1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 37 /* 38 * External virtual filesystem routines 39 */ 40 41 #include <sys/cdefs.h> 42 #include "opt_ddb.h" 43 #include "opt_watchdog.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/asan.h> 48 #include <sys/bio.h> 49 #include <sys/buf.h> 50 #include <sys/capsicum.h> 51 #include <sys/condvar.h> 52 #include <sys/conf.h> 53 #include <sys/counter.h> 54 #include <sys/dirent.h> 55 #include <sys/event.h> 56 #include <sys/eventhandler.h> 57 #include <sys/extattr.h> 58 #include <sys/file.h> 59 #include <sys/fcntl.h> 60 #include <sys/jail.h> 61 #include <sys/kdb.h> 62 #include <sys/kernel.h> 63 #include <sys/kthread.h> 64 #include <sys/ktr.h> 65 #include <sys/limits.h> 66 #include <sys/lockf.h> 67 #include <sys/malloc.h> 68 #include <sys/mount.h> 69 #include <sys/namei.h> 70 #include <sys/pctrie.h> 71 #include <sys/priv.h> 72 #include <sys/reboot.h> 73 #include <sys/refcount.h> 74 #include <sys/rwlock.h> 75 #include <sys/sched.h> 76 #include <sys/sleepqueue.h> 77 #include <sys/smr.h> 78 #include <sys/smp.h> 79 #include <sys/stat.h> 80 #include <sys/sysctl.h> 81 #include <sys/syslog.h> 82 #include <sys/vmmeter.h> 83 #include <sys/vnode.h> 84 #include <sys/watchdog.h> 85 86 #include <machine/stdarg.h> 87 88 #include <security/mac/mac_framework.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_extern.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_page.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/uma.h> 99 100 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS)) 101 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS 102 #endif 103 104 #ifdef DDB 105 #include <ddb/ddb.h> 106 #endif 107 108 static void delmntque(struct vnode *vp); 109 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 110 int slpflag, int slptimeo); 111 static void syncer_shutdown(void *arg, int howto); 112 static int vtryrecycle(struct vnode *vp, bool isvnlru); 113 static void v_init_counters(struct vnode *); 114 static void vn_seqc_init(struct vnode *); 115 static void vn_seqc_write_end_free(struct vnode *vp); 116 static void vgonel(struct vnode *); 117 static bool vhold_recycle_free(struct vnode *); 118 static void vdropl_recycle(struct vnode *vp); 119 static void vdrop_recycle(struct vnode *vp); 120 static void vfs_knllock(void *arg); 121 static void vfs_knlunlock(void *arg); 122 static void vfs_knl_assert_lock(void *arg, int what); 123 static void destroy_vpollinfo(struct vpollinfo *vi); 124 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 125 daddr_t startlbn, daddr_t endlbn); 126 static void vnlru_recalc(void); 127 128 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 129 "vnode configuration and statistics"); 130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 131 "vnode configuration"); 132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 133 "vnode statistics"); 134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 135 "vnode recycling"); 136 137 /* 138 * Number of vnodes in existence. Increased whenever getnewvnode() 139 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode. 140 */ 141 static u_long __exclusive_cache_line numvnodes; 142 143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 144 "Number of vnodes in existence (legacy)"); 145 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0, 146 "Number of vnodes in existence"); 147 148 static counter_u64_t vnodes_created; 149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 150 "Number of vnodes created by getnewvnode (legacy)"); 151 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created, 152 "Number of vnodes created by getnewvnode"); 153 154 /* 155 * Conversion tables for conversion from vnode types to inode formats 156 * and back. 157 */ 158 __enum_uint8(vtype) iftovt_tab[16] = { 159 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 160 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 161 }; 162 int vttoif_tab[10] = { 163 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 164 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 165 }; 166 167 /* 168 * List of allocates vnodes in the system. 169 */ 170 static TAILQ_HEAD(freelst, vnode) vnode_list; 171 static struct vnode *vnode_list_free_marker; 172 static struct vnode *vnode_list_reclaim_marker; 173 174 /* 175 * "Free" vnode target. Free vnodes are rarely completely free, but are 176 * just ones that are cheap to recycle. Usually they are for files which 177 * have been stat'd but not read; these usually have inode and namecache 178 * data attached to them. This target is the preferred minimum size of a 179 * sub-cache consisting mostly of such files. The system balances the size 180 * of this sub-cache with its complement to try to prevent either from 181 * thrashing while the other is relatively inactive. The targets express 182 * a preference for the best balance. 183 * 184 * "Above" this target there are 2 further targets (watermarks) related 185 * to recyling of free vnodes. In the best-operating case, the cache is 186 * exactly full, the free list has size between vlowat and vhiwat above the 187 * free target, and recycling from it and normal use maintains this state. 188 * Sometimes the free list is below vlowat or even empty, but this state 189 * is even better for immediate use provided the cache is not full. 190 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free 191 * ones) to reach one of these states. The watermarks are currently hard- 192 * coded as 4% and 9% of the available space higher. These and the default 193 * of 25% for wantfreevnodes are too large if the memory size is large. 194 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim 195 * whenever vnlru_proc() becomes active. 196 */ 197 static long wantfreevnodes; 198 static long __exclusive_cache_line freevnodes; 199 static long freevnodes_old; 200 201 static u_long recycles_count; 202 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0, 203 "Number of vnodes recycled to meet vnode cache targets (legacy)"); 204 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, 205 &recycles_count, 0, 206 "Number of vnodes recycled to meet vnode cache targets"); 207 208 static u_long recycles_free_count; 209 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS, 210 &recycles_free_count, 0, 211 "Number of free vnodes recycled to meet vnode cache targets (legacy)"); 212 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS, 213 &recycles_free_count, 0, 214 "Number of free vnodes recycled to meet vnode cache targets"); 215 216 static counter_u64_t direct_recycles_free_count; 217 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD, 218 &direct_recycles_free_count, 219 "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets"); 220 221 static counter_u64_t vnode_skipped_requeues; 222 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues, 223 "Number of times LRU requeue was skipped due to lock contention"); 224 225 static __read_mostly bool vnode_can_skip_requeue; 226 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW, 227 &vnode_can_skip_requeue, 0, "Is LRU requeue skippable"); 228 229 static u_long deferred_inact; 230 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, 231 &deferred_inact, 0, "Number of times inactive processing was deferred"); 232 233 /* To keep more than one thread at a time from running vfs_getnewfsid */ 234 static struct mtx mntid_mtx; 235 236 /* 237 * Lock for any access to the following: 238 * vnode_list 239 * numvnodes 240 * freevnodes 241 */ 242 static struct mtx __exclusive_cache_line vnode_list_mtx; 243 244 /* Publicly exported FS */ 245 struct nfs_public nfs_pub; 246 247 static uma_zone_t buf_trie_zone; 248 static smr_t buf_trie_smr; 249 250 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 251 static uma_zone_t vnode_zone; 252 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll"); 253 254 __read_frequently smr_t vfs_smr; 255 256 /* 257 * The workitem queue. 258 * 259 * It is useful to delay writes of file data and filesystem metadata 260 * for tens of seconds so that quickly created and deleted files need 261 * not waste disk bandwidth being created and removed. To realize this, 262 * we append vnodes to a "workitem" queue. When running with a soft 263 * updates implementation, most pending metadata dependencies should 264 * not wait for more than a few seconds. Thus, mounted on block devices 265 * are delayed only about a half the time that file data is delayed. 266 * Similarly, directory updates are more critical, so are only delayed 267 * about a third the time that file data is delayed. Thus, there are 268 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 269 * one each second (driven off the filesystem syncer process). The 270 * syncer_delayno variable indicates the next queue that is to be processed. 271 * Items that need to be processed soon are placed in this queue: 272 * 273 * syncer_workitem_pending[syncer_delayno] 274 * 275 * A delay of fifteen seconds is done by placing the request fifteen 276 * entries later in the queue: 277 * 278 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 279 * 280 */ 281 static int syncer_delayno; 282 static long syncer_mask; 283 LIST_HEAD(synclist, bufobj); 284 static struct synclist *syncer_workitem_pending; 285 /* 286 * The sync_mtx protects: 287 * bo->bo_synclist 288 * sync_vnode_count 289 * syncer_delayno 290 * syncer_state 291 * syncer_workitem_pending 292 * syncer_worklist_len 293 * rushjob 294 */ 295 static struct mtx sync_mtx; 296 static struct cv sync_wakeup; 297 298 #define SYNCER_MAXDELAY 32 299 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 300 static int syncdelay = 30; /* max time to delay syncing data */ 301 static int filedelay = 30; /* time to delay syncing files */ 302 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 303 "Time to delay syncing files (in seconds)"); 304 static int dirdelay = 29; /* time to delay syncing directories */ 305 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 306 "Time to delay syncing directories (in seconds)"); 307 static int metadelay = 28; /* time to delay syncing metadata */ 308 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 309 "Time to delay syncing metadata (in seconds)"); 310 static int rushjob; /* number of slots to run ASAP */ 311 static int stat_rush_requests; /* number of times I/O speeded up */ 312 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 313 "Number of times I/O speeded up (rush requests)"); 314 315 #define VDBATCH_SIZE 8 316 struct vdbatch { 317 u_int index; 318 struct mtx lock; 319 struct vnode *tab[VDBATCH_SIZE]; 320 }; 321 DPCPU_DEFINE_STATIC(struct vdbatch, vd); 322 323 static void vdbatch_dequeue(struct vnode *vp); 324 325 /* 326 * When shutting down the syncer, run it at four times normal speed. 327 */ 328 #define SYNCER_SHUTDOWN_SPEEDUP 4 329 static int sync_vnode_count; 330 static int syncer_worklist_len; 331 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 332 syncer_state; 333 334 /* Target for maximum number of vnodes. */ 335 u_long desiredvnodes; 336 static u_long gapvnodes; /* gap between wanted and desired */ 337 static u_long vhiwat; /* enough extras after expansion */ 338 static u_long vlowat; /* minimal extras before expansion */ 339 static bool vstir; /* nonzero to stir non-free vnodes */ 340 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */ 341 342 static u_long vnlru_read_freevnodes(void); 343 344 /* 345 * Note that no attempt is made to sanitize these parameters. 346 */ 347 static int 348 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS) 349 { 350 u_long val; 351 int error; 352 353 val = desiredvnodes; 354 error = sysctl_handle_long(oidp, &val, 0, req); 355 if (error != 0 || req->newptr == NULL) 356 return (error); 357 358 if (val == desiredvnodes) 359 return (0); 360 mtx_lock(&vnode_list_mtx); 361 desiredvnodes = val; 362 wantfreevnodes = desiredvnodes / 4; 363 vnlru_recalc(); 364 mtx_unlock(&vnode_list_mtx); 365 /* 366 * XXX There is no protection against multiple threads changing 367 * desiredvnodes at the same time. Locking above only helps vnlru and 368 * getnewvnode. 369 */ 370 vfs_hash_changesize(desiredvnodes); 371 cache_changesize(desiredvnodes); 372 return (0); 373 } 374 375 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, 376 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 377 "LU", "Target for maximum number of vnodes (legacy)"); 378 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit, 379 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 380 "LU", "Target for maximum number of vnodes"); 381 382 static int 383 sysctl_freevnodes(SYSCTL_HANDLER_ARGS) 384 { 385 u_long rfreevnodes; 386 387 rfreevnodes = vnlru_read_freevnodes(); 388 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req)); 389 } 390 391 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes, 392 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes, 393 "LU", "Number of \"free\" vnodes (legacy)"); 394 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free, 395 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes, 396 "LU", "Number of \"free\" vnodes"); 397 398 static int 399 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS) 400 { 401 u_long val; 402 int error; 403 404 val = wantfreevnodes; 405 error = sysctl_handle_long(oidp, &val, 0, req); 406 if (error != 0 || req->newptr == NULL) 407 return (error); 408 409 if (val == wantfreevnodes) 410 return (0); 411 mtx_lock(&vnode_list_mtx); 412 wantfreevnodes = val; 413 vnlru_recalc(); 414 mtx_unlock(&vnode_list_mtx); 415 return (0); 416 } 417 418 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes, 419 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 420 "LU", "Target for minimum number of \"free\" vnodes (legacy)"); 421 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree, 422 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 423 "LU", "Target for minimum number of \"free\" vnodes"); 424 425 static int vnlru_nowhere; 426 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS, 427 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 428 429 static int 430 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS) 431 { 432 struct vnode *vp; 433 struct nameidata nd; 434 char *buf; 435 unsigned long ndflags; 436 int error; 437 438 if (req->newptr == NULL) 439 return (EINVAL); 440 if (req->newlen >= PATH_MAX) 441 return (E2BIG); 442 443 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK); 444 error = SYSCTL_IN(req, buf, req->newlen); 445 if (error != 0) 446 goto out; 447 448 buf[req->newlen] = '\0'; 449 450 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1; 451 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf); 452 if ((error = namei(&nd)) != 0) 453 goto out; 454 vp = nd.ni_vp; 455 456 if (VN_IS_DOOMED(vp)) { 457 /* 458 * This vnode is being recycled. Return != 0 to let the caller 459 * know that the sysctl had no effect. Return EAGAIN because a 460 * subsequent call will likely succeed (since namei will create 461 * a new vnode if necessary) 462 */ 463 error = EAGAIN; 464 goto putvnode; 465 } 466 467 vgone(vp); 468 putvnode: 469 vput(vp); 470 NDFREE_PNBUF(&nd); 471 out: 472 free(buf, M_TEMP); 473 return (error); 474 } 475 476 static int 477 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS) 478 { 479 struct thread *td = curthread; 480 struct vnode *vp; 481 struct file *fp; 482 int error; 483 int fd; 484 485 if (req->newptr == NULL) 486 return (EBADF); 487 488 error = sysctl_handle_int(oidp, &fd, 0, req); 489 if (error != 0) 490 return (error); 491 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp); 492 if (error != 0) 493 return (error); 494 vp = fp->f_vnode; 495 496 error = vn_lock(vp, LK_EXCLUSIVE); 497 if (error != 0) 498 goto drop; 499 500 vgone(vp); 501 VOP_UNLOCK(vp); 502 drop: 503 fdrop(fp, td); 504 return (error); 505 } 506 507 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode, 508 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 509 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname"); 510 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode, 511 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 512 sysctl_ftry_reclaim_vnode, "I", 513 "Try to reclaim a vnode by its file descriptor"); 514 515 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 516 #define vnsz2log 8 517 #ifndef DEBUG_LOCKS 518 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log && 519 sizeof(struct vnode) < 1UL << (vnsz2log + 1), 520 "vnsz2log needs to be updated"); 521 #endif 522 523 /* 524 * Support for the bufobj clean & dirty pctrie. 525 */ 526 static void * 527 buf_trie_alloc(struct pctrie *ptree) 528 { 529 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT)); 530 } 531 532 static void 533 buf_trie_free(struct pctrie *ptree, void *node) 534 { 535 uma_zfree_smr(buf_trie_zone, node); 536 } 537 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free, 538 buf_trie_smr); 539 540 /* 541 * Initialize the vnode management data structures. 542 * 543 * Reevaluate the following cap on the number of vnodes after the physical 544 * memory size exceeds 512GB. In the limit, as the physical memory size 545 * grows, the ratio of the memory size in KB to vnodes approaches 64:1. 546 */ 547 #ifndef MAXVNODES_MAX 548 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */ 549 #endif 550 551 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 552 553 static struct vnode * 554 vn_alloc_marker(struct mount *mp) 555 { 556 struct vnode *vp; 557 558 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 559 vp->v_type = VMARKER; 560 vp->v_mount = mp; 561 562 return (vp); 563 } 564 565 static void 566 vn_free_marker(struct vnode *vp) 567 { 568 569 MPASS(vp->v_type == VMARKER); 570 free(vp, M_VNODE_MARKER); 571 } 572 573 #ifdef KASAN 574 static int 575 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused) 576 { 577 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0); 578 return (0); 579 } 580 581 static void 582 vnode_dtor(void *mem, int size, void *arg __unused) 583 { 584 size_t end1, end2, off1, off2; 585 586 _Static_assert(offsetof(struct vnode, v_vnodelist) < 587 offsetof(struct vnode, v_dbatchcpu), 588 "KASAN marks require updating"); 589 590 off1 = offsetof(struct vnode, v_vnodelist); 591 off2 = offsetof(struct vnode, v_dbatchcpu); 592 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist); 593 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu); 594 595 /* 596 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even 597 * after the vnode has been freed. Try to get some KASAN coverage by 598 * marking everything except those two fields as invalid. Because 599 * KASAN's tracking is not byte-granular, any preceding fields sharing 600 * the same 8-byte aligned word must also be marked valid. 601 */ 602 603 /* Handle the area from the start until v_vnodelist... */ 604 off1 = rounddown2(off1, KASAN_SHADOW_SCALE); 605 kasan_mark(mem, off1, off1, KASAN_UMA_FREED); 606 607 /* ... then the area between v_vnodelist and v_dbatchcpu ... */ 608 off1 = roundup2(end1, KASAN_SHADOW_SCALE); 609 off2 = rounddown2(off2, KASAN_SHADOW_SCALE); 610 if (off2 > off1) 611 kasan_mark((void *)((char *)mem + off1), off2 - off1, 612 off2 - off1, KASAN_UMA_FREED); 613 614 /* ... and finally the area from v_dbatchcpu to the end. */ 615 off2 = roundup2(end2, KASAN_SHADOW_SCALE); 616 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2, 617 KASAN_UMA_FREED); 618 } 619 #endif /* KASAN */ 620 621 /* 622 * Initialize a vnode as it first enters the zone. 623 */ 624 static int 625 vnode_init(void *mem, int size, int flags) 626 { 627 struct vnode *vp; 628 629 vp = mem; 630 bzero(vp, size); 631 /* 632 * Setup locks. 633 */ 634 vp->v_vnlock = &vp->v_lock; 635 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 636 /* 637 * By default, don't allow shared locks unless filesystems opt-in. 638 */ 639 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT, 640 LK_NOSHARE | LK_IS_VNODE); 641 /* 642 * Initialize bufobj. 643 */ 644 bufobj_init(&vp->v_bufobj, vp); 645 /* 646 * Initialize namecache. 647 */ 648 cache_vnode_init(vp); 649 /* 650 * Initialize rangelocks. 651 */ 652 rangelock_init(&vp->v_rl); 653 654 vp->v_dbatchcpu = NOCPU; 655 656 vp->v_state = VSTATE_DEAD; 657 658 /* 659 * Check vhold_recycle_free for an explanation. 660 */ 661 vp->v_holdcnt = VHOLD_NO_SMR; 662 vp->v_type = VNON; 663 mtx_lock(&vnode_list_mtx); 664 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist); 665 mtx_unlock(&vnode_list_mtx); 666 return (0); 667 } 668 669 /* 670 * Free a vnode when it is cleared from the zone. 671 */ 672 static void 673 vnode_fini(void *mem, int size) 674 { 675 struct vnode *vp; 676 struct bufobj *bo; 677 678 vp = mem; 679 vdbatch_dequeue(vp); 680 mtx_lock(&vnode_list_mtx); 681 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 682 mtx_unlock(&vnode_list_mtx); 683 rangelock_destroy(&vp->v_rl); 684 lockdestroy(vp->v_vnlock); 685 mtx_destroy(&vp->v_interlock); 686 bo = &vp->v_bufobj; 687 rw_destroy(BO_LOCKPTR(bo)); 688 689 kasan_mark(mem, size, size, 0); 690 } 691 692 /* 693 * Provide the size of NFS nclnode and NFS fh for calculation of the 694 * vnode memory consumption. The size is specified directly to 695 * eliminate dependency on NFS-private header. 696 * 697 * Other filesystems may use bigger or smaller (like UFS and ZFS) 698 * private inode data, but the NFS-based estimation is ample enough. 699 * Still, we care about differences in the size between 64- and 32-bit 700 * platforms. 701 * 702 * Namecache structure size is heuristically 703 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1. 704 */ 705 #ifdef _LP64 706 #define NFS_NCLNODE_SZ (528 + 64) 707 #define NC_SZ 148 708 #else 709 #define NFS_NCLNODE_SZ (360 + 32) 710 #define NC_SZ 92 711 #endif 712 713 static void 714 vntblinit(void *dummy __unused) 715 { 716 struct vdbatch *vd; 717 uma_ctor ctor; 718 uma_dtor dtor; 719 int cpu, physvnodes, virtvnodes; 720 721 /* 722 * Desiredvnodes is a function of the physical memory size and the 723 * kernel's heap size. Generally speaking, it scales with the 724 * physical memory size. The ratio of desiredvnodes to the physical 725 * memory size is 1:16 until desiredvnodes exceeds 98,304. 726 * Thereafter, the 727 * marginal ratio of desiredvnodes to the physical memory size is 728 * 1:64. However, desiredvnodes is limited by the kernel's heap 729 * size. The memory required by desiredvnodes vnodes and vm objects 730 * must not exceed 1/10th of the kernel's heap size. 731 */ 732 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 + 733 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64; 734 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) + 735 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ)); 736 desiredvnodes = min(physvnodes, virtvnodes); 737 if (desiredvnodes > MAXVNODES_MAX) { 738 if (bootverbose) 739 printf("Reducing kern.maxvnodes %lu -> %lu\n", 740 desiredvnodes, MAXVNODES_MAX); 741 desiredvnodes = MAXVNODES_MAX; 742 } 743 wantfreevnodes = desiredvnodes / 4; 744 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 745 TAILQ_INIT(&vnode_list); 746 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF); 747 /* 748 * The lock is taken to appease WITNESS. 749 */ 750 mtx_lock(&vnode_list_mtx); 751 vnlru_recalc(); 752 mtx_unlock(&vnode_list_mtx); 753 vnode_list_free_marker = vn_alloc_marker(NULL); 754 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist); 755 vnode_list_reclaim_marker = vn_alloc_marker(NULL); 756 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist); 757 758 #ifdef KASAN 759 ctor = vnode_ctor; 760 dtor = vnode_dtor; 761 #else 762 ctor = NULL; 763 dtor = NULL; 764 #endif 765 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor, 766 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN); 767 uma_zone_set_smr(vnode_zone, vfs_smr); 768 769 /* 770 * Preallocate enough nodes to support one-per buf so that 771 * we can not fail an insert. reassignbuf() callers can not 772 * tolerate the insertion failure. 773 */ 774 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 775 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 776 UMA_ZONE_NOFREE | UMA_ZONE_SMR); 777 buf_trie_smr = uma_zone_get_smr(buf_trie_zone); 778 uma_prealloc(buf_trie_zone, nbuf); 779 780 vnodes_created = counter_u64_alloc(M_WAITOK); 781 direct_recycles_free_count = counter_u64_alloc(M_WAITOK); 782 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK); 783 784 /* 785 * Initialize the filesystem syncer. 786 */ 787 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 788 &syncer_mask); 789 syncer_maxdelay = syncer_mask + 1; 790 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 791 cv_init(&sync_wakeup, "syncer"); 792 793 CPU_FOREACH(cpu) { 794 vd = DPCPU_ID_PTR((cpu), vd); 795 bzero(vd, sizeof(*vd)); 796 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF); 797 } 798 } 799 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 800 801 /* 802 * Mark a mount point as busy. Used to synchronize access and to delay 803 * unmounting. Eventually, mountlist_mtx is not released on failure. 804 * 805 * vfs_busy() is a custom lock, it can block the caller. 806 * vfs_busy() only sleeps if the unmount is active on the mount point. 807 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 808 * vnode belonging to mp. 809 * 810 * Lookup uses vfs_busy() to traverse mount points. 811 * root fs var fs 812 * / vnode lock A / vnode lock (/var) D 813 * /var vnode lock B /log vnode lock(/var/log) E 814 * vfs_busy lock C vfs_busy lock F 815 * 816 * Within each file system, the lock order is C->A->B and F->D->E. 817 * 818 * When traversing across mounts, the system follows that lock order: 819 * 820 * C->A->B 821 * | 822 * +->F->D->E 823 * 824 * The lookup() process for namei("/var") illustrates the process: 825 * 1. VOP_LOOKUP() obtains B while A is held 826 * 2. vfs_busy() obtains a shared lock on F while A and B are held 827 * 3. vput() releases lock on B 828 * 4. vput() releases lock on A 829 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held 830 * 6. vfs_unbusy() releases shared lock on F 831 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 832 * Attempt to lock A (instead of vp_crossmp) while D is held would 833 * violate the global order, causing deadlocks. 834 * 835 * dounmount() locks B while F is drained. Note that for stacked 836 * filesystems, D and B in the example above may be the same lock, 837 * which introdues potential lock order reversal deadlock between 838 * dounmount() and step 5 above. These filesystems may avoid the LOR 839 * by setting VV_CROSSLOCK on the covered vnode so that lock B will 840 * remain held until after step 5. 841 */ 842 int 843 vfs_busy(struct mount *mp, int flags) 844 { 845 struct mount_pcpu *mpcpu; 846 847 MPASS((flags & ~MBF_MASK) == 0); 848 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 849 850 if (vfs_op_thread_enter(mp, mpcpu)) { 851 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 852 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0); 853 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0); 854 vfs_mp_count_add_pcpu(mpcpu, ref, 1); 855 vfs_mp_count_add_pcpu(mpcpu, lockref, 1); 856 vfs_op_thread_exit(mp, mpcpu); 857 if (flags & MBF_MNTLSTLOCK) 858 mtx_unlock(&mountlist_mtx); 859 return (0); 860 } 861 862 MNT_ILOCK(mp); 863 vfs_assert_mount_counters(mp); 864 MNT_REF(mp); 865 /* 866 * If mount point is currently being unmounted, sleep until the 867 * mount point fate is decided. If thread doing the unmounting fails, 868 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 869 * that this mount point has survived the unmount attempt and vfs_busy 870 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 871 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 872 * about to be really destroyed. vfs_busy needs to release its 873 * reference on the mount point in this case and return with ENOENT, 874 * telling the caller the mount it tried to busy is no longer valid. 875 */ 876 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 877 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), 878 ("%s: non-empty upper mount list with pending unmount", 879 __func__)); 880 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 881 MNT_REL(mp); 882 MNT_IUNLOCK(mp); 883 CTR1(KTR_VFS, "%s: failed busying before sleeping", 884 __func__); 885 return (ENOENT); 886 } 887 if (flags & MBF_MNTLSTLOCK) 888 mtx_unlock(&mountlist_mtx); 889 mp->mnt_kern_flag |= MNTK_MWAIT; 890 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 891 if (flags & MBF_MNTLSTLOCK) 892 mtx_lock(&mountlist_mtx); 893 MNT_ILOCK(mp); 894 } 895 if (flags & MBF_MNTLSTLOCK) 896 mtx_unlock(&mountlist_mtx); 897 mp->mnt_lockref++; 898 MNT_IUNLOCK(mp); 899 return (0); 900 } 901 902 /* 903 * Free a busy filesystem. 904 */ 905 void 906 vfs_unbusy(struct mount *mp) 907 { 908 struct mount_pcpu *mpcpu; 909 int c; 910 911 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 912 913 if (vfs_op_thread_enter(mp, mpcpu)) { 914 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 915 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1); 916 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 917 vfs_op_thread_exit(mp, mpcpu); 918 return; 919 } 920 921 MNT_ILOCK(mp); 922 vfs_assert_mount_counters(mp); 923 MNT_REL(mp); 924 c = --mp->mnt_lockref; 925 if (mp->mnt_vfs_ops == 0) { 926 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 927 MNT_IUNLOCK(mp); 928 return; 929 } 930 if (c < 0) 931 vfs_dump_mount_counters(mp); 932 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 933 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 934 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 935 mp->mnt_kern_flag &= ~MNTK_DRAINING; 936 wakeup(&mp->mnt_lockref); 937 } 938 MNT_IUNLOCK(mp); 939 } 940 941 /* 942 * Lookup a mount point by filesystem identifier. 943 */ 944 struct mount * 945 vfs_getvfs(fsid_t *fsid) 946 { 947 struct mount *mp; 948 949 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 950 mtx_lock(&mountlist_mtx); 951 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 952 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 953 vfs_ref(mp); 954 mtx_unlock(&mountlist_mtx); 955 return (mp); 956 } 957 } 958 mtx_unlock(&mountlist_mtx); 959 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 960 return ((struct mount *) 0); 961 } 962 963 /* 964 * Lookup a mount point by filesystem identifier, busying it before 965 * returning. 966 * 967 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 968 * cache for popular filesystem identifiers. The cache is lockess, using 969 * the fact that struct mount's are never freed. In worst case we may 970 * get pointer to unmounted or even different filesystem, so we have to 971 * check what we got, and go slow way if so. 972 */ 973 struct mount * 974 vfs_busyfs(fsid_t *fsid) 975 { 976 #define FSID_CACHE_SIZE 256 977 typedef struct mount * volatile vmp_t; 978 static vmp_t cache[FSID_CACHE_SIZE]; 979 struct mount *mp; 980 int error; 981 uint32_t hash; 982 983 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 984 hash = fsid->val[0] ^ fsid->val[1]; 985 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 986 mp = cache[hash]; 987 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0) 988 goto slow; 989 if (vfs_busy(mp, 0) != 0) { 990 cache[hash] = NULL; 991 goto slow; 992 } 993 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) 994 return (mp); 995 else 996 vfs_unbusy(mp); 997 998 slow: 999 mtx_lock(&mountlist_mtx); 1000 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 1001 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 1002 error = vfs_busy(mp, MBF_MNTLSTLOCK); 1003 if (error) { 1004 cache[hash] = NULL; 1005 mtx_unlock(&mountlist_mtx); 1006 return (NULL); 1007 } 1008 cache[hash] = mp; 1009 return (mp); 1010 } 1011 } 1012 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 1013 mtx_unlock(&mountlist_mtx); 1014 return ((struct mount *) 0); 1015 } 1016 1017 /* 1018 * Check if a user can access privileged mount options. 1019 */ 1020 int 1021 vfs_suser(struct mount *mp, struct thread *td) 1022 { 1023 int error; 1024 1025 if (jailed(td->td_ucred)) { 1026 /* 1027 * If the jail of the calling thread lacks permission for 1028 * this type of file system, deny immediately. 1029 */ 1030 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag)) 1031 return (EPERM); 1032 1033 /* 1034 * If the file system was mounted outside the jail of the 1035 * calling thread, deny immediately. 1036 */ 1037 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 1038 return (EPERM); 1039 } 1040 1041 /* 1042 * If file system supports delegated administration, we don't check 1043 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 1044 * by the file system itself. 1045 * If this is not the user that did original mount, we check for 1046 * the PRIV_VFS_MOUNT_OWNER privilege. 1047 */ 1048 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 1049 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 1050 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 1051 return (error); 1052 } 1053 return (0); 1054 } 1055 1056 /* 1057 * Get a new unique fsid. Try to make its val[0] unique, since this value 1058 * will be used to create fake device numbers for stat(). Also try (but 1059 * not so hard) make its val[0] unique mod 2^16, since some emulators only 1060 * support 16-bit device numbers. We end up with unique val[0]'s for the 1061 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 1062 * 1063 * Keep in mind that several mounts may be running in parallel. Starting 1064 * the search one past where the previous search terminated is both a 1065 * micro-optimization and a defense against returning the same fsid to 1066 * different mounts. 1067 */ 1068 void 1069 vfs_getnewfsid(struct mount *mp) 1070 { 1071 static uint16_t mntid_base; 1072 struct mount *nmp; 1073 fsid_t tfsid; 1074 int mtype; 1075 1076 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 1077 mtx_lock(&mntid_mtx); 1078 mtype = mp->mnt_vfc->vfc_typenum; 1079 tfsid.val[1] = mtype; 1080 mtype = (mtype & 0xFF) << 24; 1081 for (;;) { 1082 tfsid.val[0] = makedev(255, 1083 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 1084 mntid_base++; 1085 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 1086 break; 1087 vfs_rel(nmp); 1088 } 1089 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 1090 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 1091 mtx_unlock(&mntid_mtx); 1092 } 1093 1094 /* 1095 * Knob to control the precision of file timestamps: 1096 * 1097 * 0 = seconds only; nanoseconds zeroed. 1098 * 1 = seconds and nanoseconds, accurate within 1/HZ. 1099 * 2 = seconds and nanoseconds, truncated to microseconds. 1100 * >=3 = seconds and nanoseconds, maximum precision. 1101 */ 1102 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 1103 1104 static int timestamp_precision = TSP_USEC; 1105 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 1106 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 1107 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, " 1108 "3+: sec + ns (max. precision))"); 1109 1110 /* 1111 * Get a current timestamp. 1112 */ 1113 void 1114 vfs_timestamp(struct timespec *tsp) 1115 { 1116 struct timeval tv; 1117 1118 switch (timestamp_precision) { 1119 case TSP_SEC: 1120 tsp->tv_sec = time_second; 1121 tsp->tv_nsec = 0; 1122 break; 1123 case TSP_HZ: 1124 getnanotime(tsp); 1125 break; 1126 case TSP_USEC: 1127 microtime(&tv); 1128 TIMEVAL_TO_TIMESPEC(&tv, tsp); 1129 break; 1130 case TSP_NSEC: 1131 default: 1132 nanotime(tsp); 1133 break; 1134 } 1135 } 1136 1137 /* 1138 * Set vnode attributes to VNOVAL 1139 */ 1140 void 1141 vattr_null(struct vattr *vap) 1142 { 1143 1144 vap->va_type = VNON; 1145 vap->va_size = VNOVAL; 1146 vap->va_bytes = VNOVAL; 1147 vap->va_mode = VNOVAL; 1148 vap->va_nlink = VNOVAL; 1149 vap->va_uid = VNOVAL; 1150 vap->va_gid = VNOVAL; 1151 vap->va_fsid = VNOVAL; 1152 vap->va_fileid = VNOVAL; 1153 vap->va_blocksize = VNOVAL; 1154 vap->va_rdev = VNOVAL; 1155 vap->va_atime.tv_sec = VNOVAL; 1156 vap->va_atime.tv_nsec = VNOVAL; 1157 vap->va_mtime.tv_sec = VNOVAL; 1158 vap->va_mtime.tv_nsec = VNOVAL; 1159 vap->va_ctime.tv_sec = VNOVAL; 1160 vap->va_ctime.tv_nsec = VNOVAL; 1161 vap->va_birthtime.tv_sec = VNOVAL; 1162 vap->va_birthtime.tv_nsec = VNOVAL; 1163 vap->va_flags = VNOVAL; 1164 vap->va_gen = VNOVAL; 1165 vap->va_vaflags = 0; 1166 } 1167 1168 /* 1169 * Try to reduce the total number of vnodes. 1170 * 1171 * This routine (and its user) are buggy in at least the following ways: 1172 * - all parameters were picked years ago when RAM sizes were significantly 1173 * smaller 1174 * - it can pick vnodes based on pages used by the vm object, but filesystems 1175 * like ZFS don't use it making the pick broken 1176 * - since ZFS has its own aging policy it gets partially combated by this one 1177 * - a dedicated method should be provided for filesystems to let them decide 1178 * whether the vnode should be recycled 1179 * 1180 * This routine is called when we have too many vnodes. It attempts 1181 * to free <count> vnodes and will potentially free vnodes that still 1182 * have VM backing store (VM backing store is typically the cause 1183 * of a vnode blowout so we want to do this). Therefore, this operation 1184 * is not considered cheap. 1185 * 1186 * A number of conditions may prevent a vnode from being reclaimed. 1187 * the buffer cache may have references on the vnode, a directory 1188 * vnode may still have references due to the namei cache representing 1189 * underlying files, or the vnode may be in active use. It is not 1190 * desirable to reuse such vnodes. These conditions may cause the 1191 * number of vnodes to reach some minimum value regardless of what 1192 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 1193 * 1194 * @param reclaim_nc_src Only reclaim directories with outgoing namecache 1195 * entries if this argument is strue 1196 * @param trigger Only reclaim vnodes with fewer than this many resident 1197 * pages. 1198 * @param target How many vnodes to reclaim. 1199 * @return The number of vnodes that were reclaimed. 1200 */ 1201 static int 1202 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target) 1203 { 1204 struct vnode *vp, *mvp; 1205 struct mount *mp; 1206 struct vm_object *object; 1207 u_long done; 1208 bool retried; 1209 1210 mtx_assert(&vnode_list_mtx, MA_OWNED); 1211 1212 retried = false; 1213 done = 0; 1214 1215 mvp = vnode_list_reclaim_marker; 1216 restart: 1217 vp = mvp; 1218 while (done < target) { 1219 vp = TAILQ_NEXT(vp, v_vnodelist); 1220 if (__predict_false(vp == NULL)) 1221 break; 1222 1223 if (__predict_false(vp->v_type == VMARKER)) 1224 continue; 1225 1226 /* 1227 * If it's been deconstructed already, it's still 1228 * referenced, or it exceeds the trigger, skip it. 1229 * Also skip free vnodes. We are trying to make space 1230 * for more free vnodes, not reduce their count. 1231 */ 1232 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 || 1233 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src))) 1234 goto next_iter; 1235 1236 if (vp->v_type == VBAD || vp->v_type == VNON) 1237 goto next_iter; 1238 1239 object = atomic_load_ptr(&vp->v_object); 1240 if (object == NULL || object->resident_page_count > trigger) { 1241 goto next_iter; 1242 } 1243 1244 /* 1245 * Handle races against vnode allocation. Filesystems lock the 1246 * vnode some time after it gets returned from getnewvnode, 1247 * despite type and hold count being manipulated earlier. 1248 * Resorting to checking v_mount restores guarantees present 1249 * before the global list was reworked to contain all vnodes. 1250 */ 1251 if (!VI_TRYLOCK(vp)) 1252 goto next_iter; 1253 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1254 VI_UNLOCK(vp); 1255 goto next_iter; 1256 } 1257 if (vp->v_mount == NULL) { 1258 VI_UNLOCK(vp); 1259 goto next_iter; 1260 } 1261 vholdl(vp); 1262 VI_UNLOCK(vp); 1263 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1264 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1265 mtx_unlock(&vnode_list_mtx); 1266 1267 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1268 vdrop_recycle(vp); 1269 goto next_iter_unlocked; 1270 } 1271 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) { 1272 vdrop_recycle(vp); 1273 vn_finished_write(mp); 1274 goto next_iter_unlocked; 1275 } 1276 1277 VI_LOCK(vp); 1278 if (vp->v_usecount > 0 || 1279 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || 1280 (vp->v_object != NULL && vp->v_object->handle == vp && 1281 vp->v_object->resident_page_count > trigger)) { 1282 VOP_UNLOCK(vp); 1283 vdropl_recycle(vp); 1284 vn_finished_write(mp); 1285 goto next_iter_unlocked; 1286 } 1287 recycles_count++; 1288 vgonel(vp); 1289 VOP_UNLOCK(vp); 1290 vdropl_recycle(vp); 1291 vn_finished_write(mp); 1292 done++; 1293 next_iter_unlocked: 1294 maybe_yield(); 1295 mtx_lock(&vnode_list_mtx); 1296 goto restart; 1297 next_iter: 1298 MPASS(vp->v_type != VMARKER); 1299 if (!should_yield()) 1300 continue; 1301 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1302 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1303 mtx_unlock(&vnode_list_mtx); 1304 kern_yield(PRI_USER); 1305 mtx_lock(&vnode_list_mtx); 1306 goto restart; 1307 } 1308 if (done == 0 && !retried) { 1309 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1310 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1311 retried = true; 1312 goto restart; 1313 } 1314 return (done); 1315 } 1316 1317 static int max_free_per_call = 10000; 1318 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0, 1319 "limit on vnode free requests per call to the vnlru_free routine (legacy)"); 1320 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW, 1321 &max_free_per_call, 0, 1322 "limit on vnode free requests per call to the vnlru_free routine"); 1323 1324 /* 1325 * Attempt to recycle requested amount of free vnodes. 1326 */ 1327 static int 1328 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru) 1329 { 1330 struct vnode *vp; 1331 struct mount *mp; 1332 int ocount; 1333 bool retried; 1334 1335 mtx_assert(&vnode_list_mtx, MA_OWNED); 1336 if (count > max_free_per_call) 1337 count = max_free_per_call; 1338 if (count == 0) { 1339 mtx_unlock(&vnode_list_mtx); 1340 return (0); 1341 } 1342 ocount = count; 1343 retried = false; 1344 vp = mvp; 1345 for (;;) { 1346 vp = TAILQ_NEXT(vp, v_vnodelist); 1347 if (__predict_false(vp == NULL)) { 1348 /* 1349 * The free vnode marker can be past eligible vnodes: 1350 * 1. if vdbatch_process trylock failed 1351 * 2. if vtryrecycle failed 1352 * 1353 * If so, start the scan from scratch. 1354 */ 1355 if (!retried && vnlru_read_freevnodes() > 0) { 1356 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1357 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1358 vp = mvp; 1359 retried = true; 1360 continue; 1361 } 1362 1363 /* 1364 * Give up 1365 */ 1366 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1367 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist); 1368 mtx_unlock(&vnode_list_mtx); 1369 break; 1370 } 1371 if (__predict_false(vp->v_type == VMARKER)) 1372 continue; 1373 if (vp->v_holdcnt > 0) 1374 continue; 1375 /* 1376 * Don't recycle if our vnode is from different type 1377 * of mount point. Note that mp is type-safe, the 1378 * check does not reach unmapped address even if 1379 * vnode is reclaimed. 1380 */ 1381 if (mnt_op != NULL && (mp = vp->v_mount) != NULL && 1382 mp->mnt_op != mnt_op) { 1383 continue; 1384 } 1385 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1386 continue; 1387 } 1388 if (!vhold_recycle_free(vp)) 1389 continue; 1390 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1391 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1392 mtx_unlock(&vnode_list_mtx); 1393 /* 1394 * FIXME: ignores the return value, meaning it may be nothing 1395 * got recycled but it claims otherwise to the caller. 1396 * 1397 * Originally the value started being ignored in 2005 with 1398 * 114a1006a8204aa156e1f9ad6476cdff89cada7f . 1399 * 1400 * Respecting the value can run into significant stalls if most 1401 * vnodes belong to one file system and it has writes 1402 * suspended. In presence of many threads and millions of 1403 * vnodes they keep contending on the vnode_list_mtx lock only 1404 * to find vnodes they can't recycle. 1405 * 1406 * The solution would be to pre-check if the vnode is likely to 1407 * be recycle-able, but it needs to happen with the 1408 * vnode_list_mtx lock held. This runs into a problem where 1409 * VOP_GETWRITEMOUNT (currently needed to find out about if 1410 * writes are frozen) can take locks which LOR against it. 1411 * 1412 * Check nullfs for one example (null_getwritemount). 1413 */ 1414 vtryrecycle(vp, isvnlru); 1415 count--; 1416 if (count == 0) { 1417 break; 1418 } 1419 mtx_lock(&vnode_list_mtx); 1420 vp = mvp; 1421 } 1422 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1423 return (ocount - count); 1424 } 1425 1426 /* 1427 * XXX: returns without vnode_list_mtx locked! 1428 */ 1429 static int 1430 vnlru_free_locked_direct(int count) 1431 { 1432 int ret; 1433 1434 mtx_assert(&vnode_list_mtx, MA_OWNED); 1435 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false); 1436 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1437 return (ret); 1438 } 1439 1440 static int 1441 vnlru_free_locked_vnlru(int count) 1442 { 1443 int ret; 1444 1445 mtx_assert(&vnode_list_mtx, MA_OWNED); 1446 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true); 1447 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1448 return (ret); 1449 } 1450 1451 static int 1452 vnlru_free_vnlru(int count) 1453 { 1454 1455 mtx_lock(&vnode_list_mtx); 1456 return (vnlru_free_locked_vnlru(count)); 1457 } 1458 1459 void 1460 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp) 1461 { 1462 1463 MPASS(mnt_op != NULL); 1464 MPASS(mvp != NULL); 1465 VNPASS(mvp->v_type == VMARKER, mvp); 1466 mtx_lock(&vnode_list_mtx); 1467 vnlru_free_impl(count, mnt_op, mvp, true); 1468 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1469 } 1470 1471 struct vnode * 1472 vnlru_alloc_marker(void) 1473 { 1474 struct vnode *mvp; 1475 1476 mvp = vn_alloc_marker(NULL); 1477 mtx_lock(&vnode_list_mtx); 1478 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist); 1479 mtx_unlock(&vnode_list_mtx); 1480 return (mvp); 1481 } 1482 1483 void 1484 vnlru_free_marker(struct vnode *mvp) 1485 { 1486 mtx_lock(&vnode_list_mtx); 1487 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1488 mtx_unlock(&vnode_list_mtx); 1489 vn_free_marker(mvp); 1490 } 1491 1492 static void 1493 vnlru_recalc(void) 1494 { 1495 1496 mtx_assert(&vnode_list_mtx, MA_OWNED); 1497 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100); 1498 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */ 1499 vlowat = vhiwat / 2; 1500 } 1501 1502 /* 1503 * Attempt to recycle vnodes in a context that is always safe to block. 1504 * Calling vlrurecycle() from the bowels of filesystem code has some 1505 * interesting deadlock problems. 1506 */ 1507 static struct proc *vnlruproc; 1508 static int vnlruproc_sig; 1509 static u_long vnlruproc_kicks; 1510 1511 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0, 1512 "Number of times vnlru awakened due to vnode shortage"); 1513 1514 #define VNLRU_COUNT_SLOP 100 1515 1516 /* 1517 * The main freevnodes counter is only updated when a counter local to CPU 1518 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally 1519 * walked to compute a more accurate total. 1520 * 1521 * Note: the actual value at any given moment can still exceed slop, but it 1522 * should not be by significant margin in practice. 1523 */ 1524 #define VNLRU_FREEVNODES_SLOP 126 1525 1526 static void __noinline 1527 vfs_freevnodes_rollup(int8_t *lfreevnodes) 1528 { 1529 1530 atomic_add_long(&freevnodes, *lfreevnodes); 1531 *lfreevnodes = 0; 1532 critical_exit(); 1533 } 1534 1535 static __inline void 1536 vfs_freevnodes_inc(void) 1537 { 1538 int8_t *lfreevnodes; 1539 1540 critical_enter(); 1541 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1542 (*lfreevnodes)++; 1543 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP)) 1544 vfs_freevnodes_rollup(lfreevnodes); 1545 else 1546 critical_exit(); 1547 } 1548 1549 static __inline void 1550 vfs_freevnodes_dec(void) 1551 { 1552 int8_t *lfreevnodes; 1553 1554 critical_enter(); 1555 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1556 (*lfreevnodes)--; 1557 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP)) 1558 vfs_freevnodes_rollup(lfreevnodes); 1559 else 1560 critical_exit(); 1561 } 1562 1563 static u_long 1564 vnlru_read_freevnodes(void) 1565 { 1566 long slop, rfreevnodes, rfreevnodes_old; 1567 int cpu; 1568 1569 rfreevnodes = atomic_load_long(&freevnodes); 1570 rfreevnodes_old = atomic_load_long(&freevnodes_old); 1571 1572 if (rfreevnodes > rfreevnodes_old) 1573 slop = rfreevnodes - rfreevnodes_old; 1574 else 1575 slop = rfreevnodes_old - rfreevnodes; 1576 if (slop < VNLRU_FREEVNODES_SLOP) 1577 return (rfreevnodes >= 0 ? rfreevnodes : 0); 1578 CPU_FOREACH(cpu) { 1579 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes; 1580 } 1581 atomic_store_long(&freevnodes_old, rfreevnodes); 1582 return (freevnodes_old >= 0 ? freevnodes_old : 0); 1583 } 1584 1585 static bool 1586 vnlru_under(u_long rnumvnodes, u_long limit) 1587 { 1588 u_long rfreevnodes, space; 1589 1590 if (__predict_false(rnumvnodes > desiredvnodes)) 1591 return (true); 1592 1593 space = desiredvnodes - rnumvnodes; 1594 if (space < limit) { 1595 rfreevnodes = vnlru_read_freevnodes(); 1596 if (rfreevnodes > wantfreevnodes) 1597 space += rfreevnodes - wantfreevnodes; 1598 } 1599 return (space < limit); 1600 } 1601 1602 static void 1603 vnlru_kick_locked(void) 1604 { 1605 1606 mtx_assert(&vnode_list_mtx, MA_OWNED); 1607 if (vnlruproc_sig == 0) { 1608 vnlruproc_sig = 1; 1609 vnlruproc_kicks++; 1610 wakeup(vnlruproc); 1611 } 1612 } 1613 1614 static void 1615 vnlru_kick_cond(void) 1616 { 1617 1618 if (vnlru_read_freevnodes() > wantfreevnodes) 1619 return; 1620 1621 if (vnlruproc_sig) 1622 return; 1623 mtx_lock(&vnode_list_mtx); 1624 vnlru_kick_locked(); 1625 mtx_unlock(&vnode_list_mtx); 1626 } 1627 1628 static void 1629 vnlru_proc_sleep(void) 1630 { 1631 1632 if (vnlruproc_sig) { 1633 vnlruproc_sig = 0; 1634 wakeup(&vnlruproc_sig); 1635 } 1636 msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz); 1637 } 1638 1639 /* 1640 * A lighter version of the machinery below. 1641 * 1642 * Tries to reach goals only by recycling free vnodes and does not invoke 1643 * uma_reclaim(UMA_RECLAIM_DRAIN). 1644 * 1645 * This works around pathological behavior in vnlru in presence of tons of free 1646 * vnodes, but without having to rewrite the machinery at this time. Said 1647 * behavior boils down to continuously trying to reclaim all kinds of vnodes 1648 * (cycling through all levels of "force") when the count is transiently above 1649 * limit. This happens a lot when all vnodes are used up and vn_alloc 1650 * speculatively increments the counter. 1651 * 1652 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with 1653 * 1 million files in total and 20 find(1) processes stating them in parallel 1654 * (one per each tree). 1655 * 1656 * On a kernel with only stock machinery this needs anywhere between 60 and 120 1657 * seconds to execute (time varies *wildly* between runs). With the workaround 1658 * it consistently stays around 20 seconds [it got further down with later 1659 * changes]. 1660 * 1661 * That is to say the entire thing needs a fundamental redesign (most notably 1662 * to accommodate faster recycling), the above only tries to get it ouf the way. 1663 * 1664 * Return values are: 1665 * -1 -- fallback to regular vnlru loop 1666 * 0 -- do nothing, go to sleep 1667 * >0 -- recycle this many vnodes 1668 */ 1669 static long 1670 vnlru_proc_light_pick(void) 1671 { 1672 u_long rnumvnodes, rfreevnodes; 1673 1674 if (vstir || vnlruproc_sig == 1) 1675 return (-1); 1676 1677 rnumvnodes = atomic_load_long(&numvnodes); 1678 rfreevnodes = vnlru_read_freevnodes(); 1679 1680 /* 1681 * vnode limit might have changed and now we may be at a significant 1682 * excess. Bail if we can't sort it out with free vnodes. 1683 * 1684 * Due to atomic updates the count can legitimately go above 1685 * the limit for a short period, don't bother doing anything in 1686 * that case. 1687 */ 1688 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) { 1689 if (rnumvnodes - rfreevnodes >= desiredvnodes || 1690 rfreevnodes <= wantfreevnodes) { 1691 return (-1); 1692 } 1693 1694 return (rnumvnodes - desiredvnodes); 1695 } 1696 1697 /* 1698 * Don't try to reach wantfreevnodes target if there are too few vnodes 1699 * to begin with. 1700 */ 1701 if (rnumvnodes < wantfreevnodes) { 1702 return (0); 1703 } 1704 1705 if (rfreevnodes < wantfreevnodes) { 1706 return (-1); 1707 } 1708 1709 return (0); 1710 } 1711 1712 static bool 1713 vnlru_proc_light(void) 1714 { 1715 long freecount; 1716 1717 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1718 1719 freecount = vnlru_proc_light_pick(); 1720 if (freecount == -1) 1721 return (false); 1722 1723 if (freecount != 0) { 1724 vnlru_free_vnlru(freecount); 1725 } 1726 1727 mtx_lock(&vnode_list_mtx); 1728 vnlru_proc_sleep(); 1729 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1730 return (true); 1731 } 1732 1733 static u_long uma_reclaim_calls; 1734 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS, 1735 &uma_reclaim_calls, 0, "Number of calls to uma_reclaim"); 1736 1737 static void 1738 vnlru_proc(void) 1739 { 1740 u_long rnumvnodes, rfreevnodes, target; 1741 unsigned long onumvnodes; 1742 int done, force, trigger, usevnodes; 1743 bool reclaim_nc_src, want_reread; 1744 1745 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc, 1746 SHUTDOWN_PRI_FIRST); 1747 1748 force = 0; 1749 want_reread = false; 1750 for (;;) { 1751 kproc_suspend_check(vnlruproc); 1752 1753 if (force == 0 && vnlru_proc_light()) 1754 continue; 1755 1756 mtx_lock(&vnode_list_mtx); 1757 rnumvnodes = atomic_load_long(&numvnodes); 1758 1759 if (want_reread) { 1760 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0; 1761 want_reread = false; 1762 } 1763 1764 /* 1765 * If numvnodes is too large (due to desiredvnodes being 1766 * adjusted using its sysctl, or emergency growth), first 1767 * try to reduce it by discarding free vnodes. 1768 */ 1769 if (rnumvnodes > desiredvnodes + 10) { 1770 vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes); 1771 mtx_lock(&vnode_list_mtx); 1772 rnumvnodes = atomic_load_long(&numvnodes); 1773 } 1774 /* 1775 * Sleep if the vnode cache is in a good state. This is 1776 * when it is not over-full and has space for about a 4% 1777 * or 9% expansion (by growing its size or inexcessively 1778 * reducing free vnode count). Otherwise, try to reclaim 1779 * space for a 10% expansion. 1780 */ 1781 if (vstir && force == 0) { 1782 force = 1; 1783 vstir = false; 1784 } 1785 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) { 1786 vnlru_proc_sleep(); 1787 continue; 1788 } 1789 rfreevnodes = vnlru_read_freevnodes(); 1790 1791 onumvnodes = rnumvnodes; 1792 /* 1793 * Calculate parameters for recycling. These are the same 1794 * throughout the loop to give some semblance of fairness. 1795 * The trigger point is to avoid recycling vnodes with lots 1796 * of resident pages. We aren't trying to free memory; we 1797 * are trying to recycle or at least free vnodes. 1798 */ 1799 if (rnumvnodes <= desiredvnodes) 1800 usevnodes = rnumvnodes - rfreevnodes; 1801 else 1802 usevnodes = rnumvnodes; 1803 if (usevnodes <= 0) 1804 usevnodes = 1; 1805 /* 1806 * The trigger value is chosen to give a conservatively 1807 * large value to ensure that it alone doesn't prevent 1808 * making progress. The value can easily be so large that 1809 * it is effectively infinite in some congested and 1810 * misconfigured cases, and this is necessary. Normally 1811 * it is about 8 to 100 (pages), which is quite large. 1812 */ 1813 trigger = vm_cnt.v_page_count * 2 / usevnodes; 1814 if (force < 2) 1815 trigger = vsmalltrigger; 1816 reclaim_nc_src = force >= 3; 1817 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1); 1818 target = target / 10 + 1; 1819 done = vlrureclaim(reclaim_nc_src, trigger, target); 1820 mtx_unlock(&vnode_list_mtx); 1821 /* 1822 * Total number of vnodes can transiently go slightly above the 1823 * limit (see vn_alloc_hard), no need to call uma_reclaim if 1824 * this happens. 1825 */ 1826 if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes && 1827 numvnodes <= desiredvnodes) { 1828 uma_reclaim_calls++; 1829 uma_reclaim(UMA_RECLAIM_DRAIN); 1830 } 1831 if (done == 0) { 1832 if (force == 0 || force == 1) { 1833 force = 2; 1834 continue; 1835 } 1836 if (force == 2) { 1837 force = 3; 1838 continue; 1839 } 1840 want_reread = true; 1841 force = 0; 1842 vnlru_nowhere++; 1843 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 1844 } else { 1845 want_reread = true; 1846 kern_yield(PRI_USER); 1847 } 1848 } 1849 } 1850 1851 static struct kproc_desc vnlru_kp = { 1852 "vnlru", 1853 vnlru_proc, 1854 &vnlruproc 1855 }; 1856 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 1857 &vnlru_kp); 1858 1859 /* 1860 * Routines having to do with the management of the vnode table. 1861 */ 1862 1863 /* 1864 * Try to recycle a freed vnode. 1865 */ 1866 static int 1867 vtryrecycle(struct vnode *vp, bool isvnlru) 1868 { 1869 struct mount *vnmp; 1870 1871 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 1872 VNPASS(vp->v_holdcnt > 0, vp); 1873 /* 1874 * This vnode may found and locked via some other list, if so we 1875 * can't recycle it yet. 1876 */ 1877 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1878 CTR2(KTR_VFS, 1879 "%s: impossible to recycle, vp %p lock is already held", 1880 __func__, vp); 1881 vdrop_recycle(vp); 1882 return (EWOULDBLOCK); 1883 } 1884 /* 1885 * Don't recycle if its filesystem is being suspended. 1886 */ 1887 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 1888 VOP_UNLOCK(vp); 1889 CTR2(KTR_VFS, 1890 "%s: impossible to recycle, cannot start the write for %p", 1891 __func__, vp); 1892 vdrop_recycle(vp); 1893 return (EBUSY); 1894 } 1895 /* 1896 * If we got this far, we need to acquire the interlock and see if 1897 * anyone picked up this vnode from another list. If not, we will 1898 * mark it with DOOMED via vgonel() so that anyone who does find it 1899 * will skip over it. 1900 */ 1901 VI_LOCK(vp); 1902 if (vp->v_usecount) { 1903 VOP_UNLOCK(vp); 1904 vdropl_recycle(vp); 1905 vn_finished_write(vnmp); 1906 CTR2(KTR_VFS, 1907 "%s: impossible to recycle, %p is already referenced", 1908 __func__, vp); 1909 return (EBUSY); 1910 } 1911 if (!VN_IS_DOOMED(vp)) { 1912 if (isvnlru) 1913 recycles_free_count++; 1914 else 1915 counter_u64_add(direct_recycles_free_count, 1); 1916 vgonel(vp); 1917 } 1918 VOP_UNLOCK(vp); 1919 vdropl_recycle(vp); 1920 vn_finished_write(vnmp); 1921 return (0); 1922 } 1923 1924 /* 1925 * Allocate a new vnode. 1926 * 1927 * The operation never returns an error. Returning an error was disabled 1928 * in r145385 (dated 2005) with the following comment: 1929 * 1930 * XXX Not all VFS_VGET/ffs_vget callers check returns. 1931 * 1932 * Given the age of this commit (almost 15 years at the time of writing this 1933 * comment) restoring the ability to fail requires a significant audit of 1934 * all codepaths. 1935 * 1936 * The routine can try to free a vnode or stall for up to 1 second waiting for 1937 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation. 1938 */ 1939 static u_long vn_alloc_cyclecount; 1940 static u_long vn_alloc_sleeps; 1941 1942 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0, 1943 "Number of times vnode allocation blocked waiting on vnlru"); 1944 1945 static struct vnode * __noinline 1946 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped) 1947 { 1948 u_long rfreevnodes; 1949 1950 if (bumped) { 1951 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) { 1952 atomic_subtract_long(&numvnodes, 1); 1953 bumped = false; 1954 } 1955 } 1956 1957 mtx_lock(&vnode_list_mtx); 1958 1959 if (vn_alloc_cyclecount != 0) { 1960 rnumvnodes = atomic_load_long(&numvnodes); 1961 if (rnumvnodes + 1 < desiredvnodes) { 1962 vn_alloc_cyclecount = 0; 1963 mtx_unlock(&vnode_list_mtx); 1964 goto alloc; 1965 } 1966 1967 rfreevnodes = vnlru_read_freevnodes(); 1968 if (rfreevnodes < wantfreevnodes) { 1969 if (vn_alloc_cyclecount++ >= rfreevnodes) { 1970 vn_alloc_cyclecount = 0; 1971 vstir = true; 1972 } 1973 } else { 1974 vn_alloc_cyclecount = 0; 1975 } 1976 } 1977 1978 /* 1979 * Grow the vnode cache if it will not be above its target max after 1980 * growing. Otherwise, if there is at least one free vnode, try to 1981 * reclaim 1 item from it before growing the cache (possibly above its 1982 * target max if the reclamation failed or is delayed). 1983 */ 1984 if (vnlru_free_locked_direct(1) > 0) 1985 goto alloc; 1986 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1987 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 1988 /* 1989 * Wait for space for a new vnode. 1990 */ 1991 if (bumped) { 1992 atomic_subtract_long(&numvnodes, 1); 1993 bumped = false; 1994 } 1995 mtx_lock(&vnode_list_mtx); 1996 vnlru_kick_locked(); 1997 vn_alloc_sleeps++; 1998 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz); 1999 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes && 2000 vnlru_read_freevnodes() > 1) 2001 vnlru_free_locked_direct(1); 2002 else 2003 mtx_unlock(&vnode_list_mtx); 2004 } 2005 alloc: 2006 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 2007 if (!bumped) 2008 atomic_add_long(&numvnodes, 1); 2009 vnlru_kick_cond(); 2010 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 2011 } 2012 2013 static struct vnode * 2014 vn_alloc(struct mount *mp) 2015 { 2016 u_long rnumvnodes; 2017 2018 if (__predict_false(vn_alloc_cyclecount != 0)) 2019 return (vn_alloc_hard(mp, 0, false)); 2020 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 2021 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) { 2022 return (vn_alloc_hard(mp, rnumvnodes, true)); 2023 } 2024 2025 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 2026 } 2027 2028 static void 2029 vn_free(struct vnode *vp) 2030 { 2031 2032 atomic_subtract_long(&numvnodes, 1); 2033 uma_zfree_smr(vnode_zone, vp); 2034 } 2035 2036 /* 2037 * Allocate a new vnode. 2038 */ 2039 int 2040 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 2041 struct vnode **vpp) 2042 { 2043 struct vnode *vp; 2044 struct thread *td; 2045 struct lock_object *lo; 2046 2047 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 2048 2049 KASSERT(vops->registered, 2050 ("%s: not registered vector op %p\n", __func__, vops)); 2051 cache_validate_vop_vector(mp, vops); 2052 2053 td = curthread; 2054 if (td->td_vp_reserved != NULL) { 2055 vp = td->td_vp_reserved; 2056 td->td_vp_reserved = NULL; 2057 } else { 2058 vp = vn_alloc(mp); 2059 } 2060 counter_u64_add(vnodes_created, 1); 2061 2062 vn_set_state(vp, VSTATE_UNINITIALIZED); 2063 2064 /* 2065 * Locks are given the generic name "vnode" when created. 2066 * Follow the historic practice of using the filesystem 2067 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc. 2068 * 2069 * Locks live in a witness group keyed on their name. Thus, 2070 * when a lock is renamed, it must also move from the witness 2071 * group of its old name to the witness group of its new name. 2072 * 2073 * The change only needs to be made when the vnode moves 2074 * from one filesystem type to another. We ensure that each 2075 * filesystem use a single static name pointer for its tag so 2076 * that we can compare pointers rather than doing a strcmp(). 2077 */ 2078 lo = &vp->v_vnlock->lock_object; 2079 #ifdef WITNESS 2080 if (lo->lo_name != tag) { 2081 #endif 2082 lo->lo_name = tag; 2083 #ifdef WITNESS 2084 WITNESS_DESTROY(lo); 2085 WITNESS_INIT(lo, tag); 2086 } 2087 #endif 2088 /* 2089 * By default, don't allow shared locks unless filesystems opt-in. 2090 */ 2091 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE; 2092 /* 2093 * Finalize various vnode identity bits. 2094 */ 2095 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp)); 2096 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp)); 2097 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp)); 2098 vp->v_type = VNON; 2099 vp->v_op = vops; 2100 vp->v_irflag = 0; 2101 v_init_counters(vp); 2102 vn_seqc_init(vp); 2103 vp->v_bufobj.bo_ops = &buf_ops_bio; 2104 #ifdef DIAGNOSTIC 2105 if (mp == NULL && vops != &dead_vnodeops) 2106 printf("NULL mp in getnewvnode(9), tag %s\n", tag); 2107 #endif 2108 #ifdef MAC 2109 mac_vnode_init(vp); 2110 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 2111 mac_vnode_associate_singlelabel(mp, vp); 2112 #endif 2113 if (mp != NULL) { 2114 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize; 2115 } 2116 2117 /* 2118 * For the filesystems which do not use vfs_hash_insert(), 2119 * still initialize v_hash to have vfs_hash_index() useful. 2120 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 2121 * its own hashing. 2122 */ 2123 vp->v_hash = (uintptr_t)vp >> vnsz2log; 2124 2125 *vpp = vp; 2126 return (0); 2127 } 2128 2129 void 2130 getnewvnode_reserve(void) 2131 { 2132 struct thread *td; 2133 2134 td = curthread; 2135 MPASS(td->td_vp_reserved == NULL); 2136 td->td_vp_reserved = vn_alloc(NULL); 2137 } 2138 2139 void 2140 getnewvnode_drop_reserve(void) 2141 { 2142 struct thread *td; 2143 2144 td = curthread; 2145 if (td->td_vp_reserved != NULL) { 2146 vn_free(td->td_vp_reserved); 2147 td->td_vp_reserved = NULL; 2148 } 2149 } 2150 2151 static void __noinline 2152 freevnode(struct vnode *vp) 2153 { 2154 struct bufobj *bo; 2155 2156 /* 2157 * The vnode has been marked for destruction, so free it. 2158 * 2159 * The vnode will be returned to the zone where it will 2160 * normally remain until it is needed for another vnode. We 2161 * need to cleanup (or verify that the cleanup has already 2162 * been done) any residual data left from its current use 2163 * so as not to contaminate the freshly allocated vnode. 2164 */ 2165 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 2166 /* 2167 * Paired with vgone. 2168 */ 2169 vn_seqc_write_end_free(vp); 2170 2171 bo = &vp->v_bufobj; 2172 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 2173 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp); 2174 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 2175 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 2176 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 2177 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 2178 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 2179 ("clean blk trie not empty")); 2180 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 2181 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 2182 ("dirty blk trie not empty")); 2183 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp, 2184 ("Leaked inactivation")); 2185 VI_UNLOCK(vp); 2186 cache_assert_no_entries(vp); 2187 2188 #ifdef MAC 2189 mac_vnode_destroy(vp); 2190 #endif 2191 if (vp->v_pollinfo != NULL) { 2192 /* 2193 * Use LK_NOWAIT to shut up witness about the lock. We may get 2194 * here while having another vnode locked when trying to 2195 * satisfy a lookup and needing to recycle. 2196 */ 2197 VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT); 2198 destroy_vpollinfo(vp->v_pollinfo); 2199 VOP_UNLOCK(vp); 2200 vp->v_pollinfo = NULL; 2201 } 2202 vp->v_mountedhere = NULL; 2203 vp->v_unpcb = NULL; 2204 vp->v_rdev = NULL; 2205 vp->v_fifoinfo = NULL; 2206 vp->v_iflag = 0; 2207 vp->v_vflag = 0; 2208 bo->bo_flag = 0; 2209 vn_free(vp); 2210 } 2211 2212 /* 2213 * Delete from old mount point vnode list, if on one. 2214 */ 2215 static void 2216 delmntque(struct vnode *vp) 2217 { 2218 struct mount *mp; 2219 2220 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 2221 2222 mp = vp->v_mount; 2223 MNT_ILOCK(mp); 2224 VI_LOCK(vp); 2225 vp->v_mount = NULL; 2226 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 2227 ("bad mount point vnode list size")); 2228 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2229 mp->mnt_nvnodelistsize--; 2230 MNT_REL(mp); 2231 MNT_IUNLOCK(mp); 2232 /* 2233 * The caller expects the interlock to be still held. 2234 */ 2235 ASSERT_VI_LOCKED(vp, __func__); 2236 } 2237 2238 static int 2239 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr) 2240 { 2241 2242 KASSERT(vp->v_mount == NULL, 2243 ("insmntque: vnode already on per mount vnode list")); 2244 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 2245 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) { 2246 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 2247 } else { 2248 KASSERT(!dtr, 2249 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup", 2250 __func__)); 2251 } 2252 2253 /* 2254 * We acquire the vnode interlock early to ensure that the 2255 * vnode cannot be recycled by another process releasing a 2256 * holdcnt on it before we get it on both the vnode list 2257 * and the active vnode list. The mount mutex protects only 2258 * manipulation of the vnode list and the vnode freelist 2259 * mutex protects only manipulation of the active vnode list. 2260 * Hence the need to hold the vnode interlock throughout. 2261 */ 2262 MNT_ILOCK(mp); 2263 VI_LOCK(vp); 2264 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 && 2265 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 2266 mp->mnt_nvnodelistsize == 0)) && 2267 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 2268 VI_UNLOCK(vp); 2269 MNT_IUNLOCK(mp); 2270 if (dtr) { 2271 vp->v_data = NULL; 2272 vp->v_op = &dead_vnodeops; 2273 vgone(vp); 2274 vput(vp); 2275 } 2276 return (EBUSY); 2277 } 2278 vp->v_mount = mp; 2279 MNT_REF(mp); 2280 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2281 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 2282 ("neg mount point vnode list size")); 2283 mp->mnt_nvnodelistsize++; 2284 VI_UNLOCK(vp); 2285 MNT_IUNLOCK(mp); 2286 return (0); 2287 } 2288 2289 /* 2290 * Insert into list of vnodes for the new mount point, if available. 2291 * insmntque() reclaims the vnode on insertion failure, insmntque1() 2292 * leaves handling of the vnode to the caller. 2293 */ 2294 int 2295 insmntque(struct vnode *vp, struct mount *mp) 2296 { 2297 return (insmntque1_int(vp, mp, true)); 2298 } 2299 2300 int 2301 insmntque1(struct vnode *vp, struct mount *mp) 2302 { 2303 return (insmntque1_int(vp, mp, false)); 2304 } 2305 2306 /* 2307 * Flush out and invalidate all buffers associated with a bufobj 2308 * Called with the underlying object locked. 2309 */ 2310 int 2311 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 2312 { 2313 int error; 2314 2315 BO_LOCK(bo); 2316 if (flags & V_SAVE) { 2317 error = bufobj_wwait(bo, slpflag, slptimeo); 2318 if (error) { 2319 BO_UNLOCK(bo); 2320 return (error); 2321 } 2322 if (bo->bo_dirty.bv_cnt > 0) { 2323 BO_UNLOCK(bo); 2324 do { 2325 error = BO_SYNC(bo, MNT_WAIT); 2326 } while (error == ERELOOKUP); 2327 if (error != 0) 2328 return (error); 2329 BO_LOCK(bo); 2330 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 2331 BO_UNLOCK(bo); 2332 return (EBUSY); 2333 } 2334 } 2335 } 2336 /* 2337 * If you alter this loop please notice that interlock is dropped and 2338 * reacquired in flushbuflist. Special care is needed to ensure that 2339 * no race conditions occur from this. 2340 */ 2341 do { 2342 error = flushbuflist(&bo->bo_clean, 2343 flags, bo, slpflag, slptimeo); 2344 if (error == 0 && !(flags & V_CLEANONLY)) 2345 error = flushbuflist(&bo->bo_dirty, 2346 flags, bo, slpflag, slptimeo); 2347 if (error != 0 && error != EAGAIN) { 2348 BO_UNLOCK(bo); 2349 return (error); 2350 } 2351 } while (error != 0); 2352 2353 /* 2354 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 2355 * have write I/O in-progress but if there is a VM object then the 2356 * VM object can also have read-I/O in-progress. 2357 */ 2358 do { 2359 bufobj_wwait(bo, 0, 0); 2360 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) { 2361 BO_UNLOCK(bo); 2362 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx"); 2363 BO_LOCK(bo); 2364 } 2365 } while (bo->bo_numoutput > 0); 2366 BO_UNLOCK(bo); 2367 2368 /* 2369 * Destroy the copy in the VM cache, too. 2370 */ 2371 if (bo->bo_object != NULL && 2372 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) { 2373 VM_OBJECT_WLOCK(bo->bo_object); 2374 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 2375 OBJPR_CLEANONLY : 0); 2376 VM_OBJECT_WUNLOCK(bo->bo_object); 2377 } 2378 2379 #ifdef INVARIANTS 2380 BO_LOCK(bo); 2381 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO | 2382 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 || 2383 bo->bo_clean.bv_cnt > 0)) 2384 panic("vinvalbuf: flush failed"); 2385 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 && 2386 bo->bo_dirty.bv_cnt > 0) 2387 panic("vinvalbuf: flush dirty failed"); 2388 BO_UNLOCK(bo); 2389 #endif 2390 return (0); 2391 } 2392 2393 /* 2394 * Flush out and invalidate all buffers associated with a vnode. 2395 * Called with the underlying object locked. 2396 */ 2397 int 2398 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 2399 { 2400 2401 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2402 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 2403 if (vp->v_object != NULL && vp->v_object->handle != vp) 2404 return (0); 2405 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 2406 } 2407 2408 /* 2409 * Flush out buffers on the specified list. 2410 * 2411 */ 2412 static int 2413 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 2414 int slptimeo) 2415 { 2416 struct buf *bp, *nbp; 2417 int retval, error; 2418 daddr_t lblkno; 2419 b_xflags_t xflags; 2420 2421 ASSERT_BO_WLOCKED(bo); 2422 2423 retval = 0; 2424 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 2425 /* 2426 * If we are flushing both V_NORMAL and V_ALT buffers then 2427 * do not skip any buffers. If we are flushing only V_NORMAL 2428 * buffers then skip buffers marked as BX_ALTDATA. If we are 2429 * flushing only V_ALT buffers then skip buffers not marked 2430 * as BX_ALTDATA. 2431 */ 2432 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) && 2433 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) || 2434 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) { 2435 continue; 2436 } 2437 if (nbp != NULL) { 2438 lblkno = nbp->b_lblkno; 2439 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 2440 } 2441 retval = EAGAIN; 2442 error = BUF_TIMELOCK(bp, 2443 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 2444 "flushbuf", slpflag, slptimeo); 2445 if (error) { 2446 BO_LOCK(bo); 2447 return (error != ENOLCK ? error : EAGAIN); 2448 } 2449 KASSERT(bp->b_bufobj == bo, 2450 ("bp %p wrong b_bufobj %p should be %p", 2451 bp, bp->b_bufobj, bo)); 2452 /* 2453 * XXX Since there are no node locks for NFS, I 2454 * believe there is a slight chance that a delayed 2455 * write will occur while sleeping just above, so 2456 * check for it. 2457 */ 2458 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 2459 (flags & V_SAVE)) { 2460 bremfree(bp); 2461 bp->b_flags |= B_ASYNC; 2462 bwrite(bp); 2463 BO_LOCK(bo); 2464 return (EAGAIN); /* XXX: why not loop ? */ 2465 } 2466 bremfree(bp); 2467 bp->b_flags |= (B_INVAL | B_RELBUF); 2468 bp->b_flags &= ~B_ASYNC; 2469 brelse(bp); 2470 BO_LOCK(bo); 2471 if (nbp == NULL) 2472 break; 2473 nbp = gbincore(bo, lblkno); 2474 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2475 != xflags) 2476 break; /* nbp invalid */ 2477 } 2478 return (retval); 2479 } 2480 2481 int 2482 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn) 2483 { 2484 struct buf *bp; 2485 int error; 2486 daddr_t lblkno; 2487 2488 ASSERT_BO_LOCKED(bo); 2489 2490 for (lblkno = startn;;) { 2491 again: 2492 bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno); 2493 if (bp == NULL || bp->b_lblkno >= endn || 2494 bp->b_lblkno < startn) 2495 break; 2496 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 2497 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0); 2498 if (error != 0) { 2499 BO_RLOCK(bo); 2500 if (error == ENOLCK) 2501 goto again; 2502 return (error); 2503 } 2504 KASSERT(bp->b_bufobj == bo, 2505 ("bp %p wrong b_bufobj %p should be %p", 2506 bp, bp->b_bufobj, bo)); 2507 lblkno = bp->b_lblkno + 1; 2508 if ((bp->b_flags & B_MANAGED) == 0) 2509 bremfree(bp); 2510 bp->b_flags |= B_RELBUF; 2511 /* 2512 * In the VMIO case, use the B_NOREUSE flag to hint that the 2513 * pages backing each buffer in the range are unlikely to be 2514 * reused. Dirty buffers will have the hint applied once 2515 * they've been written. 2516 */ 2517 if ((bp->b_flags & B_VMIO) != 0) 2518 bp->b_flags |= B_NOREUSE; 2519 brelse(bp); 2520 BO_RLOCK(bo); 2521 } 2522 return (0); 2523 } 2524 2525 /* 2526 * Truncate a file's buffer and pages to a specified length. This 2527 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 2528 * sync activity. 2529 */ 2530 int 2531 vtruncbuf(struct vnode *vp, off_t length, int blksize) 2532 { 2533 struct buf *bp, *nbp; 2534 struct bufobj *bo; 2535 daddr_t startlbn; 2536 2537 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__, 2538 vp, blksize, (uintmax_t)length); 2539 2540 /* 2541 * Round up to the *next* lbn. 2542 */ 2543 startlbn = howmany(length, blksize); 2544 2545 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 2546 2547 bo = &vp->v_bufobj; 2548 restart_unlocked: 2549 BO_LOCK(bo); 2550 2551 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN) 2552 ; 2553 2554 if (length > 0) { 2555 /* 2556 * Write out vnode metadata, e.g. indirect blocks. 2557 */ 2558 restartsync: 2559 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2560 if (bp->b_lblkno >= 0) 2561 continue; 2562 /* 2563 * Since we hold the vnode lock this should only 2564 * fail if we're racing with the buf daemon. 2565 */ 2566 if (BUF_LOCK(bp, 2567 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2568 BO_LOCKPTR(bo)) == ENOLCK) 2569 goto restart_unlocked; 2570 2571 VNASSERT((bp->b_flags & B_DELWRI), vp, 2572 ("buf(%p) on dirty queue without DELWRI", bp)); 2573 2574 bremfree(bp); 2575 bawrite(bp); 2576 BO_LOCK(bo); 2577 goto restartsync; 2578 } 2579 } 2580 2581 bufobj_wwait(bo, 0, 0); 2582 BO_UNLOCK(bo); 2583 vnode_pager_setsize(vp, length); 2584 2585 return (0); 2586 } 2587 2588 /* 2589 * Invalidate the cached pages of a file's buffer within the range of block 2590 * numbers [startlbn, endlbn). 2591 */ 2592 void 2593 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, 2594 int blksize) 2595 { 2596 struct bufobj *bo; 2597 off_t start, end; 2598 2599 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range"); 2600 2601 start = blksize * startlbn; 2602 end = blksize * endlbn; 2603 2604 bo = &vp->v_bufobj; 2605 BO_LOCK(bo); 2606 MPASS(blksize == bo->bo_bsize); 2607 2608 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN) 2609 ; 2610 2611 BO_UNLOCK(bo); 2612 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1)); 2613 } 2614 2615 static int 2616 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 2617 daddr_t startlbn, daddr_t endlbn) 2618 { 2619 struct buf *bp, *nbp; 2620 bool anyfreed; 2621 2622 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked"); 2623 ASSERT_BO_LOCKED(bo); 2624 2625 do { 2626 anyfreed = false; 2627 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 2628 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2629 continue; 2630 if (BUF_LOCK(bp, 2631 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2632 BO_LOCKPTR(bo)) == ENOLCK) { 2633 BO_LOCK(bo); 2634 return (EAGAIN); 2635 } 2636 2637 bremfree(bp); 2638 bp->b_flags |= B_INVAL | B_RELBUF; 2639 bp->b_flags &= ~B_ASYNC; 2640 brelse(bp); 2641 anyfreed = true; 2642 2643 BO_LOCK(bo); 2644 if (nbp != NULL && 2645 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 2646 nbp->b_vp != vp || 2647 (nbp->b_flags & B_DELWRI) != 0)) 2648 return (EAGAIN); 2649 } 2650 2651 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2652 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2653 continue; 2654 if (BUF_LOCK(bp, 2655 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2656 BO_LOCKPTR(bo)) == ENOLCK) { 2657 BO_LOCK(bo); 2658 return (EAGAIN); 2659 } 2660 bremfree(bp); 2661 bp->b_flags |= B_INVAL | B_RELBUF; 2662 bp->b_flags &= ~B_ASYNC; 2663 brelse(bp); 2664 anyfreed = true; 2665 2666 BO_LOCK(bo); 2667 if (nbp != NULL && 2668 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 2669 (nbp->b_vp != vp) || 2670 (nbp->b_flags & B_DELWRI) == 0)) 2671 return (EAGAIN); 2672 } 2673 } while (anyfreed); 2674 return (0); 2675 } 2676 2677 static void 2678 buf_vlist_remove(struct buf *bp) 2679 { 2680 struct bufv *bv; 2681 b_xflags_t flags; 2682 2683 flags = bp->b_xflags; 2684 2685 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2686 ASSERT_BO_WLOCKED(bp->b_bufobj); 2687 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 && 2688 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN), 2689 ("%s: buffer %p has invalid queue state", __func__, bp)); 2690 2691 if ((flags & BX_VNDIRTY) != 0) 2692 bv = &bp->b_bufobj->bo_dirty; 2693 else 2694 bv = &bp->b_bufobj->bo_clean; 2695 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 2696 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 2697 bv->bv_cnt--; 2698 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 2699 } 2700 2701 /* 2702 * Add the buffer to the sorted clean or dirty block list. Return zero on 2703 * success, EEXIST if a buffer with this identity already exists, or another 2704 * error on allocation failure. 2705 */ 2706 static inline int 2707 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2708 { 2709 struct bufv *bv; 2710 struct buf *n; 2711 int error; 2712 2713 ASSERT_BO_WLOCKED(bo); 2714 KASSERT((bo->bo_flag & BO_NOBUFS) == 0, 2715 ("buf_vlist_add: bo %p does not allow bufs", bo)); 2716 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, 2717 ("dead bo %p", bo)); 2718 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags, 2719 ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp)); 2720 2721 if (xflags & BX_VNDIRTY) 2722 bv = &bo->bo_dirty; 2723 else 2724 bv = &bo->bo_clean; 2725 2726 error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, &n); 2727 if (n == NULL) { 2728 KASSERT(error != EEXIST, 2729 ("buf_vlist_add: EEXIST but no existing buf found: bp %p", 2730 bp)); 2731 } else { 2732 KASSERT((uint64_t)n->b_lblkno <= (uint64_t)bp->b_lblkno, 2733 ("buf_vlist_add: out of order insert/lookup: bp %p n %p", 2734 bp, n)); 2735 KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST), 2736 ("buf_vlist_add: inconsistent result for existing buf: " 2737 "error %d bp %p n %p", error, bp, n)); 2738 } 2739 if (error != 0) 2740 return (error); 2741 2742 /* Keep the list ordered. */ 2743 if (n == NULL) { 2744 KASSERT(TAILQ_EMPTY(&bv->bv_hd) || 2745 (uint64_t)bp->b_lblkno < 2746 (uint64_t)TAILQ_FIRST(&bv->bv_hd)->b_lblkno, 2747 ("buf_vlist_add: queue order: " 2748 "%p should be before first %p", 2749 bp, TAILQ_FIRST(&bv->bv_hd))); 2750 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 2751 } else { 2752 KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL || 2753 (uint64_t)bp->b_lblkno < 2754 (uint64_t)TAILQ_NEXT(n, b_bobufs)->b_lblkno, 2755 ("buf_vlist_add: queue order: " 2756 "%p should be before next %p", 2757 bp, TAILQ_NEXT(n, b_bobufs))); 2758 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 2759 } 2760 2761 bv->bv_cnt++; 2762 return (0); 2763 } 2764 2765 /* 2766 * Add the buffer to the sorted clean or dirty block list. 2767 * 2768 * NOTE: xflags is passed as a constant, optimizing this inline function! 2769 */ 2770 static void 2771 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2772 { 2773 int error; 2774 2775 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0, 2776 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 2777 bp->b_xflags |= xflags; 2778 error = buf_vlist_find_or_add(bp, bo, xflags); 2779 if (error) 2780 panic("buf_vlist_add: error=%d", error); 2781 } 2782 2783 /* 2784 * Look up a buffer using the buffer tries. 2785 */ 2786 struct buf * 2787 gbincore(struct bufobj *bo, daddr_t lblkno) 2788 { 2789 struct buf *bp; 2790 2791 ASSERT_BO_LOCKED(bo); 2792 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 2793 if (bp != NULL) 2794 return (bp); 2795 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno)); 2796 } 2797 2798 /* 2799 * Look up a buf using the buffer tries, without the bufobj lock. This relies 2800 * on SMR for safe lookup, and bufs being in a no-free zone to provide type 2801 * stability of the result. Like other lockless lookups, the found buf may 2802 * already be invalid by the time this function returns. 2803 */ 2804 struct buf * 2805 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno) 2806 { 2807 struct buf *bp; 2808 2809 ASSERT_BO_UNLOCKED(bo); 2810 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno); 2811 if (bp != NULL) 2812 return (bp); 2813 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno)); 2814 } 2815 2816 /* 2817 * Associate a buffer with a vnode. 2818 */ 2819 int 2820 bgetvp(struct vnode *vp, struct buf *bp) 2821 { 2822 struct bufobj *bo; 2823 int error; 2824 2825 bo = &vp->v_bufobj; 2826 ASSERT_BO_UNLOCKED(bo); 2827 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 2828 2829 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 2830 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 2831 ("bgetvp: bp already attached! %p", bp)); 2832 2833 /* 2834 * Add the buf to the vnode's clean list unless we lost a race and find 2835 * an existing buf in either dirty or clean. 2836 */ 2837 bp->b_vp = vp; 2838 bp->b_bufobj = bo; 2839 bp->b_xflags |= BX_VNCLEAN; 2840 error = EEXIST; 2841 BO_LOCK(bo); 2842 if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL) 2843 error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN); 2844 BO_UNLOCK(bo); 2845 if (__predict_true(error == 0)) { 2846 vhold(vp); 2847 return (0); 2848 } 2849 if (error != EEXIST) 2850 panic("bgetvp: buf_vlist_add error: %d", error); 2851 bp->b_vp = NULL; 2852 bp->b_bufobj = NULL; 2853 bp->b_xflags &= ~BX_VNCLEAN; 2854 return (error); 2855 } 2856 2857 /* 2858 * Disassociate a buffer from a vnode. 2859 */ 2860 void 2861 brelvp(struct buf *bp) 2862 { 2863 struct bufobj *bo; 2864 struct vnode *vp; 2865 2866 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2867 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 2868 2869 /* 2870 * Delete from old vnode list, if on one. 2871 */ 2872 vp = bp->b_vp; /* XXX */ 2873 bo = bp->b_bufobj; 2874 BO_LOCK(bo); 2875 buf_vlist_remove(bp); 2876 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2877 bo->bo_flag &= ~BO_ONWORKLST; 2878 mtx_lock(&sync_mtx); 2879 LIST_REMOVE(bo, bo_synclist); 2880 syncer_worklist_len--; 2881 mtx_unlock(&sync_mtx); 2882 } 2883 bp->b_vp = NULL; 2884 bp->b_bufobj = NULL; 2885 BO_UNLOCK(bo); 2886 vdrop(vp); 2887 } 2888 2889 /* 2890 * Add an item to the syncer work queue. 2891 */ 2892 static void 2893 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 2894 { 2895 int slot; 2896 2897 ASSERT_BO_WLOCKED(bo); 2898 2899 mtx_lock(&sync_mtx); 2900 if (bo->bo_flag & BO_ONWORKLST) 2901 LIST_REMOVE(bo, bo_synclist); 2902 else { 2903 bo->bo_flag |= BO_ONWORKLST; 2904 syncer_worklist_len++; 2905 } 2906 2907 if (delay > syncer_maxdelay - 2) 2908 delay = syncer_maxdelay - 2; 2909 slot = (syncer_delayno + delay) & syncer_mask; 2910 2911 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 2912 mtx_unlock(&sync_mtx); 2913 } 2914 2915 static int 2916 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 2917 { 2918 int error, len; 2919 2920 mtx_lock(&sync_mtx); 2921 len = syncer_worklist_len - sync_vnode_count; 2922 mtx_unlock(&sync_mtx); 2923 error = SYSCTL_OUT(req, &len, sizeof(len)); 2924 return (error); 2925 } 2926 2927 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, 2928 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0, 2929 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 2930 2931 static struct proc *updateproc; 2932 static void sched_sync(void); 2933 static struct kproc_desc up_kp = { 2934 "syncer", 2935 sched_sync, 2936 &updateproc 2937 }; 2938 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 2939 2940 static int 2941 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 2942 { 2943 struct vnode *vp; 2944 struct mount *mp; 2945 2946 *bo = LIST_FIRST(slp); 2947 if (*bo == NULL) 2948 return (0); 2949 vp = bo2vnode(*bo); 2950 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 2951 return (1); 2952 /* 2953 * We use vhold in case the vnode does not 2954 * successfully sync. vhold prevents the vnode from 2955 * going away when we unlock the sync_mtx so that 2956 * we can acquire the vnode interlock. 2957 */ 2958 vholdl(vp); 2959 mtx_unlock(&sync_mtx); 2960 VI_UNLOCK(vp); 2961 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2962 vdrop(vp); 2963 mtx_lock(&sync_mtx); 2964 return (*bo == LIST_FIRST(slp)); 2965 } 2966 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 || 2967 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp, 2968 ("suspended mp syncing vp %p", vp)); 2969 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2970 (void) VOP_FSYNC(vp, MNT_LAZY, td); 2971 VOP_UNLOCK(vp); 2972 vn_finished_write(mp); 2973 BO_LOCK(*bo); 2974 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 2975 /* 2976 * Put us back on the worklist. The worklist 2977 * routine will remove us from our current 2978 * position and then add us back in at a later 2979 * position. 2980 */ 2981 vn_syncer_add_to_worklist(*bo, syncdelay); 2982 } 2983 BO_UNLOCK(*bo); 2984 vdrop(vp); 2985 mtx_lock(&sync_mtx); 2986 return (0); 2987 } 2988 2989 static int first_printf = 1; 2990 2991 /* 2992 * System filesystem synchronizer daemon. 2993 */ 2994 static void 2995 sched_sync(void) 2996 { 2997 struct synclist *next, *slp; 2998 struct bufobj *bo; 2999 long starttime; 3000 struct thread *td = curthread; 3001 int last_work_seen; 3002 int net_worklist_len; 3003 int syncer_final_iter; 3004 int error; 3005 3006 last_work_seen = 0; 3007 syncer_final_iter = 0; 3008 syncer_state = SYNCER_RUNNING; 3009 starttime = time_uptime; 3010 td->td_pflags |= TDP_NORUNNINGBUF; 3011 3012 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 3013 SHUTDOWN_PRI_LAST); 3014 3015 mtx_lock(&sync_mtx); 3016 for (;;) { 3017 if (syncer_state == SYNCER_FINAL_DELAY && 3018 syncer_final_iter == 0) { 3019 mtx_unlock(&sync_mtx); 3020 kproc_suspend_check(td->td_proc); 3021 mtx_lock(&sync_mtx); 3022 } 3023 net_worklist_len = syncer_worklist_len - sync_vnode_count; 3024 if (syncer_state != SYNCER_RUNNING && 3025 starttime != time_uptime) { 3026 if (first_printf) { 3027 printf("\nSyncing disks, vnodes remaining... "); 3028 first_printf = 0; 3029 } 3030 printf("%d ", net_worklist_len); 3031 } 3032 starttime = time_uptime; 3033 3034 /* 3035 * Push files whose dirty time has expired. Be careful 3036 * of interrupt race on slp queue. 3037 * 3038 * Skip over empty worklist slots when shutting down. 3039 */ 3040 do { 3041 slp = &syncer_workitem_pending[syncer_delayno]; 3042 syncer_delayno += 1; 3043 if (syncer_delayno == syncer_maxdelay) 3044 syncer_delayno = 0; 3045 next = &syncer_workitem_pending[syncer_delayno]; 3046 /* 3047 * If the worklist has wrapped since the 3048 * it was emptied of all but syncer vnodes, 3049 * switch to the FINAL_DELAY state and run 3050 * for one more second. 3051 */ 3052 if (syncer_state == SYNCER_SHUTTING_DOWN && 3053 net_worklist_len == 0 && 3054 last_work_seen == syncer_delayno) { 3055 syncer_state = SYNCER_FINAL_DELAY; 3056 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 3057 } 3058 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 3059 syncer_worklist_len > 0); 3060 3061 /* 3062 * Keep track of the last time there was anything 3063 * on the worklist other than syncer vnodes. 3064 * Return to the SHUTTING_DOWN state if any 3065 * new work appears. 3066 */ 3067 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 3068 last_work_seen = syncer_delayno; 3069 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 3070 syncer_state = SYNCER_SHUTTING_DOWN; 3071 while (!LIST_EMPTY(slp)) { 3072 error = sync_vnode(slp, &bo, td); 3073 if (error == 1) { 3074 LIST_REMOVE(bo, bo_synclist); 3075 LIST_INSERT_HEAD(next, bo, bo_synclist); 3076 continue; 3077 } 3078 3079 if (first_printf == 0) { 3080 /* 3081 * Drop the sync mutex, because some watchdog 3082 * drivers need to sleep while patting 3083 */ 3084 mtx_unlock(&sync_mtx); 3085 wdog_kern_pat(WD_LASTVAL); 3086 mtx_lock(&sync_mtx); 3087 } 3088 } 3089 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 3090 syncer_final_iter--; 3091 /* 3092 * The variable rushjob allows the kernel to speed up the 3093 * processing of the filesystem syncer process. A rushjob 3094 * value of N tells the filesystem syncer to process the next 3095 * N seconds worth of work on its queue ASAP. Currently rushjob 3096 * is used by the soft update code to speed up the filesystem 3097 * syncer process when the incore state is getting so far 3098 * ahead of the disk that the kernel memory pool is being 3099 * threatened with exhaustion. 3100 */ 3101 if (rushjob > 0) { 3102 rushjob -= 1; 3103 continue; 3104 } 3105 /* 3106 * Just sleep for a short period of time between 3107 * iterations when shutting down to allow some I/O 3108 * to happen. 3109 * 3110 * If it has taken us less than a second to process the 3111 * current work, then wait. Otherwise start right over 3112 * again. We can still lose time if any single round 3113 * takes more than two seconds, but it does not really 3114 * matter as we are just trying to generally pace the 3115 * filesystem activity. 3116 */ 3117 if (syncer_state != SYNCER_RUNNING || 3118 time_uptime == starttime) { 3119 thread_lock(td); 3120 sched_prio(td, PPAUSE); 3121 thread_unlock(td); 3122 } 3123 if (syncer_state != SYNCER_RUNNING) 3124 cv_timedwait(&sync_wakeup, &sync_mtx, 3125 hz / SYNCER_SHUTDOWN_SPEEDUP); 3126 else if (time_uptime == starttime) 3127 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 3128 } 3129 } 3130 3131 /* 3132 * Request the syncer daemon to speed up its work. 3133 * We never push it to speed up more than half of its 3134 * normal turn time, otherwise it could take over the cpu. 3135 */ 3136 int 3137 speedup_syncer(void) 3138 { 3139 int ret = 0; 3140 3141 mtx_lock(&sync_mtx); 3142 if (rushjob < syncdelay / 2) { 3143 rushjob += 1; 3144 stat_rush_requests += 1; 3145 ret = 1; 3146 } 3147 mtx_unlock(&sync_mtx); 3148 cv_broadcast(&sync_wakeup); 3149 return (ret); 3150 } 3151 3152 /* 3153 * Tell the syncer to speed up its work and run though its work 3154 * list several times, then tell it to shut down. 3155 */ 3156 static void 3157 syncer_shutdown(void *arg, int howto) 3158 { 3159 3160 if (howto & RB_NOSYNC) 3161 return; 3162 mtx_lock(&sync_mtx); 3163 syncer_state = SYNCER_SHUTTING_DOWN; 3164 rushjob = 0; 3165 mtx_unlock(&sync_mtx); 3166 cv_broadcast(&sync_wakeup); 3167 kproc_shutdown(arg, howto); 3168 } 3169 3170 void 3171 syncer_suspend(void) 3172 { 3173 3174 syncer_shutdown(updateproc, 0); 3175 } 3176 3177 void 3178 syncer_resume(void) 3179 { 3180 3181 mtx_lock(&sync_mtx); 3182 first_printf = 1; 3183 syncer_state = SYNCER_RUNNING; 3184 mtx_unlock(&sync_mtx); 3185 cv_broadcast(&sync_wakeup); 3186 kproc_resume(updateproc); 3187 } 3188 3189 /* 3190 * Move the buffer between the clean and dirty lists of its vnode. 3191 */ 3192 void 3193 reassignbuf(struct buf *bp) 3194 { 3195 struct vnode *vp; 3196 struct bufobj *bo; 3197 int delay; 3198 #ifdef INVARIANTS 3199 struct bufv *bv; 3200 #endif 3201 3202 vp = bp->b_vp; 3203 bo = bp->b_bufobj; 3204 3205 KASSERT((bp->b_flags & B_PAGING) == 0, 3206 ("%s: cannot reassign paging buffer %p", __func__, bp)); 3207 3208 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 3209 bp, bp->b_vp, bp->b_flags); 3210 3211 BO_LOCK(bo); 3212 if ((bo->bo_flag & BO_NONSTERILE) == 0) { 3213 /* 3214 * Coordinate with getblk's unlocked lookup. Make 3215 * BO_NONSTERILE visible before the first reassignbuf produces 3216 * any side effect. This could be outside the bo lock if we 3217 * used a separate atomic flag field. 3218 */ 3219 bo->bo_flag |= BO_NONSTERILE; 3220 atomic_thread_fence_rel(); 3221 } 3222 buf_vlist_remove(bp); 3223 3224 /* 3225 * If dirty, put on list of dirty buffers; otherwise insert onto list 3226 * of clean buffers. 3227 */ 3228 if (bp->b_flags & B_DELWRI) { 3229 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 3230 switch (vp->v_type) { 3231 case VDIR: 3232 delay = dirdelay; 3233 break; 3234 case VCHR: 3235 delay = metadelay; 3236 break; 3237 default: 3238 delay = filedelay; 3239 } 3240 vn_syncer_add_to_worklist(bo, delay); 3241 } 3242 buf_vlist_add(bp, bo, BX_VNDIRTY); 3243 } else { 3244 buf_vlist_add(bp, bo, BX_VNCLEAN); 3245 3246 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 3247 mtx_lock(&sync_mtx); 3248 LIST_REMOVE(bo, bo_synclist); 3249 syncer_worklist_len--; 3250 mtx_unlock(&sync_mtx); 3251 bo->bo_flag &= ~BO_ONWORKLST; 3252 } 3253 } 3254 #ifdef INVARIANTS 3255 bv = &bo->bo_clean; 3256 bp = TAILQ_FIRST(&bv->bv_hd); 3257 KASSERT(bp == NULL || bp->b_bufobj == bo, 3258 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3259 bp = TAILQ_LAST(&bv->bv_hd, buflists); 3260 KASSERT(bp == NULL || bp->b_bufobj == bo, 3261 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3262 bv = &bo->bo_dirty; 3263 bp = TAILQ_FIRST(&bv->bv_hd); 3264 KASSERT(bp == NULL || bp->b_bufobj == bo, 3265 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3266 bp = TAILQ_LAST(&bv->bv_hd, buflists); 3267 KASSERT(bp == NULL || bp->b_bufobj == bo, 3268 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3269 #endif 3270 BO_UNLOCK(bo); 3271 } 3272 3273 static void 3274 v_init_counters(struct vnode *vp) 3275 { 3276 3277 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, 3278 vp, ("%s called for an initialized vnode", __FUNCTION__)); 3279 ASSERT_VI_UNLOCKED(vp, __FUNCTION__); 3280 3281 refcount_init(&vp->v_holdcnt, 1); 3282 refcount_init(&vp->v_usecount, 1); 3283 } 3284 3285 /* 3286 * Get a usecount on a vnode. 3287 * 3288 * vget and vget_finish may fail to lock the vnode if they lose a race against 3289 * it being doomed. LK_RETRY can be passed in flags to lock it anyway. 3290 * 3291 * Consumers which don't guarantee liveness of the vnode can use SMR to 3292 * try to get a reference. Note this operation can fail since the vnode 3293 * may be awaiting getting freed by the time they get to it. 3294 */ 3295 enum vgetstate 3296 vget_prep_smr(struct vnode *vp) 3297 { 3298 enum vgetstate vs; 3299 3300 VFS_SMR_ASSERT_ENTERED(); 3301 3302 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 3303 vs = VGET_USECOUNT; 3304 } else { 3305 if (vhold_smr(vp)) 3306 vs = VGET_HOLDCNT; 3307 else 3308 vs = VGET_NONE; 3309 } 3310 return (vs); 3311 } 3312 3313 enum vgetstate 3314 vget_prep(struct vnode *vp) 3315 { 3316 enum vgetstate vs; 3317 3318 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 3319 vs = VGET_USECOUNT; 3320 } else { 3321 vhold(vp); 3322 vs = VGET_HOLDCNT; 3323 } 3324 return (vs); 3325 } 3326 3327 void 3328 vget_abort(struct vnode *vp, enum vgetstate vs) 3329 { 3330 3331 switch (vs) { 3332 case VGET_USECOUNT: 3333 vrele(vp); 3334 break; 3335 case VGET_HOLDCNT: 3336 vdrop(vp); 3337 break; 3338 default: 3339 __assert_unreachable(); 3340 } 3341 } 3342 3343 int 3344 vget(struct vnode *vp, int flags) 3345 { 3346 enum vgetstate vs; 3347 3348 vs = vget_prep(vp); 3349 return (vget_finish(vp, flags, vs)); 3350 } 3351 3352 int 3353 vget_finish(struct vnode *vp, int flags, enum vgetstate vs) 3354 { 3355 int error; 3356 3357 if ((flags & LK_INTERLOCK) != 0) 3358 ASSERT_VI_LOCKED(vp, __func__); 3359 else 3360 ASSERT_VI_UNLOCKED(vp, __func__); 3361 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3362 VNPASS(vp->v_holdcnt > 0, vp); 3363 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3364 3365 error = vn_lock(vp, flags); 3366 if (__predict_false(error != 0)) { 3367 vget_abort(vp, vs); 3368 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 3369 vp); 3370 return (error); 3371 } 3372 3373 vget_finish_ref(vp, vs); 3374 return (0); 3375 } 3376 3377 void 3378 vget_finish_ref(struct vnode *vp, enum vgetstate vs) 3379 { 3380 int old; 3381 3382 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3383 VNPASS(vp->v_holdcnt > 0, vp); 3384 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3385 3386 if (vs == VGET_USECOUNT) 3387 return; 3388 3389 /* 3390 * We hold the vnode. If the usecount is 0 it will be utilized to keep 3391 * the vnode around. Otherwise someone else lended their hold count and 3392 * we have to drop ours. 3393 */ 3394 old = atomic_fetchadd_int(&vp->v_usecount, 1); 3395 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old)); 3396 if (old != 0) { 3397 #ifdef INVARIANTS 3398 old = atomic_fetchadd_int(&vp->v_holdcnt, -1); 3399 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); 3400 #else 3401 refcount_release(&vp->v_holdcnt); 3402 #endif 3403 } 3404 } 3405 3406 void 3407 vref(struct vnode *vp) 3408 { 3409 enum vgetstate vs; 3410 3411 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3412 vs = vget_prep(vp); 3413 vget_finish_ref(vp, vs); 3414 } 3415 3416 void 3417 vrefact(struct vnode *vp) 3418 { 3419 int old __diagused; 3420 3421 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3422 old = refcount_acquire(&vp->v_usecount); 3423 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old)); 3424 } 3425 3426 void 3427 vlazy(struct vnode *vp) 3428 { 3429 struct mount *mp; 3430 3431 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__)); 3432 3433 if ((vp->v_mflag & VMP_LAZYLIST) != 0) 3434 return; 3435 /* 3436 * We may get here for inactive routines after the vnode got doomed. 3437 */ 3438 if (VN_IS_DOOMED(vp)) 3439 return; 3440 mp = vp->v_mount; 3441 mtx_lock(&mp->mnt_listmtx); 3442 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 3443 vp->v_mflag |= VMP_LAZYLIST; 3444 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3445 mp->mnt_lazyvnodelistsize++; 3446 } 3447 mtx_unlock(&mp->mnt_listmtx); 3448 } 3449 3450 static void 3451 vunlazy(struct vnode *vp) 3452 { 3453 struct mount *mp; 3454 3455 ASSERT_VI_LOCKED(vp, __func__); 3456 VNPASS(!VN_IS_DOOMED(vp), vp); 3457 3458 mp = vp->v_mount; 3459 mtx_lock(&mp->mnt_listmtx); 3460 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3461 /* 3462 * Don't remove the vnode from the lazy list if another thread 3463 * has increased the hold count. It may have re-enqueued the 3464 * vnode to the lazy list and is now responsible for its 3465 * removal. 3466 */ 3467 if (vp->v_holdcnt == 0) { 3468 vp->v_mflag &= ~VMP_LAZYLIST; 3469 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3470 mp->mnt_lazyvnodelistsize--; 3471 } 3472 mtx_unlock(&mp->mnt_listmtx); 3473 } 3474 3475 /* 3476 * This routine is only meant to be called from vgonel prior to dooming 3477 * the vnode. 3478 */ 3479 static void 3480 vunlazy_gone(struct vnode *vp) 3481 { 3482 struct mount *mp; 3483 3484 ASSERT_VOP_ELOCKED(vp, __func__); 3485 ASSERT_VI_LOCKED(vp, __func__); 3486 VNPASS(!VN_IS_DOOMED(vp), vp); 3487 3488 if (vp->v_mflag & VMP_LAZYLIST) { 3489 mp = vp->v_mount; 3490 mtx_lock(&mp->mnt_listmtx); 3491 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3492 vp->v_mflag &= ~VMP_LAZYLIST; 3493 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3494 mp->mnt_lazyvnodelistsize--; 3495 mtx_unlock(&mp->mnt_listmtx); 3496 } 3497 } 3498 3499 static void 3500 vdefer_inactive(struct vnode *vp) 3501 { 3502 3503 ASSERT_VI_LOCKED(vp, __func__); 3504 VNPASS(vp->v_holdcnt > 0, vp); 3505 if (VN_IS_DOOMED(vp)) { 3506 vdropl(vp); 3507 return; 3508 } 3509 if (vp->v_iflag & VI_DEFINACT) { 3510 VNPASS(vp->v_holdcnt > 1, vp); 3511 vdropl(vp); 3512 return; 3513 } 3514 if (vp->v_usecount > 0) { 3515 vp->v_iflag &= ~VI_OWEINACT; 3516 vdropl(vp); 3517 return; 3518 } 3519 vlazy(vp); 3520 vp->v_iflag |= VI_DEFINACT; 3521 VI_UNLOCK(vp); 3522 atomic_add_long(&deferred_inact, 1); 3523 } 3524 3525 static void 3526 vdefer_inactive_unlocked(struct vnode *vp) 3527 { 3528 3529 VI_LOCK(vp); 3530 if ((vp->v_iflag & VI_OWEINACT) == 0) { 3531 vdropl(vp); 3532 return; 3533 } 3534 vdefer_inactive(vp); 3535 } 3536 3537 enum vput_op { VRELE, VPUT, VUNREF }; 3538 3539 /* 3540 * Handle ->v_usecount transitioning to 0. 3541 * 3542 * By releasing the last usecount we take ownership of the hold count which 3543 * provides liveness of the vnode, meaning we have to vdrop. 3544 * 3545 * For all vnodes we may need to perform inactive processing. It requires an 3546 * exclusive lock on the vnode, while it is legal to call here with only a 3547 * shared lock (or no locks). If locking the vnode in an expected manner fails, 3548 * inactive processing gets deferred to the syncer. 3549 * 3550 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend 3551 * on the lock being held all the way until VOP_INACTIVE. This in particular 3552 * happens with UFS which adds half-constructed vnodes to the hash, where they 3553 * can be found by other code. 3554 */ 3555 static void 3556 vput_final(struct vnode *vp, enum vput_op func) 3557 { 3558 int error; 3559 bool want_unlock; 3560 3561 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3562 VNPASS(vp->v_holdcnt > 0, vp); 3563 3564 VI_LOCK(vp); 3565 3566 /* 3567 * By the time we got here someone else might have transitioned 3568 * the count back to > 0. 3569 */ 3570 if (vp->v_usecount > 0) 3571 goto out; 3572 3573 /* 3574 * If the vnode is doomed vgone already performed inactive processing 3575 * (if needed). 3576 */ 3577 if (VN_IS_DOOMED(vp)) 3578 goto out; 3579 3580 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0)) 3581 goto out; 3582 3583 if (vp->v_iflag & VI_DOINGINACT) 3584 goto out; 3585 3586 /* 3587 * Locking operations here will drop the interlock and possibly the 3588 * vnode lock, opening a window where the vnode can get doomed all the 3589 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to 3590 * perform inactive. 3591 */ 3592 vp->v_iflag |= VI_OWEINACT; 3593 want_unlock = false; 3594 error = 0; 3595 switch (func) { 3596 case VRELE: 3597 switch (VOP_ISLOCKED(vp)) { 3598 case LK_EXCLUSIVE: 3599 break; 3600 case LK_EXCLOTHER: 3601 case 0: 3602 want_unlock = true; 3603 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 3604 VI_LOCK(vp); 3605 break; 3606 default: 3607 /* 3608 * The lock has at least one sharer, but we have no way 3609 * to conclude whether this is us. Play it safe and 3610 * defer processing. 3611 */ 3612 error = EAGAIN; 3613 break; 3614 } 3615 break; 3616 case VPUT: 3617 want_unlock = true; 3618 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3619 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 3620 LK_NOWAIT); 3621 VI_LOCK(vp); 3622 } 3623 break; 3624 case VUNREF: 3625 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3626 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 3627 VI_LOCK(vp); 3628 } 3629 break; 3630 } 3631 if (error == 0) { 3632 if (func == VUNREF) { 3633 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp, 3634 ("recursive vunref")); 3635 vp->v_vflag |= VV_UNREF; 3636 } 3637 for (;;) { 3638 error = vinactive(vp); 3639 if (want_unlock) 3640 VOP_UNLOCK(vp); 3641 if (error != ERELOOKUP || !want_unlock) 3642 break; 3643 VOP_LOCK(vp, LK_EXCLUSIVE); 3644 } 3645 if (func == VUNREF) 3646 vp->v_vflag &= ~VV_UNREF; 3647 vdropl(vp); 3648 } else { 3649 vdefer_inactive(vp); 3650 } 3651 return; 3652 out: 3653 if (func == VPUT) 3654 VOP_UNLOCK(vp); 3655 vdropl(vp); 3656 } 3657 3658 /* 3659 * Decrement ->v_usecount for a vnode. 3660 * 3661 * Releasing the last use count requires additional processing, see vput_final 3662 * above for details. 3663 * 3664 * Comment above each variant denotes lock state on entry and exit. 3665 */ 3666 3667 /* 3668 * in: any 3669 * out: same as passed in 3670 */ 3671 void 3672 vrele(struct vnode *vp) 3673 { 3674 3675 ASSERT_VI_UNLOCKED(vp, __func__); 3676 if (!refcount_release(&vp->v_usecount)) 3677 return; 3678 vput_final(vp, VRELE); 3679 } 3680 3681 /* 3682 * in: locked 3683 * out: unlocked 3684 */ 3685 void 3686 vput(struct vnode *vp) 3687 { 3688 3689 ASSERT_VOP_LOCKED(vp, __func__); 3690 ASSERT_VI_UNLOCKED(vp, __func__); 3691 if (!refcount_release(&vp->v_usecount)) { 3692 VOP_UNLOCK(vp); 3693 return; 3694 } 3695 vput_final(vp, VPUT); 3696 } 3697 3698 /* 3699 * in: locked 3700 * out: locked 3701 */ 3702 void 3703 vunref(struct vnode *vp) 3704 { 3705 3706 ASSERT_VOP_LOCKED(vp, __func__); 3707 ASSERT_VI_UNLOCKED(vp, __func__); 3708 if (!refcount_release(&vp->v_usecount)) 3709 return; 3710 vput_final(vp, VUNREF); 3711 } 3712 3713 void 3714 vhold(struct vnode *vp) 3715 { 3716 int old; 3717 3718 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3719 old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3720 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3721 ("%s: wrong hold count %d", __func__, old)); 3722 if (old == 0) 3723 vfs_freevnodes_dec(); 3724 } 3725 3726 void 3727 vholdnz(struct vnode *vp) 3728 { 3729 3730 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3731 #ifdef INVARIANTS 3732 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3733 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3734 ("%s: wrong hold count %d", __func__, old)); 3735 #else 3736 atomic_add_int(&vp->v_holdcnt, 1); 3737 #endif 3738 } 3739 3740 /* 3741 * Grab a hold count unless the vnode is freed. 3742 * 3743 * Only use this routine if vfs smr is the only protection you have against 3744 * freeing the vnode. 3745 * 3746 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag 3747 * is not set. After the flag is set the vnode becomes immutable to anyone but 3748 * the thread which managed to set the flag. 3749 * 3750 * It may be tempting to replace the loop with: 3751 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3752 * if (count & VHOLD_NO_SMR) { 3753 * backpedal and error out; 3754 * } 3755 * 3756 * However, while this is more performant, it hinders debugging by eliminating 3757 * the previously mentioned invariant. 3758 */ 3759 bool 3760 vhold_smr(struct vnode *vp) 3761 { 3762 int count; 3763 3764 VFS_SMR_ASSERT_ENTERED(); 3765 3766 count = atomic_load_int(&vp->v_holdcnt); 3767 for (;;) { 3768 if (count & VHOLD_NO_SMR) { 3769 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3770 ("non-zero hold count with flags %d\n", count)); 3771 return (false); 3772 } 3773 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3774 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3775 if (count == 0) 3776 vfs_freevnodes_dec(); 3777 return (true); 3778 } 3779 } 3780 } 3781 3782 /* 3783 * Hold a free vnode for recycling. 3784 * 3785 * Note: vnode_init references this comment. 3786 * 3787 * Attempts to recycle only need the global vnode list lock and have no use for 3788 * SMR. 3789 * 3790 * However, vnodes get inserted into the global list before they get fully 3791 * initialized and stay there until UMA decides to free the memory. This in 3792 * particular means the target can be found before it becomes usable and after 3793 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to 3794 * VHOLD_NO_SMR. 3795 * 3796 * Note: the vnode may gain more references after we transition the count 0->1. 3797 */ 3798 static bool 3799 vhold_recycle_free(struct vnode *vp) 3800 { 3801 int count; 3802 3803 mtx_assert(&vnode_list_mtx, MA_OWNED); 3804 3805 count = atomic_load_int(&vp->v_holdcnt); 3806 for (;;) { 3807 if (count & VHOLD_NO_SMR) { 3808 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3809 ("non-zero hold count with flags %d\n", count)); 3810 return (false); 3811 } 3812 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3813 if (count > 0) { 3814 return (false); 3815 } 3816 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3817 vfs_freevnodes_dec(); 3818 return (true); 3819 } 3820 } 3821 } 3822 3823 static void __noinline 3824 vdbatch_process(struct vdbatch *vd) 3825 { 3826 struct vnode *vp; 3827 int i; 3828 3829 mtx_assert(&vd->lock, MA_OWNED); 3830 MPASS(curthread->td_pinned > 0); 3831 MPASS(vd->index == VDBATCH_SIZE); 3832 3833 /* 3834 * Attempt to requeue the passed batch, but give up easily. 3835 * 3836 * Despite batching the mechanism is prone to transient *significant* 3837 * lock contention, where vnode_list_mtx becomes the primary bottleneck 3838 * if multiple CPUs get here (one real-world example is highly parallel 3839 * do-nothing make , which will stat *tons* of vnodes). Since it is 3840 * quasi-LRU (read: not that great even if fully honoured) provide an 3841 * option to just dodge the problem. Parties which don't like it are 3842 * welcome to implement something better. 3843 */ 3844 if (vnode_can_skip_requeue) { 3845 if (!mtx_trylock(&vnode_list_mtx)) { 3846 counter_u64_add(vnode_skipped_requeues, 1); 3847 critical_enter(); 3848 for (i = 0; i < VDBATCH_SIZE; i++) { 3849 vp = vd->tab[i]; 3850 vd->tab[i] = NULL; 3851 MPASS(vp->v_dbatchcpu != NOCPU); 3852 vp->v_dbatchcpu = NOCPU; 3853 } 3854 vd->index = 0; 3855 critical_exit(); 3856 return; 3857 3858 } 3859 /* fallthrough to locked processing */ 3860 } else { 3861 mtx_lock(&vnode_list_mtx); 3862 } 3863 3864 mtx_assert(&vnode_list_mtx, MA_OWNED); 3865 critical_enter(); 3866 for (i = 0; i < VDBATCH_SIZE; i++) { 3867 vp = vd->tab[i]; 3868 vd->tab[i] = NULL; 3869 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 3870 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist); 3871 MPASS(vp->v_dbatchcpu != NOCPU); 3872 vp->v_dbatchcpu = NOCPU; 3873 } 3874 mtx_unlock(&vnode_list_mtx); 3875 vd->index = 0; 3876 critical_exit(); 3877 } 3878 3879 static void 3880 vdbatch_enqueue(struct vnode *vp) 3881 { 3882 struct vdbatch *vd; 3883 3884 ASSERT_VI_LOCKED(vp, __func__); 3885 VNPASS(!VN_IS_DOOMED(vp), vp); 3886 3887 if (vp->v_dbatchcpu != NOCPU) { 3888 VI_UNLOCK(vp); 3889 return; 3890 } 3891 3892 sched_pin(); 3893 vd = DPCPU_PTR(vd); 3894 mtx_lock(&vd->lock); 3895 MPASS(vd->index < VDBATCH_SIZE); 3896 MPASS(vd->tab[vd->index] == NULL); 3897 /* 3898 * A hack: we depend on being pinned so that we know what to put in 3899 * ->v_dbatchcpu. 3900 */ 3901 vp->v_dbatchcpu = curcpu; 3902 vd->tab[vd->index] = vp; 3903 vd->index++; 3904 VI_UNLOCK(vp); 3905 if (vd->index == VDBATCH_SIZE) 3906 vdbatch_process(vd); 3907 mtx_unlock(&vd->lock); 3908 sched_unpin(); 3909 } 3910 3911 /* 3912 * This routine must only be called for vnodes which are about to be 3913 * deallocated. Supporting dequeue for arbitrary vndoes would require 3914 * validating that the locked batch matches. 3915 */ 3916 static void 3917 vdbatch_dequeue(struct vnode *vp) 3918 { 3919 struct vdbatch *vd; 3920 int i; 3921 short cpu; 3922 3923 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp); 3924 3925 cpu = vp->v_dbatchcpu; 3926 if (cpu == NOCPU) 3927 return; 3928 3929 vd = DPCPU_ID_PTR(cpu, vd); 3930 mtx_lock(&vd->lock); 3931 for (i = 0; i < vd->index; i++) { 3932 if (vd->tab[i] != vp) 3933 continue; 3934 vp->v_dbatchcpu = NOCPU; 3935 vd->index--; 3936 vd->tab[i] = vd->tab[vd->index]; 3937 vd->tab[vd->index] = NULL; 3938 break; 3939 } 3940 mtx_unlock(&vd->lock); 3941 /* 3942 * Either we dequeued the vnode above or the target CPU beat us to it. 3943 */ 3944 MPASS(vp->v_dbatchcpu == NOCPU); 3945 } 3946 3947 /* 3948 * Drop the hold count of the vnode. 3949 * 3950 * It will only get freed if this is the last hold *and* it has been vgone'd. 3951 * 3952 * Because the vnode vm object keeps a hold reference on the vnode if 3953 * there is at least one resident non-cached page, the vnode cannot 3954 * leave the active list without the page cleanup done. 3955 */ 3956 static void __noinline 3957 vdropl_final(struct vnode *vp) 3958 { 3959 3960 ASSERT_VI_LOCKED(vp, __func__); 3961 VNPASS(VN_IS_DOOMED(vp), vp); 3962 /* 3963 * Set the VHOLD_NO_SMR flag. 3964 * 3965 * We may be racing against vhold_smr. If they win we can just pretend 3966 * we never got this far, they will vdrop later. 3967 */ 3968 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) { 3969 vfs_freevnodes_inc(); 3970 VI_UNLOCK(vp); 3971 /* 3972 * We lost the aforementioned race. Any subsequent access is 3973 * invalid as they might have managed to vdropl on their own. 3974 */ 3975 return; 3976 } 3977 /* 3978 * Don't bump freevnodes as this one is going away. 3979 */ 3980 freevnode(vp); 3981 } 3982 3983 void 3984 vdrop(struct vnode *vp) 3985 { 3986 3987 ASSERT_VI_UNLOCKED(vp, __func__); 3988 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3989 if (refcount_release_if_not_last(&vp->v_holdcnt)) 3990 return; 3991 VI_LOCK(vp); 3992 vdropl(vp); 3993 } 3994 3995 static __always_inline void 3996 vdropl_impl(struct vnode *vp, bool enqueue) 3997 { 3998 3999 ASSERT_VI_LOCKED(vp, __func__); 4000 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4001 if (!refcount_release(&vp->v_holdcnt)) { 4002 VI_UNLOCK(vp); 4003 return; 4004 } 4005 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp); 4006 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 4007 if (VN_IS_DOOMED(vp)) { 4008 vdropl_final(vp); 4009 return; 4010 } 4011 4012 vfs_freevnodes_inc(); 4013 if (vp->v_mflag & VMP_LAZYLIST) { 4014 vunlazy(vp); 4015 } 4016 4017 if (!enqueue) { 4018 VI_UNLOCK(vp); 4019 return; 4020 } 4021 4022 /* 4023 * Also unlocks the interlock. We can't assert on it as we 4024 * released our hold and by now the vnode might have been 4025 * freed. 4026 */ 4027 vdbatch_enqueue(vp); 4028 } 4029 4030 void 4031 vdropl(struct vnode *vp) 4032 { 4033 4034 vdropl_impl(vp, true); 4035 } 4036 4037 /* 4038 * vdrop a vnode when recycling 4039 * 4040 * This is a special case routine only to be used when recycling, differs from 4041 * regular vdrop by not requeieing the vnode on LRU. 4042 * 4043 * Consider a case where vtryrecycle continuously fails with all vnodes (due to 4044 * e.g., frozen writes on the filesystem), filling the batch and causing it to 4045 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a 4046 * loop which can last for as long as writes are frozen. 4047 */ 4048 static void 4049 vdropl_recycle(struct vnode *vp) 4050 { 4051 4052 vdropl_impl(vp, false); 4053 } 4054 4055 static void 4056 vdrop_recycle(struct vnode *vp) 4057 { 4058 4059 VI_LOCK(vp); 4060 vdropl_recycle(vp); 4061 } 4062 4063 /* 4064 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 4065 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 4066 */ 4067 static int 4068 vinactivef(struct vnode *vp) 4069 { 4070 int error; 4071 4072 ASSERT_VOP_ELOCKED(vp, "vinactive"); 4073 ASSERT_VI_LOCKED(vp, "vinactive"); 4074 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp); 4075 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4076 vp->v_iflag |= VI_DOINGINACT; 4077 vp->v_iflag &= ~VI_OWEINACT; 4078 VI_UNLOCK(vp); 4079 4080 /* 4081 * Before moving off the active list, we must be sure that any 4082 * modified pages are converted into the vnode's dirty 4083 * buffers, since these will no longer be checked once the 4084 * vnode is on the inactive list. 4085 * 4086 * The write-out of the dirty pages is asynchronous. At the 4087 * point that VOP_INACTIVE() is called, there could still be 4088 * pending I/O and dirty pages in the object. 4089 */ 4090 if ((vp->v_vflag & VV_NOSYNC) == 0) 4091 vnode_pager_clean_async(vp); 4092 4093 error = VOP_INACTIVE(vp); 4094 VI_LOCK(vp); 4095 VNPASS(vp->v_iflag & VI_DOINGINACT, vp); 4096 vp->v_iflag &= ~VI_DOINGINACT; 4097 return (error); 4098 } 4099 4100 int 4101 vinactive(struct vnode *vp) 4102 { 4103 4104 ASSERT_VOP_ELOCKED(vp, "vinactive"); 4105 ASSERT_VI_LOCKED(vp, "vinactive"); 4106 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4107 4108 if ((vp->v_iflag & VI_OWEINACT) == 0) 4109 return (0); 4110 if (vp->v_iflag & VI_DOINGINACT) 4111 return (0); 4112 if (vp->v_usecount > 0) { 4113 vp->v_iflag &= ~VI_OWEINACT; 4114 return (0); 4115 } 4116 return (vinactivef(vp)); 4117 } 4118 4119 /* 4120 * Remove any vnodes in the vnode table belonging to mount point mp. 4121 * 4122 * If FORCECLOSE is not specified, there should not be any active ones, 4123 * return error if any are found (nb: this is a user error, not a 4124 * system error). If FORCECLOSE is specified, detach any active vnodes 4125 * that are found. 4126 * 4127 * If WRITECLOSE is set, only flush out regular file vnodes open for 4128 * writing. 4129 * 4130 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 4131 * 4132 * `rootrefs' specifies the base reference count for the root vnode 4133 * of this filesystem. The root vnode is considered busy if its 4134 * v_usecount exceeds this value. On a successful return, vflush(, td) 4135 * will call vrele() on the root vnode exactly rootrefs times. 4136 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 4137 * be zero. 4138 */ 4139 #ifdef DIAGNOSTIC 4140 static int busyprt = 0; /* print out busy vnodes */ 4141 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 4142 #endif 4143 4144 int 4145 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 4146 { 4147 struct vnode *vp, *mvp, *rootvp = NULL; 4148 struct vattr vattr; 4149 int busy = 0, error; 4150 4151 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 4152 rootrefs, flags); 4153 if (rootrefs > 0) { 4154 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 4155 ("vflush: bad args")); 4156 /* 4157 * Get the filesystem root vnode. We can vput() it 4158 * immediately, since with rootrefs > 0, it won't go away. 4159 */ 4160 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 4161 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 4162 __func__, error); 4163 return (error); 4164 } 4165 vput(rootvp); 4166 } 4167 loop: 4168 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 4169 vholdl(vp); 4170 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 4171 if (error) { 4172 vdrop(vp); 4173 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 4174 goto loop; 4175 } 4176 /* 4177 * Skip over a vnodes marked VV_SYSTEM. 4178 */ 4179 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 4180 VOP_UNLOCK(vp); 4181 vdrop(vp); 4182 continue; 4183 } 4184 /* 4185 * If WRITECLOSE is set, flush out unlinked but still open 4186 * files (even if open only for reading) and regular file 4187 * vnodes open for writing. 4188 */ 4189 if (flags & WRITECLOSE) { 4190 vnode_pager_clean_async(vp); 4191 do { 4192 error = VOP_FSYNC(vp, MNT_WAIT, td); 4193 } while (error == ERELOOKUP); 4194 if (error != 0) { 4195 VOP_UNLOCK(vp); 4196 vdrop(vp); 4197 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 4198 return (error); 4199 } 4200 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 4201 VI_LOCK(vp); 4202 4203 if ((vp->v_type == VNON || 4204 (error == 0 && vattr.va_nlink > 0)) && 4205 (vp->v_writecount <= 0 || vp->v_type != VREG)) { 4206 VOP_UNLOCK(vp); 4207 vdropl(vp); 4208 continue; 4209 } 4210 } else 4211 VI_LOCK(vp); 4212 /* 4213 * With v_usecount == 0, all we need to do is clear out the 4214 * vnode data structures and we are done. 4215 * 4216 * If FORCECLOSE is set, forcibly close the vnode. 4217 */ 4218 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 4219 vgonel(vp); 4220 } else { 4221 busy++; 4222 #ifdef DIAGNOSTIC 4223 if (busyprt) 4224 vn_printf(vp, "vflush: busy vnode "); 4225 #endif 4226 } 4227 VOP_UNLOCK(vp); 4228 vdropl(vp); 4229 } 4230 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 4231 /* 4232 * If just the root vnode is busy, and if its refcount 4233 * is equal to `rootrefs', then go ahead and kill it. 4234 */ 4235 VI_LOCK(rootvp); 4236 KASSERT(busy > 0, ("vflush: not busy")); 4237 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 4238 ("vflush: usecount %d < rootrefs %d", 4239 rootvp->v_usecount, rootrefs)); 4240 if (busy == 1 && rootvp->v_usecount == rootrefs) { 4241 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 4242 vgone(rootvp); 4243 VOP_UNLOCK(rootvp); 4244 busy = 0; 4245 } else 4246 VI_UNLOCK(rootvp); 4247 } 4248 if (busy) { 4249 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 4250 busy); 4251 return (EBUSY); 4252 } 4253 for (; rootrefs > 0; rootrefs--) 4254 vrele(rootvp); 4255 return (0); 4256 } 4257 4258 /* 4259 * Recycle an unused vnode. 4260 */ 4261 int 4262 vrecycle(struct vnode *vp) 4263 { 4264 int recycled; 4265 4266 VI_LOCK(vp); 4267 recycled = vrecyclel(vp); 4268 VI_UNLOCK(vp); 4269 return (recycled); 4270 } 4271 4272 /* 4273 * vrecycle, with the vp interlock held. 4274 */ 4275 int 4276 vrecyclel(struct vnode *vp) 4277 { 4278 int recycled; 4279 4280 ASSERT_VOP_ELOCKED(vp, __func__); 4281 ASSERT_VI_LOCKED(vp, __func__); 4282 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4283 recycled = 0; 4284 if (vp->v_usecount == 0) { 4285 recycled = 1; 4286 vgonel(vp); 4287 } 4288 return (recycled); 4289 } 4290 4291 /* 4292 * Eliminate all activity associated with a vnode 4293 * in preparation for reuse. 4294 */ 4295 void 4296 vgone(struct vnode *vp) 4297 { 4298 VI_LOCK(vp); 4299 vgonel(vp); 4300 VI_UNLOCK(vp); 4301 } 4302 4303 /* 4304 * Notify upper mounts about reclaimed or unlinked vnode. 4305 */ 4306 void 4307 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event) 4308 { 4309 struct mount *mp; 4310 struct mount_upper_node *ump; 4311 4312 mp = atomic_load_ptr(&vp->v_mount); 4313 if (mp == NULL) 4314 return; 4315 if (TAILQ_EMPTY(&mp->mnt_notify)) 4316 return; 4317 4318 MNT_ILOCK(mp); 4319 mp->mnt_upper_pending++; 4320 KASSERT(mp->mnt_upper_pending > 0, 4321 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending)); 4322 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) { 4323 MNT_IUNLOCK(mp); 4324 switch (event) { 4325 case VFS_NOTIFY_UPPER_RECLAIM: 4326 VFS_RECLAIM_LOWERVP(ump->mp, vp); 4327 break; 4328 case VFS_NOTIFY_UPPER_UNLINK: 4329 VFS_UNLINK_LOWERVP(ump->mp, vp); 4330 break; 4331 } 4332 MNT_ILOCK(mp); 4333 } 4334 mp->mnt_upper_pending--; 4335 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 && 4336 mp->mnt_upper_pending == 0) { 4337 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER; 4338 wakeup(&mp->mnt_uppers); 4339 } 4340 MNT_IUNLOCK(mp); 4341 } 4342 4343 /* 4344 * vgone, with the vp interlock held. 4345 */ 4346 static void 4347 vgonel(struct vnode *vp) 4348 { 4349 struct thread *td; 4350 struct mount *mp; 4351 vm_object_t object; 4352 bool active, doinginact, oweinact; 4353 4354 ASSERT_VOP_ELOCKED(vp, "vgonel"); 4355 ASSERT_VI_LOCKED(vp, "vgonel"); 4356 VNASSERT(vp->v_holdcnt, vp, 4357 ("vgonel: vp %p has no reference.", vp)); 4358 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4359 td = curthread; 4360 4361 /* 4362 * Don't vgonel if we're already doomed. 4363 */ 4364 if (VN_IS_DOOMED(vp)) { 4365 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \ 4366 vn_get_state(vp) == VSTATE_DEAD, vp); 4367 return; 4368 } 4369 /* 4370 * Paired with freevnode. 4371 */ 4372 vn_seqc_write_begin_locked(vp); 4373 vunlazy_gone(vp); 4374 vn_irflag_set_locked(vp, VIRF_DOOMED); 4375 vn_set_state(vp, VSTATE_DESTROYING); 4376 4377 /* 4378 * Check to see if the vnode is in use. If so, we have to 4379 * call VOP_CLOSE() and VOP_INACTIVE(). 4380 * 4381 * It could be that VOP_INACTIVE() requested reclamation, in 4382 * which case we should avoid recursion, so check 4383 * VI_DOINGINACT. This is not precise but good enough. 4384 */ 4385 active = vp->v_usecount > 0; 4386 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4387 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0; 4388 4389 /* 4390 * If we need to do inactive VI_OWEINACT will be set. 4391 */ 4392 if (vp->v_iflag & VI_DEFINACT) { 4393 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); 4394 vp->v_iflag &= ~VI_DEFINACT; 4395 vdropl(vp); 4396 } else { 4397 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count")); 4398 VI_UNLOCK(vp); 4399 } 4400 cache_purge_vgone(vp); 4401 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 4402 4403 /* 4404 * If purging an active vnode, it must be closed and 4405 * deactivated before being reclaimed. 4406 */ 4407 if (active) 4408 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 4409 if (!doinginact) { 4410 do { 4411 if (oweinact || active) { 4412 VI_LOCK(vp); 4413 vinactivef(vp); 4414 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4415 VI_UNLOCK(vp); 4416 } 4417 } while (oweinact); 4418 } 4419 if (vp->v_type == VSOCK) 4420 vfs_unp_reclaim(vp); 4421 4422 /* 4423 * Clean out any buffers associated with the vnode. 4424 * If the flush fails, just toss the buffers. 4425 */ 4426 mp = NULL; 4427 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 4428 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 4429 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 4430 while (vinvalbuf(vp, 0, 0, 0) != 0) 4431 ; 4432 } 4433 4434 BO_LOCK(&vp->v_bufobj); 4435 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 4436 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 4437 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 4438 vp->v_bufobj.bo_clean.bv_cnt == 0, 4439 ("vp %p bufobj not invalidated", vp)); 4440 4441 /* 4442 * For VMIO bufobj, BO_DEAD is set later, or in 4443 * vm_object_terminate() after the object's page queue is 4444 * flushed. 4445 */ 4446 object = vp->v_bufobj.bo_object; 4447 if (object == NULL) 4448 vp->v_bufobj.bo_flag |= BO_DEAD; 4449 BO_UNLOCK(&vp->v_bufobj); 4450 4451 /* 4452 * Handle the VM part. Tmpfs handles v_object on its own (the 4453 * OBJT_VNODE check). Nullfs or other bypassing filesystems 4454 * should not touch the object borrowed from the lower vnode 4455 * (the handle check). 4456 */ 4457 if (object != NULL && object->type == OBJT_VNODE && 4458 object->handle == vp) 4459 vnode_destroy_vobject(vp); 4460 4461 /* 4462 * Reclaim the vnode. 4463 */ 4464 if (VOP_RECLAIM(vp)) 4465 panic("vgone: cannot reclaim"); 4466 if (mp != NULL) 4467 vn_finished_secondary_write(mp); 4468 VNASSERT(vp->v_object == NULL, vp, 4469 ("vop_reclaim left v_object vp=%p", vp)); 4470 /* 4471 * Clear the advisory locks and wake up waiting threads. 4472 */ 4473 if (vp->v_lockf != NULL) { 4474 (void)VOP_ADVLOCKPURGE(vp); 4475 vp->v_lockf = NULL; 4476 } 4477 /* 4478 * Delete from old mount point vnode list. 4479 */ 4480 if (vp->v_mount == NULL) { 4481 VI_LOCK(vp); 4482 } else { 4483 delmntque(vp); 4484 ASSERT_VI_LOCKED(vp, "vgonel 2"); 4485 } 4486 /* 4487 * Done with purge, reset to the standard lock and invalidate 4488 * the vnode. 4489 */ 4490 vp->v_vnlock = &vp->v_lock; 4491 vp->v_op = &dead_vnodeops; 4492 vp->v_type = VBAD; 4493 vn_set_state(vp, VSTATE_DEAD); 4494 } 4495 4496 /* 4497 * Print out a description of a vnode. 4498 */ 4499 static const char *const vtypename[] = { 4500 [VNON] = "VNON", 4501 [VREG] = "VREG", 4502 [VDIR] = "VDIR", 4503 [VBLK] = "VBLK", 4504 [VCHR] = "VCHR", 4505 [VLNK] = "VLNK", 4506 [VSOCK] = "VSOCK", 4507 [VFIFO] = "VFIFO", 4508 [VBAD] = "VBAD", 4509 [VMARKER] = "VMARKER", 4510 }; 4511 _Static_assert(nitems(vtypename) == VLASTTYPE + 1, 4512 "vnode type name not added to vtypename"); 4513 4514 static const char *const vstatename[] = { 4515 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED", 4516 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED", 4517 [VSTATE_DESTROYING] = "VSTATE_DESTROYING", 4518 [VSTATE_DEAD] = "VSTATE_DEAD", 4519 }; 4520 _Static_assert(nitems(vstatename) == VLASTSTATE + 1, 4521 "vnode state name not added to vstatename"); 4522 4523 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0, 4524 "new hold count flag not added to vn_printf"); 4525 4526 void 4527 vn_printf(struct vnode *vp, const char *fmt, ...) 4528 { 4529 va_list ap; 4530 char buf[256], buf2[16]; 4531 u_long flags; 4532 u_int holdcnt; 4533 short irflag; 4534 4535 va_start(ap, fmt); 4536 vprintf(fmt, ap); 4537 va_end(ap); 4538 printf("%p: ", (void *)vp); 4539 printf("type %s state %s op %p\n", vtypename[vp->v_type], 4540 vstatename[vp->v_state], vp->v_op); 4541 holdcnt = atomic_load_int(&vp->v_holdcnt); 4542 printf(" usecount %d, writecount %d, refcount %d seqc users %d", 4543 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS, 4544 vp->v_seqc_users); 4545 switch (vp->v_type) { 4546 case VDIR: 4547 printf(" mountedhere %p\n", vp->v_mountedhere); 4548 break; 4549 case VCHR: 4550 printf(" rdev %p\n", vp->v_rdev); 4551 break; 4552 case VSOCK: 4553 printf(" socket %p\n", vp->v_unpcb); 4554 break; 4555 case VFIFO: 4556 printf(" fifoinfo %p\n", vp->v_fifoinfo); 4557 break; 4558 default: 4559 printf("\n"); 4560 break; 4561 } 4562 buf[0] = '\0'; 4563 buf[1] = '\0'; 4564 if (holdcnt & VHOLD_NO_SMR) 4565 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf)); 4566 printf(" hold count flags (%s)\n", buf + 1); 4567 4568 buf[0] = '\0'; 4569 buf[1] = '\0'; 4570 irflag = vn_irflag_read(vp); 4571 if (irflag & VIRF_DOOMED) 4572 strlcat(buf, "|VIRF_DOOMED", sizeof(buf)); 4573 if (irflag & VIRF_PGREAD) 4574 strlcat(buf, "|VIRF_PGREAD", sizeof(buf)); 4575 if (irflag & VIRF_MOUNTPOINT) 4576 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf)); 4577 if (irflag & VIRF_TEXT_REF) 4578 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf)); 4579 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF); 4580 if (flags != 0) { 4581 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags); 4582 strlcat(buf, buf2, sizeof(buf)); 4583 } 4584 if (vp->v_vflag & VV_ROOT) 4585 strlcat(buf, "|VV_ROOT", sizeof(buf)); 4586 if (vp->v_vflag & VV_ISTTY) 4587 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 4588 if (vp->v_vflag & VV_NOSYNC) 4589 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 4590 if (vp->v_vflag & VV_ETERNALDEV) 4591 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 4592 if (vp->v_vflag & VV_CACHEDLABEL) 4593 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 4594 if (vp->v_vflag & VV_VMSIZEVNLOCK) 4595 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf)); 4596 if (vp->v_vflag & VV_COPYONWRITE) 4597 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 4598 if (vp->v_vflag & VV_SYSTEM) 4599 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 4600 if (vp->v_vflag & VV_PROCDEP) 4601 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 4602 if (vp->v_vflag & VV_DELETED) 4603 strlcat(buf, "|VV_DELETED", sizeof(buf)); 4604 if (vp->v_vflag & VV_MD) 4605 strlcat(buf, "|VV_MD", sizeof(buf)); 4606 if (vp->v_vflag & VV_FORCEINSMQ) 4607 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 4608 if (vp->v_vflag & VV_READLINK) 4609 strlcat(buf, "|VV_READLINK", sizeof(buf)); 4610 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 4611 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM | 4612 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK); 4613 if (flags != 0) { 4614 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 4615 strlcat(buf, buf2, sizeof(buf)); 4616 } 4617 if (vp->v_iflag & VI_MOUNT) 4618 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 4619 if (vp->v_iflag & VI_DOINGINACT) 4620 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 4621 if (vp->v_iflag & VI_OWEINACT) 4622 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 4623 if (vp->v_iflag & VI_DEFINACT) 4624 strlcat(buf, "|VI_DEFINACT", sizeof(buf)); 4625 if (vp->v_iflag & VI_FOPENING) 4626 strlcat(buf, "|VI_FOPENING", sizeof(buf)); 4627 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT | 4628 VI_OWEINACT | VI_DEFINACT | VI_FOPENING); 4629 if (flags != 0) { 4630 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 4631 strlcat(buf, buf2, sizeof(buf)); 4632 } 4633 if (vp->v_mflag & VMP_LAZYLIST) 4634 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf)); 4635 flags = vp->v_mflag & ~(VMP_LAZYLIST); 4636 if (flags != 0) { 4637 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags); 4638 strlcat(buf, buf2, sizeof(buf)); 4639 } 4640 printf(" flags (%s)", buf + 1); 4641 if (mtx_owned(VI_MTX(vp))) 4642 printf(" VI_LOCKed"); 4643 printf("\n"); 4644 if (vp->v_object != NULL) 4645 printf(" v_object %p ref %d pages %d " 4646 "cleanbuf %d dirtybuf %d\n", 4647 vp->v_object, vp->v_object->ref_count, 4648 vp->v_object->resident_page_count, 4649 vp->v_bufobj.bo_clean.bv_cnt, 4650 vp->v_bufobj.bo_dirty.bv_cnt); 4651 printf(" "); 4652 lockmgr_printinfo(vp->v_vnlock); 4653 if (vp->v_data != NULL) 4654 VOP_PRINT(vp); 4655 } 4656 4657 #ifdef DDB 4658 /* 4659 * List all of the locked vnodes in the system. 4660 * Called when debugging the kernel. 4661 */ 4662 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE) 4663 { 4664 struct mount *mp; 4665 struct vnode *vp; 4666 4667 /* 4668 * Note: because this is DDB, we can't obey the locking semantics 4669 * for these structures, which means we could catch an inconsistent 4670 * state and dereference a nasty pointer. Not much to be done 4671 * about that. 4672 */ 4673 db_printf("Locked vnodes\n"); 4674 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4675 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4676 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 4677 vn_printf(vp, "vnode "); 4678 } 4679 } 4680 } 4681 4682 /* 4683 * Show details about the given vnode. 4684 */ 4685 DB_SHOW_COMMAND(vnode, db_show_vnode) 4686 { 4687 struct vnode *vp; 4688 4689 if (!have_addr) 4690 return; 4691 vp = (struct vnode *)addr; 4692 vn_printf(vp, "vnode "); 4693 } 4694 4695 /* 4696 * Show details about the given mount point. 4697 */ 4698 DB_SHOW_COMMAND(mount, db_show_mount) 4699 { 4700 struct mount *mp; 4701 struct vfsopt *opt; 4702 struct statfs *sp; 4703 struct vnode *vp; 4704 char buf[512]; 4705 uint64_t mflags; 4706 u_int flags; 4707 4708 if (!have_addr) { 4709 /* No address given, print short info about all mount points. */ 4710 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4711 db_printf("%p %s on %s (%s)\n", mp, 4712 mp->mnt_stat.f_mntfromname, 4713 mp->mnt_stat.f_mntonname, 4714 mp->mnt_stat.f_fstypename); 4715 if (db_pager_quit) 4716 break; 4717 } 4718 db_printf("\nMore info: show mount <addr>\n"); 4719 return; 4720 } 4721 4722 mp = (struct mount *)addr; 4723 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 4724 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 4725 4726 buf[0] = '\0'; 4727 mflags = mp->mnt_flag; 4728 #define MNT_FLAG(flag) do { \ 4729 if (mflags & (flag)) { \ 4730 if (buf[0] != '\0') \ 4731 strlcat(buf, ", ", sizeof(buf)); \ 4732 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 4733 mflags &= ~(flag); \ 4734 } \ 4735 } while (0) 4736 MNT_FLAG(MNT_RDONLY); 4737 MNT_FLAG(MNT_SYNCHRONOUS); 4738 MNT_FLAG(MNT_NOEXEC); 4739 MNT_FLAG(MNT_NOSUID); 4740 MNT_FLAG(MNT_NFS4ACLS); 4741 MNT_FLAG(MNT_UNION); 4742 MNT_FLAG(MNT_ASYNC); 4743 MNT_FLAG(MNT_SUIDDIR); 4744 MNT_FLAG(MNT_SOFTDEP); 4745 MNT_FLAG(MNT_NOSYMFOLLOW); 4746 MNT_FLAG(MNT_GJOURNAL); 4747 MNT_FLAG(MNT_MULTILABEL); 4748 MNT_FLAG(MNT_ACLS); 4749 MNT_FLAG(MNT_NOATIME); 4750 MNT_FLAG(MNT_NOCLUSTERR); 4751 MNT_FLAG(MNT_NOCLUSTERW); 4752 MNT_FLAG(MNT_SUJ); 4753 MNT_FLAG(MNT_EXRDONLY); 4754 MNT_FLAG(MNT_EXPORTED); 4755 MNT_FLAG(MNT_DEFEXPORTED); 4756 MNT_FLAG(MNT_EXPORTANON); 4757 MNT_FLAG(MNT_EXKERB); 4758 MNT_FLAG(MNT_EXPUBLIC); 4759 MNT_FLAG(MNT_LOCAL); 4760 MNT_FLAG(MNT_QUOTA); 4761 MNT_FLAG(MNT_ROOTFS); 4762 MNT_FLAG(MNT_USER); 4763 MNT_FLAG(MNT_IGNORE); 4764 MNT_FLAG(MNT_UPDATE); 4765 MNT_FLAG(MNT_DELEXPORT); 4766 MNT_FLAG(MNT_RELOAD); 4767 MNT_FLAG(MNT_FORCE); 4768 MNT_FLAG(MNT_SNAPSHOT); 4769 MNT_FLAG(MNT_BYFSID); 4770 #undef MNT_FLAG 4771 if (mflags != 0) { 4772 if (buf[0] != '\0') 4773 strlcat(buf, ", ", sizeof(buf)); 4774 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4775 "0x%016jx", mflags); 4776 } 4777 db_printf(" mnt_flag = %s\n", buf); 4778 4779 buf[0] = '\0'; 4780 flags = mp->mnt_kern_flag; 4781 #define MNT_KERN_FLAG(flag) do { \ 4782 if (flags & (flag)) { \ 4783 if (buf[0] != '\0') \ 4784 strlcat(buf, ", ", sizeof(buf)); \ 4785 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 4786 flags &= ~(flag); \ 4787 } \ 4788 } while (0) 4789 MNT_KERN_FLAG(MNTK_UNMOUNTF); 4790 MNT_KERN_FLAG(MNTK_ASYNC); 4791 MNT_KERN_FLAG(MNTK_SOFTDEP); 4792 MNT_KERN_FLAG(MNTK_NOMSYNC); 4793 MNT_KERN_FLAG(MNTK_DRAINING); 4794 MNT_KERN_FLAG(MNTK_REFEXPIRE); 4795 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 4796 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 4797 MNT_KERN_FLAG(MNTK_NO_IOPF); 4798 MNT_KERN_FLAG(MNTK_RECURSE); 4799 MNT_KERN_FLAG(MNTK_UPPER_WAITER); 4800 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE); 4801 MNT_KERN_FLAG(MNTK_USES_BCACHE); 4802 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG); 4803 MNT_KERN_FLAG(MNTK_FPLOOKUP); 4804 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER); 4805 MNT_KERN_FLAG(MNTK_NOASYNC); 4806 MNT_KERN_FLAG(MNTK_UNMOUNT); 4807 MNT_KERN_FLAG(MNTK_MWAIT); 4808 MNT_KERN_FLAG(MNTK_SUSPEND); 4809 MNT_KERN_FLAG(MNTK_SUSPEND2); 4810 MNT_KERN_FLAG(MNTK_SUSPENDED); 4811 MNT_KERN_FLAG(MNTK_NULL_NOCACHE); 4812 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 4813 #undef MNT_KERN_FLAG 4814 if (flags != 0) { 4815 if (buf[0] != '\0') 4816 strlcat(buf, ", ", sizeof(buf)); 4817 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4818 "0x%08x", flags); 4819 } 4820 db_printf(" mnt_kern_flag = %s\n", buf); 4821 4822 db_printf(" mnt_opt = "); 4823 opt = TAILQ_FIRST(mp->mnt_opt); 4824 if (opt != NULL) { 4825 db_printf("%s", opt->name); 4826 opt = TAILQ_NEXT(opt, link); 4827 while (opt != NULL) { 4828 db_printf(", %s", opt->name); 4829 opt = TAILQ_NEXT(opt, link); 4830 } 4831 } 4832 db_printf("\n"); 4833 4834 sp = &mp->mnt_stat; 4835 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 4836 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 4837 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 4838 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 4839 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 4840 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 4841 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 4842 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 4843 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 4844 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 4845 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 4846 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 4847 4848 db_printf(" mnt_cred = { uid=%u ruid=%u", 4849 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 4850 if (jailed(mp->mnt_cred)) 4851 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 4852 db_printf(" }\n"); 4853 db_printf(" mnt_ref = %d (with %d in the struct)\n", 4854 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref); 4855 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 4856 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 4857 db_printf(" mnt_lazyvnodelistsize = %d\n", 4858 mp->mnt_lazyvnodelistsize); 4859 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n", 4860 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount); 4861 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 4862 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 4863 db_printf(" mnt_lockref = %d (with %d in the struct)\n", 4864 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref); 4865 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 4866 db_printf(" mnt_secondary_accwrites = %d\n", 4867 mp->mnt_secondary_accwrites); 4868 db_printf(" mnt_gjprovider = %s\n", 4869 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 4870 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops); 4871 4872 db_printf("\n\nList of active vnodes\n"); 4873 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4874 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) { 4875 vn_printf(vp, "vnode "); 4876 if (db_pager_quit) 4877 break; 4878 } 4879 } 4880 db_printf("\n\nList of inactive vnodes\n"); 4881 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4882 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) { 4883 vn_printf(vp, "vnode "); 4884 if (db_pager_quit) 4885 break; 4886 } 4887 } 4888 } 4889 #endif /* DDB */ 4890 4891 /* 4892 * Fill in a struct xvfsconf based on a struct vfsconf. 4893 */ 4894 static int 4895 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 4896 { 4897 struct xvfsconf xvfsp; 4898 4899 bzero(&xvfsp, sizeof(xvfsp)); 4900 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4901 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4902 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4903 xvfsp.vfc_flags = vfsp->vfc_flags; 4904 /* 4905 * These are unused in userland, we keep them 4906 * to not break binary compatibility. 4907 */ 4908 xvfsp.vfc_vfsops = NULL; 4909 xvfsp.vfc_next = NULL; 4910 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4911 } 4912 4913 #ifdef COMPAT_FREEBSD32 4914 struct xvfsconf32 { 4915 uint32_t vfc_vfsops; 4916 char vfc_name[MFSNAMELEN]; 4917 int32_t vfc_typenum; 4918 int32_t vfc_refcount; 4919 int32_t vfc_flags; 4920 uint32_t vfc_next; 4921 }; 4922 4923 static int 4924 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 4925 { 4926 struct xvfsconf32 xvfsp; 4927 4928 bzero(&xvfsp, sizeof(xvfsp)); 4929 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4930 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4931 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4932 xvfsp.vfc_flags = vfsp->vfc_flags; 4933 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4934 } 4935 #endif 4936 4937 /* 4938 * Top level filesystem related information gathering. 4939 */ 4940 static int 4941 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 4942 { 4943 struct vfsconf *vfsp; 4944 int error; 4945 4946 error = 0; 4947 vfsconf_slock(); 4948 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4949 #ifdef COMPAT_FREEBSD32 4950 if (req->flags & SCTL_MASK32) 4951 error = vfsconf2x32(req, vfsp); 4952 else 4953 #endif 4954 error = vfsconf2x(req, vfsp); 4955 if (error) 4956 break; 4957 } 4958 vfsconf_sunlock(); 4959 return (error); 4960 } 4961 4962 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 4963 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 4964 "S,xvfsconf", "List of all configured filesystems"); 4965 4966 #ifndef BURN_BRIDGES 4967 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 4968 4969 static int 4970 vfs_sysctl(SYSCTL_HANDLER_ARGS) 4971 { 4972 int *name = (int *)arg1 - 1; /* XXX */ 4973 u_int namelen = arg2 + 1; /* XXX */ 4974 struct vfsconf *vfsp; 4975 4976 log(LOG_WARNING, "userland calling deprecated sysctl, " 4977 "please rebuild world\n"); 4978 4979 #if 1 || defined(COMPAT_PRELITE2) 4980 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 4981 if (namelen == 1) 4982 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 4983 #endif 4984 4985 switch (name[1]) { 4986 case VFS_MAXTYPENUM: 4987 if (namelen != 2) 4988 return (ENOTDIR); 4989 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 4990 case VFS_CONF: 4991 if (namelen != 3) 4992 return (ENOTDIR); /* overloaded */ 4993 vfsconf_slock(); 4994 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4995 if (vfsp->vfc_typenum == name[2]) 4996 break; 4997 } 4998 vfsconf_sunlock(); 4999 if (vfsp == NULL) 5000 return (EOPNOTSUPP); 5001 #ifdef COMPAT_FREEBSD32 5002 if (req->flags & SCTL_MASK32) 5003 return (vfsconf2x32(req, vfsp)); 5004 else 5005 #endif 5006 return (vfsconf2x(req, vfsp)); 5007 } 5008 return (EOPNOTSUPP); 5009 } 5010 5011 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 5012 CTLFLAG_MPSAFE, vfs_sysctl, 5013 "Generic filesystem"); 5014 5015 #if 1 || defined(COMPAT_PRELITE2) 5016 5017 static int 5018 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 5019 { 5020 int error; 5021 struct vfsconf *vfsp; 5022 struct ovfsconf ovfs; 5023 5024 vfsconf_slock(); 5025 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 5026 bzero(&ovfs, sizeof(ovfs)); 5027 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 5028 strcpy(ovfs.vfc_name, vfsp->vfc_name); 5029 ovfs.vfc_index = vfsp->vfc_typenum; 5030 ovfs.vfc_refcount = vfsp->vfc_refcount; 5031 ovfs.vfc_flags = vfsp->vfc_flags; 5032 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 5033 if (error != 0) { 5034 vfsconf_sunlock(); 5035 return (error); 5036 } 5037 } 5038 vfsconf_sunlock(); 5039 return (0); 5040 } 5041 5042 #endif /* 1 || COMPAT_PRELITE2 */ 5043 #endif /* !BURN_BRIDGES */ 5044 5045 static void 5046 unmount_or_warn(struct mount *mp) 5047 { 5048 int error; 5049 5050 error = dounmount(mp, MNT_FORCE, curthread); 5051 if (error != 0) { 5052 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); 5053 if (error == EBUSY) 5054 printf("BUSY)\n"); 5055 else 5056 printf("%d)\n", error); 5057 } 5058 } 5059 5060 /* 5061 * Unmount all filesystems. The list is traversed in reverse order 5062 * of mounting to avoid dependencies. 5063 */ 5064 void 5065 vfs_unmountall(void) 5066 { 5067 struct mount *mp, *tmp; 5068 5069 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 5070 5071 /* 5072 * Since this only runs when rebooting, it is not interlocked. 5073 */ 5074 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { 5075 vfs_ref(mp); 5076 5077 /* 5078 * Forcibly unmounting "/dev" before "/" would prevent clean 5079 * unmount of the latter. 5080 */ 5081 if (mp == rootdevmp) 5082 continue; 5083 5084 unmount_or_warn(mp); 5085 } 5086 5087 if (rootdevmp != NULL) 5088 unmount_or_warn(rootdevmp); 5089 } 5090 5091 static void 5092 vfs_deferred_inactive(struct vnode *vp, int lkflags) 5093 { 5094 5095 ASSERT_VI_LOCKED(vp, __func__); 5096 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 5097 if ((vp->v_iflag & VI_OWEINACT) == 0) { 5098 vdropl(vp); 5099 return; 5100 } 5101 if (vn_lock(vp, lkflags) == 0) { 5102 VI_LOCK(vp); 5103 vinactive(vp); 5104 VOP_UNLOCK(vp); 5105 vdropl(vp); 5106 return; 5107 } 5108 vdefer_inactive_unlocked(vp); 5109 } 5110 5111 static int 5112 vfs_periodic_inactive_filter(struct vnode *vp, void *arg) 5113 { 5114 5115 return (vp->v_iflag & VI_DEFINACT); 5116 } 5117 5118 static void __noinline 5119 vfs_periodic_inactive(struct mount *mp, int flags) 5120 { 5121 struct vnode *vp, *mvp; 5122 int lkflags; 5123 5124 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 5125 if (flags != MNT_WAIT) 5126 lkflags |= LK_NOWAIT; 5127 5128 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) { 5129 if ((vp->v_iflag & VI_DEFINACT) == 0) { 5130 VI_UNLOCK(vp); 5131 continue; 5132 } 5133 vp->v_iflag &= ~VI_DEFINACT; 5134 vfs_deferred_inactive(vp, lkflags); 5135 } 5136 } 5137 5138 static inline bool 5139 vfs_want_msync(struct vnode *vp) 5140 { 5141 struct vm_object *obj; 5142 5143 /* 5144 * This test may be performed without any locks held. 5145 * We rely on vm_object's type stability. 5146 */ 5147 if (vp->v_vflag & VV_NOSYNC) 5148 return (false); 5149 obj = vp->v_object; 5150 return (obj != NULL && vm_object_mightbedirty(obj)); 5151 } 5152 5153 static int 5154 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused) 5155 { 5156 5157 if (vp->v_vflag & VV_NOSYNC) 5158 return (false); 5159 if (vp->v_iflag & VI_DEFINACT) 5160 return (true); 5161 return (vfs_want_msync(vp)); 5162 } 5163 5164 static void __noinline 5165 vfs_periodic_msync_inactive(struct mount *mp, int flags) 5166 { 5167 struct vnode *vp, *mvp; 5168 int lkflags; 5169 bool seen_defer; 5170 5171 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 5172 if (flags != MNT_WAIT) 5173 lkflags |= LK_NOWAIT; 5174 5175 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) { 5176 seen_defer = false; 5177 if (vp->v_iflag & VI_DEFINACT) { 5178 vp->v_iflag &= ~VI_DEFINACT; 5179 seen_defer = true; 5180 } 5181 if (!vfs_want_msync(vp)) { 5182 if (seen_defer) 5183 vfs_deferred_inactive(vp, lkflags); 5184 else 5185 VI_UNLOCK(vp); 5186 continue; 5187 } 5188 if (vget(vp, lkflags) == 0) { 5189 if ((vp->v_vflag & VV_NOSYNC) == 0) { 5190 if (flags == MNT_WAIT) 5191 vnode_pager_clean_sync(vp); 5192 else 5193 vnode_pager_clean_async(vp); 5194 } 5195 vput(vp); 5196 if (seen_defer) 5197 vdrop(vp); 5198 } else { 5199 if (seen_defer) 5200 vdefer_inactive_unlocked(vp); 5201 } 5202 } 5203 } 5204 5205 void 5206 vfs_periodic(struct mount *mp, int flags) 5207 { 5208 5209 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 5210 5211 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0) 5212 vfs_periodic_inactive(mp, flags); 5213 else 5214 vfs_periodic_msync_inactive(mp, flags); 5215 } 5216 5217 static void 5218 destroy_vpollinfo_free(struct vpollinfo *vi) 5219 { 5220 5221 knlist_destroy(&vi->vpi_selinfo.si_note); 5222 mtx_destroy(&vi->vpi_lock); 5223 free(vi, M_VNODEPOLL); 5224 } 5225 5226 static void 5227 destroy_vpollinfo(struct vpollinfo *vi) 5228 { 5229 5230 knlist_clear(&vi->vpi_selinfo.si_note, 1); 5231 seldrain(&vi->vpi_selinfo); 5232 destroy_vpollinfo_free(vi); 5233 } 5234 5235 /* 5236 * Initialize per-vnode helper structure to hold poll-related state. 5237 */ 5238 void 5239 v_addpollinfo(struct vnode *vp) 5240 { 5241 struct vpollinfo *vi; 5242 5243 if (vp->v_pollinfo != NULL) 5244 return; 5245 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO); 5246 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 5247 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 5248 vfs_knlunlock, vfs_knl_assert_lock); 5249 VI_LOCK(vp); 5250 if (vp->v_pollinfo != NULL) { 5251 VI_UNLOCK(vp); 5252 destroy_vpollinfo_free(vi); 5253 return; 5254 } 5255 vp->v_pollinfo = vi; 5256 VI_UNLOCK(vp); 5257 } 5258 5259 /* 5260 * Record a process's interest in events which might happen to 5261 * a vnode. Because poll uses the historic select-style interface 5262 * internally, this routine serves as both the ``check for any 5263 * pending events'' and the ``record my interest in future events'' 5264 * functions. (These are done together, while the lock is held, 5265 * to avoid race conditions.) 5266 */ 5267 int 5268 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 5269 { 5270 5271 v_addpollinfo(vp); 5272 mtx_lock(&vp->v_pollinfo->vpi_lock); 5273 if (vp->v_pollinfo->vpi_revents & events) { 5274 /* 5275 * This leaves events we are not interested 5276 * in available for the other process which 5277 * which presumably had requested them 5278 * (otherwise they would never have been 5279 * recorded). 5280 */ 5281 events &= vp->v_pollinfo->vpi_revents; 5282 vp->v_pollinfo->vpi_revents &= ~events; 5283 5284 mtx_unlock(&vp->v_pollinfo->vpi_lock); 5285 return (events); 5286 } 5287 vp->v_pollinfo->vpi_events |= events; 5288 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 5289 mtx_unlock(&vp->v_pollinfo->vpi_lock); 5290 return (0); 5291 } 5292 5293 /* 5294 * Routine to create and manage a filesystem syncer vnode. 5295 */ 5296 #define sync_close ((int (*)(struct vop_close_args *))nullop) 5297 static int sync_fsync(struct vop_fsync_args *); 5298 static int sync_inactive(struct vop_inactive_args *); 5299 static int sync_reclaim(struct vop_reclaim_args *); 5300 5301 static struct vop_vector sync_vnodeops = { 5302 .vop_bypass = VOP_EOPNOTSUPP, 5303 .vop_close = sync_close, 5304 .vop_fsync = sync_fsync, 5305 .vop_getwritemount = vop_stdgetwritemount, 5306 .vop_inactive = sync_inactive, 5307 .vop_need_inactive = vop_stdneed_inactive, 5308 .vop_reclaim = sync_reclaim, 5309 .vop_lock1 = vop_stdlock, 5310 .vop_unlock = vop_stdunlock, 5311 .vop_islocked = vop_stdislocked, 5312 .vop_fplookup_vexec = VOP_EAGAIN, 5313 .vop_fplookup_symlink = VOP_EAGAIN, 5314 }; 5315 VFS_VOP_VECTOR_REGISTER(sync_vnodeops); 5316 5317 /* 5318 * Create a new filesystem syncer vnode for the specified mount point. 5319 */ 5320 void 5321 vfs_allocate_syncvnode(struct mount *mp) 5322 { 5323 struct vnode *vp; 5324 struct bufobj *bo; 5325 static long start, incr, next; 5326 int error; 5327 5328 /* Allocate a new vnode */ 5329 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 5330 if (error != 0) 5331 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 5332 vp->v_type = VNON; 5333 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5334 vp->v_vflag |= VV_FORCEINSMQ; 5335 error = insmntque1(vp, mp); 5336 if (error != 0) 5337 panic("vfs_allocate_syncvnode: insmntque() failed"); 5338 vp->v_vflag &= ~VV_FORCEINSMQ; 5339 vn_set_state(vp, VSTATE_CONSTRUCTED); 5340 VOP_UNLOCK(vp); 5341 /* 5342 * Place the vnode onto the syncer worklist. We attempt to 5343 * scatter them about on the list so that they will go off 5344 * at evenly distributed times even if all the filesystems 5345 * are mounted at once. 5346 */ 5347 next += incr; 5348 if (next == 0 || next > syncer_maxdelay) { 5349 start /= 2; 5350 incr /= 2; 5351 if (start == 0) { 5352 start = syncer_maxdelay / 2; 5353 incr = syncer_maxdelay; 5354 } 5355 next = start; 5356 } 5357 bo = &vp->v_bufobj; 5358 BO_LOCK(bo); 5359 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 5360 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 5361 mtx_lock(&sync_mtx); 5362 sync_vnode_count++; 5363 if (mp->mnt_syncer == NULL) { 5364 mp->mnt_syncer = vp; 5365 vp = NULL; 5366 } 5367 mtx_unlock(&sync_mtx); 5368 BO_UNLOCK(bo); 5369 if (vp != NULL) { 5370 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5371 vgone(vp); 5372 vput(vp); 5373 } 5374 } 5375 5376 void 5377 vfs_deallocate_syncvnode(struct mount *mp) 5378 { 5379 struct vnode *vp; 5380 5381 mtx_lock(&sync_mtx); 5382 vp = mp->mnt_syncer; 5383 if (vp != NULL) 5384 mp->mnt_syncer = NULL; 5385 mtx_unlock(&sync_mtx); 5386 if (vp != NULL) 5387 vrele(vp); 5388 } 5389 5390 /* 5391 * Do a lazy sync of the filesystem. 5392 */ 5393 static int 5394 sync_fsync(struct vop_fsync_args *ap) 5395 { 5396 struct vnode *syncvp = ap->a_vp; 5397 struct mount *mp = syncvp->v_mount; 5398 int error, save; 5399 struct bufobj *bo; 5400 5401 /* 5402 * We only need to do something if this is a lazy evaluation. 5403 */ 5404 if (ap->a_waitfor != MNT_LAZY) 5405 return (0); 5406 5407 /* 5408 * Move ourselves to the back of the sync list. 5409 */ 5410 bo = &syncvp->v_bufobj; 5411 BO_LOCK(bo); 5412 vn_syncer_add_to_worklist(bo, syncdelay); 5413 BO_UNLOCK(bo); 5414 5415 /* 5416 * Walk the list of vnodes pushing all that are dirty and 5417 * not already on the sync list. 5418 */ 5419 if (vfs_busy(mp, MBF_NOWAIT) != 0) 5420 return (0); 5421 VOP_UNLOCK(syncvp); 5422 save = curthread_pflags_set(TDP_SYNCIO); 5423 /* 5424 * The filesystem at hand may be idle with free vnodes stored in the 5425 * batch. Return them instead of letting them stay there indefinitely. 5426 */ 5427 vfs_periodic(mp, MNT_NOWAIT); 5428 error = VFS_SYNC(mp, MNT_LAZY); 5429 curthread_pflags_restore(save); 5430 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY); 5431 vfs_unbusy(mp); 5432 return (error); 5433 } 5434 5435 /* 5436 * The syncer vnode is no referenced. 5437 */ 5438 static int 5439 sync_inactive(struct vop_inactive_args *ap) 5440 { 5441 5442 vgone(ap->a_vp); 5443 return (0); 5444 } 5445 5446 /* 5447 * The syncer vnode is no longer needed and is being decommissioned. 5448 * 5449 * Modifications to the worklist must be protected by sync_mtx. 5450 */ 5451 static int 5452 sync_reclaim(struct vop_reclaim_args *ap) 5453 { 5454 struct vnode *vp = ap->a_vp; 5455 struct bufobj *bo; 5456 5457 bo = &vp->v_bufobj; 5458 BO_LOCK(bo); 5459 mtx_lock(&sync_mtx); 5460 if (vp->v_mount->mnt_syncer == vp) 5461 vp->v_mount->mnt_syncer = NULL; 5462 if (bo->bo_flag & BO_ONWORKLST) { 5463 LIST_REMOVE(bo, bo_synclist); 5464 syncer_worklist_len--; 5465 sync_vnode_count--; 5466 bo->bo_flag &= ~BO_ONWORKLST; 5467 } 5468 mtx_unlock(&sync_mtx); 5469 BO_UNLOCK(bo); 5470 5471 return (0); 5472 } 5473 5474 int 5475 vn_need_pageq_flush(struct vnode *vp) 5476 { 5477 struct vm_object *obj; 5478 5479 obj = vp->v_object; 5480 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 5481 vm_object_mightbedirty(obj)); 5482 } 5483 5484 /* 5485 * Check if vnode represents a disk device 5486 */ 5487 bool 5488 vn_isdisk_error(struct vnode *vp, int *errp) 5489 { 5490 int error; 5491 5492 if (vp->v_type != VCHR) { 5493 error = ENOTBLK; 5494 goto out; 5495 } 5496 error = 0; 5497 dev_lock(); 5498 if (vp->v_rdev == NULL) 5499 error = ENXIO; 5500 else if (vp->v_rdev->si_devsw == NULL) 5501 error = ENXIO; 5502 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 5503 error = ENOTBLK; 5504 dev_unlock(); 5505 out: 5506 *errp = error; 5507 return (error == 0); 5508 } 5509 5510 bool 5511 vn_isdisk(struct vnode *vp) 5512 { 5513 int error; 5514 5515 return (vn_isdisk_error(vp, &error)); 5516 } 5517 5518 /* 5519 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see 5520 * the comment above cache_fplookup for details. 5521 */ 5522 int 5523 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred) 5524 { 5525 int error; 5526 5527 VFS_SMR_ASSERT_ENTERED(); 5528 5529 /* Check the owner. */ 5530 if (cred->cr_uid == file_uid) { 5531 if (file_mode & S_IXUSR) 5532 return (0); 5533 goto out_error; 5534 } 5535 5536 /* Otherwise, check the groups (first match) */ 5537 if (groupmember(file_gid, cred)) { 5538 if (file_mode & S_IXGRP) 5539 return (0); 5540 goto out_error; 5541 } 5542 5543 /* Otherwise, check everyone else. */ 5544 if (file_mode & S_IXOTH) 5545 return (0); 5546 out_error: 5547 /* 5548 * Permission check failed, but it is possible denial will get overwritten 5549 * (e.g., when root is traversing through a 700 directory owned by someone 5550 * else). 5551 * 5552 * vaccess() calls priv_check_cred which in turn can descent into MAC 5553 * modules overriding this result. It's quite unclear what semantics 5554 * are allowed for them to operate, thus for safety we don't call them 5555 * from within the SMR section. This also means if any such modules 5556 * are present, we have to let the regular lookup decide. 5557 */ 5558 error = priv_check_cred_vfs_lookup_nomac(cred); 5559 switch (error) { 5560 case 0: 5561 return (0); 5562 case EAGAIN: 5563 /* 5564 * MAC modules present. 5565 */ 5566 return (EAGAIN); 5567 case EPERM: 5568 return (EACCES); 5569 default: 5570 return (error); 5571 } 5572 } 5573 5574 /* 5575 * Common filesystem object access control check routine. Accepts a 5576 * vnode's type, "mode", uid and gid, requested access mode, and credentials. 5577 * Returns 0 on success, or an errno on failure. 5578 */ 5579 int 5580 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 5581 accmode_t accmode, struct ucred *cred) 5582 { 5583 accmode_t dac_granted; 5584 accmode_t priv_granted; 5585 5586 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 5587 ("invalid bit in accmode")); 5588 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 5589 ("VAPPEND without VWRITE")); 5590 5591 /* 5592 * Look for a normal, non-privileged way to access the file/directory 5593 * as requested. If it exists, go with that. 5594 */ 5595 5596 dac_granted = 0; 5597 5598 /* Check the owner. */ 5599 if (cred->cr_uid == file_uid) { 5600 dac_granted |= VADMIN; 5601 if (file_mode & S_IXUSR) 5602 dac_granted |= VEXEC; 5603 if (file_mode & S_IRUSR) 5604 dac_granted |= VREAD; 5605 if (file_mode & S_IWUSR) 5606 dac_granted |= (VWRITE | VAPPEND); 5607 5608 if ((accmode & dac_granted) == accmode) 5609 return (0); 5610 5611 goto privcheck; 5612 } 5613 5614 /* Otherwise, check the groups (first match) */ 5615 if (groupmember(file_gid, cred)) { 5616 if (file_mode & S_IXGRP) 5617 dac_granted |= VEXEC; 5618 if (file_mode & S_IRGRP) 5619 dac_granted |= VREAD; 5620 if (file_mode & S_IWGRP) 5621 dac_granted |= (VWRITE | VAPPEND); 5622 5623 if ((accmode & dac_granted) == accmode) 5624 return (0); 5625 5626 goto privcheck; 5627 } 5628 5629 /* Otherwise, check everyone else. */ 5630 if (file_mode & S_IXOTH) 5631 dac_granted |= VEXEC; 5632 if (file_mode & S_IROTH) 5633 dac_granted |= VREAD; 5634 if (file_mode & S_IWOTH) 5635 dac_granted |= (VWRITE | VAPPEND); 5636 if ((accmode & dac_granted) == accmode) 5637 return (0); 5638 5639 privcheck: 5640 /* 5641 * Build a privilege mask to determine if the set of privileges 5642 * satisfies the requirements when combined with the granted mask 5643 * from above. For each privilege, if the privilege is required, 5644 * bitwise or the request type onto the priv_granted mask. 5645 */ 5646 priv_granted = 0; 5647 5648 if (type == VDIR) { 5649 /* 5650 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 5651 * requests, instead of PRIV_VFS_EXEC. 5652 */ 5653 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5654 !priv_check_cred(cred, PRIV_VFS_LOOKUP)) 5655 priv_granted |= VEXEC; 5656 } else { 5657 /* 5658 * Ensure that at least one execute bit is on. Otherwise, 5659 * a privileged user will always succeed, and we don't want 5660 * this to happen unless the file really is executable. 5661 */ 5662 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5663 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 5664 !priv_check_cred(cred, PRIV_VFS_EXEC)) 5665 priv_granted |= VEXEC; 5666 } 5667 5668 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 5669 !priv_check_cred(cred, PRIV_VFS_READ)) 5670 priv_granted |= VREAD; 5671 5672 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 5673 !priv_check_cred(cred, PRIV_VFS_WRITE)) 5674 priv_granted |= (VWRITE | VAPPEND); 5675 5676 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 5677 !priv_check_cred(cred, PRIV_VFS_ADMIN)) 5678 priv_granted |= VADMIN; 5679 5680 if ((accmode & (priv_granted | dac_granted)) == accmode) { 5681 return (0); 5682 } 5683 5684 return ((accmode & VADMIN) ? EPERM : EACCES); 5685 } 5686 5687 /* 5688 * Credential check based on process requesting service, and per-attribute 5689 * permissions. 5690 */ 5691 int 5692 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 5693 struct thread *td, accmode_t accmode) 5694 { 5695 5696 /* 5697 * Kernel-invoked always succeeds. 5698 */ 5699 if (cred == NOCRED) 5700 return (0); 5701 5702 /* 5703 * Do not allow privileged processes in jail to directly manipulate 5704 * system attributes. 5705 */ 5706 switch (attrnamespace) { 5707 case EXTATTR_NAMESPACE_SYSTEM: 5708 /* Potentially should be: return (EPERM); */ 5709 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM)); 5710 case EXTATTR_NAMESPACE_USER: 5711 return (VOP_ACCESS(vp, accmode, cred, td)); 5712 default: 5713 return (EPERM); 5714 } 5715 } 5716 5717 #ifdef DEBUG_VFS_LOCKS 5718 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 5719 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 5720 "Drop into debugger on lock violation"); 5721 5722 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 5723 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 5724 0, "Check for interlock across VOPs"); 5725 5726 int vfs_badlock_print = 1; /* Print lock violations. */ 5727 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 5728 0, "Print lock violations"); 5729 5730 int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */ 5731 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode, 5732 0, "Print vnode details on lock violations"); 5733 5734 #ifdef KDB 5735 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 5736 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 5737 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 5738 #endif 5739 5740 static void 5741 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 5742 { 5743 5744 #ifdef KDB 5745 if (vfs_badlock_backtrace) 5746 kdb_backtrace(); 5747 #endif 5748 if (vfs_badlock_vnode) 5749 vn_printf(vp, "vnode "); 5750 if (vfs_badlock_print) 5751 printf("%s: %p %s\n", str, (void *)vp, msg); 5752 if (vfs_badlock_ddb) 5753 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5754 } 5755 5756 void 5757 assert_vi_locked(struct vnode *vp, const char *str) 5758 { 5759 5760 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 5761 vfs_badlock("interlock is not locked but should be", str, vp); 5762 } 5763 5764 void 5765 assert_vi_unlocked(struct vnode *vp, const char *str) 5766 { 5767 5768 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 5769 vfs_badlock("interlock is locked but should not be", str, vp); 5770 } 5771 5772 void 5773 assert_vop_locked(struct vnode *vp, const char *str) 5774 { 5775 if (KERNEL_PANICKED() || vp == NULL) 5776 return; 5777 5778 #ifdef WITNESS 5779 if ((vp->v_irflag & VIRF_CROSSMP) == 0 && 5780 witness_is_owned(&vp->v_vnlock->lock_object) == -1) 5781 #else 5782 int locked = VOP_ISLOCKED(vp); 5783 if (locked == 0 || locked == LK_EXCLOTHER) 5784 #endif 5785 vfs_badlock("is not locked but should be", str, vp); 5786 } 5787 5788 void 5789 assert_vop_unlocked(struct vnode *vp, const char *str) 5790 { 5791 if (KERNEL_PANICKED() || vp == NULL) 5792 return; 5793 5794 #ifdef WITNESS 5795 if ((vp->v_irflag & VIRF_CROSSMP) == 0 && 5796 witness_is_owned(&vp->v_vnlock->lock_object) == 1) 5797 #else 5798 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 5799 #endif 5800 vfs_badlock("is locked but should not be", str, vp); 5801 } 5802 5803 void 5804 assert_vop_elocked(struct vnode *vp, const char *str) 5805 { 5806 if (KERNEL_PANICKED() || vp == NULL) 5807 return; 5808 5809 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 5810 vfs_badlock("is not exclusive locked but should be", str, vp); 5811 } 5812 #endif /* DEBUG_VFS_LOCKS */ 5813 5814 void 5815 vop_rename_fail(struct vop_rename_args *ap) 5816 { 5817 5818 if (ap->a_tvp != NULL) 5819 vput(ap->a_tvp); 5820 if (ap->a_tdvp == ap->a_tvp) 5821 vrele(ap->a_tdvp); 5822 else 5823 vput(ap->a_tdvp); 5824 vrele(ap->a_fdvp); 5825 vrele(ap->a_fvp); 5826 } 5827 5828 void 5829 vop_rename_pre(void *ap) 5830 { 5831 struct vop_rename_args *a = ap; 5832 5833 #ifdef DEBUG_VFS_LOCKS 5834 if (a->a_tvp) 5835 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 5836 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 5837 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 5838 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 5839 5840 /* Check the source (from). */ 5841 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 5842 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 5843 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 5844 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 5845 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 5846 5847 /* Check the target. */ 5848 if (a->a_tvp) 5849 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 5850 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 5851 #endif 5852 /* 5853 * It may be tempting to add vn_seqc_write_begin/end calls here and 5854 * in vop_rename_post but that's not going to work out since some 5855 * filesystems relookup vnodes mid-rename. This is probably a bug. 5856 * 5857 * For now filesystems are expected to do the relevant calls after they 5858 * decide what vnodes to operate on. 5859 */ 5860 if (a->a_tdvp != a->a_fdvp) 5861 vhold(a->a_fdvp); 5862 if (a->a_tvp != a->a_fvp) 5863 vhold(a->a_fvp); 5864 vhold(a->a_tdvp); 5865 if (a->a_tvp) 5866 vhold(a->a_tvp); 5867 } 5868 5869 #ifdef DEBUG_VFS_LOCKS 5870 void 5871 vop_fplookup_vexec_debugpre(void *ap __unused) 5872 { 5873 5874 VFS_SMR_ASSERT_ENTERED(); 5875 } 5876 5877 void 5878 vop_fplookup_vexec_debugpost(void *ap, int rc) 5879 { 5880 struct vop_fplookup_vexec_args *a; 5881 struct vnode *vp; 5882 5883 a = ap; 5884 vp = a->a_vp; 5885 5886 VFS_SMR_ASSERT_ENTERED(); 5887 if (rc == EOPNOTSUPP) 5888 VNPASS(VN_IS_DOOMED(vp), vp); 5889 } 5890 5891 void 5892 vop_fplookup_symlink_debugpre(void *ap __unused) 5893 { 5894 5895 VFS_SMR_ASSERT_ENTERED(); 5896 } 5897 5898 void 5899 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused) 5900 { 5901 5902 VFS_SMR_ASSERT_ENTERED(); 5903 } 5904 5905 static void 5906 vop_fsync_debugprepost(struct vnode *vp, const char *name) 5907 { 5908 if (vp->v_type == VCHR) 5909 ; 5910 /* 5911 * The shared vs. exclusive locking policy for fsync() 5912 * is actually determined by vp's write mount as indicated 5913 * by VOP_GETWRITEMOUNT(), which for stacked filesystems 5914 * may not be the same as vp->v_mount. However, if the 5915 * underlying filesystem which really handles the fsync() 5916 * supports shared locking, the stacked filesystem must also 5917 * be prepared for its VOP_FSYNC() operation to be called 5918 * with only a shared lock. On the other hand, if the 5919 * stacked filesystem claims support for shared write 5920 * locking but the underlying filesystem does not, and the 5921 * caller incorrectly uses a shared lock, this condition 5922 * should still be caught when the stacked filesystem 5923 * invokes VOP_FSYNC() on the underlying filesystem. 5924 */ 5925 else if (MNT_SHARED_WRITES(vp->v_mount)) 5926 ASSERT_VOP_LOCKED(vp, name); 5927 else 5928 ASSERT_VOP_ELOCKED(vp, name); 5929 } 5930 5931 void 5932 vop_fsync_debugpre(void *a) 5933 { 5934 struct vop_fsync_args *ap; 5935 5936 ap = a; 5937 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5938 } 5939 5940 void 5941 vop_fsync_debugpost(void *a, int rc __unused) 5942 { 5943 struct vop_fsync_args *ap; 5944 5945 ap = a; 5946 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5947 } 5948 5949 void 5950 vop_fdatasync_debugpre(void *a) 5951 { 5952 struct vop_fdatasync_args *ap; 5953 5954 ap = a; 5955 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5956 } 5957 5958 void 5959 vop_fdatasync_debugpost(void *a, int rc __unused) 5960 { 5961 struct vop_fdatasync_args *ap; 5962 5963 ap = a; 5964 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5965 } 5966 5967 void 5968 vop_strategy_debugpre(void *ap) 5969 { 5970 struct vop_strategy_args *a; 5971 struct buf *bp; 5972 5973 a = ap; 5974 bp = a->a_bp; 5975 5976 /* 5977 * Cluster ops lock their component buffers but not the IO container. 5978 */ 5979 if ((bp->b_flags & B_CLUSTER) != 0) 5980 return; 5981 5982 if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) { 5983 if (vfs_badlock_print) 5984 printf( 5985 "VOP_STRATEGY: bp is not locked but should be\n"); 5986 if (vfs_badlock_ddb) 5987 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5988 } 5989 } 5990 5991 void 5992 vop_lock_debugpre(void *ap) 5993 { 5994 struct vop_lock1_args *a = ap; 5995 5996 if ((a->a_flags & LK_INTERLOCK) == 0) 5997 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 5998 else 5999 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 6000 } 6001 6002 void 6003 vop_lock_debugpost(void *ap, int rc) 6004 { 6005 struct vop_lock1_args *a = ap; 6006 6007 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 6008 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 6009 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 6010 } 6011 6012 void 6013 vop_unlock_debugpre(void *ap) 6014 { 6015 struct vop_unlock_args *a = ap; 6016 struct vnode *vp = a->a_vp; 6017 6018 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp); 6019 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK"); 6020 } 6021 6022 void 6023 vop_need_inactive_debugpre(void *ap) 6024 { 6025 struct vop_need_inactive_args *a = ap; 6026 6027 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 6028 } 6029 6030 void 6031 vop_need_inactive_debugpost(void *ap, int rc) 6032 { 6033 struct vop_need_inactive_args *a = ap; 6034 6035 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 6036 } 6037 #endif 6038 6039 void 6040 vop_create_pre(void *ap) 6041 { 6042 struct vop_create_args *a; 6043 struct vnode *dvp; 6044 6045 a = ap; 6046 dvp = a->a_dvp; 6047 vn_seqc_write_begin(dvp); 6048 } 6049 6050 void 6051 vop_create_post(void *ap, int rc) 6052 { 6053 struct vop_create_args *a; 6054 struct vnode *dvp; 6055 6056 a = ap; 6057 dvp = a->a_dvp; 6058 vn_seqc_write_end(dvp); 6059 if (!rc) 6060 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6061 } 6062 6063 void 6064 vop_whiteout_pre(void *ap) 6065 { 6066 struct vop_whiteout_args *a; 6067 struct vnode *dvp; 6068 6069 a = ap; 6070 dvp = a->a_dvp; 6071 vn_seqc_write_begin(dvp); 6072 } 6073 6074 void 6075 vop_whiteout_post(void *ap, int rc) 6076 { 6077 struct vop_whiteout_args *a; 6078 struct vnode *dvp; 6079 6080 a = ap; 6081 dvp = a->a_dvp; 6082 vn_seqc_write_end(dvp); 6083 } 6084 6085 void 6086 vop_deleteextattr_pre(void *ap) 6087 { 6088 struct vop_deleteextattr_args *a; 6089 struct vnode *vp; 6090 6091 a = ap; 6092 vp = a->a_vp; 6093 vn_seqc_write_begin(vp); 6094 } 6095 6096 void 6097 vop_deleteextattr_post(void *ap, int rc) 6098 { 6099 struct vop_deleteextattr_args *a; 6100 struct vnode *vp; 6101 6102 a = ap; 6103 vp = a->a_vp; 6104 vn_seqc_write_end(vp); 6105 if (!rc) 6106 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 6107 } 6108 6109 void 6110 vop_link_pre(void *ap) 6111 { 6112 struct vop_link_args *a; 6113 struct vnode *vp, *tdvp; 6114 6115 a = ap; 6116 vp = a->a_vp; 6117 tdvp = a->a_tdvp; 6118 vn_seqc_write_begin(vp); 6119 vn_seqc_write_begin(tdvp); 6120 } 6121 6122 void 6123 vop_link_post(void *ap, int rc) 6124 { 6125 struct vop_link_args *a; 6126 struct vnode *vp, *tdvp; 6127 6128 a = ap; 6129 vp = a->a_vp; 6130 tdvp = a->a_tdvp; 6131 vn_seqc_write_end(vp); 6132 vn_seqc_write_end(tdvp); 6133 if (!rc) { 6134 VFS_KNOTE_LOCKED(vp, NOTE_LINK); 6135 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE); 6136 } 6137 } 6138 6139 void 6140 vop_mkdir_pre(void *ap) 6141 { 6142 struct vop_mkdir_args *a; 6143 struct vnode *dvp; 6144 6145 a = ap; 6146 dvp = a->a_dvp; 6147 vn_seqc_write_begin(dvp); 6148 } 6149 6150 void 6151 vop_mkdir_post(void *ap, int rc) 6152 { 6153 struct vop_mkdir_args *a; 6154 struct vnode *dvp; 6155 6156 a = ap; 6157 dvp = a->a_dvp; 6158 vn_seqc_write_end(dvp); 6159 if (!rc) 6160 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 6161 } 6162 6163 #ifdef DEBUG_VFS_LOCKS 6164 void 6165 vop_mkdir_debugpost(void *ap, int rc) 6166 { 6167 struct vop_mkdir_args *a; 6168 6169 a = ap; 6170 if (!rc) 6171 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp); 6172 } 6173 #endif 6174 6175 void 6176 vop_mknod_pre(void *ap) 6177 { 6178 struct vop_mknod_args *a; 6179 struct vnode *dvp; 6180 6181 a = ap; 6182 dvp = a->a_dvp; 6183 vn_seqc_write_begin(dvp); 6184 } 6185 6186 void 6187 vop_mknod_post(void *ap, int rc) 6188 { 6189 struct vop_mknod_args *a; 6190 struct vnode *dvp; 6191 6192 a = ap; 6193 dvp = a->a_dvp; 6194 vn_seqc_write_end(dvp); 6195 if (!rc) 6196 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6197 } 6198 6199 void 6200 vop_reclaim_post(void *ap, int rc) 6201 { 6202 struct vop_reclaim_args *a; 6203 struct vnode *vp; 6204 6205 a = ap; 6206 vp = a->a_vp; 6207 ASSERT_VOP_IN_SEQC(vp); 6208 if (!rc) 6209 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE); 6210 } 6211 6212 void 6213 vop_remove_pre(void *ap) 6214 { 6215 struct vop_remove_args *a; 6216 struct vnode *dvp, *vp; 6217 6218 a = ap; 6219 dvp = a->a_dvp; 6220 vp = a->a_vp; 6221 vn_seqc_write_begin(dvp); 6222 vn_seqc_write_begin(vp); 6223 } 6224 6225 void 6226 vop_remove_post(void *ap, int rc) 6227 { 6228 struct vop_remove_args *a; 6229 struct vnode *dvp, *vp; 6230 6231 a = ap; 6232 dvp = a->a_dvp; 6233 vp = a->a_vp; 6234 vn_seqc_write_end(dvp); 6235 vn_seqc_write_end(vp); 6236 if (!rc) { 6237 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6238 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 6239 } 6240 } 6241 6242 void 6243 vop_rename_post(void *ap, int rc) 6244 { 6245 struct vop_rename_args *a = ap; 6246 long hint; 6247 6248 if (!rc) { 6249 hint = NOTE_WRITE; 6250 if (a->a_fdvp == a->a_tdvp) { 6251 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR) 6252 hint |= NOTE_LINK; 6253 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 6254 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 6255 } else { 6256 hint |= NOTE_EXTEND; 6257 if (a->a_fvp->v_type == VDIR) 6258 hint |= NOTE_LINK; 6259 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 6260 6261 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL && 6262 a->a_tvp->v_type == VDIR) 6263 hint &= ~NOTE_LINK; 6264 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 6265 } 6266 6267 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 6268 if (a->a_tvp) 6269 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 6270 } 6271 if (a->a_tdvp != a->a_fdvp) 6272 vdrop(a->a_fdvp); 6273 if (a->a_tvp != a->a_fvp) 6274 vdrop(a->a_fvp); 6275 vdrop(a->a_tdvp); 6276 if (a->a_tvp) 6277 vdrop(a->a_tvp); 6278 } 6279 6280 void 6281 vop_rmdir_pre(void *ap) 6282 { 6283 struct vop_rmdir_args *a; 6284 struct vnode *dvp, *vp; 6285 6286 a = ap; 6287 dvp = a->a_dvp; 6288 vp = a->a_vp; 6289 vn_seqc_write_begin(dvp); 6290 vn_seqc_write_begin(vp); 6291 } 6292 6293 void 6294 vop_rmdir_post(void *ap, int rc) 6295 { 6296 struct vop_rmdir_args *a; 6297 struct vnode *dvp, *vp; 6298 6299 a = ap; 6300 dvp = a->a_dvp; 6301 vp = a->a_vp; 6302 vn_seqc_write_end(dvp); 6303 vn_seqc_write_end(vp); 6304 if (!rc) { 6305 vp->v_vflag |= VV_UNLINKED; 6306 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 6307 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 6308 } 6309 } 6310 6311 void 6312 vop_setattr_pre(void *ap) 6313 { 6314 struct vop_setattr_args *a; 6315 struct vnode *vp; 6316 6317 a = ap; 6318 vp = a->a_vp; 6319 vn_seqc_write_begin(vp); 6320 } 6321 6322 void 6323 vop_setattr_post(void *ap, int rc) 6324 { 6325 struct vop_setattr_args *a; 6326 struct vnode *vp; 6327 6328 a = ap; 6329 vp = a->a_vp; 6330 vn_seqc_write_end(vp); 6331 if (!rc) 6332 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 6333 } 6334 6335 void 6336 vop_setacl_pre(void *ap) 6337 { 6338 struct vop_setacl_args *a; 6339 struct vnode *vp; 6340 6341 a = ap; 6342 vp = a->a_vp; 6343 vn_seqc_write_begin(vp); 6344 } 6345 6346 void 6347 vop_setacl_post(void *ap, int rc __unused) 6348 { 6349 struct vop_setacl_args *a; 6350 struct vnode *vp; 6351 6352 a = ap; 6353 vp = a->a_vp; 6354 vn_seqc_write_end(vp); 6355 } 6356 6357 void 6358 vop_setextattr_pre(void *ap) 6359 { 6360 struct vop_setextattr_args *a; 6361 struct vnode *vp; 6362 6363 a = ap; 6364 vp = a->a_vp; 6365 vn_seqc_write_begin(vp); 6366 } 6367 6368 void 6369 vop_setextattr_post(void *ap, int rc) 6370 { 6371 struct vop_setextattr_args *a; 6372 struct vnode *vp; 6373 6374 a = ap; 6375 vp = a->a_vp; 6376 vn_seqc_write_end(vp); 6377 if (!rc) 6378 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 6379 } 6380 6381 void 6382 vop_symlink_pre(void *ap) 6383 { 6384 struct vop_symlink_args *a; 6385 struct vnode *dvp; 6386 6387 a = ap; 6388 dvp = a->a_dvp; 6389 vn_seqc_write_begin(dvp); 6390 } 6391 6392 void 6393 vop_symlink_post(void *ap, int rc) 6394 { 6395 struct vop_symlink_args *a; 6396 struct vnode *dvp; 6397 6398 a = ap; 6399 dvp = a->a_dvp; 6400 vn_seqc_write_end(dvp); 6401 if (!rc) 6402 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6403 } 6404 6405 void 6406 vop_open_post(void *ap, int rc) 6407 { 6408 struct vop_open_args *a = ap; 6409 6410 if (!rc) 6411 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN); 6412 } 6413 6414 void 6415 vop_close_post(void *ap, int rc) 6416 { 6417 struct vop_close_args *a = ap; 6418 6419 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */ 6420 !VN_IS_DOOMED(a->a_vp))) { 6421 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ? 6422 NOTE_CLOSE_WRITE : NOTE_CLOSE); 6423 } 6424 } 6425 6426 void 6427 vop_read_post(void *ap, int rc) 6428 { 6429 struct vop_read_args *a = ap; 6430 6431 if (!rc) 6432 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6433 } 6434 6435 void 6436 vop_read_pgcache_post(void *ap, int rc) 6437 { 6438 struct vop_read_pgcache_args *a = ap; 6439 6440 if (!rc) 6441 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ); 6442 } 6443 6444 void 6445 vop_readdir_post(void *ap, int rc) 6446 { 6447 struct vop_readdir_args *a = ap; 6448 6449 if (!rc) 6450 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6451 } 6452 6453 static struct knlist fs_knlist; 6454 6455 static void 6456 vfs_event_init(void *arg) 6457 { 6458 knlist_init_mtx(&fs_knlist, NULL); 6459 } 6460 /* XXX - correct order? */ 6461 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 6462 6463 void 6464 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 6465 { 6466 6467 KNOTE_UNLOCKED(&fs_knlist, event); 6468 } 6469 6470 static int filt_fsattach(struct knote *kn); 6471 static void filt_fsdetach(struct knote *kn); 6472 static int filt_fsevent(struct knote *kn, long hint); 6473 6474 struct filterops fs_filtops = { 6475 .f_isfd = 0, 6476 .f_attach = filt_fsattach, 6477 .f_detach = filt_fsdetach, 6478 .f_event = filt_fsevent 6479 }; 6480 6481 static int 6482 filt_fsattach(struct knote *kn) 6483 { 6484 6485 kn->kn_flags |= EV_CLEAR; 6486 knlist_add(&fs_knlist, kn, 0); 6487 return (0); 6488 } 6489 6490 static void 6491 filt_fsdetach(struct knote *kn) 6492 { 6493 6494 knlist_remove(&fs_knlist, kn, 0); 6495 } 6496 6497 static int 6498 filt_fsevent(struct knote *kn, long hint) 6499 { 6500 6501 kn->kn_fflags |= kn->kn_sfflags & hint; 6502 6503 return (kn->kn_fflags != 0); 6504 } 6505 6506 static int 6507 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 6508 { 6509 struct vfsidctl vc; 6510 int error; 6511 struct mount *mp; 6512 6513 error = SYSCTL_IN(req, &vc, sizeof(vc)); 6514 if (error) 6515 return (error); 6516 if (vc.vc_vers != VFS_CTL_VERS1) 6517 return (EINVAL); 6518 mp = vfs_getvfs(&vc.vc_fsid); 6519 if (mp == NULL) 6520 return (ENOENT); 6521 /* ensure that a specific sysctl goes to the right filesystem. */ 6522 if (strcmp(vc.vc_fstypename, "*") != 0 && 6523 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 6524 vfs_rel(mp); 6525 return (EINVAL); 6526 } 6527 VCTLTOREQ(&vc, req); 6528 error = VFS_SYSCTL(mp, vc.vc_op, req); 6529 vfs_rel(mp); 6530 return (error); 6531 } 6532 6533 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR, 6534 NULL, 0, sysctl_vfs_ctl, "", 6535 "Sysctl by fsid"); 6536 6537 /* 6538 * Function to initialize a va_filerev field sensibly. 6539 * XXX: Wouldn't a random number make a lot more sense ?? 6540 */ 6541 u_quad_t 6542 init_va_filerev(void) 6543 { 6544 struct bintime bt; 6545 6546 getbinuptime(&bt); 6547 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 6548 } 6549 6550 static int filt_vfsread(struct knote *kn, long hint); 6551 static int filt_vfswrite(struct knote *kn, long hint); 6552 static int filt_vfsvnode(struct knote *kn, long hint); 6553 static void filt_vfsdetach(struct knote *kn); 6554 static struct filterops vfsread_filtops = { 6555 .f_isfd = 1, 6556 .f_detach = filt_vfsdetach, 6557 .f_event = filt_vfsread 6558 }; 6559 static struct filterops vfswrite_filtops = { 6560 .f_isfd = 1, 6561 .f_detach = filt_vfsdetach, 6562 .f_event = filt_vfswrite 6563 }; 6564 static struct filterops vfsvnode_filtops = { 6565 .f_isfd = 1, 6566 .f_detach = filt_vfsdetach, 6567 .f_event = filt_vfsvnode 6568 }; 6569 6570 static void 6571 vfs_knllock(void *arg) 6572 { 6573 struct vnode *vp = arg; 6574 6575 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 6576 } 6577 6578 static void 6579 vfs_knlunlock(void *arg) 6580 { 6581 struct vnode *vp = arg; 6582 6583 VOP_UNLOCK(vp); 6584 } 6585 6586 static void 6587 vfs_knl_assert_lock(void *arg, int what) 6588 { 6589 #ifdef DEBUG_VFS_LOCKS 6590 struct vnode *vp = arg; 6591 6592 if (what == LA_LOCKED) 6593 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 6594 else 6595 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 6596 #endif 6597 } 6598 6599 int 6600 vfs_kqfilter(struct vop_kqfilter_args *ap) 6601 { 6602 struct vnode *vp = ap->a_vp; 6603 struct knote *kn = ap->a_kn; 6604 struct knlist *knl; 6605 6606 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ && 6607 kn->kn_filter != EVFILT_WRITE), 6608 ("READ/WRITE filter on a FIFO leaked through")); 6609 switch (kn->kn_filter) { 6610 case EVFILT_READ: 6611 kn->kn_fop = &vfsread_filtops; 6612 break; 6613 case EVFILT_WRITE: 6614 kn->kn_fop = &vfswrite_filtops; 6615 break; 6616 case EVFILT_VNODE: 6617 kn->kn_fop = &vfsvnode_filtops; 6618 break; 6619 default: 6620 return (EINVAL); 6621 } 6622 6623 kn->kn_hook = (caddr_t)vp; 6624 6625 v_addpollinfo(vp); 6626 if (vp->v_pollinfo == NULL) 6627 return (ENOMEM); 6628 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 6629 vhold(vp); 6630 knlist_add(knl, kn, 0); 6631 6632 return (0); 6633 } 6634 6635 /* 6636 * Detach knote from vnode 6637 */ 6638 static void 6639 filt_vfsdetach(struct knote *kn) 6640 { 6641 struct vnode *vp = (struct vnode *)kn->kn_hook; 6642 6643 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 6644 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 6645 vdrop(vp); 6646 } 6647 6648 /*ARGSUSED*/ 6649 static int 6650 filt_vfsread(struct knote *kn, long hint) 6651 { 6652 struct vnode *vp = (struct vnode *)kn->kn_hook; 6653 off_t size; 6654 int res; 6655 6656 /* 6657 * filesystem is gone, so set the EOF flag and schedule 6658 * the knote for deletion. 6659 */ 6660 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6661 VI_LOCK(vp); 6662 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6663 VI_UNLOCK(vp); 6664 return (1); 6665 } 6666 6667 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0) 6668 return (0); 6669 6670 VI_LOCK(vp); 6671 kn->kn_data = size - kn->kn_fp->f_offset; 6672 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; 6673 VI_UNLOCK(vp); 6674 return (res); 6675 } 6676 6677 /*ARGSUSED*/ 6678 static int 6679 filt_vfswrite(struct knote *kn, long hint) 6680 { 6681 struct vnode *vp = (struct vnode *)kn->kn_hook; 6682 6683 VI_LOCK(vp); 6684 6685 /* 6686 * filesystem is gone, so set the EOF flag and schedule 6687 * the knote for deletion. 6688 */ 6689 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) 6690 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6691 6692 kn->kn_data = 0; 6693 VI_UNLOCK(vp); 6694 return (1); 6695 } 6696 6697 static int 6698 filt_vfsvnode(struct knote *kn, long hint) 6699 { 6700 struct vnode *vp = (struct vnode *)kn->kn_hook; 6701 int res; 6702 6703 VI_LOCK(vp); 6704 if (kn->kn_sfflags & hint) 6705 kn->kn_fflags |= hint; 6706 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6707 kn->kn_flags |= EV_EOF; 6708 VI_UNLOCK(vp); 6709 return (1); 6710 } 6711 res = (kn->kn_fflags != 0); 6712 VI_UNLOCK(vp); 6713 return (res); 6714 } 6715 6716 int 6717 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 6718 { 6719 int error; 6720 6721 if (dp->d_reclen > ap->a_uio->uio_resid) 6722 return (ENAMETOOLONG); 6723 error = uiomove(dp, dp->d_reclen, ap->a_uio); 6724 if (error) { 6725 if (ap->a_ncookies != NULL) { 6726 if (ap->a_cookies != NULL) 6727 free(ap->a_cookies, M_TEMP); 6728 ap->a_cookies = NULL; 6729 *ap->a_ncookies = 0; 6730 } 6731 return (error); 6732 } 6733 if (ap->a_ncookies == NULL) 6734 return (0); 6735 6736 KASSERT(ap->a_cookies, 6737 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 6738 6739 *ap->a_cookies = realloc(*ap->a_cookies, 6740 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO); 6741 (*ap->a_cookies)[*ap->a_ncookies] = off; 6742 *ap->a_ncookies += 1; 6743 return (0); 6744 } 6745 6746 /* 6747 * The purpose of this routine is to remove granularity from accmode_t, 6748 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 6749 * VADMIN and VAPPEND. 6750 * 6751 * If it returns 0, the caller is supposed to continue with the usual 6752 * access checks using 'accmode' as modified by this routine. If it 6753 * returns nonzero value, the caller is supposed to return that value 6754 * as errno. 6755 * 6756 * Note that after this routine runs, accmode may be zero. 6757 */ 6758 int 6759 vfs_unixify_accmode(accmode_t *accmode) 6760 { 6761 /* 6762 * There is no way to specify explicit "deny" rule using 6763 * file mode or POSIX.1e ACLs. 6764 */ 6765 if (*accmode & VEXPLICIT_DENY) { 6766 *accmode = 0; 6767 return (0); 6768 } 6769 6770 /* 6771 * None of these can be translated into usual access bits. 6772 * Also, the common case for NFSv4 ACLs is to not contain 6773 * either of these bits. Caller should check for VWRITE 6774 * on the containing directory instead. 6775 */ 6776 if (*accmode & (VDELETE_CHILD | VDELETE)) 6777 return (EPERM); 6778 6779 if (*accmode & VADMIN_PERMS) { 6780 *accmode &= ~VADMIN_PERMS; 6781 *accmode |= VADMIN; 6782 } 6783 6784 /* 6785 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 6786 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 6787 */ 6788 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 6789 6790 return (0); 6791 } 6792 6793 /* 6794 * Clear out a doomed vnode (if any) and replace it with a new one as long 6795 * as the fs is not being unmounted. Return the root vnode to the caller. 6796 */ 6797 static int __noinline 6798 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp) 6799 { 6800 struct vnode *vp; 6801 int error; 6802 6803 restart: 6804 if (mp->mnt_rootvnode != NULL) { 6805 MNT_ILOCK(mp); 6806 vp = mp->mnt_rootvnode; 6807 if (vp != NULL) { 6808 if (!VN_IS_DOOMED(vp)) { 6809 vrefact(vp); 6810 MNT_IUNLOCK(mp); 6811 error = vn_lock(vp, flags); 6812 if (error == 0) { 6813 *vpp = vp; 6814 return (0); 6815 } 6816 vrele(vp); 6817 goto restart; 6818 } 6819 /* 6820 * Clear the old one. 6821 */ 6822 mp->mnt_rootvnode = NULL; 6823 } 6824 MNT_IUNLOCK(mp); 6825 if (vp != NULL) { 6826 vfs_op_barrier_wait(mp); 6827 vrele(vp); 6828 } 6829 } 6830 error = VFS_CACHEDROOT(mp, flags, vpp); 6831 if (error != 0) 6832 return (error); 6833 if (mp->mnt_vfs_ops == 0) { 6834 MNT_ILOCK(mp); 6835 if (mp->mnt_vfs_ops != 0) { 6836 MNT_IUNLOCK(mp); 6837 return (0); 6838 } 6839 if (mp->mnt_rootvnode == NULL) { 6840 vrefact(*vpp); 6841 mp->mnt_rootvnode = *vpp; 6842 } else { 6843 if (mp->mnt_rootvnode != *vpp) { 6844 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) { 6845 panic("%s: mismatch between vnode returned " 6846 " by VFS_CACHEDROOT and the one cached " 6847 " (%p != %p)", 6848 __func__, *vpp, mp->mnt_rootvnode); 6849 } 6850 } 6851 } 6852 MNT_IUNLOCK(mp); 6853 } 6854 return (0); 6855 } 6856 6857 int 6858 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp) 6859 { 6860 struct mount_pcpu *mpcpu; 6861 struct vnode *vp; 6862 int error; 6863 6864 if (!vfs_op_thread_enter(mp, mpcpu)) 6865 return (vfs_cache_root_fallback(mp, flags, vpp)); 6866 vp = atomic_load_ptr(&mp->mnt_rootvnode); 6867 if (vp == NULL || VN_IS_DOOMED(vp)) { 6868 vfs_op_thread_exit(mp, mpcpu); 6869 return (vfs_cache_root_fallback(mp, flags, vpp)); 6870 } 6871 vrefact(vp); 6872 vfs_op_thread_exit(mp, mpcpu); 6873 error = vn_lock(vp, flags); 6874 if (error != 0) { 6875 vrele(vp); 6876 return (vfs_cache_root_fallback(mp, flags, vpp)); 6877 } 6878 *vpp = vp; 6879 return (0); 6880 } 6881 6882 struct vnode * 6883 vfs_cache_root_clear(struct mount *mp) 6884 { 6885 struct vnode *vp; 6886 6887 /* 6888 * ops > 0 guarantees there is nobody who can see this vnode 6889 */ 6890 MPASS(mp->mnt_vfs_ops > 0); 6891 vp = mp->mnt_rootvnode; 6892 if (vp != NULL) 6893 vn_seqc_write_begin(vp); 6894 mp->mnt_rootvnode = NULL; 6895 return (vp); 6896 } 6897 6898 void 6899 vfs_cache_root_set(struct mount *mp, struct vnode *vp) 6900 { 6901 6902 MPASS(mp->mnt_vfs_ops > 0); 6903 vrefact(vp); 6904 mp->mnt_rootvnode = vp; 6905 } 6906 6907 /* 6908 * These are helper functions for filesystems to traverse all 6909 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 6910 * 6911 * This interface replaces MNT_VNODE_FOREACH. 6912 */ 6913 6914 struct vnode * 6915 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 6916 { 6917 struct vnode *vp; 6918 6919 maybe_yield(); 6920 MNT_ILOCK(mp); 6921 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6922 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL; 6923 vp = TAILQ_NEXT(vp, v_nmntvnodes)) { 6924 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6925 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6926 continue; 6927 VI_LOCK(vp); 6928 if (VN_IS_DOOMED(vp)) { 6929 VI_UNLOCK(vp); 6930 continue; 6931 } 6932 break; 6933 } 6934 if (vp == NULL) { 6935 __mnt_vnode_markerfree_all(mvp, mp); 6936 /* MNT_IUNLOCK(mp); -- done in above function */ 6937 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 6938 return (NULL); 6939 } 6940 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6941 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6942 MNT_IUNLOCK(mp); 6943 return (vp); 6944 } 6945 6946 struct vnode * 6947 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 6948 { 6949 struct vnode *vp; 6950 6951 *mvp = vn_alloc_marker(mp); 6952 MNT_ILOCK(mp); 6953 MNT_REF(mp); 6954 6955 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 6956 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6957 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6958 continue; 6959 VI_LOCK(vp); 6960 if (VN_IS_DOOMED(vp)) { 6961 VI_UNLOCK(vp); 6962 continue; 6963 } 6964 break; 6965 } 6966 if (vp == NULL) { 6967 MNT_REL(mp); 6968 MNT_IUNLOCK(mp); 6969 vn_free_marker(*mvp); 6970 *mvp = NULL; 6971 return (NULL); 6972 } 6973 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6974 MNT_IUNLOCK(mp); 6975 return (vp); 6976 } 6977 6978 void 6979 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 6980 { 6981 6982 if (*mvp == NULL) { 6983 MNT_IUNLOCK(mp); 6984 return; 6985 } 6986 6987 mtx_assert(MNT_MTX(mp), MA_OWNED); 6988 6989 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6990 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6991 MNT_REL(mp); 6992 MNT_IUNLOCK(mp); 6993 vn_free_marker(*mvp); 6994 *mvp = NULL; 6995 } 6996 6997 /* 6998 * These are helper functions for filesystems to traverse their 6999 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h 7000 */ 7001 static void 7002 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 7003 { 7004 7005 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 7006 7007 MNT_ILOCK(mp); 7008 MNT_REL(mp); 7009 MNT_IUNLOCK(mp); 7010 vn_free_marker(*mvp); 7011 *mvp = NULL; 7012 } 7013 7014 /* 7015 * Relock the mp mount vnode list lock with the vp vnode interlock in the 7016 * conventional lock order during mnt_vnode_next_lazy iteration. 7017 * 7018 * On entry, the mount vnode list lock is held and the vnode interlock is not. 7019 * The list lock is dropped and reacquired. On success, both locks are held. 7020 * On failure, the mount vnode list lock is held but the vnode interlock is 7021 * not, and the procedure may have yielded. 7022 */ 7023 static bool 7024 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp, 7025 struct vnode *vp) 7026 { 7027 7028 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER && 7029 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp, 7030 ("%s: bad marker", __func__)); 7031 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp, 7032 ("%s: inappropriate vnode", __func__)); 7033 ASSERT_VI_UNLOCKED(vp, __func__); 7034 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 7035 7036 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist); 7037 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist); 7038 7039 /* 7040 * Note we may be racing against vdrop which transitioned the hold 7041 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine, 7042 * if we are the only user after we get the interlock we will just 7043 * vdrop. 7044 */ 7045 vhold(vp); 7046 mtx_unlock(&mp->mnt_listmtx); 7047 VI_LOCK(vp); 7048 if (VN_IS_DOOMED(vp)) { 7049 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 7050 goto out_lost; 7051 } 7052 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 7053 /* 7054 * There is nothing to do if we are the last user. 7055 */ 7056 if (!refcount_release_if_not_last(&vp->v_holdcnt)) 7057 goto out_lost; 7058 mtx_lock(&mp->mnt_listmtx); 7059 return (true); 7060 out_lost: 7061 vdropl(vp); 7062 maybe_yield(); 7063 mtx_lock(&mp->mnt_listmtx); 7064 return (false); 7065 } 7066 7067 static struct vnode * 7068 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 7069 void *cbarg) 7070 { 7071 struct vnode *vp; 7072 7073 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 7074 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 7075 restart: 7076 vp = TAILQ_NEXT(*mvp, v_lazylist); 7077 while (vp != NULL) { 7078 if (vp->v_type == VMARKER) { 7079 vp = TAILQ_NEXT(vp, v_lazylist); 7080 continue; 7081 } 7082 /* 7083 * See if we want to process the vnode. Note we may encounter a 7084 * long string of vnodes we don't care about and hog the list 7085 * as a result. Check for it and requeue the marker. 7086 */ 7087 VNPASS(!VN_IS_DOOMED(vp), vp); 7088 if (!cb(vp, cbarg)) { 7089 if (!should_yield()) { 7090 vp = TAILQ_NEXT(vp, v_lazylist); 7091 continue; 7092 } 7093 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, 7094 v_lazylist); 7095 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, 7096 v_lazylist); 7097 mtx_unlock(&mp->mnt_listmtx); 7098 kern_yield(PRI_USER); 7099 mtx_lock(&mp->mnt_listmtx); 7100 goto restart; 7101 } 7102 /* 7103 * Try-lock because this is the wrong lock order. 7104 */ 7105 if (!VI_TRYLOCK(vp) && 7106 !mnt_vnode_next_lazy_relock(*mvp, mp, vp)) 7107 goto restart; 7108 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 7109 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 7110 ("alien vnode on the lazy list %p %p", vp, mp)); 7111 VNPASS(vp->v_mount == mp, vp); 7112 VNPASS(!VN_IS_DOOMED(vp), vp); 7113 break; 7114 } 7115 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 7116 7117 /* Check if we are done */ 7118 if (vp == NULL) { 7119 mtx_unlock(&mp->mnt_listmtx); 7120 mnt_vnode_markerfree_lazy(mvp, mp); 7121 return (NULL); 7122 } 7123 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist); 7124 mtx_unlock(&mp->mnt_listmtx); 7125 ASSERT_VI_LOCKED(vp, "lazy iter"); 7126 return (vp); 7127 } 7128 7129 struct vnode * 7130 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 7131 void *cbarg) 7132 { 7133 7134 maybe_yield(); 7135 mtx_lock(&mp->mnt_listmtx); 7136 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 7137 } 7138 7139 struct vnode * 7140 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 7141 void *cbarg) 7142 { 7143 struct vnode *vp; 7144 7145 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist)) 7146 return (NULL); 7147 7148 *mvp = vn_alloc_marker(mp); 7149 MNT_ILOCK(mp); 7150 MNT_REF(mp); 7151 MNT_IUNLOCK(mp); 7152 7153 mtx_lock(&mp->mnt_listmtx); 7154 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist); 7155 if (vp == NULL) { 7156 mtx_unlock(&mp->mnt_listmtx); 7157 mnt_vnode_markerfree_lazy(mvp, mp); 7158 return (NULL); 7159 } 7160 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist); 7161 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 7162 } 7163 7164 void 7165 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 7166 { 7167 7168 if (*mvp == NULL) 7169 return; 7170 7171 mtx_lock(&mp->mnt_listmtx); 7172 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 7173 mtx_unlock(&mp->mnt_listmtx); 7174 mnt_vnode_markerfree_lazy(mvp, mp); 7175 } 7176 7177 int 7178 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp) 7179 { 7180 7181 if ((cnp->cn_flags & NOEXECCHECK) != 0) { 7182 cnp->cn_flags &= ~NOEXECCHECK; 7183 return (0); 7184 } 7185 7186 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread)); 7187 } 7188 7189 /* 7190 * Do not use this variant unless you have means other than the hold count 7191 * to prevent the vnode from getting freed. 7192 */ 7193 void 7194 vn_seqc_write_begin_locked(struct vnode *vp) 7195 { 7196 7197 ASSERT_VI_LOCKED(vp, __func__); 7198 VNPASS(vp->v_holdcnt > 0, vp); 7199 VNPASS(vp->v_seqc_users >= 0, vp); 7200 vp->v_seqc_users++; 7201 if (vp->v_seqc_users == 1) 7202 seqc_sleepable_write_begin(&vp->v_seqc); 7203 } 7204 7205 void 7206 vn_seqc_write_begin(struct vnode *vp) 7207 { 7208 7209 VI_LOCK(vp); 7210 vn_seqc_write_begin_locked(vp); 7211 VI_UNLOCK(vp); 7212 } 7213 7214 void 7215 vn_seqc_write_end_locked(struct vnode *vp) 7216 { 7217 7218 ASSERT_VI_LOCKED(vp, __func__); 7219 VNPASS(vp->v_seqc_users > 0, vp); 7220 vp->v_seqc_users--; 7221 if (vp->v_seqc_users == 0) 7222 seqc_sleepable_write_end(&vp->v_seqc); 7223 } 7224 7225 void 7226 vn_seqc_write_end(struct vnode *vp) 7227 { 7228 7229 VI_LOCK(vp); 7230 vn_seqc_write_end_locked(vp); 7231 VI_UNLOCK(vp); 7232 } 7233 7234 /* 7235 * Special case handling for allocating and freeing vnodes. 7236 * 7237 * The counter remains unchanged on free so that a doomed vnode will 7238 * keep testing as in modify as long as it is accessible with SMR. 7239 */ 7240 static void 7241 vn_seqc_init(struct vnode *vp) 7242 { 7243 7244 vp->v_seqc = 0; 7245 vp->v_seqc_users = 0; 7246 } 7247 7248 static void 7249 vn_seqc_write_end_free(struct vnode *vp) 7250 { 7251 7252 VNPASS(seqc_in_modify(vp->v_seqc), vp); 7253 VNPASS(vp->v_seqc_users == 1, vp); 7254 } 7255 7256 void 7257 vn_irflag_set_locked(struct vnode *vp, short toset) 7258 { 7259 short flags; 7260 7261 ASSERT_VI_LOCKED(vp, __func__); 7262 flags = vn_irflag_read(vp); 7263 VNASSERT((flags & toset) == 0, vp, 7264 ("%s: some of the passed flags already set (have %d, passed %d)\n", 7265 __func__, flags, toset)); 7266 atomic_store_short(&vp->v_irflag, flags | toset); 7267 } 7268 7269 void 7270 vn_irflag_set(struct vnode *vp, short toset) 7271 { 7272 7273 VI_LOCK(vp); 7274 vn_irflag_set_locked(vp, toset); 7275 VI_UNLOCK(vp); 7276 } 7277 7278 void 7279 vn_irflag_set_cond_locked(struct vnode *vp, short toset) 7280 { 7281 short flags; 7282 7283 ASSERT_VI_LOCKED(vp, __func__); 7284 flags = vn_irflag_read(vp); 7285 atomic_store_short(&vp->v_irflag, flags | toset); 7286 } 7287 7288 void 7289 vn_irflag_set_cond(struct vnode *vp, short toset) 7290 { 7291 7292 VI_LOCK(vp); 7293 vn_irflag_set_cond_locked(vp, toset); 7294 VI_UNLOCK(vp); 7295 } 7296 7297 void 7298 vn_irflag_unset_locked(struct vnode *vp, short tounset) 7299 { 7300 short flags; 7301 7302 ASSERT_VI_LOCKED(vp, __func__); 7303 flags = vn_irflag_read(vp); 7304 VNASSERT((flags & tounset) == tounset, vp, 7305 ("%s: some of the passed flags not set (have %d, passed %d)\n", 7306 __func__, flags, tounset)); 7307 atomic_store_short(&vp->v_irflag, flags & ~tounset); 7308 } 7309 7310 void 7311 vn_irflag_unset(struct vnode *vp, short tounset) 7312 { 7313 7314 VI_LOCK(vp); 7315 vn_irflag_unset_locked(vp, tounset); 7316 VI_UNLOCK(vp); 7317 } 7318 7319 int 7320 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred) 7321 { 7322 struct vattr vattr; 7323 int error; 7324 7325 ASSERT_VOP_LOCKED(vp, __func__); 7326 error = VOP_GETATTR(vp, &vattr, cred); 7327 if (__predict_true(error == 0)) { 7328 if (vattr.va_size <= OFF_MAX) 7329 *size = vattr.va_size; 7330 else 7331 error = EFBIG; 7332 } 7333 return (error); 7334 } 7335 7336 int 7337 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred) 7338 { 7339 int error; 7340 7341 VOP_LOCK(vp, LK_SHARED); 7342 error = vn_getsize_locked(vp, size, cred); 7343 VOP_UNLOCK(vp); 7344 return (error); 7345 } 7346 7347 #ifdef INVARIANTS 7348 void 7349 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state) 7350 { 7351 7352 switch (vp->v_state) { 7353 case VSTATE_UNINITIALIZED: 7354 switch (state) { 7355 case VSTATE_CONSTRUCTED: 7356 case VSTATE_DESTROYING: 7357 return; 7358 default: 7359 break; 7360 } 7361 break; 7362 case VSTATE_CONSTRUCTED: 7363 ASSERT_VOP_ELOCKED(vp, __func__); 7364 switch (state) { 7365 case VSTATE_DESTROYING: 7366 return; 7367 default: 7368 break; 7369 } 7370 break; 7371 case VSTATE_DESTROYING: 7372 ASSERT_VOP_ELOCKED(vp, __func__); 7373 switch (state) { 7374 case VSTATE_DEAD: 7375 return; 7376 default: 7377 break; 7378 } 7379 break; 7380 case VSTATE_DEAD: 7381 switch (state) { 7382 case VSTATE_UNINITIALIZED: 7383 return; 7384 default: 7385 break; 7386 } 7387 break; 7388 } 7389 7390 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state); 7391 panic("invalid state transition %d -> %d\n", vp->v_state, state); 7392 } 7393 #endif 7394