^ fsid->val[1];
929 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
930 	mp = cache[hash];
931 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
932 		goto slow;
933 	if (vfs_busy(mp, 0) != 0) {
934 		cache[hash] = NULL;
935 		goto slow;
936 	}
937 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
938 		return (mp);
939 	else
940 	    vfs_unbusy(mp);
941 
942 slow:
943 	mtx_lock(&mountlist_mtx);
944 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
945 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
946 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
947 			if (error) {
948 				cache[hash] = NULL;
949 				mtx_unlock(&mountlist_mtx);
950 				return (NULL);
951 			}
952 			cache[hash] = mp;
953 			return (mp);
954 		}
955 	}
956 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
957 	mtx_unlock(&mountlist_mtx);
958 	return ((struct mount *) 0);
959 }
960 
961 /*
962  * Check if a user can access privileged mount options.
963  */
964 int
965 vfs_suser(struct mount *mp, struct thread *td)
966 {
967 	int error;
968 
969 	if (jailed(td->td_ucred)) {
970 		/*
971 		 * If the jail of the calling thread lacks permission for
972 		 * this type of file system, deny immediately.
973 		 */
974 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
975 			return (EPERM);
976 
977 		/*
978 		 * If the file system was mounted outside the jail of the
979 		 * calling thread, deny immediately.
980 		 */
981 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
982 			return (EPERM);
983 	}
984 
985 	/*
986 	 * If file system supports delegated administration, we don't check
987 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
988 	 * by the file system itself.
989 	 * If this is not the user that did original mount, we check for
990 	 * the PRIV_VFS_MOUNT_OWNER privilege.
991 	 */
992 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
993 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
994 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
995 			return (error);
996 	}
997 	return (0);
998 }
999 
1000 /*
1001  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1002  * will be used to create fake device numbers for stat().  Also try (but
1003  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1004  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1005  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1006  *
1007  * Keep in mind that several mounts may be running in parallel.  Starting
1008  * the search one past where the previous search terminated is both a
1009  * micro-optimization and a defense against returning the same fsid to
1010  * different mounts.
1011  */
1012 void
1013 vfs_getnewfsid(struct mount *mp)
1014 {
1015 	static uint16_t mntid_base;
1016 	struct mount *nmp;
1017 	fsid_t tfsid;
1018 	int mtype;
1019 
1020 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1021 	mtx_lock(&mntid_mtx);
1022 	mtype = mp->mnt_vfc->vfc_typenum;
1023 	tfsid.val[1] = mtype;
1024 	mtype = (mtype & 0xFF) << 24;
1025 	for (;;) {
1026 		tfsid.val[0] = makedev(255,
1027 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1028 		mntid_base++;
1029 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1030 			break;
1031 		vfs_rel(nmp);
1032 	}
1033 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1034 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1035 	mtx_unlock(&mntid_mtx);
1036 }
1037 
1038 /*
1039  * Knob to control the precision of file timestamps:
1040  *
1041  *   0 = seconds only; nanoseconds zeroed.
1042  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1043  *   2 = seconds and nanoseconds, truncated to microseconds.
1044  * >=3 = seconds and nanoseconds, maximum precision.
1045  */
1046 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1047 
1048 static int timestamp_precision = TSP_USEC;
1049 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1050     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1051     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1052     "3+: sec + ns (max. precision))");
1053 
1054 /*
1055  * Get a current timestamp.
1056  */
1057 void
1058 vfs_timestamp(struct timespec *tsp)
1059 {
1060 	struct timeval tv;
1061 
1062 	switch (timestamp_precision) {
1063 	case TSP_SEC:
1064 		tsp->tv_sec = time_second;
1065 		tsp->tv_nsec = 0;
1066 		break;
1067 	case TSP_HZ:
1068 		getnanotime(tsp);
1069 		break;
1070 	case TSP_USEC:
1071 		microtime(&tv);
1072 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1073 		break;
1074 	case TSP_NSEC:
1075 	default:
1076 		nanotime(tsp);
1077 		break;
1078 	}
1079 }
1080 
1081 /*
1082  * Set vnode attributes to VNOVAL
1083  */
1084 void
1085 vattr_null(struct vattr *vap)
1086 {
1087 
1088 	vap->va_type = VNON;
1089 	vap->va_size = VNOVAL;
1090 	vap->va_bytes = VNOVAL;
1091 	vap->va_mode = VNOVAL;
1092 	vap->va_nlink = VNOVAL;
1093 	vap->va_uid = VNOVAL;
1094 	vap->va_gid = VNOVAL;
1095 	vap->va_fsid = VNOVAL;
1096 	vap->va_fileid = VNOVAL;
1097 	vap->va_blocksize = VNOVAL;
1098 	vap->va_rdev = VNOVAL;
1099 	vap->va_atime.tv_sec = VNOVAL;
1100 	vap->va_atime.tv_nsec = VNOVAL;
1101 	vap->va_mtime.tv_sec = VNOVAL;
1102 	vap->va_mtime.tv_nsec = VNOVAL;
1103 	vap->va_ctime.tv_sec = VNOVAL;
1104 	vap->va_ctime.tv_nsec = VNOVAL;
1105 	vap->va_birthtime.tv_sec = VNOVAL;
1106 	vap->va_birthtime.tv_nsec = VNOVAL;
1107 	vap->va_flags = VNOVAL;
1108 	vap->va_gen = VNOVAL;
1109 	vap->va_vaflags = 0;
1110 }
1111 
1112 /*
1113  * Try to reduce the total number of vnodes.
1114  *
1115  * This routine (and its user) are buggy in at least the following ways:
1116  * - all parameters were picked years ago when RAM sizes were significantly
1117  *   smaller
1118  * - it can pick vnodes based on pages used by the vm object, but filesystems
1119  *   like ZFS don't use it making the pick broken
1120  * - since ZFS has its own aging policy it gets partially combated by this one
1121  * - a dedicated method should be provided for filesystems to let them decide
1122  *   whether the vnode should be recycled
1123  *
1124  * This routine is called when we have too many vnodes.  It attempts
1125  * to free <count> vnodes and will potentially free vnodes that still
1126  * have VM backing store (VM backing store is typically the cause
1127  * of a vnode blowout so we want to do this).  Therefore, this operation
1128  * is not considered cheap.
1129  *
1130  * A number of conditions may prevent a vnode from being reclaimed.
1131  * the buffer cache may have references on the vnode, a directory
1132  * vnode may still have references due to the namei cache representing
1133  * underlying files, or the vnode may be in active use.   It is not
1134  * desirable to reuse such vnodes.  These conditions may cause the
1135  * number of vnodes to reach some minimum value regardless of what
1136  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1137  *
1138  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1139  * 			 entries if this argument is strue
1140  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1141  *			 pages.
1142  * @param target	 How many vnodes to reclaim.
1143  * @return		 The number of vnodes that were reclaimed.
1144  */
1145 static int
1146 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1147 {
1148 	struct vnode *vp, *mvp;
1149 	struct mount *mp;
1150 	struct vm_object *object;
1151 	u_long done;
1152 	bool retried;
1153 
1154 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1155 
1156 	retried = false;
1157 	done = 0;
1158 
1159 	mvp = vnode_list_reclaim_marker;
1160 restart:
1161 	vp = mvp;
1162 	while (done < target) {
1163 		vp = TAILQ_NEXT(vp, v_vnodelist);
1164 		if (__predict_false(vp == NULL))
1165 			break;
1166 
1167 		if (__predict_false(vp->v_type == VMARKER))
1168 			continue;
1169 
1170 		/*
1171 		 * If it's been deconstructed already, it's still
1172 		 * referenced, or it exceeds the trigger, skip it.
1173 		 * Also skip free vnodes.  We are trying to make space
1174 		 * to expand the free list, not reduce it.
1175 		 */
1176 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1177 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1178 			goto next_iter;
1179 
1180 		if (vp->v_type == VBAD || vp->v_type == VNON)
1181 			goto next_iter;
1182 
1183 		object = atomic_load_ptr(&vp->v_object);
1184 		if (object == NULL || object->resident_page_count > trigger) {
1185 			goto next_iter;
1186 		}
1187 
1188 		/*
1189 		 * Handle races against vnode allocation. Filesystems lock the
1190 		 * vnode some time after it gets returned from getnewvnode,
1191 		 * despite type and hold count being manipulated earlier.
1192 		 * Resorting to checking v_mount restores guarantees present
1193 		 * before the global list was reworked to contain all vnodes.
1194 		 */
1195 		if (!VI_TRYLOCK(vp))
1196 			goto next_iter;
1197 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1198 			VI_UNLOCK(vp);
1199 			goto next_iter;
1200 		}
1201 		if (vp->v_mount == NULL) {
1202 			VI_UNLOCK(vp);
1203 			goto next_iter;
1204 		}
1205 		vholdl(vp);
1206 		VI_UNLOCK(vp);
1207 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1208 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1209 		mtx_unlock(&vnode_list_mtx);
1210 
1211 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1212 			vdrop_recycle(vp);
1213 			goto next_iter_unlocked;
1214 		}
1215 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1216 			vdrop_recycle(vp);
1217 			vn_finished_write(mp);
1218 			goto next_iter_unlocked;
1219 		}
1220 
1221 		VI_LOCK(vp);
1222 		if (vp->v_usecount > 0 ||
1223 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1224 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1225 		    vp->v_object->resident_page_count > trigger)) {
1226 			VOP_UNLOCK(vp);
1227 			vdropl_recycle(vp);
1228 			vn_finished_write(mp);
1229 			goto next_iter_unlocked;
1230 		}
1231 		counter_u64_add(recycles_count, 1);
1232 		vgonel(vp);
1233 		VOP_UNLOCK(vp);
1234 		vdropl_recycle(vp);
1235 		vn_finished_write(mp);
1236 		done++;
1237 next_iter_unlocked:
1238 		if (should_yield())
1239 			kern_yield(PRI_USER);
1240 		mtx_lock(&vnode_list_mtx);
1241 		goto restart;
1242 next_iter:
1243 		MPASS(vp->v_type != VMARKER);
1244 		if (!should_yield())
1245 			continue;
1246 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1247 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1248 		mtx_unlock(&vnode_list_mtx);
1249 		kern_yield(PRI_USER);
1250 		mtx_lock(&vnode_list_mtx);
1251 		goto restart;
1252 	}
1253 	if (done == 0 && !retried) {
1254 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1255 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1256 		retried = true;
1257 		goto restart;
1258 	}
1259 	return (done);
1260 }
1261 
1262 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1263 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1264     0,
1265     "limit on vnode free requests per call to the vnlru_free routine");
1266 
1267 /*
1268  * Attempt to reduce the free list by the requested amount.
1269  */
1270 static int
1271 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1272 {
1273 	struct vnode *vp;
1274 	struct mount *mp;
1275 	int ocount;
1276 
1277 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1278 	if (count > max_vnlru_free)
1279 		count = max_vnlru_free;
1280 	ocount = count;
1281 	vp = mvp;
1282 	for (;;) {
1283 		if (count == 0) {
1284 			break;
1285 		}
1286 		vp = TAILQ_NEXT(vp, v_vnodelist);
1287 		if (__predict_false(vp == NULL)) {
1288 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1289 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1290 			break;
1291 		}
1292 		if (__predict_false(vp->v_type == VMARKER))
1293 			continue;
1294 		if (vp->v_holdcnt > 0)
1295 			continue;
1296 		/*
1297 		 * Don't recycle if our vnode is from different type
1298 		 * of mount point.  Note that mp is type-safe, the
1299 		 * check does not reach unmapped address even if
1300 		 * vnode is reclaimed.
1301 		 */
1302 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1303 		    mp->mnt_op != mnt_op) {
1304 			continue;
1305 		}
1306 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1307 			continue;
1308 		}
1309 		if (!vhold_recycle_free(vp))
1310 			continue;
1311 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1312 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1313 		mtx_unlock(&vnode_list_mtx);
1314 		/*
1315 		 * FIXME: ignores the return value, meaning it may be nothing
1316 		 * got recycled but it claims otherwise to the caller.
1317 		 *
1318 		 * Originally the value started being ignored in 2005 with
1319 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1320 		 *
1321 		 * Respecting the value can run into significant stalls if most
1322 		 * vnodes belong to one file system and it has writes
1323 		 * suspended.  In presence of many threads and millions of
1324 		 * vnodes they keep contending on the vnode_list_mtx lock only
1325 		 * to find vnodes they can't recycle.
1326 		 *
1327 		 * The solution would be to pre-check if the vnode is likely to
1328 		 * be recycle-able, but it needs to happen with the
1329 		 * vnode_list_mtx lock held. This runs into a problem where
1330 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1331 		 * writes are frozen) can take locks which LOR against it.
1332 		 *
1333 		 * Check nullfs for one example (null_getwritemount).
1334 		 */
1335 		vtryrecycle(vp);
1336 		count--;
1337 		mtx_lock(&vnode_list_mtx);
1338 		vp = mvp;
1339 	}
1340 	return (ocount - count);
1341 }
1342 
1343 static int
1344 vnlru_free_locked(int count)
1345 {
1346 
1347 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1348 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1349 }
1350 
1351 void
1352 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1353 {
1354 
1355 	MPASS(mnt_op != NULL);
1356 	MPASS(mvp != NULL);
1357 	VNPASS(mvp->v_type == VMARKER, mvp);
1358 	mtx_lock(&vnode_list_mtx);
1359 	vnlru_free_impl(count, mnt_op, mvp);
1360 	mtx_unlock(&vnode_list_mtx);
1361 }
1362 
1363 struct vnode *
1364 vnlru_alloc_marker(void)
1365 {
1366 	struct vnode *mvp;
1367 
1368 	mvp = vn_alloc_marker(NULL);
1369 	mtx_lock(&vnode_list_mtx);
1370 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1371 	mtx_unlock(&vnode_list_mtx);
1372 	return (mvp);
1373 }
1374 
1375 void
1376 vnlru_free_marker(struct vnode *mvp)
1377 {
1378 	mtx_lock(&vnode_list_mtx);
1379 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1380 	mtx_unlock(&vnode_list_mtx);
1381 	vn_free_marker(mvp);
1382 }
1383 
1384 static void
1385 vnlru_recalc(void)
1386 {
1387 
1388 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1389 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1390 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1391 	vlowat = vhiwat / 2;
1392 }
1393 
1394 /*
1395  * Attempt to recycle vnodes in a context that is always safe to block.
1396  * Calling vlrurecycle() from the bowels of filesystem code has some
1397  * interesting deadlock problems.
1398  */
1399 static struct proc *vnlruproc;
1400 static int vnlruproc_sig;
1401 
1402 /*
1403  * The main freevnodes counter is only updated when threads requeue their vnode
1404  * batches. CPUs are conditionally walked to compute a more accurate total.
1405  *
1406  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1407  * at any given moment can still exceed slop, but it should not be by significant
1408  * margin in practice.
1409  */
1410 #define VNLRU_FREEVNODES_SLOP 128
1411 
1412 static __inline void
1413 vfs_freevnodes_inc(void)
1414 {
1415 	struct vdbatch *vd;
1416 
1417 	critical_enter();
1418 	vd = DPCPU_PTR(vd);
1419 	vd->freevnodes++;
1420 	critical_exit();
1421 }
1422 
1423 static __inline void
1424 vfs_freevnodes_dec(void)
1425 {
1426 	struct vdbatch *vd;
1427 
1428 	critical_enter();
1429 	vd = DPCPU_PTR(vd);
1430 	vd->freevnodes--;
1431 	critical_exit();
1432 }
1433 
1434 static u_long
1435 vnlru_read_freevnodes(void)
1436 {
1437 	struct vdbatch *vd;
1438 	long slop;
1439 	int cpu;
1440 
1441 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1442 	if (freevnodes > freevnodes_old)
1443 		slop = freevnodes - freevnodes_old;
1444 	else
1445 		slop = freevnodes_old - freevnodes;
1446 	if (slop < VNLRU_FREEVNODES_SLOP)
1447 		return (freevnodes >= 0 ? freevnodes : 0);
1448 	freevnodes_old = freevnodes;
1449 	CPU_FOREACH(cpu) {
1450 		vd = DPCPU_ID_PTR((cpu), vd);
1451 		freevnodes_old += vd->freevnodes;
1452 	}
1453 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1454 }
1455 
1456 static bool
1457 vnlru_under(u_long rnumvnodes, u_long limit)
1458 {
1459 	u_long rfreevnodes, space;
1460 
1461 	if (__predict_false(rnumvnodes > desiredvnodes))
1462 		return (true);
1463 
1464 	space = desiredvnodes - rnumvnodes;
1465 	if (space < limit) {
1466 		rfreevnodes = vnlru_read_freevnodes();
1467 		if (rfreevnodes > wantfreevnodes)
1468 			space += rfreevnodes - wantfreevnodes;
1469 	}
1470 	return (space < limit);
1471 }
1472 
1473 static bool
1474 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1475 {
1476 	long rfreevnodes, space;
1477 
1478 	if (__predict_false(rnumvnodes > desiredvnodes))
1479 		return (true);
1480 
1481 	space = desiredvnodes - rnumvnodes;
1482 	if (space < limit) {
1483 		rfreevnodes = atomic_load_long(&freevnodes);
1484 		if (rfreevnodes > wantfreevnodes)
1485 			space += rfreevnodes - wantfreevnodes;
1486 	}
1487 	return (space < limit);
1488 }
1489 
1490 static void
1491 vnlru_kick(void)
1492 {
1493 
1494 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1495 	if (vnlruproc_sig == 0) {
1496 		vnlruproc_sig = 1;
1497 		wakeup(vnlruproc);
1498 	}
1499 }
1500 
1501 static void
1502 vnlru_proc(void)
1503 {
1504 	u_long rnumvnodes, rfreevnodes, target;
1505 	unsigned long onumvnodes;
1506 	int done, force, trigger, usevnodes;
1507 	bool reclaim_nc_src, want_reread;
1508 
1509 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1510 	    SHUTDOWN_PRI_FIRST);
1511 
1512 	force = 0;
1513 	want_reread = false;
1514 	for (;;) {
1515 		kproc_suspend_check(vnlruproc);
1516 		mtx_lock(&vnode_list_mtx);
1517 		rnumvnodes = atomic_load_long(&numvnodes);
1518 
1519 		if (want_reread) {
1520 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1521 			want_reread = false;
1522 		}
1523 
1524 		/*
1525 		 * If numvnodes is too large (due to desiredvnodes being
1526 		 * adjusted using its sysctl, or emergency growth), first
1527 		 * try to reduce it by discarding from the free list.
1528 		 */
1529 		if (rnumvnodes > desiredvnodes) {
1530 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1531 			rnumvnodes = atomic_load_long(&numvnodes);
1532 		}
1533 		/*
1534 		 * Sleep if the vnode cache is in a good state.  This is
1535 		 * when it is not over-full and has space for about a 4%
1536 		 * or 9% expansion (by growing its size or inexcessively
1537 		 * reducing its free list).  Otherwise, try to reclaim
1538 		 * space for a 10% expansion.
1539 		 */
1540 		if (vstir && force == 0) {
1541 			force = 1;
1542 			vstir = 0;
1543 		}
1544 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1545 			vnlruproc_sig = 0;
1546 			wakeup(&vnlruproc_sig);
1547 			msleep(vnlruproc, &vnode_list_mtx,
1548 			    PVFS|PDROP, "vlruwt", hz);
1549 			continue;
1550 		}
1551 		rfreevnodes = vnlru_read_freevnodes();
1552 
1553 		onumvnodes = rnumvnodes;
1554 		/*
1555 		 * Calculate parameters for recycling.  These are the same
1556 		 * throughout the loop to give some semblance of fairness.
1557 		 * The trigger point is to avoid recycling vnodes with lots
1558 		 * of resident pages.  We aren't trying to free memory; we
1559 		 * are trying to recycle or at least free vnodes.
1560 		 */
1561 		if (rnumvnodes <= desiredvnodes)
1562 			usevnodes = rnumvnodes - rfreevnodes;
1563 		else
1564 			usevnodes = rnumvnodes;
1565 		if (usevnodes <= 0)
1566 			usevnodes = 1;
1567 		/*
1568 		 * The trigger value is chosen to give a conservatively
1569 		 * large value to ensure that it alone doesn't prevent
1570 		 * making progress.  The value can easily be so large that
1571 		 * it is effectively infinite in some congested and
1572 		 * misconfigured cases, and this is necessary.  Normally
1573 		 * it is about 8 to 100 (pages), which is quite large.
1574 		 */
1575 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1576 		if (force < 2)
1577 			trigger = vsmalltrigger;
1578 		reclaim_nc_src = force >= 3;
1579 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1580 		target = target / 10 + 1;
1581 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1582 		mtx_unlock(&vnode_list_mtx);
1583 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1584 			uma_reclaim(UMA_RECLAIM_DRAIN);
1585 		if (done == 0) {
1586 			if (force == 0 || force == 1) {
1587 				force = 2;
1588 				continue;
1589 			}
1590 			if (force == 2) {
1591 				force = 3;
1592 				continue;
1593 			}
1594 			want_reread = true;
1595 			force = 0;
1596 			vnlru_nowhere++;
1597 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1598 		} else {
1599 			want_reread = true;
1600 			kern_yield(PRI_USER);
1601 		}
1602 	}
1603 }
1604 
1605 static struct kproc_desc vnlru_kp = {
1606 	"vnlru",
1607 	vnlru_proc,
1608 	&vnlruproc
1609 };
1610 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1611     &vnlru_kp);
1612 
1613 /*
1614  * Routines having to do with the management of the vnode table.
1615  */
1616 
1617 /*
1618  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1619  * before we actually vgone().  This function must be called with the vnode
1620  * held to prevent the vnode from being returned to the free list midway
1621  * through vgone().
1622  */
1623 static int
1624 vtryrecycle(struct vnode *vp)
1625 {
1626 	struct mount *vnmp;
1627 
1628 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1629 	VNASSERT(vp->v_holdcnt, vp,
1630 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1631 	/*
1632 	 * This vnode may found and locked via some other list, if so we
1633 	 * can't recycle it yet.
1634 	 */
1635 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1636 		CTR2(KTR_VFS,
1637 		    "%s: impossible to recycle, vp %p lock is already held",
1638 		    __func__, vp);
1639 		vdrop_recycle(vp);
1640 		return (EWOULDBLOCK);
1641 	}
1642 	/*
1643 	 * Don't recycle if its filesystem is being suspended.
1644 	 */
1645 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1646 		VOP_UNLOCK(vp);
1647 		CTR2(KTR_VFS,
1648 		    "%s: impossible to recycle, cannot start the write for %p",
1649 		    __func__, vp);
1650 		vdrop_recycle(vp);
1651 		return (EBUSY);
1652 	}
1653 	/*
1654 	 * If we got this far, we need to acquire the interlock and see if
1655 	 * anyone picked up this vnode from another list.  If not, we will
1656 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1657 	 * will skip over it.
1658 	 */
1659 	VI_LOCK(vp);
1660 	if (vp->v_usecount) {
1661 		VOP_UNLOCK(vp);
1662 		vdropl_recycle(vp);
1663 		vn_finished_write(vnmp);
1664 		CTR2(KTR_VFS,
1665 		    "%s: impossible to recycle, %p is already referenced",
1666 		    __func__, vp);
1667 		return (EBUSY);
1668 	}
1669 	if (!VN_IS_DOOMED(vp)) {
1670 		counter_u64_add(recycles_free_count, 1);
1671 		vgonel(vp);
1672 	}
1673 	VOP_UNLOCK(vp);
1674 	vdropl_recycle(vp);
1675 	vn_finished_write(vnmp);
1676 	return (0);
1677 }
1678 
1679 /*
1680  * Allocate a new vnode.
1681  *
1682  * The operation never returns an error. Returning an error was disabled
1683  * in r145385 (dated 2005) with the following comment:
1684  *
1685  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1686  *
1687  * Given the age of this commit (almost 15 years at the time of writing this
1688  * comment) restoring the ability to fail requires a significant audit of
1689  * all codepaths.
1690  *
1691  * The routine can try to free a vnode or stall for up to 1 second waiting for
1692  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1693  */
1694 static u_long vn_alloc_cyclecount;
1695 
1696 static struct vnode * __noinline
1697 vn_alloc_hard(struct mount *mp)
1698 {
1699 	u_long rnumvnodes, rfreevnodes;
1700 
1701 	mtx_lock(&vnode_list_mtx);
1702 	rnumvnodes = atomic_load_long(&numvnodes);
1703 	if (rnumvnodes + 1 < desiredvnodes) {
1704 		vn_alloc_cyclecount = 0;
1705 		goto alloc;
1706 	}
1707 	rfreevnodes = vnlru_read_freevnodes();
1708 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1709 		vn_alloc_cyclecount = 0;
1710 		vstir = 1;
1711 	}
1712 	/*
1713 	 * Grow the vnode cache if it will not be above its target max
1714 	 * after growing.  Otherwise, if the free list is nonempty, try
1715 	 * to reclaim 1 item from it before growing the cache (possibly
1716 	 * above its target max if the reclamation failed or is delayed).
1717 	 * Otherwise, wait for some space.  In all cases, schedule
1718 	 * vnlru_proc() if we are getting short of space.  The watermarks
1719 	 * should be chosen so that we never wait or even reclaim from
1720 	 * the free list to below its target minimum.
1721 	 */
1722 	if (vnlru_free_locked(1) > 0)
1723 		goto alloc;
1724 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1725 		/*
1726 		 * Wait for space for a new vnode.
1727 		 */
1728 		vnlru_kick();
1729 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1730 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1731 		    vnlru_read_freevnodes() > 1)
1732 			vnlru_free_locked(1);
1733 	}
1734 alloc:
1735 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1736 	if (vnlru_under(rnumvnodes, vlowat))
1737 		vnlru_kick();
1738 	mtx_unlock(&vnode_list_mtx);
1739 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1740 }
1741 
1742 static struct vnode *
1743 vn_alloc(struct mount *mp)
1744 {
1745 	u_long rnumvnodes;
1746 
1747 	if (__predict_false(vn_alloc_cyclecount != 0))
1748 		return (vn_alloc_hard(mp));
1749 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1750 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1751 		atomic_subtract_long(&numvnodes, 1);
1752 		return (vn_alloc_hard(mp));
1753 	}
1754 
1755 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1756 }
1757 
1758 static void
1759 vn_free(struct vnode *vp)
1760 {
1761 
1762 	atomic_subtract_long(&numvnodes, 1);
1763 	uma_zfree_smr(vnode_zone, vp);
1764 }
1765 
1766 /*
1767  * Return the next vnode from the free list.
1768  */
1769 int
1770 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1771     struct vnode **vpp)
1772 {
1773 	struct vnode *vp;
1774 	struct thread *td;
1775 	struct lock_object *lo;
1776 
1777 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1778 
1779 	KASSERT(vops->registered,
1780 	    ("%s: not registered vector op %p\n", __func__, vops));
1781 
1782 	td = curthread;
1783 	if (td->td_vp_reserved != NULL) {
1784 		vp = td->td_vp_reserved;
1785 		td->td_vp_reserved = NULL;
1786 	} else {
1787 		vp = vn_alloc(mp);
1788 	}
1789 	counter_u64_add(vnodes_created, 1);
1790 	/*
1791 	 * Locks are given the generic name "vnode" when created.
1792 	 * Follow the historic practice of using the filesystem
1793 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1794 	 *
1795 	 * Locks live in a witness group keyed on their name. Thus,
1796 	 * when a lock is renamed, it must also move from the witness
1797 	 * group of its old name to the witness group of its new name.
1798 	 *
1799 	 * The change only needs to be made when the vnode moves
1800 	 * from one filesystem type to another. We ensure that each
1801 	 * filesystem use a single static name pointer for its tag so
1802 	 * that we can compare pointers rather than doing a strcmp().
1803 	 */
1804 	lo = &vp->v_vnlock->lock_object;
1805 #ifdef WITNESS
1806 	if (lo->lo_name != tag) {
1807 #endif
1808 		lo->lo_name = tag;
1809 #ifdef WITNESS
1810 		WITNESS_DESTROY(lo);
1811 		WITNESS_INIT(lo, tag);
1812 	}
1813 #endif
1814 	/*
1815 	 * By default, don't allow shared locks unless filesystems opt-in.
1816 	 */
1817 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1818 	/*
1819 	 * Finalize various vnode identity bits.
1820 	 */
1821 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1822 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1823 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1824 	vp->v_type = VNON;
1825 	vp->v_op = vops;
1826 	vp->v_irflag = 0;
1827 	v_init_counters(vp);
1828 	vn_seqc_init(vp);
1829 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1830 #ifdef DIAGNOSTIC
1831 	if (mp == NULL && vops != &dead_vnodeops)
1832 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1833 #endif
1834 #ifdef MAC
1835 	mac_vnode_init(vp);
1836 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1837 		mac_vnode_associate_singlelabel(mp, vp);
1838 #endif
1839 	if (mp != NULL) {
1840 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1841 	}
1842 
1843 	/*
1844 	 * For the filesystems which do not use vfs_hash_insert(),
1845 	 * still initialize v_hash to have vfs_hash_index() useful.
1846 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1847 	 * its own hashing.
1848 	 */
1849 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1850 
1851 	*vpp = vp;
1852 	return (0);
1853 }
1854 
1855 void
1856 getnewvnode_reserve(void)
1857 {
1858 	struct thread *td;
1859 
1860 	td = curthread;
1861 	MPASS(td->td_vp_reserved == NULL);
1862 	td->td_vp_reserved = vn_alloc(NULL);
1863 }
1864 
1865 void
1866 getnewvnode_drop_reserve(void)
1867 {
1868 	struct thread *td;
1869 
1870 	td = curthread;
1871 	if (td->td_vp_reserved != NULL) {
1872 		vn_free(td->td_vp_reserved);
1873 		td->td_vp_reserved = NULL;
1874 	}
1875 }
1876 
1877 static void __noinline
1878 freevnode(struct vnode *vp)
1879 {
1880 	struct bufobj *bo;
1881 
1882 	/*
1883 	 * The vnode has been marked for destruction, so free it.
1884 	 *
1885 	 * The vnode will be returned to the zone where it will
1886 	 * normally remain until it is needed for another vnode. We
1887 	 * need to cleanup (or verify that the cleanup has already
1888 	 * been done) any residual data left from its current use
1889 	 * so as not to contaminate the freshly allocated vnode.
1890 	 */
1891 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1892 	/*
1893 	 * Paired with vgone.
1894 	 */
1895 	vn_seqc_write_end_free(vp);
1896 
1897 	bo = &vp->v_bufobj;
1898 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1899 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1900 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1901 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1902 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1903 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1904 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1905 	    ("clean blk trie not empty"));
1906 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1907 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1908 	    ("dirty blk trie not empty"));
1909 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1910 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1911 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1912 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1913 	    ("Dangling rangelock waiters"));
1914 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1915 	    ("Leaked inactivation"));
1916 	VI_UNLOCK(vp);
1917 #ifdef MAC
1918 	mac_vnode_destroy(vp);
1919 #endif
1920 	if (vp->v_pollinfo != NULL) {
1921 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1922 		destroy_vpollinfo(vp->v_pollinfo);
1923 		VOP_UNLOCK(vp);
1924 		vp->v_pollinfo = NULL;
1925 	}
1926 	vp->v_mountedhere = NULL;
1927 	vp->v_unpcb = NULL;
1928 	vp->v_rdev = NULL;
1929 	vp->v_fifoinfo = NULL;
1930 	vp->v_iflag = 0;
1931 	vp->v_vflag = 0;
1932 	bo->bo_flag = 0;
1933 	vn_free(vp);
1934 }
1935 
1936 /*
1937  * Delete from old mount point vnode list, if on one.
1938  */
1939 static void
1940 delmntque(struct vnode *vp)
1941 {
1942 	struct mount *mp;
1943 
1944 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1945 
1946 	mp = vp->v_mount;
1947 	if (mp == NULL)
1948 		return;
1949 	MNT_ILOCK(mp);
1950 	VI_LOCK(vp);
1951 	vp->v_mount = NULL;
1952 	VI_UNLOCK(vp);
1953 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1954 		("bad mount point vnode list size"));
1955 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1956 	mp->mnt_nvnodelistsize--;
1957 	MNT_REL(mp);
1958 	MNT_IUNLOCK(mp);
1959 }
1960 
1961 static int
1962 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
1963 {
1964 
1965 	KASSERT(vp->v_mount == NULL,
1966 		("insmntque: vnode already on per mount vnode list"));
1967 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1968 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
1969 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1970 	} else {
1971 		KASSERT(!dtr,
1972 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
1973 		    __func__));
1974 	}
1975 
1976 	/*
1977 	 * We acquire the vnode interlock early to ensure that the
1978 	 * vnode cannot be recycled by another process releasing a
1979 	 * holdcnt on it before we get it on both the vnode list
1980 	 * and the active vnode list. The mount mutex protects only
1981 	 * manipulation of the vnode list and the vnode freelist
1982 	 * mutex protects only manipulation of the active vnode list.
1983 	 * Hence the need to hold the vnode interlock throughout.
1984 	 */
1985 	MNT_ILOCK(mp);
1986 	VI_LOCK(vp);
1987 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1988 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1989 	    mp->mnt_nvnodelistsize == 0)) &&
1990 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1991 		VI_UNLOCK(vp);
1992 		MNT_IUNLOCK(mp);
1993 		if (dtr) {
1994 			vp->v_data = NULL;
1995 			vp->v_op = &dead_vnodeops;
1996 			vgone(vp);
1997 			vput(vp);
1998 		}
1999 		return (EBUSY);
2000 	}
2001 	vp->v_mount = mp;
2002 	MNT_REF(mp);
2003 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2004 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2005 		("neg mount point vnode list size"));
2006 	mp->mnt_nvnodelistsize++;
2007 	VI_UNLOCK(vp);
2008 	MNT_IUNLOCK(mp);
2009 	return (0);
2010 }
2011 
2012 /*
2013  * Insert into list of vnodes for the new mount point, if available.
2014  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2015  * leaves handling of the vnode to the caller.
2016  */
2017 int
2018 insmntque(struct vnode *vp, struct mount *mp)
2019 {
2020 	return (insmntque1_int(vp, mp, true));
2021 }
2022 
2023 int
2024 insmntque1(struct vnode *vp, struct mount *mp)
2025 {
2026 	return (insmntque1_int(vp, mp, false));
2027 }
2028 
2029 /*
2030  * Flush out and invalidate all buffers associated with a bufobj
2031  * Called with the underlying object locked.
2032  */
2033 int
2034 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2035 {
2036 	int error;
2037 
2038 	BO_LOCK(bo);
2039 	if (flags & V_SAVE) {
2040 		error = bufobj_wwait(bo, slpflag, slptimeo);
2041 		if (error) {
2042 			BO_UNLOCK(bo);
2043 			return (error);
2044 		}
2045 		if (bo->bo_dirty.bv_cnt > 0) {
2046 			BO_UNLOCK(bo);
2047 			do {
2048 				error = BO_SYNC(bo, MNT_WAIT);
2049 			} while (error == ERELOOKUP);
2050 			if (error != 0)
2051 				return (error);
2052 			BO_LOCK(bo);
2053 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2054 				BO_UNLOCK(bo);
2055 				return (EBUSY);
2056 			}
2057 		}
2058 	}
2059 	/*
2060 	 * If you alter this loop please notice that interlock is dropped and
2061 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2062 	 * no race conditions occur from this.
2063 	 */
2064 	do {
2065 		error = flushbuflist(&bo->bo_clean,
2066 		    flags, bo, slpflag, slptimeo);
2067 		if (error == 0 && !(flags & V_CLEANONLY))
2068 			error = flushbuflist(&bo->bo_dirty,
2069 			    flags, bo, slpflag, slptimeo);
2070 		if (error != 0 && error != EAGAIN) {
2071 			BO_UNLOCK(bo);
2072 			return (error);
2073 		}
2074 	} while (error != 0);
2075 
2076 	/*
2077 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2078 	 * have write I/O in-progress but if there is a VM object then the
2079 	 * VM object can also have read-I/O in-progress.
2080 	 */
2081 	do {
2082 		bufobj_wwait(bo, 0, 0);
2083 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2084 			BO_UNLOCK(bo);
2085 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2086 			BO_LOCK(bo);
2087 		}
2088 	} while (bo->bo_numoutput > 0);
2089 	BO_UNLOCK(bo);
2090 
2091 	/*
2092 	 * Destroy the copy in the VM cache, too.
2093 	 */
2094 	if (bo->bo_object != NULL &&
2095 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2096 		VM_OBJECT_WLOCK(bo->bo_object);
2097 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2098 		    OBJPR_CLEANONLY : 0);
2099 		VM_OBJECT_WUNLOCK(bo->bo_object);
2100 	}
2101 
2102 #ifdef INVARIANTS
2103 	BO_LOCK(bo);
2104 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2105 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2106 	    bo->bo_clean.bv_cnt > 0))
2107 		panic("vinvalbuf: flush failed");
2108 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2109 	    bo->bo_dirty.bv_cnt > 0)
2110 		panic("vinvalbuf: flush dirty failed");
2111 	BO_UNLOCK(bo);
2112 #endif
2113 	return (0);
2114 }
2115 
2116 /*
2117  * Flush out and invalidate all buffers associated with a vnode.
2118  * Called with the underlying object locked.
2119  */
2120 int
2121 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2122 {
2123 
2124 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2125 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2126 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2127 		return (0);
2128 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2129 }
2130 
2131 /*
2132  * Flush out buffers on the specified list.
2133  *
2134  */
2135 static int
2136 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2137     int slptimeo)
2138 {
2139 	struct buf *bp, *nbp;
2140 	int retval, error;
2141 	daddr_t lblkno;
2142 	b_xflags_t xflags;
2143 
2144 	ASSERT_BO_WLOCKED(bo);
2145 
2146 	retval = 0;
2147 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2148 		/*
2149 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2150 		 * do not skip any buffers. If we are flushing only V_NORMAL
2151 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2152 		 * flushing only V_ALT buffers then skip buffers not marked
2153 		 * as BX_ALTDATA.
2154 		 */
2155 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2156 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2157 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2158 			continue;
2159 		}
2160 		if (nbp != NULL) {
2161 			lblkno = nbp->b_lblkno;
2162 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2163 		}
2164 		retval = EAGAIN;
2165 		error = BUF_TIMELOCK(bp,
2166 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2167 		    "flushbuf", slpflag, slptimeo);
2168 		if (error) {
2169 			BO_LOCK(bo);
2170 			return (error != ENOLCK ? error : EAGAIN);
2171 		}
2172 		KASSERT(bp->b_bufobj == bo,
2173 		    ("bp %p wrong b_bufobj %p should be %p",
2174 		    bp, bp->b_bufobj, bo));
2175 		/*
2176 		 * XXX Since there are no node locks for NFS, I
2177 		 * believe there is a slight chance that a delayed
2178 		 * write will occur while sleeping just above, so
2179 		 * check for it.
2180 		 */
2181 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2182 		    (flags & V_SAVE)) {
2183 			bremfree(bp);
2184 			bp->b_flags |= B_ASYNC;
2185 			bwrite(bp);
2186 			BO_LOCK(bo);
2187 			return (EAGAIN);	/* XXX: why not loop ? */
2188 		}
2189 		bremfree(bp);
2190 		bp->b_flags |= (B_INVAL | B_RELBUF);
2191 		bp->b_flags &= ~B_ASYNC;
2192 		brelse(bp);
2193 		BO_LOCK(bo);
2194 		if (nbp == NULL)
2195 			break;
2196 		nbp = gbincore(bo, lblkno);
2197 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2198 		    != xflags)
2199 			break;			/* nbp invalid */
2200 	}
2201 	return (retval);
2202 }
2203 
2204 int
2205 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2206 {
2207 	struct buf *bp;
2208 	int error;
2209 	daddr_t lblkno;
2210 
2211 	ASSERT_BO_LOCKED(bo);
2212 
2213 	for (lblkno = startn;;) {
2214 again:
2215 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2216 		if (bp == NULL || bp->b_lblkno >= endn ||
2217 		    bp->b_lblkno < startn)
2218 			break;
2219 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2220 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2221 		if (error != 0) {
2222 			BO_RLOCK(bo);
2223 			if (error == ENOLCK)
2224 				goto again;
2225 			return (error);
2226 		}
2227 		KASSERT(bp->b_bufobj == bo,
2228 		    ("bp %p wrong b_bufobj %p should be %p",
2229 		    bp, bp->b_bufobj, bo));
2230 		lblkno = bp->b_lblkno + 1;
2231 		if ((bp->b_flags & B_MANAGED) == 0)
2232 			bremfree(bp);
2233 		bp->b_flags |= B_RELBUF;
2234 		/*
2235 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2236 		 * pages backing each buffer in the range are unlikely to be
2237 		 * reused.  Dirty buffers will have the hint applied once
2238 		 * they've been written.
2239 		 */
2240 		if ((bp->b_flags & B_VMIO) != 0)
2241 			bp->b_flags |= B_NOREUSE;
2242 		brelse(bp);
2243 		BO_RLOCK(bo);
2244 	}
2245 	return (0);
2246 }
2247 
2248 /*
2249  * Truncate a file's buffer and pages to a specified length.  This
2250  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2251  * sync activity.
2252  */
2253 int
2254 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2255 {
2256 	struct buf *bp, *nbp;
2257 	struct bufobj *bo;
2258 	daddr_t startlbn;
2259 
2260 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2261 	    vp, blksize, (uintmax_t)length);
2262 
2263 	/*
2264 	 * Round up to the *next* lbn.
2265 	 */
2266 	startlbn = howmany(length, blksize);
2267 
2268 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2269 
2270 	bo = &vp->v_bufobj;
2271 restart_unlocked:
2272 	BO_LOCK(bo);
2273 
2274 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2275 		;
2276 
2277 	if (length > 0) {
2278 restartsync:
2279 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2280 			if (bp->b_lblkno > 0)
2281 				continue;
2282 			/*
2283 			 * Since we hold the vnode lock this should only
2284 			 * fail if we're racing with the buf daemon.
2285 			 */
2286 			if (BUF_LOCK(bp,
2287 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2288 			    BO_LOCKPTR(bo)) == ENOLCK)
2289 				goto restart_unlocked;
2290 
2291 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2292 			    ("buf(%p) on dirty queue without DELWRI", bp));
2293 
2294 			bremfree(bp);
2295 			bawrite(bp);
2296 			BO_LOCK(bo);
2297 			goto restartsync;
2298 		}
2299 	}
2300 
2301 	bufobj_wwait(bo, 0, 0);
2302 	BO_UNLOCK(bo);
2303 	vnode_pager_setsize(vp, length);
2304 
2305 	return (0);
2306 }
2307 
2308 /*
2309  * Invalidate the cached pages of a file's buffer within the range of block
2310  * numbers [startlbn, endlbn).
2311  */
2312 void
2313 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2314     int blksize)
2315 {
2316 	struct bufobj *bo;
2317 	off_t start, end;
2318 
2319 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2320 
2321 	start = blksize * startlbn;
2322 	end = blksize * endlbn;
2323 
2324 	bo = &vp->v_bufobj;
2325 	BO_LOCK(bo);
2326 	MPASS(blksize == bo->bo_bsize);
2327 
2328 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2329 		;
2330 
2331 	BO_UNLOCK(bo);
2332 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2333 }
2334 
2335 static int
2336 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2337     daddr_t startlbn, daddr_t endlbn)
2338 {
2339 	struct buf *bp, *nbp;
2340 	bool anyfreed;
2341 
2342 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2343 	ASSERT_BO_LOCKED(bo);
2344 
2345 	do {
2346 		anyfreed = false;
2347 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2348 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2349 				continue;
2350 			if (BUF_LOCK(bp,
2351 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2352 			    BO_LOCKPTR(bo)) == ENOLCK) {
2353 				BO_LOCK(bo);
2354 				return (EAGAIN);
2355 			}
2356 
2357 			bremfree(bp);
2358 			bp->b_flags |= B_INVAL | B_RELBUF;
2359 			bp->b_flags &= ~B_ASYNC;
2360 			brelse(bp);
2361 			anyfreed = true;
2362 
2363 			BO_LOCK(bo);
2364 			if (nbp != NULL &&
2365 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2366 			    nbp->b_vp != vp ||
2367 			    (nbp->b_flags & B_DELWRI) != 0))
2368 				return (EAGAIN);
2369 		}
2370 
2371 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2372 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2373 				continue;
2374 			if (BUF_LOCK(bp,
2375 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2376 			    BO_LOCKPTR(bo)) == ENOLCK) {
2377 				BO_LOCK(bo);
2378 				return (EAGAIN);
2379 			}
2380 			bremfree(bp);
2381 			bp->b_flags |= B_INVAL | B_RELBUF;
2382 			bp->b_flags &= ~B_ASYNC;
2383 			brelse(bp);
2384 			anyfreed = true;
2385 
2386 			BO_LOCK(bo);
2387 			if (nbp != NULL &&
2388 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2389 			    (nbp->b_vp != vp) ||
2390 			    (nbp->b_flags & B_DELWRI) == 0))
2391 				return (EAGAIN);
2392 		}
2393 	} while (anyfreed);
2394 	return (0);
2395 }
2396 
2397 static void
2398 buf_vlist_remove(struct buf *bp)
2399 {
2400 	struct bufv *bv;
2401 	b_xflags_t flags;
2402 
2403 	flags = bp->b_xflags;
2404 
2405 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2406 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2407 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2408 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2409 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2410 
2411 	if ((flags & BX_VNDIRTY) != 0)
2412 		bv = &bp->b_bufobj->bo_dirty;
2413 	else
2414 		bv = &bp->b_bufobj->bo_clean;
2415 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2416 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2417 	bv->bv_cnt--;
2418 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2419 }
2420 
2421 /*
2422  * Add the buffer to the sorted clean or dirty block list.
2423  *
2424  * NOTE: xflags is passed as a constant, optimizing this inline function!
2425  */
2426 static void
2427 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2428 {
2429 	struct bufv *bv;
2430 	struct buf *n;
2431 	int error;
2432 
2433 	ASSERT_BO_WLOCKED(bo);
2434 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2435 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2436 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2437 	    ("dead bo %p", bo));
2438 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2439 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2440 	bp->b_xflags |= xflags;
2441 	if (xflags & BX_VNDIRTY)
2442 		bv = &bo->bo_dirty;
2443 	else
2444 		bv = &bo->bo_clean;
2445 
2446 	/*
2447 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2448 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2449 	 * than _ge.
2450 	 */
2451 	if (bv->bv_cnt == 0 ||
2452 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2453 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2454 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2455 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2456 	else
2457 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2458 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2459 	if (error)
2460 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2461 	bv->bv_cnt++;
2462 }
2463 
2464 /*
2465  * Look up a buffer using the buffer tries.
2466  */
2467 struct buf *
2468 gbincore(struct bufobj *bo, daddr_t lblkno)
2469 {
2470 	struct buf *bp;
2471 
2472 	ASSERT_BO_LOCKED(bo);
2473 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2474 	if (bp != NULL)
2475 		return (bp);
2476 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2477 }
2478 
2479 /*
2480  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2481  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2482  * stability of the result.  Like other lockless lookups, the found buf may
2483  * already be invalid by the time this function returns.
2484  */
2485 struct buf *
2486 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2487 {
2488 	struct buf *bp;
2489 
2490 	ASSERT_BO_UNLOCKED(bo);
2491 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2492 	if (bp != NULL)
2493 		return (bp);
2494 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2495 }
2496 
2497 /*
2498  * Associate a buffer with a vnode.
2499  */
2500 void
2501 bgetvp(struct vnode *vp, struct buf *bp)
2502 {
2503 	struct bufobj *bo;
2504 
2505 	bo = &vp->v_bufobj;
2506 	ASSERT_BO_WLOCKED(bo);
2507 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2508 
2509 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2510 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2511 	    ("bgetvp: bp already attached! %p", bp));
2512 
2513 	vhold(vp);
2514 	bp->b_vp = vp;
2515 	bp->b_bufobj = bo;
2516 	/*
2517 	 * Insert onto list for new vnode.
2518 	 */
2519 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2520 }
2521 
2522 /*
2523  * Disassociate a buffer from a vnode.
2524  */
2525 void
2526 brelvp(struct buf *bp)
2527 {
2528 	struct bufobj *bo;
2529 	struct vnode *vp;
2530 
2531 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2532 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2533 
2534 	/*
2535 	 * Delete from old vnode list, if on one.
2536 	 */
2537 	vp = bp->b_vp;		/* XXX */
2538 	bo = bp->b_bufobj;
2539 	BO_LOCK(bo);
2540 	buf_vlist_remove(bp);
2541 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2542 		bo->bo_flag &= ~BO_ONWORKLST;
2543 		mtx_lock(&sync_mtx);
2544 		LIST_REMOVE(bo, bo_synclist);
2545 		syncer_worklist_len--;
2546 		mtx_unlock(&sync_mtx);
2547 	}
2548 	bp->b_vp = NULL;
2549 	bp->b_bufobj = NULL;
2550 	BO_UNLOCK(bo);
2551 	vdrop(vp);
2552 }
2553 
2554 /*
2555  * Add an item to the syncer work queue.
2556  */
2557 static void
2558 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2559 {
2560 	int slot;
2561 
2562 	ASSERT_BO_WLOCKED(bo);
2563 
2564 	mtx_lock(&sync_mtx);
2565 	if (bo->bo_flag & BO_ONWORKLST)
2566 		LIST_REMOVE(bo, bo_synclist);
2567 	else {
2568 		bo->bo_flag |= BO_ONWORKLST;
2569 		syncer_worklist_len++;
2570 	}
2571 
2572 	if (delay > syncer_maxdelay - 2)
2573 		delay = syncer_maxdelay - 2;
2574 	slot = (syncer_delayno + delay) & syncer_mask;
2575 
2576 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2577 	mtx_unlock(&sync_mtx);
2578 }
2579 
2580 static int
2581 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2582 {
2583 	int error, len;
2584 
2585 	mtx_lock(&sync_mtx);
2586 	len = syncer_worklist_len - sync_vnode_count;
2587 	mtx_unlock(&sync_mtx);
2588 	error = SYSCTL_OUT(req, &len, sizeof(len));
2589 	return (error);
2590 }
2591 
2592 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2593     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2594     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2595 
2596 static struct proc *updateproc;
2597 static void sched_sync(void);
2598 static struct kproc_desc up_kp = {
2599 	"syncer",
2600 	sched_sync,
2601 	&updateproc
2602 };
2603 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2604 
2605 static int
2606 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2607 {
2608 	struct vnode *vp;
2609 	struct mount *mp;
2610 
2611 	*bo = LIST_FIRST(slp);
2612 	if (*bo == NULL)
2613 		return (0);
2614 	vp = bo2vnode(*bo);
2615 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2616 		return (1);
2617 	/*
2618 	 * We use vhold in case the vnode does not
2619 	 * successfully sync.  vhold prevents the vnode from
2620 	 * going away when we unlock the sync_mtx so that
2621 	 * we can acquire the vnode interlock.
2622 	 */
2623 	vholdl(vp);
2624 	mtx_unlock(&sync_mtx);
2625 	VI_UNLOCK(vp);
2626 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2627 		vdrop(vp);
2628 		mtx_lock(&sync_mtx);
2629 		return (*bo == LIST_FIRST(slp));
2630 	}
2631 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2632 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2633 	VOP_UNLOCK(vp);
2634 	vn_finished_write(mp);
2635 	BO_LOCK(*bo);
2636 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2637 		/*
2638 		 * Put us back on the worklist.  The worklist
2639 		 * routine will remove us from our current
2640 		 * position and then add us back in at a later
2641 		 * position.
2642 		 */
2643 		vn_syncer_add_to_worklist(*bo, syncdelay);
2644 	}
2645 	BO_UNLOCK(*bo);
2646 	vdrop(vp);
2647 	mtx_lock(&sync_mtx);
2648 	return (0);
2649 }
2650 
2651 static int first_printf = 1;
2652 
2653 /*
2654  * System filesystem synchronizer daemon.
2655  */
2656 static void
2657 sched_sync(void)
2658 {
2659 	struct synclist *next, *slp;
2660 	struct bufobj *bo;
2661 	long starttime;
2662 	struct thread *td = curthread;
2663 	int last_work_seen;
2664 	int net_worklist_len;
2665 	int syncer_final_iter;
2666 	int error;
2667 
2668 	last_work_seen = 0;
2669 	syncer_final_iter = 0;
2670 	syncer_state = SYNCER_RUNNING;
2671 	starttime = time_uptime;
2672 	td->td_pflags |= TDP_NORUNNINGBUF;
2673 
2674 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2675 	    SHUTDOWN_PRI_LAST);
2676 
2677 	mtx_lock(&sync_mtx);
2678 	for (;;) {
2679 		if (syncer_state == SYNCER_FINAL_DELAY &&
2680 		    syncer_final_iter == 0) {
2681 			mtx_unlock(&sync_mtx);
2682 			kproc_suspend_check(td->td_proc);
2683 			mtx_lock(&sync_mtx);
2684 		}
2685 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2686 		if (syncer_state != SYNCER_RUNNING &&
2687 		    starttime != time_uptime) {
2688 			if (first_printf) {
2689 				printf("\nSyncing disks, vnodes remaining... ");
2690 				first_printf = 0;
2691 			}
2692 			printf("%d ", net_worklist_len);
2693 		}
2694 		starttime = time_uptime;
2695 
2696 		/*
2697 		 * Push files whose dirty time has expired.  Be careful
2698 		 * of interrupt race on slp queue.
2699 		 *
2700 		 * Skip over empty worklist slots when shutting down.
2701 		 */
2702 		do {
2703 			slp = &syncer_workitem_pending[syncer_delayno];
2704 			syncer_delayno += 1;
2705 			if (syncer_delayno == syncer_maxdelay)
2706 				syncer_delayno = 0;
2707 			next = &syncer_workitem_pending[syncer_delayno];
2708 			/*
2709 			 * If the worklist has wrapped since the
2710 			 * it was emptied of all but syncer vnodes,
2711 			 * switch to the FINAL_DELAY state and run
2712 			 * for one more second.
2713 			 */
2714 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2715 			    net_worklist_len == 0 &&
2716 			    last_work_seen == syncer_delayno) {
2717 				syncer_state = SYNCER_FINAL_DELAY;
2718 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2719 			}
2720 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2721 		    syncer_worklist_len > 0);
2722 
2723 		/*
2724 		 * Keep track of the last time there was anything
2725 		 * on the worklist other than syncer vnodes.
2726 		 * Return to the SHUTTING_DOWN state if any
2727 		 * new work appears.
2728 		 */
2729 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2730 			last_work_seen = syncer_delayno;
2731 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2732 			syncer_state = SYNCER_SHUTTING_DOWN;
2733 		while (!LIST_EMPTY(slp)) {
2734 			error = sync_vnode(slp, &bo, td);
2735 			if (error == 1) {
2736 				LIST_REMOVE(bo, bo_synclist);
2737 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2738 				continue;
2739 			}
2740 
2741 			if (first_printf == 0) {
2742 				/*
2743 				 * Drop the sync mutex, because some watchdog
2744 				 * drivers need to sleep while patting
2745 				 */
2746 				mtx_unlock(&sync_mtx);
2747 				wdog_kern_pat(WD_LASTVAL);
2748 				mtx_lock(&sync_mtx);
2749 			}
2750 		}
2751 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2752 			syncer_final_iter--;
2753 		/*
2754 		 * The variable rushjob allows the kernel to speed up the
2755 		 * processing of the filesystem syncer process. A rushjob
2756 		 * value of N tells the filesystem syncer to process the next
2757 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2758 		 * is used by the soft update code to speed up the filesystem
2759 		 * syncer process when the incore state is getting so far
2760 		 * ahead of the disk that the kernel memory pool is being
2761 		 * threatened with exhaustion.
2762 		 */
2763 		if (rushjob > 0) {
2764 			rushjob -= 1;
2765 			continue;
2766 		}
2767 		/*
2768 		 * Just sleep for a short period of time between
2769 		 * iterations when shutting down to allow some I/O
2770 		 * to happen.
2771 		 *
2772 		 * If it has taken us less than a second to process the
2773 		 * current work, then wait. Otherwise start right over
2774 		 * again. We can still lose time if any single round
2775 		 * takes more than two seconds, but it does not really
2776 		 * matter as we are just trying to generally pace the
2777 		 * filesystem activity.
2778 		 */
2779 		if (syncer_state != SYNCER_RUNNING ||
2780 		    time_uptime == starttime) {
2781 			thread_lock(td);
2782 			sched_prio(td, PPAUSE);
2783 			thread_unlock(td);
2784 		}
2785 		if (syncer_state != SYNCER_RUNNING)
2786 			cv_timedwait(&sync_wakeup, &sync_mtx,
2787 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2788 		else if (time_uptime == starttime)
2789 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2790 	}
2791 }
2792 
2793 /*
2794  * Request the syncer daemon to speed up its work.
2795  * We never push it to speed up more than half of its
2796  * normal turn time, otherwise it could take over the cpu.
2797  */
2798 int
2799 speedup_syncer(void)
2800 {
2801 	int ret = 0;
2802 
2803 	mtx_lock(&sync_mtx);
2804 	if (rushjob < syncdelay / 2) {
2805 		rushjob += 1;
2806 		stat_rush_requests += 1;
2807 		ret = 1;
2808 	}
2809 	mtx_unlock(&sync_mtx);
2810 	cv_broadcast(&sync_wakeup);
2811 	return (ret);
2812 }
2813 
2814 /*
2815  * Tell the syncer to speed up its work and run though its work
2816  * list several times, then tell it to shut down.
2817  */
2818 static void
2819 syncer_shutdown(void *arg, int howto)
2820 {
2821 
2822 	if (howto & RB_NOSYNC)
2823 		return;
2824 	mtx_lock(&sync_mtx);
2825 	syncer_state = SYNCER_SHUTTING_DOWN;
2826 	rushjob = 0;
2827 	mtx_unlock(&sync_mtx);
2828 	cv_broadcast(&sync_wakeup);
2829 	kproc_shutdown(arg, howto);
2830 }
2831 
2832 void
2833 syncer_suspend(void)
2834 {
2835 
2836 	syncer_shutdown(updateproc, 0);
2837 }
2838 
2839 void
2840 syncer_resume(void)
2841 {
2842 
2843 	mtx_lock(&sync_mtx);
2844 	first_printf = 1;
2845 	syncer_state = SYNCER_RUNNING;
2846 	mtx_unlock(&sync_mtx);
2847 	cv_broadcast(&sync_wakeup);
2848 	kproc_resume(updateproc);
2849 }
2850 
2851 /*
2852  * Move the buffer between the clean and dirty lists of its vnode.
2853  */
2854 void
2855 reassignbuf(struct buf *bp)
2856 {
2857 	struct vnode *vp;
2858 	struct bufobj *bo;
2859 	int delay;
2860 #ifdef INVARIANTS
2861 	struct bufv *bv;
2862 #endif
2863 
2864 	vp = bp->b_vp;
2865 	bo = bp->b_bufobj;
2866 
2867 	KASSERT((bp->b_flags & B_PAGING) == 0,
2868 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2869 
2870 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2871 	    bp, bp->b_vp, bp->b_flags);
2872 
2873 	BO_LOCK(bo);
2874 	buf_vlist_remove(bp);
2875 
2876 	/*
2877 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2878 	 * of clean buffers.
2879 	 */
2880 	if (bp->b_flags & B_DELWRI) {
2881 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2882 			switch (vp->v_type) {
2883 			case VDIR:
2884 				delay = dirdelay;
2885 				break;
2886 			case VCHR:
2887 				delay = metadelay;
2888 				break;
2889 			default:
2890 				delay = filedelay;
2891 			}
2892 			vn_syncer_add_to_worklist(bo, delay);
2893 		}
2894 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2895 	} else {
2896 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2897 
2898 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2899 			mtx_lock(&sync_mtx);
2900 			LIST_REMOVE(bo, bo_synclist);
2901 			syncer_worklist_len--;
2902 			mtx_unlock(&sync_mtx);
2903 			bo->bo_flag &= ~BO_ONWORKLST;
2904 		}
2905 	}
2906 #ifdef INVARIANTS
2907 	bv = &bo->bo_clean;
2908 	bp = TAILQ_FIRST(&bv->bv_hd);
2909 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2910 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2911 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2912 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2913 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2914 	bv = &bo->bo_dirty;
2915 	bp = TAILQ_FIRST(&bv->bv_hd);
2916 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2917 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2918 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2919 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2920 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2921 #endif
2922 	BO_UNLOCK(bo);
2923 }
2924 
2925 static void
2926 v_init_counters(struct vnode *vp)
2927 {
2928 
2929 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2930 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2931 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2932 
2933 	refcount_init(&vp->v_holdcnt, 1);
2934 	refcount_init(&vp->v_usecount, 1);
2935 }
2936 
2937 /*
2938  * Grab a particular vnode from the free list, increment its
2939  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2940  * is being destroyed.  Only callers who specify LK_RETRY will
2941  * see doomed vnodes.  If inactive processing was delayed in
2942  * vput try to do it here.
2943  *
2944  * usecount is manipulated using atomics without holding any locks.
2945  *
2946  * holdcnt can be manipulated using atomics without holding any locks,
2947  * except when transitioning 1<->0, in which case the interlock is held.
2948  *
2949  * Consumers which don't guarantee liveness of the vnode can use SMR to
2950  * try to get a reference. Note this operation can fail since the vnode
2951  * may be awaiting getting freed by the time they get to it.
2952  */
2953 enum vgetstate
2954 vget_prep_smr(struct vnode *vp)
2955 {
2956 	enum vgetstate vs;
2957 
2958 	VFS_SMR_ASSERT_ENTERED();
2959 
2960 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2961 		vs = VGET_USECOUNT;
2962 	} else {
2963 		if (vhold_smr(vp))
2964 			vs = VGET_HOLDCNT;
2965 		else
2966 			vs = VGET_NONE;
2967 	}
2968 	return (vs);
2969 }
2970 
2971 enum vgetstate
2972 vget_prep(struct vnode *vp)
2973 {
2974 	enum vgetstate vs;
2975 
2976 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2977 		vs = VGET_USECOUNT;
2978 	} else {
2979 		vhold(vp);
2980 		vs = VGET_HOLDCNT;
2981 	}
2982 	return (vs);
2983 }
2984 
2985 void
2986 vget_abort(struct vnode *vp, enum vgetstate vs)
2987 {
2988 
2989 	switch (vs) {
2990 	case VGET_USECOUNT:
2991 		vrele(vp);
2992 		break;
2993 	case VGET_HOLDCNT:
2994 		vdrop(vp);
2995 		break;
2996 	default:
2997 		__assert_unreachable();
2998 	}
2999 }
3000 
3001 int
3002 vget(struct vnode *vp, int flags)
3003 {
3004 	enum vgetstate vs;
3005 
3006 	vs = vget_prep(vp);
3007 	return (vget_finish(vp, flags, vs));
3008 }
3009 
3010 int
3011 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3012 {
3013 	int error;
3014 
3015 	if ((flags & LK_INTERLOCK) != 0)
3016 		ASSERT_VI_LOCKED(vp, __func__);
3017 	else
3018 		ASSERT_VI_UNLOCKED(vp, __func__);
3019 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3020 	VNPASS(vp->v_holdcnt > 0, vp);
3021 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3022 
3023 	error = vn_lock(vp, flags);
3024 	if (__predict_false(error != 0)) {
3025 		vget_abort(vp, vs);
3026 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3027 		    vp);
3028 		return (error);
3029 	}
3030 
3031 	vget_finish_ref(vp, vs);
3032 	return (0);
3033 }
3034 
3035 void
3036 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3037 {
3038 	int old;
3039 
3040 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3041 	VNPASS(vp->v_holdcnt > 0, vp);
3042 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3043 
3044 	if (vs == VGET_USECOUNT)
3045 		return;
3046 
3047 	/*
3048 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3049 	 * the vnode around. Otherwise someone else lended their hold count and
3050 	 * we have to drop ours.
3051 	 */
3052 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3053 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3054 	if (old != 0) {
3055 #ifdef INVARIANTS
3056 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3057 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3058 #else
3059 		refcount_release(&vp->v_holdcnt);
3060 #endif
3061 	}
3062 }
3063 
3064 void
3065 vref(struct vnode *vp)
3066 {
3067 	enum vgetstate vs;
3068 
3069 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3070 	vs = vget_prep(vp);
3071 	vget_finish_ref(vp, vs);
3072 }
3073 
3074 void
3075 vrefact(struct vnode *vp)
3076 {
3077 
3078 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3079 #ifdef INVARIANTS
3080 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3081 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3082 #else
3083 	refcount_acquire(&vp->v_usecount);
3084 #endif
3085 }
3086 
3087 void
3088 vlazy(struct vnode *vp)
3089 {
3090 	struct mount *mp;
3091 
3092 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3093 
3094 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3095 		return;
3096 	/*
3097 	 * We may get here for inactive routines after the vnode got doomed.
3098 	 */
3099 	if (VN_IS_DOOMED(vp))
3100 		return;
3101 	mp = vp->v_mount;
3102 	mtx_lock(&mp->mnt_listmtx);
3103 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3104 		vp->v_mflag |= VMP_LAZYLIST;
3105 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3106 		mp->mnt_lazyvnodelistsize++;
3107 	}
3108 	mtx_unlock(&mp->mnt_listmtx);
3109 }
3110 
3111 static void
3112 vunlazy(struct vnode *vp)
3113 {
3114 	struct mount *mp;
3115 
3116 	ASSERT_VI_LOCKED(vp, __func__);
3117 	VNPASS(!VN_IS_DOOMED(vp), vp);
3118 
3119 	mp = vp->v_mount;
3120 	mtx_lock(&mp->mnt_listmtx);
3121 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3122 	/*
3123 	 * Don't remove the vnode from the lazy list if another thread
3124 	 * has increased the hold count. It may have re-enqueued the
3125 	 * vnode to the lazy list and is now responsible for its
3126 	 * removal.
3127 	 */
3128 	if (vp->v_holdcnt == 0) {
3129 		vp->v_mflag &= ~VMP_LAZYLIST;
3130 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3131 		mp->mnt_lazyvnodelistsize--;
3132 	}
3133 	mtx_unlock(&mp->mnt_listmtx);
3134 }
3135 
3136 /*
3137  * This routine is only meant to be called from vgonel prior to dooming
3138  * the vnode.
3139  */
3140 static void
3141 vunlazy_gone(struct vnode *vp)
3142 {
3143 	struct mount *mp;
3144 
3145 	ASSERT_VOP_ELOCKED(vp, __func__);
3146 	ASSERT_VI_LOCKED(vp, __func__);
3147 	VNPASS(!VN_IS_DOOMED(vp), vp);
3148 
3149 	if (vp->v_mflag & VMP_LAZYLIST) {
3150 		mp = vp->v_mount;
3151 		mtx_lock(&mp->mnt_listmtx);
3152 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3153 		vp->v_mflag &= ~VMP_LAZYLIST;
3154 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3155 		mp->mnt_lazyvnodelistsize--;
3156 		mtx_unlock(&mp->mnt_listmtx);
3157 	}
3158 }
3159 
3160 static void
3161 vdefer_inactive(struct vnode *vp)
3162 {
3163 
3164 	ASSERT_VI_LOCKED(vp, __func__);
3165 	VNASSERT(vp->v_holdcnt > 0, vp,
3166 	    ("%s: vnode without hold count", __func__));
3167 	if (VN_IS_DOOMED(vp)) {
3168 		vdropl(vp);
3169 		return;
3170 	}
3171 	if (vp->v_iflag & VI_DEFINACT) {
3172 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3173 		vdropl(vp);
3174 		return;
3175 	}
3176 	if (vp->v_usecount > 0) {
3177 		vp->v_iflag &= ~VI_OWEINACT;
3178 		vdropl(vp);
3179 		return;
3180 	}
3181 	vlazy(vp);
3182 	vp->v_iflag |= VI_DEFINACT;
3183 	VI_UNLOCK(vp);
3184 	counter_u64_add(deferred_inact, 1);
3185 }
3186 
3187 static void
3188 vdefer_inactive_unlocked(struct vnode *vp)
3189 {
3190 
3191 	VI_LOCK(vp);
3192 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3193 		vdropl(vp);
3194 		return;
3195 	}
3196 	vdefer_inactive(vp);
3197 }
3198 
3199 enum vput_op { VRELE, VPUT, VUNREF };
3200 
3201 /*
3202  * Handle ->v_usecount transitioning to 0.
3203  *
3204  * By releasing the last usecount we take ownership of the hold count which
3205  * provides liveness of the vnode, meaning we have to vdrop.
3206  *
3207  * For all vnodes we may need to perform inactive processing. It requires an
3208  * exclusive lock on the vnode, while it is legal to call here with only a
3209  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3210  * inactive processing gets deferred to the syncer.
3211  *
3212  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3213  * on the lock being held all the way until VOP_INACTIVE. This in particular
3214  * happens with UFS which adds half-constructed vnodes to the hash, where they
3215  * can be found by other code.
3216  */
3217 static void
3218 vput_final(struct vnode *vp, enum vput_op func)
3219 {
3220 	int error;
3221 	bool want_unlock;
3222 
3223 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3224 	VNPASS(vp->v_holdcnt > 0, vp);
3225 
3226 	VI_LOCK(vp);
3227 
3228 	/*
3229 	 * By the time we got here someone else might have transitioned
3230 	 * the count back to > 0.
3231 	 */
3232 	if (vp->v_usecount > 0)
3233 		goto out;
3234 
3235 	/*
3236 	 * If the vnode is doomed vgone already performed inactive processing
3237 	 * (if needed).
3238 	 */
3239 	if (VN_IS_DOOMED(vp))
3240 		goto out;
3241 
3242 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3243 		goto out;
3244 
3245 	if (vp->v_iflag & VI_DOINGINACT)
3246 		goto out;
3247 
3248 	/*
3249 	 * Locking operations here will drop the interlock and possibly the
3250 	 * vnode lock, opening a window where the vnode can get doomed all the
3251 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3252 	 * perform inactive.
3253 	 */
3254 	vp->v_iflag |= VI_OWEINACT;
3255 	want_unlock = false;
3256 	error = 0;
3257 	switch (func) {
3258 	case VRELE:
3259 		switch (VOP_ISLOCKED(vp)) {
3260 		case LK_EXCLUSIVE:
3261 			break;
3262 		case LK_EXCLOTHER:
3263 		case 0:
3264 			want_unlock = true;
3265 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3266 			VI_LOCK(vp);
3267 			break;
3268 		default:
3269 			/*
3270 			 * The lock has at least one sharer, but we have no way
3271 			 * to conclude whether this is us. Play it safe and
3272 			 * defer processing.
3273 			 */
3274 			error = EAGAIN;
3275 			break;
3276 		}
3277 		break;
3278 	case VPUT:
3279 		want_unlock = true;
3280 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3281 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3282 			    LK_NOWAIT);
3283 			VI_LOCK(vp);
3284 		}
3285 		break;
3286 	case VUNREF:
3287 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3288 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3289 			VI_LOCK(vp);
3290 		}
3291 		break;
3292 	}
3293 	if (error == 0) {
3294 		if (func == VUNREF) {
3295 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3296 			    ("recursive vunref"));
3297 			vp->v_vflag |= VV_UNREF;
3298 		}
3299 		for (;;) {
3300 			error = vinactive(vp);
3301 			if (want_unlock)
3302 				VOP_UNLOCK(vp);
3303 			if (error != ERELOOKUP || !want_unlock)
3304 				break;
3305 			VOP_LOCK(vp, LK_EXCLUSIVE);
3306 		}
3307 		if (func == VUNREF)
3308 			vp->v_vflag &= ~VV_UNREF;
3309 		vdropl(vp);
3310 	} else {
3311 		vdefer_inactive(vp);
3312 	}
3313 	return;
3314 out:
3315 	if (func == VPUT)
3316 		VOP_UNLOCK(vp);
3317 	vdropl(vp);
3318 }
3319 
3320 /*
3321  * Decrement ->v_usecount for a vnode.
3322  *
3323  * Releasing the last use count requires additional processing, see vput_final
3324  * above for details.
3325  *
3326  * Comment above each variant denotes lock state on entry and exit.
3327  */
3328 
3329 /*
3330  * in: any
3331  * out: same as passed in
3332  */
3333 void
3334 vrele(struct vnode *vp)
3335 {
3336 
3337 	ASSERT_VI_UNLOCKED(vp, __func__);
3338 	if (!refcount_release(&vp->v_usecount))
3339 		return;
3340 	vput_final(vp, VRELE);
3341 }
3342 
3343 /*
3344  * in: locked
3345  * out: unlocked
3346  */
3347 void
3348 vput(struct vnode *vp)
3349 {
3350 
3351 	ASSERT_VOP_LOCKED(vp, __func__);
3352 	ASSERT_VI_UNLOCKED(vp, __func__);
3353 	if (!refcount_release(&vp->v_usecount)) {
3354 		VOP_UNLOCK(vp);
3355 		return;
3356 	}
3357 	vput_final(vp, VPUT);
3358 }
3359 
3360 /*
3361  * in: locked
3362  * out: locked
3363  */
3364 void
3365 vunref(struct vnode *vp)
3366 {
3367 
3368 	ASSERT_VOP_LOCKED(vp, __func__);
3369 	ASSERT_VI_UNLOCKED(vp, __func__);
3370 	if (!refcount_release(&vp->v_usecount))
3371 		return;
3372 	vput_final(vp, VUNREF);
3373 }
3374 
3375 void
3376 vhold(struct vnode *vp)
3377 {
3378 	int old;
3379 
3380 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3381 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3382 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3383 	    ("%s: wrong hold count %d", __func__, old));
3384 	if (old == 0)
3385 		vfs_freevnodes_dec();
3386 }
3387 
3388 void
3389 vholdnz(struct vnode *vp)
3390 {
3391 
3392 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3393 #ifdef INVARIANTS
3394 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3395 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3396 	    ("%s: wrong hold count %d", __func__, old));
3397 #else
3398 	atomic_add_int(&vp->v_holdcnt, 1);
3399 #endif
3400 }
3401 
3402 /*
3403  * Grab a hold count unless the vnode is freed.
3404  *
3405  * Only use this routine if vfs smr is the only protection you have against
3406  * freeing the vnode.
3407  *
3408  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3409  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3410  * the thread which managed to set the flag.
3411  *
3412  * It may be tempting to replace the loop with:
3413  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3414  * if (count & VHOLD_NO_SMR) {
3415  *     backpedal and error out;
3416  * }
3417  *
3418  * However, while this is more performant, it hinders debugging by eliminating
3419  * the previously mentioned invariant.
3420  */
3421 bool
3422 vhold_smr(struct vnode *vp)
3423 {
3424 	int count;
3425 
3426 	VFS_SMR_ASSERT_ENTERED();
3427 
3428 	count = atomic_load_int(&vp->v_holdcnt);
3429 	for (;;) {
3430 		if (count & VHOLD_NO_SMR) {
3431 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3432 			    ("non-zero hold count with flags %d\n", count));
3433 			return (false);
3434 		}
3435 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3436 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3437 			if (count == 0)
3438 				vfs_freevnodes_dec();
3439 			return (true);
3440 		}
3441 	}
3442 }
3443 
3444 /*
3445  * Hold a free vnode for recycling.
3446  *
3447  * Note: vnode_init references this comment.
3448  *
3449  * Attempts to recycle only need the global vnode list lock and have no use for
3450  * SMR.
3451  *
3452  * However, vnodes get inserted into the global list before they get fully
3453  * initialized and stay there until UMA decides to free the memory. This in
3454  * particular means the target can be found before it becomes usable and after
3455  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3456  * VHOLD_NO_SMR.
3457  *
3458  * Note: the vnode may gain more references after we transition the count 0->1.
3459  */
3460 static bool
3461 vhold_recycle_free(struct vnode *vp)
3462 {
3463 	int count;
3464 
3465 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3466 
3467 	count = atomic_load_int(&vp->v_holdcnt);
3468 	for (;;) {
3469 		if (count & VHOLD_NO_SMR) {
3470 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3471 			    ("non-zero hold count with flags %d\n", count));
3472 			return (false);
3473 		}
3474 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3475 		if (count > 0) {
3476 			return (false);
3477 		}
3478 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3479 			vfs_freevnodes_dec();
3480 			return (true);
3481 		}
3482 	}
3483 }
3484 
3485 static void __noinline
3486 vdbatch_process(struct vdbatch *vd)
3487 {
3488 	struct vnode *vp;
3489 	int i;
3490 
3491 	mtx_assert(&vd->lock, MA_OWNED);
3492 	MPASS(curthread->td_pinned > 0);
3493 	MPASS(vd->index == VDBATCH_SIZE);
3494 
3495 	mtx_lock(&vnode_list_mtx);
3496 	critical_enter();
3497 	freevnodes += vd->freevnodes;
3498 	for (i = 0; i < VDBATCH_SIZE; i++) {
3499 		vp = vd->tab[i];
3500 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3501 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3502 		MPASS(vp->v_dbatchcpu != NOCPU);
3503 		vp->v_dbatchcpu = NOCPU;
3504 	}
3505 	mtx_unlock(&vnode_list_mtx);
3506 	vd->freevnodes = 0;
3507 	bzero(vd->tab, sizeof(vd->tab));
3508 	vd->index = 0;
3509 	critical_exit();
3510 }
3511 
3512 static void
3513 vdbatch_enqueue(struct vnode *vp)
3514 {
3515 	struct vdbatch *vd;
3516 
3517 	ASSERT_VI_LOCKED(vp, __func__);
3518 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3519 	    ("%s: deferring requeue of a doomed vnode", __func__));
3520 
3521 	if (vp->v_dbatchcpu != NOCPU) {
3522 		VI_UNLOCK(vp);
3523 		return;
3524 	}
3525 
3526 	sched_pin();
3527 	vd = DPCPU_PTR(vd);
3528 	mtx_lock(&vd->lock);
3529 	MPASS(vd->index < VDBATCH_SIZE);
3530 	MPASS(vd->tab[vd->index] == NULL);
3531 	/*
3532 	 * A hack: we depend on being pinned so that we know what to put in
3533 	 * ->v_dbatchcpu.
3534 	 */
3535 	vp->v_dbatchcpu = curcpu;
3536 	vd->tab[vd->index] = vp;
3537 	vd->index++;
3538 	VI_UNLOCK(vp);
3539 	if (vd->index == VDBATCH_SIZE)
3540 		vdbatch_process(vd);
3541 	mtx_unlock(&vd->lock);
3542 	sched_unpin();
3543 }
3544 
3545 /*
3546  * This routine must only be called for vnodes which are about to be
3547  * deallocated. Supporting dequeue for arbitrary vndoes would require
3548  * validating that the locked batch matches.
3549  */
3550 static void
3551 vdbatch_dequeue(struct vnode *vp)
3552 {
3553 	struct vdbatch *vd;
3554 	int i;
3555 	short cpu;
3556 
3557 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3558 	    ("%s: called for a used vnode\n", __func__));
3559 
3560 	cpu = vp->v_dbatchcpu;
3561 	if (cpu == NOCPU)
3562 		return;
3563 
3564 	vd = DPCPU_ID_PTR(cpu, vd);
3565 	mtx_lock(&vd->lock);
3566 	for (i = 0; i < vd->index; i++) {
3567 		if (vd->tab[i] != vp)
3568 			continue;
3569 		vp->v_dbatchcpu = NOCPU;
3570 		vd->index--;
3571 		vd->tab[i] = vd->tab[vd->index];
3572 		vd->tab[vd->index] = NULL;
3573 		break;
3574 	}
3575 	mtx_unlock(&vd->lock);
3576 	/*
3577 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3578 	 */
3579 	MPASS(vp->v_dbatchcpu == NOCPU);
3580 }
3581 
3582 /*
3583  * Drop the hold count of the vnode.  If this is the last reference to
3584  * the vnode we place it on the free list unless it has been vgone'd
3585  * (marked VIRF_DOOMED) in which case we will free it.
3586  *
3587  * Because the vnode vm object keeps a hold reference on the vnode if
3588  * there is at least one resident non-cached page, the vnode cannot
3589  * leave the active list without the page cleanup done.
3590  */
3591 static void __noinline
3592 vdropl_final(struct vnode *vp)
3593 {
3594 
3595 	ASSERT_VI_LOCKED(vp, __func__);
3596 	VNPASS(VN_IS_DOOMED(vp), vp);
3597 	/*
3598 	 * Set the VHOLD_NO_SMR flag.
3599 	 *
3600 	 * We may be racing against vhold_smr. If they win we can just pretend
3601 	 * we never got this far, they will vdrop later.
3602 	 */
3603 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3604 		vfs_freevnodes_inc();
3605 		VI_UNLOCK(vp);
3606 		/*
3607 		 * We lost the aforementioned race. Any subsequent access is
3608 		 * invalid as they might have managed to vdropl on their own.
3609 		 */
3610 		return;
3611 	}
3612 	/*
3613 	 * Don't bump freevnodes as this one is going away.
3614 	 */
3615 	freevnode(vp);
3616 }
3617 
3618 void
3619 vdrop(struct vnode *vp)
3620 {
3621 
3622 	ASSERT_VI_UNLOCKED(vp, __func__);
3623 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3624 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3625 		return;
3626 	VI_LOCK(vp);
3627 	vdropl(vp);
3628 }
3629 
3630 static void __always_inline
3631 vdropl_impl(struct vnode *vp, bool enqueue)
3632 {
3633 
3634 	ASSERT_VI_LOCKED(vp, __func__);
3635 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3636 	if (!refcount_release(&vp->v_holdcnt)) {
3637 		VI_UNLOCK(vp);
3638 		return;
3639 	}
3640 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3641 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3642 	if (VN_IS_DOOMED(vp)) {
3643 		vdropl_final(vp);
3644 		return;
3645 	}
3646 
3647 	vfs_freevnodes_inc();
3648 	if (vp->v_mflag & VMP_LAZYLIST) {
3649 		vunlazy(vp);
3650 	}
3651 
3652 	if (!enqueue) {
3653 		VI_UNLOCK(vp);
3654 		return;
3655 	}
3656 
3657 	/*
3658 	 * Also unlocks the interlock. We can't assert on it as we
3659 	 * released our hold and by now the vnode might have been
3660 	 * freed.
3661 	 */
3662 	vdbatch_enqueue(vp);
3663 }
3664 
3665 void
3666 vdropl(struct vnode *vp)
3667 {
3668 
3669 	vdropl_impl(vp, true);
3670 }
3671 
3672 /*
3673  * vdrop a vnode when recycling
3674  *
3675  * This is a special case routine only to be used when recycling, differs from
3676  * regular vdrop by not requeieing the vnode on LRU.
3677  *
3678  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3679  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3680  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3681  * loop which can last for as long as writes are frozen.
3682  */
3683 static void
3684 vdropl_recycle(struct vnode *vp)
3685 {
3686 
3687 	vdropl_impl(vp, false);
3688 }
3689 
3690 static void
3691 vdrop_recycle(struct vnode *vp)
3692 {
3693 
3694 	VI_LOCK(vp);
3695 	vdropl_recycle(vp);
3696 }
3697 
3698 /*
3699  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3700  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3701  */
3702 static int
3703 vinactivef(struct vnode *vp)
3704 {
3705 	struct vm_object *obj;
3706 	int error;
3707 
3708 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3709 	ASSERT_VI_LOCKED(vp, "vinactive");
3710 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3711 	    ("vinactive: recursed on VI_DOINGINACT"));
3712 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3713 	vp->v_iflag |= VI_DOINGINACT;
3714 	vp->v_iflag &= ~VI_OWEINACT;
3715 	VI_UNLOCK(vp);
3716 	/*
3717 	 * Before moving off the active list, we must be sure that any
3718 	 * modified pages are converted into the vnode's dirty
3719 	 * buffers, since these will no longer be checked once the
3720 	 * vnode is on the inactive list.
3721 	 *
3722 	 * The write-out of the dirty pages is asynchronous.  At the
3723 	 * point that VOP_INACTIVE() is called, there could still be
3724 	 * pending I/O and dirty pages in the object.
3725 	 */
3726 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3727 	    vm_object_mightbedirty(obj)) {
3728 		VM_OBJECT_WLOCK(obj);
3729 		vm_object_page_clean(obj, 0, 0, 0);
3730 		VM_OBJECT_WUNLOCK(obj);
3731 	}
3732 	error = VOP_INACTIVE(vp);
3733 	VI_LOCK(vp);
3734 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3735 	    ("vinactive: lost VI_DOINGINACT"));
3736 	vp->v_iflag &= ~VI_DOINGINACT;
3737 	return (error);
3738 }
3739 
3740 int
3741 vinactive(struct vnode *vp)
3742 {
3743 
3744 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3745 	ASSERT_VI_LOCKED(vp, "vinactive");
3746 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3747 
3748 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3749 		return (0);
3750 	if (vp->v_iflag & VI_DOINGINACT)
3751 		return (0);
3752 	if (vp->v_usecount > 0) {
3753 		vp->v_iflag &= ~VI_OWEINACT;
3754 		return (0);
3755 	}
3756 	return (vinactivef(vp));
3757 }
3758 
3759 /*
3760  * Remove any vnodes in the vnode table belonging to mount point mp.
3761  *
3762  * If FORCECLOSE is not specified, there should not be any active ones,
3763  * return error if any are found (nb: this is a user error, not a
3764  * system error). If FORCECLOSE is specified, detach any active vnodes
3765  * that are found.
3766  *
3767  * If WRITECLOSE is set, only flush out regular file vnodes open for
3768  * writing.
3769  *
3770  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3771  *
3772  * `rootrefs' specifies the base reference count for the root vnode
3773  * of this filesystem. The root vnode is considered busy if its
3774  * v_usecount exceeds this value. On a successful return, vflush(, td)
3775  * will call vrele() on the root vnode exactly rootrefs times.
3776  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3777  * be zero.
3778  */
3779 #ifdef DIAGNOSTIC
3780 static int busyprt = 0;		/* print out busy vnodes */
3781 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3782 #endif
3783 
3784 int
3785 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3786 {
3787 	struct vnode *vp, *mvp, *rootvp = NULL;
3788 	struct vattr vattr;
3789 	int busy = 0, error;
3790 
3791 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3792 	    rootrefs, flags);
3793 	if (rootrefs > 0) {
3794 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3795 		    ("vflush: bad args"));
3796 		/*
3797 		 * Get the filesystem root vnode. We can vput() it
3798 		 * immediately, since with rootrefs > 0, it won't go away.
3799 		 */
3800 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3801 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3802 			    __func__, error);
3803 			return (error);
3804 		}
3805 		vput(rootvp);
3806 	}
3807 loop:
3808 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3809 		vholdl(vp);
3810 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3811 		if (error) {
3812 			vdrop(vp);
3813 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3814 			goto loop;
3815 		}
3816 		/*
3817 		 * Skip over a vnodes marked VV_SYSTEM.
3818 		 */
3819 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3820 			VOP_UNLOCK(vp);
3821 			vdrop(vp);
3822 			continue;
3823 		}
3824 		/*
3825 		 * If WRITECLOSE is set, flush out unlinked but still open
3826 		 * files (even if open only for reading) and regular file
3827 		 * vnodes open for writing.
3828 		 */
3829 		if (flags & WRITECLOSE) {
3830 			if (vp->v_object != NULL) {
3831 				VM_OBJECT_WLOCK(vp->v_object);
3832 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3833 				VM_OBJECT_WUNLOCK(vp->v_object);
3834 			}
3835 			do {
3836 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3837 			} while (error == ERELOOKUP);
3838 			if (error != 0) {
3839 				VOP_UNLOCK(vp);
3840 				vdrop(vp);
3841 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3842 				return (error);
3843 			}
3844 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3845 			VI_LOCK(vp);
3846 
3847 			if ((vp->v_type == VNON ||
3848 			    (error == 0 && vattr.va_nlink > 0)) &&
3849 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3850 				VOP_UNLOCK(vp);
3851 				vdropl(vp);
3852 				continue;
3853 			}
3854 		} else
3855 			VI_LOCK(vp);
3856 		/*
3857 		 * With v_usecount == 0, all we need to do is clear out the
3858 		 * vnode data structures and we are done.
3859 		 *
3860 		 * If FORCECLOSE is set, forcibly close the vnode.
3861 		 */
3862 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3863 			vgonel(vp);
3864 		} else {
3865 			busy++;
3866 #ifdef DIAGNOSTIC
3867 			if (busyprt)
3868 				vn_printf(vp, "vflush: busy vnode ");
3869 #endif
3870 		}
3871 		VOP_UNLOCK(vp);
3872 		vdropl(vp);
3873 	}
3874 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3875 		/*
3876 		 * If just the root vnode is busy, and if its refcount
3877 		 * is equal to `rootrefs', then go ahead and kill it.
3878 		 */
3879 		VI_LOCK(rootvp);
3880 		KASSERT(busy > 0, ("vflush: not busy"));
3881 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3882 		    ("vflush: usecount %d < rootrefs %d",
3883 		     rootvp->v_usecount, rootrefs));
3884 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3885 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3886 			vgone(rootvp);
3887 			VOP_UNLOCK(rootvp);
3888 			busy = 0;
3889 		} else
3890 			VI_UNLOCK(rootvp);
3891 	}
3892 	if (busy) {
3893 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3894 		    busy);
3895 		return (EBUSY);
3896 	}
3897 	for (; rootrefs > 0; rootrefs--)
3898 		vrele(rootvp);
3899 	return (0);
3900 }
3901 
3902 /*
3903  * Recycle an unused vnode to the front of the free list.
3904  */
3905 int
3906 vrecycle(struct vnode *vp)
3907 {
3908 	int recycled;
3909 
3910 	VI_LOCK(vp);
3911 	recycled = vrecyclel(vp);
3912 	VI_UNLOCK(vp);
3913 	return (recycled);
3914 }
3915 
3916 /*
3917  * vrecycle, with the vp interlock held.
3918  */
3919 int
3920 vrecyclel(struct vnode *vp)
3921 {
3922 	int recycled;
3923 
3924 	ASSERT_VOP_ELOCKED(vp, __func__);
3925 	ASSERT_VI_LOCKED(vp, __func__);
3926 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3927 	recycled = 0;
3928 	if (vp->v_usecount == 0) {
3929 		recycled = 1;
3930 		vgonel(vp);
3931 	}
3932 	return (recycled);
3933 }
3934 
3935 /*
3936  * Eliminate all activity associated with a vnode
3937  * in preparation for reuse.
3938  */
3939 void
3940 vgone(struct vnode *vp)
3941 {
3942 	VI_LOCK(vp);
3943 	vgonel(vp);
3944 	VI_UNLOCK(vp);
3945 }
3946 
3947 /*
3948  * Notify upper mounts about reclaimed or unlinked vnode.
3949  */
3950 void
3951 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
3952 {
3953 	struct mount *mp;
3954 	struct mount_upper_node *ump;
3955 
3956 	mp = atomic_load_ptr(&vp->v_mount);
3957 	if (mp == NULL)
3958 		return;
3959 	if (TAILQ_EMPTY(&mp->mnt_notify))
3960 		return;
3961 
3962 	MNT_ILOCK(mp);
3963 	mp->mnt_upper_pending++;
3964 	KASSERT(mp->mnt_upper_pending > 0,
3965 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3966 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3967 		MNT_IUNLOCK(mp);
3968 		switch (event) {
3969 		case VFS_NOTIFY_UPPER_RECLAIM:
3970 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
3971 			break;
3972 		case VFS_NOTIFY_UPPER_UNLINK:
3973 			VFS_UNLINK_LOWERVP(ump->mp, vp);
3974 			break;
3975 		}
3976 		MNT_ILOCK(mp);
3977 	}
3978 	mp->mnt_upper_pending--;
3979 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
3980 	    mp->mnt_upper_pending == 0) {
3981 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
3982 		wakeup(&mp->mnt_uppers);
3983 	}
3984 	MNT_IUNLOCK(mp);
3985 }
3986 
3987 /*
3988  * vgone, with the vp interlock held.
3989  */
3990 static void
3991 vgonel(struct vnode *vp)
3992 {
3993 	struct thread *td;
3994 	struct mount *mp;
3995 	vm_object_t object;
3996 	bool active, doinginact, oweinact;
3997 
3998 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3999 	ASSERT_VI_LOCKED(vp, "vgonel");
4000 	VNASSERT(vp->v_holdcnt, vp,
4001 	    ("vgonel: vp %p has no reference.", vp));
4002 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4003 	td = curthread;
4004 
4005 	/*
4006 	 * Don't vgonel if we're already doomed.
4007 	 */
4008 	if (VN_IS_DOOMED(vp))
4009 		return;
4010 	/*
4011 	 * Paired with freevnode.
4012 	 */
4013 	vn_seqc_write_begin_locked(vp);
4014 	vunlazy_gone(vp);
4015 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4016 
4017 	/*
4018 	 * Check to see if the vnode is in use.  If so, we have to
4019 	 * call VOP_CLOSE() and VOP_INACTIVE().
4020 	 *
4021 	 * It could be that VOP_INACTIVE() requested reclamation, in
4022 	 * which case we should avoid recursion, so check
4023 	 * VI_DOINGINACT.  This is not precise but good enough.
4024 	 */
4025 	active = vp->v_usecount > 0;
4026 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4027 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4028 
4029 	/*
4030 	 * If we need to do inactive VI_OWEINACT will be set.
4031 	 */
4032 	if (vp->v_iflag & VI_DEFINACT) {
4033 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4034 		vp->v_iflag &= ~VI_DEFINACT;
4035 		vdropl(vp);
4036 	} else {
4037 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4038 		VI_UNLOCK(vp);
4039 	}
4040 	cache_purge_vgone(vp);
4041 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4042 
4043 	/*
4044 	 * If purging an active vnode, it must be closed and
4045 	 * deactivated before being reclaimed.
4046 	 */
4047 	if (active)
4048 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4049 	if (!doinginact) {
4050 		do {
4051 			if (oweinact || active) {
4052 				VI_LOCK(vp);
4053 				vinactivef(vp);
4054 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4055 				VI_UNLOCK(vp);
4056 			}
4057 		} while (oweinact);
4058 	}
4059 	if (vp->v_type == VSOCK)
4060 		vfs_unp_reclaim(vp);
4061 
4062 	/*
4063 	 * Clean out any buffers associated with the vnode.
4064 	 * If the flush fails, just toss the buffers.
4065 	 */
4066 	mp = NULL;
4067 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4068 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4069 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4070 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4071 			;
4072 	}
4073 
4074 	BO_LOCK(&vp->v_bufobj);
4075 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4076 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4077 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4078 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4079 	    ("vp %p bufobj not invalidated", vp));
4080 
4081 	/*
4082 	 * For VMIO bufobj, BO_DEAD is set later, or in
4083 	 * vm_object_terminate() after the object's page queue is
4084 	 * flushed.
4085 	 */
4086 	object = vp->v_bufobj.bo_object;
4087 	if (object == NULL)
4088 		vp->v_bufobj.bo_flag |= BO_DEAD;
4089 	BO_UNLOCK(&vp->v_bufobj);
4090 
4091 	/*
4092 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4093 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4094 	 * should not touch the object borrowed from the lower vnode
4095 	 * (the handle check).
4096 	 */
4097 	if (object != NULL && object->type == OBJT_VNODE &&
4098 	    object->handle == vp)
4099 		vnode_destroy_vobject(vp);
4100 
4101 	/*
4102 	 * Reclaim the vnode.
4103 	 */
4104 	if (VOP_RECLAIM(vp))
4105 		panic("vgone: cannot reclaim");
4106 	if (mp != NULL)
4107 		vn_finished_secondary_write(mp);
4108 	VNASSERT(vp->v_object == NULL, vp,
4109 	    ("vop_reclaim left v_object vp=%p", vp));
4110 	/*
4111 	 * Clear the advisory locks and wake up waiting threads.
4112 	 */
4113 	(void)VOP_ADVLOCKPURGE(vp);
4114 	vp->v_lockf = NULL;
4115 	/*
4116 	 * Delete from old mount point vnode list.
4117 	 */
4118 	delmntque(vp);
4119 	/*
4120 	 * Done with purge, reset to the standard lock and invalidate
4121 	 * the vnode.
4122 	 */
4123 	VI_LOCK(vp);
4124 	vp->v_vnlock = &vp->v_lock;
4125 	vp->v_op = &dead_vnodeops;
4126 	vp->v_type = VBAD;
4127 }
4128 
4129 /*
4130  * Print out a description of a vnode.
4131  */
4132 static const char * const typename[] =
4133 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4134  "VMARKER"};
4135 
4136 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4137     "new hold count flag not added to vn_printf");
4138 
4139 void
4140 vn_printf(struct vnode *vp, const char *fmt, ...)
4141 {
4142 	va_list ap;
4143 	char buf[256], buf2[16];
4144 	u_long flags;
4145 	u_int holdcnt;
4146 	short irflag;
4147 
4148 	va_start(ap, fmt);
4149 	vprintf(fmt, ap);
4150 	va_end(ap);
4151 	printf("%p: ", (void *)vp);
4152 	printf("type %s\n", typename[vp->v_type]);
4153 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4154 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4155 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4156 	    vp->v_seqc_users);
4157 	switch (vp->v_type) {
4158 	case VDIR:
4159 		printf(" mountedhere %p\n", vp->v_mountedhere);
4160 		break;
4161 	case VCHR:
4162 		printf(" rdev %p\n", vp->v_rdev);
4163 		break;
4164 	case VSOCK:
4165 		printf(" socket %p\n", vp->v_unpcb);
4166 		break;
4167 	case VFIFO:
4168 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4169 		break;
4170 	default:
4171 		printf("\n");
4172 		break;
4173 	}
4174 	buf[0] = '\0';
4175 	buf[1] = '\0';
4176 	if (holdcnt & VHOLD_NO_SMR)
4177 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4178 	printf("    hold count flags (%s)\n", buf + 1);
4179 
4180 	buf[0] = '\0';
4181 	buf[1] = '\0';
4182 	irflag = vn_irflag_read(vp);
4183 	if (irflag & VIRF_DOOMED)
4184 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4185 	if (irflag & VIRF_PGREAD)
4186 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4187 	if (irflag & VIRF_MOUNTPOINT)
4188 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4189 	if (irflag & VIRF_TEXT_REF)
4190 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4191 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4192 	if (flags != 0) {
4193 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4194 		strlcat(buf, buf2, sizeof(buf));
4195 	}
4196 	if (vp->v_vflag & VV_ROOT)
4197 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4198 	if (vp->v_vflag & VV_ISTTY)
4199 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4200 	if (vp->v_vflag & VV_NOSYNC)
4201 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4202 	if (vp->v_vflag & VV_ETERNALDEV)
4203 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4204 	if (vp->v_vflag & VV_CACHEDLABEL)
4205 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4206 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4207 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4208 	if (vp->v_vflag & VV_COPYONWRITE)
4209 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4210 	if (vp->v_vflag & VV_SYSTEM)
4211 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4212 	if (vp->v_vflag & VV_PROCDEP)
4213 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4214 	if (vp->v_vflag & VV_DELETED)
4215 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4216 	if (vp->v_vflag & VV_MD)
4217 		strlcat(buf, "|VV_MD", sizeof(buf));
4218 	if (vp->v_vflag & VV_FORCEINSMQ)
4219 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4220 	if (vp->v_vflag & VV_READLINK)
4221 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4222 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4223 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4224 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4225 	if (flags != 0) {
4226 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4227 		strlcat(buf, buf2, sizeof(buf));
4228 	}
4229 	if (vp->v_iflag & VI_MOUNT)
4230 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4231 	if (vp->v_iflag & VI_DOINGINACT)
4232 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4233 	if (vp->v_iflag & VI_OWEINACT)
4234 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4235 	if (vp->v_iflag & VI_DEFINACT)
4236 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4237 	if (vp->v_iflag & VI_FOPENING)
4238 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4239 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4240 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4241 	if (flags != 0) {
4242 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4243 		strlcat(buf, buf2, sizeof(buf));
4244 	}
4245 	if (vp->v_mflag & VMP_LAZYLIST)
4246 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4247 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4248 	if (flags != 0) {
4249 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4250 		strlcat(buf, buf2, sizeof(buf));
4251 	}
4252 	printf("    flags (%s)", buf + 1);
4253 	if (mtx_owned(VI_MTX(vp)))
4254 		printf(" VI_LOCKed");
4255 	printf("\n");
4256 	if (vp->v_object != NULL)
4257 		printf("    v_object %p ref %d pages %d "
4258 		    "cleanbuf %d dirtybuf %d\n",
4259 		    vp->v_object, vp->v_object->ref_count,
4260 		    vp->v_object->resident_page_count,
4261 		    vp->v_bufobj.bo_clean.bv_cnt,
4262 		    vp->v_bufobj.bo_dirty.bv_cnt);
4263 	printf("    ");
4264 	lockmgr_printinfo(vp->v_vnlock);
4265 	if (vp->v_data != NULL)
4266 		VOP_PRINT(vp);
4267 }
4268 
4269 #ifdef DDB
4270 /*
4271  * List all of the locked vnodes in the system.
4272  * Called when debugging the kernel.
4273  */
4274 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4275 {
4276 	struct mount *mp;
4277 	struct vnode *vp;
4278 
4279 	/*
4280 	 * Note: because this is DDB, we can't obey the locking semantics
4281 	 * for these structures, which means we could catch an inconsistent
4282 	 * state and dereference a nasty pointer.  Not much to be done
4283 	 * about that.
4284 	 */
4285 	db_printf("Locked vnodes\n");
4286 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4287 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4288 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4289 				vn_printf(vp, "vnode ");
4290 		}
4291 	}
4292 }
4293 
4294 /*
4295  * Show details about the given vnode.
4296  */
4297 DB_SHOW_COMMAND(vnode, db_show_vnode)
4298 {
4299 	struct vnode *vp;
4300 
4301 	if (!have_addr)
4302 		return;
4303 	vp = (struct vnode *)addr;
4304 	vn_printf(vp, "vnode ");
4305 }
4306 
4307 /*
4308  * Show details about the given mount point.
4309  */
4310 DB_SHOW_COMMAND(mount, db_show_mount)
4311 {
4312 	struct mount *mp;
4313 	struct vfsopt *opt;
4314 	struct statfs *sp;
4315 	struct vnode *vp;
4316 	char buf[512];
4317 	uint64_t mflags;
4318 	u_int flags;
4319 
4320 	if (!have_addr) {
4321 		/* No address given, print short info about all mount points. */
4322 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4323 			db_printf("%p %s on %s (%s)\n", mp,
4324 			    mp->mnt_stat.f_mntfromname,
4325 			    mp->mnt_stat.f_mntonname,
4326 			    mp->mnt_stat.f_fstypename);
4327 			if (db_pager_quit)
4328 				break;
4329 		}
4330 		db_printf("\nMore info: show mount <addr>\n");
4331 		return;
4332 	}
4333 
4334 	mp = (struct mount *)addr;
4335 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4336 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4337 
4338 	buf[0] = '\0';
4339 	mflags = mp->mnt_flag;
4340 #define	MNT_FLAG(flag)	do {						\
4341 	if (mflags & (flag)) {						\
4342 		if (buf[0] != '\0')					\
4343 			strlcat(buf, ", ", sizeof(buf));		\
4344 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4345 		mflags &= ~(flag);					\
4346 	}								\
4347 } while (0)
4348 	MNT_FLAG(MNT_RDONLY);
4349 	MNT_FLAG(MNT_SYNCHRONOUS);
4350 	MNT_FLAG(MNT_NOEXEC);
4351 	MNT_FLAG(MNT_NOSUID);
4352 	MNT_FLAG(MNT_NFS4ACLS);
4353 	MNT_FLAG(MNT_UNION);
4354 	MNT_FLAG(MNT_ASYNC);
4355 	MNT_FLAG(MNT_SUIDDIR);
4356 	MNT_FLAG(MNT_SOFTDEP);
4357 	MNT_FLAG(MNT_NOSYMFOLLOW);
4358 	MNT_FLAG(MNT_GJOURNAL);
4359 	MNT_FLAG(MNT_MULTILABEL);
4360 	MNT_FLAG(MNT_ACLS);
4361 	MNT_FLAG(MNT_NOATIME);
4362 	MNT_FLAG(MNT_NOCLUSTERR);
4363 	MNT_FLAG(MNT_NOCLUSTERW);
4364 	MNT_FLAG(MNT_SUJ);
4365 	MNT_FLAG(MNT_EXRDONLY);
4366 	MNT_FLAG(MNT_EXPORTED);
4367 	MNT_FLAG(MNT_DEFEXPORTED);
4368 	MNT_FLAG(MNT_EXPORTANON);
4369 	MNT_FLAG(MNT_EXKERB);
4370 	MNT_FLAG(MNT_EXPUBLIC);
4371 	MNT_FLAG(MNT_LOCAL);
4372 	MNT_FLAG(MNT_QUOTA);
4373 	MNT_FLAG(MNT_ROOTFS);
4374 	MNT_FLAG(MNT_USER);
4375 	MNT_FLAG(MNT_IGNORE);
4376 	MNT_FLAG(MNT_UPDATE);
4377 	MNT_FLAG(MNT_DELEXPORT);
4378 	MNT_FLAG(MNT_RELOAD);
4379 	MNT_FLAG(MNT_FORCE);
4380 	MNT_FLAG(MNT_SNAPSHOT);
4381 	MNT_FLAG(MNT_BYFSID);
4382 #undef MNT_FLAG
4383 	if (mflags != 0) {
4384 		if (buf[0] != '\0')
4385 			strlcat(buf, ", ", sizeof(buf));
4386 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4387 		    "0x%016jx", mflags);
4388 	}
4389 	db_printf("    mnt_flag = %s\n", buf);
4390 
4391 	buf[0] = '\0';
4392 	flags = mp->mnt_kern_flag;
4393 #define	MNT_KERN_FLAG(flag)	do {					\
4394 	if (flags & (flag)) {						\
4395 		if (buf[0] != '\0')					\
4396 			strlcat(buf, ", ", sizeof(buf));		\
4397 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4398 		flags &= ~(flag);					\
4399 	}								\
4400 } while (0)
4401 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4402 	MNT_KERN_FLAG(MNTK_ASYNC);
4403 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4404 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4405 	MNT_KERN_FLAG(MNTK_DRAINING);
4406 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4407 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4408 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4409 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4410 	MNT_KERN_FLAG(MNTK_RECURSE);
4411 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4412 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4413 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4414 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4415 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4416 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4417 	MNT_KERN_FLAG(MNTK_NOASYNC);
4418 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4419 	MNT_KERN_FLAG(MNTK_MWAIT);
4420 	MNT_KERN_FLAG(MNTK_SUSPEND);
4421 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4422 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4423 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4424 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4425 #undef MNT_KERN_FLAG
4426 	if (flags != 0) {
4427 		if (buf[0] != '\0')
4428 			strlcat(buf, ", ", sizeof(buf));
4429 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4430 		    "0x%08x", flags);
4431 	}
4432 	db_printf("    mnt_kern_flag = %s\n", buf);
4433 
4434 	db_printf("    mnt_opt = ");
4435 	opt = TAILQ_FIRST(mp->mnt_opt);
4436 	if (opt != NULL) {
4437 		db_printf("%s", opt->name);
4438 		opt = TAILQ_NEXT(opt, link);
4439 		while (opt != NULL) {
4440 			db_printf(", %s", opt->name);
4441 			opt = TAILQ_NEXT(opt, link);
4442 		}
4443 	}
4444 	db_printf("\n");
4445 
4446 	sp = &mp->mnt_stat;
4447 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4448 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4449 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4450 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4451 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4452 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4453 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4454 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4455 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4456 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4457 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4458 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4459 
4460 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4461 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4462 	if (jailed(mp->mnt_cred))
4463 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4464 	db_printf(" }\n");
4465 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4466 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4467 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4468 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4469 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4470 	    mp->mnt_lazyvnodelistsize);
4471 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4472 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4473 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4474 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4475 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4476 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4477 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4478 	db_printf("    mnt_secondary_accwrites = %d\n",
4479 	    mp->mnt_secondary_accwrites);
4480 	db_printf("    mnt_gjprovider = %s\n",
4481 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4482 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4483 
4484 	db_printf("\n\nList of active vnodes\n");
4485 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4486 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4487 			vn_printf(vp, "vnode ");
4488 			if (db_pager_quit)
4489 				break;
4490 		}
4491 	}
4492 	db_printf("\n\nList of inactive vnodes\n");
4493 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4494 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4495 			vn_printf(vp, "vnode ");
4496 			if (db_pager_quit)
4497 				break;
4498 		}
4499 	}
4500 }
4501 #endif	/* DDB */
4502 
4503 /*
4504  * Fill in a struct xvfsconf based on a struct vfsconf.
4505  */
4506 static int
4507 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4508 {
4509 	struct xvfsconf xvfsp;
4510 
4511 	bzero(&xvfsp, sizeof(xvfsp));
4512 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4513 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4514 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4515 	xvfsp.vfc_flags = vfsp->vfc_flags;
4516 	/*
4517 	 * These are unused in userland, we keep them
4518 	 * to not break binary compatibility.
4519 	 */
4520 	xvfsp.vfc_vfsops = NULL;
4521 	xvfsp.vfc_next = NULL;
4522 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4523 }
4524 
4525 #ifdef COMPAT_FREEBSD32
4526 struct xvfsconf32 {
4527 	uint32_t	vfc_vfsops;
4528 	char		vfc_name[MFSNAMELEN];
4529 	int32_t		vfc_typenum;
4530 	int32_t		vfc_refcount;
4531 	int32_t		vfc_flags;
4532 	uint32_t	vfc_next;
4533 };
4534 
4535 static int
4536 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4537 {
4538 	struct xvfsconf32 xvfsp;
4539 
4540 	bzero(&xvfsp, sizeof(xvfsp));
4541 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4542 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4543 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4544 	xvfsp.vfc_flags = vfsp->vfc_flags;
4545 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4546 }
4547 #endif
4548 
4549 /*
4550  * Top level filesystem related information gathering.
4551  */
4552 static int
4553 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4554 {
4555 	struct vfsconf *vfsp;
4556 	int error;
4557 
4558 	error = 0;
4559 	vfsconf_slock();
4560 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4561 #ifdef COMPAT_FREEBSD32
4562 		if (req->flags & SCTL_MASK32)
4563 			error = vfsconf2x32(req, vfsp);
4564 		else
4565 #endif
4566 			error = vfsconf2x(req, vfsp);
4567 		if (error)
4568 			break;
4569 	}
4570 	vfsconf_sunlock();
4571 	return (error);
4572 }
4573 
4574 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4575     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4576     "S,xvfsconf", "List of all configured filesystems");
4577 
4578 #ifndef BURN_BRIDGES
4579 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4580 
4581 static int
4582 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4583 {
4584 	int *name = (int *)arg1 - 1;	/* XXX */
4585 	u_int namelen = arg2 + 1;	/* XXX */
4586 	struct vfsconf *vfsp;
4587 
4588 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4589 	    "please rebuild world\n");
4590 
4591 #if 1 || defined(COMPAT_PRELITE2)
4592 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4593 	if (namelen == 1)
4594 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4595 #endif
4596 
4597 	switch (name[1]) {
4598 	case VFS_MAXTYPENUM:
4599 		if (namelen != 2)
4600 			return (ENOTDIR);
4601 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4602 	case VFS_CONF:
4603 		if (namelen != 3)
4604 			return (ENOTDIR);	/* overloaded */
4605 		vfsconf_slock();
4606 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4607 			if (vfsp->vfc_typenum == name[2])
4608 				break;
4609 		}
4610 		vfsconf_sunlock();
4611 		if (vfsp == NULL)
4612 			return (EOPNOTSUPP);
4613 #ifdef COMPAT_FREEBSD32
4614 		if (req->flags & SCTL_MASK32)
4615 			return (vfsconf2x32(req, vfsp));
4616 		else
4617 #endif
4618 			return (vfsconf2x(req, vfsp));
4619 	}
4620 	return (EOPNOTSUPP);
4621 }
4622 
4623 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4624     CTLFLAG_MPSAFE, vfs_sysctl,
4625     "Generic filesystem");
4626 
4627 #if 1 || defined(COMPAT_PRELITE2)
4628 
4629 static int
4630 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4631 {
4632 	int error;
4633 	struct vfsconf *vfsp;
4634 	struct ovfsconf ovfs;
4635 
4636 	vfsconf_slock();
4637 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4638 		bzero(&ovfs, sizeof(ovfs));
4639 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4640 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4641 		ovfs.vfc_index = vfsp->vfc_typenum;
4642 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4643 		ovfs.vfc_flags = vfsp->vfc_flags;
4644 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4645 		if (error != 0) {
4646 			vfsconf_sunlock();
4647 			return (error);
4648 		}
4649 	}
4650 	vfsconf_sunlock();
4651 	return (0);
4652 }
4653 
4654 #endif /* 1 || COMPAT_PRELITE2 */
4655 #endif /* !BURN_BRIDGES */
4656 
4657 #define KINFO_VNODESLOP		10
4658 #ifdef notyet
4659 /*
4660  * Dump vnode list (via sysctl).
4661  */
4662 /* ARGSUSED */
4663 static int
4664 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4665 {
4666 	struct xvnode *xvn;
4667 	struct mount *mp;
4668 	struct vnode *vp;
4669 	int error, len, n;
4670 
4671 	/*
4672 	 * Stale numvnodes access is not fatal here.
4673 	 */
4674 	req->lock = 0;
4675 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4676 	if (!req->oldptr)
4677 		/* Make an estimate */
4678 		return (SYSCTL_OUT(req, 0, len));
4679 
4680 	error = sysctl_wire_old_buffer(req, 0);
4681 	if (error != 0)
4682 		return (error);
4683 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4684 	n = 0;
4685 	mtx_lock(&mountlist_mtx);
4686 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4687 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4688 			continue;
4689 		MNT_ILOCK(mp);
4690 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4691 			if (n == len)
4692 				break;
4693 			vref(vp);
4694 			xvn[n].xv_size = sizeof *xvn;
4695 			xvn[n].xv_vnode = vp;
4696 			xvn[n].xv_id = 0;	/* XXX compat */
4697 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4698 			XV_COPY(usecount);
4699 			XV_COPY(writecount);
4700 			XV_COPY(holdcnt);
4701 			XV_COPY(mount);
4702 			XV_COPY(numoutput);
4703 			XV_COPY(type);
4704 #undef XV_COPY
4705 			xvn[n].xv_flag = vp->v_vflag;
4706 
4707 			switch (vp->v_type) {
4708 			case VREG:
4709 			case VDIR:
4710 			case VLNK:
4711 				break;
4712 			case VBLK:
4713 			case VCHR:
4714 				if (vp->v_rdev == NULL) {
4715 					vrele(vp);
4716 					continue;
4717 				}
4718 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4719 				break;
4720 			case VSOCK:
4721 				xvn[n].xv_socket = vp->v_socket;
4722 				break;
4723 			case VFIFO:
4724 				xvn[n].xv_fifo = vp->v_fifoinfo;
4725 				break;
4726 			case VNON:
4727 			case VBAD:
4728 			default:
4729 				/* shouldn't happen? */
4730 				vrele(vp);
4731 				continue;
4732 			}
4733 			vrele(vp);
4734 			++n;
4735 		}
4736 		MNT_IUNLOCK(mp);
4737 		mtx_lock(&mountlist_mtx);
4738 		vfs_unbusy(mp);
4739 		if (n == len)
4740 			break;
4741 	}
4742 	mtx_unlock(&mountlist_mtx);
4743 
4744 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4745 	free(xvn, M_TEMP);
4746 	return (error);
4747 }
4748 
4749 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4750     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4751     "");
4752 #endif
4753 
4754 static void
4755 unmount_or_warn(struct mount *mp)
4756 {
4757 	int error;
4758 
4759 	error = dounmount(mp, MNT_FORCE, curthread);
4760 	if (error != 0) {
4761 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4762 		if (error == EBUSY)
4763 			printf("BUSY)\n");
4764 		else
4765 			printf("%d)\n", error);
4766 	}
4767 }
4768 
4769 /*
4770  * Unmount all filesystems. The list is traversed in reverse order
4771  * of mounting to avoid dependencies.
4772  */
4773 void
4774 vfs_unmountall(void)
4775 {
4776 	struct mount *mp, *tmp;
4777 
4778 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4779 
4780 	/*
4781 	 * Since this only runs when rebooting, it is not interlocked.
4782 	 */
4783 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4784 		vfs_ref(mp);
4785 
4786 		/*
4787 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4788 		 * unmount of the latter.
4789 		 */
4790 		if (mp == rootdevmp)
4791 			continue;
4792 
4793 		unmount_or_warn(mp);
4794 	}
4795 
4796 	if (rootdevmp != NULL)
4797 		unmount_or_warn(rootdevmp);
4798 }
4799 
4800 static void
4801 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4802 {
4803 
4804 	ASSERT_VI_LOCKED(vp, __func__);
4805 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4806 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4807 		vdropl(vp);
4808 		return;
4809 	}
4810 	if (vn_lock(vp, lkflags) == 0) {
4811 		VI_LOCK(vp);
4812 		vinactive(vp);
4813 		VOP_UNLOCK(vp);
4814 		vdropl(vp);
4815 		return;
4816 	}
4817 	vdefer_inactive_unlocked(vp);
4818 }
4819 
4820 static int
4821 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4822 {
4823 
4824 	return (vp->v_iflag & VI_DEFINACT);
4825 }
4826 
4827 static void __noinline
4828 vfs_periodic_inactive(struct mount *mp, int flags)
4829 {
4830 	struct vnode *vp, *mvp;
4831 	int lkflags;
4832 
4833 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4834 	if (flags != MNT_WAIT)
4835 		lkflags |= LK_NOWAIT;
4836 
4837 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4838 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4839 			VI_UNLOCK(vp);
4840 			continue;
4841 		}
4842 		vp->v_iflag &= ~VI_DEFINACT;
4843 		vfs_deferred_inactive(vp, lkflags);
4844 	}
4845 }
4846 
4847 static inline bool
4848 vfs_want_msync(struct vnode *vp)
4849 {
4850 	struct vm_object *obj;
4851 
4852 	/*
4853 	 * This test may be performed without any locks held.
4854 	 * We rely on vm_object's type stability.
4855 	 */
4856 	if (vp->v_vflag & VV_NOSYNC)
4857 		return (false);
4858 	obj = vp->v_object;
4859 	return (obj != NULL && vm_object_mightbedirty(obj));
4860 }
4861 
4862 static int
4863 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4864 {
4865 
4866 	if (vp->v_vflag & VV_NOSYNC)
4867 		return (false);
4868 	if (vp->v_iflag & VI_DEFINACT)
4869 		return (true);
4870 	return (vfs_want_msync(vp));
4871 }
4872 
4873 static void __noinline
4874 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4875 {
4876 	struct vnode *vp, *mvp;
4877 	struct vm_object *obj;
4878 	int lkflags, objflags;
4879 	bool seen_defer;
4880 
4881 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4882 	if (flags != MNT_WAIT) {
4883 		lkflags |= LK_NOWAIT;
4884 		objflags = OBJPC_NOSYNC;
4885 	} else {
4886 		objflags = OBJPC_SYNC;
4887 	}
4888 
4889 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4890 		seen_defer = false;
4891 		if (vp->v_iflag & VI_DEFINACT) {
4892 			vp->v_iflag &= ~VI_DEFINACT;
4893 			seen_defer = true;
4894 		}
4895 		if (!vfs_want_msync(vp)) {
4896 			if (seen_defer)
4897 				vfs_deferred_inactive(vp, lkflags);
4898 			else
4899 				VI_UNLOCK(vp);
4900 			continue;
4901 		}
4902 		if (vget(vp, lkflags) == 0) {
4903 			obj = vp->v_object;
4904 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4905 				VM_OBJECT_WLOCK(obj);
4906 				vm_object_page_clean(obj, 0, 0, objflags);
4907 				VM_OBJECT_WUNLOCK(obj);
4908 			}
4909 			vput(vp);
4910 			if (seen_defer)
4911 				vdrop(vp);
4912 		} else {
4913 			if (seen_defer)
4914 				vdefer_inactive_unlocked(vp);
4915 		}
4916 	}
4917 }
4918 
4919 void
4920 vfs_periodic(struct mount *mp, int flags)
4921 {
4922 
4923 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4924 
4925 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4926 		vfs_periodic_inactive(mp, flags);
4927 	else
4928 		vfs_periodic_msync_inactive(mp, flags);
4929 }
4930 
4931 static void
4932 destroy_vpollinfo_free(struct vpollinfo *vi)
4933 {
4934 
4935 	knlist_destroy(&vi->vpi_selinfo.si_note);
4936 	mtx_destroy(&vi->vpi_lock);
4937 	free(vi, M_VNODEPOLL);
4938 }
4939 
4940 static void
4941 destroy_vpollinfo(struct vpollinfo *vi)
4942 {
4943 
4944 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4945 	seldrain(&vi->vpi_selinfo);
4946 	destroy_vpollinfo_free(vi);
4947 }
4948 
4949 /*
4950  * Initialize per-vnode helper structure to hold poll-related state.
4951  */
4952 void
4953 v_addpollinfo(struct vnode *vp)
4954 {
4955 	struct vpollinfo *vi;
4956 
4957 	if (vp->v_pollinfo != NULL)
4958 		return;
4959 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4960 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4961 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4962 	    vfs_knlunlock, vfs_knl_assert_lock);
4963 	VI_LOCK(vp);
4964 	if (vp->v_pollinfo != NULL) {
4965 		VI_UNLOCK(vp);
4966 		destroy_vpollinfo_free(vi);
4967 		return;
4968 	}
4969 	vp->v_pollinfo = vi;
4970 	VI_UNLOCK(vp);
4971 }
4972 
4973 /*
4974  * Record a process's interest in events which might happen to
4975  * a vnode.  Because poll uses the historic select-style interface
4976  * internally, this routine serves as both the ``check for any
4977  * pending events'' and the ``record my interest in future events''
4978  * functions.  (These are done together, while the lock is held,
4979  * to avoid race conditions.)
4980  */
4981 int
4982 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4983 {
4984 
4985 	v_addpollinfo(vp);
4986 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4987 	if (vp->v_pollinfo->vpi_revents & events) {
4988 		/*
4989 		 * This leaves events we are not interested
4990 		 * in available for the other process which
4991 		 * which presumably had requested them
4992 		 * (otherwise they would never have been
4993 		 * recorded).
4994 		 */
4995 		events &= vp->v_pollinfo->vpi_revents;
4996 		vp->v_pollinfo->vpi_revents &= ~events;
4997 
4998 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4999 		return (events);
5000 	}
5001 	vp->v_pollinfo->vpi_events |= events;
5002 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5003 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5004 	return (0);
5005 }
5006 
5007 /*
5008  * Routine to create and manage a filesystem syncer vnode.
5009  */
5010 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5011 static int	sync_fsync(struct  vop_fsync_args *);
5012 static int	sync_inactive(struct  vop_inactive_args *);
5013 static int	sync_reclaim(struct  vop_reclaim_args *);
5014 
5015 static struct vop_vector sync_vnodeops = {
5016 	.vop_bypass =	VOP_EOPNOTSUPP,
5017 	.vop_close =	sync_close,		/* close */
5018 	.vop_fsync =	sync_fsync,		/* fsync */
5019 	.vop_inactive =	sync_inactive,	/* inactive */
5020 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
5021 	.vop_reclaim =	sync_reclaim,	/* reclaim */
5022 	.vop_lock1 =	vop_stdlock,	/* lock */
5023 	.vop_unlock =	vop_stdunlock,	/* unlock */
5024 	.vop_islocked =	vop_stdislocked,	/* islocked */
5025 };
5026 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5027 
5028 /*
5029  * Create a new filesystem syncer vnode for the specified mount point.
5030  */
5031 void
5032 vfs_allocate_syncvnode(struct mount *mp)
5033 {
5034 	struct vnode *vp;
5035 	struct bufobj *bo;
5036 	static long start, incr, next;
5037 	int error;
5038 
5039 	/* Allocate a new vnode */
5040 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5041 	if (error != 0)
5042 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5043 	vp->v_type = VNON;
5044 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5045 	vp->v_vflag |= VV_FORCEINSMQ;
5046 	error = insmntque1(vp, mp);
5047 	if (error != 0)
5048 		panic("vfs_allocate_syncvnode: insmntque() failed");
5049 	vp->v_vflag &= ~VV_FORCEINSMQ;
5050 	VOP_UNLOCK(vp);
5051 	/*
5052 	 * Place the vnode onto the syncer worklist. We attempt to
5053 	 * scatter them about on the list so that they will go off
5054 	 * at evenly distributed times even if all the filesystems
5055 	 * are mounted at once.
5056 	 */
5057 	next += incr;
5058 	if (next == 0 || next > syncer_maxdelay) {
5059 		start /= 2;
5060 		incr /= 2;
5061 		if (start == 0) {
5062 			start = syncer_maxdelay / 2;
5063 			incr = syncer_maxdelay;
5064 		}
5065 		next = start;
5066 	}
5067 	bo = &vp->v_bufobj;
5068 	BO_LOCK(bo);
5069 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5070 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5071 	mtx_lock(&sync_mtx);
5072 	sync_vnode_count++;
5073 	if (mp->mnt_syncer == NULL) {
5074 		mp->mnt_syncer = vp;
5075 		vp = NULL;
5076 	}
5077 	mtx_unlock(&sync_mtx);
5078 	BO_UNLOCK(bo);
5079 	if (vp != NULL) {
5080 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5081 		vgone(vp);
5082 		vput(vp);
5083 	}
5084 }
5085 
5086 void
5087 vfs_deallocate_syncvnode(struct mount *mp)
5088 {
5089 	struct vnode *vp;
5090 
5091 	mtx_lock(&sync_mtx);
5092 	vp = mp->mnt_syncer;
5093 	if (vp != NULL)
5094 		mp->mnt_syncer = NULL;
5095 	mtx_unlock(&sync_mtx);
5096 	if (vp != NULL)
5097 		vrele(vp);
5098 }
5099 
5100 /*
5101  * Do a lazy sync of the filesystem.
5102  */
5103 static int
5104 sync_fsync(struct vop_fsync_args *ap)
5105 {
5106 	struct vnode *syncvp = ap->a_vp;
5107 	struct mount *mp = syncvp->v_mount;
5108 	int error, save;
5109 	struct bufobj *bo;
5110 
5111 	/*
5112 	 * We only need to do something if this is a lazy evaluation.
5113 	 */
5114 	if (ap->a_waitfor != MNT_LAZY)
5115 		return (0);
5116 
5117 	/*
5118 	 * Move ourselves to the back of the sync list.
5119 	 */
5120 	bo = &syncvp->v_bufobj;
5121 	BO_LOCK(bo);
5122 	vn_syncer_add_to_worklist(bo, syncdelay);
5123 	BO_UNLOCK(bo);
5124 
5125 	/*
5126 	 * Walk the list of vnodes pushing all that are dirty and
5127 	 * not already on the sync list.
5128 	 */
5129 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5130 		return (0);
5131 	VOP_UNLOCK(syncvp);
5132 	save = curthread_pflags_set(TDP_SYNCIO);
5133 	/*
5134 	 * The filesystem at hand may be idle with free vnodes stored in the
5135 	 * batch.  Return them instead of letting them stay there indefinitely.
5136 	 */
5137 	vfs_periodic(mp, MNT_NOWAIT);
5138 	error = VFS_SYNC(mp, MNT_LAZY);
5139 	curthread_pflags_restore(save);
5140 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5141 	vfs_unbusy(mp);
5142 	return (error);
5143 }
5144 
5145 /*
5146  * The syncer vnode is no referenced.
5147  */
5148 static int
5149 sync_inactive(struct vop_inactive_args *ap)
5150 {
5151 
5152 	vgone(ap->a_vp);
5153 	return (0);
5154 }
5155 
5156 /*
5157  * The syncer vnode is no longer needed and is being decommissioned.
5158  *
5159  * Modifications to the worklist must be protected by sync_mtx.
5160  */
5161 static int
5162 sync_reclaim(struct vop_reclaim_args *ap)
5163 {
5164 	struct vnode *vp = ap->a_vp;
5165 	struct bufobj *bo;
5166 
5167 	bo = &vp->v_bufobj;
5168 	BO_LOCK(bo);
5169 	mtx_lock(&sync_mtx);
5170 	if (vp->v_mount->mnt_syncer == vp)
5171 		vp->v_mount->mnt_syncer = NULL;
5172 	if (bo->bo_flag & BO_ONWORKLST) {
5173 		LIST_REMOVE(bo, bo_synclist);
5174 		syncer_worklist_len--;
5175 		sync_vnode_count--;
5176 		bo->bo_flag &= ~BO_ONWORKLST;
5177 	}
5178 	mtx_unlock(&sync_mtx);
5179 	BO_UNLOCK(bo);
5180 
5181 	return (0);
5182 }
5183 
5184 int
5185 vn_need_pageq_flush(struct vnode *vp)
5186 {
5187 	struct vm_object *obj;
5188 
5189 	obj = vp->v_object;
5190 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5191 	    vm_object_mightbedirty(obj));
5192 }
5193 
5194 /*
5195  * Check if vnode represents a disk device
5196  */
5197 bool
5198 vn_isdisk_error(struct vnode *vp, int *errp)
5199 {
5200 	int error;
5201 
5202 	if (vp->v_type != VCHR) {
5203 		error = ENOTBLK;
5204 		goto out;
5205 	}
5206 	error = 0;
5207 	dev_lock();
5208 	if (vp->v_rdev == NULL)
5209 		error = ENXIO;
5210 	else if (vp->v_rdev->si_devsw == NULL)
5211 		error = ENXIO;
5212 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5213 		error = ENOTBLK;
5214 	dev_unlock();
5215 out:
5216 	*errp = error;
5217 	return (error == 0);
5218 }
5219 
5220 bool
5221 vn_isdisk(struct vnode *vp)
5222 {
5223 	int error;
5224 
5225 	return (vn_isdisk_error(vp, &error));
5226 }
5227 
5228 /*
5229  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5230  * the comment above cache_fplookup for details.
5231  */
5232 int
5233 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5234 {
5235 	int error;
5236 
5237 	VFS_SMR_ASSERT_ENTERED();
5238 
5239 	/* Check the owner. */
5240 	if (cred->cr_uid == file_uid) {
5241 		if (file_mode & S_IXUSR)
5242 			return (0);
5243 		goto out_error;
5244 	}
5245 
5246 	/* Otherwise, check the groups (first match) */
5247 	if (groupmember(file_gid, cred)) {
5248 		if (file_mode & S_IXGRP)
5249 			return (0);
5250 		goto out_error;
5251 	}
5252 
5253 	/* Otherwise, check everyone else. */
5254 	if (file_mode & S_IXOTH)
5255 		return (0);
5256 out_error:
5257 	/*
5258 	 * Permission check failed, but it is possible denial will get overwritten
5259 	 * (e.g., when root is traversing through a 700 directory owned by someone
5260 	 * else).
5261 	 *
5262 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5263 	 * modules overriding this result. It's quite unclear what semantics
5264 	 * are allowed for them to operate, thus for safety we don't call them
5265 	 * from within the SMR section. This also means if any such modules
5266 	 * are present, we have to let the regular lookup decide.
5267 	 */
5268 	error = priv_check_cred_vfs_lookup_nomac(cred);
5269 	switch (error) {
5270 	case 0:
5271 		return (0);
5272 	case EAGAIN:
5273 		/*
5274 		 * MAC modules present.
5275 		 */
5276 		return (EAGAIN);
5277 	case EPERM:
5278 		return (EACCES);
5279 	default:
5280 		return (error);
5281 	}
5282 }
5283 
5284 /*
5285  * Common filesystem object access control check routine.  Accepts a
5286  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5287  * Returns 0 on success, or an errno on failure.
5288  */
5289 int
5290 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5291     accmode_t accmode, struct ucred *cred)
5292 {
5293 	accmode_t dac_granted;
5294 	accmode_t priv_granted;
5295 
5296 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5297 	    ("invalid bit in accmode"));
5298 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5299 	    ("VAPPEND without VWRITE"));
5300 
5301 	/*
5302 	 * Look for a normal, non-privileged way to access the file/directory
5303 	 * as requested.  If it exists, go with that.
5304 	 */
5305 
5306 	dac_granted = 0;
5307 
5308 	/* Check the owner. */
5309 	if (cred->cr_uid == file_uid) {
5310 		dac_granted |= VADMIN;
5311 		if (file_mode & S_IXUSR)
5312 			dac_granted |= VEXEC;
5313 		if (file_mode & S_IRUSR)
5314 			dac_granted |= VREAD;
5315 		if (file_mode & S_IWUSR)
5316 			dac_granted |= (VWRITE | VAPPEND);
5317 
5318 		if ((accmode & dac_granted) == accmode)
5319 			return (0);
5320 
5321 		goto privcheck;
5322 	}
5323 
5324 	/* Otherwise, check the groups (first match) */
5325 	if (groupmember(file_gid, cred)) {
5326 		if (file_mode & S_IXGRP)
5327 			dac_granted |= VEXEC;
5328 		if (file_mode & S_IRGRP)
5329 			dac_granted |= VREAD;
5330 		if (file_mode & S_IWGRP)
5331 			dac_granted |= (VWRITE | VAPPEND);
5332 
5333 		if ((accmode & dac_granted) == accmode)
5334 			return (0);
5335 
5336 		goto privcheck;
5337 	}
5338 
5339 	/* Otherwise, check everyone else. */
5340 	if (file_mode & S_IXOTH)
5341 		dac_granted |= VEXEC;
5342 	if (file_mode & S_IROTH)
5343 		dac_granted |= VREAD;
5344 	if (file_mode & S_IWOTH)
5345 		dac_granted |= (VWRITE | VAPPEND);
5346 	if ((accmode & dac_granted) == accmode)
5347 		return (0);
5348 
5349 privcheck:
5350 	/*
5351 	 * Build a privilege mask to determine if the set of privileges
5352 	 * satisfies the requirements when combined with the granted mask
5353 	 * from above.  For each privilege, if the privilege is required,
5354 	 * bitwise or the request type onto the priv_granted mask.
5355 	 */
5356 	priv_granted = 0;
5357 
5358 	if (type == VDIR) {
5359 		/*
5360 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5361 		 * requests, instead of PRIV_VFS_EXEC.
5362 		 */
5363 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5364 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5365 			priv_granted |= VEXEC;
5366 	} else {
5367 		/*
5368 		 * Ensure that at least one execute bit is on. Otherwise,
5369 		 * a privileged user will always succeed, and we don't want
5370 		 * this to happen unless the file really is executable.
5371 		 */
5372 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5373 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5374 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5375 			priv_granted |= VEXEC;
5376 	}
5377 
5378 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5379 	    !priv_check_cred(cred, PRIV_VFS_READ))
5380 		priv_granted |= VREAD;
5381 
5382 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5383 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5384 		priv_granted |= (VWRITE | VAPPEND);
5385 
5386 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5387 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5388 		priv_granted |= VADMIN;
5389 
5390 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5391 		return (0);
5392 	}
5393 
5394 	return ((accmode & VADMIN) ? EPERM : EACCES);
5395 }
5396 
5397 /*
5398  * Credential check based on process requesting service, and per-attribute
5399  * permissions.
5400  */
5401 int
5402 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5403     struct thread *td, accmode_t accmode)
5404 {
5405 
5406 	/*
5407 	 * Kernel-invoked always succeeds.
5408 	 */
5409 	if (cred == NOCRED)
5410 		return (0);
5411 
5412 	/*
5413 	 * Do not allow privileged processes in jail to directly manipulate
5414 	 * system attributes.
5415 	 */
5416 	switch (attrnamespace) {
5417 	case EXTATTR_NAMESPACE_SYSTEM:
5418 		/* Potentially should be: return (EPERM); */
5419 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5420 	case EXTATTR_NAMESPACE_USER:
5421 		return (VOP_ACCESS(vp, accmode, cred, td));
5422 	default:
5423 		return (EPERM);
5424 	}
5425 }
5426 
5427 #ifdef DEBUG_VFS_LOCKS
5428 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5429 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5430     "Drop into debugger on lock violation");
5431 
5432 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5433 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5434     0, "Check for interlock across VOPs");
5435 
5436 int vfs_badlock_print = 1;	/* Print lock violations. */
5437 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5438     0, "Print lock violations");
5439 
5440 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5441 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5442     0, "Print vnode details on lock violations");
5443 
5444 #ifdef KDB
5445 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5446 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5447     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5448 #endif
5449 
5450 static void
5451 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5452 {
5453 
5454 #ifdef KDB
5455 	if (vfs_badlock_backtrace)
5456 		kdb_backtrace();
5457 #endif
5458 	if (vfs_badlock_vnode)
5459 		vn_printf(vp, "vnode ");
5460 	if (vfs_badlock_print)
5461 		printf("%s: %p %s\n", str, (void *)vp, msg);
5462 	if (vfs_badlock_ddb)
5463 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5464 }
5465 
5466 void
5467 assert_vi_locked(struct vnode *vp, const char *str)
5468 {
5469 
5470 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5471 		vfs_badlock("interlock is not locked but should be", str, vp);
5472 }
5473 
5474 void
5475 assert_vi_unlocked(struct vnode *vp, const char *str)
5476 {
5477 
5478 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5479 		vfs_badlock("interlock is locked but should not be", str, vp);
5480 }
5481 
5482 void
5483 assert_vop_locked(struct vnode *vp, const char *str)
5484 {
5485 	int locked;
5486 
5487 	if (KERNEL_PANICKED() || vp == NULL)
5488 		return;
5489 
5490 	locked = VOP_ISLOCKED(vp);
5491 	if (locked == 0 || locked == LK_EXCLOTHER)
5492 		vfs_badlock("is not locked but should be", str, vp);
5493 }
5494 
5495 void
5496 assert_vop_unlocked(struct vnode *vp, const char *str)
5497 {
5498 	if (KERNEL_PANICKED() || vp == NULL)
5499 		return;
5500 
5501 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5502 		vfs_badlock("is locked but should not be", str, vp);
5503 }
5504 
5505 void
5506 assert_vop_elocked(struct vnode *vp, const char *str)
5507 {
5508 	if (KERNEL_PANICKED() || vp == NULL)
5509 		return;
5510 
5511 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5512 		vfs_badlock("is not exclusive locked but should be", str, vp);
5513 }
5514 #endif /* DEBUG_VFS_LOCKS */
5515 
5516 void
5517 vop_rename_fail(struct vop_rename_args *ap)
5518 {
5519 
5520 	if (ap->a_tvp != NULL)
5521 		vput(ap->a_tvp);
5522 	if (ap->a_tdvp == ap->a_tvp)
5523 		vrele(ap->a_tdvp);
5524 	else
5525 		vput(ap->a_tdvp);
5526 	vrele(ap->a_fdvp);
5527 	vrele(ap->a_fvp);
5528 }
5529 
5530 void
5531 vop_rename_pre(void *ap)
5532 {
5533 	struct vop_rename_args *a = ap;
5534 
5535 #ifdef DEBUG_VFS_LOCKS
5536 	if (a->a_tvp)
5537 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5538 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5539 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5540 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5541 
5542 	/* Check the source (from). */
5543 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5544 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5545 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5546 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5547 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5548 
5549 	/* Check the target. */
5550 	if (a->a_tvp)
5551 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5552 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5553 #endif
5554 	/*
5555 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5556 	 * in vop_rename_post but that's not going to work out since some
5557 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5558 	 *
5559 	 * For now filesystems are expected to do the relevant calls after they
5560 	 * decide what vnodes to operate on.
5561 	 */
5562 	if (a->a_tdvp != a->a_fdvp)
5563 		vhold(a->a_fdvp);
5564 	if (a->a_tvp != a->a_fvp)
5565 		vhold(a->a_fvp);
5566 	vhold(a->a_tdvp);
5567 	if (a->a_tvp)
5568 		vhold(a->a_tvp);
5569 }
5570 
5571 #ifdef DEBUG_VFS_LOCKS
5572 void
5573 vop_fplookup_vexec_debugpre(void *ap __unused)
5574 {
5575 
5576 	VFS_SMR_ASSERT_ENTERED();
5577 }
5578 
5579 void
5580 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5581 {
5582 
5583 	VFS_SMR_ASSERT_ENTERED();
5584 }
5585 
5586 void
5587 vop_fplookup_symlink_debugpre(void *ap __unused)
5588 {
5589 
5590 	VFS_SMR_ASSERT_ENTERED();
5591 }
5592 
5593 void
5594 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5595 {
5596 
5597 	VFS_SMR_ASSERT_ENTERED();
5598 }
5599 
5600 static void
5601 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5602 {
5603 	if (vp->v_type == VCHR)
5604 		;
5605 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5606 		ASSERT_VOP_LOCKED(vp, name);
5607 	else
5608 		ASSERT_VOP_ELOCKED(vp, name);
5609 }
5610 
5611 void
5612 vop_fsync_debugpre(void *a)
5613 {
5614 	struct vop_fsync_args *ap;
5615 
5616 	ap = a;
5617 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5618 }
5619 
5620 void
5621 vop_fsync_debugpost(void *a, int rc __unused)
5622 {
5623 	struct vop_fsync_args *ap;
5624 
5625 	ap = a;
5626 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5627 }
5628 
5629 void
5630 vop_fdatasync_debugpre(void *a)
5631 {
5632 	struct vop_fdatasync_args *ap;
5633 
5634 	ap = a;
5635 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5636 }
5637 
5638 void
5639 vop_fdatasync_debugpost(void *a, int rc __unused)
5640 {
5641 	struct vop_fdatasync_args *ap;
5642 
5643 	ap = a;
5644 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5645 }
5646 
5647 void
5648 vop_strategy_debugpre(void *ap)
5649 {
5650 	struct vop_strategy_args *a;
5651 	struct buf *bp;
5652 
5653 	a = ap;
5654 	bp = a->a_bp;
5655 
5656 	/*
5657 	 * Cluster ops lock their component buffers but not the IO container.
5658 	 */
5659 	if ((bp->b_flags & B_CLUSTER) != 0)
5660 		return;
5661 
5662 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5663 		if (vfs_badlock_print)
5664 			printf(
5665 			    "VOP_STRATEGY: bp is not locked but should be\n");
5666 		if (vfs_badlock_ddb)
5667 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5668 	}
5669 }
5670 
5671 void
5672 vop_lock_debugpre(void *ap)
5673 {
5674 	struct vop_lock1_args *a = ap;
5675 
5676 	if ((a->a_flags & LK_INTERLOCK) == 0)
5677 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5678 	else
5679 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5680 }
5681 
5682 void
5683 vop_lock_debugpost(void *ap, int rc)
5684 {
5685 	struct vop_lock1_args *a = ap;
5686 
5687 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5688 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5689 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5690 }
5691 
5692 void
5693 vop_unlock_debugpre(void *ap)
5694 {
5695 	struct vop_unlock_args *a = ap;
5696 
5697 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5698 }
5699 
5700 void
5701 vop_need_inactive_debugpre(void *ap)
5702 {
5703 	struct vop_need_inactive_args *a = ap;
5704 
5705 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5706 }
5707 
5708 void
5709 vop_need_inactive_debugpost(void *ap, int rc)
5710 {
5711 	struct vop_need_inactive_args *a = ap;
5712 
5713 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5714 }
5715 #endif
5716 
5717 void
5718 vop_create_pre(void *ap)
5719 {
5720 	struct vop_create_args *a;
5721 	struct vnode *dvp;
5722 
5723 	a = ap;
5724 	dvp = a->a_dvp;
5725 	vn_seqc_write_begin(dvp);
5726 }
5727 
5728 void
5729 vop_create_post(void *ap, int rc)
5730 {
5731 	struct vop_create_args *a;
5732 	struct vnode *dvp;
5733 
5734 	a = ap;
5735 	dvp = a->a_dvp;
5736 	vn_seqc_write_end(dvp);
5737 	if (!rc)
5738 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5739 }
5740 
5741 void
5742 vop_whiteout_pre(void *ap)
5743 {
5744 	struct vop_whiteout_args *a;
5745 	struct vnode *dvp;
5746 
5747 	a = ap;
5748 	dvp = a->a_dvp;
5749 	vn_seqc_write_begin(dvp);
5750 }
5751 
5752 void
5753 vop_whiteout_post(void *ap, int rc)
5754 {
5755 	struct vop_whiteout_args *a;
5756 	struct vnode *dvp;
5757 
5758 	a = ap;
5759 	dvp = a->a_dvp;
5760 	vn_seqc_write_end(dvp);
5761 }
5762 
5763 void
5764 vop_deleteextattr_pre(void *ap)
5765 {
5766 	struct vop_deleteextattr_args *a;
5767 	struct vnode *vp;
5768 
5769 	a = ap;
5770 	vp = a->a_vp;
5771 	vn_seqc_write_begin(vp);
5772 }
5773 
5774 void
5775 vop_deleteextattr_post(void *ap, int rc)
5776 {
5777 	struct vop_deleteextattr_args *a;
5778 	struct vnode *vp;
5779 
5780 	a = ap;
5781 	vp = a->a_vp;
5782 	vn_seqc_write_end(vp);
5783 	if (!rc)
5784 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5785 }
5786 
5787 void
5788 vop_link_pre(void *ap)
5789 {
5790 	struct vop_link_args *a;
5791 	struct vnode *vp, *tdvp;
5792 
5793 	a = ap;
5794 	vp = a->a_vp;
5795 	tdvp = a->a_tdvp;
5796 	vn_seqc_write_begin(vp);
5797 	vn_seqc_write_begin(tdvp);
5798 }
5799 
5800 void
5801 vop_link_post(void *ap, int rc)
5802 {
5803 	struct vop_link_args *a;
5804 	struct vnode *vp, *tdvp;
5805 
5806 	a = ap;
5807 	vp = a->a_vp;
5808 	tdvp = a->a_tdvp;
5809 	vn_seqc_write_end(vp);
5810 	vn_seqc_write_end(tdvp);
5811 	if (!rc) {
5812 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5813 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5814 	}
5815 }
5816 
5817 void
5818 vop_mkdir_pre(void *ap)
5819 {
5820 	struct vop_mkdir_args *a;
5821 	struct vnode *dvp;
5822 
5823 	a = ap;
5824 	dvp = a->a_dvp;
5825 	vn_seqc_write_begin(dvp);
5826 }
5827 
5828 void
5829 vop_mkdir_post(void *ap, int rc)
5830 {
5831 	struct vop_mkdir_args *a;
5832 	struct vnode *dvp;
5833 
5834 	a = ap;
5835 	dvp = a->a_dvp;
5836 	vn_seqc_write_end(dvp);
5837 	if (!rc)
5838 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5839 }
5840 
5841 #ifdef DEBUG_VFS_LOCKS
5842 void
5843 vop_mkdir_debugpost(void *ap, int rc)
5844 {
5845 	struct vop_mkdir_args *a;
5846 
5847 	a = ap;
5848 	if (!rc)
5849 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5850 }
5851 #endif
5852 
5853 void
5854 vop_mknod_pre(void *ap)
5855 {
5856 	struct vop_mknod_args *a;
5857 	struct vnode *dvp;
5858 
5859 	a = ap;
5860 	dvp = a->a_dvp;
5861 	vn_seqc_write_begin(dvp);
5862 }
5863 
5864 void
5865 vop_mknod_post(void *ap, int rc)
5866 {
5867 	struct vop_mknod_args *a;
5868 	struct vnode *dvp;
5869 
5870 	a = ap;
5871 	dvp = a->a_dvp;
5872 	vn_seqc_write_end(dvp);
5873 	if (!rc)
5874 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5875 }
5876 
5877 void
5878 vop_reclaim_post(void *ap, int rc)
5879 {
5880 	struct vop_reclaim_args *a;
5881 	struct vnode *vp;
5882 
5883 	a = ap;
5884 	vp = a->a_vp;
5885 	ASSERT_VOP_IN_SEQC(vp);
5886 	if (!rc)
5887 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5888 }
5889 
5890 void
5891 vop_remove_pre(void *ap)
5892 {
5893 	struct vop_remove_args *a;
5894 	struct vnode *dvp, *vp;
5895 
5896 	a = ap;
5897 	dvp = a->a_dvp;
5898 	vp = a->a_vp;
5899 	vn_seqc_write_begin(dvp);
5900 	vn_seqc_write_begin(vp);
5901 }
5902 
5903 void
5904 vop_remove_post(void *ap, int rc)
5905 {
5906 	struct vop_remove_args *a;
5907 	struct vnode *dvp, *vp;
5908 
5909 	a = ap;
5910 	dvp = a->a_dvp;
5911 	vp = a->a_vp;
5912 	vn_seqc_write_end(dvp);
5913 	vn_seqc_write_end(vp);
5914 	if (!rc) {
5915 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5916 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5917 	}
5918 }
5919 
5920 void
5921 vop_rename_post(void *ap, int rc)
5922 {
5923 	struct vop_rename_args *a = ap;
5924 	long hint;
5925 
5926 	if (!rc) {
5927 		hint = NOTE_WRITE;
5928 		if (a->a_fdvp == a->a_tdvp) {
5929 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5930 				hint |= NOTE_LINK;
5931 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5932 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5933 		} else {
5934 			hint |= NOTE_EXTEND;
5935 			if (a->a_fvp->v_type == VDIR)
5936 				hint |= NOTE_LINK;
5937 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5938 
5939 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5940 			    a->a_tvp->v_type == VDIR)
5941 				hint &= ~NOTE_LINK;
5942 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5943 		}
5944 
5945 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5946 		if (a->a_tvp)
5947 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5948 	}
5949 	if (a->a_tdvp != a->a_fdvp)
5950 		vdrop(a->a_fdvp);
5951 	if (a->a_tvp != a->a_fvp)
5952 		vdrop(a->a_fvp);
5953 	vdrop(a->a_tdvp);
5954 	if (a->a_tvp)
5955 		vdrop(a->a_tvp);
5956 }
5957 
5958 void
5959 vop_rmdir_pre(void *ap)
5960 {
5961 	struct vop_rmdir_args *a;
5962 	struct vnode *dvp, *vp;
5963 
5964 	a = ap;
5965 	dvp = a->a_dvp;
5966 	vp = a->a_vp;
5967 	vn_seqc_write_begin(dvp);
5968 	vn_seqc_write_begin(vp);
5969 }
5970 
5971 void
5972 vop_rmdir_post(void *ap, int rc)
5973 {
5974 	struct vop_rmdir_args *a;
5975 	struct vnode *dvp, *vp;
5976 
5977 	a = ap;
5978 	dvp = a->a_dvp;
5979 	vp = a->a_vp;
5980 	vn_seqc_write_end(dvp);
5981 	vn_seqc_write_end(vp);
5982 	if (!rc) {
5983 		vp->v_vflag |= VV_UNLINKED;
5984 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5985 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5986 	}
5987 }
5988 
5989 void
5990 vop_setattr_pre(void *ap)
5991 {
5992 	struct vop_setattr_args *a;
5993 	struct vnode *vp;
5994 
5995 	a = ap;
5996 	vp = a->a_vp;
5997 	vn_seqc_write_begin(vp);
5998 }
5999 
6000 void
6001 vop_setattr_post(void *ap, int rc)
6002 {
6003 	struct vop_setattr_args *a;
6004 	struct vnode *vp;
6005 
6006 	a = ap;
6007 	vp = a->a_vp;
6008 	vn_seqc_write_end(vp);
6009 	if (!rc)
6010 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6011 }
6012 
6013 void
6014 vop_setacl_pre(void *ap)
6015 {
6016 	struct vop_setacl_args *a;
6017 	struct vnode *vp;
6018 
6019 	a = ap;
6020 	vp = a->a_vp;
6021 	vn_seqc_write_begin(vp);
6022 }
6023 
6024 void
6025 vop_setacl_post(void *ap, int rc __unused)
6026 {
6027 	struct vop_setacl_args *a;
6028 	struct vnode *vp;
6029 
6030 	a = ap;
6031 	vp = a->a_vp;
6032 	vn_seqc_write_end(vp);
6033 }
6034 
6035 void
6036 vop_setextattr_pre(void *ap)
6037 {
6038 	struct vop_setextattr_args *a;
6039 	struct vnode *vp;
6040 
6041 	a = ap;
6042 	vp = a->a_vp;
6043 	vn_seqc_write_begin(vp);
6044 }
6045 
6046 void
6047 vop_setextattr_post(void *ap, int rc)
6048 {
6049 	struct vop_setextattr_args *a;
6050 	struct vnode *vp;
6051 
6052 	a = ap;
6053 	vp = a->a_vp;
6054 	vn_seqc_write_end(vp);
6055 	if (!rc)
6056 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6057 }
6058 
6059 void
6060 vop_symlink_pre(void *ap)
6061 {
6062 	struct vop_symlink_args *a;
6063 	struct vnode *dvp;
6064 
6065 	a = ap;
6066 	dvp = a->a_dvp;
6067 	vn_seqc_write_begin(dvp);
6068 }
6069 
6070 void
6071 vop_symlink_post(void *ap, int rc)
6072 {
6073 	struct vop_symlink_args *a;
6074 	struct vnode *dvp;
6075 
6076 	a = ap;
6077 	dvp = a->a_dvp;
6078 	vn_seqc_write_end(dvp);
6079 	if (!rc)
6080 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6081 }
6082 
6083 void
6084 vop_open_post(void *ap, int rc)
6085 {
6086 	struct vop_open_args *a = ap;
6087 
6088 	if (!rc)
6089 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6090 }
6091 
6092 void
6093 vop_close_post(void *ap, int rc)
6094 {
6095 	struct vop_close_args *a = ap;
6096 
6097 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6098 	    !VN_IS_DOOMED(a->a_vp))) {
6099 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6100 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6101 	}
6102 }
6103 
6104 void
6105 vop_read_post(void *ap, int rc)
6106 {
6107 	struct vop_read_args *a = ap;
6108 
6109 	if (!rc)
6110 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6111 }
6112 
6113 void
6114 vop_read_pgcache_post(void *ap, int rc)
6115 {
6116 	struct vop_read_pgcache_args *a = ap;
6117 
6118 	if (!rc)
6119 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6120 }
6121 
6122 void
6123 vop_readdir_post(void *ap, int rc)
6124 {
6125 	struct vop_readdir_args *a = ap;
6126 
6127 	if (!rc)
6128 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6129 }
6130 
6131 static struct knlist fs_knlist;
6132 
6133 static void
6134 vfs_event_init(void *arg)
6135 {
6136 	knlist_init_mtx(&fs_knlist, NULL);
6137 }
6138 /* XXX - correct order? */
6139 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6140 
6141 void
6142 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6143 {
6144 
6145 	KNOTE_UNLOCKED(&fs_knlist, event);
6146 }
6147 
6148 static int	filt_fsattach(struct knote *kn);
6149 static void	filt_fsdetach(struct knote *kn);
6150 static int	filt_fsevent(struct knote *kn, long hint);
6151 
6152 struct filterops fs_filtops = {
6153 	.f_isfd = 0,
6154 	.f_attach = filt_fsattach,
6155 	.f_detach = filt_fsdetach,
6156 	.f_event = filt_fsevent
6157 };
6158 
6159 static int
6160 filt_fsattach(struct knote *kn)
6161 {
6162 
6163 	kn->kn_flags |= EV_CLEAR;
6164 	knlist_add(&fs_knlist, kn, 0);
6165 	return (0);
6166 }
6167 
6168 static void
6169 filt_fsdetach(struct knote *kn)
6170 {
6171 
6172 	knlist_remove(&fs_knlist, kn, 0);
6173 }
6174 
6175 static int
6176 filt_fsevent(struct knote *kn, long hint)
6177 {
6178 
6179 	kn->kn_fflags |= kn->kn_sfflags & hint;
6180 
6181 	return (kn->kn_fflags != 0);
6182 }
6183 
6184 static int
6185 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6186 {
6187 	struct vfsidctl vc;
6188 	int error;
6189 	struct mount *mp;
6190 
6191 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6192 	if (error)
6193 		return (error);
6194 	if (vc.vc_vers != VFS_CTL_VERS1)
6195 		return (EINVAL);
6196 	mp = vfs_getvfs(&vc.vc_fsid);
6197 	if (mp == NULL)
6198 		return (ENOENT);
6199 	/* ensure that a specific sysctl goes to the right filesystem. */
6200 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6201 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6202 		vfs_rel(mp);
6203 		return (EINVAL);
6204 	}
6205 	VCTLTOREQ(&vc, req);
6206 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6207 	vfs_rel(mp);
6208 	return (error);
6209 }
6210 
6211 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6212     NULL, 0, sysctl_vfs_ctl, "",
6213     "Sysctl by fsid");
6214 
6215 /*
6216  * Function to initialize a va_filerev field sensibly.
6217  * XXX: Wouldn't a random number make a lot more sense ??
6218  */
6219 u_quad_t
6220 init_va_filerev(void)
6221 {
6222 	struct bintime bt;
6223 
6224 	getbinuptime(&bt);
6225 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6226 }
6227 
6228 static int	filt_vfsread(struct knote *kn, long hint);
6229 static int	filt_vfswrite(struct knote *kn, long hint);
6230 static int	filt_vfsvnode(struct knote *kn, long hint);
6231 static void	filt_vfsdetach(struct knote *kn);
6232 static struct filterops vfsread_filtops = {
6233 	.f_isfd = 1,
6234 	.f_detach = filt_vfsdetach,
6235 	.f_event = filt_vfsread
6236 };
6237 static struct filterops vfswrite_filtops = {
6238 	.f_isfd = 1,
6239 	.f_detach = filt_vfsdetach,
6240 	.f_event = filt_vfswrite
6241 };
6242 static struct filterops vfsvnode_filtops = {
6243 	.f_isfd = 1,
6244 	.f_detach = filt_vfsdetach,
6245 	.f_event = filt_vfsvnode
6246 };
6247 
6248 static void
6249 vfs_knllock(void *arg)
6250 {
6251 	struct vnode *vp = arg;
6252 
6253 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6254 }
6255 
6256 static void
6257 vfs_knlunlock(void *arg)
6258 {
6259 	struct vnode *vp = arg;
6260 
6261 	VOP_UNLOCK(vp);
6262 }
6263 
6264 static void
6265 vfs_knl_assert_lock(void *arg, int what)
6266 {
6267 #ifdef DEBUG_VFS_LOCKS
6268 	struct vnode *vp = arg;
6269 
6270 	if (what == LA_LOCKED)
6271 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6272 	else
6273 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6274 #endif
6275 }
6276 
6277 int
6278 vfs_kqfilter(struct vop_kqfilter_args *ap)
6279 {
6280 	struct vnode *vp = ap->a_vp;
6281 	struct knote *kn = ap->a_kn;
6282 	struct knlist *knl;
6283 
6284 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6285 	    kn->kn_filter != EVFILT_WRITE),
6286 	    ("READ/WRITE filter on a FIFO leaked through"));
6287 	switch (kn->kn_filter) {
6288 	case EVFILT_READ:
6289 		kn->kn_fop = &vfsread_filtops;
6290 		break;
6291 	case EVFILT_WRITE:
6292 		kn->kn_fop = &vfswrite_filtops;
6293 		break;
6294 	case EVFILT_VNODE:
6295 		kn->kn_fop = &vfsvnode_filtops;
6296 		break;
6297 	default:
6298 		return (EINVAL);
6299 	}
6300 
6301 	kn->kn_hook = (caddr_t)vp;
6302 
6303 	v_addpollinfo(vp);
6304 	if (vp->v_pollinfo == NULL)
6305 		return (ENOMEM);
6306 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6307 	vhold(vp);
6308 	knlist_add(knl, kn, 0);
6309 
6310 	return (0);
6311 }
6312 
6313 /*
6314  * Detach knote from vnode
6315  */
6316 static void
6317 filt_vfsdetach(struct knote *kn)
6318 {
6319 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6320 
6321 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6322 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6323 	vdrop(vp);
6324 }
6325 
6326 /*ARGSUSED*/
6327 static int
6328 filt_vfsread(struct knote *kn, long hint)
6329 {
6330 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6331 	struct vattr va;
6332 	int res;
6333 
6334 	/*
6335 	 * filesystem is gone, so set the EOF flag and schedule
6336 	 * the knote for deletion.
6337 	 */
6338 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6339 		VI_LOCK(vp);
6340 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6341 		VI_UNLOCK(vp);
6342 		return (1);
6343 	}
6344 
6345 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6346 		return (0);
6347 
6348 	VI_LOCK(vp);
6349 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6350 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6351 	VI_UNLOCK(vp);
6352 	return (res);
6353 }
6354 
6355 /*ARGSUSED*/
6356 static int
6357 filt_vfswrite(struct knote *kn, long hint)
6358 {
6359 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6360 
6361 	VI_LOCK(vp);
6362 
6363 	/*
6364 	 * filesystem is gone, so set the EOF flag and schedule
6365 	 * the knote for deletion.
6366 	 */
6367 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6368 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6369 
6370 	kn->kn_data = 0;
6371 	VI_UNLOCK(vp);
6372 	return (1);
6373 }
6374 
6375 static int
6376 filt_vfsvnode(struct knote *kn, long hint)
6377 {
6378 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6379 	int res;
6380 
6381 	VI_LOCK(vp);
6382 	if (kn->kn_sfflags & hint)
6383 		kn->kn_fflags |= hint;
6384 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6385 		kn->kn_flags |= EV_EOF;
6386 		VI_UNLOCK(vp);
6387 		return (1);
6388 	}
6389 	res = (kn->kn_fflags != 0);
6390 	VI_UNLOCK(vp);
6391 	return (res);
6392 }
6393 
6394 /*
6395  * Returns whether the directory is empty or not.
6396  * If it is empty, the return value is 0; otherwise
6397  * the return value is an error value (which may
6398  * be ENOTEMPTY).
6399  */
6400 int
6401 vfs_emptydir(struct vnode *vp)
6402 {
6403 	struct uio uio;
6404 	struct iovec iov;
6405 	struct dirent *dirent, *dp, *endp;
6406 	int error, eof;
6407 
6408 	error = 0;
6409 	eof = 0;
6410 
6411 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6412 	VNASSERT(vp->v_type == VDIR, vp, ("vp is not a directory"));
6413 
6414 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6415 	iov.iov_base = dirent;
6416 	iov.iov_len = sizeof(struct dirent);
6417 
6418 	uio.uio_iov = &iov;
6419 	uio.uio_iovcnt = 1;
6420 	uio.uio_offset = 0;
6421 	uio.uio_resid = sizeof(struct dirent);
6422 	uio.uio_segflg = UIO_SYSSPACE;
6423 	uio.uio_rw = UIO_READ;
6424 	uio.uio_td = curthread;
6425 
6426 	while (eof == 0 && error == 0) {
6427 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6428 		    NULL, NULL);
6429 		if (error != 0)
6430 			break;
6431 		endp = (void *)((uint8_t *)dirent +
6432 		    sizeof(struct dirent) - uio.uio_resid);
6433 		for (dp = dirent; dp < endp;
6434 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6435 			if (dp->d_type == DT_WHT)
6436 				continue;
6437 			if (dp->d_namlen == 0)
6438 				continue;
6439 			if (dp->d_type != DT_DIR &&
6440 			    dp->d_type != DT_UNKNOWN) {
6441 				error = ENOTEMPTY;
6442 				break;
6443 			}
6444 			if (dp->d_namlen > 2) {
6445 				error = ENOTEMPTY;
6446 				break;
6447 			}
6448 			if (dp->d_namlen == 1 &&
6449 			    dp->d_name[0] != '.') {
6450 				error = ENOTEMPTY;
6451 				break;
6452 			}
6453 			if (dp->d_namlen == 2 &&
6454 			    dp->d_name[1] != '.') {
6455 				error = ENOTEMPTY;
6456 				break;
6457 			}
6458 			uio.uio_resid = sizeof(struct dirent);
6459 		}
6460 	}
6461 	free(dirent, M_TEMP);
6462 	return (error);
6463 }
6464 
6465 int
6466 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6467 {
6468 	int error;
6469 
6470 	if (dp->d_reclen > ap->a_uio->uio_resid)
6471 		return (ENAMETOOLONG);
6472 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6473 	if (error) {
6474 		if (ap->a_ncookies != NULL) {
6475 			if (ap->a_cookies != NULL)
6476 				free(ap->a_cookies, M_TEMP);
6477 			ap->a_cookies = NULL;
6478 			*ap->a_ncookies = 0;
6479 		}
6480 		return (error);
6481 	}
6482 	if (ap->a_ncookies == NULL)
6483 		return (0);
6484 
6485 	KASSERT(ap->a_cookies,
6486 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6487 
6488 	*ap->a_cookies = realloc(*ap->a_cookies,
6489 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6490 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6491 	*ap->a_ncookies += 1;
6492 	return (0);
6493 }
6494 
6495 /*
6496  * The purpose of this routine is to remove granularity from accmode_t,
6497  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6498  * VADMIN and VAPPEND.
6499  *
6500  * If it returns 0, the caller is supposed to continue with the usual
6501  * access checks using 'accmode' as modified by this routine.  If it
6502  * returns nonzero value, the caller is supposed to return that value
6503  * as errno.
6504  *
6505  * Note that after this routine runs, accmode may be zero.
6506  */
6507 int
6508 vfs_unixify_accmode(accmode_t *accmode)
6509 {
6510 	/*
6511 	 * There is no way to specify explicit "deny" rule using
6512 	 * file mode or POSIX.1e ACLs.
6513 	 */
6514 	if (*accmode & VEXPLICIT_DENY) {
6515 		*accmode = 0;
6516 		return (0);
6517 	}
6518 
6519 	/*
6520 	 * None of these can be translated into usual access bits.
6521 	 * Also, the common case for NFSv4 ACLs is to not contain
6522 	 * either of these bits. Caller should check for VWRITE
6523 	 * on the containing directory instead.
6524 	 */
6525 	if (*accmode & (VDELETE_CHILD | VDELETE))
6526 		return (EPERM);
6527 
6528 	if (*accmode & VADMIN_PERMS) {
6529 		*accmode &= ~VADMIN_PERMS;
6530 		*accmode |= VADMIN;
6531 	}
6532 
6533 	/*
6534 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6535 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6536 	 */
6537 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6538 
6539 	return (0);
6540 }
6541 
6542 /*
6543  * Clear out a doomed vnode (if any) and replace it with a new one as long
6544  * as the fs is not being unmounted. Return the root vnode to the caller.
6545  */
6546 static int __noinline
6547 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6548 {
6549 	struct vnode *vp;
6550 	int error;
6551 
6552 restart:
6553 	if (mp->mnt_rootvnode != NULL) {
6554 		MNT_ILOCK(mp);
6555 		vp = mp->mnt_rootvnode;
6556 		if (vp != NULL) {
6557 			if (!VN_IS_DOOMED(vp)) {
6558 				vrefact(vp);
6559 				MNT_IUNLOCK(mp);
6560 				error = vn_lock(vp, flags);
6561 				if (error == 0) {
6562 					*vpp = vp;
6563 					return (0);
6564 				}
6565 				vrele(vp);
6566 				goto restart;
6567 			}
6568 			/*
6569 			 * Clear the old one.
6570 			 */
6571 			mp->mnt_rootvnode = NULL;
6572 		}
6573 		MNT_IUNLOCK(mp);
6574 		if (vp != NULL) {
6575 			vfs_op_barrier_wait(mp);
6576 			vrele(vp);
6577 		}
6578 	}
6579 	error = VFS_CACHEDROOT(mp, flags, vpp);
6580 	if (error != 0)
6581 		return (error);
6582 	if (mp->mnt_vfs_ops == 0) {
6583 		MNT_ILOCK(mp);
6584 		if (mp->mnt_vfs_ops != 0) {
6585 			MNT_IUNLOCK(mp);
6586 			return (0);
6587 		}
6588 		if (mp->mnt_rootvnode == NULL) {
6589 			vrefact(*vpp);
6590 			mp->mnt_rootvnode = *vpp;
6591 		} else {
6592 			if (mp->mnt_rootvnode != *vpp) {
6593 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6594 					panic("%s: mismatch between vnode returned "
6595 					    " by VFS_CACHEDROOT and the one cached "
6596 					    " (%p != %p)",
6597 					    __func__, *vpp, mp->mnt_rootvnode);
6598 				}
6599 			}
6600 		}
6601 		MNT_IUNLOCK(mp);
6602 	}
6603 	return (0);
6604 }
6605 
6606 int
6607 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6608 {
6609 	struct mount_pcpu *mpcpu;
6610 	struct vnode *vp;
6611 	int error;
6612 
6613 	if (!vfs_op_thread_enter(mp, mpcpu))
6614 		return (vfs_cache_root_fallback(mp, flags, vpp));
6615 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6616 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6617 		vfs_op_thread_exit(mp, mpcpu);
6618 		return (vfs_cache_root_fallback(mp, flags, vpp));
6619 	}
6620 	vrefact(vp);
6621 	vfs_op_thread_exit(mp, mpcpu);
6622 	error = vn_lock(vp, flags);
6623 	if (error != 0) {
6624 		vrele(vp);
6625 		return (vfs_cache_root_fallback(mp, flags, vpp));
6626 	}
6627 	*vpp = vp;
6628 	return (0);
6629 }
6630 
6631 struct vnode *
6632 vfs_cache_root_clear(struct mount *mp)
6633 {
6634 	struct vnode *vp;
6635 
6636 	/*
6637 	 * ops > 0 guarantees there is nobody who can see this vnode
6638 	 */
6639 	MPASS(mp->mnt_vfs_ops > 0);
6640 	vp = mp->mnt_rootvnode;
6641 	if (vp != NULL)
6642 		vn_seqc_write_begin(vp);
6643 	mp->mnt_rootvnode = NULL;
6644 	return (vp);
6645 }
6646 
6647 void
6648 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6649 {
6650 
6651 	MPASS(mp->mnt_vfs_ops > 0);
6652 	vrefact(vp);
6653 	mp->mnt_rootvnode = vp;
6654 }
6655 
6656 /*
6657  * These are helper functions for filesystems to traverse all
6658  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6659  *
6660  * This interface replaces MNT_VNODE_FOREACH.
6661  */
6662 
6663 struct vnode *
6664 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6665 {
6666 	struct vnode *vp;
6667 
6668 	if (should_yield())
6669 		kern_yield(PRI_USER);
6670 	MNT_ILOCK(mp);
6671 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6672 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6673 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6674 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6675 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6676 			continue;
6677 		VI_LOCK(vp);
6678 		if (VN_IS_DOOMED(vp)) {
6679 			VI_UNLOCK(vp);
6680 			continue;
6681 		}
6682 		break;
6683 	}
6684 	if (vp == NULL) {
6685 		__mnt_vnode_markerfree_all(mvp, mp);
6686 		/* MNT_IUNLOCK(mp); -- done in above function */
6687 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6688 		return (NULL);
6689 	}
6690 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6691 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6692 	MNT_IUNLOCK(mp);
6693 	return (vp);
6694 }
6695 
6696 struct vnode *
6697 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6698 {
6699 	struct vnode *vp;
6700 
6701 	*mvp = vn_alloc_marker(mp);
6702 	MNT_ILOCK(mp);
6703 	MNT_REF(mp);
6704 
6705 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6706 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6707 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6708 			continue;
6709 		VI_LOCK(vp);
6710 		if (VN_IS_DOOMED(vp)) {
6711 			VI_UNLOCK(vp);
6712 			continue;
6713 		}
6714 		break;
6715 	}
6716 	if (vp == NULL) {
6717 		MNT_REL(mp);
6718 		MNT_IUNLOCK(mp);
6719 		vn_free_marker(*mvp);
6720 		*mvp = NULL;
6721 		return (NULL);
6722 	}
6723 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6724 	MNT_IUNLOCK(mp);
6725 	return (vp);
6726 }
6727 
6728 void
6729 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6730 {
6731 
6732 	if (*mvp == NULL) {
6733 		MNT_IUNLOCK(mp);
6734 		return;
6735 	}
6736 
6737 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6738 
6739 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6740 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6741 	MNT_REL(mp);
6742 	MNT_IUNLOCK(mp);
6743 	vn_free_marker(*mvp);
6744 	*mvp = NULL;
6745 }
6746 
6747 /*
6748  * These are helper functions for filesystems to traverse their
6749  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6750  */
6751 static void
6752 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6753 {
6754 
6755 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6756 
6757 	MNT_ILOCK(mp);
6758 	MNT_REL(mp);
6759 	MNT_IUNLOCK(mp);
6760 	vn_free_marker(*mvp);
6761 	*mvp = NULL;
6762 }
6763 
6764 /*
6765  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6766  * conventional lock order during mnt_vnode_next_lazy iteration.
6767  *
6768  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6769  * The list lock is dropped and reacquired.  On success, both locks are held.
6770  * On failure, the mount vnode list lock is held but the vnode interlock is
6771  * not, and the procedure may have yielded.
6772  */
6773 static bool
6774 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6775     struct vnode *vp)
6776 {
6777 
6778 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6779 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6780 	    ("%s: bad marker", __func__));
6781 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6782 	    ("%s: inappropriate vnode", __func__));
6783 	ASSERT_VI_UNLOCKED(vp, __func__);
6784 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6785 
6786 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6787 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6788 
6789 	/*
6790 	 * Note we may be racing against vdrop which transitioned the hold
6791 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6792 	 * if we are the only user after we get the interlock we will just
6793 	 * vdrop.
6794 	 */
6795 	vhold(vp);
6796 	mtx_unlock(&mp->mnt_listmtx);
6797 	VI_LOCK(vp);
6798 	if (VN_IS_DOOMED(vp)) {
6799 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6800 		goto out_lost;
6801 	}
6802 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6803 	/*
6804 	 * There is nothing to do if we are the last user.
6805 	 */
6806 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6807 		goto out_lost;
6808 	mtx_lock(&mp->mnt_listmtx);
6809 	return (true);
6810 out_lost:
6811 	vdropl(vp);
6812 	maybe_yield();
6813 	mtx_lock(&mp->mnt_listmtx);
6814 	return (false);
6815 }
6816 
6817 static struct vnode *
6818 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6819     void *cbarg)
6820 {
6821 	struct vnode *vp;
6822 
6823 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6824 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6825 restart:
6826 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6827 	while (vp != NULL) {
6828 		if (vp->v_type == VMARKER) {
6829 			vp = TAILQ_NEXT(vp, v_lazylist);
6830 			continue;
6831 		}
6832 		/*
6833 		 * See if we want to process the vnode. Note we may encounter a
6834 		 * long string of vnodes we don't care about and hog the list
6835 		 * as a result. Check for it and requeue the marker.
6836 		 */
6837 		VNPASS(!VN_IS_DOOMED(vp), vp);
6838 		if (!cb(vp, cbarg)) {
6839 			if (!should_yield()) {
6840 				vp = TAILQ_NEXT(vp, v_lazylist);
6841 				continue;
6842 			}
6843 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6844 			    v_lazylist);
6845 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6846 			    v_lazylist);
6847 			mtx_unlock(&mp->mnt_listmtx);
6848 			kern_yield(PRI_USER);
6849 			mtx_lock(&mp->mnt_listmtx);
6850 			goto restart;
6851 		}
6852 		/*
6853 		 * Try-lock because this is the wrong lock order.
6854 		 */
6855 		if (!VI_TRYLOCK(vp) &&
6856 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6857 			goto restart;
6858 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6859 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6860 		    ("alien vnode on the lazy list %p %p", vp, mp));
6861 		VNPASS(vp->v_mount == mp, vp);
6862 		VNPASS(!VN_IS_DOOMED(vp), vp);
6863 		break;
6864 	}
6865 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6866 
6867 	/* Check if we are done */
6868 	if (vp == NULL) {
6869 		mtx_unlock(&mp->mnt_listmtx);
6870 		mnt_vnode_markerfree_lazy(mvp, mp);
6871 		return (NULL);
6872 	}
6873 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6874 	mtx_unlock(&mp->mnt_listmtx);
6875 	ASSERT_VI_LOCKED(vp, "lazy iter");
6876 	return (vp);
6877 }
6878 
6879 struct vnode *
6880 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6881     void *cbarg)
6882 {
6883 
6884 	if (should_yield())
6885 		kern_yield(PRI_USER);
6886 	mtx_lock(&mp->mnt_listmtx);
6887 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6888 }
6889 
6890 struct vnode *
6891 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6892     void *cbarg)
6893 {
6894 	struct vnode *vp;
6895 
6896 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6897 		return (NULL);
6898 
6899 	*mvp = vn_alloc_marker(mp);
6900 	MNT_ILOCK(mp);
6901 	MNT_REF(mp);
6902 	MNT_IUNLOCK(mp);
6903 
6904 	mtx_lock(&mp->mnt_listmtx);
6905 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6906 	if (vp == NULL) {
6907 		mtx_unlock(&mp->mnt_listmtx);
6908 		mnt_vnode_markerfree_lazy(mvp, mp);
6909 		return (NULL);
6910 	}
6911 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6912 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6913 }
6914 
6915 void
6916 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6917 {
6918 
6919 	if (*mvp == NULL)
6920 		return;
6921 
6922 	mtx_lock(&mp->mnt_listmtx);
6923 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6924 	mtx_unlock(&mp->mnt_listmtx);
6925 	mnt_vnode_markerfree_lazy(mvp, mp);
6926 }
6927 
6928 int
6929 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6930 {
6931 
6932 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6933 		cnp->cn_flags &= ~NOEXECCHECK;
6934 		return (0);
6935 	}
6936 
6937 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6938 }
6939 
6940 /*
6941  * Do not use this variant unless you have means other than the hold count
6942  * to prevent the vnode from getting freed.
6943  */
6944 void
6945 vn_seqc_write_begin_locked(struct vnode *vp)
6946 {
6947 
6948 	ASSERT_VI_LOCKED(vp, __func__);
6949 	VNPASS(vp->v_holdcnt > 0, vp);
6950 	VNPASS(vp->v_seqc_users >= 0, vp);
6951 	vp->v_seqc_users++;
6952 	if (vp->v_seqc_users == 1)
6953 		seqc_sleepable_write_begin(&vp->v_seqc);
6954 }
6955 
6956 void
6957 vn_seqc_write_begin(struct vnode *vp)
6958 {
6959 
6960 	VI_LOCK(vp);
6961 	vn_seqc_write_begin_locked(vp);
6962 	VI_UNLOCK(vp);
6963 }
6964 
6965 void
6966 vn_seqc_write_end_locked(struct vnode *vp)
6967 {
6968 
6969 	ASSERT_VI_LOCKED(vp, __func__);
6970 	VNPASS(vp->v_seqc_users > 0, vp);
6971 	vp->v_seqc_users--;
6972 	if (vp->v_seqc_users == 0)
6973 		seqc_sleepable_write_end(&vp->v_seqc);
6974 }
6975 
6976 void
6977 vn_seqc_write_end(struct vnode *vp)
6978 {
6979 
6980 	VI_LOCK(vp);
6981 	vn_seqc_write_end_locked(vp);
6982 	VI_UNLOCK(vp);
6983 }
6984 
6985 /*
6986  * Special case handling for allocating and freeing vnodes.
6987  *
6988  * The counter remains unchanged on free so that a doomed vnode will
6989  * keep testing as in modify as long as it is accessible with SMR.
6990  */
6991 static void
6992 vn_seqc_init(struct vnode *vp)
6993 {
6994 
6995 	vp->v_seqc = 0;
6996 	vp->v_seqc_users = 0;
6997 }
6998 
6999 static void
7000 vn_seqc_write_end_free(struct vnode *vp)
7001 {
7002 
7003 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7004 	VNPASS(vp->v_seqc_users == 1, vp);
7005 }
7006 
7007 void
7008 vn_irflag_set_locked(struct vnode *vp, short toset)
7009 {
7010 	short flags;
7011 
7012 	ASSERT_VI_LOCKED(vp, __func__);
7013 	flags = vn_irflag_read(vp);
7014 	VNASSERT((flags & toset) == 0, vp,
7015 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7016 	    __func__, flags, toset));
7017 	atomic_store_short(&vp->v_irflag, flags | toset);
7018 }
7019 
7020 void
7021 vn_irflag_set(struct vnode *vp, short toset)
7022 {
7023 
7024 	VI_LOCK(vp);
7025 	vn_irflag_set_locked(vp, toset);
7026 	VI_UNLOCK(vp);
7027 }
7028 
7029 void
7030 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7031 {
7032 	short flags;
7033 
7034 	ASSERT_VI_LOCKED(vp, __func__);
7035 	flags = vn_irflag_read(vp);
7036 	atomic_store_short(&vp->v_irflag, flags | toset);
7037 }
7038 
7039 void
7040 vn_irflag_set_cond(struct vnode *vp, short toset)
7041 {
7042 
7043 	VI_LOCK(vp);
7044 	vn_irflag_set_cond_locked(vp, toset);
7045 	VI_UNLOCK(vp);
7046 }
7047 
7048 void
7049 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7050 {
7051 	short flags;
7052 
7053 	ASSERT_VI_LOCKED(vp, __func__);
7054 	flags = vn_irflag_read(vp);
7055 	VNASSERT((flags & tounset) == tounset, vp,
7056 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7057 	    __func__, flags, tounset));
7058 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7059 }
7060 
7061 void
7062 vn_irflag_unset(struct vnode *vp, short tounset)
7063 {
7064 
7065 	VI_LOCK(vp);
7066 	vn_irflag_unset_locked(vp, tounset);
7067 	VI_UNLOCK(vp);
7068 }
7069