1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 35 */ 36 37 /* 38 * External virtual filesystem routines 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 #include "opt_mac.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/bio.h> 50 #include <sys/buf.h> 51 #include <sys/conf.h> 52 #include <sys/dirent.h> 53 #include <sys/event.h> 54 #include <sys/eventhandler.h> 55 #include <sys/extattr.h> 56 #include <sys/file.h> 57 #include <sys/fcntl.h> 58 #include <sys/jail.h> 59 #include <sys/kdb.h> 60 #include <sys/kernel.h> 61 #include <sys/kthread.h> 62 #include <sys/malloc.h> 63 #include <sys/mount.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/reboot.h> 67 #include <sys/sleepqueue.h> 68 #include <sys/stat.h> 69 #include <sys/sysctl.h> 70 #include <sys/syslog.h> 71 #include <sys/vmmeter.h> 72 #include <sys/vnode.h> 73 74 #include <machine/stdarg.h> 75 76 #include <security/mac/mac_framework.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_extern.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_kern.h> 85 #include <vm/uma.h> 86 87 #ifdef DDB 88 #include <ddb/ddb.h> 89 #endif 90 91 static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure"); 92 93 static void delmntque(struct vnode *vp); 94 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 95 int slpflag, int slptimeo); 96 static void syncer_shutdown(void *arg, int howto); 97 static int vtryrecycle(struct vnode *vp); 98 static void vbusy(struct vnode *vp); 99 static void vinactive(struct vnode *, struct thread *); 100 static void v_incr_usecount(struct vnode *); 101 static void v_decr_usecount(struct vnode *); 102 static void v_decr_useonly(struct vnode *); 103 static void v_upgrade_usecount(struct vnode *); 104 static void vfree(struct vnode *); 105 static void vnlru_free(int); 106 static void vdestroy(struct vnode *); 107 static void vgonel(struct vnode *); 108 static void vfs_knllock(void *arg); 109 static void vfs_knlunlock(void *arg); 110 static int vfs_knllocked(void *arg); 111 112 113 /* 114 * Enable Giant pushdown based on whether or not the vm is mpsafe in this 115 * build. Without mpsafevm the buffer cache can not run Giant free. 116 */ 117 int mpsafe_vfs = 1; 118 TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs); 119 SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0, 120 "MPSAFE VFS"); 121 122 /* 123 * Number of vnodes in existence. Increased whenever getnewvnode() 124 * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed 125 * vnode. 126 */ 127 static unsigned long numvnodes; 128 129 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, ""); 130 131 /* 132 * Conversion tables for conversion from vnode types to inode formats 133 * and back. 134 */ 135 enum vtype iftovt_tab[16] = { 136 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 137 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 138 }; 139 int vttoif_tab[10] = { 140 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 141 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 142 }; 143 144 /* 145 * List of vnodes that are ready for recycling. 146 */ 147 static TAILQ_HEAD(freelst, vnode) vnode_free_list; 148 149 /* 150 * Free vnode target. Free vnodes may simply be files which have been stat'd 151 * but not read. This is somewhat common, and a small cache of such files 152 * should be kept to avoid recreation costs. 153 */ 154 static u_long wantfreevnodes; 155 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, ""); 156 /* Number of vnodes in the free list. */ 157 static u_long freevnodes; 158 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, ""); 159 160 /* 161 * Various variables used for debugging the new implementation of 162 * reassignbuf(). 163 * XXX these are probably of (very) limited utility now. 164 */ 165 static int reassignbufcalls; 166 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, ""); 167 168 /* 169 * Cache for the mount type id assigned to NFS. This is used for 170 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c. 171 */ 172 int nfs_mount_type = -1; 173 174 /* To keep more than one thread at a time from running vfs_getnewfsid */ 175 static struct mtx mntid_mtx; 176 177 /* 178 * Lock for any access to the following: 179 * vnode_free_list 180 * numvnodes 181 * freevnodes 182 */ 183 static struct mtx vnode_free_list_mtx; 184 185 /* Publicly exported FS */ 186 struct nfs_public nfs_pub; 187 188 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 189 static uma_zone_t vnode_zone; 190 static uma_zone_t vnodepoll_zone; 191 192 /* Set to 1 to print out reclaim of active vnodes */ 193 int prtactive; 194 195 /* 196 * The workitem queue. 197 * 198 * It is useful to delay writes of file data and filesystem metadata 199 * for tens of seconds so that quickly created and deleted files need 200 * not waste disk bandwidth being created and removed. To realize this, 201 * we append vnodes to a "workitem" queue. When running with a soft 202 * updates implementation, most pending metadata dependencies should 203 * not wait for more than a few seconds. Thus, mounted on block devices 204 * are delayed only about a half the time that file data is delayed. 205 * Similarly, directory updates are more critical, so are only delayed 206 * about a third the time that file data is delayed. Thus, there are 207 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 208 * one each second (driven off the filesystem syncer process). The 209 * syncer_delayno variable indicates the next queue that is to be processed. 210 * Items that need to be processed soon are placed in this queue: 211 * 212 * syncer_workitem_pending[syncer_delayno] 213 * 214 * A delay of fifteen seconds is done by placing the request fifteen 215 * entries later in the queue: 216 * 217 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 218 * 219 */ 220 static int syncer_delayno; 221 static long syncer_mask; 222 LIST_HEAD(synclist, bufobj); 223 static struct synclist *syncer_workitem_pending; 224 /* 225 * The sync_mtx protects: 226 * bo->bo_synclist 227 * sync_vnode_count 228 * syncer_delayno 229 * syncer_state 230 * syncer_workitem_pending 231 * syncer_worklist_len 232 * rushjob 233 */ 234 static struct mtx sync_mtx; 235 236 #define SYNCER_MAXDELAY 32 237 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 238 static int syncdelay = 30; /* max time to delay syncing data */ 239 static int filedelay = 30; /* time to delay syncing files */ 240 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, ""); 241 static int dirdelay = 29; /* time to delay syncing directories */ 242 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, ""); 243 static int metadelay = 28; /* time to delay syncing metadata */ 244 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, ""); 245 static int rushjob; /* number of slots to run ASAP */ 246 static int stat_rush_requests; /* number of times I/O speeded up */ 247 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, ""); 248 249 /* 250 * When shutting down the syncer, run it at four times normal speed. 251 */ 252 #define SYNCER_SHUTDOWN_SPEEDUP 4 253 static int sync_vnode_count; 254 static int syncer_worklist_len; 255 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 256 syncer_state; 257 258 /* 259 * Number of vnodes we want to exist at any one time. This is mostly used 260 * to size hash tables in vnode-related code. It is normally not used in 261 * getnewvnode(), as wantfreevnodes is normally nonzero.) 262 * 263 * XXX desiredvnodes is historical cruft and should not exist. 264 */ 265 int desiredvnodes; 266 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, 267 &desiredvnodes, 0, "Maximum number of vnodes"); 268 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 269 &wantfreevnodes, 0, "Minimum number of vnodes (legacy)"); 270 static int vnlru_nowhere; 271 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, 272 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 273 274 /* 275 * Macros to control when a vnode is freed and recycled. All require 276 * the vnode interlock. 277 */ 278 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt) 279 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt) 280 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt) 281 282 283 /* 284 * Initialize the vnode management data structures. 285 */ 286 #ifndef MAXVNODES_MAX 287 #define MAXVNODES_MAX 100000 288 #endif 289 static void 290 vntblinit(void *dummy __unused) 291 { 292 293 /* 294 * Desiredvnodes is a function of the physical memory size and 295 * the kernel's heap size. Specifically, desiredvnodes scales 296 * in proportion to the physical memory size until two fifths 297 * of the kernel's heap size is consumed by vnodes and vm 298 * objects. 299 */ 300 desiredvnodes = min(maxproc + VMCNT_GET(page_count) / 4, 2 * 301 vm_kmem_size / (5 * (sizeof(struct vm_object) + 302 sizeof(struct vnode)))); 303 if (desiredvnodes > MAXVNODES_MAX) { 304 if (bootverbose) 305 printf("Reducing kern.maxvnodes %d -> %d\n", 306 desiredvnodes, MAXVNODES_MAX); 307 desiredvnodes = MAXVNODES_MAX; 308 } 309 wantfreevnodes = desiredvnodes / 4; 310 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 311 TAILQ_INIT(&vnode_free_list); 312 mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF); 313 vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL, 314 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 315 vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo), 316 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 317 /* 318 * Initialize the filesystem syncer. 319 */ 320 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 321 &syncer_mask); 322 syncer_maxdelay = syncer_mask + 1; 323 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 324 } 325 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL) 326 327 328 /* 329 * Mark a mount point as busy. Used to synchronize access and to delay 330 * unmounting. Interlock is not released on failure. 331 */ 332 int 333 vfs_busy(struct mount *mp, int flags, struct mtx *interlkp, 334 struct thread *td) 335 { 336 int lkflags; 337 338 MNT_ILOCK(mp); 339 MNT_REF(mp); 340 if (mp->mnt_kern_flag & MNTK_UNMOUNT) { 341 if (flags & LK_NOWAIT) { 342 MNT_REL(mp); 343 MNT_IUNLOCK(mp); 344 return (ENOENT); 345 } 346 if (interlkp) 347 mtx_unlock(interlkp); 348 mp->mnt_kern_flag |= MNTK_MWAIT; 349 /* 350 * Since all busy locks are shared except the exclusive 351 * lock granted when unmounting, the only place that a 352 * wakeup needs to be done is at the release of the 353 * exclusive lock at the end of dounmount. 354 */ 355 msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0); 356 MNT_REL(mp); 357 MNT_IUNLOCK(mp); 358 if (interlkp) 359 mtx_lock(interlkp); 360 return (ENOENT); 361 } 362 if (interlkp) 363 mtx_unlock(interlkp); 364 lkflags = LK_SHARED | LK_INTERLOCK; 365 if (lockmgr(&mp->mnt_lock, lkflags, MNT_MTX(mp), td)) 366 panic("vfs_busy: unexpected lock failure"); 367 return (0); 368 } 369 370 /* 371 * Free a busy filesystem. 372 */ 373 void 374 vfs_unbusy(struct mount *mp, struct thread *td) 375 { 376 377 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td); 378 vfs_rel(mp); 379 } 380 381 /* 382 * Lookup a mount point by filesystem identifier. 383 */ 384 struct mount * 385 vfs_getvfs(fsid_t *fsid) 386 { 387 struct mount *mp; 388 389 mtx_lock(&mountlist_mtx); 390 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 391 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 392 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 393 vfs_ref(mp); 394 mtx_unlock(&mountlist_mtx); 395 return (mp); 396 } 397 } 398 mtx_unlock(&mountlist_mtx); 399 return ((struct mount *) 0); 400 } 401 402 /* 403 * Check if a user can access privileged mount options. 404 */ 405 int 406 vfs_suser(struct mount *mp, struct thread *td) 407 { 408 int error; 409 410 /* 411 * If the thread is jailed, but this is not a jail-friendly file 412 * system, deny immediately. 413 */ 414 if (jailed(td->td_ucred) && !(mp->mnt_vfc->vfc_flags & VFCF_JAIL)) 415 return (EPERM); 416 417 /* 418 * If the file system was mounted outside a jail and a jailed thread 419 * tries to access it, deny immediately. 420 */ 421 if (!jailed(mp->mnt_cred) && jailed(td->td_ucred)) 422 return (EPERM); 423 424 /* 425 * If the file system was mounted inside different jail that the jail of 426 * the calling thread, deny immediately. 427 */ 428 if (jailed(mp->mnt_cred) && jailed(td->td_ucred) && 429 mp->mnt_cred->cr_prison != td->td_ucred->cr_prison) { 430 return (EPERM); 431 } 432 433 if ((mp->mnt_flag & MNT_USER) == 0 || 434 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 435 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 436 return (error); 437 } 438 return (0); 439 } 440 441 /* 442 * Get a new unique fsid. Try to make its val[0] unique, since this value 443 * will be used to create fake device numbers for stat(). Also try (but 444 * not so hard) make its val[0] unique mod 2^16, since some emulators only 445 * support 16-bit device numbers. We end up with unique val[0]'s for the 446 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 447 * 448 * Keep in mind that several mounts may be running in parallel. Starting 449 * the search one past where the previous search terminated is both a 450 * micro-optimization and a defense against returning the same fsid to 451 * different mounts. 452 */ 453 void 454 vfs_getnewfsid(struct mount *mp) 455 { 456 static u_int16_t mntid_base; 457 struct mount *nmp; 458 fsid_t tfsid; 459 int mtype; 460 461 mtx_lock(&mntid_mtx); 462 mtype = mp->mnt_vfc->vfc_typenum; 463 tfsid.val[1] = mtype; 464 mtype = (mtype & 0xFF) << 24; 465 for (;;) { 466 tfsid.val[0] = makedev(255, 467 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 468 mntid_base++; 469 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 470 break; 471 vfs_rel(nmp); 472 } 473 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 474 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 475 mtx_unlock(&mntid_mtx); 476 } 477 478 /* 479 * Knob to control the precision of file timestamps: 480 * 481 * 0 = seconds only; nanoseconds zeroed. 482 * 1 = seconds and nanoseconds, accurate within 1/HZ. 483 * 2 = seconds and nanoseconds, truncated to microseconds. 484 * >=3 = seconds and nanoseconds, maximum precision. 485 */ 486 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 487 488 static int timestamp_precision = TSP_SEC; 489 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 490 ×tamp_precision, 0, ""); 491 492 /* 493 * Get a current timestamp. 494 */ 495 void 496 vfs_timestamp(struct timespec *tsp) 497 { 498 struct timeval tv; 499 500 switch (timestamp_precision) { 501 case TSP_SEC: 502 tsp->tv_sec = time_second; 503 tsp->tv_nsec = 0; 504 break; 505 case TSP_HZ: 506 getnanotime(tsp); 507 break; 508 case TSP_USEC: 509 microtime(&tv); 510 TIMEVAL_TO_TIMESPEC(&tv, tsp); 511 break; 512 case TSP_NSEC: 513 default: 514 nanotime(tsp); 515 break; 516 } 517 } 518 519 /* 520 * Set vnode attributes to VNOVAL 521 */ 522 void 523 vattr_null(struct vattr *vap) 524 { 525 526 vap->va_type = VNON; 527 vap->va_size = VNOVAL; 528 vap->va_bytes = VNOVAL; 529 vap->va_mode = VNOVAL; 530 vap->va_nlink = VNOVAL; 531 vap->va_uid = VNOVAL; 532 vap->va_gid = VNOVAL; 533 vap->va_fsid = VNOVAL; 534 vap->va_fileid = VNOVAL; 535 vap->va_blocksize = VNOVAL; 536 vap->va_rdev = VNOVAL; 537 vap->va_atime.tv_sec = VNOVAL; 538 vap->va_atime.tv_nsec = VNOVAL; 539 vap->va_mtime.tv_sec = VNOVAL; 540 vap->va_mtime.tv_nsec = VNOVAL; 541 vap->va_ctime.tv_sec = VNOVAL; 542 vap->va_ctime.tv_nsec = VNOVAL; 543 vap->va_birthtime.tv_sec = VNOVAL; 544 vap->va_birthtime.tv_nsec = VNOVAL; 545 vap->va_flags = VNOVAL; 546 vap->va_gen = VNOVAL; 547 vap->va_vaflags = 0; 548 } 549 550 /* 551 * This routine is called when we have too many vnodes. It attempts 552 * to free <count> vnodes and will potentially free vnodes that still 553 * have VM backing store (VM backing store is typically the cause 554 * of a vnode blowout so we want to do this). Therefore, this operation 555 * is not considered cheap. 556 * 557 * A number of conditions may prevent a vnode from being reclaimed. 558 * the buffer cache may have references on the vnode, a directory 559 * vnode may still have references due to the namei cache representing 560 * underlying files, or the vnode may be in active use. It is not 561 * desireable to reuse such vnodes. These conditions may cause the 562 * number of vnodes to reach some minimum value regardless of what 563 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 564 */ 565 static int 566 vlrureclaim(struct mount *mp) 567 { 568 struct thread *td; 569 struct vnode *vp; 570 int done; 571 int trigger; 572 int usevnodes; 573 int count; 574 575 /* 576 * Calculate the trigger point, don't allow user 577 * screwups to blow us up. This prevents us from 578 * recycling vnodes with lots of resident pages. We 579 * aren't trying to free memory, we are trying to 580 * free vnodes. 581 */ 582 usevnodes = desiredvnodes; 583 if (usevnodes <= 0) 584 usevnodes = 1; 585 trigger = VMCNT_GET(page_count) * 2 / usevnodes; 586 done = 0; 587 td = curthread; 588 vn_start_write(NULL, &mp, V_WAIT); 589 MNT_ILOCK(mp); 590 count = mp->mnt_nvnodelistsize / 10 + 1; 591 while (count != 0) { 592 vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 593 while (vp != NULL && vp->v_type == VMARKER) 594 vp = TAILQ_NEXT(vp, v_nmntvnodes); 595 if (vp == NULL) 596 break; 597 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 598 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 599 --count; 600 if (!VI_TRYLOCK(vp)) 601 goto next_iter; 602 /* 603 * If it's been deconstructed already, it's still 604 * referenced, or it exceeds the trigger, skip it. 605 */ 606 if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) || 607 (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL && 608 vp->v_object->resident_page_count > trigger)) { 609 VI_UNLOCK(vp); 610 goto next_iter; 611 } 612 MNT_IUNLOCK(mp); 613 vholdl(vp); 614 if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT, td)) { 615 vdrop(vp); 616 goto next_iter_mntunlocked; 617 } 618 VI_LOCK(vp); 619 /* 620 * v_usecount may have been bumped after VOP_LOCK() dropped 621 * the vnode interlock and before it was locked again. 622 * 623 * It is not necessary to recheck VI_DOOMED because it can 624 * only be set by another thread that holds both the vnode 625 * lock and vnode interlock. If another thread has the 626 * vnode lock before we get to VOP_LOCK() and obtains the 627 * vnode interlock after VOP_LOCK() drops the vnode 628 * interlock, the other thread will be unable to drop the 629 * vnode lock before our VOP_LOCK() call fails. 630 */ 631 if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) || 632 (vp->v_object != NULL && 633 vp->v_object->resident_page_count > trigger)) { 634 VOP_UNLOCK(vp, LK_INTERLOCK, td); 635 goto next_iter_mntunlocked; 636 } 637 KASSERT((vp->v_iflag & VI_DOOMED) == 0, 638 ("VI_DOOMED unexpectedly detected in vlrureclaim()")); 639 vgonel(vp); 640 VOP_UNLOCK(vp, 0, td); 641 vdropl(vp); 642 done++; 643 next_iter_mntunlocked: 644 if ((count % 256) != 0) 645 goto relock_mnt; 646 goto yield; 647 next_iter: 648 if ((count % 256) != 0) 649 continue; 650 MNT_IUNLOCK(mp); 651 yield: 652 uio_yield(); 653 relock_mnt: 654 MNT_ILOCK(mp); 655 } 656 MNT_IUNLOCK(mp); 657 vn_finished_write(mp); 658 return done; 659 } 660 661 /* 662 * Attempt to keep the free list at wantfreevnodes length. 663 */ 664 static void 665 vnlru_free(int count) 666 { 667 struct vnode *vp; 668 int vfslocked; 669 670 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 671 for (; count > 0; count--) { 672 vp = TAILQ_FIRST(&vnode_free_list); 673 /* 674 * The list can be modified while the free_list_mtx 675 * has been dropped and vp could be NULL here. 676 */ 677 if (!vp) 678 break; 679 VNASSERT(vp->v_op != NULL, vp, 680 ("vnlru_free: vnode already reclaimed.")); 681 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 682 /* 683 * Don't recycle if we can't get the interlock. 684 */ 685 if (!VI_TRYLOCK(vp)) { 686 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 687 continue; 688 } 689 VNASSERT(VCANRECYCLE(vp), vp, 690 ("vp inconsistent on freelist")); 691 freevnodes--; 692 vp->v_iflag &= ~VI_FREE; 693 vholdl(vp); 694 mtx_unlock(&vnode_free_list_mtx); 695 VI_UNLOCK(vp); 696 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 697 vtryrecycle(vp); 698 VFS_UNLOCK_GIANT(vfslocked); 699 /* 700 * If the recycled succeeded this vdrop will actually free 701 * the vnode. If not it will simply place it back on 702 * the free list. 703 */ 704 vdrop(vp); 705 mtx_lock(&vnode_free_list_mtx); 706 } 707 } 708 /* 709 * Attempt to recycle vnodes in a context that is always safe to block. 710 * Calling vlrurecycle() from the bowels of filesystem code has some 711 * interesting deadlock problems. 712 */ 713 static struct proc *vnlruproc; 714 static int vnlruproc_sig; 715 716 static void 717 vnlru_proc(void) 718 { 719 struct mount *mp, *nmp; 720 int done; 721 struct proc *p = vnlruproc; 722 struct thread *td = FIRST_THREAD_IN_PROC(p); 723 724 mtx_lock(&Giant); 725 726 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p, 727 SHUTDOWN_PRI_FIRST); 728 729 for (;;) { 730 kthread_suspend_check(p); 731 mtx_lock(&vnode_free_list_mtx); 732 if (freevnodes > wantfreevnodes) 733 vnlru_free(freevnodes - wantfreevnodes); 734 if (numvnodes <= desiredvnodes * 9 / 10) { 735 vnlruproc_sig = 0; 736 wakeup(&vnlruproc_sig); 737 msleep(vnlruproc, &vnode_free_list_mtx, 738 PVFS|PDROP, "vlruwt", hz); 739 continue; 740 } 741 mtx_unlock(&vnode_free_list_mtx); 742 done = 0; 743 mtx_lock(&mountlist_mtx); 744 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 745 int vfsunlocked; 746 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) { 747 nmp = TAILQ_NEXT(mp, mnt_list); 748 continue; 749 } 750 if (!VFS_NEEDSGIANT(mp)) { 751 mtx_unlock(&Giant); 752 vfsunlocked = 1; 753 } else 754 vfsunlocked = 0; 755 done += vlrureclaim(mp); 756 if (vfsunlocked) 757 mtx_lock(&Giant); 758 mtx_lock(&mountlist_mtx); 759 nmp = TAILQ_NEXT(mp, mnt_list); 760 vfs_unbusy(mp, td); 761 } 762 mtx_unlock(&mountlist_mtx); 763 if (done == 0) { 764 EVENTHANDLER_INVOKE(vfs_lowvnodes, desiredvnodes / 10); 765 #if 0 766 /* These messages are temporary debugging aids */ 767 if (vnlru_nowhere < 5) 768 printf("vnlru process getting nowhere..\n"); 769 else if (vnlru_nowhere == 5) 770 printf("vnlru process messages stopped.\n"); 771 #endif 772 vnlru_nowhere++; 773 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 774 } else 775 uio_yield(); 776 } 777 } 778 779 static struct kproc_desc vnlru_kp = { 780 "vnlru", 781 vnlru_proc, 782 &vnlruproc 783 }; 784 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp) 785 786 /* 787 * Routines having to do with the management of the vnode table. 788 */ 789 790 static void 791 vdestroy(struct vnode *vp) 792 { 793 struct bufobj *bo; 794 795 CTR1(KTR_VFS, "vdestroy vp %p", vp); 796 mtx_lock(&vnode_free_list_mtx); 797 numvnodes--; 798 mtx_unlock(&vnode_free_list_mtx); 799 bo = &vp->v_bufobj; 800 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 801 ("cleaned vnode still on the free list.")); 802 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 803 VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count")); 804 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 805 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 806 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 807 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 808 VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL")); 809 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 810 VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL")); 811 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst")); 812 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src")); 813 VI_UNLOCK(vp); 814 #ifdef MAC 815 mac_destroy_vnode(vp); 816 #endif 817 if (vp->v_pollinfo != NULL) { 818 knlist_destroy(&vp->v_pollinfo->vpi_selinfo.si_note); 819 mtx_destroy(&vp->v_pollinfo->vpi_lock); 820 uma_zfree(vnodepoll_zone, vp->v_pollinfo); 821 } 822 #ifdef INVARIANTS 823 /* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */ 824 vp->v_op = NULL; 825 #endif 826 lockdestroy(vp->v_vnlock); 827 mtx_destroy(&vp->v_interlock); 828 uma_zfree(vnode_zone, vp); 829 } 830 831 /* 832 * Try to recycle a freed vnode. We abort if anyone picks up a reference 833 * before we actually vgone(). This function must be called with the vnode 834 * held to prevent the vnode from being returned to the free list midway 835 * through vgone(). 836 */ 837 static int 838 vtryrecycle(struct vnode *vp) 839 { 840 struct thread *td = curthread; 841 struct mount *vnmp; 842 843 CTR1(KTR_VFS, "vtryrecycle: trying vp %p", vp); 844 VNASSERT(vp->v_holdcnt, vp, 845 ("vtryrecycle: Recycling vp %p without a reference.", vp)); 846 /* 847 * This vnode may found and locked via some other list, if so we 848 * can't recycle it yet. 849 */ 850 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0) 851 return (EWOULDBLOCK); 852 /* 853 * Don't recycle if its filesystem is being suspended. 854 */ 855 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 856 VOP_UNLOCK(vp, 0, td); 857 return (EBUSY); 858 } 859 /* 860 * If we got this far, we need to acquire the interlock and see if 861 * anyone picked up this vnode from another list. If not, we will 862 * mark it with DOOMED via vgonel() so that anyone who does find it 863 * will skip over it. 864 */ 865 VI_LOCK(vp); 866 if (vp->v_usecount) { 867 VOP_UNLOCK(vp, LK_INTERLOCK, td); 868 vn_finished_write(vnmp); 869 return (EBUSY); 870 } 871 if ((vp->v_iflag & VI_DOOMED) == 0) 872 vgonel(vp); 873 VOP_UNLOCK(vp, LK_INTERLOCK, td); 874 vn_finished_write(vnmp); 875 CTR1(KTR_VFS, "vtryrecycle: recycled vp %p", vp); 876 return (0); 877 } 878 879 /* 880 * Return the next vnode from the free list. 881 */ 882 int 883 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 884 struct vnode **vpp) 885 { 886 struct vnode *vp = NULL; 887 struct bufobj *bo; 888 889 mtx_lock(&vnode_free_list_mtx); 890 /* 891 * Lend our context to reclaim vnodes if they've exceeded the max. 892 */ 893 if (freevnodes > wantfreevnodes) 894 vnlru_free(1); 895 /* 896 * Wait for available vnodes. 897 */ 898 if (numvnodes > desiredvnodes) { 899 if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) { 900 /* 901 * File system is beeing suspended, we cannot risk a 902 * deadlock here, so allocate new vnode anyway. 903 */ 904 if (freevnodes > wantfreevnodes) 905 vnlru_free(freevnodes - wantfreevnodes); 906 goto alloc; 907 } 908 if (vnlruproc_sig == 0) { 909 vnlruproc_sig = 1; /* avoid unnecessary wakeups */ 910 wakeup(vnlruproc); 911 } 912 msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS, 913 "vlruwk", hz); 914 #if 0 /* XXX Not all VFS_VGET/ffs_vget callers check returns. */ 915 if (numvnodes > desiredvnodes) { 916 mtx_unlock(&vnode_free_list_mtx); 917 return (ENFILE); 918 } 919 #endif 920 } 921 alloc: 922 numvnodes++; 923 mtx_unlock(&vnode_free_list_mtx); 924 vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO); 925 /* 926 * Setup locks. 927 */ 928 vp->v_vnlock = &vp->v_lock; 929 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 930 /* 931 * By default, don't allow shared locks unless filesystems 932 * opt-in. 933 */ 934 lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE); 935 /* 936 * Initialize bufobj. 937 */ 938 bo = &vp->v_bufobj; 939 bo->__bo_vnode = vp; 940 bo->bo_mtx = &vp->v_interlock; 941 bo->bo_ops = &buf_ops_bio; 942 bo->bo_private = vp; 943 TAILQ_INIT(&bo->bo_clean.bv_hd); 944 TAILQ_INIT(&bo->bo_dirty.bv_hd); 945 /* 946 * Initialize namecache. 947 */ 948 LIST_INIT(&vp->v_cache_src); 949 TAILQ_INIT(&vp->v_cache_dst); 950 /* 951 * Finalize various vnode identity bits. 952 */ 953 vp->v_type = VNON; 954 vp->v_tag = tag; 955 vp->v_op = vops; 956 v_incr_usecount(vp); 957 vp->v_data = 0; 958 #ifdef MAC 959 mac_init_vnode(vp); 960 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 961 mac_associate_vnode_singlelabel(mp, vp); 962 else if (mp == NULL) 963 printf("NULL mp in getnewvnode()\n"); 964 #endif 965 if (mp != NULL) { 966 bo->bo_bsize = mp->mnt_stat.f_iosize; 967 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0) 968 vp->v_vflag |= VV_NOKNOTE; 969 } 970 971 CTR2(KTR_VFS, "getnewvnode: mp %p vp %p", mp, vp); 972 *vpp = vp; 973 return (0); 974 } 975 976 /* 977 * Delete from old mount point vnode list, if on one. 978 */ 979 static void 980 delmntque(struct vnode *vp) 981 { 982 struct mount *mp; 983 984 mp = vp->v_mount; 985 if (mp == NULL) 986 return; 987 MNT_ILOCK(mp); 988 vp->v_mount = NULL; 989 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 990 ("bad mount point vnode list size")); 991 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 992 mp->mnt_nvnodelistsize--; 993 MNT_REL(mp); 994 MNT_IUNLOCK(mp); 995 } 996 997 static void 998 insmntque_stddtr(struct vnode *vp, void *dtr_arg) 999 { 1000 struct thread *td; 1001 1002 td = curthread; /* XXX ? */ 1003 vp->v_data = NULL; 1004 vp->v_op = &dead_vnodeops; 1005 /* XXX non mp-safe fs may still call insmntque with vnode 1006 unlocked */ 1007 if (!VOP_ISLOCKED(vp, td)) 1008 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 1009 vgone(vp); 1010 vput(vp); 1011 } 1012 1013 /* 1014 * Insert into list of vnodes for the new mount point, if available. 1015 */ 1016 int 1017 insmntque1(struct vnode *vp, struct mount *mp, 1018 void (*dtr)(struct vnode *, void *), void *dtr_arg) 1019 { 1020 1021 KASSERT(vp->v_mount == NULL, 1022 ("insmntque: vnode already on per mount vnode list")); 1023 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 1024 MNT_ILOCK(mp); 1025 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 && 1026 mp->mnt_nvnodelistsize == 0) { 1027 MNT_IUNLOCK(mp); 1028 if (dtr != NULL) 1029 dtr(vp, dtr_arg); 1030 return (EBUSY); 1031 } 1032 vp->v_mount = mp; 1033 MNT_REF(mp); 1034 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1035 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 1036 ("neg mount point vnode list size")); 1037 mp->mnt_nvnodelistsize++; 1038 MNT_IUNLOCK(mp); 1039 return (0); 1040 } 1041 1042 int 1043 insmntque(struct vnode *vp, struct mount *mp) 1044 { 1045 1046 return (insmntque1(vp, mp, insmntque_stddtr, NULL)); 1047 } 1048 1049 /* 1050 * Flush out and invalidate all buffers associated with a bufobj 1051 * Called with the underlying object locked. 1052 */ 1053 int 1054 bufobj_invalbuf(struct bufobj *bo, int flags, struct thread *td, int slpflag, 1055 int slptimeo) 1056 { 1057 int error; 1058 1059 BO_LOCK(bo); 1060 if (flags & V_SAVE) { 1061 error = bufobj_wwait(bo, slpflag, slptimeo); 1062 if (error) { 1063 BO_UNLOCK(bo); 1064 return (error); 1065 } 1066 if (bo->bo_dirty.bv_cnt > 0) { 1067 BO_UNLOCK(bo); 1068 if ((error = BO_SYNC(bo, MNT_WAIT, td)) != 0) 1069 return (error); 1070 /* 1071 * XXX We could save a lock/unlock if this was only 1072 * enabled under INVARIANTS 1073 */ 1074 BO_LOCK(bo); 1075 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) 1076 panic("vinvalbuf: dirty bufs"); 1077 } 1078 } 1079 /* 1080 * If you alter this loop please notice that interlock is dropped and 1081 * reacquired in flushbuflist. Special care is needed to ensure that 1082 * no race conditions occur from this. 1083 */ 1084 do { 1085 error = flushbuflist(&bo->bo_clean, 1086 flags, bo, slpflag, slptimeo); 1087 if (error == 0) 1088 error = flushbuflist(&bo->bo_dirty, 1089 flags, bo, slpflag, slptimeo); 1090 if (error != 0 && error != EAGAIN) { 1091 BO_UNLOCK(bo); 1092 return (error); 1093 } 1094 } while (error != 0); 1095 1096 /* 1097 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 1098 * have write I/O in-progress but if there is a VM object then the 1099 * VM object can also have read-I/O in-progress. 1100 */ 1101 do { 1102 bufobj_wwait(bo, 0, 0); 1103 BO_UNLOCK(bo); 1104 if (bo->bo_object != NULL) { 1105 VM_OBJECT_LOCK(bo->bo_object); 1106 vm_object_pip_wait(bo->bo_object, "bovlbx"); 1107 VM_OBJECT_UNLOCK(bo->bo_object); 1108 } 1109 BO_LOCK(bo); 1110 } while (bo->bo_numoutput > 0); 1111 BO_UNLOCK(bo); 1112 1113 /* 1114 * Destroy the copy in the VM cache, too. 1115 */ 1116 if (bo->bo_object != NULL) { 1117 VM_OBJECT_LOCK(bo->bo_object); 1118 vm_object_page_remove(bo->bo_object, 0, 0, 1119 (flags & V_SAVE) ? TRUE : FALSE); 1120 VM_OBJECT_UNLOCK(bo->bo_object); 1121 } 1122 1123 #ifdef INVARIANTS 1124 BO_LOCK(bo); 1125 if ((flags & (V_ALT | V_NORMAL)) == 0 && 1126 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) 1127 panic("vinvalbuf: flush failed"); 1128 BO_UNLOCK(bo); 1129 #endif 1130 return (0); 1131 } 1132 1133 /* 1134 * Flush out and invalidate all buffers associated with a vnode. 1135 * Called with the underlying object locked. 1136 */ 1137 int 1138 vinvalbuf(struct vnode *vp, int flags, struct thread *td, int slpflag, 1139 int slptimeo) 1140 { 1141 1142 CTR2(KTR_VFS, "vinvalbuf vp %p flags %d", vp, flags); 1143 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 1144 return (bufobj_invalbuf(&vp->v_bufobj, flags, td, slpflag, slptimeo)); 1145 } 1146 1147 /* 1148 * Flush out buffers on the specified list. 1149 * 1150 */ 1151 static int 1152 flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 1153 int slptimeo) 1154 { 1155 struct buf *bp, *nbp; 1156 int retval, error; 1157 daddr_t lblkno; 1158 b_xflags_t xflags; 1159 1160 ASSERT_BO_LOCKED(bo); 1161 1162 retval = 0; 1163 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 1164 if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) || 1165 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) { 1166 continue; 1167 } 1168 lblkno = 0; 1169 xflags = 0; 1170 if (nbp != NULL) { 1171 lblkno = nbp->b_lblkno; 1172 xflags = nbp->b_xflags & 1173 (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN); 1174 } 1175 retval = EAGAIN; 1176 error = BUF_TIMELOCK(bp, 1177 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo), 1178 "flushbuf", slpflag, slptimeo); 1179 if (error) { 1180 BO_LOCK(bo); 1181 return (error != ENOLCK ? error : EAGAIN); 1182 } 1183 KASSERT(bp->b_bufobj == bo, 1184 ("bp %p wrong b_bufobj %p should be %p", 1185 bp, bp->b_bufobj, bo)); 1186 if (bp->b_bufobj != bo) { /* XXX: necessary ? */ 1187 BUF_UNLOCK(bp); 1188 BO_LOCK(bo); 1189 return (EAGAIN); 1190 } 1191 /* 1192 * XXX Since there are no node locks for NFS, I 1193 * believe there is a slight chance that a delayed 1194 * write will occur while sleeping just above, so 1195 * check for it. 1196 */ 1197 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 1198 (flags & V_SAVE)) { 1199 bremfree(bp); 1200 bp->b_flags |= B_ASYNC; 1201 bwrite(bp); 1202 BO_LOCK(bo); 1203 return (EAGAIN); /* XXX: why not loop ? */ 1204 } 1205 bremfree(bp); 1206 bp->b_flags |= (B_INVAL | B_RELBUF); 1207 bp->b_flags &= ~B_ASYNC; 1208 brelse(bp); 1209 BO_LOCK(bo); 1210 if (nbp != NULL && 1211 (nbp->b_bufobj != bo || 1212 nbp->b_lblkno != lblkno || 1213 (nbp->b_xflags & 1214 (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags)) 1215 break; /* nbp invalid */ 1216 } 1217 return (retval); 1218 } 1219 1220 /* 1221 * Truncate a file's buffer and pages to a specified length. This 1222 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 1223 * sync activity. 1224 */ 1225 int 1226 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td, 1227 off_t length, int blksize) 1228 { 1229 struct buf *bp, *nbp; 1230 int anyfreed; 1231 int trunclbn; 1232 struct bufobj *bo; 1233 1234 CTR2(KTR_VFS, "vtruncbuf vp %p length %jd", vp, length); 1235 /* 1236 * Round up to the *next* lbn. 1237 */ 1238 trunclbn = (length + blksize - 1) / blksize; 1239 1240 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 1241 restart: 1242 VI_LOCK(vp); 1243 bo = &vp->v_bufobj; 1244 anyfreed = 1; 1245 for (;anyfreed;) { 1246 anyfreed = 0; 1247 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 1248 if (bp->b_lblkno < trunclbn) 1249 continue; 1250 if (BUF_LOCK(bp, 1251 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1252 VI_MTX(vp)) == ENOLCK) 1253 goto restart; 1254 1255 bremfree(bp); 1256 bp->b_flags |= (B_INVAL | B_RELBUF); 1257 bp->b_flags &= ~B_ASYNC; 1258 brelse(bp); 1259 anyfreed = 1; 1260 1261 if (nbp != NULL && 1262 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 1263 (nbp->b_vp != vp) || 1264 (nbp->b_flags & B_DELWRI))) { 1265 goto restart; 1266 } 1267 VI_LOCK(vp); 1268 } 1269 1270 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1271 if (bp->b_lblkno < trunclbn) 1272 continue; 1273 if (BUF_LOCK(bp, 1274 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1275 VI_MTX(vp)) == ENOLCK) 1276 goto restart; 1277 bremfree(bp); 1278 bp->b_flags |= (B_INVAL | B_RELBUF); 1279 bp->b_flags &= ~B_ASYNC; 1280 brelse(bp); 1281 anyfreed = 1; 1282 if (nbp != NULL && 1283 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 1284 (nbp->b_vp != vp) || 1285 (nbp->b_flags & B_DELWRI) == 0)) { 1286 goto restart; 1287 } 1288 VI_LOCK(vp); 1289 } 1290 } 1291 1292 if (length > 0) { 1293 restartsync: 1294 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1295 if (bp->b_lblkno > 0) 1296 continue; 1297 /* 1298 * Since we hold the vnode lock this should only 1299 * fail if we're racing with the buf daemon. 1300 */ 1301 if (BUF_LOCK(bp, 1302 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1303 VI_MTX(vp)) == ENOLCK) { 1304 goto restart; 1305 } 1306 VNASSERT((bp->b_flags & B_DELWRI), vp, 1307 ("buf(%p) on dirty queue without DELWRI", bp)); 1308 1309 bremfree(bp); 1310 bawrite(bp); 1311 VI_LOCK(vp); 1312 goto restartsync; 1313 } 1314 } 1315 1316 bufobj_wwait(bo, 0, 0); 1317 VI_UNLOCK(vp); 1318 vnode_pager_setsize(vp, length); 1319 1320 return (0); 1321 } 1322 1323 /* 1324 * buf_splay() - splay tree core for the clean/dirty list of buffers in 1325 * a vnode. 1326 * 1327 * NOTE: We have to deal with the special case of a background bitmap 1328 * buffer, a situation where two buffers will have the same logical 1329 * block offset. We want (1) only the foreground buffer to be accessed 1330 * in a lookup and (2) must differentiate between the foreground and 1331 * background buffer in the splay tree algorithm because the splay 1332 * tree cannot normally handle multiple entities with the same 'index'. 1333 * We accomplish this by adding differentiating flags to the splay tree's 1334 * numerical domain. 1335 */ 1336 static 1337 struct buf * 1338 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root) 1339 { 1340 struct buf dummy; 1341 struct buf *lefttreemax, *righttreemin, *y; 1342 1343 if (root == NULL) 1344 return (NULL); 1345 lefttreemax = righttreemin = &dummy; 1346 for (;;) { 1347 if (lblkno < root->b_lblkno || 1348 (lblkno == root->b_lblkno && 1349 (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) { 1350 if ((y = root->b_left) == NULL) 1351 break; 1352 if (lblkno < y->b_lblkno) { 1353 /* Rotate right. */ 1354 root->b_left = y->b_right; 1355 y->b_right = root; 1356 root = y; 1357 if ((y = root->b_left) == NULL) 1358 break; 1359 } 1360 /* Link into the new root's right tree. */ 1361 righttreemin->b_left = root; 1362 righttreemin = root; 1363 } else if (lblkno > root->b_lblkno || 1364 (lblkno == root->b_lblkno && 1365 (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) { 1366 if ((y = root->b_right) == NULL) 1367 break; 1368 if (lblkno > y->b_lblkno) { 1369 /* Rotate left. */ 1370 root->b_right = y->b_left; 1371 y->b_left = root; 1372 root = y; 1373 if ((y = root->b_right) == NULL) 1374 break; 1375 } 1376 /* Link into the new root's left tree. */ 1377 lefttreemax->b_right = root; 1378 lefttreemax = root; 1379 } else { 1380 break; 1381 } 1382 root = y; 1383 } 1384 /* Assemble the new root. */ 1385 lefttreemax->b_right = root->b_left; 1386 righttreemin->b_left = root->b_right; 1387 root->b_left = dummy.b_right; 1388 root->b_right = dummy.b_left; 1389 return (root); 1390 } 1391 1392 static void 1393 buf_vlist_remove(struct buf *bp) 1394 { 1395 struct buf *root; 1396 struct bufv *bv; 1397 1398 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1399 ASSERT_BO_LOCKED(bp->b_bufobj); 1400 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) != 1401 (BX_VNDIRTY|BX_VNCLEAN), 1402 ("buf_vlist_remove: Buf %p is on two lists", bp)); 1403 if (bp->b_xflags & BX_VNDIRTY) 1404 bv = &bp->b_bufobj->bo_dirty; 1405 else 1406 bv = &bp->b_bufobj->bo_clean; 1407 if (bp != bv->bv_root) { 1408 root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root); 1409 KASSERT(root == bp, ("splay lookup failed in remove")); 1410 } 1411 if (bp->b_left == NULL) { 1412 root = bp->b_right; 1413 } else { 1414 root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left); 1415 root->b_right = bp->b_right; 1416 } 1417 bv->bv_root = root; 1418 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 1419 bv->bv_cnt--; 1420 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 1421 } 1422 1423 /* 1424 * Add the buffer to the sorted clean or dirty block list using a 1425 * splay tree algorithm. 1426 * 1427 * NOTE: xflags is passed as a constant, optimizing this inline function! 1428 */ 1429 static void 1430 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 1431 { 1432 struct buf *root; 1433 struct bufv *bv; 1434 1435 ASSERT_BO_LOCKED(bo); 1436 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 1437 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 1438 bp->b_xflags |= xflags; 1439 if (xflags & BX_VNDIRTY) 1440 bv = &bo->bo_dirty; 1441 else 1442 bv = &bo->bo_clean; 1443 1444 root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root); 1445 if (root == NULL) { 1446 bp->b_left = NULL; 1447 bp->b_right = NULL; 1448 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 1449 } else if (bp->b_lblkno < root->b_lblkno || 1450 (bp->b_lblkno == root->b_lblkno && 1451 (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) { 1452 bp->b_left = root->b_left; 1453 bp->b_right = root; 1454 root->b_left = NULL; 1455 TAILQ_INSERT_BEFORE(root, bp, b_bobufs); 1456 } else { 1457 bp->b_right = root->b_right; 1458 bp->b_left = root; 1459 root->b_right = NULL; 1460 TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs); 1461 } 1462 bv->bv_cnt++; 1463 bv->bv_root = bp; 1464 } 1465 1466 /* 1467 * Lookup a buffer using the splay tree. Note that we specifically avoid 1468 * shadow buffers used in background bitmap writes. 1469 * 1470 * This code isn't quite efficient as it could be because we are maintaining 1471 * two sorted lists and do not know which list the block resides in. 1472 * 1473 * During a "make buildworld" the desired buffer is found at one of 1474 * the roots more than 60% of the time. Thus, checking both roots 1475 * before performing either splay eliminates unnecessary splays on the 1476 * first tree splayed. 1477 */ 1478 struct buf * 1479 gbincore(struct bufobj *bo, daddr_t lblkno) 1480 { 1481 struct buf *bp; 1482 1483 ASSERT_BO_LOCKED(bo); 1484 if ((bp = bo->bo_clean.bv_root) != NULL && 1485 bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1486 return (bp); 1487 if ((bp = bo->bo_dirty.bv_root) != NULL && 1488 bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1489 return (bp); 1490 if ((bp = bo->bo_clean.bv_root) != NULL) { 1491 bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp); 1492 if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1493 return (bp); 1494 } 1495 if ((bp = bo->bo_dirty.bv_root) != NULL) { 1496 bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp); 1497 if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1498 return (bp); 1499 } 1500 return (NULL); 1501 } 1502 1503 /* 1504 * Associate a buffer with a vnode. 1505 */ 1506 void 1507 bgetvp(struct vnode *vp, struct buf *bp) 1508 { 1509 1510 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 1511 1512 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 1513 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 1514 ("bgetvp: bp already attached! %p", bp)); 1515 1516 ASSERT_VI_LOCKED(vp, "bgetvp"); 1517 vholdl(vp); 1518 if (VFS_NEEDSGIANT(vp->v_mount) || 1519 vp->v_bufobj.bo_flag & BO_NEEDSGIANT) 1520 bp->b_flags |= B_NEEDSGIANT; 1521 bp->b_vp = vp; 1522 bp->b_bufobj = &vp->v_bufobj; 1523 /* 1524 * Insert onto list for new vnode. 1525 */ 1526 buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN); 1527 } 1528 1529 /* 1530 * Disassociate a buffer from a vnode. 1531 */ 1532 void 1533 brelvp(struct buf *bp) 1534 { 1535 struct bufobj *bo; 1536 struct vnode *vp; 1537 1538 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1539 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 1540 1541 /* 1542 * Delete from old vnode list, if on one. 1543 */ 1544 vp = bp->b_vp; /* XXX */ 1545 bo = bp->b_bufobj; 1546 BO_LOCK(bo); 1547 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 1548 buf_vlist_remove(bp); 1549 else 1550 panic("brelvp: Buffer %p not on queue.", bp); 1551 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 1552 bo->bo_flag &= ~BO_ONWORKLST; 1553 mtx_lock(&sync_mtx); 1554 LIST_REMOVE(bo, bo_synclist); 1555 syncer_worklist_len--; 1556 mtx_unlock(&sync_mtx); 1557 } 1558 bp->b_flags &= ~B_NEEDSGIANT; 1559 bp->b_vp = NULL; 1560 bp->b_bufobj = NULL; 1561 vdropl(vp); 1562 } 1563 1564 /* 1565 * Add an item to the syncer work queue. 1566 */ 1567 static void 1568 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 1569 { 1570 int slot; 1571 1572 ASSERT_BO_LOCKED(bo); 1573 1574 mtx_lock(&sync_mtx); 1575 if (bo->bo_flag & BO_ONWORKLST) 1576 LIST_REMOVE(bo, bo_synclist); 1577 else { 1578 bo->bo_flag |= BO_ONWORKLST; 1579 syncer_worklist_len++; 1580 } 1581 1582 if (delay > syncer_maxdelay - 2) 1583 delay = syncer_maxdelay - 2; 1584 slot = (syncer_delayno + delay) & syncer_mask; 1585 1586 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 1587 mtx_unlock(&sync_mtx); 1588 } 1589 1590 static int 1591 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 1592 { 1593 int error, len; 1594 1595 mtx_lock(&sync_mtx); 1596 len = syncer_worklist_len - sync_vnode_count; 1597 mtx_unlock(&sync_mtx); 1598 error = SYSCTL_OUT(req, &len, sizeof(len)); 1599 return (error); 1600 } 1601 1602 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 1603 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 1604 1605 static struct proc *updateproc; 1606 static void sched_sync(void); 1607 static struct kproc_desc up_kp = { 1608 "syncer", 1609 sched_sync, 1610 &updateproc 1611 }; 1612 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp) 1613 1614 static int 1615 sync_vnode(struct bufobj *bo, struct thread *td) 1616 { 1617 struct vnode *vp; 1618 struct mount *mp; 1619 1620 vp = bo->__bo_vnode; /* XXX */ 1621 if (VOP_ISLOCKED(vp, NULL) != 0) 1622 return (1); 1623 if (VI_TRYLOCK(vp) == 0) 1624 return (1); 1625 /* 1626 * We use vhold in case the vnode does not 1627 * successfully sync. vhold prevents the vnode from 1628 * going away when we unlock the sync_mtx so that 1629 * we can acquire the vnode interlock. 1630 */ 1631 vholdl(vp); 1632 mtx_unlock(&sync_mtx); 1633 VI_UNLOCK(vp); 1634 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1635 vdrop(vp); 1636 mtx_lock(&sync_mtx); 1637 return (1); 1638 } 1639 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 1640 (void) VOP_FSYNC(vp, MNT_LAZY, td); 1641 VOP_UNLOCK(vp, 0, td); 1642 vn_finished_write(mp); 1643 VI_LOCK(vp); 1644 if ((bo->bo_flag & BO_ONWORKLST) != 0) { 1645 /* 1646 * Put us back on the worklist. The worklist 1647 * routine will remove us from our current 1648 * position and then add us back in at a later 1649 * position. 1650 */ 1651 vn_syncer_add_to_worklist(bo, syncdelay); 1652 } 1653 vdropl(vp); 1654 mtx_lock(&sync_mtx); 1655 return (0); 1656 } 1657 1658 /* 1659 * System filesystem synchronizer daemon. 1660 */ 1661 static void 1662 sched_sync(void) 1663 { 1664 struct synclist *next; 1665 struct synclist *slp; 1666 struct bufobj *bo; 1667 long starttime; 1668 struct thread *td = FIRST_THREAD_IN_PROC(updateproc); 1669 static int dummychan; 1670 int last_work_seen; 1671 int net_worklist_len; 1672 int syncer_final_iter; 1673 int first_printf; 1674 int error; 1675 1676 mtx_lock(&Giant); 1677 last_work_seen = 0; 1678 syncer_final_iter = 0; 1679 first_printf = 1; 1680 syncer_state = SYNCER_RUNNING; 1681 starttime = time_uptime; 1682 td->td_pflags |= TDP_NORUNNINGBUF; 1683 1684 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 1685 SHUTDOWN_PRI_LAST); 1686 1687 mtx_lock(&sync_mtx); 1688 for (;;) { 1689 if (syncer_state == SYNCER_FINAL_DELAY && 1690 syncer_final_iter == 0) { 1691 mtx_unlock(&sync_mtx); 1692 kthread_suspend_check(td->td_proc); 1693 mtx_lock(&sync_mtx); 1694 } 1695 net_worklist_len = syncer_worklist_len - sync_vnode_count; 1696 if (syncer_state != SYNCER_RUNNING && 1697 starttime != time_uptime) { 1698 if (first_printf) { 1699 printf("\nSyncing disks, vnodes remaining..."); 1700 first_printf = 0; 1701 } 1702 printf("%d ", net_worklist_len); 1703 } 1704 starttime = time_uptime; 1705 1706 /* 1707 * Push files whose dirty time has expired. Be careful 1708 * of interrupt race on slp queue. 1709 * 1710 * Skip over empty worklist slots when shutting down. 1711 */ 1712 do { 1713 slp = &syncer_workitem_pending[syncer_delayno]; 1714 syncer_delayno += 1; 1715 if (syncer_delayno == syncer_maxdelay) 1716 syncer_delayno = 0; 1717 next = &syncer_workitem_pending[syncer_delayno]; 1718 /* 1719 * If the worklist has wrapped since the 1720 * it was emptied of all but syncer vnodes, 1721 * switch to the FINAL_DELAY state and run 1722 * for one more second. 1723 */ 1724 if (syncer_state == SYNCER_SHUTTING_DOWN && 1725 net_worklist_len == 0 && 1726 last_work_seen == syncer_delayno) { 1727 syncer_state = SYNCER_FINAL_DELAY; 1728 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 1729 } 1730 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 1731 syncer_worklist_len > 0); 1732 1733 /* 1734 * Keep track of the last time there was anything 1735 * on the worklist other than syncer vnodes. 1736 * Return to the SHUTTING_DOWN state if any 1737 * new work appears. 1738 */ 1739 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 1740 last_work_seen = syncer_delayno; 1741 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 1742 syncer_state = SYNCER_SHUTTING_DOWN; 1743 while ((bo = LIST_FIRST(slp)) != NULL) { 1744 error = sync_vnode(bo, td); 1745 if (error == 1) { 1746 LIST_REMOVE(bo, bo_synclist); 1747 LIST_INSERT_HEAD(next, bo, bo_synclist); 1748 continue; 1749 } 1750 } 1751 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 1752 syncer_final_iter--; 1753 /* 1754 * The variable rushjob allows the kernel to speed up the 1755 * processing of the filesystem syncer process. A rushjob 1756 * value of N tells the filesystem syncer to process the next 1757 * N seconds worth of work on its queue ASAP. Currently rushjob 1758 * is used by the soft update code to speed up the filesystem 1759 * syncer process when the incore state is getting so far 1760 * ahead of the disk that the kernel memory pool is being 1761 * threatened with exhaustion. 1762 */ 1763 if (rushjob > 0) { 1764 rushjob -= 1; 1765 continue; 1766 } 1767 /* 1768 * Just sleep for a short period of time between 1769 * iterations when shutting down to allow some I/O 1770 * to happen. 1771 * 1772 * If it has taken us less than a second to process the 1773 * current work, then wait. Otherwise start right over 1774 * again. We can still lose time if any single round 1775 * takes more than two seconds, but it does not really 1776 * matter as we are just trying to generally pace the 1777 * filesystem activity. 1778 */ 1779 if (syncer_state != SYNCER_RUNNING) 1780 msleep(&dummychan, &sync_mtx, PPAUSE, "syncfnl", 1781 hz / SYNCER_SHUTDOWN_SPEEDUP); 1782 else if (time_uptime == starttime) 1783 msleep(&lbolt, &sync_mtx, PPAUSE, "syncer", 0); 1784 } 1785 } 1786 1787 /* 1788 * Request the syncer daemon to speed up its work. 1789 * We never push it to speed up more than half of its 1790 * normal turn time, otherwise it could take over the cpu. 1791 */ 1792 int 1793 speedup_syncer(void) 1794 { 1795 struct thread *td; 1796 int ret = 0; 1797 1798 td = FIRST_THREAD_IN_PROC(updateproc); 1799 sleepq_remove(td, &lbolt); 1800 mtx_lock(&sync_mtx); 1801 if (rushjob < syncdelay / 2) { 1802 rushjob += 1; 1803 stat_rush_requests += 1; 1804 ret = 1; 1805 } 1806 mtx_unlock(&sync_mtx); 1807 return (ret); 1808 } 1809 1810 /* 1811 * Tell the syncer to speed up its work and run though its work 1812 * list several times, then tell it to shut down. 1813 */ 1814 static void 1815 syncer_shutdown(void *arg, int howto) 1816 { 1817 struct thread *td; 1818 1819 if (howto & RB_NOSYNC) 1820 return; 1821 td = FIRST_THREAD_IN_PROC(updateproc); 1822 sleepq_remove(td, &lbolt); 1823 mtx_lock(&sync_mtx); 1824 syncer_state = SYNCER_SHUTTING_DOWN; 1825 rushjob = 0; 1826 mtx_unlock(&sync_mtx); 1827 kproc_shutdown(arg, howto); 1828 } 1829 1830 /* 1831 * Reassign a buffer from one vnode to another. 1832 * Used to assign file specific control information 1833 * (indirect blocks) to the vnode to which they belong. 1834 */ 1835 void 1836 reassignbuf(struct buf *bp) 1837 { 1838 struct vnode *vp; 1839 struct bufobj *bo; 1840 int delay; 1841 #ifdef INVARIANTS 1842 struct bufv *bv; 1843 #endif 1844 1845 vp = bp->b_vp; 1846 bo = bp->b_bufobj; 1847 ++reassignbufcalls; 1848 1849 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 1850 bp, bp->b_vp, bp->b_flags); 1851 /* 1852 * B_PAGING flagged buffers cannot be reassigned because their vp 1853 * is not fully linked in. 1854 */ 1855 if (bp->b_flags & B_PAGING) 1856 panic("cannot reassign paging buffer"); 1857 1858 /* 1859 * Delete from old vnode list, if on one. 1860 */ 1861 VI_LOCK(vp); 1862 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 1863 buf_vlist_remove(bp); 1864 else 1865 panic("reassignbuf: Buffer %p not on queue.", bp); 1866 /* 1867 * If dirty, put on list of dirty buffers; otherwise insert onto list 1868 * of clean buffers. 1869 */ 1870 if (bp->b_flags & B_DELWRI) { 1871 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 1872 switch (vp->v_type) { 1873 case VDIR: 1874 delay = dirdelay; 1875 break; 1876 case VCHR: 1877 delay = metadelay; 1878 break; 1879 default: 1880 delay = filedelay; 1881 } 1882 vn_syncer_add_to_worklist(bo, delay); 1883 } 1884 buf_vlist_add(bp, bo, BX_VNDIRTY); 1885 } else { 1886 buf_vlist_add(bp, bo, BX_VNCLEAN); 1887 1888 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 1889 mtx_lock(&sync_mtx); 1890 LIST_REMOVE(bo, bo_synclist); 1891 syncer_worklist_len--; 1892 mtx_unlock(&sync_mtx); 1893 bo->bo_flag &= ~BO_ONWORKLST; 1894 } 1895 } 1896 #ifdef INVARIANTS 1897 bv = &bo->bo_clean; 1898 bp = TAILQ_FIRST(&bv->bv_hd); 1899 KASSERT(bp == NULL || bp->b_bufobj == bo, 1900 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 1901 bp = TAILQ_LAST(&bv->bv_hd, buflists); 1902 KASSERT(bp == NULL || bp->b_bufobj == bo, 1903 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 1904 bv = &bo->bo_dirty; 1905 bp = TAILQ_FIRST(&bv->bv_hd); 1906 KASSERT(bp == NULL || bp->b_bufobj == bo, 1907 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 1908 bp = TAILQ_LAST(&bv->bv_hd, buflists); 1909 KASSERT(bp == NULL || bp->b_bufobj == bo, 1910 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 1911 #endif 1912 VI_UNLOCK(vp); 1913 } 1914 1915 /* 1916 * Increment the use and hold counts on the vnode, taking care to reference 1917 * the driver's usecount if this is a chardev. The vholdl() will remove 1918 * the vnode from the free list if it is presently free. Requires the 1919 * vnode interlock and returns with it held. 1920 */ 1921 static void 1922 v_incr_usecount(struct vnode *vp) 1923 { 1924 1925 CTR3(KTR_VFS, "v_incr_usecount: vp %p holdcnt %d usecount %d\n", 1926 vp, vp->v_holdcnt, vp->v_usecount); 1927 vp->v_usecount++; 1928 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 1929 dev_lock(); 1930 vp->v_rdev->si_usecount++; 1931 dev_unlock(); 1932 } 1933 vholdl(vp); 1934 } 1935 1936 /* 1937 * Turn a holdcnt into a use+holdcnt such that only one call to 1938 * v_decr_usecount is needed. 1939 */ 1940 static void 1941 v_upgrade_usecount(struct vnode *vp) 1942 { 1943 1944 CTR3(KTR_VFS, "v_upgrade_usecount: vp %p holdcnt %d usecount %d\n", 1945 vp, vp->v_holdcnt, vp->v_usecount); 1946 vp->v_usecount++; 1947 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 1948 dev_lock(); 1949 vp->v_rdev->si_usecount++; 1950 dev_unlock(); 1951 } 1952 } 1953 1954 /* 1955 * Decrement the vnode use and hold count along with the driver's usecount 1956 * if this is a chardev. The vdropl() below releases the vnode interlock 1957 * as it may free the vnode. 1958 */ 1959 static void 1960 v_decr_usecount(struct vnode *vp) 1961 { 1962 1963 CTR3(KTR_VFS, "v_decr_usecount: vp %p holdcnt %d usecount %d\n", 1964 vp, vp->v_holdcnt, vp->v_usecount); 1965 ASSERT_VI_LOCKED(vp, __FUNCTION__); 1966 VNASSERT(vp->v_usecount > 0, vp, 1967 ("v_decr_usecount: negative usecount")); 1968 vp->v_usecount--; 1969 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 1970 dev_lock(); 1971 vp->v_rdev->si_usecount--; 1972 dev_unlock(); 1973 } 1974 vdropl(vp); 1975 } 1976 1977 /* 1978 * Decrement only the use count and driver use count. This is intended to 1979 * be paired with a follow on vdropl() to release the remaining hold count. 1980 * In this way we may vgone() a vnode with a 0 usecount without risk of 1981 * having it end up on a free list because the hold count is kept above 0. 1982 */ 1983 static void 1984 v_decr_useonly(struct vnode *vp) 1985 { 1986 1987 CTR3(KTR_VFS, "v_decr_useonly: vp %p holdcnt %d usecount %d\n", 1988 vp, vp->v_holdcnt, vp->v_usecount); 1989 ASSERT_VI_LOCKED(vp, __FUNCTION__); 1990 VNASSERT(vp->v_usecount > 0, vp, 1991 ("v_decr_useonly: negative usecount")); 1992 vp->v_usecount--; 1993 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 1994 dev_lock(); 1995 vp->v_rdev->si_usecount--; 1996 dev_unlock(); 1997 } 1998 } 1999 2000 /* 2001 * Grab a particular vnode from the free list, increment its 2002 * reference count and lock it. The vnode lock bit is set if the 2003 * vnode is being eliminated in vgone. The process is awakened 2004 * when the transition is completed, and an error returned to 2005 * indicate that the vnode is no longer usable (possibly having 2006 * been changed to a new filesystem type). 2007 */ 2008 int 2009 vget(struct vnode *vp, int flags, struct thread *td) 2010 { 2011 int oweinact; 2012 int oldflags; 2013 int error; 2014 2015 error = 0; 2016 oldflags = flags; 2017 oweinact = 0; 2018 VFS_ASSERT_GIANT(vp->v_mount); 2019 if ((flags & LK_INTERLOCK) == 0) 2020 VI_LOCK(vp); 2021 /* 2022 * If the inactive call was deferred because vput() was called 2023 * with a shared lock, we have to do it here before another thread 2024 * gets a reference to data that should be dead. 2025 */ 2026 if (vp->v_iflag & VI_OWEINACT) { 2027 if (flags & LK_NOWAIT) { 2028 VI_UNLOCK(vp); 2029 return (EBUSY); 2030 } 2031 flags &= ~LK_TYPE_MASK; 2032 flags |= LK_EXCLUSIVE; 2033 oweinact = 1; 2034 } 2035 vholdl(vp); 2036 if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) { 2037 vdrop(vp); 2038 return (error); 2039 } 2040 VI_LOCK(vp); 2041 /* Upgrade our holdcnt to a usecount. */ 2042 v_upgrade_usecount(vp); 2043 if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0) 2044 panic("vget: vn_lock failed to return ENOENT\n"); 2045 if (oweinact) { 2046 if (vp->v_iflag & VI_OWEINACT) 2047 vinactive(vp, td); 2048 VI_UNLOCK(vp); 2049 if ((oldflags & LK_TYPE_MASK) == 0) 2050 VOP_UNLOCK(vp, 0, td); 2051 } else 2052 VI_UNLOCK(vp); 2053 return (0); 2054 } 2055 2056 /* 2057 * Increase the reference count of a vnode. 2058 */ 2059 void 2060 vref(struct vnode *vp) 2061 { 2062 2063 VI_LOCK(vp); 2064 v_incr_usecount(vp); 2065 VI_UNLOCK(vp); 2066 } 2067 2068 /* 2069 * Return reference count of a vnode. 2070 * 2071 * The results of this call are only guaranteed when some mechanism other 2072 * than the VI lock is used to stop other processes from gaining references 2073 * to the vnode. This may be the case if the caller holds the only reference. 2074 * This is also useful when stale data is acceptable as race conditions may 2075 * be accounted for by some other means. 2076 */ 2077 int 2078 vrefcnt(struct vnode *vp) 2079 { 2080 int usecnt; 2081 2082 VI_LOCK(vp); 2083 usecnt = vp->v_usecount; 2084 VI_UNLOCK(vp); 2085 2086 return (usecnt); 2087 } 2088 2089 2090 /* 2091 * Vnode put/release. 2092 * If count drops to zero, call inactive routine and return to freelist. 2093 */ 2094 void 2095 vrele(struct vnode *vp) 2096 { 2097 struct thread *td = curthread; /* XXX */ 2098 2099 KASSERT(vp != NULL, ("vrele: null vp")); 2100 VFS_ASSERT_GIANT(vp->v_mount); 2101 2102 VI_LOCK(vp); 2103 2104 /* Skip this v_writecount check if we're going to panic below. */ 2105 VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp, 2106 ("vrele: missed vn_close")); 2107 2108 if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) && 2109 vp->v_usecount == 1)) { 2110 v_decr_usecount(vp); 2111 return; 2112 } 2113 if (vp->v_usecount != 1) { 2114 #ifdef DIAGNOSTIC 2115 vprint("vrele: negative ref count", vp); 2116 #endif 2117 VI_UNLOCK(vp); 2118 panic("vrele: negative ref cnt"); 2119 } 2120 /* 2121 * We want to hold the vnode until the inactive finishes to 2122 * prevent vgone() races. We drop the use count here and the 2123 * hold count below when we're done. 2124 */ 2125 v_decr_useonly(vp); 2126 /* 2127 * We must call VOP_INACTIVE with the node locked. Mark 2128 * as VI_DOINGINACT to avoid recursion. 2129 */ 2130 vp->v_iflag |= VI_OWEINACT; 2131 if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) { 2132 VI_LOCK(vp); 2133 if (vp->v_usecount > 0) 2134 vp->v_iflag &= ~VI_OWEINACT; 2135 if (vp->v_iflag & VI_OWEINACT) 2136 vinactive(vp, td); 2137 VOP_UNLOCK(vp, 0, td); 2138 } else { 2139 VI_LOCK(vp); 2140 if (vp->v_usecount > 0) 2141 vp->v_iflag &= ~VI_OWEINACT; 2142 } 2143 vdropl(vp); 2144 } 2145 2146 /* 2147 * Release an already locked vnode. This give the same effects as 2148 * unlock+vrele(), but takes less time and avoids releasing and 2149 * re-aquiring the lock (as vrele() aquires the lock internally.) 2150 */ 2151 void 2152 vput(struct vnode *vp) 2153 { 2154 struct thread *td = curthread; /* XXX */ 2155 int error; 2156 2157 KASSERT(vp != NULL, ("vput: null vp")); 2158 ASSERT_VOP_LOCKED(vp, "vput"); 2159 VFS_ASSERT_GIANT(vp->v_mount); 2160 VI_LOCK(vp); 2161 /* Skip this v_writecount check if we're going to panic below. */ 2162 VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp, 2163 ("vput: missed vn_close")); 2164 error = 0; 2165 2166 if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) && 2167 vp->v_usecount == 1)) { 2168 VOP_UNLOCK(vp, 0, td); 2169 v_decr_usecount(vp); 2170 return; 2171 } 2172 2173 if (vp->v_usecount != 1) { 2174 #ifdef DIAGNOSTIC 2175 vprint("vput: negative ref count", vp); 2176 #endif 2177 panic("vput: negative ref cnt"); 2178 } 2179 /* 2180 * We want to hold the vnode until the inactive finishes to 2181 * prevent vgone() races. We drop the use count here and the 2182 * hold count below when we're done. 2183 */ 2184 v_decr_useonly(vp); 2185 vp->v_iflag |= VI_OWEINACT; 2186 if (VOP_ISLOCKED(vp, NULL) != LK_EXCLUSIVE) { 2187 error = VOP_LOCK(vp, LK_EXCLUPGRADE|LK_INTERLOCK|LK_NOWAIT, td); 2188 VI_LOCK(vp); 2189 if (error) { 2190 if (vp->v_usecount > 0) 2191 vp->v_iflag &= ~VI_OWEINACT; 2192 goto done; 2193 } 2194 } 2195 if (vp->v_usecount > 0) 2196 vp->v_iflag &= ~VI_OWEINACT; 2197 if (vp->v_iflag & VI_OWEINACT) 2198 vinactive(vp, td); 2199 VOP_UNLOCK(vp, 0, td); 2200 done: 2201 vdropl(vp); 2202 } 2203 2204 /* 2205 * Somebody doesn't want the vnode recycled. 2206 */ 2207 void 2208 vhold(struct vnode *vp) 2209 { 2210 2211 VI_LOCK(vp); 2212 vholdl(vp); 2213 VI_UNLOCK(vp); 2214 } 2215 2216 void 2217 vholdl(struct vnode *vp) 2218 { 2219 2220 vp->v_holdcnt++; 2221 if (VSHOULDBUSY(vp)) 2222 vbusy(vp); 2223 } 2224 2225 /* 2226 * Note that there is one less who cares about this vnode. vdrop() is the 2227 * opposite of vhold(). 2228 */ 2229 void 2230 vdrop(struct vnode *vp) 2231 { 2232 2233 VI_LOCK(vp); 2234 vdropl(vp); 2235 } 2236 2237 /* 2238 * Drop the hold count of the vnode. If this is the last reference to 2239 * the vnode we will free it if it has been vgone'd otherwise it is 2240 * placed on the free list. 2241 */ 2242 void 2243 vdropl(struct vnode *vp) 2244 { 2245 2246 ASSERT_VI_LOCKED(vp, "vdropl"); 2247 if (vp->v_holdcnt <= 0) 2248 panic("vdrop: holdcnt %d", vp->v_holdcnt); 2249 vp->v_holdcnt--; 2250 if (vp->v_holdcnt == 0) { 2251 if (vp->v_iflag & VI_DOOMED) { 2252 vdestroy(vp); 2253 return; 2254 } else 2255 vfree(vp); 2256 } 2257 VI_UNLOCK(vp); 2258 } 2259 2260 /* 2261 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 2262 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 2263 * OWEINACT tracks whether a vnode missed a call to inactive due to a 2264 * failed lock upgrade. 2265 */ 2266 static void 2267 vinactive(struct vnode *vp, struct thread *td) 2268 { 2269 2270 ASSERT_VOP_LOCKED(vp, "vinactive"); 2271 ASSERT_VI_LOCKED(vp, "vinactive"); 2272 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp, 2273 ("vinactive: recursed on VI_DOINGINACT")); 2274 vp->v_iflag |= VI_DOINGINACT; 2275 vp->v_iflag &= ~VI_OWEINACT; 2276 VI_UNLOCK(vp); 2277 VOP_INACTIVE(vp, td); 2278 VI_LOCK(vp); 2279 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp, 2280 ("vinactive: lost VI_DOINGINACT")); 2281 vp->v_iflag &= ~VI_DOINGINACT; 2282 } 2283 2284 /* 2285 * Remove any vnodes in the vnode table belonging to mount point mp. 2286 * 2287 * If FORCECLOSE is not specified, there should not be any active ones, 2288 * return error if any are found (nb: this is a user error, not a 2289 * system error). If FORCECLOSE is specified, detach any active vnodes 2290 * that are found. 2291 * 2292 * If WRITECLOSE is set, only flush out regular file vnodes open for 2293 * writing. 2294 * 2295 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 2296 * 2297 * `rootrefs' specifies the base reference count for the root vnode 2298 * of this filesystem. The root vnode is considered busy if its 2299 * v_usecount exceeds this value. On a successful return, vflush(, td) 2300 * will call vrele() on the root vnode exactly rootrefs times. 2301 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 2302 * be zero. 2303 */ 2304 #ifdef DIAGNOSTIC 2305 static int busyprt = 0; /* print out busy vnodes */ 2306 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, ""); 2307 #endif 2308 2309 int 2310 vflush( struct mount *mp, int rootrefs, int flags, struct thread *td) 2311 { 2312 struct vnode *vp, *mvp, *rootvp = NULL; 2313 struct vattr vattr; 2314 int busy = 0, error; 2315 2316 CTR1(KTR_VFS, "vflush: mp %p", mp); 2317 if (rootrefs > 0) { 2318 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 2319 ("vflush: bad args")); 2320 /* 2321 * Get the filesystem root vnode. We can vput() it 2322 * immediately, since with rootrefs > 0, it won't go away. 2323 */ 2324 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0) 2325 return (error); 2326 vput(rootvp); 2327 2328 } 2329 MNT_ILOCK(mp); 2330 loop: 2331 MNT_VNODE_FOREACH(vp, mp, mvp) { 2332 2333 VI_LOCK(vp); 2334 vholdl(vp); 2335 MNT_IUNLOCK(mp); 2336 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td); 2337 if (error) { 2338 vdrop(vp); 2339 MNT_ILOCK(mp); 2340 MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp); 2341 goto loop; 2342 } 2343 /* 2344 * Skip over a vnodes marked VV_SYSTEM. 2345 */ 2346 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 2347 VOP_UNLOCK(vp, 0, td); 2348 vdrop(vp); 2349 MNT_ILOCK(mp); 2350 continue; 2351 } 2352 /* 2353 * If WRITECLOSE is set, flush out unlinked but still open 2354 * files (even if open only for reading) and regular file 2355 * vnodes open for writing. 2356 */ 2357 if (flags & WRITECLOSE) { 2358 error = VOP_GETATTR(vp, &vattr, td->td_ucred, td); 2359 VI_LOCK(vp); 2360 2361 if ((vp->v_type == VNON || 2362 (error == 0 && vattr.va_nlink > 0)) && 2363 (vp->v_writecount == 0 || vp->v_type != VREG)) { 2364 VOP_UNLOCK(vp, 0, td); 2365 vdropl(vp); 2366 MNT_ILOCK(mp); 2367 continue; 2368 } 2369 } else 2370 VI_LOCK(vp); 2371 /* 2372 * With v_usecount == 0, all we need to do is clear out the 2373 * vnode data structures and we are done. 2374 * 2375 * If FORCECLOSE is set, forcibly close the vnode. 2376 */ 2377 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 2378 VNASSERT(vp->v_usecount == 0 || 2379 (vp->v_type != VCHR && vp->v_type != VBLK), vp, 2380 ("device VNODE %p is FORCECLOSED", vp)); 2381 vgonel(vp); 2382 } else { 2383 busy++; 2384 #ifdef DIAGNOSTIC 2385 if (busyprt) 2386 vprint("vflush: busy vnode", vp); 2387 #endif 2388 } 2389 VOP_UNLOCK(vp, 0, td); 2390 vdropl(vp); 2391 MNT_ILOCK(mp); 2392 } 2393 MNT_IUNLOCK(mp); 2394 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 2395 /* 2396 * If just the root vnode is busy, and if its refcount 2397 * is equal to `rootrefs', then go ahead and kill it. 2398 */ 2399 VI_LOCK(rootvp); 2400 KASSERT(busy > 0, ("vflush: not busy")); 2401 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 2402 ("vflush: usecount %d < rootrefs %d", 2403 rootvp->v_usecount, rootrefs)); 2404 if (busy == 1 && rootvp->v_usecount == rootrefs) { 2405 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK, td); 2406 vgone(rootvp); 2407 VOP_UNLOCK(rootvp, 0, td); 2408 busy = 0; 2409 } else 2410 VI_UNLOCK(rootvp); 2411 } 2412 if (busy) 2413 return (EBUSY); 2414 for (; rootrefs > 0; rootrefs--) 2415 vrele(rootvp); 2416 return (0); 2417 } 2418 2419 /* 2420 * Recycle an unused vnode to the front of the free list. 2421 */ 2422 int 2423 vrecycle(struct vnode *vp, struct thread *td) 2424 { 2425 int recycled; 2426 2427 ASSERT_VOP_LOCKED(vp, "vrecycle"); 2428 recycled = 0; 2429 VI_LOCK(vp); 2430 if (vp->v_usecount == 0) { 2431 recycled = 1; 2432 vgonel(vp); 2433 } 2434 VI_UNLOCK(vp); 2435 return (recycled); 2436 } 2437 2438 /* 2439 * Eliminate all activity associated with a vnode 2440 * in preparation for reuse. 2441 */ 2442 void 2443 vgone(struct vnode *vp) 2444 { 2445 VI_LOCK(vp); 2446 vgonel(vp); 2447 VI_UNLOCK(vp); 2448 } 2449 2450 /* 2451 * vgone, with the vp interlock held. 2452 */ 2453 void 2454 vgonel(struct vnode *vp) 2455 { 2456 struct thread *td; 2457 int oweinact; 2458 int active; 2459 struct mount *mp; 2460 2461 CTR1(KTR_VFS, "vgonel: vp %p", vp); 2462 ASSERT_VOP_LOCKED(vp, "vgonel"); 2463 ASSERT_VI_LOCKED(vp, "vgonel"); 2464 VNASSERT(vp->v_holdcnt, vp, 2465 ("vgonel: vp %p has no reference.", vp)); 2466 td = curthread; 2467 2468 /* 2469 * Don't vgonel if we're already doomed. 2470 */ 2471 if (vp->v_iflag & VI_DOOMED) 2472 return; 2473 vp->v_iflag |= VI_DOOMED; 2474 /* 2475 * Check to see if the vnode is in use. If so, we have to call 2476 * VOP_CLOSE() and VOP_INACTIVE(). 2477 */ 2478 active = vp->v_usecount; 2479 oweinact = (vp->v_iflag & VI_OWEINACT); 2480 VI_UNLOCK(vp); 2481 /* 2482 * Clean out any buffers associated with the vnode. 2483 * If the flush fails, just toss the buffers. 2484 */ 2485 mp = NULL; 2486 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 2487 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 2488 if (vinvalbuf(vp, V_SAVE, td, 0, 0) != 0) 2489 vinvalbuf(vp, 0, td, 0, 0); 2490 2491 /* 2492 * If purging an active vnode, it must be closed and 2493 * deactivated before being reclaimed. 2494 */ 2495 if (active) 2496 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 2497 if (oweinact || active) { 2498 VI_LOCK(vp); 2499 if ((vp->v_iflag & VI_DOINGINACT) == 0) 2500 vinactive(vp, td); 2501 VI_UNLOCK(vp); 2502 } 2503 /* 2504 * Reclaim the vnode. 2505 */ 2506 if (VOP_RECLAIM(vp, td)) 2507 panic("vgone: cannot reclaim"); 2508 if (mp != NULL) 2509 vn_finished_secondary_write(mp); 2510 VNASSERT(vp->v_object == NULL, vp, 2511 ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag)); 2512 /* 2513 * Delete from old mount point vnode list. 2514 */ 2515 delmntque(vp); 2516 cache_purge(vp); 2517 /* 2518 * Done with purge, reset to the standard lock and invalidate 2519 * the vnode. 2520 */ 2521 VI_LOCK(vp); 2522 vp->v_vnlock = &vp->v_lock; 2523 vp->v_op = &dead_vnodeops; 2524 vp->v_tag = "none"; 2525 vp->v_type = VBAD; 2526 } 2527 2528 /* 2529 * Calculate the total number of references to a special device. 2530 */ 2531 int 2532 vcount(struct vnode *vp) 2533 { 2534 int count; 2535 2536 dev_lock(); 2537 count = vp->v_rdev->si_usecount; 2538 dev_unlock(); 2539 return (count); 2540 } 2541 2542 /* 2543 * Same as above, but using the struct cdev *as argument 2544 */ 2545 int 2546 count_dev(struct cdev *dev) 2547 { 2548 int count; 2549 2550 dev_lock(); 2551 count = dev->si_usecount; 2552 dev_unlock(); 2553 return(count); 2554 } 2555 2556 /* 2557 * Print out a description of a vnode. 2558 */ 2559 static char *typename[] = 2560 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", 2561 "VMARKER"}; 2562 2563 void 2564 vn_printf(struct vnode *vp, const char *fmt, ...) 2565 { 2566 va_list ap; 2567 char buf[96]; 2568 2569 va_start(ap, fmt); 2570 vprintf(fmt, ap); 2571 va_end(ap); 2572 printf("%p: ", (void *)vp); 2573 printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]); 2574 printf(" usecount %d, writecount %d, refcount %d mountedhere %p\n", 2575 vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere); 2576 buf[0] = '\0'; 2577 buf[1] = '\0'; 2578 if (vp->v_vflag & VV_ROOT) 2579 strcat(buf, "|VV_ROOT"); 2580 if (vp->v_vflag & VV_TEXT) 2581 strcat(buf, "|VV_TEXT"); 2582 if (vp->v_vflag & VV_SYSTEM) 2583 strcat(buf, "|VV_SYSTEM"); 2584 if (vp->v_vflag & VV_DELETED) 2585 strcat(buf, "|VV_DELETED"); 2586 if (vp->v_iflag & VI_DOOMED) 2587 strcat(buf, "|VI_DOOMED"); 2588 if (vp->v_iflag & VI_FREE) 2589 strcat(buf, "|VI_FREE"); 2590 printf(" flags (%s)\n", buf + 1); 2591 if (mtx_owned(VI_MTX(vp))) 2592 printf(" VI_LOCKed"); 2593 if (vp->v_object != NULL) 2594 printf(" v_object %p ref %d pages %d\n", 2595 vp->v_object, vp->v_object->ref_count, 2596 vp->v_object->resident_page_count); 2597 printf(" "); 2598 lockmgr_printinfo(vp->v_vnlock); 2599 printf("\n"); 2600 if (vp->v_data != NULL) 2601 VOP_PRINT(vp); 2602 } 2603 2604 #ifdef DDB 2605 /* 2606 * List all of the locked vnodes in the system. 2607 * Called when debugging the kernel. 2608 */ 2609 DB_SHOW_COMMAND(lockedvnods, lockedvnodes) 2610 { 2611 struct mount *mp, *nmp; 2612 struct vnode *vp; 2613 2614 /* 2615 * Note: because this is DDB, we can't obey the locking semantics 2616 * for these structures, which means we could catch an inconsistent 2617 * state and dereference a nasty pointer. Not much to be done 2618 * about that. 2619 */ 2620 printf("Locked vnodes\n"); 2621 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 2622 nmp = TAILQ_NEXT(mp, mnt_list); 2623 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 2624 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp, NULL)) 2625 vprint("", vp); 2626 } 2627 nmp = TAILQ_NEXT(mp, mnt_list); 2628 } 2629 } 2630 2631 /* 2632 * Show details about the given vnode. 2633 */ 2634 DB_SHOW_COMMAND(vnode, db_show_vnode) 2635 { 2636 struct vnode *vp; 2637 2638 if (!have_addr) 2639 return; 2640 vp = (struct vnode *)addr; 2641 vn_printf(vp, "vnode "); 2642 } 2643 #endif /* DDB */ 2644 2645 /* 2646 * Fill in a struct xvfsconf based on a struct vfsconf. 2647 */ 2648 static void 2649 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp) 2650 { 2651 2652 strcpy(xvfsp->vfc_name, vfsp->vfc_name); 2653 xvfsp->vfc_typenum = vfsp->vfc_typenum; 2654 xvfsp->vfc_refcount = vfsp->vfc_refcount; 2655 xvfsp->vfc_flags = vfsp->vfc_flags; 2656 /* 2657 * These are unused in userland, we keep them 2658 * to not break binary compatibility. 2659 */ 2660 xvfsp->vfc_vfsops = NULL; 2661 xvfsp->vfc_next = NULL; 2662 } 2663 2664 /* 2665 * Top level filesystem related information gathering. 2666 */ 2667 static int 2668 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 2669 { 2670 struct vfsconf *vfsp; 2671 struct xvfsconf xvfsp; 2672 int error; 2673 2674 error = 0; 2675 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 2676 bzero(&xvfsp, sizeof(xvfsp)); 2677 vfsconf2x(vfsp, &xvfsp); 2678 error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp); 2679 if (error) 2680 break; 2681 } 2682 return (error); 2683 } 2684 2685 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist, 2686 "S,xvfsconf", "List of all configured filesystems"); 2687 2688 #ifndef BURN_BRIDGES 2689 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 2690 2691 static int 2692 vfs_sysctl(SYSCTL_HANDLER_ARGS) 2693 { 2694 int *name = (int *)arg1 - 1; /* XXX */ 2695 u_int namelen = arg2 + 1; /* XXX */ 2696 struct vfsconf *vfsp; 2697 struct xvfsconf xvfsp; 2698 2699 printf("WARNING: userland calling deprecated sysctl, " 2700 "please rebuild world\n"); 2701 2702 #if 1 || defined(COMPAT_PRELITE2) 2703 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 2704 if (namelen == 1) 2705 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 2706 #endif 2707 2708 switch (name[1]) { 2709 case VFS_MAXTYPENUM: 2710 if (namelen != 2) 2711 return (ENOTDIR); 2712 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 2713 case VFS_CONF: 2714 if (namelen != 3) 2715 return (ENOTDIR); /* overloaded */ 2716 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) 2717 if (vfsp->vfc_typenum == name[2]) 2718 break; 2719 if (vfsp == NULL) 2720 return (EOPNOTSUPP); 2721 bzero(&xvfsp, sizeof(xvfsp)); 2722 vfsconf2x(vfsp, &xvfsp); 2723 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 2724 } 2725 return (EOPNOTSUPP); 2726 } 2727 2728 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, 2729 vfs_sysctl, "Generic filesystem"); 2730 2731 #if 1 || defined(COMPAT_PRELITE2) 2732 2733 static int 2734 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 2735 { 2736 int error; 2737 struct vfsconf *vfsp; 2738 struct ovfsconf ovfs; 2739 2740 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 2741 bzero(&ovfs, sizeof(ovfs)); 2742 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 2743 strcpy(ovfs.vfc_name, vfsp->vfc_name); 2744 ovfs.vfc_index = vfsp->vfc_typenum; 2745 ovfs.vfc_refcount = vfsp->vfc_refcount; 2746 ovfs.vfc_flags = vfsp->vfc_flags; 2747 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 2748 if (error) 2749 return error; 2750 } 2751 return 0; 2752 } 2753 2754 #endif /* 1 || COMPAT_PRELITE2 */ 2755 #endif /* !BURN_BRIDGES */ 2756 2757 #define KINFO_VNODESLOP 10 2758 #ifdef notyet 2759 /* 2760 * Dump vnode list (via sysctl). 2761 */ 2762 /* ARGSUSED */ 2763 static int 2764 sysctl_vnode(SYSCTL_HANDLER_ARGS) 2765 { 2766 struct xvnode *xvn; 2767 struct thread *td = req->td; 2768 struct mount *mp; 2769 struct vnode *vp; 2770 int error, len, n; 2771 2772 /* 2773 * Stale numvnodes access is not fatal here. 2774 */ 2775 req->lock = 0; 2776 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; 2777 if (!req->oldptr) 2778 /* Make an estimate */ 2779 return (SYSCTL_OUT(req, 0, len)); 2780 2781 error = sysctl_wire_old_buffer(req, 0); 2782 if (error != 0) 2783 return (error); 2784 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); 2785 n = 0; 2786 mtx_lock(&mountlist_mtx); 2787 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2788 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) 2789 continue; 2790 MNT_ILOCK(mp); 2791 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 2792 if (n == len) 2793 break; 2794 vref(vp); 2795 xvn[n].xv_size = sizeof *xvn; 2796 xvn[n].xv_vnode = vp; 2797 xvn[n].xv_id = 0; /* XXX compat */ 2798 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field 2799 XV_COPY(usecount); 2800 XV_COPY(writecount); 2801 XV_COPY(holdcnt); 2802 XV_COPY(mount); 2803 XV_COPY(numoutput); 2804 XV_COPY(type); 2805 #undef XV_COPY 2806 xvn[n].xv_flag = vp->v_vflag; 2807 2808 switch (vp->v_type) { 2809 case VREG: 2810 case VDIR: 2811 case VLNK: 2812 break; 2813 case VBLK: 2814 case VCHR: 2815 if (vp->v_rdev == NULL) { 2816 vrele(vp); 2817 continue; 2818 } 2819 xvn[n].xv_dev = dev2udev(vp->v_rdev); 2820 break; 2821 case VSOCK: 2822 xvn[n].xv_socket = vp->v_socket; 2823 break; 2824 case VFIFO: 2825 xvn[n].xv_fifo = vp->v_fifoinfo; 2826 break; 2827 case VNON: 2828 case VBAD: 2829 default: 2830 /* shouldn't happen? */ 2831 vrele(vp); 2832 continue; 2833 } 2834 vrele(vp); 2835 ++n; 2836 } 2837 MNT_IUNLOCK(mp); 2838 mtx_lock(&mountlist_mtx); 2839 vfs_unbusy(mp, td); 2840 if (n == len) 2841 break; 2842 } 2843 mtx_unlock(&mountlist_mtx); 2844 2845 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); 2846 free(xvn, M_TEMP); 2847 return (error); 2848 } 2849 2850 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD, 2851 0, 0, sysctl_vnode, "S,xvnode", ""); 2852 #endif 2853 2854 /* 2855 * Unmount all filesystems. The list is traversed in reverse order 2856 * of mounting to avoid dependencies. 2857 */ 2858 void 2859 vfs_unmountall(void) 2860 { 2861 struct mount *mp; 2862 struct thread *td; 2863 int error; 2864 2865 KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread")); 2866 td = curthread; 2867 /* 2868 * Since this only runs when rebooting, it is not interlocked. 2869 */ 2870 while(!TAILQ_EMPTY(&mountlist)) { 2871 mp = TAILQ_LAST(&mountlist, mntlist); 2872 error = dounmount(mp, MNT_FORCE, td); 2873 if (error) { 2874 TAILQ_REMOVE(&mountlist, mp, mnt_list); 2875 /* 2876 * XXX: Due to the way in which we mount the root 2877 * file system off of devfs, devfs will generate a 2878 * "busy" warning when we try to unmount it before 2879 * the root. Don't print a warning as a result in 2880 * order to avoid false positive errors that may 2881 * cause needless upset. 2882 */ 2883 if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) { 2884 printf("unmount of %s failed (", 2885 mp->mnt_stat.f_mntonname); 2886 if (error == EBUSY) 2887 printf("BUSY)\n"); 2888 else 2889 printf("%d)\n", error); 2890 } 2891 } else { 2892 /* The unmount has removed mp from the mountlist */ 2893 } 2894 } 2895 } 2896 2897 /* 2898 * perform msync on all vnodes under a mount point 2899 * the mount point must be locked. 2900 */ 2901 void 2902 vfs_msync(struct mount *mp, int flags) 2903 { 2904 struct vnode *vp, *mvp; 2905 struct vm_object *obj; 2906 2907 MNT_ILOCK(mp); 2908 MNT_VNODE_FOREACH(vp, mp, mvp) { 2909 VI_LOCK(vp); 2910 if ((vp->v_iflag & VI_OBJDIRTY) && 2911 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) { 2912 MNT_IUNLOCK(mp); 2913 if (!vget(vp, 2914 LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, 2915 curthread)) { 2916 if (vp->v_vflag & VV_NOSYNC) { /* unlinked */ 2917 vput(vp); 2918 MNT_ILOCK(mp); 2919 continue; 2920 } 2921 2922 obj = vp->v_object; 2923 if (obj != NULL) { 2924 VM_OBJECT_LOCK(obj); 2925 vm_object_page_clean(obj, 0, 0, 2926 flags == MNT_WAIT ? 2927 OBJPC_SYNC : OBJPC_NOSYNC); 2928 VM_OBJECT_UNLOCK(obj); 2929 } 2930 vput(vp); 2931 } 2932 MNT_ILOCK(mp); 2933 } else 2934 VI_UNLOCK(vp); 2935 } 2936 MNT_IUNLOCK(mp); 2937 } 2938 2939 /* 2940 * Mark a vnode as free, putting it up for recycling. 2941 */ 2942 static void 2943 vfree(struct vnode *vp) 2944 { 2945 2946 CTR1(KTR_VFS, "vfree vp %p", vp); 2947 ASSERT_VI_LOCKED(vp, "vfree"); 2948 mtx_lock(&vnode_free_list_mtx); 2949 VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed.")); 2950 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free")); 2951 VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't")); 2952 VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp, 2953 ("vfree: Freeing doomed vnode")); 2954 if (vp->v_iflag & VI_AGE) { 2955 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 2956 } else { 2957 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 2958 } 2959 freevnodes++; 2960 vp->v_iflag &= ~VI_AGE; 2961 vp->v_iflag |= VI_FREE; 2962 mtx_unlock(&vnode_free_list_mtx); 2963 } 2964 2965 /* 2966 * Opposite of vfree() - mark a vnode as in use. 2967 */ 2968 static void 2969 vbusy(struct vnode *vp) 2970 { 2971 CTR1(KTR_VFS, "vbusy vp %p", vp); 2972 ASSERT_VI_LOCKED(vp, "vbusy"); 2973 VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free")); 2974 VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed.")); 2975 2976 mtx_lock(&vnode_free_list_mtx); 2977 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 2978 freevnodes--; 2979 vp->v_iflag &= ~(VI_FREE|VI_AGE); 2980 mtx_unlock(&vnode_free_list_mtx); 2981 } 2982 2983 /* 2984 * Initalize per-vnode helper structure to hold poll-related state. 2985 */ 2986 void 2987 v_addpollinfo(struct vnode *vp) 2988 { 2989 struct vpollinfo *vi; 2990 2991 vi = uma_zalloc(vnodepoll_zone, M_WAITOK); 2992 if (vp->v_pollinfo != NULL) { 2993 uma_zfree(vnodepoll_zone, vi); 2994 return; 2995 } 2996 vp->v_pollinfo = vi; 2997 mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 2998 knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note, vp, vfs_knllock, 2999 vfs_knlunlock, vfs_knllocked); 3000 } 3001 3002 /* 3003 * Record a process's interest in events which might happen to 3004 * a vnode. Because poll uses the historic select-style interface 3005 * internally, this routine serves as both the ``check for any 3006 * pending events'' and the ``record my interest in future events'' 3007 * functions. (These are done together, while the lock is held, 3008 * to avoid race conditions.) 3009 */ 3010 int 3011 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 3012 { 3013 3014 if (vp->v_pollinfo == NULL) 3015 v_addpollinfo(vp); 3016 mtx_lock(&vp->v_pollinfo->vpi_lock); 3017 if (vp->v_pollinfo->vpi_revents & events) { 3018 /* 3019 * This leaves events we are not interested 3020 * in available for the other process which 3021 * which presumably had requested them 3022 * (otherwise they would never have been 3023 * recorded). 3024 */ 3025 events &= vp->v_pollinfo->vpi_revents; 3026 vp->v_pollinfo->vpi_revents &= ~events; 3027 3028 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3029 return events; 3030 } 3031 vp->v_pollinfo->vpi_events |= events; 3032 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 3033 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3034 return 0; 3035 } 3036 3037 /* 3038 * Routine to create and manage a filesystem syncer vnode. 3039 */ 3040 #define sync_close ((int (*)(struct vop_close_args *))nullop) 3041 static int sync_fsync(struct vop_fsync_args *); 3042 static int sync_inactive(struct vop_inactive_args *); 3043 static int sync_reclaim(struct vop_reclaim_args *); 3044 3045 static struct vop_vector sync_vnodeops = { 3046 .vop_bypass = VOP_EOPNOTSUPP, 3047 .vop_close = sync_close, /* close */ 3048 .vop_fsync = sync_fsync, /* fsync */ 3049 .vop_inactive = sync_inactive, /* inactive */ 3050 .vop_reclaim = sync_reclaim, /* reclaim */ 3051 .vop_lock1 = vop_stdlock, /* lock */ 3052 .vop_unlock = vop_stdunlock, /* unlock */ 3053 .vop_islocked = vop_stdislocked, /* islocked */ 3054 }; 3055 3056 /* 3057 * Create a new filesystem syncer vnode for the specified mount point. 3058 */ 3059 int 3060 vfs_allocate_syncvnode(struct mount *mp) 3061 { 3062 struct vnode *vp; 3063 static long start, incr, next; 3064 int error; 3065 3066 /* Allocate a new vnode */ 3067 if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) { 3068 mp->mnt_syncer = NULL; 3069 return (error); 3070 } 3071 vp->v_type = VNON; 3072 error = insmntque(vp, mp); 3073 if (error != 0) 3074 panic("vfs_allocate_syncvnode: insmntque failed"); 3075 /* 3076 * Place the vnode onto the syncer worklist. We attempt to 3077 * scatter them about on the list so that they will go off 3078 * at evenly distributed times even if all the filesystems 3079 * are mounted at once. 3080 */ 3081 next += incr; 3082 if (next == 0 || next > syncer_maxdelay) { 3083 start /= 2; 3084 incr /= 2; 3085 if (start == 0) { 3086 start = syncer_maxdelay / 2; 3087 incr = syncer_maxdelay; 3088 } 3089 next = start; 3090 } 3091 VI_LOCK(vp); 3092 vn_syncer_add_to_worklist(&vp->v_bufobj, 3093 syncdelay > 0 ? next % syncdelay : 0); 3094 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 3095 mtx_lock(&sync_mtx); 3096 sync_vnode_count++; 3097 mtx_unlock(&sync_mtx); 3098 VI_UNLOCK(vp); 3099 mp->mnt_syncer = vp; 3100 return (0); 3101 } 3102 3103 /* 3104 * Do a lazy sync of the filesystem. 3105 */ 3106 static int 3107 sync_fsync(struct vop_fsync_args *ap) 3108 { 3109 struct vnode *syncvp = ap->a_vp; 3110 struct mount *mp = syncvp->v_mount; 3111 struct thread *td = ap->a_td; 3112 int error; 3113 struct bufobj *bo; 3114 3115 /* 3116 * We only need to do something if this is a lazy evaluation. 3117 */ 3118 if (ap->a_waitfor != MNT_LAZY) 3119 return (0); 3120 3121 /* 3122 * Move ourselves to the back of the sync list. 3123 */ 3124 bo = &syncvp->v_bufobj; 3125 BO_LOCK(bo); 3126 vn_syncer_add_to_worklist(bo, syncdelay); 3127 BO_UNLOCK(bo); 3128 3129 /* 3130 * Walk the list of vnodes pushing all that are dirty and 3131 * not already on the sync list. 3132 */ 3133 mtx_lock(&mountlist_mtx); 3134 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) { 3135 mtx_unlock(&mountlist_mtx); 3136 return (0); 3137 } 3138 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 3139 vfs_unbusy(mp, td); 3140 return (0); 3141 } 3142 MNT_ILOCK(mp); 3143 mp->mnt_noasync++; 3144 mp->mnt_kern_flag &= ~MNTK_ASYNC; 3145 MNT_IUNLOCK(mp); 3146 vfs_msync(mp, MNT_NOWAIT); 3147 error = VFS_SYNC(mp, MNT_LAZY, td); 3148 MNT_ILOCK(mp); 3149 mp->mnt_noasync--; 3150 if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0) 3151 mp->mnt_kern_flag |= MNTK_ASYNC; 3152 MNT_IUNLOCK(mp); 3153 vn_finished_write(mp); 3154 vfs_unbusy(mp, td); 3155 return (error); 3156 } 3157 3158 /* 3159 * The syncer vnode is no referenced. 3160 */ 3161 static int 3162 sync_inactive(struct vop_inactive_args *ap) 3163 { 3164 3165 vgone(ap->a_vp); 3166 return (0); 3167 } 3168 3169 /* 3170 * The syncer vnode is no longer needed and is being decommissioned. 3171 * 3172 * Modifications to the worklist must be protected by sync_mtx. 3173 */ 3174 static int 3175 sync_reclaim(struct vop_reclaim_args *ap) 3176 { 3177 struct vnode *vp = ap->a_vp; 3178 struct bufobj *bo; 3179 3180 VI_LOCK(vp); 3181 bo = &vp->v_bufobj; 3182 vp->v_mount->mnt_syncer = NULL; 3183 if (bo->bo_flag & BO_ONWORKLST) { 3184 mtx_lock(&sync_mtx); 3185 LIST_REMOVE(bo, bo_synclist); 3186 syncer_worklist_len--; 3187 sync_vnode_count--; 3188 mtx_unlock(&sync_mtx); 3189 bo->bo_flag &= ~BO_ONWORKLST; 3190 } 3191 VI_UNLOCK(vp); 3192 3193 return (0); 3194 } 3195 3196 /* 3197 * Check if vnode represents a disk device 3198 */ 3199 int 3200 vn_isdisk(struct vnode *vp, int *errp) 3201 { 3202 int error; 3203 3204 error = 0; 3205 dev_lock(); 3206 if (vp->v_type != VCHR) 3207 error = ENOTBLK; 3208 else if (vp->v_rdev == NULL) 3209 error = ENXIO; 3210 else if (vp->v_rdev->si_devsw == NULL) 3211 error = ENXIO; 3212 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 3213 error = ENOTBLK; 3214 dev_unlock(); 3215 if (errp != NULL) 3216 *errp = error; 3217 return (error == 0); 3218 } 3219 3220 /* 3221 * Common filesystem object access control check routine. Accepts a 3222 * vnode's type, "mode", uid and gid, requested access mode, credentials, 3223 * and optional call-by-reference privused argument allowing vaccess() 3224 * to indicate to the caller whether privilege was used to satisfy the 3225 * request (obsoleted). Returns 0 on success, or an errno on failure. 3226 * 3227 * The ifdef'd CAPABILITIES version is here for reference, but is not 3228 * actually used. 3229 */ 3230 int 3231 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 3232 mode_t acc_mode, struct ucred *cred, int *privused) 3233 { 3234 mode_t dac_granted; 3235 mode_t priv_granted; 3236 3237 /* 3238 * Look for a normal, non-privileged way to access the file/directory 3239 * as requested. If it exists, go with that. 3240 */ 3241 3242 if (privused != NULL) 3243 *privused = 0; 3244 3245 dac_granted = 0; 3246 3247 /* Check the owner. */ 3248 if (cred->cr_uid == file_uid) { 3249 dac_granted |= VADMIN; 3250 if (file_mode & S_IXUSR) 3251 dac_granted |= VEXEC; 3252 if (file_mode & S_IRUSR) 3253 dac_granted |= VREAD; 3254 if (file_mode & S_IWUSR) 3255 dac_granted |= (VWRITE | VAPPEND); 3256 3257 if ((acc_mode & dac_granted) == acc_mode) 3258 return (0); 3259 3260 goto privcheck; 3261 } 3262 3263 /* Otherwise, check the groups (first match) */ 3264 if (groupmember(file_gid, cred)) { 3265 if (file_mode & S_IXGRP) 3266 dac_granted |= VEXEC; 3267 if (file_mode & S_IRGRP) 3268 dac_granted |= VREAD; 3269 if (file_mode & S_IWGRP) 3270 dac_granted |= (VWRITE | VAPPEND); 3271 3272 if ((acc_mode & dac_granted) == acc_mode) 3273 return (0); 3274 3275 goto privcheck; 3276 } 3277 3278 /* Otherwise, check everyone else. */ 3279 if (file_mode & S_IXOTH) 3280 dac_granted |= VEXEC; 3281 if (file_mode & S_IROTH) 3282 dac_granted |= VREAD; 3283 if (file_mode & S_IWOTH) 3284 dac_granted |= (VWRITE | VAPPEND); 3285 if ((acc_mode & dac_granted) == acc_mode) 3286 return (0); 3287 3288 privcheck: 3289 /* 3290 * Build a privilege mask to determine if the set of privileges 3291 * satisfies the requirements when combined with the granted mask 3292 * from above. For each privilege, if the privilege is required, 3293 * bitwise or the request type onto the priv_granted mask. 3294 */ 3295 priv_granted = 0; 3296 3297 if (type == VDIR) { 3298 /* 3299 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 3300 * requests, instead of PRIV_VFS_EXEC. 3301 */ 3302 if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3303 !priv_check_cred(cred, PRIV_VFS_LOOKUP, SUSER_ALLOWJAIL)) 3304 priv_granted |= VEXEC; 3305 } else { 3306 if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3307 !priv_check_cred(cred, PRIV_VFS_EXEC, SUSER_ALLOWJAIL)) 3308 priv_granted |= VEXEC; 3309 } 3310 3311 if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) && 3312 !priv_check_cred(cred, PRIV_VFS_READ, SUSER_ALLOWJAIL)) 3313 priv_granted |= VREAD; 3314 3315 if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) && 3316 !priv_check_cred(cred, PRIV_VFS_WRITE, SUSER_ALLOWJAIL)) 3317 priv_granted |= (VWRITE | VAPPEND); 3318 3319 if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) && 3320 !priv_check_cred(cred, PRIV_VFS_ADMIN, SUSER_ALLOWJAIL)) 3321 priv_granted |= VADMIN; 3322 3323 if ((acc_mode & (priv_granted | dac_granted)) == acc_mode) { 3324 /* XXX audit: privilege used */ 3325 if (privused != NULL) 3326 *privused = 1; 3327 return (0); 3328 } 3329 3330 return ((acc_mode & VADMIN) ? EPERM : EACCES); 3331 } 3332 3333 /* 3334 * Credential check based on process requesting service, and per-attribute 3335 * permissions. 3336 */ 3337 int 3338 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 3339 struct thread *td, int access) 3340 { 3341 3342 /* 3343 * Kernel-invoked always succeeds. 3344 */ 3345 if (cred == NOCRED) 3346 return (0); 3347 3348 /* 3349 * Do not allow privileged processes in jail to directly manipulate 3350 * system attributes. 3351 */ 3352 switch (attrnamespace) { 3353 case EXTATTR_NAMESPACE_SYSTEM: 3354 /* Potentially should be: return (EPERM); */ 3355 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0)); 3356 case EXTATTR_NAMESPACE_USER: 3357 return (VOP_ACCESS(vp, access, cred, td)); 3358 default: 3359 return (EPERM); 3360 } 3361 } 3362 3363 #ifdef DEBUG_VFS_LOCKS 3364 /* 3365 * This only exists to supress warnings from unlocked specfs accesses. It is 3366 * no longer ok to have an unlocked VFS. 3367 */ 3368 #define IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD) 3369 3370 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 3371 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, ""); 3372 3373 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 3374 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, ""); 3375 3376 int vfs_badlock_print = 1; /* Print lock violations. */ 3377 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, ""); 3378 3379 #ifdef KDB 3380 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 3381 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, ""); 3382 #endif 3383 3384 static void 3385 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 3386 { 3387 3388 #ifdef KDB 3389 if (vfs_badlock_backtrace) 3390 kdb_backtrace(); 3391 #endif 3392 if (vfs_badlock_print) 3393 printf("%s: %p %s\n", str, (void *)vp, msg); 3394 if (vfs_badlock_ddb) 3395 kdb_enter("lock violation"); 3396 } 3397 3398 void 3399 assert_vi_locked(struct vnode *vp, const char *str) 3400 { 3401 3402 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 3403 vfs_badlock("interlock is not locked but should be", str, vp); 3404 } 3405 3406 void 3407 assert_vi_unlocked(struct vnode *vp, const char *str) 3408 { 3409 3410 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 3411 vfs_badlock("interlock is locked but should not be", str, vp); 3412 } 3413 3414 void 3415 assert_vop_locked(struct vnode *vp, const char *str) 3416 { 3417 3418 if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0) 3419 vfs_badlock("is not locked but should be", str, vp); 3420 } 3421 3422 void 3423 assert_vop_unlocked(struct vnode *vp, const char *str) 3424 { 3425 3426 if (vp && !IGNORE_LOCK(vp) && 3427 VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) 3428 vfs_badlock("is locked but should not be", str, vp); 3429 } 3430 3431 void 3432 assert_vop_elocked(struct vnode *vp, const char *str) 3433 { 3434 3435 if (vp && !IGNORE_LOCK(vp) && 3436 VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE) 3437 vfs_badlock("is not exclusive locked but should be", str, vp); 3438 } 3439 3440 #if 0 3441 void 3442 assert_vop_elocked_other(struct vnode *vp, const char *str) 3443 { 3444 3445 if (vp && !IGNORE_LOCK(vp) && 3446 VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER) 3447 vfs_badlock("is not exclusive locked by another thread", 3448 str, vp); 3449 } 3450 3451 void 3452 assert_vop_slocked(struct vnode *vp, const char *str) 3453 { 3454 3455 if (vp && !IGNORE_LOCK(vp) && 3456 VOP_ISLOCKED(vp, curthread) != LK_SHARED) 3457 vfs_badlock("is not locked shared but should be", str, vp); 3458 } 3459 #endif /* 0 */ 3460 #endif /* DEBUG_VFS_LOCKS */ 3461 3462 void 3463 vop_rename_pre(void *ap) 3464 { 3465 struct vop_rename_args *a = ap; 3466 3467 #ifdef DEBUG_VFS_LOCKS 3468 if (a->a_tvp) 3469 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 3470 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 3471 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 3472 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 3473 3474 /* Check the source (from). */ 3475 if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp) 3476 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 3477 if (a->a_tvp != a->a_fvp) 3478 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 3479 3480 /* Check the target. */ 3481 if (a->a_tvp) 3482 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 3483 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 3484 #endif 3485 if (a->a_tdvp != a->a_fdvp) 3486 vhold(a->a_fdvp); 3487 if (a->a_tvp != a->a_fvp) 3488 vhold(a->a_fvp); 3489 vhold(a->a_tdvp); 3490 if (a->a_tvp) 3491 vhold(a->a_tvp); 3492 } 3493 3494 void 3495 vop_strategy_pre(void *ap) 3496 { 3497 #ifdef DEBUG_VFS_LOCKS 3498 struct vop_strategy_args *a; 3499 struct buf *bp; 3500 3501 a = ap; 3502 bp = a->a_bp; 3503 3504 /* 3505 * Cluster ops lock their component buffers but not the IO container. 3506 */ 3507 if ((bp->b_flags & B_CLUSTER) != 0) 3508 return; 3509 3510 if (BUF_REFCNT(bp) < 1) { 3511 if (vfs_badlock_print) 3512 printf( 3513 "VOP_STRATEGY: bp is not locked but should be\n"); 3514 if (vfs_badlock_ddb) 3515 kdb_enter("lock violation"); 3516 } 3517 #endif 3518 } 3519 3520 void 3521 vop_lookup_pre(void *ap) 3522 { 3523 #ifdef DEBUG_VFS_LOCKS 3524 struct vop_lookup_args *a; 3525 struct vnode *dvp; 3526 3527 a = ap; 3528 dvp = a->a_dvp; 3529 ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP"); 3530 ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP"); 3531 #endif 3532 } 3533 3534 void 3535 vop_lookup_post(void *ap, int rc) 3536 { 3537 #ifdef DEBUG_VFS_LOCKS 3538 struct vop_lookup_args *a; 3539 struct vnode *dvp; 3540 struct vnode *vp; 3541 3542 a = ap; 3543 dvp = a->a_dvp; 3544 vp = *(a->a_vpp); 3545 3546 ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP"); 3547 ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP"); 3548 3549 if (!rc) 3550 ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)"); 3551 #endif 3552 } 3553 3554 void 3555 vop_lock_pre(void *ap) 3556 { 3557 #ifdef DEBUG_VFS_LOCKS 3558 struct vop_lock1_args *a = ap; 3559 3560 if ((a->a_flags & LK_INTERLOCK) == 0) 3561 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 3562 else 3563 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 3564 #endif 3565 } 3566 3567 void 3568 vop_lock_post(void *ap, int rc) 3569 { 3570 #ifdef DEBUG_VFS_LOCKS 3571 struct vop_lock1_args *a = ap; 3572 3573 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 3574 if (rc == 0) 3575 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 3576 #endif 3577 } 3578 3579 void 3580 vop_unlock_pre(void *ap) 3581 { 3582 #ifdef DEBUG_VFS_LOCKS 3583 struct vop_unlock_args *a = ap; 3584 3585 if (a->a_flags & LK_INTERLOCK) 3586 ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK"); 3587 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); 3588 #endif 3589 } 3590 3591 void 3592 vop_unlock_post(void *ap, int rc) 3593 { 3594 #ifdef DEBUG_VFS_LOCKS 3595 struct vop_unlock_args *a = ap; 3596 3597 if (a->a_flags & LK_INTERLOCK) 3598 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK"); 3599 #endif 3600 } 3601 3602 void 3603 vop_create_post(void *ap, int rc) 3604 { 3605 struct vop_create_args *a = ap; 3606 3607 if (!rc) 3608 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 3609 } 3610 3611 void 3612 vop_link_post(void *ap, int rc) 3613 { 3614 struct vop_link_args *a = ap; 3615 3616 if (!rc) { 3617 VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK); 3618 VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE); 3619 } 3620 } 3621 3622 void 3623 vop_mkdir_post(void *ap, int rc) 3624 { 3625 struct vop_mkdir_args *a = ap; 3626 3627 if (!rc) 3628 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 3629 } 3630 3631 void 3632 vop_mknod_post(void *ap, int rc) 3633 { 3634 struct vop_mknod_args *a = ap; 3635 3636 if (!rc) 3637 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 3638 } 3639 3640 void 3641 vop_remove_post(void *ap, int rc) 3642 { 3643 struct vop_remove_args *a = ap; 3644 3645 if (!rc) { 3646 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 3647 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 3648 } 3649 } 3650 3651 void 3652 vop_rename_post(void *ap, int rc) 3653 { 3654 struct vop_rename_args *a = ap; 3655 3656 if (!rc) { 3657 VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE); 3658 VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE); 3659 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 3660 if (a->a_tvp) 3661 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 3662 } 3663 if (a->a_tdvp != a->a_fdvp) 3664 vdrop(a->a_fdvp); 3665 if (a->a_tvp != a->a_fvp) 3666 vdrop(a->a_fvp); 3667 vdrop(a->a_tdvp); 3668 if (a->a_tvp) 3669 vdrop(a->a_tvp); 3670 } 3671 3672 void 3673 vop_rmdir_post(void *ap, int rc) 3674 { 3675 struct vop_rmdir_args *a = ap; 3676 3677 if (!rc) { 3678 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 3679 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 3680 } 3681 } 3682 3683 void 3684 vop_setattr_post(void *ap, int rc) 3685 { 3686 struct vop_setattr_args *a = ap; 3687 3688 if (!rc) 3689 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 3690 } 3691 3692 void 3693 vop_symlink_post(void *ap, int rc) 3694 { 3695 struct vop_symlink_args *a = ap; 3696 3697 if (!rc) 3698 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 3699 } 3700 3701 static struct knlist fs_knlist; 3702 3703 static void 3704 vfs_event_init(void *arg) 3705 { 3706 knlist_init(&fs_knlist, NULL, NULL, NULL, NULL); 3707 } 3708 /* XXX - correct order? */ 3709 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 3710 3711 void 3712 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused) 3713 { 3714 3715 KNOTE_UNLOCKED(&fs_knlist, event); 3716 } 3717 3718 static int filt_fsattach(struct knote *kn); 3719 static void filt_fsdetach(struct knote *kn); 3720 static int filt_fsevent(struct knote *kn, long hint); 3721 3722 struct filterops fs_filtops = 3723 { 0, filt_fsattach, filt_fsdetach, filt_fsevent }; 3724 3725 static int 3726 filt_fsattach(struct knote *kn) 3727 { 3728 3729 kn->kn_flags |= EV_CLEAR; 3730 knlist_add(&fs_knlist, kn, 0); 3731 return (0); 3732 } 3733 3734 static void 3735 filt_fsdetach(struct knote *kn) 3736 { 3737 3738 knlist_remove(&fs_knlist, kn, 0); 3739 } 3740 3741 static int 3742 filt_fsevent(struct knote *kn, long hint) 3743 { 3744 3745 kn->kn_fflags |= hint; 3746 return (kn->kn_fflags != 0); 3747 } 3748 3749 static int 3750 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 3751 { 3752 struct vfsidctl vc; 3753 int error; 3754 struct mount *mp; 3755 3756 error = SYSCTL_IN(req, &vc, sizeof(vc)); 3757 if (error) 3758 return (error); 3759 if (vc.vc_vers != VFS_CTL_VERS1) 3760 return (EINVAL); 3761 mp = vfs_getvfs(&vc.vc_fsid); 3762 if (mp == NULL) 3763 return (ENOENT); 3764 /* ensure that a specific sysctl goes to the right filesystem. */ 3765 if (strcmp(vc.vc_fstypename, "*") != 0 && 3766 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 3767 vfs_rel(mp); 3768 return (EINVAL); 3769 } 3770 VCTLTOREQ(&vc, req); 3771 error = VFS_SYSCTL(mp, vc.vc_op, req); 3772 vfs_rel(mp); 3773 return (error); 3774 } 3775 3776 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "", 3777 "Sysctl by fsid"); 3778 3779 /* 3780 * Function to initialize a va_filerev field sensibly. 3781 * XXX: Wouldn't a random number make a lot more sense ?? 3782 */ 3783 u_quad_t 3784 init_va_filerev(void) 3785 { 3786 struct bintime bt; 3787 3788 getbinuptime(&bt); 3789 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 3790 } 3791 3792 static int filt_vfsread(struct knote *kn, long hint); 3793 static int filt_vfswrite(struct knote *kn, long hint); 3794 static int filt_vfsvnode(struct knote *kn, long hint); 3795 static void filt_vfsdetach(struct knote *kn); 3796 static struct filterops vfsread_filtops = 3797 { 1, NULL, filt_vfsdetach, filt_vfsread }; 3798 static struct filterops vfswrite_filtops = 3799 { 1, NULL, filt_vfsdetach, filt_vfswrite }; 3800 static struct filterops vfsvnode_filtops = 3801 { 1, NULL, filt_vfsdetach, filt_vfsvnode }; 3802 3803 static void 3804 vfs_knllock(void *arg) 3805 { 3806 struct vnode *vp = arg; 3807 3808 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread); 3809 } 3810 3811 static void 3812 vfs_knlunlock(void *arg) 3813 { 3814 struct vnode *vp = arg; 3815 3816 VOP_UNLOCK(vp, 0, curthread); 3817 } 3818 3819 static int 3820 vfs_knllocked(void *arg) 3821 { 3822 struct vnode *vp = arg; 3823 3824 return (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE); 3825 } 3826 3827 int 3828 vfs_kqfilter(struct vop_kqfilter_args *ap) 3829 { 3830 struct vnode *vp = ap->a_vp; 3831 struct knote *kn = ap->a_kn; 3832 struct knlist *knl; 3833 3834 switch (kn->kn_filter) { 3835 case EVFILT_READ: 3836 kn->kn_fop = &vfsread_filtops; 3837 break; 3838 case EVFILT_WRITE: 3839 kn->kn_fop = &vfswrite_filtops; 3840 break; 3841 case EVFILT_VNODE: 3842 kn->kn_fop = &vfsvnode_filtops; 3843 break; 3844 default: 3845 return (EINVAL); 3846 } 3847 3848 kn->kn_hook = (caddr_t)vp; 3849 3850 if (vp->v_pollinfo == NULL) 3851 v_addpollinfo(vp); 3852 if (vp->v_pollinfo == NULL) 3853 return (ENOMEM); 3854 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 3855 knlist_add(knl, kn, 0); 3856 3857 return (0); 3858 } 3859 3860 /* 3861 * Detach knote from vnode 3862 */ 3863 static void 3864 filt_vfsdetach(struct knote *kn) 3865 { 3866 struct vnode *vp = (struct vnode *)kn->kn_hook; 3867 3868 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 3869 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 3870 } 3871 3872 /*ARGSUSED*/ 3873 static int 3874 filt_vfsread(struct knote *kn, long hint) 3875 { 3876 struct vnode *vp = (struct vnode *)kn->kn_hook; 3877 struct vattr va; 3878 3879 /* 3880 * filesystem is gone, so set the EOF flag and schedule 3881 * the knote for deletion. 3882 */ 3883 if (hint == NOTE_REVOKE) { 3884 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 3885 return (1); 3886 } 3887 3888 if (VOP_GETATTR(vp, &va, curthread->td_ucred, curthread)) 3889 return (0); 3890 3891 kn->kn_data = va.va_size - kn->kn_fp->f_offset; 3892 return (kn->kn_data != 0); 3893 } 3894 3895 /*ARGSUSED*/ 3896 static int 3897 filt_vfswrite(struct knote *kn, long hint) 3898 { 3899 /* 3900 * filesystem is gone, so set the EOF flag and schedule 3901 * the knote for deletion. 3902 */ 3903 if (hint == NOTE_REVOKE) 3904 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 3905 3906 kn->kn_data = 0; 3907 return (1); 3908 } 3909 3910 static int 3911 filt_vfsvnode(struct knote *kn, long hint) 3912 { 3913 if (kn->kn_sfflags & hint) 3914 kn->kn_fflags |= hint; 3915 if (hint == NOTE_REVOKE) { 3916 kn->kn_flags |= EV_EOF; 3917 return (1); 3918 } 3919 return (kn->kn_fflags != 0); 3920 } 3921 3922 int 3923 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 3924 { 3925 int error; 3926 3927 if (dp->d_reclen > ap->a_uio->uio_resid) 3928 return (ENAMETOOLONG); 3929 error = uiomove(dp, dp->d_reclen, ap->a_uio); 3930 if (error) { 3931 if (ap->a_ncookies != NULL) { 3932 if (ap->a_cookies != NULL) 3933 free(ap->a_cookies, M_TEMP); 3934 ap->a_cookies = NULL; 3935 *ap->a_ncookies = 0; 3936 } 3937 return (error); 3938 } 3939 if (ap->a_ncookies == NULL) 3940 return (0); 3941 3942 KASSERT(ap->a_cookies, 3943 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 3944 3945 *ap->a_cookies = realloc(*ap->a_cookies, 3946 (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO); 3947 (*ap->a_cookies)[*ap->a_ncookies] = off; 3948 return (0); 3949 } 3950 3951 /* 3952 * Mark for update the access time of the file if the filesystem 3953 * supports VA_MARK_ATIME. This functionality is used by execve 3954 * and mmap, so we want to avoid the synchronous I/O implied by 3955 * directly setting va_atime for the sake of efficiency. 3956 */ 3957 void 3958 vfs_mark_atime(struct vnode *vp, struct thread *td) 3959 { 3960 struct vattr atimeattr; 3961 3962 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) { 3963 VATTR_NULL(&atimeattr); 3964 atimeattr.va_vaflags |= VA_MARK_ATIME; 3965 (void)VOP_SETATTR(vp, &atimeattr, td->td_ucred, td); 3966 } 3967 } 3968