xref: /freebsd/sys/kern/vfs_subr.c (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/lockf.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/namei.h>
73 #include <sys/pctrie.h>
74 #include <sys/priv.h>
75 #include <sys/reboot.h>
76 #include <sys/refcount.h>
77 #include <sys/rwlock.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smr.h>
81 #include <sys/smp.h>
82 #include <sys/stat.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 #include <sys/watchdog.h>
88 
89 #include <machine/stdarg.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_kern.h>
100 #include <vm/uma.h>
101 
102 #ifdef DDB
103 #include <ddb/ddb.h>
104 #endif
105 
106 static void	delmntque(struct vnode *vp);
107 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 		    int slpflag, int slptimeo);
109 static void	syncer_shutdown(void *arg, int howto);
110 static int	vtryrecycle(struct vnode *vp);
111 static void	v_init_counters(struct vnode *);
112 static void	vn_seqc_init(struct vnode *);
113 static void	vn_seqc_write_end_free(struct vnode *vp);
114 static void	vgonel(struct vnode *);
115 static bool	vhold_recycle_free(struct vnode *);
116 static void	vfs_knllock(void *arg);
117 static void	vfs_knlunlock(void *arg);
118 static void	vfs_knl_assert_lock(void *arg, int what);
119 static void	destroy_vpollinfo(struct vpollinfo *vi);
120 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 		    daddr_t startlbn, daddr_t endlbn);
122 static void	vnlru_recalc(void);
123 
124 /*
125  * These fences are intended for cases where some synchronization is
126  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
127  * and v_usecount) updates.  Access to v_iflags is generally synchronized
128  * by the interlock, but we have some internal assertions that check vnode
129  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
130  * for now.
131  */
132 #ifdef INVARIANTS
133 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
134 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
135 #else
136 #define	VNODE_REFCOUNT_FENCE_ACQ()
137 #define	VNODE_REFCOUNT_FENCE_REL()
138 #endif
139 
140 /*
141  * Number of vnodes in existence.  Increased whenever getnewvnode()
142  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
143  */
144 static u_long __exclusive_cache_line numvnodes;
145 
146 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
147     "Number of vnodes in existence");
148 
149 static counter_u64_t vnodes_created;
150 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
151     "Number of vnodes created by getnewvnode");
152 
153 /*
154  * Conversion tables for conversion from vnode types to inode formats
155  * and back.
156  */
157 enum vtype iftovt_tab[16] = {
158 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
159 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
160 };
161 int vttoif_tab[10] = {
162 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
163 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
164 };
165 
166 /*
167  * List of allocates vnodes in the system.
168  */
169 static TAILQ_HEAD(freelst, vnode) vnode_list;
170 static struct vnode *vnode_list_free_marker;
171 static struct vnode *vnode_list_reclaim_marker;
172 
173 /*
174  * "Free" vnode target.  Free vnodes are rarely completely free, but are
175  * just ones that are cheap to recycle.  Usually they are for files which
176  * have been stat'd but not read; these usually have inode and namecache
177  * data attached to them.  This target is the preferred minimum size of a
178  * sub-cache consisting mostly of such files. The system balances the size
179  * of this sub-cache with its complement to try to prevent either from
180  * thrashing while the other is relatively inactive.  The targets express
181  * a preference for the best balance.
182  *
183  * "Above" this target there are 2 further targets (watermarks) related
184  * to recyling of free vnodes.  In the best-operating case, the cache is
185  * exactly full, the free list has size between vlowat and vhiwat above the
186  * free target, and recycling from it and normal use maintains this state.
187  * Sometimes the free list is below vlowat or even empty, but this state
188  * is even better for immediate use provided the cache is not full.
189  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
190  * ones) to reach one of these states.  The watermarks are currently hard-
191  * coded as 4% and 9% of the available space higher.  These and the default
192  * of 25% for wantfreevnodes are too large if the memory size is large.
193  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
194  * whenever vnlru_proc() becomes active.
195  */
196 static long wantfreevnodes;
197 static long __exclusive_cache_line freevnodes;
198 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
199     &freevnodes, 0, "Number of \"free\" vnodes");
200 static long freevnodes_old;
201 
202 static counter_u64_t recycles_count;
203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
204     "Number of vnodes recycled to meet vnode cache targets");
205 
206 static counter_u64_t recycles_free_count;
207 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
208     "Number of free vnodes recycled to meet vnode cache targets");
209 
210 static counter_u64_t deferred_inact;
211 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
212     "Number of times inactive processing was deferred");
213 
214 /* To keep more than one thread at a time from running vfs_getnewfsid */
215 static struct mtx mntid_mtx;
216 
217 /*
218  * Lock for any access to the following:
219  *	vnode_list
220  *	numvnodes
221  *	freevnodes
222  */
223 static struct mtx __exclusive_cache_line vnode_list_mtx;
224 
225 /* Publicly exported FS */
226 struct nfs_public nfs_pub;
227 
228 static uma_zone_t buf_trie_zone;
229 static smr_t buf_trie_smr;
230 
231 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
232 static uma_zone_t vnode_zone;
233 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
234 
235 __read_frequently smr_t vfs_smr;
236 
237 /*
238  * The workitem queue.
239  *
240  * It is useful to delay writes of file data and filesystem metadata
241  * for tens of seconds so that quickly created and deleted files need
242  * not waste disk bandwidth being created and removed. To realize this,
243  * we append vnodes to a "workitem" queue. When running with a soft
244  * updates implementation, most pending metadata dependencies should
245  * not wait for more than a few seconds. Thus, mounted on block devices
246  * are delayed only about a half the time that file data is delayed.
247  * Similarly, directory updates are more critical, so are only delayed
248  * about a third the time that file data is delayed. Thus, there are
249  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
250  * one each second (driven off the filesystem syncer process). The
251  * syncer_delayno variable indicates the next queue that is to be processed.
252  * Items that need to be processed soon are placed in this queue:
253  *
254  *	syncer_workitem_pending[syncer_delayno]
255  *
256  * A delay of fifteen seconds is done by placing the request fifteen
257  * entries later in the queue:
258  *
259  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
260  *
261  */
262 static int syncer_delayno;
263 static long syncer_mask;
264 LIST_HEAD(synclist, bufobj);
265 static struct synclist *syncer_workitem_pending;
266 /*
267  * The sync_mtx protects:
268  *	bo->bo_synclist
269  *	sync_vnode_count
270  *	syncer_delayno
271  *	syncer_state
272  *	syncer_workitem_pending
273  *	syncer_worklist_len
274  *	rushjob
275  */
276 static struct mtx sync_mtx;
277 static struct cv sync_wakeup;
278 
279 #define SYNCER_MAXDELAY		32
280 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
281 static int syncdelay = 30;		/* max time to delay syncing data */
282 static int filedelay = 30;		/* time to delay syncing files */
283 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
284     "Time to delay syncing files (in seconds)");
285 static int dirdelay = 29;		/* time to delay syncing directories */
286 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
287     "Time to delay syncing directories (in seconds)");
288 static int metadelay = 28;		/* time to delay syncing metadata */
289 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
290     "Time to delay syncing metadata (in seconds)");
291 static int rushjob;		/* number of slots to run ASAP */
292 static int stat_rush_requests;	/* number of times I/O speeded up */
293 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
294     "Number of times I/O speeded up (rush requests)");
295 
296 #define	VDBATCH_SIZE 8
297 struct vdbatch {
298 	u_int index;
299 	long freevnodes;
300 	struct mtx lock;
301 	struct vnode *tab[VDBATCH_SIZE];
302 };
303 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
304 
305 static void	vdbatch_dequeue(struct vnode *vp);
306 
307 /*
308  * When shutting down the syncer, run it at four times normal speed.
309  */
310 #define SYNCER_SHUTDOWN_SPEEDUP		4
311 static int sync_vnode_count;
312 static int syncer_worklist_len;
313 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
314     syncer_state;
315 
316 /* Target for maximum number of vnodes. */
317 u_long desiredvnodes;
318 static u_long gapvnodes;		/* gap between wanted and desired */
319 static u_long vhiwat;		/* enough extras after expansion */
320 static u_long vlowat;		/* minimal extras before expansion */
321 static u_long vstir;		/* nonzero to stir non-free vnodes */
322 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
323 
324 static u_long vnlru_read_freevnodes(void);
325 
326 /*
327  * Note that no attempt is made to sanitize these parameters.
328  */
329 static int
330 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
331 {
332 	u_long val;
333 	int error;
334 
335 	val = desiredvnodes;
336 	error = sysctl_handle_long(oidp, &val, 0, req);
337 	if (error != 0 || req->newptr == NULL)
338 		return (error);
339 
340 	if (val == desiredvnodes)
341 		return (0);
342 	mtx_lock(&vnode_list_mtx);
343 	desiredvnodes = val;
344 	wantfreevnodes = desiredvnodes / 4;
345 	vnlru_recalc();
346 	mtx_unlock(&vnode_list_mtx);
347 	/*
348 	 * XXX There is no protection against multiple threads changing
349 	 * desiredvnodes at the same time. Locking above only helps vnlru and
350 	 * getnewvnode.
351 	 */
352 	vfs_hash_changesize(desiredvnodes);
353 	cache_changesize(desiredvnodes);
354 	return (0);
355 }
356 
357 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
358     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
359     "LU", "Target for maximum number of vnodes");
360 
361 static int
362 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
363 {
364 	u_long val;
365 	int error;
366 
367 	val = wantfreevnodes;
368 	error = sysctl_handle_long(oidp, &val, 0, req);
369 	if (error != 0 || req->newptr == NULL)
370 		return (error);
371 
372 	if (val == wantfreevnodes)
373 		return (0);
374 	mtx_lock(&vnode_list_mtx);
375 	wantfreevnodes = val;
376 	vnlru_recalc();
377 	mtx_unlock(&vnode_list_mtx);
378 	return (0);
379 }
380 
381 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
382     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
383     "LU", "Target for minimum number of \"free\" vnodes");
384 
385 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
386     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
387 static int vnlru_nowhere;
388 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
389     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
390 
391 static int
392 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
393 {
394 	struct vnode *vp;
395 	struct nameidata nd;
396 	char *buf;
397 	unsigned long ndflags;
398 	int error;
399 
400 	if (req->newptr == NULL)
401 		return (EINVAL);
402 	if (req->newlen >= PATH_MAX)
403 		return (E2BIG);
404 
405 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
406 	error = SYSCTL_IN(req, buf, req->newlen);
407 	if (error != 0)
408 		goto out;
409 
410 	buf[req->newlen] = '\0';
411 
412 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
413 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
414 	if ((error = namei(&nd)) != 0)
415 		goto out;
416 	vp = nd.ni_vp;
417 
418 	if (VN_IS_DOOMED(vp)) {
419 		/*
420 		 * This vnode is being recycled.  Return != 0 to let the caller
421 		 * know that the sysctl had no effect.  Return EAGAIN because a
422 		 * subsequent call will likely succeed (since namei will create
423 		 * a new vnode if necessary)
424 		 */
425 		error = EAGAIN;
426 		goto putvnode;
427 	}
428 
429 	counter_u64_add(recycles_count, 1);
430 	vgone(vp);
431 putvnode:
432 	NDFREE(&nd, 0);
433 out:
434 	free(buf, M_TEMP);
435 	return (error);
436 }
437 
438 static int
439 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
440 {
441 	struct thread *td = curthread;
442 	struct vnode *vp;
443 	struct file *fp;
444 	int error;
445 	int fd;
446 
447 	if (req->newptr == NULL)
448 		return (EBADF);
449 
450         error = sysctl_handle_int(oidp, &fd, 0, req);
451         if (error != 0)
452                 return (error);
453 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
454 	if (error != 0)
455 		return (error);
456 	vp = fp->f_vnode;
457 
458 	error = vn_lock(vp, LK_EXCLUSIVE);
459 	if (error != 0)
460 		goto drop;
461 
462 	counter_u64_add(recycles_count, 1);
463 	vgone(vp);
464 	VOP_UNLOCK(vp);
465 drop:
466 	fdrop(fp, td);
467 	return (error);
468 }
469 
470 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
471     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
472     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
473 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
474     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
475     sysctl_ftry_reclaim_vnode, "I",
476     "Try to reclaim a vnode by its file descriptor");
477 
478 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
479 static int vnsz2log;
480 
481 /*
482  * Support for the bufobj clean & dirty pctrie.
483  */
484 static void *
485 buf_trie_alloc(struct pctrie *ptree)
486 {
487 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
488 }
489 
490 static void
491 buf_trie_free(struct pctrie *ptree, void *node)
492 {
493 	uma_zfree_smr(buf_trie_zone, node);
494 }
495 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
496     buf_trie_smr);
497 
498 /*
499  * Initialize the vnode management data structures.
500  *
501  * Reevaluate the following cap on the number of vnodes after the physical
502  * memory size exceeds 512GB.  In the limit, as the physical memory size
503  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
504  */
505 #ifndef	MAXVNODES_MAX
506 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
507 #endif
508 
509 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
510 
511 static struct vnode *
512 vn_alloc_marker(struct mount *mp)
513 {
514 	struct vnode *vp;
515 
516 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
517 	vp->v_type = VMARKER;
518 	vp->v_mount = mp;
519 
520 	return (vp);
521 }
522 
523 static void
524 vn_free_marker(struct vnode *vp)
525 {
526 
527 	MPASS(vp->v_type == VMARKER);
528 	free(vp, M_VNODE_MARKER);
529 }
530 
531 #ifdef KASAN
532 static int
533 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
534 {
535 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
536 	return (0);
537 }
538 
539 static void
540 vnode_dtor(void *mem, int size, void *arg __unused)
541 {
542 	size_t end1, end2, off1, off2;
543 
544 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
545 	    offsetof(struct vnode, v_dbatchcpu),
546 	    "KASAN marks require updating");
547 
548 	off1 = offsetof(struct vnode, v_vnodelist);
549 	off2 = offsetof(struct vnode, v_dbatchcpu);
550 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
551 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
552 
553 	/*
554 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
555 	 * after the vnode has been freed.  Try to get some KASAN coverage by
556 	 * marking everything except those two fields as invalid.  Because
557 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
558 	 * the same 8-byte aligned word must also be marked valid.
559 	 */
560 
561 	/* Handle the area from the start until v_vnodelist... */
562 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
563 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
564 
565 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
566 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
567 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
568 	if (off2 > off1)
569 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
570 		    off2 - off1, KASAN_UMA_FREED);
571 
572 	/* ... and finally the area from v_dbatchcpu to the end. */
573 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
574 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
575 	    KASAN_UMA_FREED);
576 }
577 #endif /* KASAN */
578 
579 /*
580  * Initialize a vnode as it first enters the zone.
581  */
582 static int
583 vnode_init(void *mem, int size, int flags)
584 {
585 	struct vnode *vp;
586 
587 	vp = mem;
588 	bzero(vp, size);
589 	/*
590 	 * Setup locks.
591 	 */
592 	vp->v_vnlock = &vp->v_lock;
593 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
594 	/*
595 	 * By default, don't allow shared locks unless filesystems opt-in.
596 	 */
597 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
598 	    LK_NOSHARE | LK_IS_VNODE);
599 	/*
600 	 * Initialize bufobj.
601 	 */
602 	bufobj_init(&vp->v_bufobj, vp);
603 	/*
604 	 * Initialize namecache.
605 	 */
606 	cache_vnode_init(vp);
607 	/*
608 	 * Initialize rangelocks.
609 	 */
610 	rangelock_init(&vp->v_rl);
611 
612 	vp->v_dbatchcpu = NOCPU;
613 
614 	/*
615 	 * Check vhold_recycle_free for an explanation.
616 	 */
617 	vp->v_holdcnt = VHOLD_NO_SMR;
618 	vp->v_type = VNON;
619 	mtx_lock(&vnode_list_mtx);
620 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
621 	mtx_unlock(&vnode_list_mtx);
622 	return (0);
623 }
624 
625 /*
626  * Free a vnode when it is cleared from the zone.
627  */
628 static void
629 vnode_fini(void *mem, int size)
630 {
631 	struct vnode *vp;
632 	struct bufobj *bo;
633 
634 	vp = mem;
635 	vdbatch_dequeue(vp);
636 	mtx_lock(&vnode_list_mtx);
637 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
638 	mtx_unlock(&vnode_list_mtx);
639 	rangelock_destroy(&vp->v_rl);
640 	lockdestroy(vp->v_vnlock);
641 	mtx_destroy(&vp->v_interlock);
642 	bo = &vp->v_bufobj;
643 	rw_destroy(BO_LOCKPTR(bo));
644 
645 	kasan_mark(mem, size, size, 0);
646 }
647 
648 /*
649  * Provide the size of NFS nclnode and NFS fh for calculation of the
650  * vnode memory consumption.  The size is specified directly to
651  * eliminate dependency on NFS-private header.
652  *
653  * Other filesystems may use bigger or smaller (like UFS and ZFS)
654  * private inode data, but the NFS-based estimation is ample enough.
655  * Still, we care about differences in the size between 64- and 32-bit
656  * platforms.
657  *
658  * Namecache structure size is heuristically
659  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
660  */
661 #ifdef _LP64
662 #define	NFS_NCLNODE_SZ	(528 + 64)
663 #define	NC_SZ		148
664 #else
665 #define	NFS_NCLNODE_SZ	(360 + 32)
666 #define	NC_SZ		92
667 #endif
668 
669 static void
670 vntblinit(void *dummy __unused)
671 {
672 	struct vdbatch *vd;
673 	uma_ctor ctor;
674 	uma_dtor dtor;
675 	int cpu, physvnodes, virtvnodes;
676 	u_int i;
677 
678 	/*
679 	 * Desiredvnodes is a function of the physical memory size and the
680 	 * kernel's heap size.  Generally speaking, it scales with the
681 	 * physical memory size.  The ratio of desiredvnodes to the physical
682 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
683 	 * Thereafter, the
684 	 * marginal ratio of desiredvnodes to the physical memory size is
685 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
686 	 * size.  The memory required by desiredvnodes vnodes and vm objects
687 	 * must not exceed 1/10th of the kernel's heap size.
688 	 */
689 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
690 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
691 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
692 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
693 	desiredvnodes = min(physvnodes, virtvnodes);
694 	if (desiredvnodes > MAXVNODES_MAX) {
695 		if (bootverbose)
696 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
697 			    desiredvnodes, MAXVNODES_MAX);
698 		desiredvnodes = MAXVNODES_MAX;
699 	}
700 	wantfreevnodes = desiredvnodes / 4;
701 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
702 	TAILQ_INIT(&vnode_list);
703 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
704 	/*
705 	 * The lock is taken to appease WITNESS.
706 	 */
707 	mtx_lock(&vnode_list_mtx);
708 	vnlru_recalc();
709 	mtx_unlock(&vnode_list_mtx);
710 	vnode_list_free_marker = vn_alloc_marker(NULL);
711 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
712 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
713 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
714 
715 #ifdef KASAN
716 	ctor = vnode_ctor;
717 	dtor = vnode_dtor;
718 #else
719 	ctor = NULL;
720 	dtor = NULL;
721 #endif
722 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
723 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
724 	uma_zone_set_smr(vnode_zone, vfs_smr);
725 
726 	/*
727 	 * Preallocate enough nodes to support one-per buf so that
728 	 * we can not fail an insert.  reassignbuf() callers can not
729 	 * tolerate the insertion failure.
730 	 */
731 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
732 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
733 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
734 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
735 	uma_prealloc(buf_trie_zone, nbuf);
736 
737 	vnodes_created = counter_u64_alloc(M_WAITOK);
738 	recycles_count = counter_u64_alloc(M_WAITOK);
739 	recycles_free_count = counter_u64_alloc(M_WAITOK);
740 	deferred_inact = counter_u64_alloc(M_WAITOK);
741 
742 	/*
743 	 * Initialize the filesystem syncer.
744 	 */
745 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
746 	    &syncer_mask);
747 	syncer_maxdelay = syncer_mask + 1;
748 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
749 	cv_init(&sync_wakeup, "syncer");
750 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
751 		vnsz2log++;
752 	vnsz2log--;
753 
754 	CPU_FOREACH(cpu) {
755 		vd = DPCPU_ID_PTR((cpu), vd);
756 		bzero(vd, sizeof(*vd));
757 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
758 	}
759 }
760 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
761 
762 /*
763  * Mark a mount point as busy. Used to synchronize access and to delay
764  * unmounting. Eventually, mountlist_mtx is not released on failure.
765  *
766  * vfs_busy() is a custom lock, it can block the caller.
767  * vfs_busy() only sleeps if the unmount is active on the mount point.
768  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
769  * vnode belonging to mp.
770  *
771  * Lookup uses vfs_busy() to traverse mount points.
772  * root fs			var fs
773  * / vnode lock		A	/ vnode lock (/var)		D
774  * /var vnode lock	B	/log vnode lock(/var/log)	E
775  * vfs_busy lock	C	vfs_busy lock			F
776  *
777  * Within each file system, the lock order is C->A->B and F->D->E.
778  *
779  * When traversing across mounts, the system follows that lock order:
780  *
781  *        C->A->B
782  *              |
783  *              +->F->D->E
784  *
785  * The lookup() process for namei("/var") illustrates the process:
786  *  VOP_LOOKUP() obtains B while A is held
787  *  vfs_busy() obtains a shared lock on F while A and B are held
788  *  vput() releases lock on B
789  *  vput() releases lock on A
790  *  VFS_ROOT() obtains lock on D while shared lock on F is held
791  *  vfs_unbusy() releases shared lock on F
792  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
793  *    Attempt to lock A (instead of vp_crossmp) while D is held would
794  *    violate the global order, causing deadlocks.
795  *
796  * dounmount() locks B while F is drained.
797  */
798 int
799 vfs_busy(struct mount *mp, int flags)
800 {
801 	struct mount_pcpu *mpcpu;
802 
803 	MPASS((flags & ~MBF_MASK) == 0);
804 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
805 
806 	if (vfs_op_thread_enter(mp, mpcpu)) {
807 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
808 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
809 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
810 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
811 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
812 		vfs_op_thread_exit(mp, mpcpu);
813 		if (flags & MBF_MNTLSTLOCK)
814 			mtx_unlock(&mountlist_mtx);
815 		return (0);
816 	}
817 
818 	MNT_ILOCK(mp);
819 	vfs_assert_mount_counters(mp);
820 	MNT_REF(mp);
821 	/*
822 	 * If mount point is currently being unmounted, sleep until the
823 	 * mount point fate is decided.  If thread doing the unmounting fails,
824 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
825 	 * that this mount point has survived the unmount attempt and vfs_busy
826 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
827 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
828 	 * about to be really destroyed.  vfs_busy needs to release its
829 	 * reference on the mount point in this case and return with ENOENT,
830 	 * telling the caller that mount mount it tried to busy is no longer
831 	 * valid.
832 	 */
833 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
834 		KASSERT(mp->mnt_pinned_count == 0,
835 		    ("%s: non-zero pinned count %d with pending unmount",
836 		    __func__, mp->mnt_pinned_count));
837 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
838 			MNT_REL(mp);
839 			MNT_IUNLOCK(mp);
840 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
841 			    __func__);
842 			return (ENOENT);
843 		}
844 		if (flags & MBF_MNTLSTLOCK)
845 			mtx_unlock(&mountlist_mtx);
846 		mp->mnt_kern_flag |= MNTK_MWAIT;
847 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
848 		if (flags & MBF_MNTLSTLOCK)
849 			mtx_lock(&mountlist_mtx);
850 		MNT_ILOCK(mp);
851 	}
852 	if (flags & MBF_MNTLSTLOCK)
853 		mtx_unlock(&mountlist_mtx);
854 	mp->mnt_lockref++;
855 	MNT_IUNLOCK(mp);
856 	return (0);
857 }
858 
859 /*
860  * Free a busy filesystem.
861  */
862 void
863 vfs_unbusy(struct mount *mp)
864 {
865 	struct mount_pcpu *mpcpu;
866 	int c;
867 
868 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
869 
870 	if (vfs_op_thread_enter(mp, mpcpu)) {
871 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
872 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
873 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
874 		vfs_op_thread_exit(mp, mpcpu);
875 		return;
876 	}
877 
878 	MNT_ILOCK(mp);
879 	vfs_assert_mount_counters(mp);
880 	MNT_REL(mp);
881 	c = --mp->mnt_lockref;
882 	if (mp->mnt_vfs_ops == 0) {
883 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
884 		MNT_IUNLOCK(mp);
885 		return;
886 	}
887 	if (c < 0)
888 		vfs_dump_mount_counters(mp);
889 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
890 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
891 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
892 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
893 		wakeup(&mp->mnt_lockref);
894 	}
895 	MNT_IUNLOCK(mp);
896 }
897 
898 /*
899  * Lookup a mount point by filesystem identifier.
900  */
901 struct mount *
902 vfs_getvfs(fsid_t *fsid)
903 {
904 	struct mount *mp;
905 
906 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
907 	mtx_lock(&mountlist_mtx);
908 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
909 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
910 			vfs_ref(mp);
911 			mtx_unlock(&mountlist_mtx);
912 			return (mp);
913 		}
914 	}
915 	mtx_unlock(&mountlist_mtx);
916 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
917 	return ((struct mount *) 0);
918 }
919 
920 /*
921  * Lookup a mount point by filesystem identifier, busying it before
922  * returning.
923  *
924  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
925  * cache for popular filesystem identifiers.  The cache is lockess, using
926  * the fact that struct mount's are never freed.  In worst case we may
927  * get pointer to unmounted or even different filesystem, so we have to
928  * check what we got, and go slow way if so.
929  */
930 struct mount *
931 vfs_busyfs(fsid_t *fsid)
932 {
933 #define	FSID_CACHE_SIZE	256
934 	typedef struct mount * volatile vmp_t;
935 	static vmp_t cache[FSID_CACHE_SIZE];
936 	struct mount *mp;
937 	int error;
938 	uint32_t hash;
939 
940 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
941 	hash = fsid->val[0] ^ fsid->val[1];
942 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
943 	mp = cache[hash];
944 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
945 		goto slow;
946 	if (vfs_busy(mp, 0) != 0) {
947 		cache[hash] = NULL;
948 		goto slow;
949 	}
950 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
951 		return (mp);
952 	else
953 	    vfs_unbusy(mp);
954 
955 slow:
956 	mtx_lock(&mountlist_mtx);
957 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
958 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
959 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
960 			if (error) {
961 				cache[hash] = NULL;
962 				mtx_unlock(&mountlist_mtx);
963 				return (NULL);
964 			}
965 			cache[hash] = mp;
966 			return (mp);
967 		}
968 	}
969 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
970 	mtx_unlock(&mountlist_mtx);
971 	return ((struct mount *) 0);
972 }
973 
974 /*
975  * Check if a user can access privileged mount options.
976  */
977 int
978 vfs_suser(struct mount *mp, struct thread *td)
979 {
980 	int error;
981 
982 	if (jailed(td->td_ucred)) {
983 		/*
984 		 * If the jail of the calling thread lacks permission for
985 		 * this type of file system, deny immediately.
986 		 */
987 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
988 			return (EPERM);
989 
990 		/*
991 		 * If the file system was mounted outside the jail of the
992 		 * calling thread, deny immediately.
993 		 */
994 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
995 			return (EPERM);
996 	}
997 
998 	/*
999 	 * If file system supports delegated administration, we don't check
1000 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1001 	 * by the file system itself.
1002 	 * If this is not the user that did original mount, we check for
1003 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1004 	 */
1005 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1006 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1007 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1008 			return (error);
1009 	}
1010 	return (0);
1011 }
1012 
1013 /*
1014  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1015  * will be used to create fake device numbers for stat().  Also try (but
1016  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1017  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1018  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1019  *
1020  * Keep in mind that several mounts may be running in parallel.  Starting
1021  * the search one past where the previous search terminated is both a
1022  * micro-optimization and a defense against returning the same fsid to
1023  * different mounts.
1024  */
1025 void
1026 vfs_getnewfsid(struct mount *mp)
1027 {
1028 	static uint16_t mntid_base;
1029 	struct mount *nmp;
1030 	fsid_t tfsid;
1031 	int mtype;
1032 
1033 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1034 	mtx_lock(&mntid_mtx);
1035 	mtype = mp->mnt_vfc->vfc_typenum;
1036 	tfsid.val[1] = mtype;
1037 	mtype = (mtype & 0xFF) << 24;
1038 	for (;;) {
1039 		tfsid.val[0] = makedev(255,
1040 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1041 		mntid_base++;
1042 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1043 			break;
1044 		vfs_rel(nmp);
1045 	}
1046 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1047 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1048 	mtx_unlock(&mntid_mtx);
1049 }
1050 
1051 /*
1052  * Knob to control the precision of file timestamps:
1053  *
1054  *   0 = seconds only; nanoseconds zeroed.
1055  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1056  *   2 = seconds and nanoseconds, truncated to microseconds.
1057  * >=3 = seconds and nanoseconds, maximum precision.
1058  */
1059 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1060 
1061 static int timestamp_precision = TSP_USEC;
1062 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1063     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1064     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1065     "3+: sec + ns (max. precision))");
1066 
1067 /*
1068  * Get a current timestamp.
1069  */
1070 void
1071 vfs_timestamp(struct timespec *tsp)
1072 {
1073 	struct timeval tv;
1074 
1075 	switch (timestamp_precision) {
1076 	case TSP_SEC:
1077 		tsp->tv_sec = time_second;
1078 		tsp->tv_nsec = 0;
1079 		break;
1080 	case TSP_HZ:
1081 		getnanotime(tsp);
1082 		break;
1083 	case TSP_USEC:
1084 		microtime(&tv);
1085 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1086 		break;
1087 	case TSP_NSEC:
1088 	default:
1089 		nanotime(tsp);
1090 		break;
1091 	}
1092 }
1093 
1094 /*
1095  * Set vnode attributes to VNOVAL
1096  */
1097 void
1098 vattr_null(struct vattr *vap)
1099 {
1100 
1101 	vap->va_type = VNON;
1102 	vap->va_size = VNOVAL;
1103 	vap->va_bytes = VNOVAL;
1104 	vap->va_mode = VNOVAL;
1105 	vap->va_nlink = VNOVAL;
1106 	vap->va_uid = VNOVAL;
1107 	vap->va_gid = VNOVAL;
1108 	vap->va_fsid = VNOVAL;
1109 	vap->va_fileid = VNOVAL;
1110 	vap->va_blocksize = VNOVAL;
1111 	vap->va_rdev = VNOVAL;
1112 	vap->va_atime.tv_sec = VNOVAL;
1113 	vap->va_atime.tv_nsec = VNOVAL;
1114 	vap->va_mtime.tv_sec = VNOVAL;
1115 	vap->va_mtime.tv_nsec = VNOVAL;
1116 	vap->va_ctime.tv_sec = VNOVAL;
1117 	vap->va_ctime.tv_nsec = VNOVAL;
1118 	vap->va_birthtime.tv_sec = VNOVAL;
1119 	vap->va_birthtime.tv_nsec = VNOVAL;
1120 	vap->va_flags = VNOVAL;
1121 	vap->va_gen = VNOVAL;
1122 	vap->va_vaflags = 0;
1123 }
1124 
1125 /*
1126  * Try to reduce the total number of vnodes.
1127  *
1128  * This routine (and its user) are buggy in at least the following ways:
1129  * - all parameters were picked years ago when RAM sizes were significantly
1130  *   smaller
1131  * - it can pick vnodes based on pages used by the vm object, but filesystems
1132  *   like ZFS don't use it making the pick broken
1133  * - since ZFS has its own aging policy it gets partially combated by this one
1134  * - a dedicated method should be provided for filesystems to let them decide
1135  *   whether the vnode should be recycled
1136  *
1137  * This routine is called when we have too many vnodes.  It attempts
1138  * to free <count> vnodes and will potentially free vnodes that still
1139  * have VM backing store (VM backing store is typically the cause
1140  * of a vnode blowout so we want to do this).  Therefore, this operation
1141  * is not considered cheap.
1142  *
1143  * A number of conditions may prevent a vnode from being reclaimed.
1144  * the buffer cache may have references on the vnode, a directory
1145  * vnode may still have references due to the namei cache representing
1146  * underlying files, or the vnode may be in active use.   It is not
1147  * desirable to reuse such vnodes.  These conditions may cause the
1148  * number of vnodes to reach some minimum value regardless of what
1149  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1150  *
1151  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1152  * 			 entries if this argument is strue
1153  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1154  *			 pages.
1155  * @param target	 How many vnodes to reclaim.
1156  * @return		 The number of vnodes that were reclaimed.
1157  */
1158 static int
1159 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1160 {
1161 	struct vnode *vp, *mvp;
1162 	struct mount *mp;
1163 	struct vm_object *object;
1164 	u_long done;
1165 	bool retried;
1166 
1167 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1168 
1169 	retried = false;
1170 	done = 0;
1171 
1172 	mvp = vnode_list_reclaim_marker;
1173 restart:
1174 	vp = mvp;
1175 	while (done < target) {
1176 		vp = TAILQ_NEXT(vp, v_vnodelist);
1177 		if (__predict_false(vp == NULL))
1178 			break;
1179 
1180 		if (__predict_false(vp->v_type == VMARKER))
1181 			continue;
1182 
1183 		/*
1184 		 * If it's been deconstructed already, it's still
1185 		 * referenced, or it exceeds the trigger, skip it.
1186 		 * Also skip free vnodes.  We are trying to make space
1187 		 * to expand the free list, not reduce it.
1188 		 */
1189 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1190 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1191 			goto next_iter;
1192 
1193 		if (vp->v_type == VBAD || vp->v_type == VNON)
1194 			goto next_iter;
1195 
1196 		object = atomic_load_ptr(&vp->v_object);
1197 		if (object == NULL || object->resident_page_count > trigger) {
1198 			goto next_iter;
1199 		}
1200 
1201 		/*
1202 		 * Handle races against vnode allocation. Filesystems lock the
1203 		 * vnode some time after it gets returned from getnewvnode,
1204 		 * despite type and hold count being manipulated earlier.
1205 		 * Resorting to checking v_mount restores guarantees present
1206 		 * before the global list was reworked to contain all vnodes.
1207 		 */
1208 		if (!VI_TRYLOCK(vp))
1209 			goto next_iter;
1210 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1211 			VI_UNLOCK(vp);
1212 			goto next_iter;
1213 		}
1214 		if (vp->v_mount == NULL) {
1215 			VI_UNLOCK(vp);
1216 			goto next_iter;
1217 		}
1218 		vholdl(vp);
1219 		VI_UNLOCK(vp);
1220 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1221 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1222 		mtx_unlock(&vnode_list_mtx);
1223 
1224 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1225 			vdrop(vp);
1226 			goto next_iter_unlocked;
1227 		}
1228 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1229 			vdrop(vp);
1230 			vn_finished_write(mp);
1231 			goto next_iter_unlocked;
1232 		}
1233 
1234 		VI_LOCK(vp);
1235 		if (vp->v_usecount > 0 ||
1236 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1237 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1238 		    vp->v_object->resident_page_count > trigger)) {
1239 			VOP_UNLOCK(vp);
1240 			vdropl(vp);
1241 			vn_finished_write(mp);
1242 			goto next_iter_unlocked;
1243 		}
1244 		counter_u64_add(recycles_count, 1);
1245 		vgonel(vp);
1246 		VOP_UNLOCK(vp);
1247 		vdropl(vp);
1248 		vn_finished_write(mp);
1249 		done++;
1250 next_iter_unlocked:
1251 		if (should_yield())
1252 			kern_yield(PRI_USER);
1253 		mtx_lock(&vnode_list_mtx);
1254 		goto restart;
1255 next_iter:
1256 		MPASS(vp->v_type != VMARKER);
1257 		if (!should_yield())
1258 			continue;
1259 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1260 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1261 		mtx_unlock(&vnode_list_mtx);
1262 		kern_yield(PRI_USER);
1263 		mtx_lock(&vnode_list_mtx);
1264 		goto restart;
1265 	}
1266 	if (done == 0 && !retried) {
1267 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1268 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1269 		retried = true;
1270 		goto restart;
1271 	}
1272 	return (done);
1273 }
1274 
1275 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1276 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1277     0,
1278     "limit on vnode free requests per call to the vnlru_free routine");
1279 
1280 /*
1281  * Attempt to reduce the free list by the requested amount.
1282  */
1283 static int
1284 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1285 {
1286 	struct vnode *vp;
1287 	struct mount *mp;
1288 	int ocount;
1289 
1290 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1291 	if (count > max_vnlru_free)
1292 		count = max_vnlru_free;
1293 	ocount = count;
1294 	vp = mvp;
1295 	for (;;) {
1296 		if (count == 0) {
1297 			break;
1298 		}
1299 		vp = TAILQ_NEXT(vp, v_vnodelist);
1300 		if (__predict_false(vp == NULL)) {
1301 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1303 			break;
1304 		}
1305 		if (__predict_false(vp->v_type == VMARKER))
1306 			continue;
1307 		if (vp->v_holdcnt > 0)
1308 			continue;
1309 		/*
1310 		 * Don't recycle if our vnode is from different type
1311 		 * of mount point.  Note that mp is type-safe, the
1312 		 * check does not reach unmapped address even if
1313 		 * vnode is reclaimed.
1314 		 */
1315 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1316 		    mp->mnt_op != mnt_op) {
1317 			continue;
1318 		}
1319 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1320 			continue;
1321 		}
1322 		if (!vhold_recycle_free(vp))
1323 			continue;
1324 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1325 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1326 		mtx_unlock(&vnode_list_mtx);
1327 		if (vtryrecycle(vp) == 0)
1328 			count--;
1329 		mtx_lock(&vnode_list_mtx);
1330 		vp = mvp;
1331 	}
1332 	return (ocount - count);
1333 }
1334 
1335 static int
1336 vnlru_free_locked(int count)
1337 {
1338 
1339 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1340 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1341 }
1342 
1343 void
1344 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1345 {
1346 
1347 	MPASS(mnt_op != NULL);
1348 	MPASS(mvp != NULL);
1349 	VNPASS(mvp->v_type == VMARKER, mvp);
1350 	mtx_lock(&vnode_list_mtx);
1351 	vnlru_free_impl(count, mnt_op, mvp);
1352 	mtx_unlock(&vnode_list_mtx);
1353 }
1354 
1355 struct vnode *
1356 vnlru_alloc_marker(void)
1357 {
1358 	struct vnode *mvp;
1359 
1360 	mvp = vn_alloc_marker(NULL);
1361 	mtx_lock(&vnode_list_mtx);
1362 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1363 	mtx_unlock(&vnode_list_mtx);
1364 	return (mvp);
1365 }
1366 
1367 void
1368 vnlru_free_marker(struct vnode *mvp)
1369 {
1370 	mtx_lock(&vnode_list_mtx);
1371 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1372 	mtx_unlock(&vnode_list_mtx);
1373 	vn_free_marker(mvp);
1374 }
1375 
1376 static void
1377 vnlru_recalc(void)
1378 {
1379 
1380 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1381 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1382 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1383 	vlowat = vhiwat / 2;
1384 }
1385 
1386 /*
1387  * Attempt to recycle vnodes in a context that is always safe to block.
1388  * Calling vlrurecycle() from the bowels of filesystem code has some
1389  * interesting deadlock problems.
1390  */
1391 static struct proc *vnlruproc;
1392 static int vnlruproc_sig;
1393 
1394 /*
1395  * The main freevnodes counter is only updated when threads requeue their vnode
1396  * batches. CPUs are conditionally walked to compute a more accurate total.
1397  *
1398  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1399  * at any given moment can still exceed slop, but it should not be by significant
1400  * margin in practice.
1401  */
1402 #define VNLRU_FREEVNODES_SLOP 128
1403 
1404 static __inline void
1405 vfs_freevnodes_inc(void)
1406 {
1407 	struct vdbatch *vd;
1408 
1409 	critical_enter();
1410 	vd = DPCPU_PTR(vd);
1411 	vd->freevnodes++;
1412 	critical_exit();
1413 }
1414 
1415 static __inline void
1416 vfs_freevnodes_dec(void)
1417 {
1418 	struct vdbatch *vd;
1419 
1420 	critical_enter();
1421 	vd = DPCPU_PTR(vd);
1422 	vd->freevnodes--;
1423 	critical_exit();
1424 }
1425 
1426 static u_long
1427 vnlru_read_freevnodes(void)
1428 {
1429 	struct vdbatch *vd;
1430 	long slop;
1431 	int cpu;
1432 
1433 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1434 	if (freevnodes > freevnodes_old)
1435 		slop = freevnodes - freevnodes_old;
1436 	else
1437 		slop = freevnodes_old - freevnodes;
1438 	if (slop < VNLRU_FREEVNODES_SLOP)
1439 		return (freevnodes >= 0 ? freevnodes : 0);
1440 	freevnodes_old = freevnodes;
1441 	CPU_FOREACH(cpu) {
1442 		vd = DPCPU_ID_PTR((cpu), vd);
1443 		freevnodes_old += vd->freevnodes;
1444 	}
1445 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1446 }
1447 
1448 static bool
1449 vnlru_under(u_long rnumvnodes, u_long limit)
1450 {
1451 	u_long rfreevnodes, space;
1452 
1453 	if (__predict_false(rnumvnodes > desiredvnodes))
1454 		return (true);
1455 
1456 	space = desiredvnodes - rnumvnodes;
1457 	if (space < limit) {
1458 		rfreevnodes = vnlru_read_freevnodes();
1459 		if (rfreevnodes > wantfreevnodes)
1460 			space += rfreevnodes - wantfreevnodes;
1461 	}
1462 	return (space < limit);
1463 }
1464 
1465 static bool
1466 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1467 {
1468 	long rfreevnodes, space;
1469 
1470 	if (__predict_false(rnumvnodes > desiredvnodes))
1471 		return (true);
1472 
1473 	space = desiredvnodes - rnumvnodes;
1474 	if (space < limit) {
1475 		rfreevnodes = atomic_load_long(&freevnodes);
1476 		if (rfreevnodes > wantfreevnodes)
1477 			space += rfreevnodes - wantfreevnodes;
1478 	}
1479 	return (space < limit);
1480 }
1481 
1482 static void
1483 vnlru_kick(void)
1484 {
1485 
1486 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1487 	if (vnlruproc_sig == 0) {
1488 		vnlruproc_sig = 1;
1489 		wakeup(vnlruproc);
1490 	}
1491 }
1492 
1493 static void
1494 vnlru_proc(void)
1495 {
1496 	u_long rnumvnodes, rfreevnodes, target;
1497 	unsigned long onumvnodes;
1498 	int done, force, trigger, usevnodes;
1499 	bool reclaim_nc_src, want_reread;
1500 
1501 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1502 	    SHUTDOWN_PRI_FIRST);
1503 
1504 	force = 0;
1505 	want_reread = false;
1506 	for (;;) {
1507 		kproc_suspend_check(vnlruproc);
1508 		mtx_lock(&vnode_list_mtx);
1509 		rnumvnodes = atomic_load_long(&numvnodes);
1510 
1511 		if (want_reread) {
1512 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1513 			want_reread = false;
1514 		}
1515 
1516 		/*
1517 		 * If numvnodes is too large (due to desiredvnodes being
1518 		 * adjusted using its sysctl, or emergency growth), first
1519 		 * try to reduce it by discarding from the free list.
1520 		 */
1521 		if (rnumvnodes > desiredvnodes) {
1522 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1523 			rnumvnodes = atomic_load_long(&numvnodes);
1524 		}
1525 		/*
1526 		 * Sleep if the vnode cache is in a good state.  This is
1527 		 * when it is not over-full and has space for about a 4%
1528 		 * or 9% expansion (by growing its size or inexcessively
1529 		 * reducing its free list).  Otherwise, try to reclaim
1530 		 * space for a 10% expansion.
1531 		 */
1532 		if (vstir && force == 0) {
1533 			force = 1;
1534 			vstir = 0;
1535 		}
1536 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1537 			vnlruproc_sig = 0;
1538 			wakeup(&vnlruproc_sig);
1539 			msleep(vnlruproc, &vnode_list_mtx,
1540 			    PVFS|PDROP, "vlruwt", hz);
1541 			continue;
1542 		}
1543 		rfreevnodes = vnlru_read_freevnodes();
1544 
1545 		onumvnodes = rnumvnodes;
1546 		/*
1547 		 * Calculate parameters for recycling.  These are the same
1548 		 * throughout the loop to give some semblance of fairness.
1549 		 * The trigger point is to avoid recycling vnodes with lots
1550 		 * of resident pages.  We aren't trying to free memory; we
1551 		 * are trying to recycle or at least free vnodes.
1552 		 */
1553 		if (rnumvnodes <= desiredvnodes)
1554 			usevnodes = rnumvnodes - rfreevnodes;
1555 		else
1556 			usevnodes = rnumvnodes;
1557 		if (usevnodes <= 0)
1558 			usevnodes = 1;
1559 		/*
1560 		 * The trigger value is is chosen to give a conservatively
1561 		 * large value to ensure that it alone doesn't prevent
1562 		 * making progress.  The value can easily be so large that
1563 		 * it is effectively infinite in some congested and
1564 		 * misconfigured cases, and this is necessary.  Normally
1565 		 * it is about 8 to 100 (pages), which is quite large.
1566 		 */
1567 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1568 		if (force < 2)
1569 			trigger = vsmalltrigger;
1570 		reclaim_nc_src = force >= 3;
1571 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1572 		target = target / 10 + 1;
1573 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1574 		mtx_unlock(&vnode_list_mtx);
1575 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1576 			uma_reclaim(UMA_RECLAIM_DRAIN);
1577 		if (done == 0) {
1578 			if (force == 0 || force == 1) {
1579 				force = 2;
1580 				continue;
1581 			}
1582 			if (force == 2) {
1583 				force = 3;
1584 				continue;
1585 			}
1586 			want_reread = true;
1587 			force = 0;
1588 			vnlru_nowhere++;
1589 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1590 		} else {
1591 			want_reread = true;
1592 			kern_yield(PRI_USER);
1593 		}
1594 	}
1595 }
1596 
1597 static struct kproc_desc vnlru_kp = {
1598 	"vnlru",
1599 	vnlru_proc,
1600 	&vnlruproc
1601 };
1602 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1603     &vnlru_kp);
1604 
1605 /*
1606  * Routines having to do with the management of the vnode table.
1607  */
1608 
1609 /*
1610  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1611  * before we actually vgone().  This function must be called with the vnode
1612  * held to prevent the vnode from being returned to the free list midway
1613  * through vgone().
1614  */
1615 static int
1616 vtryrecycle(struct vnode *vp)
1617 {
1618 	struct mount *vnmp;
1619 
1620 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1621 	VNASSERT(vp->v_holdcnt, vp,
1622 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1623 	/*
1624 	 * This vnode may found and locked via some other list, if so we
1625 	 * can't recycle it yet.
1626 	 */
1627 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1628 		CTR2(KTR_VFS,
1629 		    "%s: impossible to recycle, vp %p lock is already held",
1630 		    __func__, vp);
1631 		vdrop(vp);
1632 		return (EWOULDBLOCK);
1633 	}
1634 	/*
1635 	 * Don't recycle if its filesystem is being suspended.
1636 	 */
1637 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1638 		VOP_UNLOCK(vp);
1639 		CTR2(KTR_VFS,
1640 		    "%s: impossible to recycle, cannot start the write for %p",
1641 		    __func__, vp);
1642 		vdrop(vp);
1643 		return (EBUSY);
1644 	}
1645 	/*
1646 	 * If we got this far, we need to acquire the interlock and see if
1647 	 * anyone picked up this vnode from another list.  If not, we will
1648 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1649 	 * will skip over it.
1650 	 */
1651 	VI_LOCK(vp);
1652 	if (vp->v_usecount) {
1653 		VOP_UNLOCK(vp);
1654 		vdropl(vp);
1655 		vn_finished_write(vnmp);
1656 		CTR2(KTR_VFS,
1657 		    "%s: impossible to recycle, %p is already referenced",
1658 		    __func__, vp);
1659 		return (EBUSY);
1660 	}
1661 	if (!VN_IS_DOOMED(vp)) {
1662 		counter_u64_add(recycles_free_count, 1);
1663 		vgonel(vp);
1664 	}
1665 	VOP_UNLOCK(vp);
1666 	vdropl(vp);
1667 	vn_finished_write(vnmp);
1668 	return (0);
1669 }
1670 
1671 /*
1672  * Allocate a new vnode.
1673  *
1674  * The operation never returns an error. Returning an error was disabled
1675  * in r145385 (dated 2005) with the following comment:
1676  *
1677  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1678  *
1679  * Given the age of this commit (almost 15 years at the time of writing this
1680  * comment) restoring the ability to fail requires a significant audit of
1681  * all codepaths.
1682  *
1683  * The routine can try to free a vnode or stall for up to 1 second waiting for
1684  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1685  */
1686 static u_long vn_alloc_cyclecount;
1687 
1688 static struct vnode * __noinline
1689 vn_alloc_hard(struct mount *mp)
1690 {
1691 	u_long rnumvnodes, rfreevnodes;
1692 
1693 	mtx_lock(&vnode_list_mtx);
1694 	rnumvnodes = atomic_load_long(&numvnodes);
1695 	if (rnumvnodes + 1 < desiredvnodes) {
1696 		vn_alloc_cyclecount = 0;
1697 		goto alloc;
1698 	}
1699 	rfreevnodes = vnlru_read_freevnodes();
1700 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1701 		vn_alloc_cyclecount = 0;
1702 		vstir = 1;
1703 	}
1704 	/*
1705 	 * Grow the vnode cache if it will not be above its target max
1706 	 * after growing.  Otherwise, if the free list is nonempty, try
1707 	 * to reclaim 1 item from it before growing the cache (possibly
1708 	 * above its target max if the reclamation failed or is delayed).
1709 	 * Otherwise, wait for some space.  In all cases, schedule
1710 	 * vnlru_proc() if we are getting short of space.  The watermarks
1711 	 * should be chosen so that we never wait or even reclaim from
1712 	 * the free list to below its target minimum.
1713 	 */
1714 	if (vnlru_free_locked(1) > 0)
1715 		goto alloc;
1716 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1717 		/*
1718 		 * Wait for space for a new vnode.
1719 		 */
1720 		vnlru_kick();
1721 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1722 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1723 		    vnlru_read_freevnodes() > 1)
1724 			vnlru_free_locked(1);
1725 	}
1726 alloc:
1727 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1728 	if (vnlru_under(rnumvnodes, vlowat))
1729 		vnlru_kick();
1730 	mtx_unlock(&vnode_list_mtx);
1731 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1732 }
1733 
1734 static struct vnode *
1735 vn_alloc(struct mount *mp)
1736 {
1737 	u_long rnumvnodes;
1738 
1739 	if (__predict_false(vn_alloc_cyclecount != 0))
1740 		return (vn_alloc_hard(mp));
1741 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1742 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1743 		atomic_subtract_long(&numvnodes, 1);
1744 		return (vn_alloc_hard(mp));
1745 	}
1746 
1747 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1748 }
1749 
1750 static void
1751 vn_free(struct vnode *vp)
1752 {
1753 
1754 	atomic_subtract_long(&numvnodes, 1);
1755 	uma_zfree_smr(vnode_zone, vp);
1756 }
1757 
1758 /*
1759  * Return the next vnode from the free list.
1760  */
1761 int
1762 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1763     struct vnode **vpp)
1764 {
1765 	struct vnode *vp;
1766 	struct thread *td;
1767 	struct lock_object *lo;
1768 
1769 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1770 
1771 	KASSERT(vops->registered,
1772 	    ("%s: not registered vector op %p\n", __func__, vops));
1773 
1774 	td = curthread;
1775 	if (td->td_vp_reserved != NULL) {
1776 		vp = td->td_vp_reserved;
1777 		td->td_vp_reserved = NULL;
1778 	} else {
1779 		vp = vn_alloc(mp);
1780 	}
1781 	counter_u64_add(vnodes_created, 1);
1782 	/*
1783 	 * Locks are given the generic name "vnode" when created.
1784 	 * Follow the historic practice of using the filesystem
1785 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1786 	 *
1787 	 * Locks live in a witness group keyed on their name. Thus,
1788 	 * when a lock is renamed, it must also move from the witness
1789 	 * group of its old name to the witness group of its new name.
1790 	 *
1791 	 * The change only needs to be made when the vnode moves
1792 	 * from one filesystem type to another. We ensure that each
1793 	 * filesystem use a single static name pointer for its tag so
1794 	 * that we can compare pointers rather than doing a strcmp().
1795 	 */
1796 	lo = &vp->v_vnlock->lock_object;
1797 #ifdef WITNESS
1798 	if (lo->lo_name != tag) {
1799 #endif
1800 		lo->lo_name = tag;
1801 #ifdef WITNESS
1802 		WITNESS_DESTROY(lo);
1803 		WITNESS_INIT(lo, tag);
1804 	}
1805 #endif
1806 	/*
1807 	 * By default, don't allow shared locks unless filesystems opt-in.
1808 	 */
1809 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1810 	/*
1811 	 * Finalize various vnode identity bits.
1812 	 */
1813 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1814 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1815 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1816 	vp->v_type = VNON;
1817 	vp->v_op = vops;
1818 	vp->v_irflag = 0;
1819 	v_init_counters(vp);
1820 	vn_seqc_init(vp);
1821 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1822 #ifdef DIAGNOSTIC
1823 	if (mp == NULL && vops != &dead_vnodeops)
1824 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1825 #endif
1826 #ifdef MAC
1827 	mac_vnode_init(vp);
1828 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1829 		mac_vnode_associate_singlelabel(mp, vp);
1830 #endif
1831 	if (mp != NULL) {
1832 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1833 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1834 			vp->v_vflag |= VV_NOKNOTE;
1835 	}
1836 
1837 	/*
1838 	 * For the filesystems which do not use vfs_hash_insert(),
1839 	 * still initialize v_hash to have vfs_hash_index() useful.
1840 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1841 	 * its own hashing.
1842 	 */
1843 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1844 
1845 	*vpp = vp;
1846 	return (0);
1847 }
1848 
1849 void
1850 getnewvnode_reserve(void)
1851 {
1852 	struct thread *td;
1853 
1854 	td = curthread;
1855 	MPASS(td->td_vp_reserved == NULL);
1856 	td->td_vp_reserved = vn_alloc(NULL);
1857 }
1858 
1859 void
1860 getnewvnode_drop_reserve(void)
1861 {
1862 	struct thread *td;
1863 
1864 	td = curthread;
1865 	if (td->td_vp_reserved != NULL) {
1866 		vn_free(td->td_vp_reserved);
1867 		td->td_vp_reserved = NULL;
1868 	}
1869 }
1870 
1871 static void __noinline
1872 freevnode(struct vnode *vp)
1873 {
1874 	struct bufobj *bo;
1875 
1876 	/*
1877 	 * The vnode has been marked for destruction, so free it.
1878 	 *
1879 	 * The vnode will be returned to the zone where it will
1880 	 * normally remain until it is needed for another vnode. We
1881 	 * need to cleanup (or verify that the cleanup has already
1882 	 * been done) any residual data left from its current use
1883 	 * so as not to contaminate the freshly allocated vnode.
1884 	 */
1885 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1886 	/*
1887 	 * Paired with vgone.
1888 	 */
1889 	vn_seqc_write_end_free(vp);
1890 
1891 	bo = &vp->v_bufobj;
1892 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1893 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1894 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1895 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1896 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1897 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1898 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1899 	    ("clean blk trie not empty"));
1900 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1901 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1902 	    ("dirty blk trie not empty"));
1903 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1904 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1905 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1906 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1907 	    ("Dangling rangelock waiters"));
1908 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1909 	    ("Leaked inactivation"));
1910 	VI_UNLOCK(vp);
1911 #ifdef MAC
1912 	mac_vnode_destroy(vp);
1913 #endif
1914 	if (vp->v_pollinfo != NULL) {
1915 		destroy_vpollinfo(vp->v_pollinfo);
1916 		vp->v_pollinfo = NULL;
1917 	}
1918 	vp->v_mountedhere = NULL;
1919 	vp->v_unpcb = NULL;
1920 	vp->v_rdev = NULL;
1921 	vp->v_fifoinfo = NULL;
1922 	vp->v_iflag = 0;
1923 	vp->v_vflag = 0;
1924 	bo->bo_flag = 0;
1925 	vn_free(vp);
1926 }
1927 
1928 /*
1929  * Delete from old mount point vnode list, if on one.
1930  */
1931 static void
1932 delmntque(struct vnode *vp)
1933 {
1934 	struct mount *mp;
1935 
1936 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1937 
1938 	mp = vp->v_mount;
1939 	if (mp == NULL)
1940 		return;
1941 	MNT_ILOCK(mp);
1942 	VI_LOCK(vp);
1943 	vp->v_mount = NULL;
1944 	VI_UNLOCK(vp);
1945 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1946 		("bad mount point vnode list size"));
1947 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1948 	mp->mnt_nvnodelistsize--;
1949 	MNT_REL(mp);
1950 	MNT_IUNLOCK(mp);
1951 }
1952 
1953 static void
1954 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1955 {
1956 
1957 	vp->v_data = NULL;
1958 	vp->v_op = &dead_vnodeops;
1959 	vgone(vp);
1960 	vput(vp);
1961 }
1962 
1963 /*
1964  * Insert into list of vnodes for the new mount point, if available.
1965  */
1966 int
1967 insmntque1(struct vnode *vp, struct mount *mp,
1968 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1969 {
1970 
1971 	KASSERT(vp->v_mount == NULL,
1972 		("insmntque: vnode already on per mount vnode list"));
1973 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1974 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1975 
1976 	/*
1977 	 * We acquire the vnode interlock early to ensure that the
1978 	 * vnode cannot be recycled by another process releasing a
1979 	 * holdcnt on it before we get it on both the vnode list
1980 	 * and the active vnode list. The mount mutex protects only
1981 	 * manipulation of the vnode list and the vnode freelist
1982 	 * mutex protects only manipulation of the active vnode list.
1983 	 * Hence the need to hold the vnode interlock throughout.
1984 	 */
1985 	MNT_ILOCK(mp);
1986 	VI_LOCK(vp);
1987 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1988 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1989 	    mp->mnt_nvnodelistsize == 0)) &&
1990 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1991 		VI_UNLOCK(vp);
1992 		MNT_IUNLOCK(mp);
1993 		if (dtr != NULL)
1994 			dtr(vp, dtr_arg);
1995 		return (EBUSY);
1996 	}
1997 	vp->v_mount = mp;
1998 	MNT_REF(mp);
1999 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2000 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2001 		("neg mount point vnode list size"));
2002 	mp->mnt_nvnodelistsize++;
2003 	VI_UNLOCK(vp);
2004 	MNT_IUNLOCK(mp);
2005 	return (0);
2006 }
2007 
2008 int
2009 insmntque(struct vnode *vp, struct mount *mp)
2010 {
2011 
2012 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
2013 }
2014 
2015 /*
2016  * Flush out and invalidate all buffers associated with a bufobj
2017  * Called with the underlying object locked.
2018  */
2019 int
2020 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2021 {
2022 	int error;
2023 
2024 	BO_LOCK(bo);
2025 	if (flags & V_SAVE) {
2026 		error = bufobj_wwait(bo, slpflag, slptimeo);
2027 		if (error) {
2028 			BO_UNLOCK(bo);
2029 			return (error);
2030 		}
2031 		if (bo->bo_dirty.bv_cnt > 0) {
2032 			BO_UNLOCK(bo);
2033 			do {
2034 				error = BO_SYNC(bo, MNT_WAIT);
2035 			} while (error == ERELOOKUP);
2036 			if (error != 0)
2037 				return (error);
2038 			BO_LOCK(bo);
2039 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2040 				BO_UNLOCK(bo);
2041 				return (EBUSY);
2042 			}
2043 		}
2044 	}
2045 	/*
2046 	 * If you alter this loop please notice that interlock is dropped and
2047 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2048 	 * no race conditions occur from this.
2049 	 */
2050 	do {
2051 		error = flushbuflist(&bo->bo_clean,
2052 		    flags, bo, slpflag, slptimeo);
2053 		if (error == 0 && !(flags & V_CLEANONLY))
2054 			error = flushbuflist(&bo->bo_dirty,
2055 			    flags, bo, slpflag, slptimeo);
2056 		if (error != 0 && error != EAGAIN) {
2057 			BO_UNLOCK(bo);
2058 			return (error);
2059 		}
2060 	} while (error != 0);
2061 
2062 	/*
2063 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2064 	 * have write I/O in-progress but if there is a VM object then the
2065 	 * VM object can also have read-I/O in-progress.
2066 	 */
2067 	do {
2068 		bufobj_wwait(bo, 0, 0);
2069 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2070 			BO_UNLOCK(bo);
2071 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2072 			BO_LOCK(bo);
2073 		}
2074 	} while (bo->bo_numoutput > 0);
2075 	BO_UNLOCK(bo);
2076 
2077 	/*
2078 	 * Destroy the copy in the VM cache, too.
2079 	 */
2080 	if (bo->bo_object != NULL &&
2081 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2082 		VM_OBJECT_WLOCK(bo->bo_object);
2083 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2084 		    OBJPR_CLEANONLY : 0);
2085 		VM_OBJECT_WUNLOCK(bo->bo_object);
2086 	}
2087 
2088 #ifdef INVARIANTS
2089 	BO_LOCK(bo);
2090 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2091 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2092 	    bo->bo_clean.bv_cnt > 0))
2093 		panic("vinvalbuf: flush failed");
2094 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2095 	    bo->bo_dirty.bv_cnt > 0)
2096 		panic("vinvalbuf: flush dirty failed");
2097 	BO_UNLOCK(bo);
2098 #endif
2099 	return (0);
2100 }
2101 
2102 /*
2103  * Flush out and invalidate all buffers associated with a vnode.
2104  * Called with the underlying object locked.
2105  */
2106 int
2107 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2108 {
2109 
2110 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2111 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2112 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2113 		return (0);
2114 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2115 }
2116 
2117 /*
2118  * Flush out buffers on the specified list.
2119  *
2120  */
2121 static int
2122 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2123     int slptimeo)
2124 {
2125 	struct buf *bp, *nbp;
2126 	int retval, error;
2127 	daddr_t lblkno;
2128 	b_xflags_t xflags;
2129 
2130 	ASSERT_BO_WLOCKED(bo);
2131 
2132 	retval = 0;
2133 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2134 		/*
2135 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2136 		 * do not skip any buffers. If we are flushing only V_NORMAL
2137 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2138 		 * flushing only V_ALT buffers then skip buffers not marked
2139 		 * as BX_ALTDATA.
2140 		 */
2141 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2142 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2143 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2144 			continue;
2145 		}
2146 		if (nbp != NULL) {
2147 			lblkno = nbp->b_lblkno;
2148 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2149 		}
2150 		retval = EAGAIN;
2151 		error = BUF_TIMELOCK(bp,
2152 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2153 		    "flushbuf", slpflag, slptimeo);
2154 		if (error) {
2155 			BO_LOCK(bo);
2156 			return (error != ENOLCK ? error : EAGAIN);
2157 		}
2158 		KASSERT(bp->b_bufobj == bo,
2159 		    ("bp %p wrong b_bufobj %p should be %p",
2160 		    bp, bp->b_bufobj, bo));
2161 		/*
2162 		 * XXX Since there are no node locks for NFS, I
2163 		 * believe there is a slight chance that a delayed
2164 		 * write will occur while sleeping just above, so
2165 		 * check for it.
2166 		 */
2167 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2168 		    (flags & V_SAVE)) {
2169 			bremfree(bp);
2170 			bp->b_flags |= B_ASYNC;
2171 			bwrite(bp);
2172 			BO_LOCK(bo);
2173 			return (EAGAIN);	/* XXX: why not loop ? */
2174 		}
2175 		bremfree(bp);
2176 		bp->b_flags |= (B_INVAL | B_RELBUF);
2177 		bp->b_flags &= ~B_ASYNC;
2178 		brelse(bp);
2179 		BO_LOCK(bo);
2180 		if (nbp == NULL)
2181 			break;
2182 		nbp = gbincore(bo, lblkno);
2183 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2184 		    != xflags)
2185 			break;			/* nbp invalid */
2186 	}
2187 	return (retval);
2188 }
2189 
2190 int
2191 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2192 {
2193 	struct buf *bp;
2194 	int error;
2195 	daddr_t lblkno;
2196 
2197 	ASSERT_BO_LOCKED(bo);
2198 
2199 	for (lblkno = startn;;) {
2200 again:
2201 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2202 		if (bp == NULL || bp->b_lblkno >= endn ||
2203 		    bp->b_lblkno < startn)
2204 			break;
2205 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2206 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2207 		if (error != 0) {
2208 			BO_RLOCK(bo);
2209 			if (error == ENOLCK)
2210 				goto again;
2211 			return (error);
2212 		}
2213 		KASSERT(bp->b_bufobj == bo,
2214 		    ("bp %p wrong b_bufobj %p should be %p",
2215 		    bp, bp->b_bufobj, bo));
2216 		lblkno = bp->b_lblkno + 1;
2217 		if ((bp->b_flags & B_MANAGED) == 0)
2218 			bremfree(bp);
2219 		bp->b_flags |= B_RELBUF;
2220 		/*
2221 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2222 		 * pages backing each buffer in the range are unlikely to be
2223 		 * reused.  Dirty buffers will have the hint applied once
2224 		 * they've been written.
2225 		 */
2226 		if ((bp->b_flags & B_VMIO) != 0)
2227 			bp->b_flags |= B_NOREUSE;
2228 		brelse(bp);
2229 		BO_RLOCK(bo);
2230 	}
2231 	return (0);
2232 }
2233 
2234 /*
2235  * Truncate a file's buffer and pages to a specified length.  This
2236  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2237  * sync activity.
2238  */
2239 int
2240 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2241 {
2242 	struct buf *bp, *nbp;
2243 	struct bufobj *bo;
2244 	daddr_t startlbn;
2245 
2246 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2247 	    vp, blksize, (uintmax_t)length);
2248 
2249 	/*
2250 	 * Round up to the *next* lbn.
2251 	 */
2252 	startlbn = howmany(length, blksize);
2253 
2254 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2255 
2256 	bo = &vp->v_bufobj;
2257 restart_unlocked:
2258 	BO_LOCK(bo);
2259 
2260 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2261 		;
2262 
2263 	if (length > 0) {
2264 restartsync:
2265 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2266 			if (bp->b_lblkno > 0)
2267 				continue;
2268 			/*
2269 			 * Since we hold the vnode lock this should only
2270 			 * fail if we're racing with the buf daemon.
2271 			 */
2272 			if (BUF_LOCK(bp,
2273 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2274 			    BO_LOCKPTR(bo)) == ENOLCK)
2275 				goto restart_unlocked;
2276 
2277 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2278 			    ("buf(%p) on dirty queue without DELWRI", bp));
2279 
2280 			bremfree(bp);
2281 			bawrite(bp);
2282 			BO_LOCK(bo);
2283 			goto restartsync;
2284 		}
2285 	}
2286 
2287 	bufobj_wwait(bo, 0, 0);
2288 	BO_UNLOCK(bo);
2289 	vnode_pager_setsize(vp, length);
2290 
2291 	return (0);
2292 }
2293 
2294 /*
2295  * Invalidate the cached pages of a file's buffer within the range of block
2296  * numbers [startlbn, endlbn).
2297  */
2298 void
2299 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2300     int blksize)
2301 {
2302 	struct bufobj *bo;
2303 	off_t start, end;
2304 
2305 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2306 
2307 	start = blksize * startlbn;
2308 	end = blksize * endlbn;
2309 
2310 	bo = &vp->v_bufobj;
2311 	BO_LOCK(bo);
2312 	MPASS(blksize == bo->bo_bsize);
2313 
2314 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2315 		;
2316 
2317 	BO_UNLOCK(bo);
2318 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2319 }
2320 
2321 static int
2322 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2323     daddr_t startlbn, daddr_t endlbn)
2324 {
2325 	struct buf *bp, *nbp;
2326 	bool anyfreed;
2327 
2328 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2329 	ASSERT_BO_LOCKED(bo);
2330 
2331 	do {
2332 		anyfreed = false;
2333 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2334 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2335 				continue;
2336 			if (BUF_LOCK(bp,
2337 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2338 			    BO_LOCKPTR(bo)) == ENOLCK) {
2339 				BO_LOCK(bo);
2340 				return (EAGAIN);
2341 			}
2342 
2343 			bremfree(bp);
2344 			bp->b_flags |= B_INVAL | B_RELBUF;
2345 			bp->b_flags &= ~B_ASYNC;
2346 			brelse(bp);
2347 			anyfreed = true;
2348 
2349 			BO_LOCK(bo);
2350 			if (nbp != NULL &&
2351 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2352 			    nbp->b_vp != vp ||
2353 			    (nbp->b_flags & B_DELWRI) != 0))
2354 				return (EAGAIN);
2355 		}
2356 
2357 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2358 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2359 				continue;
2360 			if (BUF_LOCK(bp,
2361 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2362 			    BO_LOCKPTR(bo)) == ENOLCK) {
2363 				BO_LOCK(bo);
2364 				return (EAGAIN);
2365 			}
2366 			bremfree(bp);
2367 			bp->b_flags |= B_INVAL | B_RELBUF;
2368 			bp->b_flags &= ~B_ASYNC;
2369 			brelse(bp);
2370 			anyfreed = true;
2371 
2372 			BO_LOCK(bo);
2373 			if (nbp != NULL &&
2374 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2375 			    (nbp->b_vp != vp) ||
2376 			    (nbp->b_flags & B_DELWRI) == 0))
2377 				return (EAGAIN);
2378 		}
2379 	} while (anyfreed);
2380 	return (0);
2381 }
2382 
2383 static void
2384 buf_vlist_remove(struct buf *bp)
2385 {
2386 	struct bufv *bv;
2387 	b_xflags_t flags;
2388 
2389 	flags = bp->b_xflags;
2390 
2391 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2392 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2393 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2394 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2395 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2396 
2397 	if ((flags & BX_VNDIRTY) != 0)
2398 		bv = &bp->b_bufobj->bo_dirty;
2399 	else
2400 		bv = &bp->b_bufobj->bo_clean;
2401 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2402 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2403 	bv->bv_cnt--;
2404 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2405 }
2406 
2407 /*
2408  * Add the buffer to the sorted clean or dirty block list.
2409  *
2410  * NOTE: xflags is passed as a constant, optimizing this inline function!
2411  */
2412 static void
2413 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2414 {
2415 	struct bufv *bv;
2416 	struct buf *n;
2417 	int error;
2418 
2419 	ASSERT_BO_WLOCKED(bo);
2420 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2421 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2422 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2423 	    ("dead bo %p", bo));
2424 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2425 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2426 	bp->b_xflags |= xflags;
2427 	if (xflags & BX_VNDIRTY)
2428 		bv = &bo->bo_dirty;
2429 	else
2430 		bv = &bo->bo_clean;
2431 
2432 	/*
2433 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2434 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2435 	 * than _ge.
2436 	 */
2437 	if (bv->bv_cnt == 0 ||
2438 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2439 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2440 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2441 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2442 	else
2443 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2444 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2445 	if (error)
2446 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2447 	bv->bv_cnt++;
2448 }
2449 
2450 /*
2451  * Look up a buffer using the buffer tries.
2452  */
2453 struct buf *
2454 gbincore(struct bufobj *bo, daddr_t lblkno)
2455 {
2456 	struct buf *bp;
2457 
2458 	ASSERT_BO_LOCKED(bo);
2459 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2460 	if (bp != NULL)
2461 		return (bp);
2462 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2463 }
2464 
2465 /*
2466  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2467  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2468  * stability of the result.  Like other lockless lookups, the found buf may
2469  * already be invalid by the time this function returns.
2470  */
2471 struct buf *
2472 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2473 {
2474 	struct buf *bp;
2475 
2476 	ASSERT_BO_UNLOCKED(bo);
2477 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2478 	if (bp != NULL)
2479 		return (bp);
2480 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2481 }
2482 
2483 /*
2484  * Associate a buffer with a vnode.
2485  */
2486 void
2487 bgetvp(struct vnode *vp, struct buf *bp)
2488 {
2489 	struct bufobj *bo;
2490 
2491 	bo = &vp->v_bufobj;
2492 	ASSERT_BO_WLOCKED(bo);
2493 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2494 
2495 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2496 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2497 	    ("bgetvp: bp already attached! %p", bp));
2498 
2499 	vhold(vp);
2500 	bp->b_vp = vp;
2501 	bp->b_bufobj = bo;
2502 	/*
2503 	 * Insert onto list for new vnode.
2504 	 */
2505 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2506 }
2507 
2508 /*
2509  * Disassociate a buffer from a vnode.
2510  */
2511 void
2512 brelvp(struct buf *bp)
2513 {
2514 	struct bufobj *bo;
2515 	struct vnode *vp;
2516 
2517 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2518 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2519 
2520 	/*
2521 	 * Delete from old vnode list, if on one.
2522 	 */
2523 	vp = bp->b_vp;		/* XXX */
2524 	bo = bp->b_bufobj;
2525 	BO_LOCK(bo);
2526 	buf_vlist_remove(bp);
2527 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2528 		bo->bo_flag &= ~BO_ONWORKLST;
2529 		mtx_lock(&sync_mtx);
2530 		LIST_REMOVE(bo, bo_synclist);
2531 		syncer_worklist_len--;
2532 		mtx_unlock(&sync_mtx);
2533 	}
2534 	bp->b_vp = NULL;
2535 	bp->b_bufobj = NULL;
2536 	BO_UNLOCK(bo);
2537 	vdrop(vp);
2538 }
2539 
2540 /*
2541  * Add an item to the syncer work queue.
2542  */
2543 static void
2544 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2545 {
2546 	int slot;
2547 
2548 	ASSERT_BO_WLOCKED(bo);
2549 
2550 	mtx_lock(&sync_mtx);
2551 	if (bo->bo_flag & BO_ONWORKLST)
2552 		LIST_REMOVE(bo, bo_synclist);
2553 	else {
2554 		bo->bo_flag |= BO_ONWORKLST;
2555 		syncer_worklist_len++;
2556 	}
2557 
2558 	if (delay > syncer_maxdelay - 2)
2559 		delay = syncer_maxdelay - 2;
2560 	slot = (syncer_delayno + delay) & syncer_mask;
2561 
2562 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2563 	mtx_unlock(&sync_mtx);
2564 }
2565 
2566 static int
2567 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2568 {
2569 	int error, len;
2570 
2571 	mtx_lock(&sync_mtx);
2572 	len = syncer_worklist_len - sync_vnode_count;
2573 	mtx_unlock(&sync_mtx);
2574 	error = SYSCTL_OUT(req, &len, sizeof(len));
2575 	return (error);
2576 }
2577 
2578 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2579     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2580     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2581 
2582 static struct proc *updateproc;
2583 static void sched_sync(void);
2584 static struct kproc_desc up_kp = {
2585 	"syncer",
2586 	sched_sync,
2587 	&updateproc
2588 };
2589 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2590 
2591 static int
2592 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2593 {
2594 	struct vnode *vp;
2595 	struct mount *mp;
2596 
2597 	*bo = LIST_FIRST(slp);
2598 	if (*bo == NULL)
2599 		return (0);
2600 	vp = bo2vnode(*bo);
2601 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2602 		return (1);
2603 	/*
2604 	 * We use vhold in case the vnode does not
2605 	 * successfully sync.  vhold prevents the vnode from
2606 	 * going away when we unlock the sync_mtx so that
2607 	 * we can acquire the vnode interlock.
2608 	 */
2609 	vholdl(vp);
2610 	mtx_unlock(&sync_mtx);
2611 	VI_UNLOCK(vp);
2612 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2613 		vdrop(vp);
2614 		mtx_lock(&sync_mtx);
2615 		return (*bo == LIST_FIRST(slp));
2616 	}
2617 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2618 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2619 	VOP_UNLOCK(vp);
2620 	vn_finished_write(mp);
2621 	BO_LOCK(*bo);
2622 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2623 		/*
2624 		 * Put us back on the worklist.  The worklist
2625 		 * routine will remove us from our current
2626 		 * position and then add us back in at a later
2627 		 * position.
2628 		 */
2629 		vn_syncer_add_to_worklist(*bo, syncdelay);
2630 	}
2631 	BO_UNLOCK(*bo);
2632 	vdrop(vp);
2633 	mtx_lock(&sync_mtx);
2634 	return (0);
2635 }
2636 
2637 static int first_printf = 1;
2638 
2639 /*
2640  * System filesystem synchronizer daemon.
2641  */
2642 static void
2643 sched_sync(void)
2644 {
2645 	struct synclist *next, *slp;
2646 	struct bufobj *bo;
2647 	long starttime;
2648 	struct thread *td = curthread;
2649 	int last_work_seen;
2650 	int net_worklist_len;
2651 	int syncer_final_iter;
2652 	int error;
2653 
2654 	last_work_seen = 0;
2655 	syncer_final_iter = 0;
2656 	syncer_state = SYNCER_RUNNING;
2657 	starttime = time_uptime;
2658 	td->td_pflags |= TDP_NORUNNINGBUF;
2659 
2660 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2661 	    SHUTDOWN_PRI_LAST);
2662 
2663 	mtx_lock(&sync_mtx);
2664 	for (;;) {
2665 		if (syncer_state == SYNCER_FINAL_DELAY &&
2666 		    syncer_final_iter == 0) {
2667 			mtx_unlock(&sync_mtx);
2668 			kproc_suspend_check(td->td_proc);
2669 			mtx_lock(&sync_mtx);
2670 		}
2671 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2672 		if (syncer_state != SYNCER_RUNNING &&
2673 		    starttime != time_uptime) {
2674 			if (first_printf) {
2675 				printf("\nSyncing disks, vnodes remaining... ");
2676 				first_printf = 0;
2677 			}
2678 			printf("%d ", net_worklist_len);
2679 		}
2680 		starttime = time_uptime;
2681 
2682 		/*
2683 		 * Push files whose dirty time has expired.  Be careful
2684 		 * of interrupt race on slp queue.
2685 		 *
2686 		 * Skip over empty worklist slots when shutting down.
2687 		 */
2688 		do {
2689 			slp = &syncer_workitem_pending[syncer_delayno];
2690 			syncer_delayno += 1;
2691 			if (syncer_delayno == syncer_maxdelay)
2692 				syncer_delayno = 0;
2693 			next = &syncer_workitem_pending[syncer_delayno];
2694 			/*
2695 			 * If the worklist has wrapped since the
2696 			 * it was emptied of all but syncer vnodes,
2697 			 * switch to the FINAL_DELAY state and run
2698 			 * for one more second.
2699 			 */
2700 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2701 			    net_worklist_len == 0 &&
2702 			    last_work_seen == syncer_delayno) {
2703 				syncer_state = SYNCER_FINAL_DELAY;
2704 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2705 			}
2706 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2707 		    syncer_worklist_len > 0);
2708 
2709 		/*
2710 		 * Keep track of the last time there was anything
2711 		 * on the worklist other than syncer vnodes.
2712 		 * Return to the SHUTTING_DOWN state if any
2713 		 * new work appears.
2714 		 */
2715 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2716 			last_work_seen = syncer_delayno;
2717 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2718 			syncer_state = SYNCER_SHUTTING_DOWN;
2719 		while (!LIST_EMPTY(slp)) {
2720 			error = sync_vnode(slp, &bo, td);
2721 			if (error == 1) {
2722 				LIST_REMOVE(bo, bo_synclist);
2723 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2724 				continue;
2725 			}
2726 
2727 			if (first_printf == 0) {
2728 				/*
2729 				 * Drop the sync mutex, because some watchdog
2730 				 * drivers need to sleep while patting
2731 				 */
2732 				mtx_unlock(&sync_mtx);
2733 				wdog_kern_pat(WD_LASTVAL);
2734 				mtx_lock(&sync_mtx);
2735 			}
2736 		}
2737 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2738 			syncer_final_iter--;
2739 		/*
2740 		 * The variable rushjob allows the kernel to speed up the
2741 		 * processing of the filesystem syncer process. A rushjob
2742 		 * value of N tells the filesystem syncer to process the next
2743 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2744 		 * is used by the soft update code to speed up the filesystem
2745 		 * syncer process when the incore state is getting so far
2746 		 * ahead of the disk that the kernel memory pool is being
2747 		 * threatened with exhaustion.
2748 		 */
2749 		if (rushjob > 0) {
2750 			rushjob -= 1;
2751 			continue;
2752 		}
2753 		/*
2754 		 * Just sleep for a short period of time between
2755 		 * iterations when shutting down to allow some I/O
2756 		 * to happen.
2757 		 *
2758 		 * If it has taken us less than a second to process the
2759 		 * current work, then wait. Otherwise start right over
2760 		 * again. We can still lose time if any single round
2761 		 * takes more than two seconds, but it does not really
2762 		 * matter as we are just trying to generally pace the
2763 		 * filesystem activity.
2764 		 */
2765 		if (syncer_state != SYNCER_RUNNING ||
2766 		    time_uptime == starttime) {
2767 			thread_lock(td);
2768 			sched_prio(td, PPAUSE);
2769 			thread_unlock(td);
2770 		}
2771 		if (syncer_state != SYNCER_RUNNING)
2772 			cv_timedwait(&sync_wakeup, &sync_mtx,
2773 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2774 		else if (time_uptime == starttime)
2775 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2776 	}
2777 }
2778 
2779 /*
2780  * Request the syncer daemon to speed up its work.
2781  * We never push it to speed up more than half of its
2782  * normal turn time, otherwise it could take over the cpu.
2783  */
2784 int
2785 speedup_syncer(void)
2786 {
2787 	int ret = 0;
2788 
2789 	mtx_lock(&sync_mtx);
2790 	if (rushjob < syncdelay / 2) {
2791 		rushjob += 1;
2792 		stat_rush_requests += 1;
2793 		ret = 1;
2794 	}
2795 	mtx_unlock(&sync_mtx);
2796 	cv_broadcast(&sync_wakeup);
2797 	return (ret);
2798 }
2799 
2800 /*
2801  * Tell the syncer to speed up its work and run though its work
2802  * list several times, then tell it to shut down.
2803  */
2804 static void
2805 syncer_shutdown(void *arg, int howto)
2806 {
2807 
2808 	if (howto & RB_NOSYNC)
2809 		return;
2810 	mtx_lock(&sync_mtx);
2811 	syncer_state = SYNCER_SHUTTING_DOWN;
2812 	rushjob = 0;
2813 	mtx_unlock(&sync_mtx);
2814 	cv_broadcast(&sync_wakeup);
2815 	kproc_shutdown(arg, howto);
2816 }
2817 
2818 void
2819 syncer_suspend(void)
2820 {
2821 
2822 	syncer_shutdown(updateproc, 0);
2823 }
2824 
2825 void
2826 syncer_resume(void)
2827 {
2828 
2829 	mtx_lock(&sync_mtx);
2830 	first_printf = 1;
2831 	syncer_state = SYNCER_RUNNING;
2832 	mtx_unlock(&sync_mtx);
2833 	cv_broadcast(&sync_wakeup);
2834 	kproc_resume(updateproc);
2835 }
2836 
2837 /*
2838  * Move the buffer between the clean and dirty lists of its vnode.
2839  */
2840 void
2841 reassignbuf(struct buf *bp)
2842 {
2843 	struct vnode *vp;
2844 	struct bufobj *bo;
2845 	int delay;
2846 #ifdef INVARIANTS
2847 	struct bufv *bv;
2848 #endif
2849 
2850 	vp = bp->b_vp;
2851 	bo = bp->b_bufobj;
2852 
2853 	KASSERT((bp->b_flags & B_PAGING) == 0,
2854 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2855 
2856 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2857 	    bp, bp->b_vp, bp->b_flags);
2858 
2859 	BO_LOCK(bo);
2860 	buf_vlist_remove(bp);
2861 
2862 	/*
2863 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2864 	 * of clean buffers.
2865 	 */
2866 	if (bp->b_flags & B_DELWRI) {
2867 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2868 			switch (vp->v_type) {
2869 			case VDIR:
2870 				delay = dirdelay;
2871 				break;
2872 			case VCHR:
2873 				delay = metadelay;
2874 				break;
2875 			default:
2876 				delay = filedelay;
2877 			}
2878 			vn_syncer_add_to_worklist(bo, delay);
2879 		}
2880 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2881 	} else {
2882 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2883 
2884 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2885 			mtx_lock(&sync_mtx);
2886 			LIST_REMOVE(bo, bo_synclist);
2887 			syncer_worklist_len--;
2888 			mtx_unlock(&sync_mtx);
2889 			bo->bo_flag &= ~BO_ONWORKLST;
2890 		}
2891 	}
2892 #ifdef INVARIANTS
2893 	bv = &bo->bo_clean;
2894 	bp = TAILQ_FIRST(&bv->bv_hd);
2895 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2896 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2897 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2898 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2899 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2900 	bv = &bo->bo_dirty;
2901 	bp = TAILQ_FIRST(&bv->bv_hd);
2902 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2903 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2904 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2905 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2906 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2907 #endif
2908 	BO_UNLOCK(bo);
2909 }
2910 
2911 static void
2912 v_init_counters(struct vnode *vp)
2913 {
2914 
2915 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2916 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2917 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2918 
2919 	refcount_init(&vp->v_holdcnt, 1);
2920 	refcount_init(&vp->v_usecount, 1);
2921 }
2922 
2923 /*
2924  * Grab a particular vnode from the free list, increment its
2925  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2926  * is being destroyed.  Only callers who specify LK_RETRY will
2927  * see doomed vnodes.  If inactive processing was delayed in
2928  * vput try to do it here.
2929  *
2930  * usecount is manipulated using atomics without holding any locks.
2931  *
2932  * holdcnt can be manipulated using atomics without holding any locks,
2933  * except when transitioning 1<->0, in which case the interlock is held.
2934  *
2935  * Consumers which don't guarantee liveness of the vnode can use SMR to
2936  * try to get a reference. Note this operation can fail since the vnode
2937  * may be awaiting getting freed by the time they get to it.
2938  */
2939 enum vgetstate
2940 vget_prep_smr(struct vnode *vp)
2941 {
2942 	enum vgetstate vs;
2943 
2944 	VFS_SMR_ASSERT_ENTERED();
2945 
2946 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2947 		vs = VGET_USECOUNT;
2948 	} else {
2949 		if (vhold_smr(vp))
2950 			vs = VGET_HOLDCNT;
2951 		else
2952 			vs = VGET_NONE;
2953 	}
2954 	return (vs);
2955 }
2956 
2957 enum vgetstate
2958 vget_prep(struct vnode *vp)
2959 {
2960 	enum vgetstate vs;
2961 
2962 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2963 		vs = VGET_USECOUNT;
2964 	} else {
2965 		vhold(vp);
2966 		vs = VGET_HOLDCNT;
2967 	}
2968 	return (vs);
2969 }
2970 
2971 void
2972 vget_abort(struct vnode *vp, enum vgetstate vs)
2973 {
2974 
2975 	switch (vs) {
2976 	case VGET_USECOUNT:
2977 		vrele(vp);
2978 		break;
2979 	case VGET_HOLDCNT:
2980 		vdrop(vp);
2981 		break;
2982 	default:
2983 		__assert_unreachable();
2984 	}
2985 }
2986 
2987 int
2988 vget(struct vnode *vp, int flags)
2989 {
2990 	enum vgetstate vs;
2991 
2992 	vs = vget_prep(vp);
2993 	return (vget_finish(vp, flags, vs));
2994 }
2995 
2996 int
2997 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2998 {
2999 	int error;
3000 
3001 	if ((flags & LK_INTERLOCK) != 0)
3002 		ASSERT_VI_LOCKED(vp, __func__);
3003 	else
3004 		ASSERT_VI_UNLOCKED(vp, __func__);
3005 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3006 	VNPASS(vp->v_holdcnt > 0, vp);
3007 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3008 
3009 	error = vn_lock(vp, flags);
3010 	if (__predict_false(error != 0)) {
3011 		vget_abort(vp, vs);
3012 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3013 		    vp);
3014 		return (error);
3015 	}
3016 
3017 	vget_finish_ref(vp, vs);
3018 	return (0);
3019 }
3020 
3021 void
3022 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3023 {
3024 	int old;
3025 
3026 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3027 	VNPASS(vp->v_holdcnt > 0, vp);
3028 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3029 
3030 	if (vs == VGET_USECOUNT)
3031 		return;
3032 
3033 	/*
3034 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3035 	 * the vnode around. Otherwise someone else lended their hold count and
3036 	 * we have to drop ours.
3037 	 */
3038 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3039 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3040 	if (old != 0) {
3041 #ifdef INVARIANTS
3042 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3043 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3044 #else
3045 		refcount_release(&vp->v_holdcnt);
3046 #endif
3047 	}
3048 }
3049 
3050 void
3051 vref(struct vnode *vp)
3052 {
3053 	enum vgetstate vs;
3054 
3055 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3056 	vs = vget_prep(vp);
3057 	vget_finish_ref(vp, vs);
3058 }
3059 
3060 void
3061 vrefact(struct vnode *vp)
3062 {
3063 
3064 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3065 #ifdef INVARIANTS
3066 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3067 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3068 #else
3069 	refcount_acquire(&vp->v_usecount);
3070 #endif
3071 }
3072 
3073 void
3074 vlazy(struct vnode *vp)
3075 {
3076 	struct mount *mp;
3077 
3078 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3079 
3080 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3081 		return;
3082 	/*
3083 	 * We may get here for inactive routines after the vnode got doomed.
3084 	 */
3085 	if (VN_IS_DOOMED(vp))
3086 		return;
3087 	mp = vp->v_mount;
3088 	mtx_lock(&mp->mnt_listmtx);
3089 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3090 		vp->v_mflag |= VMP_LAZYLIST;
3091 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3092 		mp->mnt_lazyvnodelistsize++;
3093 	}
3094 	mtx_unlock(&mp->mnt_listmtx);
3095 }
3096 
3097 static void
3098 vunlazy(struct vnode *vp)
3099 {
3100 	struct mount *mp;
3101 
3102 	ASSERT_VI_LOCKED(vp, __func__);
3103 	VNPASS(!VN_IS_DOOMED(vp), vp);
3104 
3105 	mp = vp->v_mount;
3106 	mtx_lock(&mp->mnt_listmtx);
3107 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3108 	/*
3109 	 * Don't remove the vnode from the lazy list if another thread
3110 	 * has increased the hold count. It may have re-enqueued the
3111 	 * vnode to the lazy list and is now responsible for its
3112 	 * removal.
3113 	 */
3114 	if (vp->v_holdcnt == 0) {
3115 		vp->v_mflag &= ~VMP_LAZYLIST;
3116 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3117 		mp->mnt_lazyvnodelistsize--;
3118 	}
3119 	mtx_unlock(&mp->mnt_listmtx);
3120 }
3121 
3122 /*
3123  * This routine is only meant to be called from vgonel prior to dooming
3124  * the vnode.
3125  */
3126 static void
3127 vunlazy_gone(struct vnode *vp)
3128 {
3129 	struct mount *mp;
3130 
3131 	ASSERT_VOP_ELOCKED(vp, __func__);
3132 	ASSERT_VI_LOCKED(vp, __func__);
3133 	VNPASS(!VN_IS_DOOMED(vp), vp);
3134 
3135 	if (vp->v_mflag & VMP_LAZYLIST) {
3136 		mp = vp->v_mount;
3137 		mtx_lock(&mp->mnt_listmtx);
3138 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3139 		vp->v_mflag &= ~VMP_LAZYLIST;
3140 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3141 		mp->mnt_lazyvnodelistsize--;
3142 		mtx_unlock(&mp->mnt_listmtx);
3143 	}
3144 }
3145 
3146 static void
3147 vdefer_inactive(struct vnode *vp)
3148 {
3149 
3150 	ASSERT_VI_LOCKED(vp, __func__);
3151 	VNASSERT(vp->v_holdcnt > 0, vp,
3152 	    ("%s: vnode without hold count", __func__));
3153 	if (VN_IS_DOOMED(vp)) {
3154 		vdropl(vp);
3155 		return;
3156 	}
3157 	if (vp->v_iflag & VI_DEFINACT) {
3158 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3159 		vdropl(vp);
3160 		return;
3161 	}
3162 	if (vp->v_usecount > 0) {
3163 		vp->v_iflag &= ~VI_OWEINACT;
3164 		vdropl(vp);
3165 		return;
3166 	}
3167 	vlazy(vp);
3168 	vp->v_iflag |= VI_DEFINACT;
3169 	VI_UNLOCK(vp);
3170 	counter_u64_add(deferred_inact, 1);
3171 }
3172 
3173 static void
3174 vdefer_inactive_unlocked(struct vnode *vp)
3175 {
3176 
3177 	VI_LOCK(vp);
3178 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3179 		vdropl(vp);
3180 		return;
3181 	}
3182 	vdefer_inactive(vp);
3183 }
3184 
3185 enum vput_op { VRELE, VPUT, VUNREF };
3186 
3187 /*
3188  * Handle ->v_usecount transitioning to 0.
3189  *
3190  * By releasing the last usecount we take ownership of the hold count which
3191  * provides liveness of the vnode, meaning we have to vdrop.
3192  *
3193  * For all vnodes we may need to perform inactive processing. It requires an
3194  * exclusive lock on the vnode, while it is legal to call here with only a
3195  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3196  * inactive processing gets deferred to the syncer.
3197  *
3198  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3199  * on the lock being held all the way until VOP_INACTIVE. This in particular
3200  * happens with UFS which adds half-constructed vnodes to the hash, where they
3201  * can be found by other code.
3202  */
3203 static void
3204 vput_final(struct vnode *vp, enum vput_op func)
3205 {
3206 	int error;
3207 	bool want_unlock;
3208 
3209 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3210 	VNPASS(vp->v_holdcnt > 0, vp);
3211 
3212 	VI_LOCK(vp);
3213 
3214 	/*
3215 	 * By the time we got here someone else might have transitioned
3216 	 * the count back to > 0.
3217 	 */
3218 	if (vp->v_usecount > 0)
3219 		goto out;
3220 
3221 	/*
3222 	 * If the vnode is doomed vgone already performed inactive processing
3223 	 * (if needed).
3224 	 */
3225 	if (VN_IS_DOOMED(vp))
3226 		goto out;
3227 
3228 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3229 		goto out;
3230 
3231 	if (vp->v_iflag & VI_DOINGINACT)
3232 		goto out;
3233 
3234 	/*
3235 	 * Locking operations here will drop the interlock and possibly the
3236 	 * vnode lock, opening a window where the vnode can get doomed all the
3237 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3238 	 * perform inactive.
3239 	 */
3240 	vp->v_iflag |= VI_OWEINACT;
3241 	want_unlock = false;
3242 	error = 0;
3243 	switch (func) {
3244 	case VRELE:
3245 		switch (VOP_ISLOCKED(vp)) {
3246 		case LK_EXCLUSIVE:
3247 			break;
3248 		case LK_EXCLOTHER:
3249 		case 0:
3250 			want_unlock = true;
3251 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3252 			VI_LOCK(vp);
3253 			break;
3254 		default:
3255 			/*
3256 			 * The lock has at least one sharer, but we have no way
3257 			 * to conclude whether this is us. Play it safe and
3258 			 * defer processing.
3259 			 */
3260 			error = EAGAIN;
3261 			break;
3262 		}
3263 		break;
3264 	case VPUT:
3265 		want_unlock = true;
3266 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3267 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3268 			    LK_NOWAIT);
3269 			VI_LOCK(vp);
3270 		}
3271 		break;
3272 	case VUNREF:
3273 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3274 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3275 			VI_LOCK(vp);
3276 		}
3277 		break;
3278 	}
3279 	if (error == 0) {
3280 		if (func == VUNREF) {
3281 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3282 			    ("recursive vunref"));
3283 			vp->v_vflag |= VV_UNREF;
3284 		}
3285 		for (;;) {
3286 			error = vinactive(vp);
3287 			if (want_unlock)
3288 				VOP_UNLOCK(vp);
3289 			if (error != ERELOOKUP || !want_unlock)
3290 				break;
3291 			VOP_LOCK(vp, LK_EXCLUSIVE);
3292 		}
3293 		if (func == VUNREF)
3294 			vp->v_vflag &= ~VV_UNREF;
3295 		vdropl(vp);
3296 	} else {
3297 		vdefer_inactive(vp);
3298 	}
3299 	return;
3300 out:
3301 	if (func == VPUT)
3302 		VOP_UNLOCK(vp);
3303 	vdropl(vp);
3304 }
3305 
3306 /*
3307  * Decrement ->v_usecount for a vnode.
3308  *
3309  * Releasing the last use count requires additional processing, see vput_final
3310  * above for details.
3311  *
3312  * Comment above each variant denotes lock state on entry and exit.
3313  */
3314 
3315 /*
3316  * in: any
3317  * out: same as passed in
3318  */
3319 void
3320 vrele(struct vnode *vp)
3321 {
3322 
3323 	ASSERT_VI_UNLOCKED(vp, __func__);
3324 	if (!refcount_release(&vp->v_usecount))
3325 		return;
3326 	vput_final(vp, VRELE);
3327 }
3328 
3329 /*
3330  * in: locked
3331  * out: unlocked
3332  */
3333 void
3334 vput(struct vnode *vp)
3335 {
3336 
3337 	ASSERT_VOP_LOCKED(vp, __func__);
3338 	ASSERT_VI_UNLOCKED(vp, __func__);
3339 	if (!refcount_release(&vp->v_usecount)) {
3340 		VOP_UNLOCK(vp);
3341 		return;
3342 	}
3343 	vput_final(vp, VPUT);
3344 }
3345 
3346 /*
3347  * in: locked
3348  * out: locked
3349  */
3350 void
3351 vunref(struct vnode *vp)
3352 {
3353 
3354 	ASSERT_VOP_LOCKED(vp, __func__);
3355 	ASSERT_VI_UNLOCKED(vp, __func__);
3356 	if (!refcount_release(&vp->v_usecount))
3357 		return;
3358 	vput_final(vp, VUNREF);
3359 }
3360 
3361 void
3362 vhold(struct vnode *vp)
3363 {
3364 	int old;
3365 
3366 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3367 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3368 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3369 	    ("%s: wrong hold count %d", __func__, old));
3370 	if (old == 0)
3371 		vfs_freevnodes_dec();
3372 }
3373 
3374 void
3375 vholdnz(struct vnode *vp)
3376 {
3377 
3378 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3379 #ifdef INVARIANTS
3380 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3381 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3382 	    ("%s: wrong hold count %d", __func__, old));
3383 #else
3384 	atomic_add_int(&vp->v_holdcnt, 1);
3385 #endif
3386 }
3387 
3388 /*
3389  * Grab a hold count unless the vnode is freed.
3390  *
3391  * Only use this routine if vfs smr is the only protection you have against
3392  * freeing the vnode.
3393  *
3394  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3395  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3396  * the thread which managed to set the flag.
3397  *
3398  * It may be tempting to replace the loop with:
3399  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3400  * if (count & VHOLD_NO_SMR) {
3401  *     backpedal and error out;
3402  * }
3403  *
3404  * However, while this is more performant, it hinders debugging by eliminating
3405  * the previously mentioned invariant.
3406  */
3407 bool
3408 vhold_smr(struct vnode *vp)
3409 {
3410 	int count;
3411 
3412 	VFS_SMR_ASSERT_ENTERED();
3413 
3414 	count = atomic_load_int(&vp->v_holdcnt);
3415 	for (;;) {
3416 		if (count & VHOLD_NO_SMR) {
3417 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3418 			    ("non-zero hold count with flags %d\n", count));
3419 			return (false);
3420 		}
3421 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3422 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3423 			if (count == 0)
3424 				vfs_freevnodes_dec();
3425 			return (true);
3426 		}
3427 	}
3428 }
3429 
3430 /*
3431  * Hold a free vnode for recycling.
3432  *
3433  * Note: vnode_init references this comment.
3434  *
3435  * Attempts to recycle only need the global vnode list lock and have no use for
3436  * SMR.
3437  *
3438  * However, vnodes get inserted into the global list before they get fully
3439  * initialized and stay there until UMA decides to free the memory. This in
3440  * particular means the target can be found before it becomes usable and after
3441  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3442  * VHOLD_NO_SMR.
3443  *
3444  * Note: the vnode may gain more references after we transition the count 0->1.
3445  */
3446 static bool
3447 vhold_recycle_free(struct vnode *vp)
3448 {
3449 	int count;
3450 
3451 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3452 
3453 	count = atomic_load_int(&vp->v_holdcnt);
3454 	for (;;) {
3455 		if (count & VHOLD_NO_SMR) {
3456 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3457 			    ("non-zero hold count with flags %d\n", count));
3458 			return (false);
3459 		}
3460 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3461 		if (count > 0) {
3462 			return (false);
3463 		}
3464 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3465 			vfs_freevnodes_dec();
3466 			return (true);
3467 		}
3468 	}
3469 }
3470 
3471 static void __noinline
3472 vdbatch_process(struct vdbatch *vd)
3473 {
3474 	struct vnode *vp;
3475 	int i;
3476 
3477 	mtx_assert(&vd->lock, MA_OWNED);
3478 	MPASS(curthread->td_pinned > 0);
3479 	MPASS(vd->index == VDBATCH_SIZE);
3480 
3481 	mtx_lock(&vnode_list_mtx);
3482 	critical_enter();
3483 	freevnodes += vd->freevnodes;
3484 	for (i = 0; i < VDBATCH_SIZE; i++) {
3485 		vp = vd->tab[i];
3486 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3487 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3488 		MPASS(vp->v_dbatchcpu != NOCPU);
3489 		vp->v_dbatchcpu = NOCPU;
3490 	}
3491 	mtx_unlock(&vnode_list_mtx);
3492 	vd->freevnodes = 0;
3493 	bzero(vd->tab, sizeof(vd->tab));
3494 	vd->index = 0;
3495 	critical_exit();
3496 }
3497 
3498 static void
3499 vdbatch_enqueue(struct vnode *vp)
3500 {
3501 	struct vdbatch *vd;
3502 
3503 	ASSERT_VI_LOCKED(vp, __func__);
3504 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3505 	    ("%s: deferring requeue of a doomed vnode", __func__));
3506 
3507 	if (vp->v_dbatchcpu != NOCPU) {
3508 		VI_UNLOCK(vp);
3509 		return;
3510 	}
3511 
3512 	sched_pin();
3513 	vd = DPCPU_PTR(vd);
3514 	mtx_lock(&vd->lock);
3515 	MPASS(vd->index < VDBATCH_SIZE);
3516 	MPASS(vd->tab[vd->index] == NULL);
3517 	/*
3518 	 * A hack: we depend on being pinned so that we know what to put in
3519 	 * ->v_dbatchcpu.
3520 	 */
3521 	vp->v_dbatchcpu = curcpu;
3522 	vd->tab[vd->index] = vp;
3523 	vd->index++;
3524 	VI_UNLOCK(vp);
3525 	if (vd->index == VDBATCH_SIZE)
3526 		vdbatch_process(vd);
3527 	mtx_unlock(&vd->lock);
3528 	sched_unpin();
3529 }
3530 
3531 /*
3532  * This routine must only be called for vnodes which are about to be
3533  * deallocated. Supporting dequeue for arbitrary vndoes would require
3534  * validating that the locked batch matches.
3535  */
3536 static void
3537 vdbatch_dequeue(struct vnode *vp)
3538 {
3539 	struct vdbatch *vd;
3540 	int i;
3541 	short cpu;
3542 
3543 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3544 	    ("%s: called for a used vnode\n", __func__));
3545 
3546 	cpu = vp->v_dbatchcpu;
3547 	if (cpu == NOCPU)
3548 		return;
3549 
3550 	vd = DPCPU_ID_PTR(cpu, vd);
3551 	mtx_lock(&vd->lock);
3552 	for (i = 0; i < vd->index; i++) {
3553 		if (vd->tab[i] != vp)
3554 			continue;
3555 		vp->v_dbatchcpu = NOCPU;
3556 		vd->index--;
3557 		vd->tab[i] = vd->tab[vd->index];
3558 		vd->tab[vd->index] = NULL;
3559 		break;
3560 	}
3561 	mtx_unlock(&vd->lock);
3562 	/*
3563 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3564 	 */
3565 	MPASS(vp->v_dbatchcpu == NOCPU);
3566 }
3567 
3568 /*
3569  * Drop the hold count of the vnode.  If this is the last reference to
3570  * the vnode we place it on the free list unless it has been vgone'd
3571  * (marked VIRF_DOOMED) in which case we will free it.
3572  *
3573  * Because the vnode vm object keeps a hold reference on the vnode if
3574  * there is at least one resident non-cached page, the vnode cannot
3575  * leave the active list without the page cleanup done.
3576  */
3577 static void __noinline
3578 vdropl_final(struct vnode *vp)
3579 {
3580 
3581 	ASSERT_VI_LOCKED(vp, __func__);
3582 	VNPASS(VN_IS_DOOMED(vp), vp);
3583 	/*
3584 	 * Set the VHOLD_NO_SMR flag.
3585 	 *
3586 	 * We may be racing against vhold_smr. If they win we can just pretend
3587 	 * we never got this far, they will vdrop later.
3588 	 */
3589 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3590 		vfs_freevnodes_inc();
3591 		VI_UNLOCK(vp);
3592 		/*
3593 		 * We lost the aforementioned race. Any subsequent access is
3594 		 * invalid as they might have managed to vdropl on their own.
3595 		 */
3596 		return;
3597 	}
3598 	/*
3599 	 * Don't bump freevnodes as this one is going away.
3600 	 */
3601 	freevnode(vp);
3602 }
3603 
3604 void
3605 vdrop(struct vnode *vp)
3606 {
3607 
3608 	ASSERT_VI_UNLOCKED(vp, __func__);
3609 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3610 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3611 		return;
3612 	VI_LOCK(vp);
3613 	vdropl(vp);
3614 }
3615 
3616 void
3617 vdropl(struct vnode *vp)
3618 {
3619 
3620 	ASSERT_VI_LOCKED(vp, __func__);
3621 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3622 	if (!refcount_release(&vp->v_holdcnt)) {
3623 		VI_UNLOCK(vp);
3624 		return;
3625 	}
3626 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3627 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3628 	if (VN_IS_DOOMED(vp)) {
3629 		vdropl_final(vp);
3630 		return;
3631 	}
3632 
3633 	vfs_freevnodes_inc();
3634 	if (vp->v_mflag & VMP_LAZYLIST) {
3635 		vunlazy(vp);
3636 	}
3637 	/*
3638 	 * Also unlocks the interlock. We can't assert on it as we
3639 	 * released our hold and by now the vnode might have been
3640 	 * freed.
3641 	 */
3642 	vdbatch_enqueue(vp);
3643 }
3644 
3645 /*
3646  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3647  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3648  */
3649 static int
3650 vinactivef(struct vnode *vp)
3651 {
3652 	struct vm_object *obj;
3653 	int error;
3654 
3655 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3656 	ASSERT_VI_LOCKED(vp, "vinactive");
3657 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3658 	    ("vinactive: recursed on VI_DOINGINACT"));
3659 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3660 	vp->v_iflag |= VI_DOINGINACT;
3661 	vp->v_iflag &= ~VI_OWEINACT;
3662 	VI_UNLOCK(vp);
3663 	/*
3664 	 * Before moving off the active list, we must be sure that any
3665 	 * modified pages are converted into the vnode's dirty
3666 	 * buffers, since these will no longer be checked once the
3667 	 * vnode is on the inactive list.
3668 	 *
3669 	 * The write-out of the dirty pages is asynchronous.  At the
3670 	 * point that VOP_INACTIVE() is called, there could still be
3671 	 * pending I/O and dirty pages in the object.
3672 	 */
3673 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3674 	    vm_object_mightbedirty(obj)) {
3675 		VM_OBJECT_WLOCK(obj);
3676 		vm_object_page_clean(obj, 0, 0, 0);
3677 		VM_OBJECT_WUNLOCK(obj);
3678 	}
3679 	error = VOP_INACTIVE(vp);
3680 	VI_LOCK(vp);
3681 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3682 	    ("vinactive: lost VI_DOINGINACT"));
3683 	vp->v_iflag &= ~VI_DOINGINACT;
3684 	return (error);
3685 }
3686 
3687 int
3688 vinactive(struct vnode *vp)
3689 {
3690 
3691 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3692 	ASSERT_VI_LOCKED(vp, "vinactive");
3693 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3694 
3695 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3696 		return (0);
3697 	if (vp->v_iflag & VI_DOINGINACT)
3698 		return (0);
3699 	if (vp->v_usecount > 0) {
3700 		vp->v_iflag &= ~VI_OWEINACT;
3701 		return (0);
3702 	}
3703 	return (vinactivef(vp));
3704 }
3705 
3706 /*
3707  * Remove any vnodes in the vnode table belonging to mount point mp.
3708  *
3709  * If FORCECLOSE is not specified, there should not be any active ones,
3710  * return error if any are found (nb: this is a user error, not a
3711  * system error). If FORCECLOSE is specified, detach any active vnodes
3712  * that are found.
3713  *
3714  * If WRITECLOSE is set, only flush out regular file vnodes open for
3715  * writing.
3716  *
3717  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3718  *
3719  * `rootrefs' specifies the base reference count for the root vnode
3720  * of this filesystem. The root vnode is considered busy if its
3721  * v_usecount exceeds this value. On a successful return, vflush(, td)
3722  * will call vrele() on the root vnode exactly rootrefs times.
3723  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3724  * be zero.
3725  */
3726 #ifdef DIAGNOSTIC
3727 static int busyprt = 0;		/* print out busy vnodes */
3728 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3729 #endif
3730 
3731 int
3732 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3733 {
3734 	struct vnode *vp, *mvp, *rootvp = NULL;
3735 	struct vattr vattr;
3736 	int busy = 0, error;
3737 
3738 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3739 	    rootrefs, flags);
3740 	if (rootrefs > 0) {
3741 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3742 		    ("vflush: bad args"));
3743 		/*
3744 		 * Get the filesystem root vnode. We can vput() it
3745 		 * immediately, since with rootrefs > 0, it won't go away.
3746 		 */
3747 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3748 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3749 			    __func__, error);
3750 			return (error);
3751 		}
3752 		vput(rootvp);
3753 	}
3754 loop:
3755 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3756 		vholdl(vp);
3757 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3758 		if (error) {
3759 			vdrop(vp);
3760 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3761 			goto loop;
3762 		}
3763 		/*
3764 		 * Skip over a vnodes marked VV_SYSTEM.
3765 		 */
3766 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3767 			VOP_UNLOCK(vp);
3768 			vdrop(vp);
3769 			continue;
3770 		}
3771 		/*
3772 		 * If WRITECLOSE is set, flush out unlinked but still open
3773 		 * files (even if open only for reading) and regular file
3774 		 * vnodes open for writing.
3775 		 */
3776 		if (flags & WRITECLOSE) {
3777 			if (vp->v_object != NULL) {
3778 				VM_OBJECT_WLOCK(vp->v_object);
3779 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3780 				VM_OBJECT_WUNLOCK(vp->v_object);
3781 			}
3782 			do {
3783 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3784 			} while (error == ERELOOKUP);
3785 			if (error != 0) {
3786 				VOP_UNLOCK(vp);
3787 				vdrop(vp);
3788 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3789 				return (error);
3790 			}
3791 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3792 			VI_LOCK(vp);
3793 
3794 			if ((vp->v_type == VNON ||
3795 			    (error == 0 && vattr.va_nlink > 0)) &&
3796 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3797 				VOP_UNLOCK(vp);
3798 				vdropl(vp);
3799 				continue;
3800 			}
3801 		} else
3802 			VI_LOCK(vp);
3803 		/*
3804 		 * With v_usecount == 0, all we need to do is clear out the
3805 		 * vnode data structures and we are done.
3806 		 *
3807 		 * If FORCECLOSE is set, forcibly close the vnode.
3808 		 */
3809 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3810 			vgonel(vp);
3811 		} else {
3812 			busy++;
3813 #ifdef DIAGNOSTIC
3814 			if (busyprt)
3815 				vn_printf(vp, "vflush: busy vnode ");
3816 #endif
3817 		}
3818 		VOP_UNLOCK(vp);
3819 		vdropl(vp);
3820 	}
3821 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3822 		/*
3823 		 * If just the root vnode is busy, and if its refcount
3824 		 * is equal to `rootrefs', then go ahead and kill it.
3825 		 */
3826 		VI_LOCK(rootvp);
3827 		KASSERT(busy > 0, ("vflush: not busy"));
3828 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3829 		    ("vflush: usecount %d < rootrefs %d",
3830 		     rootvp->v_usecount, rootrefs));
3831 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3832 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3833 			vgone(rootvp);
3834 			VOP_UNLOCK(rootvp);
3835 			busy = 0;
3836 		} else
3837 			VI_UNLOCK(rootvp);
3838 	}
3839 	if (busy) {
3840 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3841 		    busy);
3842 		return (EBUSY);
3843 	}
3844 	for (; rootrefs > 0; rootrefs--)
3845 		vrele(rootvp);
3846 	return (0);
3847 }
3848 
3849 /*
3850  * Recycle an unused vnode to the front of the free list.
3851  */
3852 int
3853 vrecycle(struct vnode *vp)
3854 {
3855 	int recycled;
3856 
3857 	VI_LOCK(vp);
3858 	recycled = vrecyclel(vp);
3859 	VI_UNLOCK(vp);
3860 	return (recycled);
3861 }
3862 
3863 /*
3864  * vrecycle, with the vp interlock held.
3865  */
3866 int
3867 vrecyclel(struct vnode *vp)
3868 {
3869 	int recycled;
3870 
3871 	ASSERT_VOP_ELOCKED(vp, __func__);
3872 	ASSERT_VI_LOCKED(vp, __func__);
3873 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3874 	recycled = 0;
3875 	if (vp->v_usecount == 0) {
3876 		recycled = 1;
3877 		vgonel(vp);
3878 	}
3879 	return (recycled);
3880 }
3881 
3882 /*
3883  * Eliminate all activity associated with a vnode
3884  * in preparation for reuse.
3885  */
3886 void
3887 vgone(struct vnode *vp)
3888 {
3889 	VI_LOCK(vp);
3890 	vgonel(vp);
3891 	VI_UNLOCK(vp);
3892 }
3893 
3894 static void
3895 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3896     struct vnode *lowervp __unused)
3897 {
3898 }
3899 
3900 /*
3901  * Notify upper mounts about reclaimed or unlinked vnode.
3902  */
3903 void
3904 vfs_notify_upper(struct vnode *vp, int event)
3905 {
3906 	static struct vfsops vgonel_vfsops = {
3907 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3908 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3909 	};
3910 	struct mount *mp, *ump, *mmp;
3911 
3912 	mp = vp->v_mount;
3913 	if (mp == NULL)
3914 		return;
3915 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3916 		return;
3917 
3918 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3919 	mmp->mnt_op = &vgonel_vfsops;
3920 	mmp->mnt_kern_flag |= MNTK_MARKER;
3921 	MNT_ILOCK(mp);
3922 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3923 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3924 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3925 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3926 			continue;
3927 		}
3928 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3929 		MNT_IUNLOCK(mp);
3930 		switch (event) {
3931 		case VFS_NOTIFY_UPPER_RECLAIM:
3932 			VFS_RECLAIM_LOWERVP(ump, vp);
3933 			break;
3934 		case VFS_NOTIFY_UPPER_UNLINK:
3935 			VFS_UNLINK_LOWERVP(ump, vp);
3936 			break;
3937 		default:
3938 			KASSERT(0, ("invalid event %d", event));
3939 			break;
3940 		}
3941 		MNT_ILOCK(mp);
3942 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3943 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3944 	}
3945 	free(mmp, M_TEMP);
3946 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3947 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3948 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3949 		wakeup(&mp->mnt_uppers);
3950 	}
3951 	MNT_IUNLOCK(mp);
3952 }
3953 
3954 /*
3955  * vgone, with the vp interlock held.
3956  */
3957 static void
3958 vgonel(struct vnode *vp)
3959 {
3960 	struct thread *td;
3961 	struct mount *mp;
3962 	vm_object_t object;
3963 	bool active, doinginact, oweinact;
3964 
3965 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3966 	ASSERT_VI_LOCKED(vp, "vgonel");
3967 	VNASSERT(vp->v_holdcnt, vp,
3968 	    ("vgonel: vp %p has no reference.", vp));
3969 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3970 	td = curthread;
3971 
3972 	/*
3973 	 * Don't vgonel if we're already doomed.
3974 	 */
3975 	if (VN_IS_DOOMED(vp))
3976 		return;
3977 	/*
3978 	 * Paired with freevnode.
3979 	 */
3980 	vn_seqc_write_begin_locked(vp);
3981 	vunlazy_gone(vp);
3982 	vn_irflag_set_locked(vp, VIRF_DOOMED);
3983 
3984 	/*
3985 	 * Check to see if the vnode is in use.  If so, we have to
3986 	 * call VOP_CLOSE() and VOP_INACTIVE().
3987 	 *
3988 	 * It could be that VOP_INACTIVE() requested reclamation, in
3989 	 * which case we should avoid recursion, so check
3990 	 * VI_DOINGINACT.  This is not precise but good enough.
3991 	 */
3992 	active = vp->v_usecount > 0;
3993 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3994 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
3995 
3996 	/*
3997 	 * If we need to do inactive VI_OWEINACT will be set.
3998 	 */
3999 	if (vp->v_iflag & VI_DEFINACT) {
4000 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4001 		vp->v_iflag &= ~VI_DEFINACT;
4002 		vdropl(vp);
4003 	} else {
4004 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4005 		VI_UNLOCK(vp);
4006 	}
4007 	cache_purge_vgone(vp);
4008 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4009 
4010 	/*
4011 	 * If purging an active vnode, it must be closed and
4012 	 * deactivated before being reclaimed.
4013 	 */
4014 	if (active)
4015 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4016 	if (!doinginact) {
4017 		do {
4018 			if (oweinact || active) {
4019 				VI_LOCK(vp);
4020 				vinactivef(vp);
4021 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4022 				VI_UNLOCK(vp);
4023 			}
4024 		} while (oweinact);
4025 	}
4026 	if (vp->v_type == VSOCK)
4027 		vfs_unp_reclaim(vp);
4028 
4029 	/*
4030 	 * Clean out any buffers associated with the vnode.
4031 	 * If the flush fails, just toss the buffers.
4032 	 */
4033 	mp = NULL;
4034 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4035 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4036 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4037 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4038 			;
4039 	}
4040 
4041 	BO_LOCK(&vp->v_bufobj);
4042 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4043 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4044 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4045 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4046 	    ("vp %p bufobj not invalidated", vp));
4047 
4048 	/*
4049 	 * For VMIO bufobj, BO_DEAD is set later, or in
4050 	 * vm_object_terminate() after the object's page queue is
4051 	 * flushed.
4052 	 */
4053 	object = vp->v_bufobj.bo_object;
4054 	if (object == NULL)
4055 		vp->v_bufobj.bo_flag |= BO_DEAD;
4056 	BO_UNLOCK(&vp->v_bufobj);
4057 
4058 	/*
4059 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4060 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4061 	 * should not touch the object borrowed from the lower vnode
4062 	 * (the handle check).
4063 	 */
4064 	if (object != NULL && object->type == OBJT_VNODE &&
4065 	    object->handle == vp)
4066 		vnode_destroy_vobject(vp);
4067 
4068 	/*
4069 	 * Reclaim the vnode.
4070 	 */
4071 	if (VOP_RECLAIM(vp))
4072 		panic("vgone: cannot reclaim");
4073 	if (mp != NULL)
4074 		vn_finished_secondary_write(mp);
4075 	VNASSERT(vp->v_object == NULL, vp,
4076 	    ("vop_reclaim left v_object vp=%p", vp));
4077 	/*
4078 	 * Clear the advisory locks and wake up waiting threads.
4079 	 */
4080 	(void)VOP_ADVLOCKPURGE(vp);
4081 	vp->v_lockf = NULL;
4082 	/*
4083 	 * Delete from old mount point vnode list.
4084 	 */
4085 	delmntque(vp);
4086 	/*
4087 	 * Done with purge, reset to the standard lock and invalidate
4088 	 * the vnode.
4089 	 */
4090 	VI_LOCK(vp);
4091 	vp->v_vnlock = &vp->v_lock;
4092 	vp->v_op = &dead_vnodeops;
4093 	vp->v_type = VBAD;
4094 }
4095 
4096 /*
4097  * Print out a description of a vnode.
4098  */
4099 static const char * const typename[] =
4100 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4101  "VMARKER"};
4102 
4103 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4104     "new hold count flag not added to vn_printf");
4105 
4106 void
4107 vn_printf(struct vnode *vp, const char *fmt, ...)
4108 {
4109 	va_list ap;
4110 	char buf[256], buf2[16];
4111 	u_long flags;
4112 	u_int holdcnt;
4113 	short irflag;
4114 
4115 	va_start(ap, fmt);
4116 	vprintf(fmt, ap);
4117 	va_end(ap);
4118 	printf("%p: ", (void *)vp);
4119 	printf("type %s\n", typename[vp->v_type]);
4120 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4121 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4122 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4123 	    vp->v_seqc_users);
4124 	switch (vp->v_type) {
4125 	case VDIR:
4126 		printf(" mountedhere %p\n", vp->v_mountedhere);
4127 		break;
4128 	case VCHR:
4129 		printf(" rdev %p\n", vp->v_rdev);
4130 		break;
4131 	case VSOCK:
4132 		printf(" socket %p\n", vp->v_unpcb);
4133 		break;
4134 	case VFIFO:
4135 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4136 		break;
4137 	default:
4138 		printf("\n");
4139 		break;
4140 	}
4141 	buf[0] = '\0';
4142 	buf[1] = '\0';
4143 	if (holdcnt & VHOLD_NO_SMR)
4144 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4145 	printf("    hold count flags (%s)\n", buf + 1);
4146 
4147 	buf[0] = '\0';
4148 	buf[1] = '\0';
4149 	irflag = vn_irflag_read(vp);
4150 	if (irflag & VIRF_DOOMED)
4151 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4152 	if (irflag & VIRF_PGREAD)
4153 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4154 	if (irflag & VIRF_MOUNTPOINT)
4155 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4156 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT);
4157 	if (flags != 0) {
4158 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4159 		strlcat(buf, buf2, sizeof(buf));
4160 	}
4161 	if (vp->v_vflag & VV_ROOT)
4162 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4163 	if (vp->v_vflag & VV_ISTTY)
4164 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4165 	if (vp->v_vflag & VV_NOSYNC)
4166 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4167 	if (vp->v_vflag & VV_ETERNALDEV)
4168 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4169 	if (vp->v_vflag & VV_CACHEDLABEL)
4170 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4171 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4172 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4173 	if (vp->v_vflag & VV_COPYONWRITE)
4174 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4175 	if (vp->v_vflag & VV_SYSTEM)
4176 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4177 	if (vp->v_vflag & VV_PROCDEP)
4178 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4179 	if (vp->v_vflag & VV_NOKNOTE)
4180 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
4181 	if (vp->v_vflag & VV_DELETED)
4182 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4183 	if (vp->v_vflag & VV_MD)
4184 		strlcat(buf, "|VV_MD", sizeof(buf));
4185 	if (vp->v_vflag & VV_FORCEINSMQ)
4186 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4187 	if (vp->v_vflag & VV_READLINK)
4188 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4189 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4190 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4191 	    VV_PROCDEP | VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ |
4192 	    VV_READLINK);
4193 	if (flags != 0) {
4194 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4195 		strlcat(buf, buf2, sizeof(buf));
4196 	}
4197 	if (vp->v_iflag & VI_TEXT_REF)
4198 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
4199 	if (vp->v_iflag & VI_MOUNT)
4200 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4201 	if (vp->v_iflag & VI_DOINGINACT)
4202 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4203 	if (vp->v_iflag & VI_OWEINACT)
4204 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4205 	if (vp->v_iflag & VI_DEFINACT)
4206 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4207 	if (vp->v_iflag & VI_FOPENING)
4208 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4209 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT |
4210 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4211 	if (flags != 0) {
4212 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4213 		strlcat(buf, buf2, sizeof(buf));
4214 	}
4215 	if (vp->v_mflag & VMP_LAZYLIST)
4216 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4217 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4218 	if (flags != 0) {
4219 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4220 		strlcat(buf, buf2, sizeof(buf));
4221 	}
4222 	printf("    flags (%s)", buf + 1);
4223 	if (mtx_owned(VI_MTX(vp)))
4224 		printf(" VI_LOCKed");
4225 	printf("\n");
4226 	if (vp->v_object != NULL)
4227 		printf("    v_object %p ref %d pages %d "
4228 		    "cleanbuf %d dirtybuf %d\n",
4229 		    vp->v_object, vp->v_object->ref_count,
4230 		    vp->v_object->resident_page_count,
4231 		    vp->v_bufobj.bo_clean.bv_cnt,
4232 		    vp->v_bufobj.bo_dirty.bv_cnt);
4233 	printf("    ");
4234 	lockmgr_printinfo(vp->v_vnlock);
4235 	if (vp->v_data != NULL)
4236 		VOP_PRINT(vp);
4237 }
4238 
4239 #ifdef DDB
4240 /*
4241  * List all of the locked vnodes in the system.
4242  * Called when debugging the kernel.
4243  */
4244 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
4245 {
4246 	struct mount *mp;
4247 	struct vnode *vp;
4248 
4249 	/*
4250 	 * Note: because this is DDB, we can't obey the locking semantics
4251 	 * for these structures, which means we could catch an inconsistent
4252 	 * state and dereference a nasty pointer.  Not much to be done
4253 	 * about that.
4254 	 */
4255 	db_printf("Locked vnodes\n");
4256 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4257 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4258 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4259 				vn_printf(vp, "vnode ");
4260 		}
4261 	}
4262 }
4263 
4264 /*
4265  * Show details about the given vnode.
4266  */
4267 DB_SHOW_COMMAND(vnode, db_show_vnode)
4268 {
4269 	struct vnode *vp;
4270 
4271 	if (!have_addr)
4272 		return;
4273 	vp = (struct vnode *)addr;
4274 	vn_printf(vp, "vnode ");
4275 }
4276 
4277 /*
4278  * Show details about the given mount point.
4279  */
4280 DB_SHOW_COMMAND(mount, db_show_mount)
4281 {
4282 	struct mount *mp;
4283 	struct vfsopt *opt;
4284 	struct statfs *sp;
4285 	struct vnode *vp;
4286 	char buf[512];
4287 	uint64_t mflags;
4288 	u_int flags;
4289 
4290 	if (!have_addr) {
4291 		/* No address given, print short info about all mount points. */
4292 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4293 			db_printf("%p %s on %s (%s)\n", mp,
4294 			    mp->mnt_stat.f_mntfromname,
4295 			    mp->mnt_stat.f_mntonname,
4296 			    mp->mnt_stat.f_fstypename);
4297 			if (db_pager_quit)
4298 				break;
4299 		}
4300 		db_printf("\nMore info: show mount <addr>\n");
4301 		return;
4302 	}
4303 
4304 	mp = (struct mount *)addr;
4305 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4306 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4307 
4308 	buf[0] = '\0';
4309 	mflags = mp->mnt_flag;
4310 #define	MNT_FLAG(flag)	do {						\
4311 	if (mflags & (flag)) {						\
4312 		if (buf[0] != '\0')					\
4313 			strlcat(buf, ", ", sizeof(buf));		\
4314 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4315 		mflags &= ~(flag);					\
4316 	}								\
4317 } while (0)
4318 	MNT_FLAG(MNT_RDONLY);
4319 	MNT_FLAG(MNT_SYNCHRONOUS);
4320 	MNT_FLAG(MNT_NOEXEC);
4321 	MNT_FLAG(MNT_NOSUID);
4322 	MNT_FLAG(MNT_NFS4ACLS);
4323 	MNT_FLAG(MNT_UNION);
4324 	MNT_FLAG(MNT_ASYNC);
4325 	MNT_FLAG(MNT_SUIDDIR);
4326 	MNT_FLAG(MNT_SOFTDEP);
4327 	MNT_FLAG(MNT_NOSYMFOLLOW);
4328 	MNT_FLAG(MNT_GJOURNAL);
4329 	MNT_FLAG(MNT_MULTILABEL);
4330 	MNT_FLAG(MNT_ACLS);
4331 	MNT_FLAG(MNT_NOATIME);
4332 	MNT_FLAG(MNT_NOCLUSTERR);
4333 	MNT_FLAG(MNT_NOCLUSTERW);
4334 	MNT_FLAG(MNT_SUJ);
4335 	MNT_FLAG(MNT_EXRDONLY);
4336 	MNT_FLAG(MNT_EXPORTED);
4337 	MNT_FLAG(MNT_DEFEXPORTED);
4338 	MNT_FLAG(MNT_EXPORTANON);
4339 	MNT_FLAG(MNT_EXKERB);
4340 	MNT_FLAG(MNT_EXPUBLIC);
4341 	MNT_FLAG(MNT_LOCAL);
4342 	MNT_FLAG(MNT_QUOTA);
4343 	MNT_FLAG(MNT_ROOTFS);
4344 	MNT_FLAG(MNT_USER);
4345 	MNT_FLAG(MNT_IGNORE);
4346 	MNT_FLAG(MNT_UPDATE);
4347 	MNT_FLAG(MNT_DELEXPORT);
4348 	MNT_FLAG(MNT_RELOAD);
4349 	MNT_FLAG(MNT_FORCE);
4350 	MNT_FLAG(MNT_SNAPSHOT);
4351 	MNT_FLAG(MNT_BYFSID);
4352 #undef MNT_FLAG
4353 	if (mflags != 0) {
4354 		if (buf[0] != '\0')
4355 			strlcat(buf, ", ", sizeof(buf));
4356 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4357 		    "0x%016jx", mflags);
4358 	}
4359 	db_printf("    mnt_flag = %s\n", buf);
4360 
4361 	buf[0] = '\0';
4362 	flags = mp->mnt_kern_flag;
4363 #define	MNT_KERN_FLAG(flag)	do {					\
4364 	if (flags & (flag)) {						\
4365 		if (buf[0] != '\0')					\
4366 			strlcat(buf, ", ", sizeof(buf));		\
4367 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4368 		flags &= ~(flag);					\
4369 	}								\
4370 } while (0)
4371 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4372 	MNT_KERN_FLAG(MNTK_ASYNC);
4373 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4374 	MNT_KERN_FLAG(MNTK_DRAINING);
4375 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4376 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4377 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4378 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4379 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
4380 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
4381 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4382 	MNT_KERN_FLAG(MNTK_MARKER);
4383 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4384 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4385 	MNT_KERN_FLAG(MNTK_NOASYNC);
4386 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4387 	MNT_KERN_FLAG(MNTK_MWAIT);
4388 	MNT_KERN_FLAG(MNTK_SUSPEND);
4389 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4390 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4391 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4392 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4393 #undef MNT_KERN_FLAG
4394 	if (flags != 0) {
4395 		if (buf[0] != '\0')
4396 			strlcat(buf, ", ", sizeof(buf));
4397 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4398 		    "0x%08x", flags);
4399 	}
4400 	db_printf("    mnt_kern_flag = %s\n", buf);
4401 
4402 	db_printf("    mnt_opt = ");
4403 	opt = TAILQ_FIRST(mp->mnt_opt);
4404 	if (opt != NULL) {
4405 		db_printf("%s", opt->name);
4406 		opt = TAILQ_NEXT(opt, link);
4407 		while (opt != NULL) {
4408 			db_printf(", %s", opt->name);
4409 			opt = TAILQ_NEXT(opt, link);
4410 		}
4411 	}
4412 	db_printf("\n");
4413 
4414 	sp = &mp->mnt_stat;
4415 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4416 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4417 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4418 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4419 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4420 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4421 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4422 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4423 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4424 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4425 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4426 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4427 
4428 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4429 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4430 	if (jailed(mp->mnt_cred))
4431 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4432 	db_printf(" }\n");
4433 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4434 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4435 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4436 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4437 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4438 	    mp->mnt_lazyvnodelistsize);
4439 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4440 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4441 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4442 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4443 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4444 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4445 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4446 	db_printf("    mnt_secondary_accwrites = %d\n",
4447 	    mp->mnt_secondary_accwrites);
4448 	db_printf("    mnt_gjprovider = %s\n",
4449 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4450 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4451 
4452 	db_printf("\n\nList of active vnodes\n");
4453 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4454 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4455 			vn_printf(vp, "vnode ");
4456 			if (db_pager_quit)
4457 				break;
4458 		}
4459 	}
4460 	db_printf("\n\nList of inactive vnodes\n");
4461 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4462 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4463 			vn_printf(vp, "vnode ");
4464 			if (db_pager_quit)
4465 				break;
4466 		}
4467 	}
4468 }
4469 #endif	/* DDB */
4470 
4471 /*
4472  * Fill in a struct xvfsconf based on a struct vfsconf.
4473  */
4474 static int
4475 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4476 {
4477 	struct xvfsconf xvfsp;
4478 
4479 	bzero(&xvfsp, sizeof(xvfsp));
4480 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4481 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4482 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4483 	xvfsp.vfc_flags = vfsp->vfc_flags;
4484 	/*
4485 	 * These are unused in userland, we keep them
4486 	 * to not break binary compatibility.
4487 	 */
4488 	xvfsp.vfc_vfsops = NULL;
4489 	xvfsp.vfc_next = NULL;
4490 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4491 }
4492 
4493 #ifdef COMPAT_FREEBSD32
4494 struct xvfsconf32 {
4495 	uint32_t	vfc_vfsops;
4496 	char		vfc_name[MFSNAMELEN];
4497 	int32_t		vfc_typenum;
4498 	int32_t		vfc_refcount;
4499 	int32_t		vfc_flags;
4500 	uint32_t	vfc_next;
4501 };
4502 
4503 static int
4504 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4505 {
4506 	struct xvfsconf32 xvfsp;
4507 
4508 	bzero(&xvfsp, sizeof(xvfsp));
4509 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4510 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4511 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4512 	xvfsp.vfc_flags = vfsp->vfc_flags;
4513 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4514 }
4515 #endif
4516 
4517 /*
4518  * Top level filesystem related information gathering.
4519  */
4520 static int
4521 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4522 {
4523 	struct vfsconf *vfsp;
4524 	int error;
4525 
4526 	error = 0;
4527 	vfsconf_slock();
4528 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4529 #ifdef COMPAT_FREEBSD32
4530 		if (req->flags & SCTL_MASK32)
4531 			error = vfsconf2x32(req, vfsp);
4532 		else
4533 #endif
4534 			error = vfsconf2x(req, vfsp);
4535 		if (error)
4536 			break;
4537 	}
4538 	vfsconf_sunlock();
4539 	return (error);
4540 }
4541 
4542 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4543     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4544     "S,xvfsconf", "List of all configured filesystems");
4545 
4546 #ifndef BURN_BRIDGES
4547 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4548 
4549 static int
4550 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4551 {
4552 	int *name = (int *)arg1 - 1;	/* XXX */
4553 	u_int namelen = arg2 + 1;	/* XXX */
4554 	struct vfsconf *vfsp;
4555 
4556 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4557 	    "please rebuild world\n");
4558 
4559 #if 1 || defined(COMPAT_PRELITE2)
4560 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4561 	if (namelen == 1)
4562 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4563 #endif
4564 
4565 	switch (name[1]) {
4566 	case VFS_MAXTYPENUM:
4567 		if (namelen != 2)
4568 			return (ENOTDIR);
4569 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4570 	case VFS_CONF:
4571 		if (namelen != 3)
4572 			return (ENOTDIR);	/* overloaded */
4573 		vfsconf_slock();
4574 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4575 			if (vfsp->vfc_typenum == name[2])
4576 				break;
4577 		}
4578 		vfsconf_sunlock();
4579 		if (vfsp == NULL)
4580 			return (EOPNOTSUPP);
4581 #ifdef COMPAT_FREEBSD32
4582 		if (req->flags & SCTL_MASK32)
4583 			return (vfsconf2x32(req, vfsp));
4584 		else
4585 #endif
4586 			return (vfsconf2x(req, vfsp));
4587 	}
4588 	return (EOPNOTSUPP);
4589 }
4590 
4591 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4592     CTLFLAG_MPSAFE, vfs_sysctl,
4593     "Generic filesystem");
4594 
4595 #if 1 || defined(COMPAT_PRELITE2)
4596 
4597 static int
4598 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4599 {
4600 	int error;
4601 	struct vfsconf *vfsp;
4602 	struct ovfsconf ovfs;
4603 
4604 	vfsconf_slock();
4605 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4606 		bzero(&ovfs, sizeof(ovfs));
4607 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4608 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4609 		ovfs.vfc_index = vfsp->vfc_typenum;
4610 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4611 		ovfs.vfc_flags = vfsp->vfc_flags;
4612 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4613 		if (error != 0) {
4614 			vfsconf_sunlock();
4615 			return (error);
4616 		}
4617 	}
4618 	vfsconf_sunlock();
4619 	return (0);
4620 }
4621 
4622 #endif /* 1 || COMPAT_PRELITE2 */
4623 #endif /* !BURN_BRIDGES */
4624 
4625 #define KINFO_VNODESLOP		10
4626 #ifdef notyet
4627 /*
4628  * Dump vnode list (via sysctl).
4629  */
4630 /* ARGSUSED */
4631 static int
4632 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4633 {
4634 	struct xvnode *xvn;
4635 	struct mount *mp;
4636 	struct vnode *vp;
4637 	int error, len, n;
4638 
4639 	/*
4640 	 * Stale numvnodes access is not fatal here.
4641 	 */
4642 	req->lock = 0;
4643 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4644 	if (!req->oldptr)
4645 		/* Make an estimate */
4646 		return (SYSCTL_OUT(req, 0, len));
4647 
4648 	error = sysctl_wire_old_buffer(req, 0);
4649 	if (error != 0)
4650 		return (error);
4651 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4652 	n = 0;
4653 	mtx_lock(&mountlist_mtx);
4654 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4655 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4656 			continue;
4657 		MNT_ILOCK(mp);
4658 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4659 			if (n == len)
4660 				break;
4661 			vref(vp);
4662 			xvn[n].xv_size = sizeof *xvn;
4663 			xvn[n].xv_vnode = vp;
4664 			xvn[n].xv_id = 0;	/* XXX compat */
4665 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4666 			XV_COPY(usecount);
4667 			XV_COPY(writecount);
4668 			XV_COPY(holdcnt);
4669 			XV_COPY(mount);
4670 			XV_COPY(numoutput);
4671 			XV_COPY(type);
4672 #undef XV_COPY
4673 			xvn[n].xv_flag = vp->v_vflag;
4674 
4675 			switch (vp->v_type) {
4676 			case VREG:
4677 			case VDIR:
4678 			case VLNK:
4679 				break;
4680 			case VBLK:
4681 			case VCHR:
4682 				if (vp->v_rdev == NULL) {
4683 					vrele(vp);
4684 					continue;
4685 				}
4686 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4687 				break;
4688 			case VSOCK:
4689 				xvn[n].xv_socket = vp->v_socket;
4690 				break;
4691 			case VFIFO:
4692 				xvn[n].xv_fifo = vp->v_fifoinfo;
4693 				break;
4694 			case VNON:
4695 			case VBAD:
4696 			default:
4697 				/* shouldn't happen? */
4698 				vrele(vp);
4699 				continue;
4700 			}
4701 			vrele(vp);
4702 			++n;
4703 		}
4704 		MNT_IUNLOCK(mp);
4705 		mtx_lock(&mountlist_mtx);
4706 		vfs_unbusy(mp);
4707 		if (n == len)
4708 			break;
4709 	}
4710 	mtx_unlock(&mountlist_mtx);
4711 
4712 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4713 	free(xvn, M_TEMP);
4714 	return (error);
4715 }
4716 
4717 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4718     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4719     "");
4720 #endif
4721 
4722 static void
4723 unmount_or_warn(struct mount *mp)
4724 {
4725 	int error;
4726 
4727 	error = dounmount(mp, MNT_FORCE, curthread);
4728 	if (error != 0) {
4729 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4730 		if (error == EBUSY)
4731 			printf("BUSY)\n");
4732 		else
4733 			printf("%d)\n", error);
4734 	}
4735 }
4736 
4737 /*
4738  * Unmount all filesystems. The list is traversed in reverse order
4739  * of mounting to avoid dependencies.
4740  */
4741 void
4742 vfs_unmountall(void)
4743 {
4744 	struct mount *mp, *tmp;
4745 
4746 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4747 
4748 	/*
4749 	 * Since this only runs when rebooting, it is not interlocked.
4750 	 */
4751 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4752 		vfs_ref(mp);
4753 
4754 		/*
4755 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4756 		 * unmount of the latter.
4757 		 */
4758 		if (mp == rootdevmp)
4759 			continue;
4760 
4761 		unmount_or_warn(mp);
4762 	}
4763 
4764 	if (rootdevmp != NULL)
4765 		unmount_or_warn(rootdevmp);
4766 }
4767 
4768 static void
4769 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4770 {
4771 
4772 	ASSERT_VI_LOCKED(vp, __func__);
4773 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4774 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4775 		vdropl(vp);
4776 		return;
4777 	}
4778 	if (vn_lock(vp, lkflags) == 0) {
4779 		VI_LOCK(vp);
4780 		vinactive(vp);
4781 		VOP_UNLOCK(vp);
4782 		vdropl(vp);
4783 		return;
4784 	}
4785 	vdefer_inactive_unlocked(vp);
4786 }
4787 
4788 static int
4789 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4790 {
4791 
4792 	return (vp->v_iflag & VI_DEFINACT);
4793 }
4794 
4795 static void __noinline
4796 vfs_periodic_inactive(struct mount *mp, int flags)
4797 {
4798 	struct vnode *vp, *mvp;
4799 	int lkflags;
4800 
4801 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4802 	if (flags != MNT_WAIT)
4803 		lkflags |= LK_NOWAIT;
4804 
4805 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4806 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4807 			VI_UNLOCK(vp);
4808 			continue;
4809 		}
4810 		vp->v_iflag &= ~VI_DEFINACT;
4811 		vfs_deferred_inactive(vp, lkflags);
4812 	}
4813 }
4814 
4815 static inline bool
4816 vfs_want_msync(struct vnode *vp)
4817 {
4818 	struct vm_object *obj;
4819 
4820 	/*
4821 	 * This test may be performed without any locks held.
4822 	 * We rely on vm_object's type stability.
4823 	 */
4824 	if (vp->v_vflag & VV_NOSYNC)
4825 		return (false);
4826 	obj = vp->v_object;
4827 	return (obj != NULL && vm_object_mightbedirty(obj));
4828 }
4829 
4830 static int
4831 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4832 {
4833 
4834 	if (vp->v_vflag & VV_NOSYNC)
4835 		return (false);
4836 	if (vp->v_iflag & VI_DEFINACT)
4837 		return (true);
4838 	return (vfs_want_msync(vp));
4839 }
4840 
4841 static void __noinline
4842 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4843 {
4844 	struct vnode *vp, *mvp;
4845 	struct vm_object *obj;
4846 	int lkflags, objflags;
4847 	bool seen_defer;
4848 
4849 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4850 	if (flags != MNT_WAIT) {
4851 		lkflags |= LK_NOWAIT;
4852 		objflags = OBJPC_NOSYNC;
4853 	} else {
4854 		objflags = OBJPC_SYNC;
4855 	}
4856 
4857 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4858 		seen_defer = false;
4859 		if (vp->v_iflag & VI_DEFINACT) {
4860 			vp->v_iflag &= ~VI_DEFINACT;
4861 			seen_defer = true;
4862 		}
4863 		if (!vfs_want_msync(vp)) {
4864 			if (seen_defer)
4865 				vfs_deferred_inactive(vp, lkflags);
4866 			else
4867 				VI_UNLOCK(vp);
4868 			continue;
4869 		}
4870 		if (vget(vp, lkflags) == 0) {
4871 			obj = vp->v_object;
4872 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4873 				VM_OBJECT_WLOCK(obj);
4874 				vm_object_page_clean(obj, 0, 0, objflags);
4875 				VM_OBJECT_WUNLOCK(obj);
4876 			}
4877 			vput(vp);
4878 			if (seen_defer)
4879 				vdrop(vp);
4880 		} else {
4881 			if (seen_defer)
4882 				vdefer_inactive_unlocked(vp);
4883 		}
4884 	}
4885 }
4886 
4887 void
4888 vfs_periodic(struct mount *mp, int flags)
4889 {
4890 
4891 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4892 
4893 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4894 		vfs_periodic_inactive(mp, flags);
4895 	else
4896 		vfs_periodic_msync_inactive(mp, flags);
4897 }
4898 
4899 static void
4900 destroy_vpollinfo_free(struct vpollinfo *vi)
4901 {
4902 
4903 	knlist_destroy(&vi->vpi_selinfo.si_note);
4904 	mtx_destroy(&vi->vpi_lock);
4905 	free(vi, M_VNODEPOLL);
4906 }
4907 
4908 static void
4909 destroy_vpollinfo(struct vpollinfo *vi)
4910 {
4911 
4912 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4913 	seldrain(&vi->vpi_selinfo);
4914 	destroy_vpollinfo_free(vi);
4915 }
4916 
4917 /*
4918  * Initialize per-vnode helper structure to hold poll-related state.
4919  */
4920 void
4921 v_addpollinfo(struct vnode *vp)
4922 {
4923 	struct vpollinfo *vi;
4924 
4925 	if (vp->v_pollinfo != NULL)
4926 		return;
4927 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4928 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4929 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4930 	    vfs_knlunlock, vfs_knl_assert_lock);
4931 	VI_LOCK(vp);
4932 	if (vp->v_pollinfo != NULL) {
4933 		VI_UNLOCK(vp);
4934 		destroy_vpollinfo_free(vi);
4935 		return;
4936 	}
4937 	vp->v_pollinfo = vi;
4938 	VI_UNLOCK(vp);
4939 }
4940 
4941 /*
4942  * Record a process's interest in events which might happen to
4943  * a vnode.  Because poll uses the historic select-style interface
4944  * internally, this routine serves as both the ``check for any
4945  * pending events'' and the ``record my interest in future events''
4946  * functions.  (These are done together, while the lock is held,
4947  * to avoid race conditions.)
4948  */
4949 int
4950 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4951 {
4952 
4953 	v_addpollinfo(vp);
4954 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4955 	if (vp->v_pollinfo->vpi_revents & events) {
4956 		/*
4957 		 * This leaves events we are not interested
4958 		 * in available for the other process which
4959 		 * which presumably had requested them
4960 		 * (otherwise they would never have been
4961 		 * recorded).
4962 		 */
4963 		events &= vp->v_pollinfo->vpi_revents;
4964 		vp->v_pollinfo->vpi_revents &= ~events;
4965 
4966 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4967 		return (events);
4968 	}
4969 	vp->v_pollinfo->vpi_events |= events;
4970 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4971 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4972 	return (0);
4973 }
4974 
4975 /*
4976  * Routine to create and manage a filesystem syncer vnode.
4977  */
4978 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4979 static int	sync_fsync(struct  vop_fsync_args *);
4980 static int	sync_inactive(struct  vop_inactive_args *);
4981 static int	sync_reclaim(struct  vop_reclaim_args *);
4982 
4983 static struct vop_vector sync_vnodeops = {
4984 	.vop_bypass =	VOP_EOPNOTSUPP,
4985 	.vop_close =	sync_close,		/* close */
4986 	.vop_fsync =	sync_fsync,		/* fsync */
4987 	.vop_inactive =	sync_inactive,	/* inactive */
4988 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4989 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4990 	.vop_lock1 =	vop_stdlock,	/* lock */
4991 	.vop_unlock =	vop_stdunlock,	/* unlock */
4992 	.vop_islocked =	vop_stdislocked,	/* islocked */
4993 };
4994 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4995 
4996 /*
4997  * Create a new filesystem syncer vnode for the specified mount point.
4998  */
4999 void
5000 vfs_allocate_syncvnode(struct mount *mp)
5001 {
5002 	struct vnode *vp;
5003 	struct bufobj *bo;
5004 	static long start, incr, next;
5005 	int error;
5006 
5007 	/* Allocate a new vnode */
5008 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5009 	if (error != 0)
5010 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5011 	vp->v_type = VNON;
5012 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5013 	vp->v_vflag |= VV_FORCEINSMQ;
5014 	error = insmntque(vp, mp);
5015 	if (error != 0)
5016 		panic("vfs_allocate_syncvnode: insmntque() failed");
5017 	vp->v_vflag &= ~VV_FORCEINSMQ;
5018 	VOP_UNLOCK(vp);
5019 	/*
5020 	 * Place the vnode onto the syncer worklist. We attempt to
5021 	 * scatter them about on the list so that they will go off
5022 	 * at evenly distributed times even if all the filesystems
5023 	 * are mounted at once.
5024 	 */
5025 	next += incr;
5026 	if (next == 0 || next > syncer_maxdelay) {
5027 		start /= 2;
5028 		incr /= 2;
5029 		if (start == 0) {
5030 			start = syncer_maxdelay / 2;
5031 			incr = syncer_maxdelay;
5032 		}
5033 		next = start;
5034 	}
5035 	bo = &vp->v_bufobj;
5036 	BO_LOCK(bo);
5037 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5038 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5039 	mtx_lock(&sync_mtx);
5040 	sync_vnode_count++;
5041 	if (mp->mnt_syncer == NULL) {
5042 		mp->mnt_syncer = vp;
5043 		vp = NULL;
5044 	}
5045 	mtx_unlock(&sync_mtx);
5046 	BO_UNLOCK(bo);
5047 	if (vp != NULL) {
5048 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5049 		vgone(vp);
5050 		vput(vp);
5051 	}
5052 }
5053 
5054 void
5055 vfs_deallocate_syncvnode(struct mount *mp)
5056 {
5057 	struct vnode *vp;
5058 
5059 	mtx_lock(&sync_mtx);
5060 	vp = mp->mnt_syncer;
5061 	if (vp != NULL)
5062 		mp->mnt_syncer = NULL;
5063 	mtx_unlock(&sync_mtx);
5064 	if (vp != NULL)
5065 		vrele(vp);
5066 }
5067 
5068 /*
5069  * Do a lazy sync of the filesystem.
5070  */
5071 static int
5072 sync_fsync(struct vop_fsync_args *ap)
5073 {
5074 	struct vnode *syncvp = ap->a_vp;
5075 	struct mount *mp = syncvp->v_mount;
5076 	int error, save;
5077 	struct bufobj *bo;
5078 
5079 	/*
5080 	 * We only need to do something if this is a lazy evaluation.
5081 	 */
5082 	if (ap->a_waitfor != MNT_LAZY)
5083 		return (0);
5084 
5085 	/*
5086 	 * Move ourselves to the back of the sync list.
5087 	 */
5088 	bo = &syncvp->v_bufobj;
5089 	BO_LOCK(bo);
5090 	vn_syncer_add_to_worklist(bo, syncdelay);
5091 	BO_UNLOCK(bo);
5092 
5093 	/*
5094 	 * Walk the list of vnodes pushing all that are dirty and
5095 	 * not already on the sync list.
5096 	 */
5097 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5098 		return (0);
5099 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
5100 		vfs_unbusy(mp);
5101 		return (0);
5102 	}
5103 	save = curthread_pflags_set(TDP_SYNCIO);
5104 	/*
5105 	 * The filesystem at hand may be idle with free vnodes stored in the
5106 	 * batch.  Return them instead of letting them stay there indefinitely.
5107 	 */
5108 	vfs_periodic(mp, MNT_NOWAIT);
5109 	error = VFS_SYNC(mp, MNT_LAZY);
5110 	curthread_pflags_restore(save);
5111 	vn_finished_write(mp);
5112 	vfs_unbusy(mp);
5113 	return (error);
5114 }
5115 
5116 /*
5117  * The syncer vnode is no referenced.
5118  */
5119 static int
5120 sync_inactive(struct vop_inactive_args *ap)
5121 {
5122 
5123 	vgone(ap->a_vp);
5124 	return (0);
5125 }
5126 
5127 /*
5128  * The syncer vnode is no longer needed and is being decommissioned.
5129  *
5130  * Modifications to the worklist must be protected by sync_mtx.
5131  */
5132 static int
5133 sync_reclaim(struct vop_reclaim_args *ap)
5134 {
5135 	struct vnode *vp = ap->a_vp;
5136 	struct bufobj *bo;
5137 
5138 	bo = &vp->v_bufobj;
5139 	BO_LOCK(bo);
5140 	mtx_lock(&sync_mtx);
5141 	if (vp->v_mount->mnt_syncer == vp)
5142 		vp->v_mount->mnt_syncer = NULL;
5143 	if (bo->bo_flag & BO_ONWORKLST) {
5144 		LIST_REMOVE(bo, bo_synclist);
5145 		syncer_worklist_len--;
5146 		sync_vnode_count--;
5147 		bo->bo_flag &= ~BO_ONWORKLST;
5148 	}
5149 	mtx_unlock(&sync_mtx);
5150 	BO_UNLOCK(bo);
5151 
5152 	return (0);
5153 }
5154 
5155 int
5156 vn_need_pageq_flush(struct vnode *vp)
5157 {
5158 	struct vm_object *obj;
5159 
5160 	obj = vp->v_object;
5161 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5162 	    vm_object_mightbedirty(obj));
5163 }
5164 
5165 /*
5166  * Check if vnode represents a disk device
5167  */
5168 bool
5169 vn_isdisk_error(struct vnode *vp, int *errp)
5170 {
5171 	int error;
5172 
5173 	if (vp->v_type != VCHR) {
5174 		error = ENOTBLK;
5175 		goto out;
5176 	}
5177 	error = 0;
5178 	dev_lock();
5179 	if (vp->v_rdev == NULL)
5180 		error = ENXIO;
5181 	else if (vp->v_rdev->si_devsw == NULL)
5182 		error = ENXIO;
5183 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5184 		error = ENOTBLK;
5185 	dev_unlock();
5186 out:
5187 	*errp = error;
5188 	return (error == 0);
5189 }
5190 
5191 bool
5192 vn_isdisk(struct vnode *vp)
5193 {
5194 	int error;
5195 
5196 	return (vn_isdisk_error(vp, &error));
5197 }
5198 
5199 /*
5200  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5201  * the comment above cache_fplookup for details.
5202  */
5203 int
5204 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5205 {
5206 	int error;
5207 
5208 	VFS_SMR_ASSERT_ENTERED();
5209 
5210 	/* Check the owner. */
5211 	if (cred->cr_uid == file_uid) {
5212 		if (file_mode & S_IXUSR)
5213 			return (0);
5214 		goto out_error;
5215 	}
5216 
5217 	/* Otherwise, check the groups (first match) */
5218 	if (groupmember(file_gid, cred)) {
5219 		if (file_mode & S_IXGRP)
5220 			return (0);
5221 		goto out_error;
5222 	}
5223 
5224 	/* Otherwise, check everyone else. */
5225 	if (file_mode & S_IXOTH)
5226 		return (0);
5227 out_error:
5228 	/*
5229 	 * Permission check failed, but it is possible denial will get overwritten
5230 	 * (e.g., when root is traversing through a 700 directory owned by someone
5231 	 * else).
5232 	 *
5233 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5234 	 * modules overriding this result. It's quite unclear what semantics
5235 	 * are allowed for them to operate, thus for safety we don't call them
5236 	 * from within the SMR section. This also means if any such modules
5237 	 * are present, we have to let the regular lookup decide.
5238 	 */
5239 	error = priv_check_cred_vfs_lookup_nomac(cred);
5240 	switch (error) {
5241 	case 0:
5242 		return (0);
5243 	case EAGAIN:
5244 		/*
5245 		 * MAC modules present.
5246 		 */
5247 		return (EAGAIN);
5248 	case EPERM:
5249 		return (EACCES);
5250 	default:
5251 		return (error);
5252 	}
5253 }
5254 
5255 /*
5256  * Common filesystem object access control check routine.  Accepts a
5257  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5258  * Returns 0 on success, or an errno on failure.
5259  */
5260 int
5261 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5262     accmode_t accmode, struct ucred *cred)
5263 {
5264 	accmode_t dac_granted;
5265 	accmode_t priv_granted;
5266 
5267 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5268 	    ("invalid bit in accmode"));
5269 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5270 	    ("VAPPEND without VWRITE"));
5271 
5272 	/*
5273 	 * Look for a normal, non-privileged way to access the file/directory
5274 	 * as requested.  If it exists, go with that.
5275 	 */
5276 
5277 	dac_granted = 0;
5278 
5279 	/* Check the owner. */
5280 	if (cred->cr_uid == file_uid) {
5281 		dac_granted |= VADMIN;
5282 		if (file_mode & S_IXUSR)
5283 			dac_granted |= VEXEC;
5284 		if (file_mode & S_IRUSR)
5285 			dac_granted |= VREAD;
5286 		if (file_mode & S_IWUSR)
5287 			dac_granted |= (VWRITE | VAPPEND);
5288 
5289 		if ((accmode & dac_granted) == accmode)
5290 			return (0);
5291 
5292 		goto privcheck;
5293 	}
5294 
5295 	/* Otherwise, check the groups (first match) */
5296 	if (groupmember(file_gid, cred)) {
5297 		if (file_mode & S_IXGRP)
5298 			dac_granted |= VEXEC;
5299 		if (file_mode & S_IRGRP)
5300 			dac_granted |= VREAD;
5301 		if (file_mode & S_IWGRP)
5302 			dac_granted |= (VWRITE | VAPPEND);
5303 
5304 		if ((accmode & dac_granted) == accmode)
5305 			return (0);
5306 
5307 		goto privcheck;
5308 	}
5309 
5310 	/* Otherwise, check everyone else. */
5311 	if (file_mode & S_IXOTH)
5312 		dac_granted |= VEXEC;
5313 	if (file_mode & S_IROTH)
5314 		dac_granted |= VREAD;
5315 	if (file_mode & S_IWOTH)
5316 		dac_granted |= (VWRITE | VAPPEND);
5317 	if ((accmode & dac_granted) == accmode)
5318 		return (0);
5319 
5320 privcheck:
5321 	/*
5322 	 * Build a privilege mask to determine if the set of privileges
5323 	 * satisfies the requirements when combined with the granted mask
5324 	 * from above.  For each privilege, if the privilege is required,
5325 	 * bitwise or the request type onto the priv_granted mask.
5326 	 */
5327 	priv_granted = 0;
5328 
5329 	if (type == VDIR) {
5330 		/*
5331 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5332 		 * requests, instead of PRIV_VFS_EXEC.
5333 		 */
5334 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5335 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5336 			priv_granted |= VEXEC;
5337 	} else {
5338 		/*
5339 		 * Ensure that at least one execute bit is on. Otherwise,
5340 		 * a privileged user will always succeed, and we don't want
5341 		 * this to happen unless the file really is executable.
5342 		 */
5343 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5344 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5345 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5346 			priv_granted |= VEXEC;
5347 	}
5348 
5349 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5350 	    !priv_check_cred(cred, PRIV_VFS_READ))
5351 		priv_granted |= VREAD;
5352 
5353 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5354 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5355 		priv_granted |= (VWRITE | VAPPEND);
5356 
5357 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5358 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5359 		priv_granted |= VADMIN;
5360 
5361 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5362 		return (0);
5363 	}
5364 
5365 	return ((accmode & VADMIN) ? EPERM : EACCES);
5366 }
5367 
5368 /*
5369  * Credential check based on process requesting service, and per-attribute
5370  * permissions.
5371  */
5372 int
5373 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5374     struct thread *td, accmode_t accmode)
5375 {
5376 
5377 	/*
5378 	 * Kernel-invoked always succeeds.
5379 	 */
5380 	if (cred == NOCRED)
5381 		return (0);
5382 
5383 	/*
5384 	 * Do not allow privileged processes in jail to directly manipulate
5385 	 * system attributes.
5386 	 */
5387 	switch (attrnamespace) {
5388 	case EXTATTR_NAMESPACE_SYSTEM:
5389 		/* Potentially should be: return (EPERM); */
5390 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5391 	case EXTATTR_NAMESPACE_USER:
5392 		return (VOP_ACCESS(vp, accmode, cred, td));
5393 	default:
5394 		return (EPERM);
5395 	}
5396 }
5397 
5398 #ifdef DEBUG_VFS_LOCKS
5399 /*
5400  * This only exists to suppress warnings from unlocked specfs accesses.  It is
5401  * no longer ok to have an unlocked VFS.
5402  */
5403 #define	IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL ||		\
5404 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
5405 
5406 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5407 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5408     "Drop into debugger on lock violation");
5409 
5410 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5411 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5412     0, "Check for interlock across VOPs");
5413 
5414 int vfs_badlock_print = 1;	/* Print lock violations. */
5415 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5416     0, "Print lock violations");
5417 
5418 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5419 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5420     0, "Print vnode details on lock violations");
5421 
5422 #ifdef KDB
5423 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5424 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5425     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5426 #endif
5427 
5428 static void
5429 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5430 {
5431 
5432 #ifdef KDB
5433 	if (vfs_badlock_backtrace)
5434 		kdb_backtrace();
5435 #endif
5436 	if (vfs_badlock_vnode)
5437 		vn_printf(vp, "vnode ");
5438 	if (vfs_badlock_print)
5439 		printf("%s: %p %s\n", str, (void *)vp, msg);
5440 	if (vfs_badlock_ddb)
5441 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5442 }
5443 
5444 void
5445 assert_vi_locked(struct vnode *vp, const char *str)
5446 {
5447 
5448 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5449 		vfs_badlock("interlock is not locked but should be", str, vp);
5450 }
5451 
5452 void
5453 assert_vi_unlocked(struct vnode *vp, const char *str)
5454 {
5455 
5456 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5457 		vfs_badlock("interlock is locked but should not be", str, vp);
5458 }
5459 
5460 void
5461 assert_vop_locked(struct vnode *vp, const char *str)
5462 {
5463 	int locked;
5464 
5465 	if (!IGNORE_LOCK(vp)) {
5466 		locked = VOP_ISLOCKED(vp);
5467 		if (locked == 0 || locked == LK_EXCLOTHER)
5468 			vfs_badlock("is not locked but should be", str, vp);
5469 	}
5470 }
5471 
5472 void
5473 assert_vop_unlocked(struct vnode *vp, const char *str)
5474 {
5475 
5476 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5477 		vfs_badlock("is locked but should not be", str, vp);
5478 }
5479 
5480 void
5481 assert_vop_elocked(struct vnode *vp, const char *str)
5482 {
5483 
5484 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5485 		vfs_badlock("is not exclusive locked but should be", str, vp);
5486 }
5487 #endif /* DEBUG_VFS_LOCKS */
5488 
5489 void
5490 vop_rename_fail(struct vop_rename_args *ap)
5491 {
5492 
5493 	if (ap->a_tvp != NULL)
5494 		vput(ap->a_tvp);
5495 	if (ap->a_tdvp == ap->a_tvp)
5496 		vrele(ap->a_tdvp);
5497 	else
5498 		vput(ap->a_tdvp);
5499 	vrele(ap->a_fdvp);
5500 	vrele(ap->a_fvp);
5501 }
5502 
5503 void
5504 vop_rename_pre(void *ap)
5505 {
5506 	struct vop_rename_args *a = ap;
5507 
5508 #ifdef DEBUG_VFS_LOCKS
5509 	if (a->a_tvp)
5510 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5511 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5512 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5513 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5514 
5515 	/* Check the source (from). */
5516 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5517 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5518 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5519 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5520 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5521 
5522 	/* Check the target. */
5523 	if (a->a_tvp)
5524 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5525 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5526 #endif
5527 	/*
5528 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5529 	 * in vop_rename_post but that's not going to work out since some
5530 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5531 	 *
5532 	 * For now filesystems are expected to do the relevant calls after they
5533 	 * decide what vnodes to operate on.
5534 	 */
5535 	if (a->a_tdvp != a->a_fdvp)
5536 		vhold(a->a_fdvp);
5537 	if (a->a_tvp != a->a_fvp)
5538 		vhold(a->a_fvp);
5539 	vhold(a->a_tdvp);
5540 	if (a->a_tvp)
5541 		vhold(a->a_tvp);
5542 }
5543 
5544 #ifdef DEBUG_VFS_LOCKS
5545 void
5546 vop_fplookup_vexec_debugpre(void *ap __unused)
5547 {
5548 
5549 	VFS_SMR_ASSERT_ENTERED();
5550 }
5551 
5552 void
5553 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5554 {
5555 
5556 	VFS_SMR_ASSERT_ENTERED();
5557 }
5558 
5559 void
5560 vop_fplookup_symlink_debugpre(void *ap __unused)
5561 {
5562 
5563 	VFS_SMR_ASSERT_ENTERED();
5564 }
5565 
5566 void
5567 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5568 {
5569 
5570 	VFS_SMR_ASSERT_ENTERED();
5571 }
5572 void
5573 vop_strategy_debugpre(void *ap)
5574 {
5575 	struct vop_strategy_args *a;
5576 	struct buf *bp;
5577 
5578 	a = ap;
5579 	bp = a->a_bp;
5580 
5581 	/*
5582 	 * Cluster ops lock their component buffers but not the IO container.
5583 	 */
5584 	if ((bp->b_flags & B_CLUSTER) != 0)
5585 		return;
5586 
5587 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5588 		if (vfs_badlock_print)
5589 			printf(
5590 			    "VOP_STRATEGY: bp is not locked but should be\n");
5591 		if (vfs_badlock_ddb)
5592 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5593 	}
5594 }
5595 
5596 void
5597 vop_lock_debugpre(void *ap)
5598 {
5599 	struct vop_lock1_args *a = ap;
5600 
5601 	if ((a->a_flags & LK_INTERLOCK) == 0)
5602 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5603 	else
5604 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5605 }
5606 
5607 void
5608 vop_lock_debugpost(void *ap, int rc)
5609 {
5610 	struct vop_lock1_args *a = ap;
5611 
5612 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5613 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5614 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5615 }
5616 
5617 void
5618 vop_unlock_debugpre(void *ap)
5619 {
5620 	struct vop_unlock_args *a = ap;
5621 
5622 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5623 }
5624 
5625 void
5626 vop_need_inactive_debugpre(void *ap)
5627 {
5628 	struct vop_need_inactive_args *a = ap;
5629 
5630 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5631 }
5632 
5633 void
5634 vop_need_inactive_debugpost(void *ap, int rc)
5635 {
5636 	struct vop_need_inactive_args *a = ap;
5637 
5638 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5639 }
5640 #endif
5641 
5642 void
5643 vop_create_pre(void *ap)
5644 {
5645 	struct vop_create_args *a;
5646 	struct vnode *dvp;
5647 
5648 	a = ap;
5649 	dvp = a->a_dvp;
5650 	vn_seqc_write_begin(dvp);
5651 }
5652 
5653 void
5654 vop_create_post(void *ap, int rc)
5655 {
5656 	struct vop_create_args *a;
5657 	struct vnode *dvp;
5658 
5659 	a = ap;
5660 	dvp = a->a_dvp;
5661 	vn_seqc_write_end(dvp);
5662 	if (!rc)
5663 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5664 }
5665 
5666 void
5667 vop_whiteout_pre(void *ap)
5668 {
5669 	struct vop_whiteout_args *a;
5670 	struct vnode *dvp;
5671 
5672 	a = ap;
5673 	dvp = a->a_dvp;
5674 	vn_seqc_write_begin(dvp);
5675 }
5676 
5677 void
5678 vop_whiteout_post(void *ap, int rc)
5679 {
5680 	struct vop_whiteout_args *a;
5681 	struct vnode *dvp;
5682 
5683 	a = ap;
5684 	dvp = a->a_dvp;
5685 	vn_seqc_write_end(dvp);
5686 }
5687 
5688 void
5689 vop_deleteextattr_pre(void *ap)
5690 {
5691 	struct vop_deleteextattr_args *a;
5692 	struct vnode *vp;
5693 
5694 	a = ap;
5695 	vp = a->a_vp;
5696 	vn_seqc_write_begin(vp);
5697 }
5698 
5699 void
5700 vop_deleteextattr_post(void *ap, int rc)
5701 {
5702 	struct vop_deleteextattr_args *a;
5703 	struct vnode *vp;
5704 
5705 	a = ap;
5706 	vp = a->a_vp;
5707 	vn_seqc_write_end(vp);
5708 	if (!rc)
5709 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5710 }
5711 
5712 void
5713 vop_link_pre(void *ap)
5714 {
5715 	struct vop_link_args *a;
5716 	struct vnode *vp, *tdvp;
5717 
5718 	a = ap;
5719 	vp = a->a_vp;
5720 	tdvp = a->a_tdvp;
5721 	vn_seqc_write_begin(vp);
5722 	vn_seqc_write_begin(tdvp);
5723 }
5724 
5725 void
5726 vop_link_post(void *ap, int rc)
5727 {
5728 	struct vop_link_args *a;
5729 	struct vnode *vp, *tdvp;
5730 
5731 	a = ap;
5732 	vp = a->a_vp;
5733 	tdvp = a->a_tdvp;
5734 	vn_seqc_write_end(vp);
5735 	vn_seqc_write_end(tdvp);
5736 	if (!rc) {
5737 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5738 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5739 	}
5740 }
5741 
5742 void
5743 vop_mkdir_pre(void *ap)
5744 {
5745 	struct vop_mkdir_args *a;
5746 	struct vnode *dvp;
5747 
5748 	a = ap;
5749 	dvp = a->a_dvp;
5750 	vn_seqc_write_begin(dvp);
5751 }
5752 
5753 void
5754 vop_mkdir_post(void *ap, int rc)
5755 {
5756 	struct vop_mkdir_args *a;
5757 	struct vnode *dvp;
5758 
5759 	a = ap;
5760 	dvp = a->a_dvp;
5761 	vn_seqc_write_end(dvp);
5762 	if (!rc)
5763 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5764 }
5765 
5766 #ifdef DEBUG_VFS_LOCKS
5767 void
5768 vop_mkdir_debugpost(void *ap, int rc)
5769 {
5770 	struct vop_mkdir_args *a;
5771 
5772 	a = ap;
5773 	if (!rc)
5774 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5775 }
5776 #endif
5777 
5778 void
5779 vop_mknod_pre(void *ap)
5780 {
5781 	struct vop_mknod_args *a;
5782 	struct vnode *dvp;
5783 
5784 	a = ap;
5785 	dvp = a->a_dvp;
5786 	vn_seqc_write_begin(dvp);
5787 }
5788 
5789 void
5790 vop_mknod_post(void *ap, int rc)
5791 {
5792 	struct vop_mknod_args *a;
5793 	struct vnode *dvp;
5794 
5795 	a = ap;
5796 	dvp = a->a_dvp;
5797 	vn_seqc_write_end(dvp);
5798 	if (!rc)
5799 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5800 }
5801 
5802 void
5803 vop_reclaim_post(void *ap, int rc)
5804 {
5805 	struct vop_reclaim_args *a;
5806 	struct vnode *vp;
5807 
5808 	a = ap;
5809 	vp = a->a_vp;
5810 	ASSERT_VOP_IN_SEQC(vp);
5811 	if (!rc)
5812 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5813 }
5814 
5815 void
5816 vop_remove_pre(void *ap)
5817 {
5818 	struct vop_remove_args *a;
5819 	struct vnode *dvp, *vp;
5820 
5821 	a = ap;
5822 	dvp = a->a_dvp;
5823 	vp = a->a_vp;
5824 	vn_seqc_write_begin(dvp);
5825 	vn_seqc_write_begin(vp);
5826 }
5827 
5828 void
5829 vop_remove_post(void *ap, int rc)
5830 {
5831 	struct vop_remove_args *a;
5832 	struct vnode *dvp, *vp;
5833 
5834 	a = ap;
5835 	dvp = a->a_dvp;
5836 	vp = a->a_vp;
5837 	vn_seqc_write_end(dvp);
5838 	vn_seqc_write_end(vp);
5839 	if (!rc) {
5840 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5841 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5842 	}
5843 }
5844 
5845 void
5846 vop_rename_post(void *ap, int rc)
5847 {
5848 	struct vop_rename_args *a = ap;
5849 	long hint;
5850 
5851 	if (!rc) {
5852 		hint = NOTE_WRITE;
5853 		if (a->a_fdvp == a->a_tdvp) {
5854 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5855 				hint |= NOTE_LINK;
5856 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5857 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5858 		} else {
5859 			hint |= NOTE_EXTEND;
5860 			if (a->a_fvp->v_type == VDIR)
5861 				hint |= NOTE_LINK;
5862 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5863 
5864 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5865 			    a->a_tvp->v_type == VDIR)
5866 				hint &= ~NOTE_LINK;
5867 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5868 		}
5869 
5870 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5871 		if (a->a_tvp)
5872 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5873 	}
5874 	if (a->a_tdvp != a->a_fdvp)
5875 		vdrop(a->a_fdvp);
5876 	if (a->a_tvp != a->a_fvp)
5877 		vdrop(a->a_fvp);
5878 	vdrop(a->a_tdvp);
5879 	if (a->a_tvp)
5880 		vdrop(a->a_tvp);
5881 }
5882 
5883 void
5884 vop_rmdir_pre(void *ap)
5885 {
5886 	struct vop_rmdir_args *a;
5887 	struct vnode *dvp, *vp;
5888 
5889 	a = ap;
5890 	dvp = a->a_dvp;
5891 	vp = a->a_vp;
5892 	vn_seqc_write_begin(dvp);
5893 	vn_seqc_write_begin(vp);
5894 }
5895 
5896 void
5897 vop_rmdir_post(void *ap, int rc)
5898 {
5899 	struct vop_rmdir_args *a;
5900 	struct vnode *dvp, *vp;
5901 
5902 	a = ap;
5903 	dvp = a->a_dvp;
5904 	vp = a->a_vp;
5905 	vn_seqc_write_end(dvp);
5906 	vn_seqc_write_end(vp);
5907 	if (!rc) {
5908 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5909 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5910 	}
5911 }
5912 
5913 void
5914 vop_setattr_pre(void *ap)
5915 {
5916 	struct vop_setattr_args *a;
5917 	struct vnode *vp;
5918 
5919 	a = ap;
5920 	vp = a->a_vp;
5921 	vn_seqc_write_begin(vp);
5922 }
5923 
5924 void
5925 vop_setattr_post(void *ap, int rc)
5926 {
5927 	struct vop_setattr_args *a;
5928 	struct vnode *vp;
5929 
5930 	a = ap;
5931 	vp = a->a_vp;
5932 	vn_seqc_write_end(vp);
5933 	if (!rc)
5934 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5935 }
5936 
5937 void
5938 vop_setacl_pre(void *ap)
5939 {
5940 	struct vop_setacl_args *a;
5941 	struct vnode *vp;
5942 
5943 	a = ap;
5944 	vp = a->a_vp;
5945 	vn_seqc_write_begin(vp);
5946 }
5947 
5948 void
5949 vop_setacl_post(void *ap, int rc __unused)
5950 {
5951 	struct vop_setacl_args *a;
5952 	struct vnode *vp;
5953 
5954 	a = ap;
5955 	vp = a->a_vp;
5956 	vn_seqc_write_end(vp);
5957 }
5958 
5959 void
5960 vop_setextattr_pre(void *ap)
5961 {
5962 	struct vop_setextattr_args *a;
5963 	struct vnode *vp;
5964 
5965 	a = ap;
5966 	vp = a->a_vp;
5967 	vn_seqc_write_begin(vp);
5968 }
5969 
5970 void
5971 vop_setextattr_post(void *ap, int rc)
5972 {
5973 	struct vop_setextattr_args *a;
5974 	struct vnode *vp;
5975 
5976 	a = ap;
5977 	vp = a->a_vp;
5978 	vn_seqc_write_end(vp);
5979 	if (!rc)
5980 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5981 }
5982 
5983 void
5984 vop_symlink_pre(void *ap)
5985 {
5986 	struct vop_symlink_args *a;
5987 	struct vnode *dvp;
5988 
5989 	a = ap;
5990 	dvp = a->a_dvp;
5991 	vn_seqc_write_begin(dvp);
5992 }
5993 
5994 void
5995 vop_symlink_post(void *ap, int rc)
5996 {
5997 	struct vop_symlink_args *a;
5998 	struct vnode *dvp;
5999 
6000 	a = ap;
6001 	dvp = a->a_dvp;
6002 	vn_seqc_write_end(dvp);
6003 	if (!rc)
6004 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6005 }
6006 
6007 void
6008 vop_open_post(void *ap, int rc)
6009 {
6010 	struct vop_open_args *a = ap;
6011 
6012 	if (!rc)
6013 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6014 }
6015 
6016 void
6017 vop_close_post(void *ap, int rc)
6018 {
6019 	struct vop_close_args *a = ap;
6020 
6021 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6022 	    !VN_IS_DOOMED(a->a_vp))) {
6023 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6024 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6025 	}
6026 }
6027 
6028 void
6029 vop_read_post(void *ap, int rc)
6030 {
6031 	struct vop_read_args *a = ap;
6032 
6033 	if (!rc)
6034 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6035 }
6036 
6037 void
6038 vop_read_pgcache_post(void *ap, int rc)
6039 {
6040 	struct vop_read_pgcache_args *a = ap;
6041 
6042 	if (!rc)
6043 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6044 }
6045 
6046 void
6047 vop_readdir_post(void *ap, int rc)
6048 {
6049 	struct vop_readdir_args *a = ap;
6050 
6051 	if (!rc)
6052 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6053 }
6054 
6055 static struct knlist fs_knlist;
6056 
6057 static void
6058 vfs_event_init(void *arg)
6059 {
6060 	knlist_init_mtx(&fs_knlist, NULL);
6061 }
6062 /* XXX - correct order? */
6063 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6064 
6065 void
6066 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6067 {
6068 
6069 	KNOTE_UNLOCKED(&fs_knlist, event);
6070 }
6071 
6072 static int	filt_fsattach(struct knote *kn);
6073 static void	filt_fsdetach(struct knote *kn);
6074 static int	filt_fsevent(struct knote *kn, long hint);
6075 
6076 struct filterops fs_filtops = {
6077 	.f_isfd = 0,
6078 	.f_attach = filt_fsattach,
6079 	.f_detach = filt_fsdetach,
6080 	.f_event = filt_fsevent
6081 };
6082 
6083 static int
6084 filt_fsattach(struct knote *kn)
6085 {
6086 
6087 	kn->kn_flags |= EV_CLEAR;
6088 	knlist_add(&fs_knlist, kn, 0);
6089 	return (0);
6090 }
6091 
6092 static void
6093 filt_fsdetach(struct knote *kn)
6094 {
6095 
6096 	knlist_remove(&fs_knlist, kn, 0);
6097 }
6098 
6099 static int
6100 filt_fsevent(struct knote *kn, long hint)
6101 {
6102 
6103 	kn->kn_fflags |= kn->kn_sfflags & hint;
6104 
6105 	return (kn->kn_fflags != 0);
6106 }
6107 
6108 static int
6109 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6110 {
6111 	struct vfsidctl vc;
6112 	int error;
6113 	struct mount *mp;
6114 
6115 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6116 	if (error)
6117 		return (error);
6118 	if (vc.vc_vers != VFS_CTL_VERS1)
6119 		return (EINVAL);
6120 	mp = vfs_getvfs(&vc.vc_fsid);
6121 	if (mp == NULL)
6122 		return (ENOENT);
6123 	/* ensure that a specific sysctl goes to the right filesystem. */
6124 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6125 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6126 		vfs_rel(mp);
6127 		return (EINVAL);
6128 	}
6129 	VCTLTOREQ(&vc, req);
6130 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6131 	vfs_rel(mp);
6132 	return (error);
6133 }
6134 
6135 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6136     NULL, 0, sysctl_vfs_ctl, "",
6137     "Sysctl by fsid");
6138 
6139 /*
6140  * Function to initialize a va_filerev field sensibly.
6141  * XXX: Wouldn't a random number make a lot more sense ??
6142  */
6143 u_quad_t
6144 init_va_filerev(void)
6145 {
6146 	struct bintime bt;
6147 
6148 	getbinuptime(&bt);
6149 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6150 }
6151 
6152 static int	filt_vfsread(struct knote *kn, long hint);
6153 static int	filt_vfswrite(struct knote *kn, long hint);
6154 static int	filt_vfsvnode(struct knote *kn, long hint);
6155 static void	filt_vfsdetach(struct knote *kn);
6156 static struct filterops vfsread_filtops = {
6157 	.f_isfd = 1,
6158 	.f_detach = filt_vfsdetach,
6159 	.f_event = filt_vfsread
6160 };
6161 static struct filterops vfswrite_filtops = {
6162 	.f_isfd = 1,
6163 	.f_detach = filt_vfsdetach,
6164 	.f_event = filt_vfswrite
6165 };
6166 static struct filterops vfsvnode_filtops = {
6167 	.f_isfd = 1,
6168 	.f_detach = filt_vfsdetach,
6169 	.f_event = filt_vfsvnode
6170 };
6171 
6172 static void
6173 vfs_knllock(void *arg)
6174 {
6175 	struct vnode *vp = arg;
6176 
6177 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6178 }
6179 
6180 static void
6181 vfs_knlunlock(void *arg)
6182 {
6183 	struct vnode *vp = arg;
6184 
6185 	VOP_UNLOCK(vp);
6186 }
6187 
6188 static void
6189 vfs_knl_assert_lock(void *arg, int what)
6190 {
6191 #ifdef DEBUG_VFS_LOCKS
6192 	struct vnode *vp = arg;
6193 
6194 	if (what == LA_LOCKED)
6195 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6196 	else
6197 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6198 #endif
6199 }
6200 
6201 int
6202 vfs_kqfilter(struct vop_kqfilter_args *ap)
6203 {
6204 	struct vnode *vp = ap->a_vp;
6205 	struct knote *kn = ap->a_kn;
6206 	struct knlist *knl;
6207 
6208 	switch (kn->kn_filter) {
6209 	case EVFILT_READ:
6210 		kn->kn_fop = &vfsread_filtops;
6211 		break;
6212 	case EVFILT_WRITE:
6213 		kn->kn_fop = &vfswrite_filtops;
6214 		break;
6215 	case EVFILT_VNODE:
6216 		kn->kn_fop = &vfsvnode_filtops;
6217 		break;
6218 	default:
6219 		return (EINVAL);
6220 	}
6221 
6222 	kn->kn_hook = (caddr_t)vp;
6223 
6224 	v_addpollinfo(vp);
6225 	if (vp->v_pollinfo == NULL)
6226 		return (ENOMEM);
6227 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6228 	vhold(vp);
6229 	knlist_add(knl, kn, 0);
6230 
6231 	return (0);
6232 }
6233 
6234 /*
6235  * Detach knote from vnode
6236  */
6237 static void
6238 filt_vfsdetach(struct knote *kn)
6239 {
6240 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6241 
6242 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6243 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6244 	vdrop(vp);
6245 }
6246 
6247 /*ARGSUSED*/
6248 static int
6249 filt_vfsread(struct knote *kn, long hint)
6250 {
6251 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6252 	struct vattr va;
6253 	int res;
6254 
6255 	/*
6256 	 * filesystem is gone, so set the EOF flag and schedule
6257 	 * the knote for deletion.
6258 	 */
6259 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6260 		VI_LOCK(vp);
6261 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6262 		VI_UNLOCK(vp);
6263 		return (1);
6264 	}
6265 
6266 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6267 		return (0);
6268 
6269 	VI_LOCK(vp);
6270 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6271 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6272 	VI_UNLOCK(vp);
6273 	return (res);
6274 }
6275 
6276 /*ARGSUSED*/
6277 static int
6278 filt_vfswrite(struct knote *kn, long hint)
6279 {
6280 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6281 
6282 	VI_LOCK(vp);
6283 
6284 	/*
6285 	 * filesystem is gone, so set the EOF flag and schedule
6286 	 * the knote for deletion.
6287 	 */
6288 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6289 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6290 
6291 	kn->kn_data = 0;
6292 	VI_UNLOCK(vp);
6293 	return (1);
6294 }
6295 
6296 static int
6297 filt_vfsvnode(struct knote *kn, long hint)
6298 {
6299 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6300 	int res;
6301 
6302 	VI_LOCK(vp);
6303 	if (kn->kn_sfflags & hint)
6304 		kn->kn_fflags |= hint;
6305 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6306 		kn->kn_flags |= EV_EOF;
6307 		VI_UNLOCK(vp);
6308 		return (1);
6309 	}
6310 	res = (kn->kn_fflags != 0);
6311 	VI_UNLOCK(vp);
6312 	return (res);
6313 }
6314 
6315 /*
6316  * Returns whether the directory is empty or not.
6317  * If it is empty, the return value is 0; otherwise
6318  * the return value is an error value (which may
6319  * be ENOTEMPTY).
6320  */
6321 int
6322 vfs_emptydir(struct vnode *vp)
6323 {
6324 	struct uio uio;
6325 	struct iovec iov;
6326 	struct dirent *dirent, *dp, *endp;
6327 	int error, eof;
6328 
6329 	error = 0;
6330 	eof = 0;
6331 
6332 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6333 
6334 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6335 	iov.iov_base = dirent;
6336 	iov.iov_len = sizeof(struct dirent);
6337 
6338 	uio.uio_iov = &iov;
6339 	uio.uio_iovcnt = 1;
6340 	uio.uio_offset = 0;
6341 	uio.uio_resid = sizeof(struct dirent);
6342 	uio.uio_segflg = UIO_SYSSPACE;
6343 	uio.uio_rw = UIO_READ;
6344 	uio.uio_td = curthread;
6345 
6346 	while (eof == 0 && error == 0) {
6347 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6348 		    NULL, NULL);
6349 		if (error != 0)
6350 			break;
6351 		endp = (void *)((uint8_t *)dirent +
6352 		    sizeof(struct dirent) - uio.uio_resid);
6353 		for (dp = dirent; dp < endp;
6354 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6355 			if (dp->d_type == DT_WHT)
6356 				continue;
6357 			if (dp->d_namlen == 0)
6358 				continue;
6359 			if (dp->d_type != DT_DIR &&
6360 			    dp->d_type != DT_UNKNOWN) {
6361 				error = ENOTEMPTY;
6362 				break;
6363 			}
6364 			if (dp->d_namlen > 2) {
6365 				error = ENOTEMPTY;
6366 				break;
6367 			}
6368 			if (dp->d_namlen == 1 &&
6369 			    dp->d_name[0] != '.') {
6370 				error = ENOTEMPTY;
6371 				break;
6372 			}
6373 			if (dp->d_namlen == 2 &&
6374 			    dp->d_name[1] != '.') {
6375 				error = ENOTEMPTY;
6376 				break;
6377 			}
6378 			uio.uio_resid = sizeof(struct dirent);
6379 		}
6380 	}
6381 	free(dirent, M_TEMP);
6382 	return (error);
6383 }
6384 
6385 int
6386 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6387 {
6388 	int error;
6389 
6390 	if (dp->d_reclen > ap->a_uio->uio_resid)
6391 		return (ENAMETOOLONG);
6392 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6393 	if (error) {
6394 		if (ap->a_ncookies != NULL) {
6395 			if (ap->a_cookies != NULL)
6396 				free(ap->a_cookies, M_TEMP);
6397 			ap->a_cookies = NULL;
6398 			*ap->a_ncookies = 0;
6399 		}
6400 		return (error);
6401 	}
6402 	if (ap->a_ncookies == NULL)
6403 		return (0);
6404 
6405 	KASSERT(ap->a_cookies,
6406 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6407 
6408 	*ap->a_cookies = realloc(*ap->a_cookies,
6409 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
6410 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6411 	*ap->a_ncookies += 1;
6412 	return (0);
6413 }
6414 
6415 /*
6416  * The purpose of this routine is to remove granularity from accmode_t,
6417  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6418  * VADMIN and VAPPEND.
6419  *
6420  * If it returns 0, the caller is supposed to continue with the usual
6421  * access checks using 'accmode' as modified by this routine.  If it
6422  * returns nonzero value, the caller is supposed to return that value
6423  * as errno.
6424  *
6425  * Note that after this routine runs, accmode may be zero.
6426  */
6427 int
6428 vfs_unixify_accmode(accmode_t *accmode)
6429 {
6430 	/*
6431 	 * There is no way to specify explicit "deny" rule using
6432 	 * file mode or POSIX.1e ACLs.
6433 	 */
6434 	if (*accmode & VEXPLICIT_DENY) {
6435 		*accmode = 0;
6436 		return (0);
6437 	}
6438 
6439 	/*
6440 	 * None of these can be translated into usual access bits.
6441 	 * Also, the common case for NFSv4 ACLs is to not contain
6442 	 * either of these bits. Caller should check for VWRITE
6443 	 * on the containing directory instead.
6444 	 */
6445 	if (*accmode & (VDELETE_CHILD | VDELETE))
6446 		return (EPERM);
6447 
6448 	if (*accmode & VADMIN_PERMS) {
6449 		*accmode &= ~VADMIN_PERMS;
6450 		*accmode |= VADMIN;
6451 	}
6452 
6453 	/*
6454 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6455 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6456 	 */
6457 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6458 
6459 	return (0);
6460 }
6461 
6462 /*
6463  * Clear out a doomed vnode (if any) and replace it with a new one as long
6464  * as the fs is not being unmounted. Return the root vnode to the caller.
6465  */
6466 static int __noinline
6467 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6468 {
6469 	struct vnode *vp;
6470 	int error;
6471 
6472 restart:
6473 	if (mp->mnt_rootvnode != NULL) {
6474 		MNT_ILOCK(mp);
6475 		vp = mp->mnt_rootvnode;
6476 		if (vp != NULL) {
6477 			if (!VN_IS_DOOMED(vp)) {
6478 				vrefact(vp);
6479 				MNT_IUNLOCK(mp);
6480 				error = vn_lock(vp, flags);
6481 				if (error == 0) {
6482 					*vpp = vp;
6483 					return (0);
6484 				}
6485 				vrele(vp);
6486 				goto restart;
6487 			}
6488 			/*
6489 			 * Clear the old one.
6490 			 */
6491 			mp->mnt_rootvnode = NULL;
6492 		}
6493 		MNT_IUNLOCK(mp);
6494 		if (vp != NULL) {
6495 			vfs_op_barrier_wait(mp);
6496 			vrele(vp);
6497 		}
6498 	}
6499 	error = VFS_CACHEDROOT(mp, flags, vpp);
6500 	if (error != 0)
6501 		return (error);
6502 	if (mp->mnt_vfs_ops == 0) {
6503 		MNT_ILOCK(mp);
6504 		if (mp->mnt_vfs_ops != 0) {
6505 			MNT_IUNLOCK(mp);
6506 			return (0);
6507 		}
6508 		if (mp->mnt_rootvnode == NULL) {
6509 			vrefact(*vpp);
6510 			mp->mnt_rootvnode = *vpp;
6511 		} else {
6512 			if (mp->mnt_rootvnode != *vpp) {
6513 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6514 					panic("%s: mismatch between vnode returned "
6515 					    " by VFS_CACHEDROOT and the one cached "
6516 					    " (%p != %p)",
6517 					    __func__, *vpp, mp->mnt_rootvnode);
6518 				}
6519 			}
6520 		}
6521 		MNT_IUNLOCK(mp);
6522 	}
6523 	return (0);
6524 }
6525 
6526 int
6527 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6528 {
6529 	struct mount_pcpu *mpcpu;
6530 	struct vnode *vp;
6531 	int error;
6532 
6533 	if (!vfs_op_thread_enter(mp, mpcpu))
6534 		return (vfs_cache_root_fallback(mp, flags, vpp));
6535 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6536 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6537 		vfs_op_thread_exit(mp, mpcpu);
6538 		return (vfs_cache_root_fallback(mp, flags, vpp));
6539 	}
6540 	vrefact(vp);
6541 	vfs_op_thread_exit(mp, mpcpu);
6542 	error = vn_lock(vp, flags);
6543 	if (error != 0) {
6544 		vrele(vp);
6545 		return (vfs_cache_root_fallback(mp, flags, vpp));
6546 	}
6547 	*vpp = vp;
6548 	return (0);
6549 }
6550 
6551 struct vnode *
6552 vfs_cache_root_clear(struct mount *mp)
6553 {
6554 	struct vnode *vp;
6555 
6556 	/*
6557 	 * ops > 0 guarantees there is nobody who can see this vnode
6558 	 */
6559 	MPASS(mp->mnt_vfs_ops > 0);
6560 	vp = mp->mnt_rootvnode;
6561 	if (vp != NULL)
6562 		vn_seqc_write_begin(vp);
6563 	mp->mnt_rootvnode = NULL;
6564 	return (vp);
6565 }
6566 
6567 void
6568 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6569 {
6570 
6571 	MPASS(mp->mnt_vfs_ops > 0);
6572 	vrefact(vp);
6573 	mp->mnt_rootvnode = vp;
6574 }
6575 
6576 /*
6577  * These are helper functions for filesystems to traverse all
6578  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6579  *
6580  * This interface replaces MNT_VNODE_FOREACH.
6581  */
6582 
6583 struct vnode *
6584 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6585 {
6586 	struct vnode *vp;
6587 
6588 	if (should_yield())
6589 		kern_yield(PRI_USER);
6590 	MNT_ILOCK(mp);
6591 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6592 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6593 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6594 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6595 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6596 			continue;
6597 		VI_LOCK(vp);
6598 		if (VN_IS_DOOMED(vp)) {
6599 			VI_UNLOCK(vp);
6600 			continue;
6601 		}
6602 		break;
6603 	}
6604 	if (vp == NULL) {
6605 		__mnt_vnode_markerfree_all(mvp, mp);
6606 		/* MNT_IUNLOCK(mp); -- done in above function */
6607 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6608 		return (NULL);
6609 	}
6610 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6611 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6612 	MNT_IUNLOCK(mp);
6613 	return (vp);
6614 }
6615 
6616 struct vnode *
6617 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6618 {
6619 	struct vnode *vp;
6620 
6621 	*mvp = vn_alloc_marker(mp);
6622 	MNT_ILOCK(mp);
6623 	MNT_REF(mp);
6624 
6625 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6626 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6627 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6628 			continue;
6629 		VI_LOCK(vp);
6630 		if (VN_IS_DOOMED(vp)) {
6631 			VI_UNLOCK(vp);
6632 			continue;
6633 		}
6634 		break;
6635 	}
6636 	if (vp == NULL) {
6637 		MNT_REL(mp);
6638 		MNT_IUNLOCK(mp);
6639 		vn_free_marker(*mvp);
6640 		*mvp = NULL;
6641 		return (NULL);
6642 	}
6643 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6644 	MNT_IUNLOCK(mp);
6645 	return (vp);
6646 }
6647 
6648 void
6649 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6650 {
6651 
6652 	if (*mvp == NULL) {
6653 		MNT_IUNLOCK(mp);
6654 		return;
6655 	}
6656 
6657 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6658 
6659 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6660 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6661 	MNT_REL(mp);
6662 	MNT_IUNLOCK(mp);
6663 	vn_free_marker(*mvp);
6664 	*mvp = NULL;
6665 }
6666 
6667 /*
6668  * These are helper functions for filesystems to traverse their
6669  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6670  */
6671 static void
6672 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6673 {
6674 
6675 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6676 
6677 	MNT_ILOCK(mp);
6678 	MNT_REL(mp);
6679 	MNT_IUNLOCK(mp);
6680 	vn_free_marker(*mvp);
6681 	*mvp = NULL;
6682 }
6683 
6684 /*
6685  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6686  * conventional lock order during mnt_vnode_next_lazy iteration.
6687  *
6688  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6689  * The list lock is dropped and reacquired.  On success, both locks are held.
6690  * On failure, the mount vnode list lock is held but the vnode interlock is
6691  * not, and the procedure may have yielded.
6692  */
6693 static bool
6694 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6695     struct vnode *vp)
6696 {
6697 
6698 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6699 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6700 	    ("%s: bad marker", __func__));
6701 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6702 	    ("%s: inappropriate vnode", __func__));
6703 	ASSERT_VI_UNLOCKED(vp, __func__);
6704 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6705 
6706 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6707 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6708 
6709 	/*
6710 	 * Note we may be racing against vdrop which transitioned the hold
6711 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6712 	 * if we are the only user after we get the interlock we will just
6713 	 * vdrop.
6714 	 */
6715 	vhold(vp);
6716 	mtx_unlock(&mp->mnt_listmtx);
6717 	VI_LOCK(vp);
6718 	if (VN_IS_DOOMED(vp)) {
6719 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6720 		goto out_lost;
6721 	}
6722 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6723 	/*
6724 	 * There is nothing to do if we are the last user.
6725 	 */
6726 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6727 		goto out_lost;
6728 	mtx_lock(&mp->mnt_listmtx);
6729 	return (true);
6730 out_lost:
6731 	vdropl(vp);
6732 	maybe_yield();
6733 	mtx_lock(&mp->mnt_listmtx);
6734 	return (false);
6735 }
6736 
6737 static struct vnode *
6738 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6739     void *cbarg)
6740 {
6741 	struct vnode *vp;
6742 
6743 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6744 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6745 restart:
6746 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6747 	while (vp != NULL) {
6748 		if (vp->v_type == VMARKER) {
6749 			vp = TAILQ_NEXT(vp, v_lazylist);
6750 			continue;
6751 		}
6752 		/*
6753 		 * See if we want to process the vnode. Note we may encounter a
6754 		 * long string of vnodes we don't care about and hog the list
6755 		 * as a result. Check for it and requeue the marker.
6756 		 */
6757 		VNPASS(!VN_IS_DOOMED(vp), vp);
6758 		if (!cb(vp, cbarg)) {
6759 			if (!should_yield()) {
6760 				vp = TAILQ_NEXT(vp, v_lazylist);
6761 				continue;
6762 			}
6763 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6764 			    v_lazylist);
6765 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6766 			    v_lazylist);
6767 			mtx_unlock(&mp->mnt_listmtx);
6768 			kern_yield(PRI_USER);
6769 			mtx_lock(&mp->mnt_listmtx);
6770 			goto restart;
6771 		}
6772 		/*
6773 		 * Try-lock because this is the wrong lock order.
6774 		 */
6775 		if (!VI_TRYLOCK(vp) &&
6776 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6777 			goto restart;
6778 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6779 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6780 		    ("alien vnode on the lazy list %p %p", vp, mp));
6781 		VNPASS(vp->v_mount == mp, vp);
6782 		VNPASS(!VN_IS_DOOMED(vp), vp);
6783 		break;
6784 	}
6785 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6786 
6787 	/* Check if we are done */
6788 	if (vp == NULL) {
6789 		mtx_unlock(&mp->mnt_listmtx);
6790 		mnt_vnode_markerfree_lazy(mvp, mp);
6791 		return (NULL);
6792 	}
6793 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6794 	mtx_unlock(&mp->mnt_listmtx);
6795 	ASSERT_VI_LOCKED(vp, "lazy iter");
6796 	return (vp);
6797 }
6798 
6799 struct vnode *
6800 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6801     void *cbarg)
6802 {
6803 
6804 	if (should_yield())
6805 		kern_yield(PRI_USER);
6806 	mtx_lock(&mp->mnt_listmtx);
6807 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6808 }
6809 
6810 struct vnode *
6811 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6812     void *cbarg)
6813 {
6814 	struct vnode *vp;
6815 
6816 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6817 		return (NULL);
6818 
6819 	*mvp = vn_alloc_marker(mp);
6820 	MNT_ILOCK(mp);
6821 	MNT_REF(mp);
6822 	MNT_IUNLOCK(mp);
6823 
6824 	mtx_lock(&mp->mnt_listmtx);
6825 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6826 	if (vp == NULL) {
6827 		mtx_unlock(&mp->mnt_listmtx);
6828 		mnt_vnode_markerfree_lazy(mvp, mp);
6829 		return (NULL);
6830 	}
6831 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6832 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6833 }
6834 
6835 void
6836 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6837 {
6838 
6839 	if (*mvp == NULL)
6840 		return;
6841 
6842 	mtx_lock(&mp->mnt_listmtx);
6843 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6844 	mtx_unlock(&mp->mnt_listmtx);
6845 	mnt_vnode_markerfree_lazy(mvp, mp);
6846 }
6847 
6848 int
6849 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6850 {
6851 
6852 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6853 		cnp->cn_flags &= ~NOEXECCHECK;
6854 		return (0);
6855 	}
6856 
6857 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread));
6858 }
6859 
6860 /*
6861  * Do not use this variant unless you have means other than the hold count
6862  * to prevent the vnode from getting freed.
6863  */
6864 void
6865 vn_seqc_write_begin_locked(struct vnode *vp)
6866 {
6867 
6868 	ASSERT_VI_LOCKED(vp, __func__);
6869 	VNPASS(vp->v_holdcnt > 0, vp);
6870 	VNPASS(vp->v_seqc_users >= 0, vp);
6871 	vp->v_seqc_users++;
6872 	if (vp->v_seqc_users == 1)
6873 		seqc_sleepable_write_begin(&vp->v_seqc);
6874 }
6875 
6876 void
6877 vn_seqc_write_begin(struct vnode *vp)
6878 {
6879 
6880 	VI_LOCK(vp);
6881 	vn_seqc_write_begin_locked(vp);
6882 	VI_UNLOCK(vp);
6883 }
6884 
6885 void
6886 vn_seqc_write_end_locked(struct vnode *vp)
6887 {
6888 
6889 	ASSERT_VI_LOCKED(vp, __func__);
6890 	VNPASS(vp->v_seqc_users > 0, vp);
6891 	vp->v_seqc_users--;
6892 	if (vp->v_seqc_users == 0)
6893 		seqc_sleepable_write_end(&vp->v_seqc);
6894 }
6895 
6896 void
6897 vn_seqc_write_end(struct vnode *vp)
6898 {
6899 
6900 	VI_LOCK(vp);
6901 	vn_seqc_write_end_locked(vp);
6902 	VI_UNLOCK(vp);
6903 }
6904 
6905 /*
6906  * Special case handling for allocating and freeing vnodes.
6907  *
6908  * The counter remains unchanged on free so that a doomed vnode will
6909  * keep testing as in modify as long as it is accessible with SMR.
6910  */
6911 static void
6912 vn_seqc_init(struct vnode *vp)
6913 {
6914 
6915 	vp->v_seqc = 0;
6916 	vp->v_seqc_users = 0;
6917 }
6918 
6919 static void
6920 vn_seqc_write_end_free(struct vnode *vp)
6921 {
6922 
6923 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
6924 	VNPASS(vp->v_seqc_users == 1, vp);
6925 }
6926 
6927 void
6928 vn_irflag_set_locked(struct vnode *vp, short toset)
6929 {
6930 	short flags;
6931 
6932 	ASSERT_VI_LOCKED(vp, __func__);
6933 	flags = vn_irflag_read(vp);
6934 	VNASSERT((flags & toset) == 0, vp,
6935 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
6936 	    __func__, flags, toset));
6937 	atomic_store_short(&vp->v_irflag, flags | toset);
6938 }
6939 
6940 void
6941 vn_irflag_set(struct vnode *vp, short toset)
6942 {
6943 
6944 	VI_LOCK(vp);
6945 	vn_irflag_set_locked(vp, toset);
6946 	VI_UNLOCK(vp);
6947 }
6948 
6949 void
6950 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
6951 {
6952 	short flags;
6953 
6954 	ASSERT_VI_LOCKED(vp, __func__);
6955 	flags = vn_irflag_read(vp);
6956 	atomic_store_short(&vp->v_irflag, flags | toset);
6957 }
6958 
6959 void
6960 vn_irflag_set_cond(struct vnode *vp, short toset)
6961 {
6962 
6963 	VI_LOCK(vp);
6964 	vn_irflag_set_cond_locked(vp, toset);
6965 	VI_UNLOCK(vp);
6966 }
6967 
6968 void
6969 vn_irflag_unset_locked(struct vnode *vp, short tounset)
6970 {
6971 	short flags;
6972 
6973 	ASSERT_VI_LOCKED(vp, __func__);
6974 	flags = vn_irflag_read(vp);
6975 	VNASSERT((flags & tounset) == tounset, vp,
6976 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
6977 	    __func__, flags, tounset));
6978 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
6979 }
6980 
6981 void
6982 vn_irflag_unset(struct vnode *vp, short tounset)
6983 {
6984 
6985 	VI_LOCK(vp);
6986 	vn_irflag_unset_locked(vp, tounset);
6987 	VI_UNLOCK(vp);
6988 }
6989