xref: /freebsd/sys/kern/vfs_subr.c (revision 87b759f0fa1f7554d50ce640c40138512bbded44)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_watchdog.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/asan.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/capsicum.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/counter.h>
54 #include <sys/dirent.h>
55 #include <sys/event.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/file.h>
59 #include <sys/fcntl.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vnode.h>
84 #include <sys/watchdog.h>
85 
86 #include <machine/stdarg.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99 
100 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
101 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
102 #endif
103 
104 #ifdef DDB
105 #include <ddb/ddb.h>
106 #endif
107 
108 static void	delmntque(struct vnode *vp);
109 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
110 		    int slpflag, int slptimeo);
111 static void	syncer_shutdown(void *arg, int howto);
112 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
113 static void	v_init_counters(struct vnode *);
114 static void	vn_seqc_init(struct vnode *);
115 static void	vn_seqc_write_end_free(struct vnode *vp);
116 static void	vgonel(struct vnode *);
117 static bool	vhold_recycle_free(struct vnode *);
118 static void	vdropl_recycle(struct vnode *vp);
119 static void	vdrop_recycle(struct vnode *vp);
120 static void	vfs_knllock(void *arg);
121 static void	vfs_knlunlock(void *arg);
122 static void	vfs_knl_assert_lock(void *arg, int what);
123 static void	destroy_vpollinfo(struct vpollinfo *vi);
124 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
125 		    daddr_t startlbn, daddr_t endlbn);
126 static void	vnlru_recalc(void);
127 
128 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129     "vnode configuration and statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131     "vnode configuration");
132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133     "vnode statistics");
134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135     "vnode recycling");
136 
137 /*
138  * Number of vnodes in existence.  Increased whenever getnewvnode()
139  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140  */
141 static u_long __exclusive_cache_line numvnodes;
142 
143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144     "Number of vnodes in existence (legacy)");
145 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence");
147 
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150     "Number of vnodes created by getnewvnode (legacy)");
151 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
152     "Number of vnodes created by getnewvnode");
153 
154 /*
155  * Conversion tables for conversion from vnode types to inode formats
156  * and back.
157  */
158 __enum_uint8(vtype) iftovt_tab[16] = {
159 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161 };
162 int vttoif_tab[10] = {
163 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165 };
166 
167 /*
168  * List of allocates vnodes in the system.
169  */
170 static TAILQ_HEAD(freelst, vnode) vnode_list;
171 static struct vnode *vnode_list_free_marker;
172 static struct vnode *vnode_list_reclaim_marker;
173 
174 /*
175  * "Free" vnode target.  Free vnodes are rarely completely free, but are
176  * just ones that are cheap to recycle.  Usually they are for files which
177  * have been stat'd but not read; these usually have inode and namecache
178  * data attached to them.  This target is the preferred minimum size of a
179  * sub-cache consisting mostly of such files. The system balances the size
180  * of this sub-cache with its complement to try to prevent either from
181  * thrashing while the other is relatively inactive.  The targets express
182  * a preference for the best balance.
183  *
184  * "Above" this target there are 2 further targets (watermarks) related
185  * to recyling of free vnodes.  In the best-operating case, the cache is
186  * exactly full, the free list has size between vlowat and vhiwat above the
187  * free target, and recycling from it and normal use maintains this state.
188  * Sometimes the free list is below vlowat or even empty, but this state
189  * is even better for immediate use provided the cache is not full.
190  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191  * ones) to reach one of these states.  The watermarks are currently hard-
192  * coded as 4% and 9% of the available space higher.  These and the default
193  * of 25% for wantfreevnodes are too large if the memory size is large.
194  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195  * whenever vnlru_proc() becomes active.
196  */
197 static long wantfreevnodes;
198 static long __exclusive_cache_line freevnodes;
199 static long freevnodes_old;
200 
201 static u_long recycles_count;
202 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
203     "Number of vnodes recycled to meet vnode cache targets (legacy)");
204 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
205     &recycles_count, 0,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static u_long recycles_free_count;
209 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
210     &recycles_free_count, 0,
211     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
212 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
213     &recycles_free_count, 0,
214     "Number of free vnodes recycled to meet vnode cache targets");
215 
216 static counter_u64_t direct_recycles_free_count;
217 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
218     &direct_recycles_free_count,
219     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
220 
221 static counter_u64_t vnode_skipped_requeues;
222 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
223     "Number of times LRU requeue was skipped due to lock contention");
224 
225 static __read_mostly bool vnode_can_skip_requeue;
226 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
227     &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
228 
229 static u_long deferred_inact;
230 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
231     &deferred_inact, 0, "Number of times inactive processing was deferred");
232 
233 /* To keep more than one thread at a time from running vfs_getnewfsid */
234 static struct mtx mntid_mtx;
235 
236 /*
237  * Lock for any access to the following:
238  *	vnode_list
239  *	numvnodes
240  *	freevnodes
241  */
242 static struct mtx __exclusive_cache_line vnode_list_mtx;
243 
244 /* Publicly exported FS */
245 struct nfs_public nfs_pub;
246 
247 static uma_zone_t buf_trie_zone;
248 static smr_t buf_trie_smr;
249 
250 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
251 static uma_zone_t vnode_zone;
252 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
253 
254 __read_frequently smr_t vfs_smr;
255 
256 /*
257  * The workitem queue.
258  *
259  * It is useful to delay writes of file data and filesystem metadata
260  * for tens of seconds so that quickly created and deleted files need
261  * not waste disk bandwidth being created and removed. To realize this,
262  * we append vnodes to a "workitem" queue. When running with a soft
263  * updates implementation, most pending metadata dependencies should
264  * not wait for more than a few seconds. Thus, mounted on block devices
265  * are delayed only about a half the time that file data is delayed.
266  * Similarly, directory updates are more critical, so are only delayed
267  * about a third the time that file data is delayed. Thus, there are
268  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
269  * one each second (driven off the filesystem syncer process). The
270  * syncer_delayno variable indicates the next queue that is to be processed.
271  * Items that need to be processed soon are placed in this queue:
272  *
273  *	syncer_workitem_pending[syncer_delayno]
274  *
275  * A delay of fifteen seconds is done by placing the request fifteen
276  * entries later in the queue:
277  *
278  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
279  *
280  */
281 static int syncer_delayno;
282 static long syncer_mask;
283 LIST_HEAD(synclist, bufobj);
284 static struct synclist *syncer_workitem_pending;
285 /*
286  * The sync_mtx protects:
287  *	bo->bo_synclist
288  *	sync_vnode_count
289  *	syncer_delayno
290  *	syncer_state
291  *	syncer_workitem_pending
292  *	syncer_worklist_len
293  *	rushjob
294  */
295 static struct mtx sync_mtx;
296 static struct cv sync_wakeup;
297 
298 #define SYNCER_MAXDELAY		32
299 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
300 static int syncdelay = 30;		/* max time to delay syncing data */
301 static int filedelay = 30;		/* time to delay syncing files */
302 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
303     "Time to delay syncing files (in seconds)");
304 static int dirdelay = 29;		/* time to delay syncing directories */
305 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
306     "Time to delay syncing directories (in seconds)");
307 static int metadelay = 28;		/* time to delay syncing metadata */
308 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
309     "Time to delay syncing metadata (in seconds)");
310 static int rushjob;		/* number of slots to run ASAP */
311 static int stat_rush_requests;	/* number of times I/O speeded up */
312 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
313     "Number of times I/O speeded up (rush requests)");
314 
315 #define	VDBATCH_SIZE 8
316 struct vdbatch {
317 	u_int index;
318 	struct mtx lock;
319 	struct vnode *tab[VDBATCH_SIZE];
320 };
321 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
322 
323 static void	vdbatch_dequeue(struct vnode *vp);
324 
325 /*
326  * When shutting down the syncer, run it at four times normal speed.
327  */
328 #define SYNCER_SHUTDOWN_SPEEDUP		4
329 static int sync_vnode_count;
330 static int syncer_worklist_len;
331 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
332     syncer_state;
333 
334 /* Target for maximum number of vnodes. */
335 u_long desiredvnodes;
336 static u_long gapvnodes;		/* gap between wanted and desired */
337 static u_long vhiwat;		/* enough extras after expansion */
338 static u_long vlowat;		/* minimal extras before expansion */
339 static bool vstir;		/* nonzero to stir non-free vnodes */
340 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
341 
342 static u_long vnlru_read_freevnodes(void);
343 
344 /*
345  * Note that no attempt is made to sanitize these parameters.
346  */
347 static int
348 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = desiredvnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == desiredvnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	desiredvnodes = val;
362 	wantfreevnodes = desiredvnodes / 4;
363 	vnlru_recalc();
364 	mtx_unlock(&vnode_list_mtx);
365 	/*
366 	 * XXX There is no protection against multiple threads changing
367 	 * desiredvnodes at the same time. Locking above only helps vnlru and
368 	 * getnewvnode.
369 	 */
370 	vfs_hash_changesize(desiredvnodes);
371 	cache_changesize(desiredvnodes);
372 	return (0);
373 }
374 
375 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
376     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377     "LU", "Target for maximum number of vnodes (legacy)");
378 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
379     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
380     "LU", "Target for maximum number of vnodes");
381 
382 static int
383 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
384 {
385 	u_long rfreevnodes;
386 
387 	rfreevnodes = vnlru_read_freevnodes();
388 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
389 }
390 
391 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
392     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393     "LU", "Number of \"free\" vnodes (legacy)");
394 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
395     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
396     "LU", "Number of \"free\" vnodes");
397 
398 static int
399 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
400 {
401 	u_long val;
402 	int error;
403 
404 	val = wantfreevnodes;
405 	error = sysctl_handle_long(oidp, &val, 0, req);
406 	if (error != 0 || req->newptr == NULL)
407 		return (error);
408 
409 	if (val == wantfreevnodes)
410 		return (0);
411 	mtx_lock(&vnode_list_mtx);
412 	wantfreevnodes = val;
413 	vnlru_recalc();
414 	mtx_unlock(&vnode_list_mtx);
415 	return (0);
416 }
417 
418 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
419     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
421 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
422     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
423     "LU", "Target for minimum number of \"free\" vnodes");
424 
425 static int vnlru_nowhere;
426 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
427     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
428 
429 static int
430 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
431 {
432 	struct vnode *vp;
433 	struct nameidata nd;
434 	char *buf;
435 	unsigned long ndflags;
436 	int error;
437 
438 	if (req->newptr == NULL)
439 		return (EINVAL);
440 	if (req->newlen >= PATH_MAX)
441 		return (E2BIG);
442 
443 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
444 	error = SYSCTL_IN(req, buf, req->newlen);
445 	if (error != 0)
446 		goto out;
447 
448 	buf[req->newlen] = '\0';
449 
450 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
451 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
452 	if ((error = namei(&nd)) != 0)
453 		goto out;
454 	vp = nd.ni_vp;
455 
456 	if (VN_IS_DOOMED(vp)) {
457 		/*
458 		 * This vnode is being recycled.  Return != 0 to let the caller
459 		 * know that the sysctl had no effect.  Return EAGAIN because a
460 		 * subsequent call will likely succeed (since namei will create
461 		 * a new vnode if necessary)
462 		 */
463 		error = EAGAIN;
464 		goto putvnode;
465 	}
466 
467 	vgone(vp);
468 putvnode:
469 	vput(vp);
470 	NDFREE_PNBUF(&nd);
471 out:
472 	free(buf, M_TEMP);
473 	return (error);
474 }
475 
476 static int
477 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
478 {
479 	struct thread *td = curthread;
480 	struct vnode *vp;
481 	struct file *fp;
482 	int error;
483 	int fd;
484 
485 	if (req->newptr == NULL)
486 		return (EBADF);
487 
488         error = sysctl_handle_int(oidp, &fd, 0, req);
489         if (error != 0)
490                 return (error);
491 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
492 	if (error != 0)
493 		return (error);
494 	vp = fp->f_vnode;
495 
496 	error = vn_lock(vp, LK_EXCLUSIVE);
497 	if (error != 0)
498 		goto drop;
499 
500 	vgone(vp);
501 	VOP_UNLOCK(vp);
502 drop:
503 	fdrop(fp, td);
504 	return (error);
505 }
506 
507 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
508     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
510 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
511     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
512     sysctl_ftry_reclaim_vnode, "I",
513     "Try to reclaim a vnode by its file descriptor");
514 
515 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
516 #define vnsz2log 8
517 #ifndef DEBUG_LOCKS
518 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
519     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
520     "vnsz2log needs to be updated");
521 #endif
522 
523 /*
524  * Support for the bufobj clean & dirty pctrie.
525  */
526 static void *
527 buf_trie_alloc(struct pctrie *ptree)
528 {
529 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
530 }
531 
532 static void
533 buf_trie_free(struct pctrie *ptree, void *node)
534 {
535 	uma_zfree_smr(buf_trie_zone, node);
536 }
537 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
538     buf_trie_smr);
539 
540 /*
541  * Initialize the vnode management data structures.
542  *
543  * Reevaluate the following cap on the number of vnodes after the physical
544  * memory size exceeds 512GB.  In the limit, as the physical memory size
545  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
546  */
547 #ifndef	MAXVNODES_MAX
548 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
549 #endif
550 
551 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
552 
553 static struct vnode *
554 vn_alloc_marker(struct mount *mp)
555 {
556 	struct vnode *vp;
557 
558 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
559 	vp->v_type = VMARKER;
560 	vp->v_mount = mp;
561 
562 	return (vp);
563 }
564 
565 static void
566 vn_free_marker(struct vnode *vp)
567 {
568 
569 	MPASS(vp->v_type == VMARKER);
570 	free(vp, M_VNODE_MARKER);
571 }
572 
573 #ifdef KASAN
574 static int
575 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
576 {
577 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
578 	return (0);
579 }
580 
581 static void
582 vnode_dtor(void *mem, int size, void *arg __unused)
583 {
584 	size_t end1, end2, off1, off2;
585 
586 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
587 	    offsetof(struct vnode, v_dbatchcpu),
588 	    "KASAN marks require updating");
589 
590 	off1 = offsetof(struct vnode, v_vnodelist);
591 	off2 = offsetof(struct vnode, v_dbatchcpu);
592 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
593 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
594 
595 	/*
596 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
597 	 * after the vnode has been freed.  Try to get some KASAN coverage by
598 	 * marking everything except those two fields as invalid.  Because
599 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
600 	 * the same 8-byte aligned word must also be marked valid.
601 	 */
602 
603 	/* Handle the area from the start until v_vnodelist... */
604 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
605 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
606 
607 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
608 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
609 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
610 	if (off2 > off1)
611 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
612 		    off2 - off1, KASAN_UMA_FREED);
613 
614 	/* ... and finally the area from v_dbatchcpu to the end. */
615 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
616 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
617 	    KASAN_UMA_FREED);
618 }
619 #endif /* KASAN */
620 
621 /*
622  * Initialize a vnode as it first enters the zone.
623  */
624 static int
625 vnode_init(void *mem, int size, int flags)
626 {
627 	struct vnode *vp;
628 
629 	vp = mem;
630 	bzero(vp, size);
631 	/*
632 	 * Setup locks.
633 	 */
634 	vp->v_vnlock = &vp->v_lock;
635 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
636 	/*
637 	 * By default, don't allow shared locks unless filesystems opt-in.
638 	 */
639 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
640 	    LK_NOSHARE | LK_IS_VNODE);
641 	/*
642 	 * Initialize bufobj.
643 	 */
644 	bufobj_init(&vp->v_bufobj, vp);
645 	/*
646 	 * Initialize namecache.
647 	 */
648 	cache_vnode_init(vp);
649 	/*
650 	 * Initialize rangelocks.
651 	 */
652 	rangelock_init(&vp->v_rl);
653 
654 	vp->v_dbatchcpu = NOCPU;
655 
656 	vp->v_state = VSTATE_DEAD;
657 
658 	/*
659 	 * Check vhold_recycle_free for an explanation.
660 	 */
661 	vp->v_holdcnt = VHOLD_NO_SMR;
662 	vp->v_type = VNON;
663 	mtx_lock(&vnode_list_mtx);
664 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
665 	mtx_unlock(&vnode_list_mtx);
666 	return (0);
667 }
668 
669 /*
670  * Free a vnode when it is cleared from the zone.
671  */
672 static void
673 vnode_fini(void *mem, int size)
674 {
675 	struct vnode *vp;
676 	struct bufobj *bo;
677 
678 	vp = mem;
679 	vdbatch_dequeue(vp);
680 	mtx_lock(&vnode_list_mtx);
681 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
682 	mtx_unlock(&vnode_list_mtx);
683 	rangelock_destroy(&vp->v_rl);
684 	lockdestroy(vp->v_vnlock);
685 	mtx_destroy(&vp->v_interlock);
686 	bo = &vp->v_bufobj;
687 	rw_destroy(BO_LOCKPTR(bo));
688 
689 	kasan_mark(mem, size, size, 0);
690 }
691 
692 /*
693  * Provide the size of NFS nclnode and NFS fh for calculation of the
694  * vnode memory consumption.  The size is specified directly to
695  * eliminate dependency on NFS-private header.
696  *
697  * Other filesystems may use bigger or smaller (like UFS and ZFS)
698  * private inode data, but the NFS-based estimation is ample enough.
699  * Still, we care about differences in the size between 64- and 32-bit
700  * platforms.
701  *
702  * Namecache structure size is heuristically
703  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
704  */
705 #ifdef _LP64
706 #define	NFS_NCLNODE_SZ	(528 + 64)
707 #define	NC_SZ		148
708 #else
709 #define	NFS_NCLNODE_SZ	(360 + 32)
710 #define	NC_SZ		92
711 #endif
712 
713 static void
714 vntblinit(void *dummy __unused)
715 {
716 	struct vdbatch *vd;
717 	uma_ctor ctor;
718 	uma_dtor dtor;
719 	int cpu, physvnodes, virtvnodes;
720 
721 	/*
722 	 * Desiredvnodes is a function of the physical memory size and the
723 	 * kernel's heap size.  Generally speaking, it scales with the
724 	 * physical memory size.  The ratio of desiredvnodes to the physical
725 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
726 	 * Thereafter, the
727 	 * marginal ratio of desiredvnodes to the physical memory size is
728 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
729 	 * size.  The memory required by desiredvnodes vnodes and vm objects
730 	 * must not exceed 1/10th of the kernel's heap size.
731 	 */
732 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
733 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
734 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
735 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
736 	desiredvnodes = min(physvnodes, virtvnodes);
737 	if (desiredvnodes > MAXVNODES_MAX) {
738 		if (bootverbose)
739 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
740 			    desiredvnodes, MAXVNODES_MAX);
741 		desiredvnodes = MAXVNODES_MAX;
742 	}
743 	wantfreevnodes = desiredvnodes / 4;
744 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
745 	TAILQ_INIT(&vnode_list);
746 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
747 	/*
748 	 * The lock is taken to appease WITNESS.
749 	 */
750 	mtx_lock(&vnode_list_mtx);
751 	vnlru_recalc();
752 	mtx_unlock(&vnode_list_mtx);
753 	vnode_list_free_marker = vn_alloc_marker(NULL);
754 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
755 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
756 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
757 
758 #ifdef KASAN
759 	ctor = vnode_ctor;
760 	dtor = vnode_dtor;
761 #else
762 	ctor = NULL;
763 	dtor = NULL;
764 #endif
765 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
766 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
767 	uma_zone_set_smr(vnode_zone, vfs_smr);
768 
769 	/*
770 	 * Preallocate enough nodes to support one-per buf so that
771 	 * we can not fail an insert.  reassignbuf() callers can not
772 	 * tolerate the insertion failure.
773 	 */
774 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
775 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
776 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
777 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
778 	uma_prealloc(buf_trie_zone, nbuf);
779 
780 	vnodes_created = counter_u64_alloc(M_WAITOK);
781 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
782 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
783 
784 	/*
785 	 * Initialize the filesystem syncer.
786 	 */
787 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
788 	    &syncer_mask);
789 	syncer_maxdelay = syncer_mask + 1;
790 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
791 	cv_init(&sync_wakeup, "syncer");
792 
793 	CPU_FOREACH(cpu) {
794 		vd = DPCPU_ID_PTR((cpu), vd);
795 		bzero(vd, sizeof(*vd));
796 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
797 	}
798 }
799 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
800 
801 /*
802  * Mark a mount point as busy. Used to synchronize access and to delay
803  * unmounting. Eventually, mountlist_mtx is not released on failure.
804  *
805  * vfs_busy() is a custom lock, it can block the caller.
806  * vfs_busy() only sleeps if the unmount is active on the mount point.
807  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
808  * vnode belonging to mp.
809  *
810  * Lookup uses vfs_busy() to traverse mount points.
811  * root fs			var fs
812  * / vnode lock		A	/ vnode lock (/var)		D
813  * /var vnode lock	B	/log vnode lock(/var/log)	E
814  * vfs_busy lock	C	vfs_busy lock			F
815  *
816  * Within each file system, the lock order is C->A->B and F->D->E.
817  *
818  * When traversing across mounts, the system follows that lock order:
819  *
820  *        C->A->B
821  *              |
822  *              +->F->D->E
823  *
824  * The lookup() process for namei("/var") illustrates the process:
825  *  1. VOP_LOOKUP() obtains B while A is held
826  *  2. vfs_busy() obtains a shared lock on F while A and B are held
827  *  3. vput() releases lock on B
828  *  4. vput() releases lock on A
829  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
830  *  6. vfs_unbusy() releases shared lock on F
831  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
832  *     Attempt to lock A (instead of vp_crossmp) while D is held would
833  *     violate the global order, causing deadlocks.
834  *
835  * dounmount() locks B while F is drained.  Note that for stacked
836  * filesystems, D and B in the example above may be the same lock,
837  * which introdues potential lock order reversal deadlock between
838  * dounmount() and step 5 above.  These filesystems may avoid the LOR
839  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
840  * remain held until after step 5.
841  */
842 int
843 vfs_busy(struct mount *mp, int flags)
844 {
845 	struct mount_pcpu *mpcpu;
846 
847 	MPASS((flags & ~MBF_MASK) == 0);
848 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
849 
850 	if (vfs_op_thread_enter(mp, mpcpu)) {
851 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
852 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
853 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
854 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
855 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
856 		vfs_op_thread_exit(mp, mpcpu);
857 		if (flags & MBF_MNTLSTLOCK)
858 			mtx_unlock(&mountlist_mtx);
859 		return (0);
860 	}
861 
862 	MNT_ILOCK(mp);
863 	vfs_assert_mount_counters(mp);
864 	MNT_REF(mp);
865 	/*
866 	 * If mount point is currently being unmounted, sleep until the
867 	 * mount point fate is decided.  If thread doing the unmounting fails,
868 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
869 	 * that this mount point has survived the unmount attempt and vfs_busy
870 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
871 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
872 	 * about to be really destroyed.  vfs_busy needs to release its
873 	 * reference on the mount point in this case and return with ENOENT,
874 	 * telling the caller the mount it tried to busy is no longer valid.
875 	 */
876 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
877 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
878 		    ("%s: non-empty upper mount list with pending unmount",
879 		    __func__));
880 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
881 			MNT_REL(mp);
882 			MNT_IUNLOCK(mp);
883 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
884 			    __func__);
885 			return (ENOENT);
886 		}
887 		if (flags & MBF_MNTLSTLOCK)
888 			mtx_unlock(&mountlist_mtx);
889 		mp->mnt_kern_flag |= MNTK_MWAIT;
890 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
891 		if (flags & MBF_MNTLSTLOCK)
892 			mtx_lock(&mountlist_mtx);
893 		MNT_ILOCK(mp);
894 	}
895 	if (flags & MBF_MNTLSTLOCK)
896 		mtx_unlock(&mountlist_mtx);
897 	mp->mnt_lockref++;
898 	MNT_IUNLOCK(mp);
899 	return (0);
900 }
901 
902 /*
903  * Free a busy filesystem.
904  */
905 void
906 vfs_unbusy(struct mount *mp)
907 {
908 	struct mount_pcpu *mpcpu;
909 	int c;
910 
911 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
912 
913 	if (vfs_op_thread_enter(mp, mpcpu)) {
914 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
915 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
916 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
917 		vfs_op_thread_exit(mp, mpcpu);
918 		return;
919 	}
920 
921 	MNT_ILOCK(mp);
922 	vfs_assert_mount_counters(mp);
923 	MNT_REL(mp);
924 	c = --mp->mnt_lockref;
925 	if (mp->mnt_vfs_ops == 0) {
926 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
927 		MNT_IUNLOCK(mp);
928 		return;
929 	}
930 	if (c < 0)
931 		vfs_dump_mount_counters(mp);
932 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
933 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
934 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
935 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
936 		wakeup(&mp->mnt_lockref);
937 	}
938 	MNT_IUNLOCK(mp);
939 }
940 
941 /*
942  * Lookup a mount point by filesystem identifier.
943  */
944 struct mount *
945 vfs_getvfs(fsid_t *fsid)
946 {
947 	struct mount *mp;
948 
949 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
950 	mtx_lock(&mountlist_mtx);
951 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
952 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
953 			vfs_ref(mp);
954 			mtx_unlock(&mountlist_mtx);
955 			return (mp);
956 		}
957 	}
958 	mtx_unlock(&mountlist_mtx);
959 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
960 	return ((struct mount *) 0);
961 }
962 
963 /*
964  * Lookup a mount point by filesystem identifier, busying it before
965  * returning.
966  *
967  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
968  * cache for popular filesystem identifiers.  The cache is lockess, using
969  * the fact that struct mount's are never freed.  In worst case we may
970  * get pointer to unmounted or even different filesystem, so we have to
971  * check what we got, and go slow way if so.
972  */
973 struct mount *
974 vfs_busyfs(fsid_t *fsid)
975 {
976 #define	FSID_CACHE_SIZE	256
977 	typedef struct mount * volatile vmp_t;
978 	static vmp_t cache[FSID_CACHE_SIZE];
979 	struct mount *mp;
980 	int error;
981 	uint32_t hash;
982 
983 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
984 	hash = fsid->val[0] ^ fsid->val[1];
985 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
986 	mp = cache[hash];
987 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
988 		goto slow;
989 	if (vfs_busy(mp, 0) != 0) {
990 		cache[hash] = NULL;
991 		goto slow;
992 	}
993 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
994 		return (mp);
995 	else
996 	    vfs_unbusy(mp);
997 
998 slow:
999 	mtx_lock(&mountlist_mtx);
1000 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1001 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1002 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
1003 			if (error) {
1004 				cache[hash] = NULL;
1005 				mtx_unlock(&mountlist_mtx);
1006 				return (NULL);
1007 			}
1008 			cache[hash] = mp;
1009 			return (mp);
1010 		}
1011 	}
1012 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1013 	mtx_unlock(&mountlist_mtx);
1014 	return ((struct mount *) 0);
1015 }
1016 
1017 /*
1018  * Check if a user can access privileged mount options.
1019  */
1020 int
1021 vfs_suser(struct mount *mp, struct thread *td)
1022 {
1023 	int error;
1024 
1025 	if (jailed(td->td_ucred)) {
1026 		/*
1027 		 * If the jail of the calling thread lacks permission for
1028 		 * this type of file system, deny immediately.
1029 		 */
1030 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1031 			return (EPERM);
1032 
1033 		/*
1034 		 * If the file system was mounted outside the jail of the
1035 		 * calling thread, deny immediately.
1036 		 */
1037 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1038 			return (EPERM);
1039 	}
1040 
1041 	/*
1042 	 * If file system supports delegated administration, we don't check
1043 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1044 	 * by the file system itself.
1045 	 * If this is not the user that did original mount, we check for
1046 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1047 	 */
1048 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1049 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1050 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1051 			return (error);
1052 	}
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1058  * will be used to create fake device numbers for stat().  Also try (but
1059  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1060  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1061  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1062  *
1063  * Keep in mind that several mounts may be running in parallel.  Starting
1064  * the search one past where the previous search terminated is both a
1065  * micro-optimization and a defense against returning the same fsid to
1066  * different mounts.
1067  */
1068 void
1069 vfs_getnewfsid(struct mount *mp)
1070 {
1071 	static uint16_t mntid_base;
1072 	struct mount *nmp;
1073 	fsid_t tfsid;
1074 	int mtype;
1075 
1076 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1077 	mtx_lock(&mntid_mtx);
1078 	mtype = mp->mnt_vfc->vfc_typenum;
1079 	tfsid.val[1] = mtype;
1080 	mtype = (mtype & 0xFF) << 24;
1081 	for (;;) {
1082 		tfsid.val[0] = makedev(255,
1083 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1084 		mntid_base++;
1085 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1086 			break;
1087 		vfs_rel(nmp);
1088 	}
1089 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1090 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1091 	mtx_unlock(&mntid_mtx);
1092 }
1093 
1094 /*
1095  * Knob to control the precision of file timestamps:
1096  *
1097  *   0 = seconds only; nanoseconds zeroed.
1098  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1099  *   2 = seconds and nanoseconds, truncated to microseconds.
1100  * >=3 = seconds and nanoseconds, maximum precision.
1101  */
1102 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1103 
1104 static int timestamp_precision = TSP_USEC;
1105 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1106     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1107     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1108     "3+: sec + ns (max. precision))");
1109 
1110 /*
1111  * Get a current timestamp.
1112  */
1113 void
1114 vfs_timestamp(struct timespec *tsp)
1115 {
1116 	struct timeval tv;
1117 
1118 	switch (timestamp_precision) {
1119 	case TSP_SEC:
1120 		tsp->tv_sec = time_second;
1121 		tsp->tv_nsec = 0;
1122 		break;
1123 	case TSP_HZ:
1124 		getnanotime(tsp);
1125 		break;
1126 	case TSP_USEC:
1127 		microtime(&tv);
1128 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1129 		break;
1130 	case TSP_NSEC:
1131 	default:
1132 		nanotime(tsp);
1133 		break;
1134 	}
1135 }
1136 
1137 /*
1138  * Set vnode attributes to VNOVAL
1139  */
1140 void
1141 vattr_null(struct vattr *vap)
1142 {
1143 
1144 	vap->va_type = VNON;
1145 	vap->va_size = VNOVAL;
1146 	vap->va_bytes = VNOVAL;
1147 	vap->va_mode = VNOVAL;
1148 	vap->va_nlink = VNOVAL;
1149 	vap->va_uid = VNOVAL;
1150 	vap->va_gid = VNOVAL;
1151 	vap->va_fsid = VNOVAL;
1152 	vap->va_fileid = VNOVAL;
1153 	vap->va_blocksize = VNOVAL;
1154 	vap->va_rdev = VNOVAL;
1155 	vap->va_atime.tv_sec = VNOVAL;
1156 	vap->va_atime.tv_nsec = VNOVAL;
1157 	vap->va_mtime.tv_sec = VNOVAL;
1158 	vap->va_mtime.tv_nsec = VNOVAL;
1159 	vap->va_ctime.tv_sec = VNOVAL;
1160 	vap->va_ctime.tv_nsec = VNOVAL;
1161 	vap->va_birthtime.tv_sec = VNOVAL;
1162 	vap->va_birthtime.tv_nsec = VNOVAL;
1163 	vap->va_flags = VNOVAL;
1164 	vap->va_gen = VNOVAL;
1165 	vap->va_vaflags = 0;
1166 }
1167 
1168 /*
1169  * Try to reduce the total number of vnodes.
1170  *
1171  * This routine (and its user) are buggy in at least the following ways:
1172  * - all parameters were picked years ago when RAM sizes were significantly
1173  *   smaller
1174  * - it can pick vnodes based on pages used by the vm object, but filesystems
1175  *   like ZFS don't use it making the pick broken
1176  * - since ZFS has its own aging policy it gets partially combated by this one
1177  * - a dedicated method should be provided for filesystems to let them decide
1178  *   whether the vnode should be recycled
1179  *
1180  * This routine is called when we have too many vnodes.  It attempts
1181  * to free <count> vnodes and will potentially free vnodes that still
1182  * have VM backing store (VM backing store is typically the cause
1183  * of a vnode blowout so we want to do this).  Therefore, this operation
1184  * is not considered cheap.
1185  *
1186  * A number of conditions may prevent a vnode from being reclaimed.
1187  * the buffer cache may have references on the vnode, a directory
1188  * vnode may still have references due to the namei cache representing
1189  * underlying files, or the vnode may be in active use.   It is not
1190  * desirable to reuse such vnodes.  These conditions may cause the
1191  * number of vnodes to reach some minimum value regardless of what
1192  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1193  *
1194  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1195  * 			 entries if this argument is strue
1196  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1197  *			 pages.
1198  * @param target	 How many vnodes to reclaim.
1199  * @return		 The number of vnodes that were reclaimed.
1200  */
1201 static int
1202 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1203 {
1204 	struct vnode *vp, *mvp;
1205 	struct mount *mp;
1206 	struct vm_object *object;
1207 	u_long done;
1208 	bool retried;
1209 
1210 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1211 
1212 	retried = false;
1213 	done = 0;
1214 
1215 	mvp = vnode_list_reclaim_marker;
1216 restart:
1217 	vp = mvp;
1218 	while (done < target) {
1219 		vp = TAILQ_NEXT(vp, v_vnodelist);
1220 		if (__predict_false(vp == NULL))
1221 			break;
1222 
1223 		if (__predict_false(vp->v_type == VMARKER))
1224 			continue;
1225 
1226 		/*
1227 		 * If it's been deconstructed already, it's still
1228 		 * referenced, or it exceeds the trigger, skip it.
1229 		 * Also skip free vnodes.  We are trying to make space
1230 		 * for more free vnodes, not reduce their count.
1231 		 */
1232 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1233 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1234 			goto next_iter;
1235 
1236 		if (vp->v_type == VBAD || vp->v_type == VNON)
1237 			goto next_iter;
1238 
1239 		object = atomic_load_ptr(&vp->v_object);
1240 		if (object == NULL || object->resident_page_count > trigger) {
1241 			goto next_iter;
1242 		}
1243 
1244 		/*
1245 		 * Handle races against vnode allocation. Filesystems lock the
1246 		 * vnode some time after it gets returned from getnewvnode,
1247 		 * despite type and hold count being manipulated earlier.
1248 		 * Resorting to checking v_mount restores guarantees present
1249 		 * before the global list was reworked to contain all vnodes.
1250 		 */
1251 		if (!VI_TRYLOCK(vp))
1252 			goto next_iter;
1253 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1254 			VI_UNLOCK(vp);
1255 			goto next_iter;
1256 		}
1257 		if (vp->v_mount == NULL) {
1258 			VI_UNLOCK(vp);
1259 			goto next_iter;
1260 		}
1261 		vholdl(vp);
1262 		VI_UNLOCK(vp);
1263 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1264 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1265 		mtx_unlock(&vnode_list_mtx);
1266 
1267 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1268 			vdrop_recycle(vp);
1269 			goto next_iter_unlocked;
1270 		}
1271 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1272 			vdrop_recycle(vp);
1273 			vn_finished_write(mp);
1274 			goto next_iter_unlocked;
1275 		}
1276 
1277 		VI_LOCK(vp);
1278 		if (vp->v_usecount > 0 ||
1279 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1280 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1281 		    vp->v_object->resident_page_count > trigger)) {
1282 			VOP_UNLOCK(vp);
1283 			vdropl_recycle(vp);
1284 			vn_finished_write(mp);
1285 			goto next_iter_unlocked;
1286 		}
1287 		recycles_count++;
1288 		vgonel(vp);
1289 		VOP_UNLOCK(vp);
1290 		vdropl_recycle(vp);
1291 		vn_finished_write(mp);
1292 		done++;
1293 next_iter_unlocked:
1294 		maybe_yield();
1295 		mtx_lock(&vnode_list_mtx);
1296 		goto restart;
1297 next_iter:
1298 		MPASS(vp->v_type != VMARKER);
1299 		if (!should_yield())
1300 			continue;
1301 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1303 		mtx_unlock(&vnode_list_mtx);
1304 		kern_yield(PRI_USER);
1305 		mtx_lock(&vnode_list_mtx);
1306 		goto restart;
1307 	}
1308 	if (done == 0 && !retried) {
1309 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1310 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1311 		retried = true;
1312 		goto restart;
1313 	}
1314 	return (done);
1315 }
1316 
1317 static int max_free_per_call = 10000;
1318 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1319     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1320 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1321     &max_free_per_call, 0,
1322     "limit on vnode free requests per call to the vnlru_free routine");
1323 
1324 /*
1325  * Attempt to recycle requested amount of free vnodes.
1326  */
1327 static int
1328 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1329 {
1330 	struct vnode *vp;
1331 	struct mount *mp;
1332 	int ocount;
1333 	bool retried;
1334 
1335 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1336 	if (count > max_free_per_call)
1337 		count = max_free_per_call;
1338 	if (count == 0) {
1339 		mtx_unlock(&vnode_list_mtx);
1340 		return (0);
1341 	}
1342 	ocount = count;
1343 	retried = false;
1344 	vp = mvp;
1345 	for (;;) {
1346 		vp = TAILQ_NEXT(vp, v_vnodelist);
1347 		if (__predict_false(vp == NULL)) {
1348 			/*
1349 			 * The free vnode marker can be past eligible vnodes:
1350 			 * 1. if vdbatch_process trylock failed
1351 			 * 2. if vtryrecycle failed
1352 			 *
1353 			 * If so, start the scan from scratch.
1354 			 */
1355 			if (!retried && vnlru_read_freevnodes() > 0) {
1356 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1357 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1358 				vp = mvp;
1359 				retried = true;
1360 				continue;
1361 			}
1362 
1363 			/*
1364 			 * Give up
1365 			 */
1366 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1367 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1368 			mtx_unlock(&vnode_list_mtx);
1369 			break;
1370 		}
1371 		if (__predict_false(vp->v_type == VMARKER))
1372 			continue;
1373 		if (vp->v_holdcnt > 0)
1374 			continue;
1375 		/*
1376 		 * Don't recycle if our vnode is from different type
1377 		 * of mount point.  Note that mp is type-safe, the
1378 		 * check does not reach unmapped address even if
1379 		 * vnode is reclaimed.
1380 		 */
1381 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1382 		    mp->mnt_op != mnt_op) {
1383 			continue;
1384 		}
1385 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1386 			continue;
1387 		}
1388 		if (!vhold_recycle_free(vp))
1389 			continue;
1390 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1392 		mtx_unlock(&vnode_list_mtx);
1393 		/*
1394 		 * FIXME: ignores the return value, meaning it may be nothing
1395 		 * got recycled but it claims otherwise to the caller.
1396 		 *
1397 		 * Originally the value started being ignored in 2005 with
1398 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1399 		 *
1400 		 * Respecting the value can run into significant stalls if most
1401 		 * vnodes belong to one file system and it has writes
1402 		 * suspended.  In presence of many threads and millions of
1403 		 * vnodes they keep contending on the vnode_list_mtx lock only
1404 		 * to find vnodes they can't recycle.
1405 		 *
1406 		 * The solution would be to pre-check if the vnode is likely to
1407 		 * be recycle-able, but it needs to happen with the
1408 		 * vnode_list_mtx lock held. This runs into a problem where
1409 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1410 		 * writes are frozen) can take locks which LOR against it.
1411 		 *
1412 		 * Check nullfs for one example (null_getwritemount).
1413 		 */
1414 		vtryrecycle(vp, isvnlru);
1415 		count--;
1416 		if (count == 0) {
1417 			break;
1418 		}
1419 		mtx_lock(&vnode_list_mtx);
1420 		vp = mvp;
1421 	}
1422 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1423 	return (ocount - count);
1424 }
1425 
1426 /*
1427  * XXX: returns without vnode_list_mtx locked!
1428  */
1429 static int
1430 vnlru_free_locked_direct(int count)
1431 {
1432 	int ret;
1433 
1434 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1435 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1436 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1437 	return (ret);
1438 }
1439 
1440 static int
1441 vnlru_free_locked_vnlru(int count)
1442 {
1443 	int ret;
1444 
1445 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1446 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1447 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1448 	return (ret);
1449 }
1450 
1451 static int
1452 vnlru_free_vnlru(int count)
1453 {
1454 
1455 	mtx_lock(&vnode_list_mtx);
1456 	return (vnlru_free_locked_vnlru(count));
1457 }
1458 
1459 void
1460 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1461 {
1462 
1463 	MPASS(mnt_op != NULL);
1464 	MPASS(mvp != NULL);
1465 	VNPASS(mvp->v_type == VMARKER, mvp);
1466 	mtx_lock(&vnode_list_mtx);
1467 	vnlru_free_impl(count, mnt_op, mvp, true);
1468 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1469 }
1470 
1471 struct vnode *
1472 vnlru_alloc_marker(void)
1473 {
1474 	struct vnode *mvp;
1475 
1476 	mvp = vn_alloc_marker(NULL);
1477 	mtx_lock(&vnode_list_mtx);
1478 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1479 	mtx_unlock(&vnode_list_mtx);
1480 	return (mvp);
1481 }
1482 
1483 void
1484 vnlru_free_marker(struct vnode *mvp)
1485 {
1486 	mtx_lock(&vnode_list_mtx);
1487 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1488 	mtx_unlock(&vnode_list_mtx);
1489 	vn_free_marker(mvp);
1490 }
1491 
1492 static void
1493 vnlru_recalc(void)
1494 {
1495 
1496 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1497 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1498 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1499 	vlowat = vhiwat / 2;
1500 }
1501 
1502 /*
1503  * Attempt to recycle vnodes in a context that is always safe to block.
1504  * Calling vlrurecycle() from the bowels of filesystem code has some
1505  * interesting deadlock problems.
1506  */
1507 static struct proc *vnlruproc;
1508 static int vnlruproc_sig;
1509 static u_long vnlruproc_kicks;
1510 
1511 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1512     "Number of times vnlru awakened due to vnode shortage");
1513 
1514 #define VNLRU_COUNT_SLOP 100
1515 
1516 /*
1517  * The main freevnodes counter is only updated when a counter local to CPU
1518  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1519  * walked to compute a more accurate total.
1520  *
1521  * Note: the actual value at any given moment can still exceed slop, but it
1522  * should not be by significant margin in practice.
1523  */
1524 #define VNLRU_FREEVNODES_SLOP 126
1525 
1526 static void __noinline
1527 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1528 {
1529 
1530 	atomic_add_long(&freevnodes, *lfreevnodes);
1531 	*lfreevnodes = 0;
1532 	critical_exit();
1533 }
1534 
1535 static __inline void
1536 vfs_freevnodes_inc(void)
1537 {
1538 	int8_t *lfreevnodes;
1539 
1540 	critical_enter();
1541 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1542 	(*lfreevnodes)++;
1543 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1544 		vfs_freevnodes_rollup(lfreevnodes);
1545 	else
1546 		critical_exit();
1547 }
1548 
1549 static __inline void
1550 vfs_freevnodes_dec(void)
1551 {
1552 	int8_t *lfreevnodes;
1553 
1554 	critical_enter();
1555 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1556 	(*lfreevnodes)--;
1557 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1558 		vfs_freevnodes_rollup(lfreevnodes);
1559 	else
1560 		critical_exit();
1561 }
1562 
1563 static u_long
1564 vnlru_read_freevnodes(void)
1565 {
1566 	long slop, rfreevnodes, rfreevnodes_old;
1567 	int cpu;
1568 
1569 	rfreevnodes = atomic_load_long(&freevnodes);
1570 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1571 
1572 	if (rfreevnodes > rfreevnodes_old)
1573 		slop = rfreevnodes - rfreevnodes_old;
1574 	else
1575 		slop = rfreevnodes_old - rfreevnodes;
1576 	if (slop < VNLRU_FREEVNODES_SLOP)
1577 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1578 	CPU_FOREACH(cpu) {
1579 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1580 	}
1581 	atomic_store_long(&freevnodes_old, rfreevnodes);
1582 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1583 }
1584 
1585 static bool
1586 vnlru_under(u_long rnumvnodes, u_long limit)
1587 {
1588 	u_long rfreevnodes, space;
1589 
1590 	if (__predict_false(rnumvnodes > desiredvnodes))
1591 		return (true);
1592 
1593 	space = desiredvnodes - rnumvnodes;
1594 	if (space < limit) {
1595 		rfreevnodes = vnlru_read_freevnodes();
1596 		if (rfreevnodes > wantfreevnodes)
1597 			space += rfreevnodes - wantfreevnodes;
1598 	}
1599 	return (space < limit);
1600 }
1601 
1602 static void
1603 vnlru_kick_locked(void)
1604 {
1605 
1606 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1607 	if (vnlruproc_sig == 0) {
1608 		vnlruproc_sig = 1;
1609 		vnlruproc_kicks++;
1610 		wakeup(vnlruproc);
1611 	}
1612 }
1613 
1614 static void
1615 vnlru_kick_cond(void)
1616 {
1617 
1618 	if (vnlru_read_freevnodes() > wantfreevnodes)
1619 		return;
1620 
1621 	if (vnlruproc_sig)
1622 		return;
1623 	mtx_lock(&vnode_list_mtx);
1624 	vnlru_kick_locked();
1625 	mtx_unlock(&vnode_list_mtx);
1626 }
1627 
1628 static void
1629 vnlru_proc_sleep(void)
1630 {
1631 
1632 	if (vnlruproc_sig) {
1633 		vnlruproc_sig = 0;
1634 		wakeup(&vnlruproc_sig);
1635 	}
1636 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1637 }
1638 
1639 /*
1640  * A lighter version of the machinery below.
1641  *
1642  * Tries to reach goals only by recycling free vnodes and does not invoke
1643  * uma_reclaim(UMA_RECLAIM_DRAIN).
1644  *
1645  * This works around pathological behavior in vnlru in presence of tons of free
1646  * vnodes, but without having to rewrite the machinery at this time. Said
1647  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1648  * (cycling through all levels of "force") when the count is transiently above
1649  * limit. This happens a lot when all vnodes are used up and vn_alloc
1650  * speculatively increments the counter.
1651  *
1652  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1653  * 1 million files in total and 20 find(1) processes stating them in parallel
1654  * (one per each tree).
1655  *
1656  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1657  * seconds to execute (time varies *wildly* between runs). With the workaround
1658  * it consistently stays around 20 seconds [it got further down with later
1659  * changes].
1660  *
1661  * That is to say the entire thing needs a fundamental redesign (most notably
1662  * to accommodate faster recycling), the above only tries to get it ouf the way.
1663  *
1664  * Return values are:
1665  * -1 -- fallback to regular vnlru loop
1666  *  0 -- do nothing, go to sleep
1667  * >0 -- recycle this many vnodes
1668  */
1669 static long
1670 vnlru_proc_light_pick(void)
1671 {
1672 	u_long rnumvnodes, rfreevnodes;
1673 
1674 	if (vstir || vnlruproc_sig == 1)
1675 		return (-1);
1676 
1677 	rnumvnodes = atomic_load_long(&numvnodes);
1678 	rfreevnodes = vnlru_read_freevnodes();
1679 
1680 	/*
1681 	 * vnode limit might have changed and now we may be at a significant
1682 	 * excess. Bail if we can't sort it out with free vnodes.
1683 	 *
1684 	 * Due to atomic updates the count can legitimately go above
1685 	 * the limit for a short period, don't bother doing anything in
1686 	 * that case.
1687 	 */
1688 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1689 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1690 		    rfreevnodes <= wantfreevnodes) {
1691 			return (-1);
1692 		}
1693 
1694 		return (rnumvnodes - desiredvnodes);
1695 	}
1696 
1697 	/*
1698 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1699 	 * to begin with.
1700 	 */
1701 	if (rnumvnodes < wantfreevnodes) {
1702 		return (0);
1703 	}
1704 
1705 	if (rfreevnodes < wantfreevnodes) {
1706 		return (-1);
1707 	}
1708 
1709 	return (0);
1710 }
1711 
1712 static bool
1713 vnlru_proc_light(void)
1714 {
1715 	long freecount;
1716 
1717 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1718 
1719 	freecount = vnlru_proc_light_pick();
1720 	if (freecount == -1)
1721 		return (false);
1722 
1723 	if (freecount != 0) {
1724 		vnlru_free_vnlru(freecount);
1725 	}
1726 
1727 	mtx_lock(&vnode_list_mtx);
1728 	vnlru_proc_sleep();
1729 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1730 	return (true);
1731 }
1732 
1733 static u_long uma_reclaim_calls;
1734 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1735     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1736 
1737 static void
1738 vnlru_proc(void)
1739 {
1740 	u_long rnumvnodes, rfreevnodes, target;
1741 	unsigned long onumvnodes;
1742 	int done, force, trigger, usevnodes;
1743 	bool reclaim_nc_src, want_reread;
1744 
1745 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1746 	    SHUTDOWN_PRI_FIRST);
1747 
1748 	force = 0;
1749 	want_reread = false;
1750 	for (;;) {
1751 		kproc_suspend_check(vnlruproc);
1752 
1753 		if (force == 0 && vnlru_proc_light())
1754 			continue;
1755 
1756 		mtx_lock(&vnode_list_mtx);
1757 		rnumvnodes = atomic_load_long(&numvnodes);
1758 
1759 		if (want_reread) {
1760 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1761 			want_reread = false;
1762 		}
1763 
1764 		/*
1765 		 * If numvnodes is too large (due to desiredvnodes being
1766 		 * adjusted using its sysctl, or emergency growth), first
1767 		 * try to reduce it by discarding free vnodes.
1768 		 */
1769 		if (rnumvnodes > desiredvnodes + 10) {
1770 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1771 			mtx_lock(&vnode_list_mtx);
1772 			rnumvnodes = atomic_load_long(&numvnodes);
1773 		}
1774 		/*
1775 		 * Sleep if the vnode cache is in a good state.  This is
1776 		 * when it is not over-full and has space for about a 4%
1777 		 * or 9% expansion (by growing its size or inexcessively
1778 		 * reducing free vnode count).  Otherwise, try to reclaim
1779 		 * space for a 10% expansion.
1780 		 */
1781 		if (vstir && force == 0) {
1782 			force = 1;
1783 			vstir = false;
1784 		}
1785 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1786 			vnlru_proc_sleep();
1787 			continue;
1788 		}
1789 		rfreevnodes = vnlru_read_freevnodes();
1790 
1791 		onumvnodes = rnumvnodes;
1792 		/*
1793 		 * Calculate parameters for recycling.  These are the same
1794 		 * throughout the loop to give some semblance of fairness.
1795 		 * The trigger point is to avoid recycling vnodes with lots
1796 		 * of resident pages.  We aren't trying to free memory; we
1797 		 * are trying to recycle or at least free vnodes.
1798 		 */
1799 		if (rnumvnodes <= desiredvnodes)
1800 			usevnodes = rnumvnodes - rfreevnodes;
1801 		else
1802 			usevnodes = rnumvnodes;
1803 		if (usevnodes <= 0)
1804 			usevnodes = 1;
1805 		/*
1806 		 * The trigger value is chosen to give a conservatively
1807 		 * large value to ensure that it alone doesn't prevent
1808 		 * making progress.  The value can easily be so large that
1809 		 * it is effectively infinite in some congested and
1810 		 * misconfigured cases, and this is necessary.  Normally
1811 		 * it is about 8 to 100 (pages), which is quite large.
1812 		 */
1813 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1814 		if (force < 2)
1815 			trigger = vsmalltrigger;
1816 		reclaim_nc_src = force >= 3;
1817 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1818 		target = target / 10 + 1;
1819 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1820 		mtx_unlock(&vnode_list_mtx);
1821 		/*
1822 		 * Total number of vnodes can transiently go slightly above the
1823 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1824 		 * this happens.
1825 		 */
1826 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1827 		    numvnodes <= desiredvnodes) {
1828 			uma_reclaim_calls++;
1829 			uma_reclaim(UMA_RECLAIM_DRAIN);
1830 		}
1831 		if (done == 0) {
1832 			if (force == 0 || force == 1) {
1833 				force = 2;
1834 				continue;
1835 			}
1836 			if (force == 2) {
1837 				force = 3;
1838 				continue;
1839 			}
1840 			want_reread = true;
1841 			force = 0;
1842 			vnlru_nowhere++;
1843 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1844 		} else {
1845 			want_reread = true;
1846 			kern_yield(PRI_USER);
1847 		}
1848 	}
1849 }
1850 
1851 static struct kproc_desc vnlru_kp = {
1852 	"vnlru",
1853 	vnlru_proc,
1854 	&vnlruproc
1855 };
1856 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1857     &vnlru_kp);
1858 
1859 /*
1860  * Routines having to do with the management of the vnode table.
1861  */
1862 
1863 /*
1864  * Try to recycle a freed vnode.
1865  */
1866 static int
1867 vtryrecycle(struct vnode *vp, bool isvnlru)
1868 {
1869 	struct mount *vnmp;
1870 
1871 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1872 	VNPASS(vp->v_holdcnt > 0, vp);
1873 	/*
1874 	 * This vnode may found and locked via some other list, if so we
1875 	 * can't recycle it yet.
1876 	 */
1877 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1878 		CTR2(KTR_VFS,
1879 		    "%s: impossible to recycle, vp %p lock is already held",
1880 		    __func__, vp);
1881 		vdrop_recycle(vp);
1882 		return (EWOULDBLOCK);
1883 	}
1884 	/*
1885 	 * Don't recycle if its filesystem is being suspended.
1886 	 */
1887 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1888 		VOP_UNLOCK(vp);
1889 		CTR2(KTR_VFS,
1890 		    "%s: impossible to recycle, cannot start the write for %p",
1891 		    __func__, vp);
1892 		vdrop_recycle(vp);
1893 		return (EBUSY);
1894 	}
1895 	/*
1896 	 * If we got this far, we need to acquire the interlock and see if
1897 	 * anyone picked up this vnode from another list.  If not, we will
1898 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1899 	 * will skip over it.
1900 	 */
1901 	VI_LOCK(vp);
1902 	if (vp->v_usecount) {
1903 		VOP_UNLOCK(vp);
1904 		vdropl_recycle(vp);
1905 		vn_finished_write(vnmp);
1906 		CTR2(KTR_VFS,
1907 		    "%s: impossible to recycle, %p is already referenced",
1908 		    __func__, vp);
1909 		return (EBUSY);
1910 	}
1911 	if (!VN_IS_DOOMED(vp)) {
1912 		if (isvnlru)
1913 			recycles_free_count++;
1914 		else
1915 			counter_u64_add(direct_recycles_free_count, 1);
1916 		vgonel(vp);
1917 	}
1918 	VOP_UNLOCK(vp);
1919 	vdropl_recycle(vp);
1920 	vn_finished_write(vnmp);
1921 	return (0);
1922 }
1923 
1924 /*
1925  * Allocate a new vnode.
1926  *
1927  * The operation never returns an error. Returning an error was disabled
1928  * in r145385 (dated 2005) with the following comment:
1929  *
1930  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1931  *
1932  * Given the age of this commit (almost 15 years at the time of writing this
1933  * comment) restoring the ability to fail requires a significant audit of
1934  * all codepaths.
1935  *
1936  * The routine can try to free a vnode or stall for up to 1 second waiting for
1937  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1938  */
1939 static u_long vn_alloc_cyclecount;
1940 static u_long vn_alloc_sleeps;
1941 
1942 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1943     "Number of times vnode allocation blocked waiting on vnlru");
1944 
1945 static struct vnode * __noinline
1946 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1947 {
1948 	u_long rfreevnodes;
1949 
1950 	if (bumped) {
1951 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1952 			atomic_subtract_long(&numvnodes, 1);
1953 			bumped = false;
1954 		}
1955 	}
1956 
1957 	mtx_lock(&vnode_list_mtx);
1958 
1959 	if (vn_alloc_cyclecount != 0) {
1960 		rnumvnodes = atomic_load_long(&numvnodes);
1961 		if (rnumvnodes + 1 < desiredvnodes) {
1962 			vn_alloc_cyclecount = 0;
1963 			mtx_unlock(&vnode_list_mtx);
1964 			goto alloc;
1965 		}
1966 
1967 		rfreevnodes = vnlru_read_freevnodes();
1968 		if (rfreevnodes < wantfreevnodes) {
1969 			if (vn_alloc_cyclecount++ >= rfreevnodes) {
1970 				vn_alloc_cyclecount = 0;
1971 				vstir = true;
1972 			}
1973 		} else {
1974 			vn_alloc_cyclecount = 0;
1975 		}
1976 	}
1977 
1978 	/*
1979 	 * Grow the vnode cache if it will not be above its target max after
1980 	 * growing.  Otherwise, if there is at least one free vnode, try to
1981 	 * reclaim 1 item from it before growing the cache (possibly above its
1982 	 * target max if the reclamation failed or is delayed).
1983 	 */
1984 	if (vnlru_free_locked_direct(1) > 0)
1985 		goto alloc;
1986 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1987 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1988 		/*
1989 		 * Wait for space for a new vnode.
1990 		 */
1991 		if (bumped) {
1992 			atomic_subtract_long(&numvnodes, 1);
1993 			bumped = false;
1994 		}
1995 		mtx_lock(&vnode_list_mtx);
1996 		vnlru_kick_locked();
1997 		vn_alloc_sleeps++;
1998 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1999 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2000 		    vnlru_read_freevnodes() > 1)
2001 			vnlru_free_locked_direct(1);
2002 		else
2003 			mtx_unlock(&vnode_list_mtx);
2004 	}
2005 alloc:
2006 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2007 	if (!bumped)
2008 		atomic_add_long(&numvnodes, 1);
2009 	vnlru_kick_cond();
2010 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2011 }
2012 
2013 static struct vnode *
2014 vn_alloc(struct mount *mp)
2015 {
2016 	u_long rnumvnodes;
2017 
2018 	if (__predict_false(vn_alloc_cyclecount != 0))
2019 		return (vn_alloc_hard(mp, 0, false));
2020 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2021 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2022 		return (vn_alloc_hard(mp, rnumvnodes, true));
2023 	}
2024 
2025 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2026 }
2027 
2028 static void
2029 vn_free(struct vnode *vp)
2030 {
2031 
2032 	atomic_subtract_long(&numvnodes, 1);
2033 	uma_zfree_smr(vnode_zone, vp);
2034 }
2035 
2036 /*
2037  * Allocate a new vnode.
2038  */
2039 int
2040 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2041     struct vnode **vpp)
2042 {
2043 	struct vnode *vp;
2044 	struct thread *td;
2045 	struct lock_object *lo;
2046 
2047 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2048 
2049 	KASSERT(vops->registered,
2050 	    ("%s: not registered vector op %p\n", __func__, vops));
2051 	cache_validate_vop_vector(mp, vops);
2052 
2053 	td = curthread;
2054 	if (td->td_vp_reserved != NULL) {
2055 		vp = td->td_vp_reserved;
2056 		td->td_vp_reserved = NULL;
2057 	} else {
2058 		vp = vn_alloc(mp);
2059 	}
2060 	counter_u64_add(vnodes_created, 1);
2061 
2062 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2063 
2064 	/*
2065 	 * Locks are given the generic name "vnode" when created.
2066 	 * Follow the historic practice of using the filesystem
2067 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2068 	 *
2069 	 * Locks live in a witness group keyed on their name. Thus,
2070 	 * when a lock is renamed, it must also move from the witness
2071 	 * group of its old name to the witness group of its new name.
2072 	 *
2073 	 * The change only needs to be made when the vnode moves
2074 	 * from one filesystem type to another. We ensure that each
2075 	 * filesystem use a single static name pointer for its tag so
2076 	 * that we can compare pointers rather than doing a strcmp().
2077 	 */
2078 	lo = &vp->v_vnlock->lock_object;
2079 #ifdef WITNESS
2080 	if (lo->lo_name != tag) {
2081 #endif
2082 		lo->lo_name = tag;
2083 #ifdef WITNESS
2084 		WITNESS_DESTROY(lo);
2085 		WITNESS_INIT(lo, tag);
2086 	}
2087 #endif
2088 	/*
2089 	 * By default, don't allow shared locks unless filesystems opt-in.
2090 	 */
2091 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2092 	/*
2093 	 * Finalize various vnode identity bits.
2094 	 */
2095 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2096 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2097 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2098 	vp->v_type = VNON;
2099 	vp->v_op = vops;
2100 	vp->v_irflag = 0;
2101 	v_init_counters(vp);
2102 	vn_seqc_init(vp);
2103 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2104 #ifdef DIAGNOSTIC
2105 	if (mp == NULL && vops != &dead_vnodeops)
2106 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2107 #endif
2108 #ifdef MAC
2109 	mac_vnode_init(vp);
2110 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2111 		mac_vnode_associate_singlelabel(mp, vp);
2112 #endif
2113 	if (mp != NULL) {
2114 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2115 	}
2116 
2117 	/*
2118 	 * For the filesystems which do not use vfs_hash_insert(),
2119 	 * still initialize v_hash to have vfs_hash_index() useful.
2120 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2121 	 * its own hashing.
2122 	 */
2123 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2124 
2125 	*vpp = vp;
2126 	return (0);
2127 }
2128 
2129 void
2130 getnewvnode_reserve(void)
2131 {
2132 	struct thread *td;
2133 
2134 	td = curthread;
2135 	MPASS(td->td_vp_reserved == NULL);
2136 	td->td_vp_reserved = vn_alloc(NULL);
2137 }
2138 
2139 void
2140 getnewvnode_drop_reserve(void)
2141 {
2142 	struct thread *td;
2143 
2144 	td = curthread;
2145 	if (td->td_vp_reserved != NULL) {
2146 		vn_free(td->td_vp_reserved);
2147 		td->td_vp_reserved = NULL;
2148 	}
2149 }
2150 
2151 static void __noinline
2152 freevnode(struct vnode *vp)
2153 {
2154 	struct bufobj *bo;
2155 
2156 	/*
2157 	 * The vnode has been marked for destruction, so free it.
2158 	 *
2159 	 * The vnode will be returned to the zone where it will
2160 	 * normally remain until it is needed for another vnode. We
2161 	 * need to cleanup (or verify that the cleanup has already
2162 	 * been done) any residual data left from its current use
2163 	 * so as not to contaminate the freshly allocated vnode.
2164 	 */
2165 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2166 	/*
2167 	 * Paired with vgone.
2168 	 */
2169 	vn_seqc_write_end_free(vp);
2170 
2171 	bo = &vp->v_bufobj;
2172 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2173 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2174 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2175 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2176 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2177 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2178 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2179 	    ("clean blk trie not empty"));
2180 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2181 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2182 	    ("dirty blk trie not empty"));
2183 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2184 	    ("Leaked inactivation"));
2185 	VI_UNLOCK(vp);
2186 	cache_assert_no_entries(vp);
2187 
2188 #ifdef MAC
2189 	mac_vnode_destroy(vp);
2190 #endif
2191 	if (vp->v_pollinfo != NULL) {
2192 		/*
2193 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2194 		 * here while having another vnode locked when trying to
2195 		 * satisfy a lookup and needing to recycle.
2196 		 */
2197 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2198 		destroy_vpollinfo(vp->v_pollinfo);
2199 		VOP_UNLOCK(vp);
2200 		vp->v_pollinfo = NULL;
2201 	}
2202 	vp->v_mountedhere = NULL;
2203 	vp->v_unpcb = NULL;
2204 	vp->v_rdev = NULL;
2205 	vp->v_fifoinfo = NULL;
2206 	vp->v_iflag = 0;
2207 	vp->v_vflag = 0;
2208 	bo->bo_flag = 0;
2209 	vn_free(vp);
2210 }
2211 
2212 /*
2213  * Delete from old mount point vnode list, if on one.
2214  */
2215 static void
2216 delmntque(struct vnode *vp)
2217 {
2218 	struct mount *mp;
2219 
2220 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2221 
2222 	mp = vp->v_mount;
2223 	MNT_ILOCK(mp);
2224 	VI_LOCK(vp);
2225 	vp->v_mount = NULL;
2226 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2227 		("bad mount point vnode list size"));
2228 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2229 	mp->mnt_nvnodelistsize--;
2230 	MNT_REL(mp);
2231 	MNT_IUNLOCK(mp);
2232 	/*
2233 	 * The caller expects the interlock to be still held.
2234 	 */
2235 	ASSERT_VI_LOCKED(vp, __func__);
2236 }
2237 
2238 static int
2239 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2240 {
2241 
2242 	KASSERT(vp->v_mount == NULL,
2243 		("insmntque: vnode already on per mount vnode list"));
2244 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2245 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2246 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2247 	} else {
2248 		KASSERT(!dtr,
2249 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2250 		    __func__));
2251 	}
2252 
2253 	/*
2254 	 * We acquire the vnode interlock early to ensure that the
2255 	 * vnode cannot be recycled by another process releasing a
2256 	 * holdcnt on it before we get it on both the vnode list
2257 	 * and the active vnode list. The mount mutex protects only
2258 	 * manipulation of the vnode list and the vnode freelist
2259 	 * mutex protects only manipulation of the active vnode list.
2260 	 * Hence the need to hold the vnode interlock throughout.
2261 	 */
2262 	MNT_ILOCK(mp);
2263 	VI_LOCK(vp);
2264 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2265 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2266 	    mp->mnt_nvnodelistsize == 0)) &&
2267 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2268 		VI_UNLOCK(vp);
2269 		MNT_IUNLOCK(mp);
2270 		if (dtr) {
2271 			vp->v_data = NULL;
2272 			vp->v_op = &dead_vnodeops;
2273 			vgone(vp);
2274 			vput(vp);
2275 		}
2276 		return (EBUSY);
2277 	}
2278 	vp->v_mount = mp;
2279 	MNT_REF(mp);
2280 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2281 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2282 		("neg mount point vnode list size"));
2283 	mp->mnt_nvnodelistsize++;
2284 	VI_UNLOCK(vp);
2285 	MNT_IUNLOCK(mp);
2286 	return (0);
2287 }
2288 
2289 /*
2290  * Insert into list of vnodes for the new mount point, if available.
2291  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2292  * leaves handling of the vnode to the caller.
2293  */
2294 int
2295 insmntque(struct vnode *vp, struct mount *mp)
2296 {
2297 	return (insmntque1_int(vp, mp, true));
2298 }
2299 
2300 int
2301 insmntque1(struct vnode *vp, struct mount *mp)
2302 {
2303 	return (insmntque1_int(vp, mp, false));
2304 }
2305 
2306 /*
2307  * Flush out and invalidate all buffers associated with a bufobj
2308  * Called with the underlying object locked.
2309  */
2310 int
2311 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2312 {
2313 	int error;
2314 
2315 	BO_LOCK(bo);
2316 	if (flags & V_SAVE) {
2317 		error = bufobj_wwait(bo, slpflag, slptimeo);
2318 		if (error) {
2319 			BO_UNLOCK(bo);
2320 			return (error);
2321 		}
2322 		if (bo->bo_dirty.bv_cnt > 0) {
2323 			BO_UNLOCK(bo);
2324 			do {
2325 				error = BO_SYNC(bo, MNT_WAIT);
2326 			} while (error == ERELOOKUP);
2327 			if (error != 0)
2328 				return (error);
2329 			BO_LOCK(bo);
2330 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2331 				BO_UNLOCK(bo);
2332 				return (EBUSY);
2333 			}
2334 		}
2335 	}
2336 	/*
2337 	 * If you alter this loop please notice that interlock is dropped and
2338 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2339 	 * no race conditions occur from this.
2340 	 */
2341 	do {
2342 		error = flushbuflist(&bo->bo_clean,
2343 		    flags, bo, slpflag, slptimeo);
2344 		if (error == 0 && !(flags & V_CLEANONLY))
2345 			error = flushbuflist(&bo->bo_dirty,
2346 			    flags, bo, slpflag, slptimeo);
2347 		if (error != 0 && error != EAGAIN) {
2348 			BO_UNLOCK(bo);
2349 			return (error);
2350 		}
2351 	} while (error != 0);
2352 
2353 	/*
2354 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2355 	 * have write I/O in-progress but if there is a VM object then the
2356 	 * VM object can also have read-I/O in-progress.
2357 	 */
2358 	do {
2359 		bufobj_wwait(bo, 0, 0);
2360 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2361 			BO_UNLOCK(bo);
2362 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2363 			BO_LOCK(bo);
2364 		}
2365 	} while (bo->bo_numoutput > 0);
2366 	BO_UNLOCK(bo);
2367 
2368 	/*
2369 	 * Destroy the copy in the VM cache, too.
2370 	 */
2371 	if (bo->bo_object != NULL &&
2372 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2373 		VM_OBJECT_WLOCK(bo->bo_object);
2374 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2375 		    OBJPR_CLEANONLY : 0);
2376 		VM_OBJECT_WUNLOCK(bo->bo_object);
2377 	}
2378 
2379 #ifdef INVARIANTS
2380 	BO_LOCK(bo);
2381 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2382 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2383 	    bo->bo_clean.bv_cnt > 0))
2384 		panic("vinvalbuf: flush failed");
2385 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2386 	    bo->bo_dirty.bv_cnt > 0)
2387 		panic("vinvalbuf: flush dirty failed");
2388 	BO_UNLOCK(bo);
2389 #endif
2390 	return (0);
2391 }
2392 
2393 /*
2394  * Flush out and invalidate all buffers associated with a vnode.
2395  * Called with the underlying object locked.
2396  */
2397 int
2398 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2399 {
2400 
2401 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2402 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2403 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2404 		return (0);
2405 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2406 }
2407 
2408 /*
2409  * Flush out buffers on the specified list.
2410  *
2411  */
2412 static int
2413 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2414     int slptimeo)
2415 {
2416 	struct buf *bp, *nbp;
2417 	int retval, error;
2418 	daddr_t lblkno;
2419 	b_xflags_t xflags;
2420 
2421 	ASSERT_BO_WLOCKED(bo);
2422 
2423 	retval = 0;
2424 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2425 		/*
2426 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2427 		 * do not skip any buffers. If we are flushing only V_NORMAL
2428 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2429 		 * flushing only V_ALT buffers then skip buffers not marked
2430 		 * as BX_ALTDATA.
2431 		 */
2432 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2433 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2434 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2435 			continue;
2436 		}
2437 		if (nbp != NULL) {
2438 			lblkno = nbp->b_lblkno;
2439 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2440 		}
2441 		retval = EAGAIN;
2442 		error = BUF_TIMELOCK(bp,
2443 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2444 		    "flushbuf", slpflag, slptimeo);
2445 		if (error) {
2446 			BO_LOCK(bo);
2447 			return (error != ENOLCK ? error : EAGAIN);
2448 		}
2449 		KASSERT(bp->b_bufobj == bo,
2450 		    ("bp %p wrong b_bufobj %p should be %p",
2451 		    bp, bp->b_bufobj, bo));
2452 		/*
2453 		 * XXX Since there are no node locks for NFS, I
2454 		 * believe there is a slight chance that a delayed
2455 		 * write will occur while sleeping just above, so
2456 		 * check for it.
2457 		 */
2458 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2459 		    (flags & V_SAVE)) {
2460 			bremfree(bp);
2461 			bp->b_flags |= B_ASYNC;
2462 			bwrite(bp);
2463 			BO_LOCK(bo);
2464 			return (EAGAIN);	/* XXX: why not loop ? */
2465 		}
2466 		bremfree(bp);
2467 		bp->b_flags |= (B_INVAL | B_RELBUF);
2468 		bp->b_flags &= ~B_ASYNC;
2469 		brelse(bp);
2470 		BO_LOCK(bo);
2471 		if (nbp == NULL)
2472 			break;
2473 		nbp = gbincore(bo, lblkno);
2474 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2475 		    != xflags)
2476 			break;			/* nbp invalid */
2477 	}
2478 	return (retval);
2479 }
2480 
2481 int
2482 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2483 {
2484 	struct buf *bp;
2485 	int error;
2486 	daddr_t lblkno;
2487 
2488 	ASSERT_BO_LOCKED(bo);
2489 
2490 	for (lblkno = startn;;) {
2491 again:
2492 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2493 		if (bp == NULL || bp->b_lblkno >= endn ||
2494 		    bp->b_lblkno < startn)
2495 			break;
2496 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2497 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2498 		if (error != 0) {
2499 			BO_RLOCK(bo);
2500 			if (error == ENOLCK)
2501 				goto again;
2502 			return (error);
2503 		}
2504 		KASSERT(bp->b_bufobj == bo,
2505 		    ("bp %p wrong b_bufobj %p should be %p",
2506 		    bp, bp->b_bufobj, bo));
2507 		lblkno = bp->b_lblkno + 1;
2508 		if ((bp->b_flags & B_MANAGED) == 0)
2509 			bremfree(bp);
2510 		bp->b_flags |= B_RELBUF;
2511 		/*
2512 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2513 		 * pages backing each buffer in the range are unlikely to be
2514 		 * reused.  Dirty buffers will have the hint applied once
2515 		 * they've been written.
2516 		 */
2517 		if ((bp->b_flags & B_VMIO) != 0)
2518 			bp->b_flags |= B_NOREUSE;
2519 		brelse(bp);
2520 		BO_RLOCK(bo);
2521 	}
2522 	return (0);
2523 }
2524 
2525 /*
2526  * Truncate a file's buffer and pages to a specified length.  This
2527  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2528  * sync activity.
2529  */
2530 int
2531 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2532 {
2533 	struct buf *bp, *nbp;
2534 	struct bufobj *bo;
2535 	daddr_t startlbn;
2536 
2537 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2538 	    vp, blksize, (uintmax_t)length);
2539 
2540 	/*
2541 	 * Round up to the *next* lbn.
2542 	 */
2543 	startlbn = howmany(length, blksize);
2544 
2545 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2546 
2547 	bo = &vp->v_bufobj;
2548 restart_unlocked:
2549 	BO_LOCK(bo);
2550 
2551 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2552 		;
2553 
2554 	if (length > 0) {
2555 		/*
2556 		 * Write out vnode metadata, e.g. indirect blocks.
2557 		 */
2558 restartsync:
2559 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2560 			if (bp->b_lblkno >= 0)
2561 				continue;
2562 			/*
2563 			 * Since we hold the vnode lock this should only
2564 			 * fail if we're racing with the buf daemon.
2565 			 */
2566 			if (BUF_LOCK(bp,
2567 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2568 			    BO_LOCKPTR(bo)) == ENOLCK)
2569 				goto restart_unlocked;
2570 
2571 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2572 			    ("buf(%p) on dirty queue without DELWRI", bp));
2573 
2574 			bremfree(bp);
2575 			bawrite(bp);
2576 			BO_LOCK(bo);
2577 			goto restartsync;
2578 		}
2579 	}
2580 
2581 	bufobj_wwait(bo, 0, 0);
2582 	BO_UNLOCK(bo);
2583 	vnode_pager_setsize(vp, length);
2584 
2585 	return (0);
2586 }
2587 
2588 /*
2589  * Invalidate the cached pages of a file's buffer within the range of block
2590  * numbers [startlbn, endlbn).
2591  */
2592 void
2593 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2594     int blksize)
2595 {
2596 	struct bufobj *bo;
2597 	off_t start, end;
2598 
2599 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2600 
2601 	start = blksize * startlbn;
2602 	end = blksize * endlbn;
2603 
2604 	bo = &vp->v_bufobj;
2605 	BO_LOCK(bo);
2606 	MPASS(blksize == bo->bo_bsize);
2607 
2608 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2609 		;
2610 
2611 	BO_UNLOCK(bo);
2612 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2613 }
2614 
2615 static int
2616 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2617     daddr_t startlbn, daddr_t endlbn)
2618 {
2619 	struct buf *bp, *nbp;
2620 	bool anyfreed;
2621 
2622 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2623 	ASSERT_BO_LOCKED(bo);
2624 
2625 	do {
2626 		anyfreed = false;
2627 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2628 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2629 				continue;
2630 			if (BUF_LOCK(bp,
2631 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2632 			    BO_LOCKPTR(bo)) == ENOLCK) {
2633 				BO_LOCK(bo);
2634 				return (EAGAIN);
2635 			}
2636 
2637 			bremfree(bp);
2638 			bp->b_flags |= B_INVAL | B_RELBUF;
2639 			bp->b_flags &= ~B_ASYNC;
2640 			brelse(bp);
2641 			anyfreed = true;
2642 
2643 			BO_LOCK(bo);
2644 			if (nbp != NULL &&
2645 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2646 			    nbp->b_vp != vp ||
2647 			    (nbp->b_flags & B_DELWRI) != 0))
2648 				return (EAGAIN);
2649 		}
2650 
2651 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2652 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2653 				continue;
2654 			if (BUF_LOCK(bp,
2655 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2656 			    BO_LOCKPTR(bo)) == ENOLCK) {
2657 				BO_LOCK(bo);
2658 				return (EAGAIN);
2659 			}
2660 			bremfree(bp);
2661 			bp->b_flags |= B_INVAL | B_RELBUF;
2662 			bp->b_flags &= ~B_ASYNC;
2663 			brelse(bp);
2664 			anyfreed = true;
2665 
2666 			BO_LOCK(bo);
2667 			if (nbp != NULL &&
2668 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2669 			    (nbp->b_vp != vp) ||
2670 			    (nbp->b_flags & B_DELWRI) == 0))
2671 				return (EAGAIN);
2672 		}
2673 	} while (anyfreed);
2674 	return (0);
2675 }
2676 
2677 static void
2678 buf_vlist_remove(struct buf *bp)
2679 {
2680 	struct bufv *bv;
2681 	b_xflags_t flags;
2682 
2683 	flags = bp->b_xflags;
2684 
2685 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2686 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2687 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2688 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2689 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2690 
2691 	if ((flags & BX_VNDIRTY) != 0)
2692 		bv = &bp->b_bufobj->bo_dirty;
2693 	else
2694 		bv = &bp->b_bufobj->bo_clean;
2695 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2696 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2697 	bv->bv_cnt--;
2698 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2699 }
2700 
2701 /*
2702  * Add the buffer to the sorted clean or dirty block list.  Return zero on
2703  * success, EEXIST if a buffer with this identity already exists, or another
2704  * error on allocation failure.
2705  */
2706 static inline int
2707 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2708 {
2709 	struct bufv *bv;
2710 	struct buf *n;
2711 	int error;
2712 
2713 	ASSERT_BO_WLOCKED(bo);
2714 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2715 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2716 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2717 	    ("dead bo %p", bo));
2718 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2719 	    ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2720 
2721 	if (xflags & BX_VNDIRTY)
2722 		bv = &bo->bo_dirty;
2723 	else
2724 		bv = &bo->bo_clean;
2725 
2726 	error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, &n);
2727 	if (n == NULL) {
2728 		KASSERT(error != EEXIST,
2729 		    ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2730 		    bp));
2731 	} else {
2732 		KASSERT((uint64_t)n->b_lblkno <= (uint64_t)bp->b_lblkno,
2733 		    ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2734 		    bp, n));
2735 		KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2736 		    ("buf_vlist_add: inconsistent result for existing buf: "
2737 		    "error %d bp %p n %p", error, bp, n));
2738 	}
2739 	if (error != 0)
2740 		return (error);
2741 
2742 	/* Keep the list ordered. */
2743 	if (n == NULL) {
2744 		KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2745 		    (uint64_t)bp->b_lblkno <
2746 		    (uint64_t)TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2747 		    ("buf_vlist_add: queue order: "
2748 		    "%p should be before first %p",
2749 		    bp, TAILQ_FIRST(&bv->bv_hd)));
2750 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2751 	} else {
2752 		KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2753 		    (uint64_t)bp->b_lblkno <
2754 		    (uint64_t)TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2755 		    ("buf_vlist_add: queue order: "
2756 		    "%p should be before next %p",
2757 		    bp, TAILQ_NEXT(n, b_bobufs)));
2758 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2759 	}
2760 
2761 	bv->bv_cnt++;
2762 	return (0);
2763 }
2764 
2765 /*
2766  * Add the buffer to the sorted clean or dirty block list.
2767  *
2768  * NOTE: xflags is passed as a constant, optimizing this inline function!
2769  */
2770 static void
2771 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2772 {
2773 	int error;
2774 
2775 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2776 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2777 	bp->b_xflags |= xflags;
2778 	error = buf_vlist_find_or_add(bp, bo, xflags);
2779 	if (error)
2780 		panic("buf_vlist_add: error=%d", error);
2781 }
2782 
2783 /*
2784  * Look up a buffer using the buffer tries.
2785  */
2786 struct buf *
2787 gbincore(struct bufobj *bo, daddr_t lblkno)
2788 {
2789 	struct buf *bp;
2790 
2791 	ASSERT_BO_LOCKED(bo);
2792 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2793 	if (bp != NULL)
2794 		return (bp);
2795 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2796 }
2797 
2798 /*
2799  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2800  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2801  * stability of the result.  Like other lockless lookups, the found buf may
2802  * already be invalid by the time this function returns.
2803  */
2804 struct buf *
2805 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2806 {
2807 	struct buf *bp;
2808 
2809 	ASSERT_BO_UNLOCKED(bo);
2810 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2811 	if (bp != NULL)
2812 		return (bp);
2813 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2814 }
2815 
2816 /*
2817  * Associate a buffer with a vnode.
2818  */
2819 int
2820 bgetvp(struct vnode *vp, struct buf *bp)
2821 {
2822 	struct bufobj *bo;
2823 	int error;
2824 
2825 	bo = &vp->v_bufobj;
2826 	ASSERT_BO_UNLOCKED(bo);
2827 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2828 
2829 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2830 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2831 	    ("bgetvp: bp already attached! %p", bp));
2832 
2833 	/*
2834 	 * Add the buf to the vnode's clean list unless we lost a race and find
2835 	 * an existing buf in either dirty or clean.
2836 	 */
2837 	bp->b_vp = vp;
2838 	bp->b_bufobj = bo;
2839 	bp->b_xflags |= BX_VNCLEAN;
2840 	error = EEXIST;
2841 	BO_LOCK(bo);
2842 	if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2843 		error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2844 	BO_UNLOCK(bo);
2845 	if (__predict_true(error == 0)) {
2846 		vhold(vp);
2847 		return (0);
2848 	}
2849 	if (error != EEXIST)
2850 		panic("bgetvp: buf_vlist_add error: %d", error);
2851 	bp->b_vp = NULL;
2852 	bp->b_bufobj = NULL;
2853 	bp->b_xflags &= ~BX_VNCLEAN;
2854 	return (error);
2855 }
2856 
2857 /*
2858  * Disassociate a buffer from a vnode.
2859  */
2860 void
2861 brelvp(struct buf *bp)
2862 {
2863 	struct bufobj *bo;
2864 	struct vnode *vp;
2865 
2866 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2867 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2868 
2869 	/*
2870 	 * Delete from old vnode list, if on one.
2871 	 */
2872 	vp = bp->b_vp;		/* XXX */
2873 	bo = bp->b_bufobj;
2874 	BO_LOCK(bo);
2875 	buf_vlist_remove(bp);
2876 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2877 		bo->bo_flag &= ~BO_ONWORKLST;
2878 		mtx_lock(&sync_mtx);
2879 		LIST_REMOVE(bo, bo_synclist);
2880 		syncer_worklist_len--;
2881 		mtx_unlock(&sync_mtx);
2882 	}
2883 	bp->b_vp = NULL;
2884 	bp->b_bufobj = NULL;
2885 	BO_UNLOCK(bo);
2886 	vdrop(vp);
2887 }
2888 
2889 /*
2890  * Add an item to the syncer work queue.
2891  */
2892 static void
2893 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2894 {
2895 	int slot;
2896 
2897 	ASSERT_BO_WLOCKED(bo);
2898 
2899 	mtx_lock(&sync_mtx);
2900 	if (bo->bo_flag & BO_ONWORKLST)
2901 		LIST_REMOVE(bo, bo_synclist);
2902 	else {
2903 		bo->bo_flag |= BO_ONWORKLST;
2904 		syncer_worklist_len++;
2905 	}
2906 
2907 	if (delay > syncer_maxdelay - 2)
2908 		delay = syncer_maxdelay - 2;
2909 	slot = (syncer_delayno + delay) & syncer_mask;
2910 
2911 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2912 	mtx_unlock(&sync_mtx);
2913 }
2914 
2915 static int
2916 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2917 {
2918 	int error, len;
2919 
2920 	mtx_lock(&sync_mtx);
2921 	len = syncer_worklist_len - sync_vnode_count;
2922 	mtx_unlock(&sync_mtx);
2923 	error = SYSCTL_OUT(req, &len, sizeof(len));
2924 	return (error);
2925 }
2926 
2927 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2928     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2929     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2930 
2931 static struct proc *updateproc;
2932 static void sched_sync(void);
2933 static struct kproc_desc up_kp = {
2934 	"syncer",
2935 	sched_sync,
2936 	&updateproc
2937 };
2938 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2939 
2940 static int
2941 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2942 {
2943 	struct vnode *vp;
2944 	struct mount *mp;
2945 
2946 	*bo = LIST_FIRST(slp);
2947 	if (*bo == NULL)
2948 		return (0);
2949 	vp = bo2vnode(*bo);
2950 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2951 		return (1);
2952 	/*
2953 	 * We use vhold in case the vnode does not
2954 	 * successfully sync.  vhold prevents the vnode from
2955 	 * going away when we unlock the sync_mtx so that
2956 	 * we can acquire the vnode interlock.
2957 	 */
2958 	vholdl(vp);
2959 	mtx_unlock(&sync_mtx);
2960 	VI_UNLOCK(vp);
2961 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2962 		vdrop(vp);
2963 		mtx_lock(&sync_mtx);
2964 		return (*bo == LIST_FIRST(slp));
2965 	}
2966 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2967 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2968 	    ("suspended mp syncing vp %p", vp));
2969 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2970 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2971 	VOP_UNLOCK(vp);
2972 	vn_finished_write(mp);
2973 	BO_LOCK(*bo);
2974 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2975 		/*
2976 		 * Put us back on the worklist.  The worklist
2977 		 * routine will remove us from our current
2978 		 * position and then add us back in at a later
2979 		 * position.
2980 		 */
2981 		vn_syncer_add_to_worklist(*bo, syncdelay);
2982 	}
2983 	BO_UNLOCK(*bo);
2984 	vdrop(vp);
2985 	mtx_lock(&sync_mtx);
2986 	return (0);
2987 }
2988 
2989 static int first_printf = 1;
2990 
2991 /*
2992  * System filesystem synchronizer daemon.
2993  */
2994 static void
2995 sched_sync(void)
2996 {
2997 	struct synclist *next, *slp;
2998 	struct bufobj *bo;
2999 	long starttime;
3000 	struct thread *td = curthread;
3001 	int last_work_seen;
3002 	int net_worklist_len;
3003 	int syncer_final_iter;
3004 	int error;
3005 
3006 	last_work_seen = 0;
3007 	syncer_final_iter = 0;
3008 	syncer_state = SYNCER_RUNNING;
3009 	starttime = time_uptime;
3010 	td->td_pflags |= TDP_NORUNNINGBUF;
3011 
3012 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3013 	    SHUTDOWN_PRI_LAST);
3014 
3015 	mtx_lock(&sync_mtx);
3016 	for (;;) {
3017 		if (syncer_state == SYNCER_FINAL_DELAY &&
3018 		    syncer_final_iter == 0) {
3019 			mtx_unlock(&sync_mtx);
3020 			kproc_suspend_check(td->td_proc);
3021 			mtx_lock(&sync_mtx);
3022 		}
3023 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
3024 		if (syncer_state != SYNCER_RUNNING &&
3025 		    starttime != time_uptime) {
3026 			if (first_printf) {
3027 				printf("\nSyncing disks, vnodes remaining... ");
3028 				first_printf = 0;
3029 			}
3030 			printf("%d ", net_worklist_len);
3031 		}
3032 		starttime = time_uptime;
3033 
3034 		/*
3035 		 * Push files whose dirty time has expired.  Be careful
3036 		 * of interrupt race on slp queue.
3037 		 *
3038 		 * Skip over empty worklist slots when shutting down.
3039 		 */
3040 		do {
3041 			slp = &syncer_workitem_pending[syncer_delayno];
3042 			syncer_delayno += 1;
3043 			if (syncer_delayno == syncer_maxdelay)
3044 				syncer_delayno = 0;
3045 			next = &syncer_workitem_pending[syncer_delayno];
3046 			/*
3047 			 * If the worklist has wrapped since the
3048 			 * it was emptied of all but syncer vnodes,
3049 			 * switch to the FINAL_DELAY state and run
3050 			 * for one more second.
3051 			 */
3052 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
3053 			    net_worklist_len == 0 &&
3054 			    last_work_seen == syncer_delayno) {
3055 				syncer_state = SYNCER_FINAL_DELAY;
3056 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3057 			}
3058 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3059 		    syncer_worklist_len > 0);
3060 
3061 		/*
3062 		 * Keep track of the last time there was anything
3063 		 * on the worklist other than syncer vnodes.
3064 		 * Return to the SHUTTING_DOWN state if any
3065 		 * new work appears.
3066 		 */
3067 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3068 			last_work_seen = syncer_delayno;
3069 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3070 			syncer_state = SYNCER_SHUTTING_DOWN;
3071 		while (!LIST_EMPTY(slp)) {
3072 			error = sync_vnode(slp, &bo, td);
3073 			if (error == 1) {
3074 				LIST_REMOVE(bo, bo_synclist);
3075 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3076 				continue;
3077 			}
3078 
3079 			if (first_printf == 0) {
3080 				/*
3081 				 * Drop the sync mutex, because some watchdog
3082 				 * drivers need to sleep while patting
3083 				 */
3084 				mtx_unlock(&sync_mtx);
3085 				wdog_kern_pat(WD_LASTVAL);
3086 				mtx_lock(&sync_mtx);
3087 			}
3088 		}
3089 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3090 			syncer_final_iter--;
3091 		/*
3092 		 * The variable rushjob allows the kernel to speed up the
3093 		 * processing of the filesystem syncer process. A rushjob
3094 		 * value of N tells the filesystem syncer to process the next
3095 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3096 		 * is used by the soft update code to speed up the filesystem
3097 		 * syncer process when the incore state is getting so far
3098 		 * ahead of the disk that the kernel memory pool is being
3099 		 * threatened with exhaustion.
3100 		 */
3101 		if (rushjob > 0) {
3102 			rushjob -= 1;
3103 			continue;
3104 		}
3105 		/*
3106 		 * Just sleep for a short period of time between
3107 		 * iterations when shutting down to allow some I/O
3108 		 * to happen.
3109 		 *
3110 		 * If it has taken us less than a second to process the
3111 		 * current work, then wait. Otherwise start right over
3112 		 * again. We can still lose time if any single round
3113 		 * takes more than two seconds, but it does not really
3114 		 * matter as we are just trying to generally pace the
3115 		 * filesystem activity.
3116 		 */
3117 		if (syncer_state != SYNCER_RUNNING ||
3118 		    time_uptime == starttime) {
3119 			thread_lock(td);
3120 			sched_prio(td, PPAUSE);
3121 			thread_unlock(td);
3122 		}
3123 		if (syncer_state != SYNCER_RUNNING)
3124 			cv_timedwait(&sync_wakeup, &sync_mtx,
3125 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3126 		else if (time_uptime == starttime)
3127 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3128 	}
3129 }
3130 
3131 /*
3132  * Request the syncer daemon to speed up its work.
3133  * We never push it to speed up more than half of its
3134  * normal turn time, otherwise it could take over the cpu.
3135  */
3136 int
3137 speedup_syncer(void)
3138 {
3139 	int ret = 0;
3140 
3141 	mtx_lock(&sync_mtx);
3142 	if (rushjob < syncdelay / 2) {
3143 		rushjob += 1;
3144 		stat_rush_requests += 1;
3145 		ret = 1;
3146 	}
3147 	mtx_unlock(&sync_mtx);
3148 	cv_broadcast(&sync_wakeup);
3149 	return (ret);
3150 }
3151 
3152 /*
3153  * Tell the syncer to speed up its work and run though its work
3154  * list several times, then tell it to shut down.
3155  */
3156 static void
3157 syncer_shutdown(void *arg, int howto)
3158 {
3159 
3160 	if (howto & RB_NOSYNC)
3161 		return;
3162 	mtx_lock(&sync_mtx);
3163 	syncer_state = SYNCER_SHUTTING_DOWN;
3164 	rushjob = 0;
3165 	mtx_unlock(&sync_mtx);
3166 	cv_broadcast(&sync_wakeup);
3167 	kproc_shutdown(arg, howto);
3168 }
3169 
3170 void
3171 syncer_suspend(void)
3172 {
3173 
3174 	syncer_shutdown(updateproc, 0);
3175 }
3176 
3177 void
3178 syncer_resume(void)
3179 {
3180 
3181 	mtx_lock(&sync_mtx);
3182 	first_printf = 1;
3183 	syncer_state = SYNCER_RUNNING;
3184 	mtx_unlock(&sync_mtx);
3185 	cv_broadcast(&sync_wakeup);
3186 	kproc_resume(updateproc);
3187 }
3188 
3189 /*
3190  * Move the buffer between the clean and dirty lists of its vnode.
3191  */
3192 void
3193 reassignbuf(struct buf *bp)
3194 {
3195 	struct vnode *vp;
3196 	struct bufobj *bo;
3197 	int delay;
3198 #ifdef INVARIANTS
3199 	struct bufv *bv;
3200 #endif
3201 
3202 	vp = bp->b_vp;
3203 	bo = bp->b_bufobj;
3204 
3205 	KASSERT((bp->b_flags & B_PAGING) == 0,
3206 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3207 
3208 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3209 	    bp, bp->b_vp, bp->b_flags);
3210 
3211 	BO_LOCK(bo);
3212 	if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3213 		/*
3214 		 * Coordinate with getblk's unlocked lookup.  Make
3215 		 * BO_NONSTERILE visible before the first reassignbuf produces
3216 		 * any side effect.  This could be outside the bo lock if we
3217 		 * used a separate atomic flag field.
3218 		 */
3219 		bo->bo_flag |= BO_NONSTERILE;
3220 		atomic_thread_fence_rel();
3221 	}
3222 	buf_vlist_remove(bp);
3223 
3224 	/*
3225 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3226 	 * of clean buffers.
3227 	 */
3228 	if (bp->b_flags & B_DELWRI) {
3229 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3230 			switch (vp->v_type) {
3231 			case VDIR:
3232 				delay = dirdelay;
3233 				break;
3234 			case VCHR:
3235 				delay = metadelay;
3236 				break;
3237 			default:
3238 				delay = filedelay;
3239 			}
3240 			vn_syncer_add_to_worklist(bo, delay);
3241 		}
3242 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3243 	} else {
3244 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3245 
3246 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3247 			mtx_lock(&sync_mtx);
3248 			LIST_REMOVE(bo, bo_synclist);
3249 			syncer_worklist_len--;
3250 			mtx_unlock(&sync_mtx);
3251 			bo->bo_flag &= ~BO_ONWORKLST;
3252 		}
3253 	}
3254 #ifdef INVARIANTS
3255 	bv = &bo->bo_clean;
3256 	bp = TAILQ_FIRST(&bv->bv_hd);
3257 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3258 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3259 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3260 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3261 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3262 	bv = &bo->bo_dirty;
3263 	bp = TAILQ_FIRST(&bv->bv_hd);
3264 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3265 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3266 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3267 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3268 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3269 #endif
3270 	BO_UNLOCK(bo);
3271 }
3272 
3273 static void
3274 v_init_counters(struct vnode *vp)
3275 {
3276 
3277 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3278 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3279 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3280 
3281 	refcount_init(&vp->v_holdcnt, 1);
3282 	refcount_init(&vp->v_usecount, 1);
3283 }
3284 
3285 /*
3286  * Get a usecount on a vnode.
3287  *
3288  * vget and vget_finish may fail to lock the vnode if they lose a race against
3289  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3290  *
3291  * Consumers which don't guarantee liveness of the vnode can use SMR to
3292  * try to get a reference. Note this operation can fail since the vnode
3293  * may be awaiting getting freed by the time they get to it.
3294  */
3295 enum vgetstate
3296 vget_prep_smr(struct vnode *vp)
3297 {
3298 	enum vgetstate vs;
3299 
3300 	VFS_SMR_ASSERT_ENTERED();
3301 
3302 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3303 		vs = VGET_USECOUNT;
3304 	} else {
3305 		if (vhold_smr(vp))
3306 			vs = VGET_HOLDCNT;
3307 		else
3308 			vs = VGET_NONE;
3309 	}
3310 	return (vs);
3311 }
3312 
3313 enum vgetstate
3314 vget_prep(struct vnode *vp)
3315 {
3316 	enum vgetstate vs;
3317 
3318 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3319 		vs = VGET_USECOUNT;
3320 	} else {
3321 		vhold(vp);
3322 		vs = VGET_HOLDCNT;
3323 	}
3324 	return (vs);
3325 }
3326 
3327 void
3328 vget_abort(struct vnode *vp, enum vgetstate vs)
3329 {
3330 
3331 	switch (vs) {
3332 	case VGET_USECOUNT:
3333 		vrele(vp);
3334 		break;
3335 	case VGET_HOLDCNT:
3336 		vdrop(vp);
3337 		break;
3338 	default:
3339 		__assert_unreachable();
3340 	}
3341 }
3342 
3343 int
3344 vget(struct vnode *vp, int flags)
3345 {
3346 	enum vgetstate vs;
3347 
3348 	vs = vget_prep(vp);
3349 	return (vget_finish(vp, flags, vs));
3350 }
3351 
3352 int
3353 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3354 {
3355 	int error;
3356 
3357 	if ((flags & LK_INTERLOCK) != 0)
3358 		ASSERT_VI_LOCKED(vp, __func__);
3359 	else
3360 		ASSERT_VI_UNLOCKED(vp, __func__);
3361 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3362 	VNPASS(vp->v_holdcnt > 0, vp);
3363 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3364 
3365 	error = vn_lock(vp, flags);
3366 	if (__predict_false(error != 0)) {
3367 		vget_abort(vp, vs);
3368 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3369 		    vp);
3370 		return (error);
3371 	}
3372 
3373 	vget_finish_ref(vp, vs);
3374 	return (0);
3375 }
3376 
3377 void
3378 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3379 {
3380 	int old;
3381 
3382 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3383 	VNPASS(vp->v_holdcnt > 0, vp);
3384 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3385 
3386 	if (vs == VGET_USECOUNT)
3387 		return;
3388 
3389 	/*
3390 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3391 	 * the vnode around. Otherwise someone else lended their hold count and
3392 	 * we have to drop ours.
3393 	 */
3394 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3395 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3396 	if (old != 0) {
3397 #ifdef INVARIANTS
3398 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3399 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3400 #else
3401 		refcount_release(&vp->v_holdcnt);
3402 #endif
3403 	}
3404 }
3405 
3406 void
3407 vref(struct vnode *vp)
3408 {
3409 	enum vgetstate vs;
3410 
3411 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3412 	vs = vget_prep(vp);
3413 	vget_finish_ref(vp, vs);
3414 }
3415 
3416 void
3417 vrefact(struct vnode *vp)
3418 {
3419 	int old __diagused;
3420 
3421 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3422 	old = refcount_acquire(&vp->v_usecount);
3423 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3424 }
3425 
3426 void
3427 vlazy(struct vnode *vp)
3428 {
3429 	struct mount *mp;
3430 
3431 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3432 
3433 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3434 		return;
3435 	/*
3436 	 * We may get here for inactive routines after the vnode got doomed.
3437 	 */
3438 	if (VN_IS_DOOMED(vp))
3439 		return;
3440 	mp = vp->v_mount;
3441 	mtx_lock(&mp->mnt_listmtx);
3442 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3443 		vp->v_mflag |= VMP_LAZYLIST;
3444 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3445 		mp->mnt_lazyvnodelistsize++;
3446 	}
3447 	mtx_unlock(&mp->mnt_listmtx);
3448 }
3449 
3450 static void
3451 vunlazy(struct vnode *vp)
3452 {
3453 	struct mount *mp;
3454 
3455 	ASSERT_VI_LOCKED(vp, __func__);
3456 	VNPASS(!VN_IS_DOOMED(vp), vp);
3457 
3458 	mp = vp->v_mount;
3459 	mtx_lock(&mp->mnt_listmtx);
3460 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3461 	/*
3462 	 * Don't remove the vnode from the lazy list if another thread
3463 	 * has increased the hold count. It may have re-enqueued the
3464 	 * vnode to the lazy list and is now responsible for its
3465 	 * removal.
3466 	 */
3467 	if (vp->v_holdcnt == 0) {
3468 		vp->v_mflag &= ~VMP_LAZYLIST;
3469 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3470 		mp->mnt_lazyvnodelistsize--;
3471 	}
3472 	mtx_unlock(&mp->mnt_listmtx);
3473 }
3474 
3475 /*
3476  * This routine is only meant to be called from vgonel prior to dooming
3477  * the vnode.
3478  */
3479 static void
3480 vunlazy_gone(struct vnode *vp)
3481 {
3482 	struct mount *mp;
3483 
3484 	ASSERT_VOP_ELOCKED(vp, __func__);
3485 	ASSERT_VI_LOCKED(vp, __func__);
3486 	VNPASS(!VN_IS_DOOMED(vp), vp);
3487 
3488 	if (vp->v_mflag & VMP_LAZYLIST) {
3489 		mp = vp->v_mount;
3490 		mtx_lock(&mp->mnt_listmtx);
3491 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3492 		vp->v_mflag &= ~VMP_LAZYLIST;
3493 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3494 		mp->mnt_lazyvnodelistsize--;
3495 		mtx_unlock(&mp->mnt_listmtx);
3496 	}
3497 }
3498 
3499 static void
3500 vdefer_inactive(struct vnode *vp)
3501 {
3502 
3503 	ASSERT_VI_LOCKED(vp, __func__);
3504 	VNPASS(vp->v_holdcnt > 0, vp);
3505 	if (VN_IS_DOOMED(vp)) {
3506 		vdropl(vp);
3507 		return;
3508 	}
3509 	if (vp->v_iflag & VI_DEFINACT) {
3510 		VNPASS(vp->v_holdcnt > 1, vp);
3511 		vdropl(vp);
3512 		return;
3513 	}
3514 	if (vp->v_usecount > 0) {
3515 		vp->v_iflag &= ~VI_OWEINACT;
3516 		vdropl(vp);
3517 		return;
3518 	}
3519 	vlazy(vp);
3520 	vp->v_iflag |= VI_DEFINACT;
3521 	VI_UNLOCK(vp);
3522 	atomic_add_long(&deferred_inact, 1);
3523 }
3524 
3525 static void
3526 vdefer_inactive_unlocked(struct vnode *vp)
3527 {
3528 
3529 	VI_LOCK(vp);
3530 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3531 		vdropl(vp);
3532 		return;
3533 	}
3534 	vdefer_inactive(vp);
3535 }
3536 
3537 enum vput_op { VRELE, VPUT, VUNREF };
3538 
3539 /*
3540  * Handle ->v_usecount transitioning to 0.
3541  *
3542  * By releasing the last usecount we take ownership of the hold count which
3543  * provides liveness of the vnode, meaning we have to vdrop.
3544  *
3545  * For all vnodes we may need to perform inactive processing. It requires an
3546  * exclusive lock on the vnode, while it is legal to call here with only a
3547  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3548  * inactive processing gets deferred to the syncer.
3549  *
3550  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3551  * on the lock being held all the way until VOP_INACTIVE. This in particular
3552  * happens with UFS which adds half-constructed vnodes to the hash, where they
3553  * can be found by other code.
3554  */
3555 static void
3556 vput_final(struct vnode *vp, enum vput_op func)
3557 {
3558 	int error;
3559 	bool want_unlock;
3560 
3561 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3562 	VNPASS(vp->v_holdcnt > 0, vp);
3563 
3564 	VI_LOCK(vp);
3565 
3566 	/*
3567 	 * By the time we got here someone else might have transitioned
3568 	 * the count back to > 0.
3569 	 */
3570 	if (vp->v_usecount > 0)
3571 		goto out;
3572 
3573 	/*
3574 	 * If the vnode is doomed vgone already performed inactive processing
3575 	 * (if needed).
3576 	 */
3577 	if (VN_IS_DOOMED(vp))
3578 		goto out;
3579 
3580 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3581 		goto out;
3582 
3583 	if (vp->v_iflag & VI_DOINGINACT)
3584 		goto out;
3585 
3586 	/*
3587 	 * Locking operations here will drop the interlock and possibly the
3588 	 * vnode lock, opening a window where the vnode can get doomed all the
3589 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3590 	 * perform inactive.
3591 	 */
3592 	vp->v_iflag |= VI_OWEINACT;
3593 	want_unlock = false;
3594 	error = 0;
3595 	switch (func) {
3596 	case VRELE:
3597 		switch (VOP_ISLOCKED(vp)) {
3598 		case LK_EXCLUSIVE:
3599 			break;
3600 		case LK_EXCLOTHER:
3601 		case 0:
3602 			want_unlock = true;
3603 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3604 			VI_LOCK(vp);
3605 			break;
3606 		default:
3607 			/*
3608 			 * The lock has at least one sharer, but we have no way
3609 			 * to conclude whether this is us. Play it safe and
3610 			 * defer processing.
3611 			 */
3612 			error = EAGAIN;
3613 			break;
3614 		}
3615 		break;
3616 	case VPUT:
3617 		want_unlock = true;
3618 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3619 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3620 			    LK_NOWAIT);
3621 			VI_LOCK(vp);
3622 		}
3623 		break;
3624 	case VUNREF:
3625 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3626 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3627 			VI_LOCK(vp);
3628 		}
3629 		break;
3630 	}
3631 	if (error == 0) {
3632 		if (func == VUNREF) {
3633 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3634 			    ("recursive vunref"));
3635 			vp->v_vflag |= VV_UNREF;
3636 		}
3637 		for (;;) {
3638 			error = vinactive(vp);
3639 			if (want_unlock)
3640 				VOP_UNLOCK(vp);
3641 			if (error != ERELOOKUP || !want_unlock)
3642 				break;
3643 			VOP_LOCK(vp, LK_EXCLUSIVE);
3644 		}
3645 		if (func == VUNREF)
3646 			vp->v_vflag &= ~VV_UNREF;
3647 		vdropl(vp);
3648 	} else {
3649 		vdefer_inactive(vp);
3650 	}
3651 	return;
3652 out:
3653 	if (func == VPUT)
3654 		VOP_UNLOCK(vp);
3655 	vdropl(vp);
3656 }
3657 
3658 /*
3659  * Decrement ->v_usecount for a vnode.
3660  *
3661  * Releasing the last use count requires additional processing, see vput_final
3662  * above for details.
3663  *
3664  * Comment above each variant denotes lock state on entry and exit.
3665  */
3666 
3667 /*
3668  * in: any
3669  * out: same as passed in
3670  */
3671 void
3672 vrele(struct vnode *vp)
3673 {
3674 
3675 	ASSERT_VI_UNLOCKED(vp, __func__);
3676 	if (!refcount_release(&vp->v_usecount))
3677 		return;
3678 	vput_final(vp, VRELE);
3679 }
3680 
3681 /*
3682  * in: locked
3683  * out: unlocked
3684  */
3685 void
3686 vput(struct vnode *vp)
3687 {
3688 
3689 	ASSERT_VOP_LOCKED(vp, __func__);
3690 	ASSERT_VI_UNLOCKED(vp, __func__);
3691 	if (!refcount_release(&vp->v_usecount)) {
3692 		VOP_UNLOCK(vp);
3693 		return;
3694 	}
3695 	vput_final(vp, VPUT);
3696 }
3697 
3698 /*
3699  * in: locked
3700  * out: locked
3701  */
3702 void
3703 vunref(struct vnode *vp)
3704 {
3705 
3706 	ASSERT_VOP_LOCKED(vp, __func__);
3707 	ASSERT_VI_UNLOCKED(vp, __func__);
3708 	if (!refcount_release(&vp->v_usecount))
3709 		return;
3710 	vput_final(vp, VUNREF);
3711 }
3712 
3713 void
3714 vhold(struct vnode *vp)
3715 {
3716 	int old;
3717 
3718 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3719 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3720 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3721 	    ("%s: wrong hold count %d", __func__, old));
3722 	if (old == 0)
3723 		vfs_freevnodes_dec();
3724 }
3725 
3726 void
3727 vholdnz(struct vnode *vp)
3728 {
3729 
3730 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3731 #ifdef INVARIANTS
3732 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3733 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3734 	    ("%s: wrong hold count %d", __func__, old));
3735 #else
3736 	atomic_add_int(&vp->v_holdcnt, 1);
3737 #endif
3738 }
3739 
3740 /*
3741  * Grab a hold count unless the vnode is freed.
3742  *
3743  * Only use this routine if vfs smr is the only protection you have against
3744  * freeing the vnode.
3745  *
3746  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3747  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3748  * the thread which managed to set the flag.
3749  *
3750  * It may be tempting to replace the loop with:
3751  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3752  * if (count & VHOLD_NO_SMR) {
3753  *     backpedal and error out;
3754  * }
3755  *
3756  * However, while this is more performant, it hinders debugging by eliminating
3757  * the previously mentioned invariant.
3758  */
3759 bool
3760 vhold_smr(struct vnode *vp)
3761 {
3762 	int count;
3763 
3764 	VFS_SMR_ASSERT_ENTERED();
3765 
3766 	count = atomic_load_int(&vp->v_holdcnt);
3767 	for (;;) {
3768 		if (count & VHOLD_NO_SMR) {
3769 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3770 			    ("non-zero hold count with flags %d\n", count));
3771 			return (false);
3772 		}
3773 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3774 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3775 			if (count == 0)
3776 				vfs_freevnodes_dec();
3777 			return (true);
3778 		}
3779 	}
3780 }
3781 
3782 /*
3783  * Hold a free vnode for recycling.
3784  *
3785  * Note: vnode_init references this comment.
3786  *
3787  * Attempts to recycle only need the global vnode list lock and have no use for
3788  * SMR.
3789  *
3790  * However, vnodes get inserted into the global list before they get fully
3791  * initialized and stay there until UMA decides to free the memory. This in
3792  * particular means the target can be found before it becomes usable and after
3793  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3794  * VHOLD_NO_SMR.
3795  *
3796  * Note: the vnode may gain more references after we transition the count 0->1.
3797  */
3798 static bool
3799 vhold_recycle_free(struct vnode *vp)
3800 {
3801 	int count;
3802 
3803 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3804 
3805 	count = atomic_load_int(&vp->v_holdcnt);
3806 	for (;;) {
3807 		if (count & VHOLD_NO_SMR) {
3808 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3809 			    ("non-zero hold count with flags %d\n", count));
3810 			return (false);
3811 		}
3812 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3813 		if (count > 0) {
3814 			return (false);
3815 		}
3816 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3817 			vfs_freevnodes_dec();
3818 			return (true);
3819 		}
3820 	}
3821 }
3822 
3823 static void __noinline
3824 vdbatch_process(struct vdbatch *vd)
3825 {
3826 	struct vnode *vp;
3827 	int i;
3828 
3829 	mtx_assert(&vd->lock, MA_OWNED);
3830 	MPASS(curthread->td_pinned > 0);
3831 	MPASS(vd->index == VDBATCH_SIZE);
3832 
3833 	/*
3834 	 * Attempt to requeue the passed batch, but give up easily.
3835 	 *
3836 	 * Despite batching the mechanism is prone to transient *significant*
3837 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3838 	 * if multiple CPUs get here (one real-world example is highly parallel
3839 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3840 	 * quasi-LRU (read: not that great even if fully honoured) provide an
3841 	 * option to just dodge the problem. Parties which don't like it are
3842 	 * welcome to implement something better.
3843 	 */
3844 	if (vnode_can_skip_requeue) {
3845 		if (!mtx_trylock(&vnode_list_mtx)) {
3846 			counter_u64_add(vnode_skipped_requeues, 1);
3847 			critical_enter();
3848 			for (i = 0; i < VDBATCH_SIZE; i++) {
3849 				vp = vd->tab[i];
3850 				vd->tab[i] = NULL;
3851 				MPASS(vp->v_dbatchcpu != NOCPU);
3852 				vp->v_dbatchcpu = NOCPU;
3853 			}
3854 			vd->index = 0;
3855 			critical_exit();
3856 			return;
3857 
3858 		}
3859 		/* fallthrough to locked processing */
3860 	} else {
3861 		mtx_lock(&vnode_list_mtx);
3862 	}
3863 
3864 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3865 	critical_enter();
3866 	for (i = 0; i < VDBATCH_SIZE; i++) {
3867 		vp = vd->tab[i];
3868 		vd->tab[i] = NULL;
3869 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3870 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3871 		MPASS(vp->v_dbatchcpu != NOCPU);
3872 		vp->v_dbatchcpu = NOCPU;
3873 	}
3874 	mtx_unlock(&vnode_list_mtx);
3875 	vd->index = 0;
3876 	critical_exit();
3877 }
3878 
3879 static void
3880 vdbatch_enqueue(struct vnode *vp)
3881 {
3882 	struct vdbatch *vd;
3883 
3884 	ASSERT_VI_LOCKED(vp, __func__);
3885 	VNPASS(!VN_IS_DOOMED(vp), vp);
3886 
3887 	if (vp->v_dbatchcpu != NOCPU) {
3888 		VI_UNLOCK(vp);
3889 		return;
3890 	}
3891 
3892 	sched_pin();
3893 	vd = DPCPU_PTR(vd);
3894 	mtx_lock(&vd->lock);
3895 	MPASS(vd->index < VDBATCH_SIZE);
3896 	MPASS(vd->tab[vd->index] == NULL);
3897 	/*
3898 	 * A hack: we depend on being pinned so that we know what to put in
3899 	 * ->v_dbatchcpu.
3900 	 */
3901 	vp->v_dbatchcpu = curcpu;
3902 	vd->tab[vd->index] = vp;
3903 	vd->index++;
3904 	VI_UNLOCK(vp);
3905 	if (vd->index == VDBATCH_SIZE)
3906 		vdbatch_process(vd);
3907 	mtx_unlock(&vd->lock);
3908 	sched_unpin();
3909 }
3910 
3911 /*
3912  * This routine must only be called for vnodes which are about to be
3913  * deallocated. Supporting dequeue for arbitrary vndoes would require
3914  * validating that the locked batch matches.
3915  */
3916 static void
3917 vdbatch_dequeue(struct vnode *vp)
3918 {
3919 	struct vdbatch *vd;
3920 	int i;
3921 	short cpu;
3922 
3923 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3924 
3925 	cpu = vp->v_dbatchcpu;
3926 	if (cpu == NOCPU)
3927 		return;
3928 
3929 	vd = DPCPU_ID_PTR(cpu, vd);
3930 	mtx_lock(&vd->lock);
3931 	for (i = 0; i < vd->index; i++) {
3932 		if (vd->tab[i] != vp)
3933 			continue;
3934 		vp->v_dbatchcpu = NOCPU;
3935 		vd->index--;
3936 		vd->tab[i] = vd->tab[vd->index];
3937 		vd->tab[vd->index] = NULL;
3938 		break;
3939 	}
3940 	mtx_unlock(&vd->lock);
3941 	/*
3942 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3943 	 */
3944 	MPASS(vp->v_dbatchcpu == NOCPU);
3945 }
3946 
3947 /*
3948  * Drop the hold count of the vnode.
3949  *
3950  * It will only get freed if this is the last hold *and* it has been vgone'd.
3951  *
3952  * Because the vnode vm object keeps a hold reference on the vnode if
3953  * there is at least one resident non-cached page, the vnode cannot
3954  * leave the active list without the page cleanup done.
3955  */
3956 static void __noinline
3957 vdropl_final(struct vnode *vp)
3958 {
3959 
3960 	ASSERT_VI_LOCKED(vp, __func__);
3961 	VNPASS(VN_IS_DOOMED(vp), vp);
3962 	/*
3963 	 * Set the VHOLD_NO_SMR flag.
3964 	 *
3965 	 * We may be racing against vhold_smr. If they win we can just pretend
3966 	 * we never got this far, they will vdrop later.
3967 	 */
3968 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3969 		vfs_freevnodes_inc();
3970 		VI_UNLOCK(vp);
3971 		/*
3972 		 * We lost the aforementioned race. Any subsequent access is
3973 		 * invalid as they might have managed to vdropl on their own.
3974 		 */
3975 		return;
3976 	}
3977 	/*
3978 	 * Don't bump freevnodes as this one is going away.
3979 	 */
3980 	freevnode(vp);
3981 }
3982 
3983 void
3984 vdrop(struct vnode *vp)
3985 {
3986 
3987 	ASSERT_VI_UNLOCKED(vp, __func__);
3988 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3989 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3990 		return;
3991 	VI_LOCK(vp);
3992 	vdropl(vp);
3993 }
3994 
3995 static __always_inline void
3996 vdropl_impl(struct vnode *vp, bool enqueue)
3997 {
3998 
3999 	ASSERT_VI_LOCKED(vp, __func__);
4000 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4001 	if (!refcount_release(&vp->v_holdcnt)) {
4002 		VI_UNLOCK(vp);
4003 		return;
4004 	}
4005 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4006 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4007 	if (VN_IS_DOOMED(vp)) {
4008 		vdropl_final(vp);
4009 		return;
4010 	}
4011 
4012 	vfs_freevnodes_inc();
4013 	if (vp->v_mflag & VMP_LAZYLIST) {
4014 		vunlazy(vp);
4015 	}
4016 
4017 	if (!enqueue) {
4018 		VI_UNLOCK(vp);
4019 		return;
4020 	}
4021 
4022 	/*
4023 	 * Also unlocks the interlock. We can't assert on it as we
4024 	 * released our hold and by now the vnode might have been
4025 	 * freed.
4026 	 */
4027 	vdbatch_enqueue(vp);
4028 }
4029 
4030 void
4031 vdropl(struct vnode *vp)
4032 {
4033 
4034 	vdropl_impl(vp, true);
4035 }
4036 
4037 /*
4038  * vdrop a vnode when recycling
4039  *
4040  * This is a special case routine only to be used when recycling, differs from
4041  * regular vdrop by not requeieing the vnode on LRU.
4042  *
4043  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4044  * e.g., frozen writes on the filesystem), filling the batch and causing it to
4045  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4046  * loop which can last for as long as writes are frozen.
4047  */
4048 static void
4049 vdropl_recycle(struct vnode *vp)
4050 {
4051 
4052 	vdropl_impl(vp, false);
4053 }
4054 
4055 static void
4056 vdrop_recycle(struct vnode *vp)
4057 {
4058 
4059 	VI_LOCK(vp);
4060 	vdropl_recycle(vp);
4061 }
4062 
4063 /*
4064  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4065  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4066  */
4067 static int
4068 vinactivef(struct vnode *vp)
4069 {
4070 	int error;
4071 
4072 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4073 	ASSERT_VI_LOCKED(vp, "vinactive");
4074 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4075 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4076 	vp->v_iflag |= VI_DOINGINACT;
4077 	vp->v_iflag &= ~VI_OWEINACT;
4078 	VI_UNLOCK(vp);
4079 
4080 	/*
4081 	 * Before moving off the active list, we must be sure that any
4082 	 * modified pages are converted into the vnode's dirty
4083 	 * buffers, since these will no longer be checked once the
4084 	 * vnode is on the inactive list.
4085 	 *
4086 	 * The write-out of the dirty pages is asynchronous.  At the
4087 	 * point that VOP_INACTIVE() is called, there could still be
4088 	 * pending I/O and dirty pages in the object.
4089 	 */
4090 	if ((vp->v_vflag & VV_NOSYNC) == 0)
4091 		vnode_pager_clean_async(vp);
4092 
4093 	error = VOP_INACTIVE(vp);
4094 	VI_LOCK(vp);
4095 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4096 	vp->v_iflag &= ~VI_DOINGINACT;
4097 	return (error);
4098 }
4099 
4100 int
4101 vinactive(struct vnode *vp)
4102 {
4103 
4104 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4105 	ASSERT_VI_LOCKED(vp, "vinactive");
4106 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4107 
4108 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4109 		return (0);
4110 	if (vp->v_iflag & VI_DOINGINACT)
4111 		return (0);
4112 	if (vp->v_usecount > 0) {
4113 		vp->v_iflag &= ~VI_OWEINACT;
4114 		return (0);
4115 	}
4116 	return (vinactivef(vp));
4117 }
4118 
4119 /*
4120  * Remove any vnodes in the vnode table belonging to mount point mp.
4121  *
4122  * If FORCECLOSE is not specified, there should not be any active ones,
4123  * return error if any are found (nb: this is a user error, not a
4124  * system error). If FORCECLOSE is specified, detach any active vnodes
4125  * that are found.
4126  *
4127  * If WRITECLOSE is set, only flush out regular file vnodes open for
4128  * writing.
4129  *
4130  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4131  *
4132  * `rootrefs' specifies the base reference count for the root vnode
4133  * of this filesystem. The root vnode is considered busy if its
4134  * v_usecount exceeds this value. On a successful return, vflush(, td)
4135  * will call vrele() on the root vnode exactly rootrefs times.
4136  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4137  * be zero.
4138  */
4139 #ifdef DIAGNOSTIC
4140 static int busyprt = 0;		/* print out busy vnodes */
4141 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4142 #endif
4143 
4144 int
4145 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4146 {
4147 	struct vnode *vp, *mvp, *rootvp = NULL;
4148 	struct vattr vattr;
4149 	int busy = 0, error;
4150 
4151 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4152 	    rootrefs, flags);
4153 	if (rootrefs > 0) {
4154 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4155 		    ("vflush: bad args"));
4156 		/*
4157 		 * Get the filesystem root vnode. We can vput() it
4158 		 * immediately, since with rootrefs > 0, it won't go away.
4159 		 */
4160 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4161 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4162 			    __func__, error);
4163 			return (error);
4164 		}
4165 		vput(rootvp);
4166 	}
4167 loop:
4168 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4169 		vholdl(vp);
4170 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4171 		if (error) {
4172 			vdrop(vp);
4173 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4174 			goto loop;
4175 		}
4176 		/*
4177 		 * Skip over a vnodes marked VV_SYSTEM.
4178 		 */
4179 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4180 			VOP_UNLOCK(vp);
4181 			vdrop(vp);
4182 			continue;
4183 		}
4184 		/*
4185 		 * If WRITECLOSE is set, flush out unlinked but still open
4186 		 * files (even if open only for reading) and regular file
4187 		 * vnodes open for writing.
4188 		 */
4189 		if (flags & WRITECLOSE) {
4190 			vnode_pager_clean_async(vp);
4191 			do {
4192 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4193 			} while (error == ERELOOKUP);
4194 			if (error != 0) {
4195 				VOP_UNLOCK(vp);
4196 				vdrop(vp);
4197 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4198 				return (error);
4199 			}
4200 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4201 			VI_LOCK(vp);
4202 
4203 			if ((vp->v_type == VNON ||
4204 			    (error == 0 && vattr.va_nlink > 0)) &&
4205 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4206 				VOP_UNLOCK(vp);
4207 				vdropl(vp);
4208 				continue;
4209 			}
4210 		} else
4211 			VI_LOCK(vp);
4212 		/*
4213 		 * With v_usecount == 0, all we need to do is clear out the
4214 		 * vnode data structures and we are done.
4215 		 *
4216 		 * If FORCECLOSE is set, forcibly close the vnode.
4217 		 */
4218 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4219 			vgonel(vp);
4220 		} else {
4221 			busy++;
4222 #ifdef DIAGNOSTIC
4223 			if (busyprt)
4224 				vn_printf(vp, "vflush: busy vnode ");
4225 #endif
4226 		}
4227 		VOP_UNLOCK(vp);
4228 		vdropl(vp);
4229 	}
4230 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4231 		/*
4232 		 * If just the root vnode is busy, and if its refcount
4233 		 * is equal to `rootrefs', then go ahead and kill it.
4234 		 */
4235 		VI_LOCK(rootvp);
4236 		KASSERT(busy > 0, ("vflush: not busy"));
4237 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4238 		    ("vflush: usecount %d < rootrefs %d",
4239 		     rootvp->v_usecount, rootrefs));
4240 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4241 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4242 			vgone(rootvp);
4243 			VOP_UNLOCK(rootvp);
4244 			busy = 0;
4245 		} else
4246 			VI_UNLOCK(rootvp);
4247 	}
4248 	if (busy) {
4249 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4250 		    busy);
4251 		return (EBUSY);
4252 	}
4253 	for (; rootrefs > 0; rootrefs--)
4254 		vrele(rootvp);
4255 	return (0);
4256 }
4257 
4258 /*
4259  * Recycle an unused vnode.
4260  */
4261 int
4262 vrecycle(struct vnode *vp)
4263 {
4264 	int recycled;
4265 
4266 	VI_LOCK(vp);
4267 	recycled = vrecyclel(vp);
4268 	VI_UNLOCK(vp);
4269 	return (recycled);
4270 }
4271 
4272 /*
4273  * vrecycle, with the vp interlock held.
4274  */
4275 int
4276 vrecyclel(struct vnode *vp)
4277 {
4278 	int recycled;
4279 
4280 	ASSERT_VOP_ELOCKED(vp, __func__);
4281 	ASSERT_VI_LOCKED(vp, __func__);
4282 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4283 	recycled = 0;
4284 	if (vp->v_usecount == 0) {
4285 		recycled = 1;
4286 		vgonel(vp);
4287 	}
4288 	return (recycled);
4289 }
4290 
4291 /*
4292  * Eliminate all activity associated with a vnode
4293  * in preparation for reuse.
4294  */
4295 void
4296 vgone(struct vnode *vp)
4297 {
4298 	VI_LOCK(vp);
4299 	vgonel(vp);
4300 	VI_UNLOCK(vp);
4301 }
4302 
4303 /*
4304  * Notify upper mounts about reclaimed or unlinked vnode.
4305  */
4306 void
4307 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4308 {
4309 	struct mount *mp;
4310 	struct mount_upper_node *ump;
4311 
4312 	mp = atomic_load_ptr(&vp->v_mount);
4313 	if (mp == NULL)
4314 		return;
4315 	if (TAILQ_EMPTY(&mp->mnt_notify))
4316 		return;
4317 
4318 	MNT_ILOCK(mp);
4319 	mp->mnt_upper_pending++;
4320 	KASSERT(mp->mnt_upper_pending > 0,
4321 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4322 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4323 		MNT_IUNLOCK(mp);
4324 		switch (event) {
4325 		case VFS_NOTIFY_UPPER_RECLAIM:
4326 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4327 			break;
4328 		case VFS_NOTIFY_UPPER_UNLINK:
4329 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4330 			break;
4331 		}
4332 		MNT_ILOCK(mp);
4333 	}
4334 	mp->mnt_upper_pending--;
4335 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4336 	    mp->mnt_upper_pending == 0) {
4337 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4338 		wakeup(&mp->mnt_uppers);
4339 	}
4340 	MNT_IUNLOCK(mp);
4341 }
4342 
4343 /*
4344  * vgone, with the vp interlock held.
4345  */
4346 static void
4347 vgonel(struct vnode *vp)
4348 {
4349 	struct thread *td;
4350 	struct mount *mp;
4351 	vm_object_t object;
4352 	bool active, doinginact, oweinact;
4353 
4354 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4355 	ASSERT_VI_LOCKED(vp, "vgonel");
4356 	VNASSERT(vp->v_holdcnt, vp,
4357 	    ("vgonel: vp %p has no reference.", vp));
4358 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4359 	td = curthread;
4360 
4361 	/*
4362 	 * Don't vgonel if we're already doomed.
4363 	 */
4364 	if (VN_IS_DOOMED(vp)) {
4365 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4366 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4367 		return;
4368 	}
4369 	/*
4370 	 * Paired with freevnode.
4371 	 */
4372 	vn_seqc_write_begin_locked(vp);
4373 	vunlazy_gone(vp);
4374 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4375 	vn_set_state(vp, VSTATE_DESTROYING);
4376 
4377 	/*
4378 	 * Check to see if the vnode is in use.  If so, we have to
4379 	 * call VOP_CLOSE() and VOP_INACTIVE().
4380 	 *
4381 	 * It could be that VOP_INACTIVE() requested reclamation, in
4382 	 * which case we should avoid recursion, so check
4383 	 * VI_DOINGINACT.  This is not precise but good enough.
4384 	 */
4385 	active = vp->v_usecount > 0;
4386 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4387 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4388 
4389 	/*
4390 	 * If we need to do inactive VI_OWEINACT will be set.
4391 	 */
4392 	if (vp->v_iflag & VI_DEFINACT) {
4393 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4394 		vp->v_iflag &= ~VI_DEFINACT;
4395 		vdropl(vp);
4396 	} else {
4397 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4398 		VI_UNLOCK(vp);
4399 	}
4400 	cache_purge_vgone(vp);
4401 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4402 
4403 	/*
4404 	 * If purging an active vnode, it must be closed and
4405 	 * deactivated before being reclaimed.
4406 	 */
4407 	if (active)
4408 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4409 	if (!doinginact) {
4410 		do {
4411 			if (oweinact || active) {
4412 				VI_LOCK(vp);
4413 				vinactivef(vp);
4414 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4415 				VI_UNLOCK(vp);
4416 			}
4417 		} while (oweinact);
4418 	}
4419 	if (vp->v_type == VSOCK)
4420 		vfs_unp_reclaim(vp);
4421 
4422 	/*
4423 	 * Clean out any buffers associated with the vnode.
4424 	 * If the flush fails, just toss the buffers.
4425 	 */
4426 	mp = NULL;
4427 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4428 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4429 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4430 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4431 			;
4432 	}
4433 
4434 	BO_LOCK(&vp->v_bufobj);
4435 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4436 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4437 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4438 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4439 	    ("vp %p bufobj not invalidated", vp));
4440 
4441 	/*
4442 	 * For VMIO bufobj, BO_DEAD is set later, or in
4443 	 * vm_object_terminate() after the object's page queue is
4444 	 * flushed.
4445 	 */
4446 	object = vp->v_bufobj.bo_object;
4447 	if (object == NULL)
4448 		vp->v_bufobj.bo_flag |= BO_DEAD;
4449 	BO_UNLOCK(&vp->v_bufobj);
4450 
4451 	/*
4452 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4453 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4454 	 * should not touch the object borrowed from the lower vnode
4455 	 * (the handle check).
4456 	 */
4457 	if (object != NULL && object->type == OBJT_VNODE &&
4458 	    object->handle == vp)
4459 		vnode_destroy_vobject(vp);
4460 
4461 	/*
4462 	 * Reclaim the vnode.
4463 	 */
4464 	if (VOP_RECLAIM(vp))
4465 		panic("vgone: cannot reclaim");
4466 	if (mp != NULL)
4467 		vn_finished_secondary_write(mp);
4468 	VNASSERT(vp->v_object == NULL, vp,
4469 	    ("vop_reclaim left v_object vp=%p", vp));
4470 	/*
4471 	 * Clear the advisory locks and wake up waiting threads.
4472 	 */
4473 	if (vp->v_lockf != NULL) {
4474 		(void)VOP_ADVLOCKPURGE(vp);
4475 		vp->v_lockf = NULL;
4476 	}
4477 	/*
4478 	 * Delete from old mount point vnode list.
4479 	 */
4480 	if (vp->v_mount == NULL) {
4481 		VI_LOCK(vp);
4482 	} else {
4483 		delmntque(vp);
4484 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4485 	}
4486 	/*
4487 	 * Done with purge, reset to the standard lock and invalidate
4488 	 * the vnode.
4489 	 */
4490 	vp->v_vnlock = &vp->v_lock;
4491 	vp->v_op = &dead_vnodeops;
4492 	vp->v_type = VBAD;
4493 	vn_set_state(vp, VSTATE_DEAD);
4494 }
4495 
4496 /*
4497  * Print out a description of a vnode.
4498  */
4499 static const char *const vtypename[] = {
4500 	[VNON] = "VNON",
4501 	[VREG] = "VREG",
4502 	[VDIR] = "VDIR",
4503 	[VBLK] = "VBLK",
4504 	[VCHR] = "VCHR",
4505 	[VLNK] = "VLNK",
4506 	[VSOCK] = "VSOCK",
4507 	[VFIFO] = "VFIFO",
4508 	[VBAD] = "VBAD",
4509 	[VMARKER] = "VMARKER",
4510 };
4511 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4512     "vnode type name not added to vtypename");
4513 
4514 static const char *const vstatename[] = {
4515 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4516 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4517 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4518 	[VSTATE_DEAD] = "VSTATE_DEAD",
4519 };
4520 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4521     "vnode state name not added to vstatename");
4522 
4523 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4524     "new hold count flag not added to vn_printf");
4525 
4526 void
4527 vn_printf(struct vnode *vp, const char *fmt, ...)
4528 {
4529 	va_list ap;
4530 	char buf[256], buf2[16];
4531 	u_long flags;
4532 	u_int holdcnt;
4533 	short irflag;
4534 
4535 	va_start(ap, fmt);
4536 	vprintf(fmt, ap);
4537 	va_end(ap);
4538 	printf("%p: ", (void *)vp);
4539 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4540 	    vstatename[vp->v_state], vp->v_op);
4541 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4542 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4543 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4544 	    vp->v_seqc_users);
4545 	switch (vp->v_type) {
4546 	case VDIR:
4547 		printf(" mountedhere %p\n", vp->v_mountedhere);
4548 		break;
4549 	case VCHR:
4550 		printf(" rdev %p\n", vp->v_rdev);
4551 		break;
4552 	case VSOCK:
4553 		printf(" socket %p\n", vp->v_unpcb);
4554 		break;
4555 	case VFIFO:
4556 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4557 		break;
4558 	default:
4559 		printf("\n");
4560 		break;
4561 	}
4562 	buf[0] = '\0';
4563 	buf[1] = '\0';
4564 	if (holdcnt & VHOLD_NO_SMR)
4565 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4566 	printf("    hold count flags (%s)\n", buf + 1);
4567 
4568 	buf[0] = '\0';
4569 	buf[1] = '\0';
4570 	irflag = vn_irflag_read(vp);
4571 	if (irflag & VIRF_DOOMED)
4572 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4573 	if (irflag & VIRF_PGREAD)
4574 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4575 	if (irflag & VIRF_MOUNTPOINT)
4576 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4577 	if (irflag & VIRF_TEXT_REF)
4578 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4579 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4580 	if (flags != 0) {
4581 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4582 		strlcat(buf, buf2, sizeof(buf));
4583 	}
4584 	if (vp->v_vflag & VV_ROOT)
4585 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4586 	if (vp->v_vflag & VV_ISTTY)
4587 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4588 	if (vp->v_vflag & VV_NOSYNC)
4589 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4590 	if (vp->v_vflag & VV_ETERNALDEV)
4591 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4592 	if (vp->v_vflag & VV_CACHEDLABEL)
4593 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4594 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4595 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4596 	if (vp->v_vflag & VV_COPYONWRITE)
4597 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4598 	if (vp->v_vflag & VV_SYSTEM)
4599 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4600 	if (vp->v_vflag & VV_PROCDEP)
4601 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4602 	if (vp->v_vflag & VV_DELETED)
4603 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4604 	if (vp->v_vflag & VV_MD)
4605 		strlcat(buf, "|VV_MD", sizeof(buf));
4606 	if (vp->v_vflag & VV_FORCEINSMQ)
4607 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4608 	if (vp->v_vflag & VV_READLINK)
4609 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4610 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4611 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4612 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4613 	if (flags != 0) {
4614 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4615 		strlcat(buf, buf2, sizeof(buf));
4616 	}
4617 	if (vp->v_iflag & VI_MOUNT)
4618 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4619 	if (vp->v_iflag & VI_DOINGINACT)
4620 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4621 	if (vp->v_iflag & VI_OWEINACT)
4622 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4623 	if (vp->v_iflag & VI_DEFINACT)
4624 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4625 	if (vp->v_iflag & VI_FOPENING)
4626 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4627 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4628 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4629 	if (flags != 0) {
4630 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4631 		strlcat(buf, buf2, sizeof(buf));
4632 	}
4633 	if (vp->v_mflag & VMP_LAZYLIST)
4634 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4635 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4636 	if (flags != 0) {
4637 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4638 		strlcat(buf, buf2, sizeof(buf));
4639 	}
4640 	printf("    flags (%s)", buf + 1);
4641 	if (mtx_owned(VI_MTX(vp)))
4642 		printf(" VI_LOCKed");
4643 	printf("\n");
4644 	if (vp->v_object != NULL)
4645 		printf("    v_object %p ref %d pages %d "
4646 		    "cleanbuf %d dirtybuf %d\n",
4647 		    vp->v_object, vp->v_object->ref_count,
4648 		    vp->v_object->resident_page_count,
4649 		    vp->v_bufobj.bo_clean.bv_cnt,
4650 		    vp->v_bufobj.bo_dirty.bv_cnt);
4651 	printf("    ");
4652 	lockmgr_printinfo(vp->v_vnlock);
4653 	if (vp->v_data != NULL)
4654 		VOP_PRINT(vp);
4655 }
4656 
4657 #ifdef DDB
4658 /*
4659  * List all of the locked vnodes in the system.
4660  * Called when debugging the kernel.
4661  */
4662 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4663 {
4664 	struct mount *mp;
4665 	struct vnode *vp;
4666 
4667 	/*
4668 	 * Note: because this is DDB, we can't obey the locking semantics
4669 	 * for these structures, which means we could catch an inconsistent
4670 	 * state and dereference a nasty pointer.  Not much to be done
4671 	 * about that.
4672 	 */
4673 	db_printf("Locked vnodes\n");
4674 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4675 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4676 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4677 				vn_printf(vp, "vnode ");
4678 		}
4679 	}
4680 }
4681 
4682 /*
4683  * Show details about the given vnode.
4684  */
4685 DB_SHOW_COMMAND(vnode, db_show_vnode)
4686 {
4687 	struct vnode *vp;
4688 
4689 	if (!have_addr)
4690 		return;
4691 	vp = (struct vnode *)addr;
4692 	vn_printf(vp, "vnode ");
4693 }
4694 
4695 /*
4696  * Show details about the given mount point.
4697  */
4698 DB_SHOW_COMMAND(mount, db_show_mount)
4699 {
4700 	struct mount *mp;
4701 	struct vfsopt *opt;
4702 	struct statfs *sp;
4703 	struct vnode *vp;
4704 	char buf[512];
4705 	uint64_t mflags;
4706 	u_int flags;
4707 
4708 	if (!have_addr) {
4709 		/* No address given, print short info about all mount points. */
4710 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4711 			db_printf("%p %s on %s (%s)\n", mp,
4712 			    mp->mnt_stat.f_mntfromname,
4713 			    mp->mnt_stat.f_mntonname,
4714 			    mp->mnt_stat.f_fstypename);
4715 			if (db_pager_quit)
4716 				break;
4717 		}
4718 		db_printf("\nMore info: show mount <addr>\n");
4719 		return;
4720 	}
4721 
4722 	mp = (struct mount *)addr;
4723 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4724 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4725 
4726 	buf[0] = '\0';
4727 	mflags = mp->mnt_flag;
4728 #define	MNT_FLAG(flag)	do {						\
4729 	if (mflags & (flag)) {						\
4730 		if (buf[0] != '\0')					\
4731 			strlcat(buf, ", ", sizeof(buf));		\
4732 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4733 		mflags &= ~(flag);					\
4734 	}								\
4735 } while (0)
4736 	MNT_FLAG(MNT_RDONLY);
4737 	MNT_FLAG(MNT_SYNCHRONOUS);
4738 	MNT_FLAG(MNT_NOEXEC);
4739 	MNT_FLAG(MNT_NOSUID);
4740 	MNT_FLAG(MNT_NFS4ACLS);
4741 	MNT_FLAG(MNT_UNION);
4742 	MNT_FLAG(MNT_ASYNC);
4743 	MNT_FLAG(MNT_SUIDDIR);
4744 	MNT_FLAG(MNT_SOFTDEP);
4745 	MNT_FLAG(MNT_NOSYMFOLLOW);
4746 	MNT_FLAG(MNT_GJOURNAL);
4747 	MNT_FLAG(MNT_MULTILABEL);
4748 	MNT_FLAG(MNT_ACLS);
4749 	MNT_FLAG(MNT_NOATIME);
4750 	MNT_FLAG(MNT_NOCLUSTERR);
4751 	MNT_FLAG(MNT_NOCLUSTERW);
4752 	MNT_FLAG(MNT_SUJ);
4753 	MNT_FLAG(MNT_EXRDONLY);
4754 	MNT_FLAG(MNT_EXPORTED);
4755 	MNT_FLAG(MNT_DEFEXPORTED);
4756 	MNT_FLAG(MNT_EXPORTANON);
4757 	MNT_FLAG(MNT_EXKERB);
4758 	MNT_FLAG(MNT_EXPUBLIC);
4759 	MNT_FLAG(MNT_LOCAL);
4760 	MNT_FLAG(MNT_QUOTA);
4761 	MNT_FLAG(MNT_ROOTFS);
4762 	MNT_FLAG(MNT_USER);
4763 	MNT_FLAG(MNT_IGNORE);
4764 	MNT_FLAG(MNT_UPDATE);
4765 	MNT_FLAG(MNT_DELEXPORT);
4766 	MNT_FLAG(MNT_RELOAD);
4767 	MNT_FLAG(MNT_FORCE);
4768 	MNT_FLAG(MNT_SNAPSHOT);
4769 	MNT_FLAG(MNT_BYFSID);
4770 #undef MNT_FLAG
4771 	if (mflags != 0) {
4772 		if (buf[0] != '\0')
4773 			strlcat(buf, ", ", sizeof(buf));
4774 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4775 		    "0x%016jx", mflags);
4776 	}
4777 	db_printf("    mnt_flag = %s\n", buf);
4778 
4779 	buf[0] = '\0';
4780 	flags = mp->mnt_kern_flag;
4781 #define	MNT_KERN_FLAG(flag)	do {					\
4782 	if (flags & (flag)) {						\
4783 		if (buf[0] != '\0')					\
4784 			strlcat(buf, ", ", sizeof(buf));		\
4785 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4786 		flags &= ~(flag);					\
4787 	}								\
4788 } while (0)
4789 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4790 	MNT_KERN_FLAG(MNTK_ASYNC);
4791 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4792 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4793 	MNT_KERN_FLAG(MNTK_DRAINING);
4794 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4795 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4796 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4797 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4798 	MNT_KERN_FLAG(MNTK_RECURSE);
4799 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4800 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4801 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4802 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4803 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4804 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4805 	MNT_KERN_FLAG(MNTK_NOASYNC);
4806 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4807 	MNT_KERN_FLAG(MNTK_MWAIT);
4808 	MNT_KERN_FLAG(MNTK_SUSPEND);
4809 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4810 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4811 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4812 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4813 #undef MNT_KERN_FLAG
4814 	if (flags != 0) {
4815 		if (buf[0] != '\0')
4816 			strlcat(buf, ", ", sizeof(buf));
4817 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4818 		    "0x%08x", flags);
4819 	}
4820 	db_printf("    mnt_kern_flag = %s\n", buf);
4821 
4822 	db_printf("    mnt_opt = ");
4823 	opt = TAILQ_FIRST(mp->mnt_opt);
4824 	if (opt != NULL) {
4825 		db_printf("%s", opt->name);
4826 		opt = TAILQ_NEXT(opt, link);
4827 		while (opt != NULL) {
4828 			db_printf(", %s", opt->name);
4829 			opt = TAILQ_NEXT(opt, link);
4830 		}
4831 	}
4832 	db_printf("\n");
4833 
4834 	sp = &mp->mnt_stat;
4835 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4836 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4837 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4838 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4839 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4840 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4841 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4842 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4843 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4844 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4845 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4846 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4847 
4848 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4849 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4850 	if (jailed(mp->mnt_cred))
4851 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4852 	db_printf(" }\n");
4853 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4854 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4855 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4856 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4857 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4858 	    mp->mnt_lazyvnodelistsize);
4859 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4860 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4861 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4862 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4863 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4864 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4865 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4866 	db_printf("    mnt_secondary_accwrites = %d\n",
4867 	    mp->mnt_secondary_accwrites);
4868 	db_printf("    mnt_gjprovider = %s\n",
4869 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4870 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4871 
4872 	db_printf("\n\nList of active vnodes\n");
4873 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4874 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4875 			vn_printf(vp, "vnode ");
4876 			if (db_pager_quit)
4877 				break;
4878 		}
4879 	}
4880 	db_printf("\n\nList of inactive vnodes\n");
4881 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4882 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4883 			vn_printf(vp, "vnode ");
4884 			if (db_pager_quit)
4885 				break;
4886 		}
4887 	}
4888 }
4889 #endif	/* DDB */
4890 
4891 /*
4892  * Fill in a struct xvfsconf based on a struct vfsconf.
4893  */
4894 static int
4895 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4896 {
4897 	struct xvfsconf xvfsp;
4898 
4899 	bzero(&xvfsp, sizeof(xvfsp));
4900 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4901 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4902 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4903 	xvfsp.vfc_flags = vfsp->vfc_flags;
4904 	/*
4905 	 * These are unused in userland, we keep them
4906 	 * to not break binary compatibility.
4907 	 */
4908 	xvfsp.vfc_vfsops = NULL;
4909 	xvfsp.vfc_next = NULL;
4910 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4911 }
4912 
4913 #ifdef COMPAT_FREEBSD32
4914 struct xvfsconf32 {
4915 	uint32_t	vfc_vfsops;
4916 	char		vfc_name[MFSNAMELEN];
4917 	int32_t		vfc_typenum;
4918 	int32_t		vfc_refcount;
4919 	int32_t		vfc_flags;
4920 	uint32_t	vfc_next;
4921 };
4922 
4923 static int
4924 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4925 {
4926 	struct xvfsconf32 xvfsp;
4927 
4928 	bzero(&xvfsp, sizeof(xvfsp));
4929 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4930 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4931 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4932 	xvfsp.vfc_flags = vfsp->vfc_flags;
4933 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4934 }
4935 #endif
4936 
4937 /*
4938  * Top level filesystem related information gathering.
4939  */
4940 static int
4941 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4942 {
4943 	struct vfsconf *vfsp;
4944 	int error;
4945 
4946 	error = 0;
4947 	vfsconf_slock();
4948 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4949 #ifdef COMPAT_FREEBSD32
4950 		if (req->flags & SCTL_MASK32)
4951 			error = vfsconf2x32(req, vfsp);
4952 		else
4953 #endif
4954 			error = vfsconf2x(req, vfsp);
4955 		if (error)
4956 			break;
4957 	}
4958 	vfsconf_sunlock();
4959 	return (error);
4960 }
4961 
4962 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4963     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4964     "S,xvfsconf", "List of all configured filesystems");
4965 
4966 #ifndef BURN_BRIDGES
4967 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4968 
4969 static int
4970 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4971 {
4972 	int *name = (int *)arg1 - 1;	/* XXX */
4973 	u_int namelen = arg2 + 1;	/* XXX */
4974 	struct vfsconf *vfsp;
4975 
4976 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4977 	    "please rebuild world\n");
4978 
4979 #if 1 || defined(COMPAT_PRELITE2)
4980 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4981 	if (namelen == 1)
4982 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4983 #endif
4984 
4985 	switch (name[1]) {
4986 	case VFS_MAXTYPENUM:
4987 		if (namelen != 2)
4988 			return (ENOTDIR);
4989 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4990 	case VFS_CONF:
4991 		if (namelen != 3)
4992 			return (ENOTDIR);	/* overloaded */
4993 		vfsconf_slock();
4994 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4995 			if (vfsp->vfc_typenum == name[2])
4996 				break;
4997 		}
4998 		vfsconf_sunlock();
4999 		if (vfsp == NULL)
5000 			return (EOPNOTSUPP);
5001 #ifdef COMPAT_FREEBSD32
5002 		if (req->flags & SCTL_MASK32)
5003 			return (vfsconf2x32(req, vfsp));
5004 		else
5005 #endif
5006 			return (vfsconf2x(req, vfsp));
5007 	}
5008 	return (EOPNOTSUPP);
5009 }
5010 
5011 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5012     CTLFLAG_MPSAFE, vfs_sysctl,
5013     "Generic filesystem");
5014 
5015 #if 1 || defined(COMPAT_PRELITE2)
5016 
5017 static int
5018 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5019 {
5020 	int error;
5021 	struct vfsconf *vfsp;
5022 	struct ovfsconf ovfs;
5023 
5024 	vfsconf_slock();
5025 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5026 		bzero(&ovfs, sizeof(ovfs));
5027 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
5028 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
5029 		ovfs.vfc_index = vfsp->vfc_typenum;
5030 		ovfs.vfc_refcount = vfsp->vfc_refcount;
5031 		ovfs.vfc_flags = vfsp->vfc_flags;
5032 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5033 		if (error != 0) {
5034 			vfsconf_sunlock();
5035 			return (error);
5036 		}
5037 	}
5038 	vfsconf_sunlock();
5039 	return (0);
5040 }
5041 
5042 #endif /* 1 || COMPAT_PRELITE2 */
5043 #endif /* !BURN_BRIDGES */
5044 
5045 static void
5046 unmount_or_warn(struct mount *mp)
5047 {
5048 	int error;
5049 
5050 	error = dounmount(mp, MNT_FORCE, curthread);
5051 	if (error != 0) {
5052 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5053 		if (error == EBUSY)
5054 			printf("BUSY)\n");
5055 		else
5056 			printf("%d)\n", error);
5057 	}
5058 }
5059 
5060 /*
5061  * Unmount all filesystems. The list is traversed in reverse order
5062  * of mounting to avoid dependencies.
5063  */
5064 void
5065 vfs_unmountall(void)
5066 {
5067 	struct mount *mp, *tmp;
5068 
5069 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5070 
5071 	/*
5072 	 * Since this only runs when rebooting, it is not interlocked.
5073 	 */
5074 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5075 		vfs_ref(mp);
5076 
5077 		/*
5078 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5079 		 * unmount of the latter.
5080 		 */
5081 		if (mp == rootdevmp)
5082 			continue;
5083 
5084 		unmount_or_warn(mp);
5085 	}
5086 
5087 	if (rootdevmp != NULL)
5088 		unmount_or_warn(rootdevmp);
5089 }
5090 
5091 static void
5092 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5093 {
5094 
5095 	ASSERT_VI_LOCKED(vp, __func__);
5096 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5097 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5098 		vdropl(vp);
5099 		return;
5100 	}
5101 	if (vn_lock(vp, lkflags) == 0) {
5102 		VI_LOCK(vp);
5103 		vinactive(vp);
5104 		VOP_UNLOCK(vp);
5105 		vdropl(vp);
5106 		return;
5107 	}
5108 	vdefer_inactive_unlocked(vp);
5109 }
5110 
5111 static int
5112 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5113 {
5114 
5115 	return (vp->v_iflag & VI_DEFINACT);
5116 }
5117 
5118 static void __noinline
5119 vfs_periodic_inactive(struct mount *mp, int flags)
5120 {
5121 	struct vnode *vp, *mvp;
5122 	int lkflags;
5123 
5124 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5125 	if (flags != MNT_WAIT)
5126 		lkflags |= LK_NOWAIT;
5127 
5128 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5129 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5130 			VI_UNLOCK(vp);
5131 			continue;
5132 		}
5133 		vp->v_iflag &= ~VI_DEFINACT;
5134 		vfs_deferred_inactive(vp, lkflags);
5135 	}
5136 }
5137 
5138 static inline bool
5139 vfs_want_msync(struct vnode *vp)
5140 {
5141 	struct vm_object *obj;
5142 
5143 	/*
5144 	 * This test may be performed without any locks held.
5145 	 * We rely on vm_object's type stability.
5146 	 */
5147 	if (vp->v_vflag & VV_NOSYNC)
5148 		return (false);
5149 	obj = vp->v_object;
5150 	return (obj != NULL && vm_object_mightbedirty(obj));
5151 }
5152 
5153 static int
5154 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5155 {
5156 
5157 	if (vp->v_vflag & VV_NOSYNC)
5158 		return (false);
5159 	if (vp->v_iflag & VI_DEFINACT)
5160 		return (true);
5161 	return (vfs_want_msync(vp));
5162 }
5163 
5164 static void __noinline
5165 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5166 {
5167 	struct vnode *vp, *mvp;
5168 	int lkflags;
5169 	bool seen_defer;
5170 
5171 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5172 	if (flags != MNT_WAIT)
5173 		lkflags |= LK_NOWAIT;
5174 
5175 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5176 		seen_defer = false;
5177 		if (vp->v_iflag & VI_DEFINACT) {
5178 			vp->v_iflag &= ~VI_DEFINACT;
5179 			seen_defer = true;
5180 		}
5181 		if (!vfs_want_msync(vp)) {
5182 			if (seen_defer)
5183 				vfs_deferred_inactive(vp, lkflags);
5184 			else
5185 				VI_UNLOCK(vp);
5186 			continue;
5187 		}
5188 		if (vget(vp, lkflags) == 0) {
5189 			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5190 				if (flags == MNT_WAIT)
5191 					vnode_pager_clean_sync(vp);
5192 				else
5193 					vnode_pager_clean_async(vp);
5194 			}
5195 			vput(vp);
5196 			if (seen_defer)
5197 				vdrop(vp);
5198 		} else {
5199 			if (seen_defer)
5200 				vdefer_inactive_unlocked(vp);
5201 		}
5202 	}
5203 }
5204 
5205 void
5206 vfs_periodic(struct mount *mp, int flags)
5207 {
5208 
5209 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5210 
5211 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5212 		vfs_periodic_inactive(mp, flags);
5213 	else
5214 		vfs_periodic_msync_inactive(mp, flags);
5215 }
5216 
5217 static void
5218 destroy_vpollinfo_free(struct vpollinfo *vi)
5219 {
5220 
5221 	knlist_destroy(&vi->vpi_selinfo.si_note);
5222 	mtx_destroy(&vi->vpi_lock);
5223 	free(vi, M_VNODEPOLL);
5224 }
5225 
5226 static void
5227 destroy_vpollinfo(struct vpollinfo *vi)
5228 {
5229 
5230 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5231 	seldrain(&vi->vpi_selinfo);
5232 	destroy_vpollinfo_free(vi);
5233 }
5234 
5235 /*
5236  * Initialize per-vnode helper structure to hold poll-related state.
5237  */
5238 void
5239 v_addpollinfo(struct vnode *vp)
5240 {
5241 	struct vpollinfo *vi;
5242 
5243 	if (vp->v_pollinfo != NULL)
5244 		return;
5245 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5246 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5247 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5248 	    vfs_knlunlock, vfs_knl_assert_lock);
5249 	VI_LOCK(vp);
5250 	if (vp->v_pollinfo != NULL) {
5251 		VI_UNLOCK(vp);
5252 		destroy_vpollinfo_free(vi);
5253 		return;
5254 	}
5255 	vp->v_pollinfo = vi;
5256 	VI_UNLOCK(vp);
5257 }
5258 
5259 /*
5260  * Record a process's interest in events which might happen to
5261  * a vnode.  Because poll uses the historic select-style interface
5262  * internally, this routine serves as both the ``check for any
5263  * pending events'' and the ``record my interest in future events''
5264  * functions.  (These are done together, while the lock is held,
5265  * to avoid race conditions.)
5266  */
5267 int
5268 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5269 {
5270 
5271 	v_addpollinfo(vp);
5272 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5273 	if (vp->v_pollinfo->vpi_revents & events) {
5274 		/*
5275 		 * This leaves events we are not interested
5276 		 * in available for the other process which
5277 		 * which presumably had requested them
5278 		 * (otherwise they would never have been
5279 		 * recorded).
5280 		 */
5281 		events &= vp->v_pollinfo->vpi_revents;
5282 		vp->v_pollinfo->vpi_revents &= ~events;
5283 
5284 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5285 		return (events);
5286 	}
5287 	vp->v_pollinfo->vpi_events |= events;
5288 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5289 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5290 	return (0);
5291 }
5292 
5293 /*
5294  * Routine to create and manage a filesystem syncer vnode.
5295  */
5296 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5297 static int	sync_fsync(struct  vop_fsync_args *);
5298 static int	sync_inactive(struct  vop_inactive_args *);
5299 static int	sync_reclaim(struct  vop_reclaim_args *);
5300 
5301 static struct vop_vector sync_vnodeops = {
5302 	.vop_bypass =	VOP_EOPNOTSUPP,
5303 	.vop_close =	sync_close,
5304 	.vop_fsync =	sync_fsync,
5305 	.vop_getwritemount = vop_stdgetwritemount,
5306 	.vop_inactive =	sync_inactive,
5307 	.vop_need_inactive = vop_stdneed_inactive,
5308 	.vop_reclaim =	sync_reclaim,
5309 	.vop_lock1 =	vop_stdlock,
5310 	.vop_unlock =	vop_stdunlock,
5311 	.vop_islocked =	vop_stdislocked,
5312 	.vop_fplookup_vexec = VOP_EAGAIN,
5313 	.vop_fplookup_symlink = VOP_EAGAIN,
5314 };
5315 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5316 
5317 /*
5318  * Create a new filesystem syncer vnode for the specified mount point.
5319  */
5320 void
5321 vfs_allocate_syncvnode(struct mount *mp)
5322 {
5323 	struct vnode *vp;
5324 	struct bufobj *bo;
5325 	static long start, incr, next;
5326 	int error;
5327 
5328 	/* Allocate a new vnode */
5329 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5330 	if (error != 0)
5331 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5332 	vp->v_type = VNON;
5333 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5334 	vp->v_vflag |= VV_FORCEINSMQ;
5335 	error = insmntque1(vp, mp);
5336 	if (error != 0)
5337 		panic("vfs_allocate_syncvnode: insmntque() failed");
5338 	vp->v_vflag &= ~VV_FORCEINSMQ;
5339 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5340 	VOP_UNLOCK(vp);
5341 	/*
5342 	 * Place the vnode onto the syncer worklist. We attempt to
5343 	 * scatter them about on the list so that they will go off
5344 	 * at evenly distributed times even if all the filesystems
5345 	 * are mounted at once.
5346 	 */
5347 	next += incr;
5348 	if (next == 0 || next > syncer_maxdelay) {
5349 		start /= 2;
5350 		incr /= 2;
5351 		if (start == 0) {
5352 			start = syncer_maxdelay / 2;
5353 			incr = syncer_maxdelay;
5354 		}
5355 		next = start;
5356 	}
5357 	bo = &vp->v_bufobj;
5358 	BO_LOCK(bo);
5359 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5360 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5361 	mtx_lock(&sync_mtx);
5362 	sync_vnode_count++;
5363 	if (mp->mnt_syncer == NULL) {
5364 		mp->mnt_syncer = vp;
5365 		vp = NULL;
5366 	}
5367 	mtx_unlock(&sync_mtx);
5368 	BO_UNLOCK(bo);
5369 	if (vp != NULL) {
5370 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5371 		vgone(vp);
5372 		vput(vp);
5373 	}
5374 }
5375 
5376 void
5377 vfs_deallocate_syncvnode(struct mount *mp)
5378 {
5379 	struct vnode *vp;
5380 
5381 	mtx_lock(&sync_mtx);
5382 	vp = mp->mnt_syncer;
5383 	if (vp != NULL)
5384 		mp->mnt_syncer = NULL;
5385 	mtx_unlock(&sync_mtx);
5386 	if (vp != NULL)
5387 		vrele(vp);
5388 }
5389 
5390 /*
5391  * Do a lazy sync of the filesystem.
5392  */
5393 static int
5394 sync_fsync(struct vop_fsync_args *ap)
5395 {
5396 	struct vnode *syncvp = ap->a_vp;
5397 	struct mount *mp = syncvp->v_mount;
5398 	int error, save;
5399 	struct bufobj *bo;
5400 
5401 	/*
5402 	 * We only need to do something if this is a lazy evaluation.
5403 	 */
5404 	if (ap->a_waitfor != MNT_LAZY)
5405 		return (0);
5406 
5407 	/*
5408 	 * Move ourselves to the back of the sync list.
5409 	 */
5410 	bo = &syncvp->v_bufobj;
5411 	BO_LOCK(bo);
5412 	vn_syncer_add_to_worklist(bo, syncdelay);
5413 	BO_UNLOCK(bo);
5414 
5415 	/*
5416 	 * Walk the list of vnodes pushing all that are dirty and
5417 	 * not already on the sync list.
5418 	 */
5419 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5420 		return (0);
5421 	VOP_UNLOCK(syncvp);
5422 	save = curthread_pflags_set(TDP_SYNCIO);
5423 	/*
5424 	 * The filesystem at hand may be idle with free vnodes stored in the
5425 	 * batch.  Return them instead of letting them stay there indefinitely.
5426 	 */
5427 	vfs_periodic(mp, MNT_NOWAIT);
5428 	error = VFS_SYNC(mp, MNT_LAZY);
5429 	curthread_pflags_restore(save);
5430 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5431 	vfs_unbusy(mp);
5432 	return (error);
5433 }
5434 
5435 /*
5436  * The syncer vnode is no referenced.
5437  */
5438 static int
5439 sync_inactive(struct vop_inactive_args *ap)
5440 {
5441 
5442 	vgone(ap->a_vp);
5443 	return (0);
5444 }
5445 
5446 /*
5447  * The syncer vnode is no longer needed and is being decommissioned.
5448  *
5449  * Modifications to the worklist must be protected by sync_mtx.
5450  */
5451 static int
5452 sync_reclaim(struct vop_reclaim_args *ap)
5453 {
5454 	struct vnode *vp = ap->a_vp;
5455 	struct bufobj *bo;
5456 
5457 	bo = &vp->v_bufobj;
5458 	BO_LOCK(bo);
5459 	mtx_lock(&sync_mtx);
5460 	if (vp->v_mount->mnt_syncer == vp)
5461 		vp->v_mount->mnt_syncer = NULL;
5462 	if (bo->bo_flag & BO_ONWORKLST) {
5463 		LIST_REMOVE(bo, bo_synclist);
5464 		syncer_worklist_len--;
5465 		sync_vnode_count--;
5466 		bo->bo_flag &= ~BO_ONWORKLST;
5467 	}
5468 	mtx_unlock(&sync_mtx);
5469 	BO_UNLOCK(bo);
5470 
5471 	return (0);
5472 }
5473 
5474 int
5475 vn_need_pageq_flush(struct vnode *vp)
5476 {
5477 	struct vm_object *obj;
5478 
5479 	obj = vp->v_object;
5480 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5481 	    vm_object_mightbedirty(obj));
5482 }
5483 
5484 /*
5485  * Check if vnode represents a disk device
5486  */
5487 bool
5488 vn_isdisk_error(struct vnode *vp, int *errp)
5489 {
5490 	int error;
5491 
5492 	if (vp->v_type != VCHR) {
5493 		error = ENOTBLK;
5494 		goto out;
5495 	}
5496 	error = 0;
5497 	dev_lock();
5498 	if (vp->v_rdev == NULL)
5499 		error = ENXIO;
5500 	else if (vp->v_rdev->si_devsw == NULL)
5501 		error = ENXIO;
5502 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5503 		error = ENOTBLK;
5504 	dev_unlock();
5505 out:
5506 	*errp = error;
5507 	return (error == 0);
5508 }
5509 
5510 bool
5511 vn_isdisk(struct vnode *vp)
5512 {
5513 	int error;
5514 
5515 	return (vn_isdisk_error(vp, &error));
5516 }
5517 
5518 /*
5519  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5520  * the comment above cache_fplookup for details.
5521  */
5522 int
5523 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5524 {
5525 	int error;
5526 
5527 	VFS_SMR_ASSERT_ENTERED();
5528 
5529 	/* Check the owner. */
5530 	if (cred->cr_uid == file_uid) {
5531 		if (file_mode & S_IXUSR)
5532 			return (0);
5533 		goto out_error;
5534 	}
5535 
5536 	/* Otherwise, check the groups (first match) */
5537 	if (groupmember(file_gid, cred)) {
5538 		if (file_mode & S_IXGRP)
5539 			return (0);
5540 		goto out_error;
5541 	}
5542 
5543 	/* Otherwise, check everyone else. */
5544 	if (file_mode & S_IXOTH)
5545 		return (0);
5546 out_error:
5547 	/*
5548 	 * Permission check failed, but it is possible denial will get overwritten
5549 	 * (e.g., when root is traversing through a 700 directory owned by someone
5550 	 * else).
5551 	 *
5552 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5553 	 * modules overriding this result. It's quite unclear what semantics
5554 	 * are allowed for them to operate, thus for safety we don't call them
5555 	 * from within the SMR section. This also means if any such modules
5556 	 * are present, we have to let the regular lookup decide.
5557 	 */
5558 	error = priv_check_cred_vfs_lookup_nomac(cred);
5559 	switch (error) {
5560 	case 0:
5561 		return (0);
5562 	case EAGAIN:
5563 		/*
5564 		 * MAC modules present.
5565 		 */
5566 		return (EAGAIN);
5567 	case EPERM:
5568 		return (EACCES);
5569 	default:
5570 		return (error);
5571 	}
5572 }
5573 
5574 /*
5575  * Common filesystem object access control check routine.  Accepts a
5576  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5577  * Returns 0 on success, or an errno on failure.
5578  */
5579 int
5580 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5581     accmode_t accmode, struct ucred *cred)
5582 {
5583 	accmode_t dac_granted;
5584 	accmode_t priv_granted;
5585 
5586 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5587 	    ("invalid bit in accmode"));
5588 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5589 	    ("VAPPEND without VWRITE"));
5590 
5591 	/*
5592 	 * Look for a normal, non-privileged way to access the file/directory
5593 	 * as requested.  If it exists, go with that.
5594 	 */
5595 
5596 	dac_granted = 0;
5597 
5598 	/* Check the owner. */
5599 	if (cred->cr_uid == file_uid) {
5600 		dac_granted |= VADMIN;
5601 		if (file_mode & S_IXUSR)
5602 			dac_granted |= VEXEC;
5603 		if (file_mode & S_IRUSR)
5604 			dac_granted |= VREAD;
5605 		if (file_mode & S_IWUSR)
5606 			dac_granted |= (VWRITE | VAPPEND);
5607 
5608 		if ((accmode & dac_granted) == accmode)
5609 			return (0);
5610 
5611 		goto privcheck;
5612 	}
5613 
5614 	/* Otherwise, check the groups (first match) */
5615 	if (groupmember(file_gid, cred)) {
5616 		if (file_mode & S_IXGRP)
5617 			dac_granted |= VEXEC;
5618 		if (file_mode & S_IRGRP)
5619 			dac_granted |= VREAD;
5620 		if (file_mode & S_IWGRP)
5621 			dac_granted |= (VWRITE | VAPPEND);
5622 
5623 		if ((accmode & dac_granted) == accmode)
5624 			return (0);
5625 
5626 		goto privcheck;
5627 	}
5628 
5629 	/* Otherwise, check everyone else. */
5630 	if (file_mode & S_IXOTH)
5631 		dac_granted |= VEXEC;
5632 	if (file_mode & S_IROTH)
5633 		dac_granted |= VREAD;
5634 	if (file_mode & S_IWOTH)
5635 		dac_granted |= (VWRITE | VAPPEND);
5636 	if ((accmode & dac_granted) == accmode)
5637 		return (0);
5638 
5639 privcheck:
5640 	/*
5641 	 * Build a privilege mask to determine if the set of privileges
5642 	 * satisfies the requirements when combined with the granted mask
5643 	 * from above.  For each privilege, if the privilege is required,
5644 	 * bitwise or the request type onto the priv_granted mask.
5645 	 */
5646 	priv_granted = 0;
5647 
5648 	if (type == VDIR) {
5649 		/*
5650 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5651 		 * requests, instead of PRIV_VFS_EXEC.
5652 		 */
5653 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5654 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5655 			priv_granted |= VEXEC;
5656 	} else {
5657 		/*
5658 		 * Ensure that at least one execute bit is on. Otherwise,
5659 		 * a privileged user will always succeed, and we don't want
5660 		 * this to happen unless the file really is executable.
5661 		 */
5662 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5663 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5664 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5665 			priv_granted |= VEXEC;
5666 	}
5667 
5668 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5669 	    !priv_check_cred(cred, PRIV_VFS_READ))
5670 		priv_granted |= VREAD;
5671 
5672 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5673 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5674 		priv_granted |= (VWRITE | VAPPEND);
5675 
5676 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5677 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5678 		priv_granted |= VADMIN;
5679 
5680 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5681 		return (0);
5682 	}
5683 
5684 	return ((accmode & VADMIN) ? EPERM : EACCES);
5685 }
5686 
5687 /*
5688  * Credential check based on process requesting service, and per-attribute
5689  * permissions.
5690  */
5691 int
5692 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5693     struct thread *td, accmode_t accmode)
5694 {
5695 
5696 	/*
5697 	 * Kernel-invoked always succeeds.
5698 	 */
5699 	if (cred == NOCRED)
5700 		return (0);
5701 
5702 	/*
5703 	 * Do not allow privileged processes in jail to directly manipulate
5704 	 * system attributes.
5705 	 */
5706 	switch (attrnamespace) {
5707 	case EXTATTR_NAMESPACE_SYSTEM:
5708 		/* Potentially should be: return (EPERM); */
5709 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5710 	case EXTATTR_NAMESPACE_USER:
5711 		return (VOP_ACCESS(vp, accmode, cred, td));
5712 	default:
5713 		return (EPERM);
5714 	}
5715 }
5716 
5717 #ifdef DEBUG_VFS_LOCKS
5718 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5719 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5720     "Drop into debugger on lock violation");
5721 
5722 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5723 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5724     0, "Check for interlock across VOPs");
5725 
5726 int vfs_badlock_print = 1;	/* Print lock violations. */
5727 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5728     0, "Print lock violations");
5729 
5730 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5731 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5732     0, "Print vnode details on lock violations");
5733 
5734 #ifdef KDB
5735 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5736 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5737     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5738 #endif
5739 
5740 static void
5741 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5742 {
5743 
5744 #ifdef KDB
5745 	if (vfs_badlock_backtrace)
5746 		kdb_backtrace();
5747 #endif
5748 	if (vfs_badlock_vnode)
5749 		vn_printf(vp, "vnode ");
5750 	if (vfs_badlock_print)
5751 		printf("%s: %p %s\n", str, (void *)vp, msg);
5752 	if (vfs_badlock_ddb)
5753 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5754 }
5755 
5756 void
5757 assert_vi_locked(struct vnode *vp, const char *str)
5758 {
5759 
5760 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5761 		vfs_badlock("interlock is not locked but should be", str, vp);
5762 }
5763 
5764 void
5765 assert_vi_unlocked(struct vnode *vp, const char *str)
5766 {
5767 
5768 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5769 		vfs_badlock("interlock is locked but should not be", str, vp);
5770 }
5771 
5772 void
5773 assert_vop_locked(struct vnode *vp, const char *str)
5774 {
5775 	if (KERNEL_PANICKED() || vp == NULL)
5776 		return;
5777 
5778 #ifdef WITNESS
5779 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5780 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5781 #else
5782 	int locked = VOP_ISLOCKED(vp);
5783 	if (locked == 0 || locked == LK_EXCLOTHER)
5784 #endif
5785 		vfs_badlock("is not locked but should be", str, vp);
5786 }
5787 
5788 void
5789 assert_vop_unlocked(struct vnode *vp, const char *str)
5790 {
5791 	if (KERNEL_PANICKED() || vp == NULL)
5792 		return;
5793 
5794 #ifdef WITNESS
5795 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5796 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5797 #else
5798 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5799 #endif
5800 		vfs_badlock("is locked but should not be", str, vp);
5801 }
5802 
5803 void
5804 assert_vop_elocked(struct vnode *vp, const char *str)
5805 {
5806 	if (KERNEL_PANICKED() || vp == NULL)
5807 		return;
5808 
5809 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5810 		vfs_badlock("is not exclusive locked but should be", str, vp);
5811 }
5812 #endif /* DEBUG_VFS_LOCKS */
5813 
5814 void
5815 vop_rename_fail(struct vop_rename_args *ap)
5816 {
5817 
5818 	if (ap->a_tvp != NULL)
5819 		vput(ap->a_tvp);
5820 	if (ap->a_tdvp == ap->a_tvp)
5821 		vrele(ap->a_tdvp);
5822 	else
5823 		vput(ap->a_tdvp);
5824 	vrele(ap->a_fdvp);
5825 	vrele(ap->a_fvp);
5826 }
5827 
5828 void
5829 vop_rename_pre(void *ap)
5830 {
5831 	struct vop_rename_args *a = ap;
5832 
5833 #ifdef DEBUG_VFS_LOCKS
5834 	if (a->a_tvp)
5835 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5836 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5837 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5838 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5839 
5840 	/* Check the source (from). */
5841 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5842 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5843 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5844 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5845 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5846 
5847 	/* Check the target. */
5848 	if (a->a_tvp)
5849 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5850 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5851 #endif
5852 	/*
5853 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5854 	 * in vop_rename_post but that's not going to work out since some
5855 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5856 	 *
5857 	 * For now filesystems are expected to do the relevant calls after they
5858 	 * decide what vnodes to operate on.
5859 	 */
5860 	if (a->a_tdvp != a->a_fdvp)
5861 		vhold(a->a_fdvp);
5862 	if (a->a_tvp != a->a_fvp)
5863 		vhold(a->a_fvp);
5864 	vhold(a->a_tdvp);
5865 	if (a->a_tvp)
5866 		vhold(a->a_tvp);
5867 }
5868 
5869 #ifdef DEBUG_VFS_LOCKS
5870 void
5871 vop_fplookup_vexec_debugpre(void *ap __unused)
5872 {
5873 
5874 	VFS_SMR_ASSERT_ENTERED();
5875 }
5876 
5877 void
5878 vop_fplookup_vexec_debugpost(void *ap, int rc)
5879 {
5880 	struct vop_fplookup_vexec_args *a;
5881 	struct vnode *vp;
5882 
5883 	a = ap;
5884 	vp = a->a_vp;
5885 
5886 	VFS_SMR_ASSERT_ENTERED();
5887 	if (rc == EOPNOTSUPP)
5888 		VNPASS(VN_IS_DOOMED(vp), vp);
5889 }
5890 
5891 void
5892 vop_fplookup_symlink_debugpre(void *ap __unused)
5893 {
5894 
5895 	VFS_SMR_ASSERT_ENTERED();
5896 }
5897 
5898 void
5899 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5900 {
5901 
5902 	VFS_SMR_ASSERT_ENTERED();
5903 }
5904 
5905 static void
5906 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5907 {
5908 	if (vp->v_type == VCHR)
5909 		;
5910 	/*
5911 	 * The shared vs. exclusive locking policy for fsync()
5912 	 * is actually determined by vp's write mount as indicated
5913 	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5914 	 * may not be the same as vp->v_mount.  However, if the
5915 	 * underlying filesystem which really handles the fsync()
5916 	 * supports shared locking, the stacked filesystem must also
5917 	 * be prepared for its VOP_FSYNC() operation to be called
5918 	 * with only a shared lock.  On the other hand, if the
5919 	 * stacked filesystem claims support for shared write
5920 	 * locking but the underlying filesystem does not, and the
5921 	 * caller incorrectly uses a shared lock, this condition
5922 	 * should still be caught when the stacked filesystem
5923 	 * invokes VOP_FSYNC() on the underlying filesystem.
5924 	 */
5925 	else if (MNT_SHARED_WRITES(vp->v_mount))
5926 		ASSERT_VOP_LOCKED(vp, name);
5927 	else
5928 		ASSERT_VOP_ELOCKED(vp, name);
5929 }
5930 
5931 void
5932 vop_fsync_debugpre(void *a)
5933 {
5934 	struct vop_fsync_args *ap;
5935 
5936 	ap = a;
5937 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5938 }
5939 
5940 void
5941 vop_fsync_debugpost(void *a, int rc __unused)
5942 {
5943 	struct vop_fsync_args *ap;
5944 
5945 	ap = a;
5946 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5947 }
5948 
5949 void
5950 vop_fdatasync_debugpre(void *a)
5951 {
5952 	struct vop_fdatasync_args *ap;
5953 
5954 	ap = a;
5955 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5956 }
5957 
5958 void
5959 vop_fdatasync_debugpost(void *a, int rc __unused)
5960 {
5961 	struct vop_fdatasync_args *ap;
5962 
5963 	ap = a;
5964 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5965 }
5966 
5967 void
5968 vop_strategy_debugpre(void *ap)
5969 {
5970 	struct vop_strategy_args *a;
5971 	struct buf *bp;
5972 
5973 	a = ap;
5974 	bp = a->a_bp;
5975 
5976 	/*
5977 	 * Cluster ops lock their component buffers but not the IO container.
5978 	 */
5979 	if ((bp->b_flags & B_CLUSTER) != 0)
5980 		return;
5981 
5982 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5983 		if (vfs_badlock_print)
5984 			printf(
5985 			    "VOP_STRATEGY: bp is not locked but should be\n");
5986 		if (vfs_badlock_ddb)
5987 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5988 	}
5989 }
5990 
5991 void
5992 vop_lock_debugpre(void *ap)
5993 {
5994 	struct vop_lock1_args *a = ap;
5995 
5996 	if ((a->a_flags & LK_INTERLOCK) == 0)
5997 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5998 	else
5999 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6000 }
6001 
6002 void
6003 vop_lock_debugpost(void *ap, int rc)
6004 {
6005 	struct vop_lock1_args *a = ap;
6006 
6007 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6008 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6009 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6010 }
6011 
6012 void
6013 vop_unlock_debugpre(void *ap)
6014 {
6015 	struct vop_unlock_args *a = ap;
6016 	struct vnode *vp = a->a_vp;
6017 
6018 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6019 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6020 }
6021 
6022 void
6023 vop_need_inactive_debugpre(void *ap)
6024 {
6025 	struct vop_need_inactive_args *a = ap;
6026 
6027 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6028 }
6029 
6030 void
6031 vop_need_inactive_debugpost(void *ap, int rc)
6032 {
6033 	struct vop_need_inactive_args *a = ap;
6034 
6035 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6036 }
6037 #endif
6038 
6039 void
6040 vop_create_pre(void *ap)
6041 {
6042 	struct vop_create_args *a;
6043 	struct vnode *dvp;
6044 
6045 	a = ap;
6046 	dvp = a->a_dvp;
6047 	vn_seqc_write_begin(dvp);
6048 }
6049 
6050 void
6051 vop_create_post(void *ap, int rc)
6052 {
6053 	struct vop_create_args *a;
6054 	struct vnode *dvp;
6055 
6056 	a = ap;
6057 	dvp = a->a_dvp;
6058 	vn_seqc_write_end(dvp);
6059 	if (!rc)
6060 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6061 }
6062 
6063 void
6064 vop_whiteout_pre(void *ap)
6065 {
6066 	struct vop_whiteout_args *a;
6067 	struct vnode *dvp;
6068 
6069 	a = ap;
6070 	dvp = a->a_dvp;
6071 	vn_seqc_write_begin(dvp);
6072 }
6073 
6074 void
6075 vop_whiteout_post(void *ap, int rc)
6076 {
6077 	struct vop_whiteout_args *a;
6078 	struct vnode *dvp;
6079 
6080 	a = ap;
6081 	dvp = a->a_dvp;
6082 	vn_seqc_write_end(dvp);
6083 }
6084 
6085 void
6086 vop_deleteextattr_pre(void *ap)
6087 {
6088 	struct vop_deleteextattr_args *a;
6089 	struct vnode *vp;
6090 
6091 	a = ap;
6092 	vp = a->a_vp;
6093 	vn_seqc_write_begin(vp);
6094 }
6095 
6096 void
6097 vop_deleteextattr_post(void *ap, int rc)
6098 {
6099 	struct vop_deleteextattr_args *a;
6100 	struct vnode *vp;
6101 
6102 	a = ap;
6103 	vp = a->a_vp;
6104 	vn_seqc_write_end(vp);
6105 	if (!rc)
6106 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6107 }
6108 
6109 void
6110 vop_link_pre(void *ap)
6111 {
6112 	struct vop_link_args *a;
6113 	struct vnode *vp, *tdvp;
6114 
6115 	a = ap;
6116 	vp = a->a_vp;
6117 	tdvp = a->a_tdvp;
6118 	vn_seqc_write_begin(vp);
6119 	vn_seqc_write_begin(tdvp);
6120 }
6121 
6122 void
6123 vop_link_post(void *ap, int rc)
6124 {
6125 	struct vop_link_args *a;
6126 	struct vnode *vp, *tdvp;
6127 
6128 	a = ap;
6129 	vp = a->a_vp;
6130 	tdvp = a->a_tdvp;
6131 	vn_seqc_write_end(vp);
6132 	vn_seqc_write_end(tdvp);
6133 	if (!rc) {
6134 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6135 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6136 	}
6137 }
6138 
6139 void
6140 vop_mkdir_pre(void *ap)
6141 {
6142 	struct vop_mkdir_args *a;
6143 	struct vnode *dvp;
6144 
6145 	a = ap;
6146 	dvp = a->a_dvp;
6147 	vn_seqc_write_begin(dvp);
6148 }
6149 
6150 void
6151 vop_mkdir_post(void *ap, int rc)
6152 {
6153 	struct vop_mkdir_args *a;
6154 	struct vnode *dvp;
6155 
6156 	a = ap;
6157 	dvp = a->a_dvp;
6158 	vn_seqc_write_end(dvp);
6159 	if (!rc)
6160 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6161 }
6162 
6163 #ifdef DEBUG_VFS_LOCKS
6164 void
6165 vop_mkdir_debugpost(void *ap, int rc)
6166 {
6167 	struct vop_mkdir_args *a;
6168 
6169 	a = ap;
6170 	if (!rc)
6171 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6172 }
6173 #endif
6174 
6175 void
6176 vop_mknod_pre(void *ap)
6177 {
6178 	struct vop_mknod_args *a;
6179 	struct vnode *dvp;
6180 
6181 	a = ap;
6182 	dvp = a->a_dvp;
6183 	vn_seqc_write_begin(dvp);
6184 }
6185 
6186 void
6187 vop_mknod_post(void *ap, int rc)
6188 {
6189 	struct vop_mknod_args *a;
6190 	struct vnode *dvp;
6191 
6192 	a = ap;
6193 	dvp = a->a_dvp;
6194 	vn_seqc_write_end(dvp);
6195 	if (!rc)
6196 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6197 }
6198 
6199 void
6200 vop_reclaim_post(void *ap, int rc)
6201 {
6202 	struct vop_reclaim_args *a;
6203 	struct vnode *vp;
6204 
6205 	a = ap;
6206 	vp = a->a_vp;
6207 	ASSERT_VOP_IN_SEQC(vp);
6208 	if (!rc)
6209 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6210 }
6211 
6212 void
6213 vop_remove_pre(void *ap)
6214 {
6215 	struct vop_remove_args *a;
6216 	struct vnode *dvp, *vp;
6217 
6218 	a = ap;
6219 	dvp = a->a_dvp;
6220 	vp = a->a_vp;
6221 	vn_seqc_write_begin(dvp);
6222 	vn_seqc_write_begin(vp);
6223 }
6224 
6225 void
6226 vop_remove_post(void *ap, int rc)
6227 {
6228 	struct vop_remove_args *a;
6229 	struct vnode *dvp, *vp;
6230 
6231 	a = ap;
6232 	dvp = a->a_dvp;
6233 	vp = a->a_vp;
6234 	vn_seqc_write_end(dvp);
6235 	vn_seqc_write_end(vp);
6236 	if (!rc) {
6237 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6238 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6239 	}
6240 }
6241 
6242 void
6243 vop_rename_post(void *ap, int rc)
6244 {
6245 	struct vop_rename_args *a = ap;
6246 	long hint;
6247 
6248 	if (!rc) {
6249 		hint = NOTE_WRITE;
6250 		if (a->a_fdvp == a->a_tdvp) {
6251 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6252 				hint |= NOTE_LINK;
6253 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6254 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6255 		} else {
6256 			hint |= NOTE_EXTEND;
6257 			if (a->a_fvp->v_type == VDIR)
6258 				hint |= NOTE_LINK;
6259 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6260 
6261 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6262 			    a->a_tvp->v_type == VDIR)
6263 				hint &= ~NOTE_LINK;
6264 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6265 		}
6266 
6267 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6268 		if (a->a_tvp)
6269 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6270 	}
6271 	if (a->a_tdvp != a->a_fdvp)
6272 		vdrop(a->a_fdvp);
6273 	if (a->a_tvp != a->a_fvp)
6274 		vdrop(a->a_fvp);
6275 	vdrop(a->a_tdvp);
6276 	if (a->a_tvp)
6277 		vdrop(a->a_tvp);
6278 }
6279 
6280 void
6281 vop_rmdir_pre(void *ap)
6282 {
6283 	struct vop_rmdir_args *a;
6284 	struct vnode *dvp, *vp;
6285 
6286 	a = ap;
6287 	dvp = a->a_dvp;
6288 	vp = a->a_vp;
6289 	vn_seqc_write_begin(dvp);
6290 	vn_seqc_write_begin(vp);
6291 }
6292 
6293 void
6294 vop_rmdir_post(void *ap, int rc)
6295 {
6296 	struct vop_rmdir_args *a;
6297 	struct vnode *dvp, *vp;
6298 
6299 	a = ap;
6300 	dvp = a->a_dvp;
6301 	vp = a->a_vp;
6302 	vn_seqc_write_end(dvp);
6303 	vn_seqc_write_end(vp);
6304 	if (!rc) {
6305 		vp->v_vflag |= VV_UNLINKED;
6306 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6307 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6308 	}
6309 }
6310 
6311 void
6312 vop_setattr_pre(void *ap)
6313 {
6314 	struct vop_setattr_args *a;
6315 	struct vnode *vp;
6316 
6317 	a = ap;
6318 	vp = a->a_vp;
6319 	vn_seqc_write_begin(vp);
6320 }
6321 
6322 void
6323 vop_setattr_post(void *ap, int rc)
6324 {
6325 	struct vop_setattr_args *a;
6326 	struct vnode *vp;
6327 
6328 	a = ap;
6329 	vp = a->a_vp;
6330 	vn_seqc_write_end(vp);
6331 	if (!rc)
6332 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6333 }
6334 
6335 void
6336 vop_setacl_pre(void *ap)
6337 {
6338 	struct vop_setacl_args *a;
6339 	struct vnode *vp;
6340 
6341 	a = ap;
6342 	vp = a->a_vp;
6343 	vn_seqc_write_begin(vp);
6344 }
6345 
6346 void
6347 vop_setacl_post(void *ap, int rc __unused)
6348 {
6349 	struct vop_setacl_args *a;
6350 	struct vnode *vp;
6351 
6352 	a = ap;
6353 	vp = a->a_vp;
6354 	vn_seqc_write_end(vp);
6355 }
6356 
6357 void
6358 vop_setextattr_pre(void *ap)
6359 {
6360 	struct vop_setextattr_args *a;
6361 	struct vnode *vp;
6362 
6363 	a = ap;
6364 	vp = a->a_vp;
6365 	vn_seqc_write_begin(vp);
6366 }
6367 
6368 void
6369 vop_setextattr_post(void *ap, int rc)
6370 {
6371 	struct vop_setextattr_args *a;
6372 	struct vnode *vp;
6373 
6374 	a = ap;
6375 	vp = a->a_vp;
6376 	vn_seqc_write_end(vp);
6377 	if (!rc)
6378 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6379 }
6380 
6381 void
6382 vop_symlink_pre(void *ap)
6383 {
6384 	struct vop_symlink_args *a;
6385 	struct vnode *dvp;
6386 
6387 	a = ap;
6388 	dvp = a->a_dvp;
6389 	vn_seqc_write_begin(dvp);
6390 }
6391 
6392 void
6393 vop_symlink_post(void *ap, int rc)
6394 {
6395 	struct vop_symlink_args *a;
6396 	struct vnode *dvp;
6397 
6398 	a = ap;
6399 	dvp = a->a_dvp;
6400 	vn_seqc_write_end(dvp);
6401 	if (!rc)
6402 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6403 }
6404 
6405 void
6406 vop_open_post(void *ap, int rc)
6407 {
6408 	struct vop_open_args *a = ap;
6409 
6410 	if (!rc)
6411 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6412 }
6413 
6414 void
6415 vop_close_post(void *ap, int rc)
6416 {
6417 	struct vop_close_args *a = ap;
6418 
6419 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6420 	    !VN_IS_DOOMED(a->a_vp))) {
6421 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6422 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6423 	}
6424 }
6425 
6426 void
6427 vop_read_post(void *ap, int rc)
6428 {
6429 	struct vop_read_args *a = ap;
6430 
6431 	if (!rc)
6432 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6433 }
6434 
6435 void
6436 vop_read_pgcache_post(void *ap, int rc)
6437 {
6438 	struct vop_read_pgcache_args *a = ap;
6439 
6440 	if (!rc)
6441 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6442 }
6443 
6444 void
6445 vop_readdir_post(void *ap, int rc)
6446 {
6447 	struct vop_readdir_args *a = ap;
6448 
6449 	if (!rc)
6450 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6451 }
6452 
6453 static struct knlist fs_knlist;
6454 
6455 static void
6456 vfs_event_init(void *arg)
6457 {
6458 	knlist_init_mtx(&fs_knlist, NULL);
6459 }
6460 /* XXX - correct order? */
6461 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6462 
6463 void
6464 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6465 {
6466 
6467 	KNOTE_UNLOCKED(&fs_knlist, event);
6468 }
6469 
6470 static int	filt_fsattach(struct knote *kn);
6471 static void	filt_fsdetach(struct knote *kn);
6472 static int	filt_fsevent(struct knote *kn, long hint);
6473 
6474 struct filterops fs_filtops = {
6475 	.f_isfd = 0,
6476 	.f_attach = filt_fsattach,
6477 	.f_detach = filt_fsdetach,
6478 	.f_event = filt_fsevent
6479 };
6480 
6481 static int
6482 filt_fsattach(struct knote *kn)
6483 {
6484 
6485 	kn->kn_flags |= EV_CLEAR;
6486 	knlist_add(&fs_knlist, kn, 0);
6487 	return (0);
6488 }
6489 
6490 static void
6491 filt_fsdetach(struct knote *kn)
6492 {
6493 
6494 	knlist_remove(&fs_knlist, kn, 0);
6495 }
6496 
6497 static int
6498 filt_fsevent(struct knote *kn, long hint)
6499 {
6500 
6501 	kn->kn_fflags |= kn->kn_sfflags & hint;
6502 
6503 	return (kn->kn_fflags != 0);
6504 }
6505 
6506 static int
6507 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6508 {
6509 	struct vfsidctl vc;
6510 	int error;
6511 	struct mount *mp;
6512 
6513 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6514 	if (error)
6515 		return (error);
6516 	if (vc.vc_vers != VFS_CTL_VERS1)
6517 		return (EINVAL);
6518 	mp = vfs_getvfs(&vc.vc_fsid);
6519 	if (mp == NULL)
6520 		return (ENOENT);
6521 	/* ensure that a specific sysctl goes to the right filesystem. */
6522 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6523 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6524 		vfs_rel(mp);
6525 		return (EINVAL);
6526 	}
6527 	VCTLTOREQ(&vc, req);
6528 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6529 	vfs_rel(mp);
6530 	return (error);
6531 }
6532 
6533 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6534     NULL, 0, sysctl_vfs_ctl, "",
6535     "Sysctl by fsid");
6536 
6537 /*
6538  * Function to initialize a va_filerev field sensibly.
6539  * XXX: Wouldn't a random number make a lot more sense ??
6540  */
6541 u_quad_t
6542 init_va_filerev(void)
6543 {
6544 	struct bintime bt;
6545 
6546 	getbinuptime(&bt);
6547 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6548 }
6549 
6550 static int	filt_vfsread(struct knote *kn, long hint);
6551 static int	filt_vfswrite(struct knote *kn, long hint);
6552 static int	filt_vfsvnode(struct knote *kn, long hint);
6553 static void	filt_vfsdetach(struct knote *kn);
6554 static struct filterops vfsread_filtops = {
6555 	.f_isfd = 1,
6556 	.f_detach = filt_vfsdetach,
6557 	.f_event = filt_vfsread
6558 };
6559 static struct filterops vfswrite_filtops = {
6560 	.f_isfd = 1,
6561 	.f_detach = filt_vfsdetach,
6562 	.f_event = filt_vfswrite
6563 };
6564 static struct filterops vfsvnode_filtops = {
6565 	.f_isfd = 1,
6566 	.f_detach = filt_vfsdetach,
6567 	.f_event = filt_vfsvnode
6568 };
6569 
6570 static void
6571 vfs_knllock(void *arg)
6572 {
6573 	struct vnode *vp = arg;
6574 
6575 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6576 }
6577 
6578 static void
6579 vfs_knlunlock(void *arg)
6580 {
6581 	struct vnode *vp = arg;
6582 
6583 	VOP_UNLOCK(vp);
6584 }
6585 
6586 static void
6587 vfs_knl_assert_lock(void *arg, int what)
6588 {
6589 #ifdef DEBUG_VFS_LOCKS
6590 	struct vnode *vp = arg;
6591 
6592 	if (what == LA_LOCKED)
6593 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6594 	else
6595 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6596 #endif
6597 }
6598 
6599 int
6600 vfs_kqfilter(struct vop_kqfilter_args *ap)
6601 {
6602 	struct vnode *vp = ap->a_vp;
6603 	struct knote *kn = ap->a_kn;
6604 	struct knlist *knl;
6605 
6606 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6607 	    kn->kn_filter != EVFILT_WRITE),
6608 	    ("READ/WRITE filter on a FIFO leaked through"));
6609 	switch (kn->kn_filter) {
6610 	case EVFILT_READ:
6611 		kn->kn_fop = &vfsread_filtops;
6612 		break;
6613 	case EVFILT_WRITE:
6614 		kn->kn_fop = &vfswrite_filtops;
6615 		break;
6616 	case EVFILT_VNODE:
6617 		kn->kn_fop = &vfsvnode_filtops;
6618 		break;
6619 	default:
6620 		return (EINVAL);
6621 	}
6622 
6623 	kn->kn_hook = (caddr_t)vp;
6624 
6625 	v_addpollinfo(vp);
6626 	if (vp->v_pollinfo == NULL)
6627 		return (ENOMEM);
6628 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6629 	vhold(vp);
6630 	knlist_add(knl, kn, 0);
6631 
6632 	return (0);
6633 }
6634 
6635 /*
6636  * Detach knote from vnode
6637  */
6638 static void
6639 filt_vfsdetach(struct knote *kn)
6640 {
6641 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6642 
6643 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6644 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6645 	vdrop(vp);
6646 }
6647 
6648 /*ARGSUSED*/
6649 static int
6650 filt_vfsread(struct knote *kn, long hint)
6651 {
6652 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6653 	off_t size;
6654 	int res;
6655 
6656 	/*
6657 	 * filesystem is gone, so set the EOF flag and schedule
6658 	 * the knote for deletion.
6659 	 */
6660 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6661 		VI_LOCK(vp);
6662 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6663 		VI_UNLOCK(vp);
6664 		return (1);
6665 	}
6666 
6667 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6668 		return (0);
6669 
6670 	VI_LOCK(vp);
6671 	kn->kn_data = size - kn->kn_fp->f_offset;
6672 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6673 	VI_UNLOCK(vp);
6674 	return (res);
6675 }
6676 
6677 /*ARGSUSED*/
6678 static int
6679 filt_vfswrite(struct knote *kn, long hint)
6680 {
6681 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6682 
6683 	VI_LOCK(vp);
6684 
6685 	/*
6686 	 * filesystem is gone, so set the EOF flag and schedule
6687 	 * the knote for deletion.
6688 	 */
6689 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6690 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6691 
6692 	kn->kn_data = 0;
6693 	VI_UNLOCK(vp);
6694 	return (1);
6695 }
6696 
6697 static int
6698 filt_vfsvnode(struct knote *kn, long hint)
6699 {
6700 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6701 	int res;
6702 
6703 	VI_LOCK(vp);
6704 	if (kn->kn_sfflags & hint)
6705 		kn->kn_fflags |= hint;
6706 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6707 		kn->kn_flags |= EV_EOF;
6708 		VI_UNLOCK(vp);
6709 		return (1);
6710 	}
6711 	res = (kn->kn_fflags != 0);
6712 	VI_UNLOCK(vp);
6713 	return (res);
6714 }
6715 
6716 int
6717 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6718 {
6719 	int error;
6720 
6721 	if (dp->d_reclen > ap->a_uio->uio_resid)
6722 		return (ENAMETOOLONG);
6723 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6724 	if (error) {
6725 		if (ap->a_ncookies != NULL) {
6726 			if (ap->a_cookies != NULL)
6727 				free(ap->a_cookies, M_TEMP);
6728 			ap->a_cookies = NULL;
6729 			*ap->a_ncookies = 0;
6730 		}
6731 		return (error);
6732 	}
6733 	if (ap->a_ncookies == NULL)
6734 		return (0);
6735 
6736 	KASSERT(ap->a_cookies,
6737 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6738 
6739 	*ap->a_cookies = realloc(*ap->a_cookies,
6740 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6741 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6742 	*ap->a_ncookies += 1;
6743 	return (0);
6744 }
6745 
6746 /*
6747  * The purpose of this routine is to remove granularity from accmode_t,
6748  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6749  * VADMIN and VAPPEND.
6750  *
6751  * If it returns 0, the caller is supposed to continue with the usual
6752  * access checks using 'accmode' as modified by this routine.  If it
6753  * returns nonzero value, the caller is supposed to return that value
6754  * as errno.
6755  *
6756  * Note that after this routine runs, accmode may be zero.
6757  */
6758 int
6759 vfs_unixify_accmode(accmode_t *accmode)
6760 {
6761 	/*
6762 	 * There is no way to specify explicit "deny" rule using
6763 	 * file mode or POSIX.1e ACLs.
6764 	 */
6765 	if (*accmode & VEXPLICIT_DENY) {
6766 		*accmode = 0;
6767 		return (0);
6768 	}
6769 
6770 	/*
6771 	 * None of these can be translated into usual access bits.
6772 	 * Also, the common case for NFSv4 ACLs is to not contain
6773 	 * either of these bits. Caller should check for VWRITE
6774 	 * on the containing directory instead.
6775 	 */
6776 	if (*accmode & (VDELETE_CHILD | VDELETE))
6777 		return (EPERM);
6778 
6779 	if (*accmode & VADMIN_PERMS) {
6780 		*accmode &= ~VADMIN_PERMS;
6781 		*accmode |= VADMIN;
6782 	}
6783 
6784 	/*
6785 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6786 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6787 	 */
6788 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6789 
6790 	return (0);
6791 }
6792 
6793 /*
6794  * Clear out a doomed vnode (if any) and replace it with a new one as long
6795  * as the fs is not being unmounted. Return the root vnode to the caller.
6796  */
6797 static int __noinline
6798 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6799 {
6800 	struct vnode *vp;
6801 	int error;
6802 
6803 restart:
6804 	if (mp->mnt_rootvnode != NULL) {
6805 		MNT_ILOCK(mp);
6806 		vp = mp->mnt_rootvnode;
6807 		if (vp != NULL) {
6808 			if (!VN_IS_DOOMED(vp)) {
6809 				vrefact(vp);
6810 				MNT_IUNLOCK(mp);
6811 				error = vn_lock(vp, flags);
6812 				if (error == 0) {
6813 					*vpp = vp;
6814 					return (0);
6815 				}
6816 				vrele(vp);
6817 				goto restart;
6818 			}
6819 			/*
6820 			 * Clear the old one.
6821 			 */
6822 			mp->mnt_rootvnode = NULL;
6823 		}
6824 		MNT_IUNLOCK(mp);
6825 		if (vp != NULL) {
6826 			vfs_op_barrier_wait(mp);
6827 			vrele(vp);
6828 		}
6829 	}
6830 	error = VFS_CACHEDROOT(mp, flags, vpp);
6831 	if (error != 0)
6832 		return (error);
6833 	if (mp->mnt_vfs_ops == 0) {
6834 		MNT_ILOCK(mp);
6835 		if (mp->mnt_vfs_ops != 0) {
6836 			MNT_IUNLOCK(mp);
6837 			return (0);
6838 		}
6839 		if (mp->mnt_rootvnode == NULL) {
6840 			vrefact(*vpp);
6841 			mp->mnt_rootvnode = *vpp;
6842 		} else {
6843 			if (mp->mnt_rootvnode != *vpp) {
6844 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6845 					panic("%s: mismatch between vnode returned "
6846 					    " by VFS_CACHEDROOT and the one cached "
6847 					    " (%p != %p)",
6848 					    __func__, *vpp, mp->mnt_rootvnode);
6849 				}
6850 			}
6851 		}
6852 		MNT_IUNLOCK(mp);
6853 	}
6854 	return (0);
6855 }
6856 
6857 int
6858 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6859 {
6860 	struct mount_pcpu *mpcpu;
6861 	struct vnode *vp;
6862 	int error;
6863 
6864 	if (!vfs_op_thread_enter(mp, mpcpu))
6865 		return (vfs_cache_root_fallback(mp, flags, vpp));
6866 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6867 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6868 		vfs_op_thread_exit(mp, mpcpu);
6869 		return (vfs_cache_root_fallback(mp, flags, vpp));
6870 	}
6871 	vrefact(vp);
6872 	vfs_op_thread_exit(mp, mpcpu);
6873 	error = vn_lock(vp, flags);
6874 	if (error != 0) {
6875 		vrele(vp);
6876 		return (vfs_cache_root_fallback(mp, flags, vpp));
6877 	}
6878 	*vpp = vp;
6879 	return (0);
6880 }
6881 
6882 struct vnode *
6883 vfs_cache_root_clear(struct mount *mp)
6884 {
6885 	struct vnode *vp;
6886 
6887 	/*
6888 	 * ops > 0 guarantees there is nobody who can see this vnode
6889 	 */
6890 	MPASS(mp->mnt_vfs_ops > 0);
6891 	vp = mp->mnt_rootvnode;
6892 	if (vp != NULL)
6893 		vn_seqc_write_begin(vp);
6894 	mp->mnt_rootvnode = NULL;
6895 	return (vp);
6896 }
6897 
6898 void
6899 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6900 {
6901 
6902 	MPASS(mp->mnt_vfs_ops > 0);
6903 	vrefact(vp);
6904 	mp->mnt_rootvnode = vp;
6905 }
6906 
6907 /*
6908  * These are helper functions for filesystems to traverse all
6909  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6910  *
6911  * This interface replaces MNT_VNODE_FOREACH.
6912  */
6913 
6914 struct vnode *
6915 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6916 {
6917 	struct vnode *vp;
6918 
6919 	maybe_yield();
6920 	MNT_ILOCK(mp);
6921 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6922 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6923 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6924 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6925 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6926 			continue;
6927 		VI_LOCK(vp);
6928 		if (VN_IS_DOOMED(vp)) {
6929 			VI_UNLOCK(vp);
6930 			continue;
6931 		}
6932 		break;
6933 	}
6934 	if (vp == NULL) {
6935 		__mnt_vnode_markerfree_all(mvp, mp);
6936 		/* MNT_IUNLOCK(mp); -- done in above function */
6937 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6938 		return (NULL);
6939 	}
6940 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6941 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6942 	MNT_IUNLOCK(mp);
6943 	return (vp);
6944 }
6945 
6946 struct vnode *
6947 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6948 {
6949 	struct vnode *vp;
6950 
6951 	*mvp = vn_alloc_marker(mp);
6952 	MNT_ILOCK(mp);
6953 	MNT_REF(mp);
6954 
6955 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6956 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6957 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6958 			continue;
6959 		VI_LOCK(vp);
6960 		if (VN_IS_DOOMED(vp)) {
6961 			VI_UNLOCK(vp);
6962 			continue;
6963 		}
6964 		break;
6965 	}
6966 	if (vp == NULL) {
6967 		MNT_REL(mp);
6968 		MNT_IUNLOCK(mp);
6969 		vn_free_marker(*mvp);
6970 		*mvp = NULL;
6971 		return (NULL);
6972 	}
6973 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6974 	MNT_IUNLOCK(mp);
6975 	return (vp);
6976 }
6977 
6978 void
6979 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6980 {
6981 
6982 	if (*mvp == NULL) {
6983 		MNT_IUNLOCK(mp);
6984 		return;
6985 	}
6986 
6987 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6988 
6989 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6990 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6991 	MNT_REL(mp);
6992 	MNT_IUNLOCK(mp);
6993 	vn_free_marker(*mvp);
6994 	*mvp = NULL;
6995 }
6996 
6997 /*
6998  * These are helper functions for filesystems to traverse their
6999  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7000  */
7001 static void
7002 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7003 {
7004 
7005 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7006 
7007 	MNT_ILOCK(mp);
7008 	MNT_REL(mp);
7009 	MNT_IUNLOCK(mp);
7010 	vn_free_marker(*mvp);
7011 	*mvp = NULL;
7012 }
7013 
7014 /*
7015  * Relock the mp mount vnode list lock with the vp vnode interlock in the
7016  * conventional lock order during mnt_vnode_next_lazy iteration.
7017  *
7018  * On entry, the mount vnode list lock is held and the vnode interlock is not.
7019  * The list lock is dropped and reacquired.  On success, both locks are held.
7020  * On failure, the mount vnode list lock is held but the vnode interlock is
7021  * not, and the procedure may have yielded.
7022  */
7023 static bool
7024 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7025     struct vnode *vp)
7026 {
7027 
7028 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7029 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7030 	    ("%s: bad marker", __func__));
7031 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7032 	    ("%s: inappropriate vnode", __func__));
7033 	ASSERT_VI_UNLOCKED(vp, __func__);
7034 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7035 
7036 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7037 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7038 
7039 	/*
7040 	 * Note we may be racing against vdrop which transitioned the hold
7041 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7042 	 * if we are the only user after we get the interlock we will just
7043 	 * vdrop.
7044 	 */
7045 	vhold(vp);
7046 	mtx_unlock(&mp->mnt_listmtx);
7047 	VI_LOCK(vp);
7048 	if (VN_IS_DOOMED(vp)) {
7049 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7050 		goto out_lost;
7051 	}
7052 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7053 	/*
7054 	 * There is nothing to do if we are the last user.
7055 	 */
7056 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
7057 		goto out_lost;
7058 	mtx_lock(&mp->mnt_listmtx);
7059 	return (true);
7060 out_lost:
7061 	vdropl(vp);
7062 	maybe_yield();
7063 	mtx_lock(&mp->mnt_listmtx);
7064 	return (false);
7065 }
7066 
7067 static struct vnode *
7068 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7069     void *cbarg)
7070 {
7071 	struct vnode *vp;
7072 
7073 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7074 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7075 restart:
7076 	vp = TAILQ_NEXT(*mvp, v_lazylist);
7077 	while (vp != NULL) {
7078 		if (vp->v_type == VMARKER) {
7079 			vp = TAILQ_NEXT(vp, v_lazylist);
7080 			continue;
7081 		}
7082 		/*
7083 		 * See if we want to process the vnode. Note we may encounter a
7084 		 * long string of vnodes we don't care about and hog the list
7085 		 * as a result. Check for it and requeue the marker.
7086 		 */
7087 		VNPASS(!VN_IS_DOOMED(vp), vp);
7088 		if (!cb(vp, cbarg)) {
7089 			if (!should_yield()) {
7090 				vp = TAILQ_NEXT(vp, v_lazylist);
7091 				continue;
7092 			}
7093 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7094 			    v_lazylist);
7095 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7096 			    v_lazylist);
7097 			mtx_unlock(&mp->mnt_listmtx);
7098 			kern_yield(PRI_USER);
7099 			mtx_lock(&mp->mnt_listmtx);
7100 			goto restart;
7101 		}
7102 		/*
7103 		 * Try-lock because this is the wrong lock order.
7104 		 */
7105 		if (!VI_TRYLOCK(vp) &&
7106 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7107 			goto restart;
7108 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7109 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7110 		    ("alien vnode on the lazy list %p %p", vp, mp));
7111 		VNPASS(vp->v_mount == mp, vp);
7112 		VNPASS(!VN_IS_DOOMED(vp), vp);
7113 		break;
7114 	}
7115 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7116 
7117 	/* Check if we are done */
7118 	if (vp == NULL) {
7119 		mtx_unlock(&mp->mnt_listmtx);
7120 		mnt_vnode_markerfree_lazy(mvp, mp);
7121 		return (NULL);
7122 	}
7123 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7124 	mtx_unlock(&mp->mnt_listmtx);
7125 	ASSERT_VI_LOCKED(vp, "lazy iter");
7126 	return (vp);
7127 }
7128 
7129 struct vnode *
7130 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7131     void *cbarg)
7132 {
7133 
7134 	maybe_yield();
7135 	mtx_lock(&mp->mnt_listmtx);
7136 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7137 }
7138 
7139 struct vnode *
7140 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7141     void *cbarg)
7142 {
7143 	struct vnode *vp;
7144 
7145 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7146 		return (NULL);
7147 
7148 	*mvp = vn_alloc_marker(mp);
7149 	MNT_ILOCK(mp);
7150 	MNT_REF(mp);
7151 	MNT_IUNLOCK(mp);
7152 
7153 	mtx_lock(&mp->mnt_listmtx);
7154 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7155 	if (vp == NULL) {
7156 		mtx_unlock(&mp->mnt_listmtx);
7157 		mnt_vnode_markerfree_lazy(mvp, mp);
7158 		return (NULL);
7159 	}
7160 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7161 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7162 }
7163 
7164 void
7165 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7166 {
7167 
7168 	if (*mvp == NULL)
7169 		return;
7170 
7171 	mtx_lock(&mp->mnt_listmtx);
7172 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7173 	mtx_unlock(&mp->mnt_listmtx);
7174 	mnt_vnode_markerfree_lazy(mvp, mp);
7175 }
7176 
7177 int
7178 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7179 {
7180 
7181 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7182 		cnp->cn_flags &= ~NOEXECCHECK;
7183 		return (0);
7184 	}
7185 
7186 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7187 }
7188 
7189 /*
7190  * Do not use this variant unless you have means other than the hold count
7191  * to prevent the vnode from getting freed.
7192  */
7193 void
7194 vn_seqc_write_begin_locked(struct vnode *vp)
7195 {
7196 
7197 	ASSERT_VI_LOCKED(vp, __func__);
7198 	VNPASS(vp->v_holdcnt > 0, vp);
7199 	VNPASS(vp->v_seqc_users >= 0, vp);
7200 	vp->v_seqc_users++;
7201 	if (vp->v_seqc_users == 1)
7202 		seqc_sleepable_write_begin(&vp->v_seqc);
7203 }
7204 
7205 void
7206 vn_seqc_write_begin(struct vnode *vp)
7207 {
7208 
7209 	VI_LOCK(vp);
7210 	vn_seqc_write_begin_locked(vp);
7211 	VI_UNLOCK(vp);
7212 }
7213 
7214 void
7215 vn_seqc_write_end_locked(struct vnode *vp)
7216 {
7217 
7218 	ASSERT_VI_LOCKED(vp, __func__);
7219 	VNPASS(vp->v_seqc_users > 0, vp);
7220 	vp->v_seqc_users--;
7221 	if (vp->v_seqc_users == 0)
7222 		seqc_sleepable_write_end(&vp->v_seqc);
7223 }
7224 
7225 void
7226 vn_seqc_write_end(struct vnode *vp)
7227 {
7228 
7229 	VI_LOCK(vp);
7230 	vn_seqc_write_end_locked(vp);
7231 	VI_UNLOCK(vp);
7232 }
7233 
7234 /*
7235  * Special case handling for allocating and freeing vnodes.
7236  *
7237  * The counter remains unchanged on free so that a doomed vnode will
7238  * keep testing as in modify as long as it is accessible with SMR.
7239  */
7240 static void
7241 vn_seqc_init(struct vnode *vp)
7242 {
7243 
7244 	vp->v_seqc = 0;
7245 	vp->v_seqc_users = 0;
7246 }
7247 
7248 static void
7249 vn_seqc_write_end_free(struct vnode *vp)
7250 {
7251 
7252 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7253 	VNPASS(vp->v_seqc_users == 1, vp);
7254 }
7255 
7256 void
7257 vn_irflag_set_locked(struct vnode *vp, short toset)
7258 {
7259 	short flags;
7260 
7261 	ASSERT_VI_LOCKED(vp, __func__);
7262 	flags = vn_irflag_read(vp);
7263 	VNASSERT((flags & toset) == 0, vp,
7264 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7265 	    __func__, flags, toset));
7266 	atomic_store_short(&vp->v_irflag, flags | toset);
7267 }
7268 
7269 void
7270 vn_irflag_set(struct vnode *vp, short toset)
7271 {
7272 
7273 	VI_LOCK(vp);
7274 	vn_irflag_set_locked(vp, toset);
7275 	VI_UNLOCK(vp);
7276 }
7277 
7278 void
7279 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7280 {
7281 	short flags;
7282 
7283 	ASSERT_VI_LOCKED(vp, __func__);
7284 	flags = vn_irflag_read(vp);
7285 	atomic_store_short(&vp->v_irflag, flags | toset);
7286 }
7287 
7288 void
7289 vn_irflag_set_cond(struct vnode *vp, short toset)
7290 {
7291 
7292 	VI_LOCK(vp);
7293 	vn_irflag_set_cond_locked(vp, toset);
7294 	VI_UNLOCK(vp);
7295 }
7296 
7297 void
7298 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7299 {
7300 	short flags;
7301 
7302 	ASSERT_VI_LOCKED(vp, __func__);
7303 	flags = vn_irflag_read(vp);
7304 	VNASSERT((flags & tounset) == tounset, vp,
7305 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7306 	    __func__, flags, tounset));
7307 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7308 }
7309 
7310 void
7311 vn_irflag_unset(struct vnode *vp, short tounset)
7312 {
7313 
7314 	VI_LOCK(vp);
7315 	vn_irflag_unset_locked(vp, tounset);
7316 	VI_UNLOCK(vp);
7317 }
7318 
7319 int
7320 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7321 {
7322 	struct vattr vattr;
7323 	int error;
7324 
7325 	ASSERT_VOP_LOCKED(vp, __func__);
7326 	error = VOP_GETATTR(vp, &vattr, cred);
7327 	if (__predict_true(error == 0)) {
7328 		if (vattr.va_size <= OFF_MAX)
7329 			*size = vattr.va_size;
7330 		else
7331 			error = EFBIG;
7332 	}
7333 	return (error);
7334 }
7335 
7336 int
7337 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7338 {
7339 	int error;
7340 
7341 	VOP_LOCK(vp, LK_SHARED);
7342 	error = vn_getsize_locked(vp, size, cred);
7343 	VOP_UNLOCK(vp);
7344 	return (error);
7345 }
7346 
7347 #ifdef INVARIANTS
7348 void
7349 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7350 {
7351 
7352 	switch (vp->v_state) {
7353 	case VSTATE_UNINITIALIZED:
7354 		switch (state) {
7355 		case VSTATE_CONSTRUCTED:
7356 		case VSTATE_DESTROYING:
7357 			return;
7358 		default:
7359 			break;
7360 		}
7361 		break;
7362 	case VSTATE_CONSTRUCTED:
7363 		ASSERT_VOP_ELOCKED(vp, __func__);
7364 		switch (state) {
7365 		case VSTATE_DESTROYING:
7366 			return;
7367 		default:
7368 			break;
7369 		}
7370 		break;
7371 	case VSTATE_DESTROYING:
7372 		ASSERT_VOP_ELOCKED(vp, __func__);
7373 		switch (state) {
7374 		case VSTATE_DEAD:
7375 			return;
7376 		default:
7377 			break;
7378 		}
7379 		break;
7380 	case VSTATE_DEAD:
7381 		switch (state) {
7382 		case VSTATE_UNINITIALIZED:
7383 			return;
7384 		default:
7385 			break;
7386 		}
7387 		break;
7388 	}
7389 
7390 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7391 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7392 }
7393 #endif
7394