1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 37 */ 38 39 /* 40 * External virtual filesystem routines 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include "opt_ddb.h" 47 #include "opt_watchdog.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/asan.h> 52 #include <sys/bio.h> 53 #include <sys/buf.h> 54 #include <sys/capsicum.h> 55 #include <sys/condvar.h> 56 #include <sys/conf.h> 57 #include <sys/counter.h> 58 #include <sys/dirent.h> 59 #include <sys/event.h> 60 #include <sys/eventhandler.h> 61 #include <sys/extattr.h> 62 #include <sys/file.h> 63 #include <sys/fcntl.h> 64 #include <sys/jail.h> 65 #include <sys/kdb.h> 66 #include <sys/kernel.h> 67 #include <sys/kthread.h> 68 #include <sys/ktr.h> 69 #include <sys/lockf.h> 70 #include <sys/malloc.h> 71 #include <sys/mount.h> 72 #include <sys/namei.h> 73 #include <sys/pctrie.h> 74 #include <sys/priv.h> 75 #include <sys/reboot.h> 76 #include <sys/refcount.h> 77 #include <sys/rwlock.h> 78 #include <sys/sched.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/smr.h> 81 #include <sys/smp.h> 82 #include <sys/stat.h> 83 #include <sys/sysctl.h> 84 #include <sys/syslog.h> 85 #include <sys/vmmeter.h> 86 #include <sys/vnode.h> 87 #include <sys/watchdog.h> 88 89 #include <machine/stdarg.h> 90 91 #include <security/mac/mac_framework.h> 92 93 #include <vm/vm.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_extern.h> 96 #include <vm/pmap.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_page.h> 99 #include <vm/vm_kern.h> 100 #include <vm/uma.h> 101 102 #ifdef DDB 103 #include <ddb/ddb.h> 104 #endif 105 106 static void delmntque(struct vnode *vp); 107 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 108 int slpflag, int slptimeo); 109 static void syncer_shutdown(void *arg, int howto); 110 static int vtryrecycle(struct vnode *vp); 111 static void v_init_counters(struct vnode *); 112 static void vn_seqc_init(struct vnode *); 113 static void vn_seqc_write_end_free(struct vnode *vp); 114 static void vgonel(struct vnode *); 115 static bool vhold_recycle_free(struct vnode *); 116 static void vfs_knllock(void *arg); 117 static void vfs_knlunlock(void *arg); 118 static void vfs_knl_assert_lock(void *arg, int what); 119 static void destroy_vpollinfo(struct vpollinfo *vi); 120 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 121 daddr_t startlbn, daddr_t endlbn); 122 static void vnlru_recalc(void); 123 124 /* 125 * These fences are intended for cases where some synchronization is 126 * needed between access of v_iflags and lockless vnode refcount (v_holdcnt 127 * and v_usecount) updates. Access to v_iflags is generally synchronized 128 * by the interlock, but we have some internal assertions that check vnode 129 * flags without acquiring the lock. Thus, these fences are INVARIANTS-only 130 * for now. 131 */ 132 #ifdef INVARIANTS 133 #define VNODE_REFCOUNT_FENCE_ACQ() atomic_thread_fence_acq() 134 #define VNODE_REFCOUNT_FENCE_REL() atomic_thread_fence_rel() 135 #else 136 #define VNODE_REFCOUNT_FENCE_ACQ() 137 #define VNODE_REFCOUNT_FENCE_REL() 138 #endif 139 140 /* 141 * Number of vnodes in existence. Increased whenever getnewvnode() 142 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode. 143 */ 144 static u_long __exclusive_cache_line numvnodes; 145 146 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 147 "Number of vnodes in existence"); 148 149 static counter_u64_t vnodes_created; 150 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 151 "Number of vnodes created by getnewvnode"); 152 153 /* 154 * Conversion tables for conversion from vnode types to inode formats 155 * and back. 156 */ 157 enum vtype iftovt_tab[16] = { 158 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 159 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 160 }; 161 int vttoif_tab[10] = { 162 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 163 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 164 }; 165 166 /* 167 * List of allocates vnodes in the system. 168 */ 169 static TAILQ_HEAD(freelst, vnode) vnode_list; 170 static struct vnode *vnode_list_free_marker; 171 static struct vnode *vnode_list_reclaim_marker; 172 173 /* 174 * "Free" vnode target. Free vnodes are rarely completely free, but are 175 * just ones that are cheap to recycle. Usually they are for files which 176 * have been stat'd but not read; these usually have inode and namecache 177 * data attached to them. This target is the preferred minimum size of a 178 * sub-cache consisting mostly of such files. The system balances the size 179 * of this sub-cache with its complement to try to prevent either from 180 * thrashing while the other is relatively inactive. The targets express 181 * a preference for the best balance. 182 * 183 * "Above" this target there are 2 further targets (watermarks) related 184 * to recyling of free vnodes. In the best-operating case, the cache is 185 * exactly full, the free list has size between vlowat and vhiwat above the 186 * free target, and recycling from it and normal use maintains this state. 187 * Sometimes the free list is below vlowat or even empty, but this state 188 * is even better for immediate use provided the cache is not full. 189 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free 190 * ones) to reach one of these states. The watermarks are currently hard- 191 * coded as 4% and 9% of the available space higher. These and the default 192 * of 25% for wantfreevnodes are too large if the memory size is large. 193 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim 194 * whenever vnlru_proc() becomes active. 195 */ 196 static long wantfreevnodes; 197 static long __exclusive_cache_line freevnodes; 198 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, 199 &freevnodes, 0, "Number of \"free\" vnodes"); 200 static long freevnodes_old; 201 202 static counter_u64_t recycles_count; 203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 204 "Number of vnodes recycled to meet vnode cache targets"); 205 206 static counter_u64_t recycles_free_count; 207 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count, 208 "Number of free vnodes recycled to meet vnode cache targets"); 209 210 static counter_u64_t deferred_inact; 211 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact, 212 "Number of times inactive processing was deferred"); 213 214 /* To keep more than one thread at a time from running vfs_getnewfsid */ 215 static struct mtx mntid_mtx; 216 217 /* 218 * Lock for any access to the following: 219 * vnode_list 220 * numvnodes 221 * freevnodes 222 */ 223 static struct mtx __exclusive_cache_line vnode_list_mtx; 224 225 /* Publicly exported FS */ 226 struct nfs_public nfs_pub; 227 228 static uma_zone_t buf_trie_zone; 229 static smr_t buf_trie_smr; 230 231 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 232 static uma_zone_t vnode_zone; 233 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll"); 234 235 __read_frequently smr_t vfs_smr; 236 237 /* 238 * The workitem queue. 239 * 240 * It is useful to delay writes of file data and filesystem metadata 241 * for tens of seconds so that quickly created and deleted files need 242 * not waste disk bandwidth being created and removed. To realize this, 243 * we append vnodes to a "workitem" queue. When running with a soft 244 * updates implementation, most pending metadata dependencies should 245 * not wait for more than a few seconds. Thus, mounted on block devices 246 * are delayed only about a half the time that file data is delayed. 247 * Similarly, directory updates are more critical, so are only delayed 248 * about a third the time that file data is delayed. Thus, there are 249 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 250 * one each second (driven off the filesystem syncer process). The 251 * syncer_delayno variable indicates the next queue that is to be processed. 252 * Items that need to be processed soon are placed in this queue: 253 * 254 * syncer_workitem_pending[syncer_delayno] 255 * 256 * A delay of fifteen seconds is done by placing the request fifteen 257 * entries later in the queue: 258 * 259 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 260 * 261 */ 262 static int syncer_delayno; 263 static long syncer_mask; 264 LIST_HEAD(synclist, bufobj); 265 static struct synclist *syncer_workitem_pending; 266 /* 267 * The sync_mtx protects: 268 * bo->bo_synclist 269 * sync_vnode_count 270 * syncer_delayno 271 * syncer_state 272 * syncer_workitem_pending 273 * syncer_worklist_len 274 * rushjob 275 */ 276 static struct mtx sync_mtx; 277 static struct cv sync_wakeup; 278 279 #define SYNCER_MAXDELAY 32 280 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 281 static int syncdelay = 30; /* max time to delay syncing data */ 282 static int filedelay = 30; /* time to delay syncing files */ 283 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 284 "Time to delay syncing files (in seconds)"); 285 static int dirdelay = 29; /* time to delay syncing directories */ 286 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 287 "Time to delay syncing directories (in seconds)"); 288 static int metadelay = 28; /* time to delay syncing metadata */ 289 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 290 "Time to delay syncing metadata (in seconds)"); 291 static int rushjob; /* number of slots to run ASAP */ 292 static int stat_rush_requests; /* number of times I/O speeded up */ 293 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 294 "Number of times I/O speeded up (rush requests)"); 295 296 #define VDBATCH_SIZE 8 297 struct vdbatch { 298 u_int index; 299 long freevnodes; 300 struct mtx lock; 301 struct vnode *tab[VDBATCH_SIZE]; 302 }; 303 DPCPU_DEFINE_STATIC(struct vdbatch, vd); 304 305 static void vdbatch_dequeue(struct vnode *vp); 306 307 /* 308 * When shutting down the syncer, run it at four times normal speed. 309 */ 310 #define SYNCER_SHUTDOWN_SPEEDUP 4 311 static int sync_vnode_count; 312 static int syncer_worklist_len; 313 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 314 syncer_state; 315 316 /* Target for maximum number of vnodes. */ 317 u_long desiredvnodes; 318 static u_long gapvnodes; /* gap between wanted and desired */ 319 static u_long vhiwat; /* enough extras after expansion */ 320 static u_long vlowat; /* minimal extras before expansion */ 321 static u_long vstir; /* nonzero to stir non-free vnodes */ 322 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */ 323 324 static u_long vnlru_read_freevnodes(void); 325 326 /* 327 * Note that no attempt is made to sanitize these parameters. 328 */ 329 static int 330 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS) 331 { 332 u_long val; 333 int error; 334 335 val = desiredvnodes; 336 error = sysctl_handle_long(oidp, &val, 0, req); 337 if (error != 0 || req->newptr == NULL) 338 return (error); 339 340 if (val == desiredvnodes) 341 return (0); 342 mtx_lock(&vnode_list_mtx); 343 desiredvnodes = val; 344 wantfreevnodes = desiredvnodes / 4; 345 vnlru_recalc(); 346 mtx_unlock(&vnode_list_mtx); 347 /* 348 * XXX There is no protection against multiple threads changing 349 * desiredvnodes at the same time. Locking above only helps vnlru and 350 * getnewvnode. 351 */ 352 vfs_hash_changesize(desiredvnodes); 353 cache_changesize(desiredvnodes); 354 return (0); 355 } 356 357 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, 358 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 359 "LU", "Target for maximum number of vnodes"); 360 361 static int 362 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS) 363 { 364 u_long val; 365 int error; 366 367 val = wantfreevnodes; 368 error = sysctl_handle_long(oidp, &val, 0, req); 369 if (error != 0 || req->newptr == NULL) 370 return (error); 371 372 if (val == wantfreevnodes) 373 return (0); 374 mtx_lock(&vnode_list_mtx); 375 wantfreevnodes = val; 376 vnlru_recalc(); 377 mtx_unlock(&vnode_list_mtx); 378 return (0); 379 } 380 381 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes, 382 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 383 "LU", "Target for minimum number of \"free\" vnodes"); 384 385 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 386 &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)"); 387 static int vnlru_nowhere; 388 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, 389 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 390 391 static int 392 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS) 393 { 394 struct vnode *vp; 395 struct nameidata nd; 396 char *buf; 397 unsigned long ndflags; 398 int error; 399 400 if (req->newptr == NULL) 401 return (EINVAL); 402 if (req->newlen >= PATH_MAX) 403 return (E2BIG); 404 405 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK); 406 error = SYSCTL_IN(req, buf, req->newlen); 407 if (error != 0) 408 goto out; 409 410 buf[req->newlen] = '\0'; 411 412 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME; 413 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread); 414 if ((error = namei(&nd)) != 0) 415 goto out; 416 vp = nd.ni_vp; 417 418 if (VN_IS_DOOMED(vp)) { 419 /* 420 * This vnode is being recycled. Return != 0 to let the caller 421 * know that the sysctl had no effect. Return EAGAIN because a 422 * subsequent call will likely succeed (since namei will create 423 * a new vnode if necessary) 424 */ 425 error = EAGAIN; 426 goto putvnode; 427 } 428 429 counter_u64_add(recycles_count, 1); 430 vgone(vp); 431 putvnode: 432 NDFREE(&nd, 0); 433 out: 434 free(buf, M_TEMP); 435 return (error); 436 } 437 438 static int 439 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS) 440 { 441 struct thread *td = curthread; 442 struct vnode *vp; 443 struct file *fp; 444 int error; 445 int fd; 446 447 if (req->newptr == NULL) 448 return (EBADF); 449 450 error = sysctl_handle_int(oidp, &fd, 0, req); 451 if (error != 0) 452 return (error); 453 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp); 454 if (error != 0) 455 return (error); 456 vp = fp->f_vnode; 457 458 error = vn_lock(vp, LK_EXCLUSIVE); 459 if (error != 0) 460 goto drop; 461 462 counter_u64_add(recycles_count, 1); 463 vgone(vp); 464 VOP_UNLOCK(vp); 465 drop: 466 fdrop(fp, td); 467 return (error); 468 } 469 470 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode, 471 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 472 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname"); 473 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode, 474 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 475 sysctl_ftry_reclaim_vnode, "I", 476 "Try to reclaim a vnode by its file descriptor"); 477 478 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 479 static int vnsz2log; 480 481 /* 482 * Support for the bufobj clean & dirty pctrie. 483 */ 484 static void * 485 buf_trie_alloc(struct pctrie *ptree) 486 { 487 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT)); 488 } 489 490 static void 491 buf_trie_free(struct pctrie *ptree, void *node) 492 { 493 uma_zfree_smr(buf_trie_zone, node); 494 } 495 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free, 496 buf_trie_smr); 497 498 /* 499 * Initialize the vnode management data structures. 500 * 501 * Reevaluate the following cap on the number of vnodes after the physical 502 * memory size exceeds 512GB. In the limit, as the physical memory size 503 * grows, the ratio of the memory size in KB to vnodes approaches 64:1. 504 */ 505 #ifndef MAXVNODES_MAX 506 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */ 507 #endif 508 509 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 510 511 static struct vnode * 512 vn_alloc_marker(struct mount *mp) 513 { 514 struct vnode *vp; 515 516 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 517 vp->v_type = VMARKER; 518 vp->v_mount = mp; 519 520 return (vp); 521 } 522 523 static void 524 vn_free_marker(struct vnode *vp) 525 { 526 527 MPASS(vp->v_type == VMARKER); 528 free(vp, M_VNODE_MARKER); 529 } 530 531 #ifdef KASAN 532 static int 533 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused) 534 { 535 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0); 536 return (0); 537 } 538 539 static void 540 vnode_dtor(void *mem, int size, void *arg __unused) 541 { 542 size_t end1, end2, off1, off2; 543 544 _Static_assert(offsetof(struct vnode, v_vnodelist) < 545 offsetof(struct vnode, v_dbatchcpu), 546 "KASAN marks require updating"); 547 548 off1 = offsetof(struct vnode, v_vnodelist); 549 off2 = offsetof(struct vnode, v_dbatchcpu); 550 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist); 551 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu); 552 553 /* 554 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even 555 * after the vnode has been freed. Try to get some KASAN coverage by 556 * marking everything except those two fields as invalid. Because 557 * KASAN's tracking is not byte-granular, any preceding fields sharing 558 * the same 8-byte aligned word must also be marked valid. 559 */ 560 561 /* Handle the area from the start until v_vnodelist... */ 562 off1 = rounddown2(off1, KASAN_SHADOW_SCALE); 563 kasan_mark(mem, off1, off1, KASAN_UMA_FREED); 564 565 /* ... then the area between v_vnodelist and v_dbatchcpu ... */ 566 off1 = roundup2(end1, KASAN_SHADOW_SCALE); 567 off2 = rounddown2(off2, KASAN_SHADOW_SCALE); 568 if (off2 > off1) 569 kasan_mark((void *)((char *)mem + off1), off2 - off1, 570 off2 - off1, KASAN_UMA_FREED); 571 572 /* ... and finally the area from v_dbatchcpu to the end. */ 573 off2 = roundup2(end2, KASAN_SHADOW_SCALE); 574 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2, 575 KASAN_UMA_FREED); 576 } 577 #endif /* KASAN */ 578 579 /* 580 * Initialize a vnode as it first enters the zone. 581 */ 582 static int 583 vnode_init(void *mem, int size, int flags) 584 { 585 struct vnode *vp; 586 587 vp = mem; 588 bzero(vp, size); 589 /* 590 * Setup locks. 591 */ 592 vp->v_vnlock = &vp->v_lock; 593 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 594 /* 595 * By default, don't allow shared locks unless filesystems opt-in. 596 */ 597 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT, 598 LK_NOSHARE | LK_IS_VNODE); 599 /* 600 * Initialize bufobj. 601 */ 602 bufobj_init(&vp->v_bufobj, vp); 603 /* 604 * Initialize namecache. 605 */ 606 cache_vnode_init(vp); 607 /* 608 * Initialize rangelocks. 609 */ 610 rangelock_init(&vp->v_rl); 611 612 vp->v_dbatchcpu = NOCPU; 613 614 /* 615 * Check vhold_recycle_free for an explanation. 616 */ 617 vp->v_holdcnt = VHOLD_NO_SMR; 618 vp->v_type = VNON; 619 mtx_lock(&vnode_list_mtx); 620 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist); 621 mtx_unlock(&vnode_list_mtx); 622 return (0); 623 } 624 625 /* 626 * Free a vnode when it is cleared from the zone. 627 */ 628 static void 629 vnode_fini(void *mem, int size) 630 { 631 struct vnode *vp; 632 struct bufobj *bo; 633 634 vp = mem; 635 vdbatch_dequeue(vp); 636 mtx_lock(&vnode_list_mtx); 637 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 638 mtx_unlock(&vnode_list_mtx); 639 rangelock_destroy(&vp->v_rl); 640 lockdestroy(vp->v_vnlock); 641 mtx_destroy(&vp->v_interlock); 642 bo = &vp->v_bufobj; 643 rw_destroy(BO_LOCKPTR(bo)); 644 645 kasan_mark(mem, size, size, 0); 646 } 647 648 /* 649 * Provide the size of NFS nclnode and NFS fh for calculation of the 650 * vnode memory consumption. The size is specified directly to 651 * eliminate dependency on NFS-private header. 652 * 653 * Other filesystems may use bigger or smaller (like UFS and ZFS) 654 * private inode data, but the NFS-based estimation is ample enough. 655 * Still, we care about differences in the size between 64- and 32-bit 656 * platforms. 657 * 658 * Namecache structure size is heuristically 659 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1. 660 */ 661 #ifdef _LP64 662 #define NFS_NCLNODE_SZ (528 + 64) 663 #define NC_SZ 148 664 #else 665 #define NFS_NCLNODE_SZ (360 + 32) 666 #define NC_SZ 92 667 #endif 668 669 static void 670 vntblinit(void *dummy __unused) 671 { 672 struct vdbatch *vd; 673 uma_ctor ctor; 674 uma_dtor dtor; 675 int cpu, physvnodes, virtvnodes; 676 u_int i; 677 678 /* 679 * Desiredvnodes is a function of the physical memory size and the 680 * kernel's heap size. Generally speaking, it scales with the 681 * physical memory size. The ratio of desiredvnodes to the physical 682 * memory size is 1:16 until desiredvnodes exceeds 98,304. 683 * Thereafter, the 684 * marginal ratio of desiredvnodes to the physical memory size is 685 * 1:64. However, desiredvnodes is limited by the kernel's heap 686 * size. The memory required by desiredvnodes vnodes and vm objects 687 * must not exceed 1/10th of the kernel's heap size. 688 */ 689 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 + 690 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64; 691 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) + 692 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ)); 693 desiredvnodes = min(physvnodes, virtvnodes); 694 if (desiredvnodes > MAXVNODES_MAX) { 695 if (bootverbose) 696 printf("Reducing kern.maxvnodes %lu -> %lu\n", 697 desiredvnodes, MAXVNODES_MAX); 698 desiredvnodes = MAXVNODES_MAX; 699 } 700 wantfreevnodes = desiredvnodes / 4; 701 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 702 TAILQ_INIT(&vnode_list); 703 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF); 704 /* 705 * The lock is taken to appease WITNESS. 706 */ 707 mtx_lock(&vnode_list_mtx); 708 vnlru_recalc(); 709 mtx_unlock(&vnode_list_mtx); 710 vnode_list_free_marker = vn_alloc_marker(NULL); 711 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist); 712 vnode_list_reclaim_marker = vn_alloc_marker(NULL); 713 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist); 714 715 #ifdef KASAN 716 ctor = vnode_ctor; 717 dtor = vnode_dtor; 718 #else 719 ctor = NULL; 720 dtor = NULL; 721 #endif 722 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor, 723 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN); 724 uma_zone_set_smr(vnode_zone, vfs_smr); 725 726 /* 727 * Preallocate enough nodes to support one-per buf so that 728 * we can not fail an insert. reassignbuf() callers can not 729 * tolerate the insertion failure. 730 */ 731 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 732 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 733 UMA_ZONE_NOFREE | UMA_ZONE_SMR); 734 buf_trie_smr = uma_zone_get_smr(buf_trie_zone); 735 uma_prealloc(buf_trie_zone, nbuf); 736 737 vnodes_created = counter_u64_alloc(M_WAITOK); 738 recycles_count = counter_u64_alloc(M_WAITOK); 739 recycles_free_count = counter_u64_alloc(M_WAITOK); 740 deferred_inact = counter_u64_alloc(M_WAITOK); 741 742 /* 743 * Initialize the filesystem syncer. 744 */ 745 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 746 &syncer_mask); 747 syncer_maxdelay = syncer_mask + 1; 748 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 749 cv_init(&sync_wakeup, "syncer"); 750 for (i = 1; i <= sizeof(struct vnode); i <<= 1) 751 vnsz2log++; 752 vnsz2log--; 753 754 CPU_FOREACH(cpu) { 755 vd = DPCPU_ID_PTR((cpu), vd); 756 bzero(vd, sizeof(*vd)); 757 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF); 758 } 759 } 760 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 761 762 /* 763 * Mark a mount point as busy. Used to synchronize access and to delay 764 * unmounting. Eventually, mountlist_mtx is not released on failure. 765 * 766 * vfs_busy() is a custom lock, it can block the caller. 767 * vfs_busy() only sleeps if the unmount is active on the mount point. 768 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 769 * vnode belonging to mp. 770 * 771 * Lookup uses vfs_busy() to traverse mount points. 772 * root fs var fs 773 * / vnode lock A / vnode lock (/var) D 774 * /var vnode lock B /log vnode lock(/var/log) E 775 * vfs_busy lock C vfs_busy lock F 776 * 777 * Within each file system, the lock order is C->A->B and F->D->E. 778 * 779 * When traversing across mounts, the system follows that lock order: 780 * 781 * C->A->B 782 * | 783 * +->F->D->E 784 * 785 * The lookup() process for namei("/var") illustrates the process: 786 * VOP_LOOKUP() obtains B while A is held 787 * vfs_busy() obtains a shared lock on F while A and B are held 788 * vput() releases lock on B 789 * vput() releases lock on A 790 * VFS_ROOT() obtains lock on D while shared lock on F is held 791 * vfs_unbusy() releases shared lock on F 792 * vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 793 * Attempt to lock A (instead of vp_crossmp) while D is held would 794 * violate the global order, causing deadlocks. 795 * 796 * dounmount() locks B while F is drained. 797 */ 798 int 799 vfs_busy(struct mount *mp, int flags) 800 { 801 struct mount_pcpu *mpcpu; 802 803 MPASS((flags & ~MBF_MASK) == 0); 804 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 805 806 if (vfs_op_thread_enter(mp, mpcpu)) { 807 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 808 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0); 809 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0); 810 vfs_mp_count_add_pcpu(mpcpu, ref, 1); 811 vfs_mp_count_add_pcpu(mpcpu, lockref, 1); 812 vfs_op_thread_exit(mp, mpcpu); 813 if (flags & MBF_MNTLSTLOCK) 814 mtx_unlock(&mountlist_mtx); 815 return (0); 816 } 817 818 MNT_ILOCK(mp); 819 vfs_assert_mount_counters(mp); 820 MNT_REF(mp); 821 /* 822 * If mount point is currently being unmounted, sleep until the 823 * mount point fate is decided. If thread doing the unmounting fails, 824 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 825 * that this mount point has survived the unmount attempt and vfs_busy 826 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 827 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 828 * about to be really destroyed. vfs_busy needs to release its 829 * reference on the mount point in this case and return with ENOENT, 830 * telling the caller that mount mount it tried to busy is no longer 831 * valid. 832 */ 833 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 834 KASSERT(mp->mnt_pinned_count == 0, 835 ("%s: non-zero pinned count %d with pending unmount", 836 __func__, mp->mnt_pinned_count)); 837 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 838 MNT_REL(mp); 839 MNT_IUNLOCK(mp); 840 CTR1(KTR_VFS, "%s: failed busying before sleeping", 841 __func__); 842 return (ENOENT); 843 } 844 if (flags & MBF_MNTLSTLOCK) 845 mtx_unlock(&mountlist_mtx); 846 mp->mnt_kern_flag |= MNTK_MWAIT; 847 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 848 if (flags & MBF_MNTLSTLOCK) 849 mtx_lock(&mountlist_mtx); 850 MNT_ILOCK(mp); 851 } 852 if (flags & MBF_MNTLSTLOCK) 853 mtx_unlock(&mountlist_mtx); 854 mp->mnt_lockref++; 855 MNT_IUNLOCK(mp); 856 return (0); 857 } 858 859 /* 860 * Free a busy filesystem. 861 */ 862 void 863 vfs_unbusy(struct mount *mp) 864 { 865 struct mount_pcpu *mpcpu; 866 int c; 867 868 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 869 870 if (vfs_op_thread_enter(mp, mpcpu)) { 871 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 872 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1); 873 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 874 vfs_op_thread_exit(mp, mpcpu); 875 return; 876 } 877 878 MNT_ILOCK(mp); 879 vfs_assert_mount_counters(mp); 880 MNT_REL(mp); 881 c = --mp->mnt_lockref; 882 if (mp->mnt_vfs_ops == 0) { 883 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 884 MNT_IUNLOCK(mp); 885 return; 886 } 887 if (c < 0) 888 vfs_dump_mount_counters(mp); 889 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 890 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 891 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 892 mp->mnt_kern_flag &= ~MNTK_DRAINING; 893 wakeup(&mp->mnt_lockref); 894 } 895 MNT_IUNLOCK(mp); 896 } 897 898 /* 899 * Lookup a mount point by filesystem identifier. 900 */ 901 struct mount * 902 vfs_getvfs(fsid_t *fsid) 903 { 904 struct mount *mp; 905 906 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 907 mtx_lock(&mountlist_mtx); 908 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 909 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 910 vfs_ref(mp); 911 mtx_unlock(&mountlist_mtx); 912 return (mp); 913 } 914 } 915 mtx_unlock(&mountlist_mtx); 916 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 917 return ((struct mount *) 0); 918 } 919 920 /* 921 * Lookup a mount point by filesystem identifier, busying it before 922 * returning. 923 * 924 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 925 * cache for popular filesystem identifiers. The cache is lockess, using 926 * the fact that struct mount's are never freed. In worst case we may 927 * get pointer to unmounted or even different filesystem, so we have to 928 * check what we got, and go slow way if so. 929 */ 930 struct mount * 931 vfs_busyfs(fsid_t *fsid) 932 { 933 #define FSID_CACHE_SIZE 256 934 typedef struct mount * volatile vmp_t; 935 static vmp_t cache[FSID_CACHE_SIZE]; 936 struct mount *mp; 937 int error; 938 uint32_t hash; 939 940 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 941 hash = fsid->val[0] ^ fsid->val[1]; 942 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 943 mp = cache[hash]; 944 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0) 945 goto slow; 946 if (vfs_busy(mp, 0) != 0) { 947 cache[hash] = NULL; 948 goto slow; 949 } 950 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) 951 return (mp); 952 else 953 vfs_unbusy(mp); 954 955 slow: 956 mtx_lock(&mountlist_mtx); 957 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 958 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 959 error = vfs_busy(mp, MBF_MNTLSTLOCK); 960 if (error) { 961 cache[hash] = NULL; 962 mtx_unlock(&mountlist_mtx); 963 return (NULL); 964 } 965 cache[hash] = mp; 966 return (mp); 967 } 968 } 969 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 970 mtx_unlock(&mountlist_mtx); 971 return ((struct mount *) 0); 972 } 973 974 /* 975 * Check if a user can access privileged mount options. 976 */ 977 int 978 vfs_suser(struct mount *mp, struct thread *td) 979 { 980 int error; 981 982 if (jailed(td->td_ucred)) { 983 /* 984 * If the jail of the calling thread lacks permission for 985 * this type of file system, deny immediately. 986 */ 987 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag)) 988 return (EPERM); 989 990 /* 991 * If the file system was mounted outside the jail of the 992 * calling thread, deny immediately. 993 */ 994 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 995 return (EPERM); 996 } 997 998 /* 999 * If file system supports delegated administration, we don't check 1000 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 1001 * by the file system itself. 1002 * If this is not the user that did original mount, we check for 1003 * the PRIV_VFS_MOUNT_OWNER privilege. 1004 */ 1005 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 1006 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 1007 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 1008 return (error); 1009 } 1010 return (0); 1011 } 1012 1013 /* 1014 * Get a new unique fsid. Try to make its val[0] unique, since this value 1015 * will be used to create fake device numbers for stat(). Also try (but 1016 * not so hard) make its val[0] unique mod 2^16, since some emulators only 1017 * support 16-bit device numbers. We end up with unique val[0]'s for the 1018 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 1019 * 1020 * Keep in mind that several mounts may be running in parallel. Starting 1021 * the search one past where the previous search terminated is both a 1022 * micro-optimization and a defense against returning the same fsid to 1023 * different mounts. 1024 */ 1025 void 1026 vfs_getnewfsid(struct mount *mp) 1027 { 1028 static uint16_t mntid_base; 1029 struct mount *nmp; 1030 fsid_t tfsid; 1031 int mtype; 1032 1033 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 1034 mtx_lock(&mntid_mtx); 1035 mtype = mp->mnt_vfc->vfc_typenum; 1036 tfsid.val[1] = mtype; 1037 mtype = (mtype & 0xFF) << 24; 1038 for (;;) { 1039 tfsid.val[0] = makedev(255, 1040 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 1041 mntid_base++; 1042 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 1043 break; 1044 vfs_rel(nmp); 1045 } 1046 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 1047 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 1048 mtx_unlock(&mntid_mtx); 1049 } 1050 1051 /* 1052 * Knob to control the precision of file timestamps: 1053 * 1054 * 0 = seconds only; nanoseconds zeroed. 1055 * 1 = seconds and nanoseconds, accurate within 1/HZ. 1056 * 2 = seconds and nanoseconds, truncated to microseconds. 1057 * >=3 = seconds and nanoseconds, maximum precision. 1058 */ 1059 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 1060 1061 static int timestamp_precision = TSP_USEC; 1062 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 1063 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 1064 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, " 1065 "3+: sec + ns (max. precision))"); 1066 1067 /* 1068 * Get a current timestamp. 1069 */ 1070 void 1071 vfs_timestamp(struct timespec *tsp) 1072 { 1073 struct timeval tv; 1074 1075 switch (timestamp_precision) { 1076 case TSP_SEC: 1077 tsp->tv_sec = time_second; 1078 tsp->tv_nsec = 0; 1079 break; 1080 case TSP_HZ: 1081 getnanotime(tsp); 1082 break; 1083 case TSP_USEC: 1084 microtime(&tv); 1085 TIMEVAL_TO_TIMESPEC(&tv, tsp); 1086 break; 1087 case TSP_NSEC: 1088 default: 1089 nanotime(tsp); 1090 break; 1091 } 1092 } 1093 1094 /* 1095 * Set vnode attributes to VNOVAL 1096 */ 1097 void 1098 vattr_null(struct vattr *vap) 1099 { 1100 1101 vap->va_type = VNON; 1102 vap->va_size = VNOVAL; 1103 vap->va_bytes = VNOVAL; 1104 vap->va_mode = VNOVAL; 1105 vap->va_nlink = VNOVAL; 1106 vap->va_uid = VNOVAL; 1107 vap->va_gid = VNOVAL; 1108 vap->va_fsid = VNOVAL; 1109 vap->va_fileid = VNOVAL; 1110 vap->va_blocksize = VNOVAL; 1111 vap->va_rdev = VNOVAL; 1112 vap->va_atime.tv_sec = VNOVAL; 1113 vap->va_atime.tv_nsec = VNOVAL; 1114 vap->va_mtime.tv_sec = VNOVAL; 1115 vap->va_mtime.tv_nsec = VNOVAL; 1116 vap->va_ctime.tv_sec = VNOVAL; 1117 vap->va_ctime.tv_nsec = VNOVAL; 1118 vap->va_birthtime.tv_sec = VNOVAL; 1119 vap->va_birthtime.tv_nsec = VNOVAL; 1120 vap->va_flags = VNOVAL; 1121 vap->va_gen = VNOVAL; 1122 vap->va_vaflags = 0; 1123 } 1124 1125 /* 1126 * Try to reduce the total number of vnodes. 1127 * 1128 * This routine (and its user) are buggy in at least the following ways: 1129 * - all parameters were picked years ago when RAM sizes were significantly 1130 * smaller 1131 * - it can pick vnodes based on pages used by the vm object, but filesystems 1132 * like ZFS don't use it making the pick broken 1133 * - since ZFS has its own aging policy it gets partially combated by this one 1134 * - a dedicated method should be provided for filesystems to let them decide 1135 * whether the vnode should be recycled 1136 * 1137 * This routine is called when we have too many vnodes. It attempts 1138 * to free <count> vnodes and will potentially free vnodes that still 1139 * have VM backing store (VM backing store is typically the cause 1140 * of a vnode blowout so we want to do this). Therefore, this operation 1141 * is not considered cheap. 1142 * 1143 * A number of conditions may prevent a vnode from being reclaimed. 1144 * the buffer cache may have references on the vnode, a directory 1145 * vnode may still have references due to the namei cache representing 1146 * underlying files, or the vnode may be in active use. It is not 1147 * desirable to reuse such vnodes. These conditions may cause the 1148 * number of vnodes to reach some minimum value regardless of what 1149 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 1150 * 1151 * @param reclaim_nc_src Only reclaim directories with outgoing namecache 1152 * entries if this argument is strue 1153 * @param trigger Only reclaim vnodes with fewer than this many resident 1154 * pages. 1155 * @param target How many vnodes to reclaim. 1156 * @return The number of vnodes that were reclaimed. 1157 */ 1158 static int 1159 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target) 1160 { 1161 struct vnode *vp, *mvp; 1162 struct mount *mp; 1163 struct vm_object *object; 1164 u_long done; 1165 bool retried; 1166 1167 mtx_assert(&vnode_list_mtx, MA_OWNED); 1168 1169 retried = false; 1170 done = 0; 1171 1172 mvp = vnode_list_reclaim_marker; 1173 restart: 1174 vp = mvp; 1175 while (done < target) { 1176 vp = TAILQ_NEXT(vp, v_vnodelist); 1177 if (__predict_false(vp == NULL)) 1178 break; 1179 1180 if (__predict_false(vp->v_type == VMARKER)) 1181 continue; 1182 1183 /* 1184 * If it's been deconstructed already, it's still 1185 * referenced, or it exceeds the trigger, skip it. 1186 * Also skip free vnodes. We are trying to make space 1187 * to expand the free list, not reduce it. 1188 */ 1189 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 || 1190 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src))) 1191 goto next_iter; 1192 1193 if (vp->v_type == VBAD || vp->v_type == VNON) 1194 goto next_iter; 1195 1196 object = atomic_load_ptr(&vp->v_object); 1197 if (object == NULL || object->resident_page_count > trigger) { 1198 goto next_iter; 1199 } 1200 1201 /* 1202 * Handle races against vnode allocation. Filesystems lock the 1203 * vnode some time after it gets returned from getnewvnode, 1204 * despite type and hold count being manipulated earlier. 1205 * Resorting to checking v_mount restores guarantees present 1206 * before the global list was reworked to contain all vnodes. 1207 */ 1208 if (!VI_TRYLOCK(vp)) 1209 goto next_iter; 1210 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1211 VI_UNLOCK(vp); 1212 goto next_iter; 1213 } 1214 if (vp->v_mount == NULL) { 1215 VI_UNLOCK(vp); 1216 goto next_iter; 1217 } 1218 vholdl(vp); 1219 VI_UNLOCK(vp); 1220 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1221 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1222 mtx_unlock(&vnode_list_mtx); 1223 1224 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1225 vdrop(vp); 1226 goto next_iter_unlocked; 1227 } 1228 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) { 1229 vdrop(vp); 1230 vn_finished_write(mp); 1231 goto next_iter_unlocked; 1232 } 1233 1234 VI_LOCK(vp); 1235 if (vp->v_usecount > 0 || 1236 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || 1237 (vp->v_object != NULL && vp->v_object->handle == vp && 1238 vp->v_object->resident_page_count > trigger)) { 1239 VOP_UNLOCK(vp); 1240 vdropl(vp); 1241 vn_finished_write(mp); 1242 goto next_iter_unlocked; 1243 } 1244 counter_u64_add(recycles_count, 1); 1245 vgonel(vp); 1246 VOP_UNLOCK(vp); 1247 vdropl(vp); 1248 vn_finished_write(mp); 1249 done++; 1250 next_iter_unlocked: 1251 if (should_yield()) 1252 kern_yield(PRI_USER); 1253 mtx_lock(&vnode_list_mtx); 1254 goto restart; 1255 next_iter: 1256 MPASS(vp->v_type != VMARKER); 1257 if (!should_yield()) 1258 continue; 1259 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1260 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1261 mtx_unlock(&vnode_list_mtx); 1262 kern_yield(PRI_USER); 1263 mtx_lock(&vnode_list_mtx); 1264 goto restart; 1265 } 1266 if (done == 0 && !retried) { 1267 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1268 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1269 retried = true; 1270 goto restart; 1271 } 1272 return (done); 1273 } 1274 1275 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */ 1276 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free, 1277 0, 1278 "limit on vnode free requests per call to the vnlru_free routine"); 1279 1280 /* 1281 * Attempt to reduce the free list by the requested amount. 1282 */ 1283 static int 1284 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp) 1285 { 1286 struct vnode *vp; 1287 struct mount *mp; 1288 int ocount; 1289 1290 mtx_assert(&vnode_list_mtx, MA_OWNED); 1291 if (count > max_vnlru_free) 1292 count = max_vnlru_free; 1293 ocount = count; 1294 vp = mvp; 1295 for (;;) { 1296 if (count == 0) { 1297 break; 1298 } 1299 vp = TAILQ_NEXT(vp, v_vnodelist); 1300 if (__predict_false(vp == NULL)) { 1301 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1302 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist); 1303 break; 1304 } 1305 if (__predict_false(vp->v_type == VMARKER)) 1306 continue; 1307 if (vp->v_holdcnt > 0) 1308 continue; 1309 /* 1310 * Don't recycle if our vnode is from different type 1311 * of mount point. Note that mp is type-safe, the 1312 * check does not reach unmapped address even if 1313 * vnode is reclaimed. 1314 */ 1315 if (mnt_op != NULL && (mp = vp->v_mount) != NULL && 1316 mp->mnt_op != mnt_op) { 1317 continue; 1318 } 1319 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1320 continue; 1321 } 1322 if (!vhold_recycle_free(vp)) 1323 continue; 1324 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1325 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1326 mtx_unlock(&vnode_list_mtx); 1327 if (vtryrecycle(vp) == 0) 1328 count--; 1329 mtx_lock(&vnode_list_mtx); 1330 vp = mvp; 1331 } 1332 return (ocount - count); 1333 } 1334 1335 static int 1336 vnlru_free_locked(int count) 1337 { 1338 1339 mtx_assert(&vnode_list_mtx, MA_OWNED); 1340 return (vnlru_free_impl(count, NULL, vnode_list_free_marker)); 1341 } 1342 1343 void 1344 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp) 1345 { 1346 1347 MPASS(mnt_op != NULL); 1348 MPASS(mvp != NULL); 1349 VNPASS(mvp->v_type == VMARKER, mvp); 1350 mtx_lock(&vnode_list_mtx); 1351 vnlru_free_impl(count, mnt_op, mvp); 1352 mtx_unlock(&vnode_list_mtx); 1353 } 1354 1355 struct vnode * 1356 vnlru_alloc_marker(void) 1357 { 1358 struct vnode *mvp; 1359 1360 mvp = vn_alloc_marker(NULL); 1361 mtx_lock(&vnode_list_mtx); 1362 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist); 1363 mtx_unlock(&vnode_list_mtx); 1364 return (mvp); 1365 } 1366 1367 void 1368 vnlru_free_marker(struct vnode *mvp) 1369 { 1370 mtx_lock(&vnode_list_mtx); 1371 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1372 mtx_unlock(&vnode_list_mtx); 1373 vn_free_marker(mvp); 1374 } 1375 1376 static void 1377 vnlru_recalc(void) 1378 { 1379 1380 mtx_assert(&vnode_list_mtx, MA_OWNED); 1381 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100); 1382 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */ 1383 vlowat = vhiwat / 2; 1384 } 1385 1386 /* 1387 * Attempt to recycle vnodes in a context that is always safe to block. 1388 * Calling vlrurecycle() from the bowels of filesystem code has some 1389 * interesting deadlock problems. 1390 */ 1391 static struct proc *vnlruproc; 1392 static int vnlruproc_sig; 1393 1394 /* 1395 * The main freevnodes counter is only updated when threads requeue their vnode 1396 * batches. CPUs are conditionally walked to compute a more accurate total. 1397 * 1398 * Limit how much of a slop are we willing to tolerate. Note: the actual value 1399 * at any given moment can still exceed slop, but it should not be by significant 1400 * margin in practice. 1401 */ 1402 #define VNLRU_FREEVNODES_SLOP 128 1403 1404 static __inline void 1405 vfs_freevnodes_inc(void) 1406 { 1407 struct vdbatch *vd; 1408 1409 critical_enter(); 1410 vd = DPCPU_PTR(vd); 1411 vd->freevnodes++; 1412 critical_exit(); 1413 } 1414 1415 static __inline void 1416 vfs_freevnodes_dec(void) 1417 { 1418 struct vdbatch *vd; 1419 1420 critical_enter(); 1421 vd = DPCPU_PTR(vd); 1422 vd->freevnodes--; 1423 critical_exit(); 1424 } 1425 1426 static u_long 1427 vnlru_read_freevnodes(void) 1428 { 1429 struct vdbatch *vd; 1430 long slop; 1431 int cpu; 1432 1433 mtx_assert(&vnode_list_mtx, MA_OWNED); 1434 if (freevnodes > freevnodes_old) 1435 slop = freevnodes - freevnodes_old; 1436 else 1437 slop = freevnodes_old - freevnodes; 1438 if (slop < VNLRU_FREEVNODES_SLOP) 1439 return (freevnodes >= 0 ? freevnodes : 0); 1440 freevnodes_old = freevnodes; 1441 CPU_FOREACH(cpu) { 1442 vd = DPCPU_ID_PTR((cpu), vd); 1443 freevnodes_old += vd->freevnodes; 1444 } 1445 return (freevnodes_old >= 0 ? freevnodes_old : 0); 1446 } 1447 1448 static bool 1449 vnlru_under(u_long rnumvnodes, u_long limit) 1450 { 1451 u_long rfreevnodes, space; 1452 1453 if (__predict_false(rnumvnodes > desiredvnodes)) 1454 return (true); 1455 1456 space = desiredvnodes - rnumvnodes; 1457 if (space < limit) { 1458 rfreevnodes = vnlru_read_freevnodes(); 1459 if (rfreevnodes > wantfreevnodes) 1460 space += rfreevnodes - wantfreevnodes; 1461 } 1462 return (space < limit); 1463 } 1464 1465 static bool 1466 vnlru_under_unlocked(u_long rnumvnodes, u_long limit) 1467 { 1468 long rfreevnodes, space; 1469 1470 if (__predict_false(rnumvnodes > desiredvnodes)) 1471 return (true); 1472 1473 space = desiredvnodes - rnumvnodes; 1474 if (space < limit) { 1475 rfreevnodes = atomic_load_long(&freevnodes); 1476 if (rfreevnodes > wantfreevnodes) 1477 space += rfreevnodes - wantfreevnodes; 1478 } 1479 return (space < limit); 1480 } 1481 1482 static void 1483 vnlru_kick(void) 1484 { 1485 1486 mtx_assert(&vnode_list_mtx, MA_OWNED); 1487 if (vnlruproc_sig == 0) { 1488 vnlruproc_sig = 1; 1489 wakeup(vnlruproc); 1490 } 1491 } 1492 1493 static void 1494 vnlru_proc(void) 1495 { 1496 u_long rnumvnodes, rfreevnodes, target; 1497 unsigned long onumvnodes; 1498 int done, force, trigger, usevnodes; 1499 bool reclaim_nc_src, want_reread; 1500 1501 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc, 1502 SHUTDOWN_PRI_FIRST); 1503 1504 force = 0; 1505 want_reread = false; 1506 for (;;) { 1507 kproc_suspend_check(vnlruproc); 1508 mtx_lock(&vnode_list_mtx); 1509 rnumvnodes = atomic_load_long(&numvnodes); 1510 1511 if (want_reread) { 1512 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0; 1513 want_reread = false; 1514 } 1515 1516 /* 1517 * If numvnodes is too large (due to desiredvnodes being 1518 * adjusted using its sysctl, or emergency growth), first 1519 * try to reduce it by discarding from the free list. 1520 */ 1521 if (rnumvnodes > desiredvnodes) { 1522 vnlru_free_locked(rnumvnodes - desiredvnodes); 1523 rnumvnodes = atomic_load_long(&numvnodes); 1524 } 1525 /* 1526 * Sleep if the vnode cache is in a good state. This is 1527 * when it is not over-full and has space for about a 4% 1528 * or 9% expansion (by growing its size or inexcessively 1529 * reducing its free list). Otherwise, try to reclaim 1530 * space for a 10% expansion. 1531 */ 1532 if (vstir && force == 0) { 1533 force = 1; 1534 vstir = 0; 1535 } 1536 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) { 1537 vnlruproc_sig = 0; 1538 wakeup(&vnlruproc_sig); 1539 msleep(vnlruproc, &vnode_list_mtx, 1540 PVFS|PDROP, "vlruwt", hz); 1541 continue; 1542 } 1543 rfreevnodes = vnlru_read_freevnodes(); 1544 1545 onumvnodes = rnumvnodes; 1546 /* 1547 * Calculate parameters for recycling. These are the same 1548 * throughout the loop to give some semblance of fairness. 1549 * The trigger point is to avoid recycling vnodes with lots 1550 * of resident pages. We aren't trying to free memory; we 1551 * are trying to recycle or at least free vnodes. 1552 */ 1553 if (rnumvnodes <= desiredvnodes) 1554 usevnodes = rnumvnodes - rfreevnodes; 1555 else 1556 usevnodes = rnumvnodes; 1557 if (usevnodes <= 0) 1558 usevnodes = 1; 1559 /* 1560 * The trigger value is is chosen to give a conservatively 1561 * large value to ensure that it alone doesn't prevent 1562 * making progress. The value can easily be so large that 1563 * it is effectively infinite in some congested and 1564 * misconfigured cases, and this is necessary. Normally 1565 * it is about 8 to 100 (pages), which is quite large. 1566 */ 1567 trigger = vm_cnt.v_page_count * 2 / usevnodes; 1568 if (force < 2) 1569 trigger = vsmalltrigger; 1570 reclaim_nc_src = force >= 3; 1571 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1); 1572 target = target / 10 + 1; 1573 done = vlrureclaim(reclaim_nc_src, trigger, target); 1574 mtx_unlock(&vnode_list_mtx); 1575 if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes) 1576 uma_reclaim(UMA_RECLAIM_DRAIN); 1577 if (done == 0) { 1578 if (force == 0 || force == 1) { 1579 force = 2; 1580 continue; 1581 } 1582 if (force == 2) { 1583 force = 3; 1584 continue; 1585 } 1586 want_reread = true; 1587 force = 0; 1588 vnlru_nowhere++; 1589 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 1590 } else { 1591 want_reread = true; 1592 kern_yield(PRI_USER); 1593 } 1594 } 1595 } 1596 1597 static struct kproc_desc vnlru_kp = { 1598 "vnlru", 1599 vnlru_proc, 1600 &vnlruproc 1601 }; 1602 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 1603 &vnlru_kp); 1604 1605 /* 1606 * Routines having to do with the management of the vnode table. 1607 */ 1608 1609 /* 1610 * Try to recycle a freed vnode. We abort if anyone picks up a reference 1611 * before we actually vgone(). This function must be called with the vnode 1612 * held to prevent the vnode from being returned to the free list midway 1613 * through vgone(). 1614 */ 1615 static int 1616 vtryrecycle(struct vnode *vp) 1617 { 1618 struct mount *vnmp; 1619 1620 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 1621 VNASSERT(vp->v_holdcnt, vp, 1622 ("vtryrecycle: Recycling vp %p without a reference.", vp)); 1623 /* 1624 * This vnode may found and locked via some other list, if so we 1625 * can't recycle it yet. 1626 */ 1627 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1628 CTR2(KTR_VFS, 1629 "%s: impossible to recycle, vp %p lock is already held", 1630 __func__, vp); 1631 vdrop(vp); 1632 return (EWOULDBLOCK); 1633 } 1634 /* 1635 * Don't recycle if its filesystem is being suspended. 1636 */ 1637 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 1638 VOP_UNLOCK(vp); 1639 CTR2(KTR_VFS, 1640 "%s: impossible to recycle, cannot start the write for %p", 1641 __func__, vp); 1642 vdrop(vp); 1643 return (EBUSY); 1644 } 1645 /* 1646 * If we got this far, we need to acquire the interlock and see if 1647 * anyone picked up this vnode from another list. If not, we will 1648 * mark it with DOOMED via vgonel() so that anyone who does find it 1649 * will skip over it. 1650 */ 1651 VI_LOCK(vp); 1652 if (vp->v_usecount) { 1653 VOP_UNLOCK(vp); 1654 vdropl(vp); 1655 vn_finished_write(vnmp); 1656 CTR2(KTR_VFS, 1657 "%s: impossible to recycle, %p is already referenced", 1658 __func__, vp); 1659 return (EBUSY); 1660 } 1661 if (!VN_IS_DOOMED(vp)) { 1662 counter_u64_add(recycles_free_count, 1); 1663 vgonel(vp); 1664 } 1665 VOP_UNLOCK(vp); 1666 vdropl(vp); 1667 vn_finished_write(vnmp); 1668 return (0); 1669 } 1670 1671 /* 1672 * Allocate a new vnode. 1673 * 1674 * The operation never returns an error. Returning an error was disabled 1675 * in r145385 (dated 2005) with the following comment: 1676 * 1677 * XXX Not all VFS_VGET/ffs_vget callers check returns. 1678 * 1679 * Given the age of this commit (almost 15 years at the time of writing this 1680 * comment) restoring the ability to fail requires a significant audit of 1681 * all codepaths. 1682 * 1683 * The routine can try to free a vnode or stall for up to 1 second waiting for 1684 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation. 1685 */ 1686 static u_long vn_alloc_cyclecount; 1687 1688 static struct vnode * __noinline 1689 vn_alloc_hard(struct mount *mp) 1690 { 1691 u_long rnumvnodes, rfreevnodes; 1692 1693 mtx_lock(&vnode_list_mtx); 1694 rnumvnodes = atomic_load_long(&numvnodes); 1695 if (rnumvnodes + 1 < desiredvnodes) { 1696 vn_alloc_cyclecount = 0; 1697 goto alloc; 1698 } 1699 rfreevnodes = vnlru_read_freevnodes(); 1700 if (vn_alloc_cyclecount++ >= rfreevnodes) { 1701 vn_alloc_cyclecount = 0; 1702 vstir = 1; 1703 } 1704 /* 1705 * Grow the vnode cache if it will not be above its target max 1706 * after growing. Otherwise, if the free list is nonempty, try 1707 * to reclaim 1 item from it before growing the cache (possibly 1708 * above its target max if the reclamation failed or is delayed). 1709 * Otherwise, wait for some space. In all cases, schedule 1710 * vnlru_proc() if we are getting short of space. The watermarks 1711 * should be chosen so that we never wait or even reclaim from 1712 * the free list to below its target minimum. 1713 */ 1714 if (vnlru_free_locked(1) > 0) 1715 goto alloc; 1716 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 1717 /* 1718 * Wait for space for a new vnode. 1719 */ 1720 vnlru_kick(); 1721 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz); 1722 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes && 1723 vnlru_read_freevnodes() > 1) 1724 vnlru_free_locked(1); 1725 } 1726 alloc: 1727 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 1728 if (vnlru_under(rnumvnodes, vlowat)) 1729 vnlru_kick(); 1730 mtx_unlock(&vnode_list_mtx); 1731 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 1732 } 1733 1734 static struct vnode * 1735 vn_alloc(struct mount *mp) 1736 { 1737 u_long rnumvnodes; 1738 1739 if (__predict_false(vn_alloc_cyclecount != 0)) 1740 return (vn_alloc_hard(mp)); 1741 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 1742 if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) { 1743 atomic_subtract_long(&numvnodes, 1); 1744 return (vn_alloc_hard(mp)); 1745 } 1746 1747 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 1748 } 1749 1750 static void 1751 vn_free(struct vnode *vp) 1752 { 1753 1754 atomic_subtract_long(&numvnodes, 1); 1755 uma_zfree_smr(vnode_zone, vp); 1756 } 1757 1758 /* 1759 * Return the next vnode from the free list. 1760 */ 1761 int 1762 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 1763 struct vnode **vpp) 1764 { 1765 struct vnode *vp; 1766 struct thread *td; 1767 struct lock_object *lo; 1768 1769 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 1770 1771 KASSERT(vops->registered, 1772 ("%s: not registered vector op %p\n", __func__, vops)); 1773 1774 td = curthread; 1775 if (td->td_vp_reserved != NULL) { 1776 vp = td->td_vp_reserved; 1777 td->td_vp_reserved = NULL; 1778 } else { 1779 vp = vn_alloc(mp); 1780 } 1781 counter_u64_add(vnodes_created, 1); 1782 /* 1783 * Locks are given the generic name "vnode" when created. 1784 * Follow the historic practice of using the filesystem 1785 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc. 1786 * 1787 * Locks live in a witness group keyed on their name. Thus, 1788 * when a lock is renamed, it must also move from the witness 1789 * group of its old name to the witness group of its new name. 1790 * 1791 * The change only needs to be made when the vnode moves 1792 * from one filesystem type to another. We ensure that each 1793 * filesystem use a single static name pointer for its tag so 1794 * that we can compare pointers rather than doing a strcmp(). 1795 */ 1796 lo = &vp->v_vnlock->lock_object; 1797 #ifdef WITNESS 1798 if (lo->lo_name != tag) { 1799 #endif 1800 lo->lo_name = tag; 1801 #ifdef WITNESS 1802 WITNESS_DESTROY(lo); 1803 WITNESS_INIT(lo, tag); 1804 } 1805 #endif 1806 /* 1807 * By default, don't allow shared locks unless filesystems opt-in. 1808 */ 1809 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE; 1810 /* 1811 * Finalize various vnode identity bits. 1812 */ 1813 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp)); 1814 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp)); 1815 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp)); 1816 vp->v_type = VNON; 1817 vp->v_op = vops; 1818 vp->v_irflag = 0; 1819 v_init_counters(vp); 1820 vn_seqc_init(vp); 1821 vp->v_bufobj.bo_ops = &buf_ops_bio; 1822 #ifdef DIAGNOSTIC 1823 if (mp == NULL && vops != &dead_vnodeops) 1824 printf("NULL mp in getnewvnode(9), tag %s\n", tag); 1825 #endif 1826 #ifdef MAC 1827 mac_vnode_init(vp); 1828 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 1829 mac_vnode_associate_singlelabel(mp, vp); 1830 #endif 1831 if (mp != NULL) { 1832 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize; 1833 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0) 1834 vp->v_vflag |= VV_NOKNOTE; 1835 } 1836 1837 /* 1838 * For the filesystems which do not use vfs_hash_insert(), 1839 * still initialize v_hash to have vfs_hash_index() useful. 1840 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 1841 * its own hashing. 1842 */ 1843 vp->v_hash = (uintptr_t)vp >> vnsz2log; 1844 1845 *vpp = vp; 1846 return (0); 1847 } 1848 1849 void 1850 getnewvnode_reserve(void) 1851 { 1852 struct thread *td; 1853 1854 td = curthread; 1855 MPASS(td->td_vp_reserved == NULL); 1856 td->td_vp_reserved = vn_alloc(NULL); 1857 } 1858 1859 void 1860 getnewvnode_drop_reserve(void) 1861 { 1862 struct thread *td; 1863 1864 td = curthread; 1865 if (td->td_vp_reserved != NULL) { 1866 vn_free(td->td_vp_reserved); 1867 td->td_vp_reserved = NULL; 1868 } 1869 } 1870 1871 static void __noinline 1872 freevnode(struct vnode *vp) 1873 { 1874 struct bufobj *bo; 1875 1876 /* 1877 * The vnode has been marked for destruction, so free it. 1878 * 1879 * The vnode will be returned to the zone where it will 1880 * normally remain until it is needed for another vnode. We 1881 * need to cleanup (or verify that the cleanup has already 1882 * been done) any residual data left from its current use 1883 * so as not to contaminate the freshly allocated vnode. 1884 */ 1885 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 1886 /* 1887 * Paired with vgone. 1888 */ 1889 vn_seqc_write_end_free(vp); 1890 1891 bo = &vp->v_bufobj; 1892 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 1893 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp); 1894 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 1895 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 1896 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 1897 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 1898 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 1899 ("clean blk trie not empty")); 1900 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 1901 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 1902 ("dirty blk trie not empty")); 1903 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst")); 1904 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src")); 1905 VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for ..")); 1906 VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp, 1907 ("Dangling rangelock waiters")); 1908 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp, 1909 ("Leaked inactivation")); 1910 VI_UNLOCK(vp); 1911 #ifdef MAC 1912 mac_vnode_destroy(vp); 1913 #endif 1914 if (vp->v_pollinfo != NULL) { 1915 destroy_vpollinfo(vp->v_pollinfo); 1916 vp->v_pollinfo = NULL; 1917 } 1918 vp->v_mountedhere = NULL; 1919 vp->v_unpcb = NULL; 1920 vp->v_rdev = NULL; 1921 vp->v_fifoinfo = NULL; 1922 vp->v_iflag = 0; 1923 vp->v_vflag = 0; 1924 bo->bo_flag = 0; 1925 vn_free(vp); 1926 } 1927 1928 /* 1929 * Delete from old mount point vnode list, if on one. 1930 */ 1931 static void 1932 delmntque(struct vnode *vp) 1933 { 1934 struct mount *mp; 1935 1936 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 1937 1938 mp = vp->v_mount; 1939 if (mp == NULL) 1940 return; 1941 MNT_ILOCK(mp); 1942 VI_LOCK(vp); 1943 vp->v_mount = NULL; 1944 VI_UNLOCK(vp); 1945 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 1946 ("bad mount point vnode list size")); 1947 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1948 mp->mnt_nvnodelistsize--; 1949 MNT_REL(mp); 1950 MNT_IUNLOCK(mp); 1951 } 1952 1953 static void 1954 insmntque_stddtr(struct vnode *vp, void *dtr_arg) 1955 { 1956 1957 vp->v_data = NULL; 1958 vp->v_op = &dead_vnodeops; 1959 vgone(vp); 1960 vput(vp); 1961 } 1962 1963 /* 1964 * Insert into list of vnodes for the new mount point, if available. 1965 */ 1966 int 1967 insmntque1(struct vnode *vp, struct mount *mp, 1968 void (*dtr)(struct vnode *, void *), void *dtr_arg) 1969 { 1970 1971 KASSERT(vp->v_mount == NULL, 1972 ("insmntque: vnode already on per mount vnode list")); 1973 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 1974 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 1975 1976 /* 1977 * We acquire the vnode interlock early to ensure that the 1978 * vnode cannot be recycled by another process releasing a 1979 * holdcnt on it before we get it on both the vnode list 1980 * and the active vnode list. The mount mutex protects only 1981 * manipulation of the vnode list and the vnode freelist 1982 * mutex protects only manipulation of the active vnode list. 1983 * Hence the need to hold the vnode interlock throughout. 1984 */ 1985 MNT_ILOCK(mp); 1986 VI_LOCK(vp); 1987 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 && 1988 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 1989 mp->mnt_nvnodelistsize == 0)) && 1990 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 1991 VI_UNLOCK(vp); 1992 MNT_IUNLOCK(mp); 1993 if (dtr != NULL) 1994 dtr(vp, dtr_arg); 1995 return (EBUSY); 1996 } 1997 vp->v_mount = mp; 1998 MNT_REF(mp); 1999 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2000 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 2001 ("neg mount point vnode list size")); 2002 mp->mnt_nvnodelistsize++; 2003 VI_UNLOCK(vp); 2004 MNT_IUNLOCK(mp); 2005 return (0); 2006 } 2007 2008 int 2009 insmntque(struct vnode *vp, struct mount *mp) 2010 { 2011 2012 return (insmntque1(vp, mp, insmntque_stddtr, NULL)); 2013 } 2014 2015 /* 2016 * Flush out and invalidate all buffers associated with a bufobj 2017 * Called with the underlying object locked. 2018 */ 2019 int 2020 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 2021 { 2022 int error; 2023 2024 BO_LOCK(bo); 2025 if (flags & V_SAVE) { 2026 error = bufobj_wwait(bo, slpflag, slptimeo); 2027 if (error) { 2028 BO_UNLOCK(bo); 2029 return (error); 2030 } 2031 if (bo->bo_dirty.bv_cnt > 0) { 2032 BO_UNLOCK(bo); 2033 do { 2034 error = BO_SYNC(bo, MNT_WAIT); 2035 } while (error == ERELOOKUP); 2036 if (error != 0) 2037 return (error); 2038 BO_LOCK(bo); 2039 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 2040 BO_UNLOCK(bo); 2041 return (EBUSY); 2042 } 2043 } 2044 } 2045 /* 2046 * If you alter this loop please notice that interlock is dropped and 2047 * reacquired in flushbuflist. Special care is needed to ensure that 2048 * no race conditions occur from this. 2049 */ 2050 do { 2051 error = flushbuflist(&bo->bo_clean, 2052 flags, bo, slpflag, slptimeo); 2053 if (error == 0 && !(flags & V_CLEANONLY)) 2054 error = flushbuflist(&bo->bo_dirty, 2055 flags, bo, slpflag, slptimeo); 2056 if (error != 0 && error != EAGAIN) { 2057 BO_UNLOCK(bo); 2058 return (error); 2059 } 2060 } while (error != 0); 2061 2062 /* 2063 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 2064 * have write I/O in-progress but if there is a VM object then the 2065 * VM object can also have read-I/O in-progress. 2066 */ 2067 do { 2068 bufobj_wwait(bo, 0, 0); 2069 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) { 2070 BO_UNLOCK(bo); 2071 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx"); 2072 BO_LOCK(bo); 2073 } 2074 } while (bo->bo_numoutput > 0); 2075 BO_UNLOCK(bo); 2076 2077 /* 2078 * Destroy the copy in the VM cache, too. 2079 */ 2080 if (bo->bo_object != NULL && 2081 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) { 2082 VM_OBJECT_WLOCK(bo->bo_object); 2083 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 2084 OBJPR_CLEANONLY : 0); 2085 VM_OBJECT_WUNLOCK(bo->bo_object); 2086 } 2087 2088 #ifdef INVARIANTS 2089 BO_LOCK(bo); 2090 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO | 2091 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 || 2092 bo->bo_clean.bv_cnt > 0)) 2093 panic("vinvalbuf: flush failed"); 2094 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 && 2095 bo->bo_dirty.bv_cnt > 0) 2096 panic("vinvalbuf: flush dirty failed"); 2097 BO_UNLOCK(bo); 2098 #endif 2099 return (0); 2100 } 2101 2102 /* 2103 * Flush out and invalidate all buffers associated with a vnode. 2104 * Called with the underlying object locked. 2105 */ 2106 int 2107 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 2108 { 2109 2110 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2111 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 2112 if (vp->v_object != NULL && vp->v_object->handle != vp) 2113 return (0); 2114 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 2115 } 2116 2117 /* 2118 * Flush out buffers on the specified list. 2119 * 2120 */ 2121 static int 2122 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 2123 int slptimeo) 2124 { 2125 struct buf *bp, *nbp; 2126 int retval, error; 2127 daddr_t lblkno; 2128 b_xflags_t xflags; 2129 2130 ASSERT_BO_WLOCKED(bo); 2131 2132 retval = 0; 2133 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 2134 /* 2135 * If we are flushing both V_NORMAL and V_ALT buffers then 2136 * do not skip any buffers. If we are flushing only V_NORMAL 2137 * buffers then skip buffers marked as BX_ALTDATA. If we are 2138 * flushing only V_ALT buffers then skip buffers not marked 2139 * as BX_ALTDATA. 2140 */ 2141 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) && 2142 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) || 2143 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) { 2144 continue; 2145 } 2146 if (nbp != NULL) { 2147 lblkno = nbp->b_lblkno; 2148 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 2149 } 2150 retval = EAGAIN; 2151 error = BUF_TIMELOCK(bp, 2152 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 2153 "flushbuf", slpflag, slptimeo); 2154 if (error) { 2155 BO_LOCK(bo); 2156 return (error != ENOLCK ? error : EAGAIN); 2157 } 2158 KASSERT(bp->b_bufobj == bo, 2159 ("bp %p wrong b_bufobj %p should be %p", 2160 bp, bp->b_bufobj, bo)); 2161 /* 2162 * XXX Since there are no node locks for NFS, I 2163 * believe there is a slight chance that a delayed 2164 * write will occur while sleeping just above, so 2165 * check for it. 2166 */ 2167 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 2168 (flags & V_SAVE)) { 2169 bremfree(bp); 2170 bp->b_flags |= B_ASYNC; 2171 bwrite(bp); 2172 BO_LOCK(bo); 2173 return (EAGAIN); /* XXX: why not loop ? */ 2174 } 2175 bremfree(bp); 2176 bp->b_flags |= (B_INVAL | B_RELBUF); 2177 bp->b_flags &= ~B_ASYNC; 2178 brelse(bp); 2179 BO_LOCK(bo); 2180 if (nbp == NULL) 2181 break; 2182 nbp = gbincore(bo, lblkno); 2183 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2184 != xflags) 2185 break; /* nbp invalid */ 2186 } 2187 return (retval); 2188 } 2189 2190 int 2191 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn) 2192 { 2193 struct buf *bp; 2194 int error; 2195 daddr_t lblkno; 2196 2197 ASSERT_BO_LOCKED(bo); 2198 2199 for (lblkno = startn;;) { 2200 again: 2201 bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno); 2202 if (bp == NULL || bp->b_lblkno >= endn || 2203 bp->b_lblkno < startn) 2204 break; 2205 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 2206 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0); 2207 if (error != 0) { 2208 BO_RLOCK(bo); 2209 if (error == ENOLCK) 2210 goto again; 2211 return (error); 2212 } 2213 KASSERT(bp->b_bufobj == bo, 2214 ("bp %p wrong b_bufobj %p should be %p", 2215 bp, bp->b_bufobj, bo)); 2216 lblkno = bp->b_lblkno + 1; 2217 if ((bp->b_flags & B_MANAGED) == 0) 2218 bremfree(bp); 2219 bp->b_flags |= B_RELBUF; 2220 /* 2221 * In the VMIO case, use the B_NOREUSE flag to hint that the 2222 * pages backing each buffer in the range are unlikely to be 2223 * reused. Dirty buffers will have the hint applied once 2224 * they've been written. 2225 */ 2226 if ((bp->b_flags & B_VMIO) != 0) 2227 bp->b_flags |= B_NOREUSE; 2228 brelse(bp); 2229 BO_RLOCK(bo); 2230 } 2231 return (0); 2232 } 2233 2234 /* 2235 * Truncate a file's buffer and pages to a specified length. This 2236 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 2237 * sync activity. 2238 */ 2239 int 2240 vtruncbuf(struct vnode *vp, off_t length, int blksize) 2241 { 2242 struct buf *bp, *nbp; 2243 struct bufobj *bo; 2244 daddr_t startlbn; 2245 2246 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__, 2247 vp, blksize, (uintmax_t)length); 2248 2249 /* 2250 * Round up to the *next* lbn. 2251 */ 2252 startlbn = howmany(length, blksize); 2253 2254 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 2255 2256 bo = &vp->v_bufobj; 2257 restart_unlocked: 2258 BO_LOCK(bo); 2259 2260 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN) 2261 ; 2262 2263 if (length > 0) { 2264 restartsync: 2265 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2266 if (bp->b_lblkno > 0) 2267 continue; 2268 /* 2269 * Since we hold the vnode lock this should only 2270 * fail if we're racing with the buf daemon. 2271 */ 2272 if (BUF_LOCK(bp, 2273 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2274 BO_LOCKPTR(bo)) == ENOLCK) 2275 goto restart_unlocked; 2276 2277 VNASSERT((bp->b_flags & B_DELWRI), vp, 2278 ("buf(%p) on dirty queue without DELWRI", bp)); 2279 2280 bremfree(bp); 2281 bawrite(bp); 2282 BO_LOCK(bo); 2283 goto restartsync; 2284 } 2285 } 2286 2287 bufobj_wwait(bo, 0, 0); 2288 BO_UNLOCK(bo); 2289 vnode_pager_setsize(vp, length); 2290 2291 return (0); 2292 } 2293 2294 /* 2295 * Invalidate the cached pages of a file's buffer within the range of block 2296 * numbers [startlbn, endlbn). 2297 */ 2298 void 2299 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, 2300 int blksize) 2301 { 2302 struct bufobj *bo; 2303 off_t start, end; 2304 2305 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range"); 2306 2307 start = blksize * startlbn; 2308 end = blksize * endlbn; 2309 2310 bo = &vp->v_bufobj; 2311 BO_LOCK(bo); 2312 MPASS(blksize == bo->bo_bsize); 2313 2314 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN) 2315 ; 2316 2317 BO_UNLOCK(bo); 2318 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1)); 2319 } 2320 2321 static int 2322 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 2323 daddr_t startlbn, daddr_t endlbn) 2324 { 2325 struct buf *bp, *nbp; 2326 bool anyfreed; 2327 2328 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked"); 2329 ASSERT_BO_LOCKED(bo); 2330 2331 do { 2332 anyfreed = false; 2333 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 2334 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2335 continue; 2336 if (BUF_LOCK(bp, 2337 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2338 BO_LOCKPTR(bo)) == ENOLCK) { 2339 BO_LOCK(bo); 2340 return (EAGAIN); 2341 } 2342 2343 bremfree(bp); 2344 bp->b_flags |= B_INVAL | B_RELBUF; 2345 bp->b_flags &= ~B_ASYNC; 2346 brelse(bp); 2347 anyfreed = true; 2348 2349 BO_LOCK(bo); 2350 if (nbp != NULL && 2351 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 2352 nbp->b_vp != vp || 2353 (nbp->b_flags & B_DELWRI) != 0)) 2354 return (EAGAIN); 2355 } 2356 2357 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2358 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2359 continue; 2360 if (BUF_LOCK(bp, 2361 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2362 BO_LOCKPTR(bo)) == ENOLCK) { 2363 BO_LOCK(bo); 2364 return (EAGAIN); 2365 } 2366 bremfree(bp); 2367 bp->b_flags |= B_INVAL | B_RELBUF; 2368 bp->b_flags &= ~B_ASYNC; 2369 brelse(bp); 2370 anyfreed = true; 2371 2372 BO_LOCK(bo); 2373 if (nbp != NULL && 2374 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 2375 (nbp->b_vp != vp) || 2376 (nbp->b_flags & B_DELWRI) == 0)) 2377 return (EAGAIN); 2378 } 2379 } while (anyfreed); 2380 return (0); 2381 } 2382 2383 static void 2384 buf_vlist_remove(struct buf *bp) 2385 { 2386 struct bufv *bv; 2387 b_xflags_t flags; 2388 2389 flags = bp->b_xflags; 2390 2391 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2392 ASSERT_BO_WLOCKED(bp->b_bufobj); 2393 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 && 2394 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN), 2395 ("%s: buffer %p has invalid queue state", __func__, bp)); 2396 2397 if ((flags & BX_VNDIRTY) != 0) 2398 bv = &bp->b_bufobj->bo_dirty; 2399 else 2400 bv = &bp->b_bufobj->bo_clean; 2401 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 2402 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 2403 bv->bv_cnt--; 2404 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 2405 } 2406 2407 /* 2408 * Add the buffer to the sorted clean or dirty block list. 2409 * 2410 * NOTE: xflags is passed as a constant, optimizing this inline function! 2411 */ 2412 static void 2413 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2414 { 2415 struct bufv *bv; 2416 struct buf *n; 2417 int error; 2418 2419 ASSERT_BO_WLOCKED(bo); 2420 KASSERT((bo->bo_flag & BO_NOBUFS) == 0, 2421 ("buf_vlist_add: bo %p does not allow bufs", bo)); 2422 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, 2423 ("dead bo %p", bo)); 2424 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 2425 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 2426 bp->b_xflags |= xflags; 2427 if (xflags & BX_VNDIRTY) 2428 bv = &bo->bo_dirty; 2429 else 2430 bv = &bo->bo_clean; 2431 2432 /* 2433 * Keep the list ordered. Optimize empty list insertion. Assume 2434 * we tend to grow at the tail so lookup_le should usually be cheaper 2435 * than _ge. 2436 */ 2437 if (bv->bv_cnt == 0 || 2438 bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno) 2439 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 2440 else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL) 2441 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 2442 else 2443 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 2444 error = BUF_PCTRIE_INSERT(&bv->bv_root, bp); 2445 if (error) 2446 panic("buf_vlist_add: Preallocated nodes insufficient."); 2447 bv->bv_cnt++; 2448 } 2449 2450 /* 2451 * Look up a buffer using the buffer tries. 2452 */ 2453 struct buf * 2454 gbincore(struct bufobj *bo, daddr_t lblkno) 2455 { 2456 struct buf *bp; 2457 2458 ASSERT_BO_LOCKED(bo); 2459 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 2460 if (bp != NULL) 2461 return (bp); 2462 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno)); 2463 } 2464 2465 /* 2466 * Look up a buf using the buffer tries, without the bufobj lock. This relies 2467 * on SMR for safe lookup, and bufs being in a no-free zone to provide type 2468 * stability of the result. Like other lockless lookups, the found buf may 2469 * already be invalid by the time this function returns. 2470 */ 2471 struct buf * 2472 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno) 2473 { 2474 struct buf *bp; 2475 2476 ASSERT_BO_UNLOCKED(bo); 2477 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno); 2478 if (bp != NULL) 2479 return (bp); 2480 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno)); 2481 } 2482 2483 /* 2484 * Associate a buffer with a vnode. 2485 */ 2486 void 2487 bgetvp(struct vnode *vp, struct buf *bp) 2488 { 2489 struct bufobj *bo; 2490 2491 bo = &vp->v_bufobj; 2492 ASSERT_BO_WLOCKED(bo); 2493 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 2494 2495 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 2496 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 2497 ("bgetvp: bp already attached! %p", bp)); 2498 2499 vhold(vp); 2500 bp->b_vp = vp; 2501 bp->b_bufobj = bo; 2502 /* 2503 * Insert onto list for new vnode. 2504 */ 2505 buf_vlist_add(bp, bo, BX_VNCLEAN); 2506 } 2507 2508 /* 2509 * Disassociate a buffer from a vnode. 2510 */ 2511 void 2512 brelvp(struct buf *bp) 2513 { 2514 struct bufobj *bo; 2515 struct vnode *vp; 2516 2517 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2518 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 2519 2520 /* 2521 * Delete from old vnode list, if on one. 2522 */ 2523 vp = bp->b_vp; /* XXX */ 2524 bo = bp->b_bufobj; 2525 BO_LOCK(bo); 2526 buf_vlist_remove(bp); 2527 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2528 bo->bo_flag &= ~BO_ONWORKLST; 2529 mtx_lock(&sync_mtx); 2530 LIST_REMOVE(bo, bo_synclist); 2531 syncer_worklist_len--; 2532 mtx_unlock(&sync_mtx); 2533 } 2534 bp->b_vp = NULL; 2535 bp->b_bufobj = NULL; 2536 BO_UNLOCK(bo); 2537 vdrop(vp); 2538 } 2539 2540 /* 2541 * Add an item to the syncer work queue. 2542 */ 2543 static void 2544 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 2545 { 2546 int slot; 2547 2548 ASSERT_BO_WLOCKED(bo); 2549 2550 mtx_lock(&sync_mtx); 2551 if (bo->bo_flag & BO_ONWORKLST) 2552 LIST_REMOVE(bo, bo_synclist); 2553 else { 2554 bo->bo_flag |= BO_ONWORKLST; 2555 syncer_worklist_len++; 2556 } 2557 2558 if (delay > syncer_maxdelay - 2) 2559 delay = syncer_maxdelay - 2; 2560 slot = (syncer_delayno + delay) & syncer_mask; 2561 2562 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 2563 mtx_unlock(&sync_mtx); 2564 } 2565 2566 static int 2567 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 2568 { 2569 int error, len; 2570 2571 mtx_lock(&sync_mtx); 2572 len = syncer_worklist_len - sync_vnode_count; 2573 mtx_unlock(&sync_mtx); 2574 error = SYSCTL_OUT(req, &len, sizeof(len)); 2575 return (error); 2576 } 2577 2578 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, 2579 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0, 2580 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 2581 2582 static struct proc *updateproc; 2583 static void sched_sync(void); 2584 static struct kproc_desc up_kp = { 2585 "syncer", 2586 sched_sync, 2587 &updateproc 2588 }; 2589 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 2590 2591 static int 2592 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 2593 { 2594 struct vnode *vp; 2595 struct mount *mp; 2596 2597 *bo = LIST_FIRST(slp); 2598 if (*bo == NULL) 2599 return (0); 2600 vp = bo2vnode(*bo); 2601 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 2602 return (1); 2603 /* 2604 * We use vhold in case the vnode does not 2605 * successfully sync. vhold prevents the vnode from 2606 * going away when we unlock the sync_mtx so that 2607 * we can acquire the vnode interlock. 2608 */ 2609 vholdl(vp); 2610 mtx_unlock(&sync_mtx); 2611 VI_UNLOCK(vp); 2612 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2613 vdrop(vp); 2614 mtx_lock(&sync_mtx); 2615 return (*bo == LIST_FIRST(slp)); 2616 } 2617 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2618 (void) VOP_FSYNC(vp, MNT_LAZY, td); 2619 VOP_UNLOCK(vp); 2620 vn_finished_write(mp); 2621 BO_LOCK(*bo); 2622 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 2623 /* 2624 * Put us back on the worklist. The worklist 2625 * routine will remove us from our current 2626 * position and then add us back in at a later 2627 * position. 2628 */ 2629 vn_syncer_add_to_worklist(*bo, syncdelay); 2630 } 2631 BO_UNLOCK(*bo); 2632 vdrop(vp); 2633 mtx_lock(&sync_mtx); 2634 return (0); 2635 } 2636 2637 static int first_printf = 1; 2638 2639 /* 2640 * System filesystem synchronizer daemon. 2641 */ 2642 static void 2643 sched_sync(void) 2644 { 2645 struct synclist *next, *slp; 2646 struct bufobj *bo; 2647 long starttime; 2648 struct thread *td = curthread; 2649 int last_work_seen; 2650 int net_worklist_len; 2651 int syncer_final_iter; 2652 int error; 2653 2654 last_work_seen = 0; 2655 syncer_final_iter = 0; 2656 syncer_state = SYNCER_RUNNING; 2657 starttime = time_uptime; 2658 td->td_pflags |= TDP_NORUNNINGBUF; 2659 2660 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 2661 SHUTDOWN_PRI_LAST); 2662 2663 mtx_lock(&sync_mtx); 2664 for (;;) { 2665 if (syncer_state == SYNCER_FINAL_DELAY && 2666 syncer_final_iter == 0) { 2667 mtx_unlock(&sync_mtx); 2668 kproc_suspend_check(td->td_proc); 2669 mtx_lock(&sync_mtx); 2670 } 2671 net_worklist_len = syncer_worklist_len - sync_vnode_count; 2672 if (syncer_state != SYNCER_RUNNING && 2673 starttime != time_uptime) { 2674 if (first_printf) { 2675 printf("\nSyncing disks, vnodes remaining... "); 2676 first_printf = 0; 2677 } 2678 printf("%d ", net_worklist_len); 2679 } 2680 starttime = time_uptime; 2681 2682 /* 2683 * Push files whose dirty time has expired. Be careful 2684 * of interrupt race on slp queue. 2685 * 2686 * Skip over empty worklist slots when shutting down. 2687 */ 2688 do { 2689 slp = &syncer_workitem_pending[syncer_delayno]; 2690 syncer_delayno += 1; 2691 if (syncer_delayno == syncer_maxdelay) 2692 syncer_delayno = 0; 2693 next = &syncer_workitem_pending[syncer_delayno]; 2694 /* 2695 * If the worklist has wrapped since the 2696 * it was emptied of all but syncer vnodes, 2697 * switch to the FINAL_DELAY state and run 2698 * for one more second. 2699 */ 2700 if (syncer_state == SYNCER_SHUTTING_DOWN && 2701 net_worklist_len == 0 && 2702 last_work_seen == syncer_delayno) { 2703 syncer_state = SYNCER_FINAL_DELAY; 2704 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 2705 } 2706 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 2707 syncer_worklist_len > 0); 2708 2709 /* 2710 * Keep track of the last time there was anything 2711 * on the worklist other than syncer vnodes. 2712 * Return to the SHUTTING_DOWN state if any 2713 * new work appears. 2714 */ 2715 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 2716 last_work_seen = syncer_delayno; 2717 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 2718 syncer_state = SYNCER_SHUTTING_DOWN; 2719 while (!LIST_EMPTY(slp)) { 2720 error = sync_vnode(slp, &bo, td); 2721 if (error == 1) { 2722 LIST_REMOVE(bo, bo_synclist); 2723 LIST_INSERT_HEAD(next, bo, bo_synclist); 2724 continue; 2725 } 2726 2727 if (first_printf == 0) { 2728 /* 2729 * Drop the sync mutex, because some watchdog 2730 * drivers need to sleep while patting 2731 */ 2732 mtx_unlock(&sync_mtx); 2733 wdog_kern_pat(WD_LASTVAL); 2734 mtx_lock(&sync_mtx); 2735 } 2736 } 2737 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 2738 syncer_final_iter--; 2739 /* 2740 * The variable rushjob allows the kernel to speed up the 2741 * processing of the filesystem syncer process. A rushjob 2742 * value of N tells the filesystem syncer to process the next 2743 * N seconds worth of work on its queue ASAP. Currently rushjob 2744 * is used by the soft update code to speed up the filesystem 2745 * syncer process when the incore state is getting so far 2746 * ahead of the disk that the kernel memory pool is being 2747 * threatened with exhaustion. 2748 */ 2749 if (rushjob > 0) { 2750 rushjob -= 1; 2751 continue; 2752 } 2753 /* 2754 * Just sleep for a short period of time between 2755 * iterations when shutting down to allow some I/O 2756 * to happen. 2757 * 2758 * If it has taken us less than a second to process the 2759 * current work, then wait. Otherwise start right over 2760 * again. We can still lose time if any single round 2761 * takes more than two seconds, but it does not really 2762 * matter as we are just trying to generally pace the 2763 * filesystem activity. 2764 */ 2765 if (syncer_state != SYNCER_RUNNING || 2766 time_uptime == starttime) { 2767 thread_lock(td); 2768 sched_prio(td, PPAUSE); 2769 thread_unlock(td); 2770 } 2771 if (syncer_state != SYNCER_RUNNING) 2772 cv_timedwait(&sync_wakeup, &sync_mtx, 2773 hz / SYNCER_SHUTDOWN_SPEEDUP); 2774 else if (time_uptime == starttime) 2775 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 2776 } 2777 } 2778 2779 /* 2780 * Request the syncer daemon to speed up its work. 2781 * We never push it to speed up more than half of its 2782 * normal turn time, otherwise it could take over the cpu. 2783 */ 2784 int 2785 speedup_syncer(void) 2786 { 2787 int ret = 0; 2788 2789 mtx_lock(&sync_mtx); 2790 if (rushjob < syncdelay / 2) { 2791 rushjob += 1; 2792 stat_rush_requests += 1; 2793 ret = 1; 2794 } 2795 mtx_unlock(&sync_mtx); 2796 cv_broadcast(&sync_wakeup); 2797 return (ret); 2798 } 2799 2800 /* 2801 * Tell the syncer to speed up its work and run though its work 2802 * list several times, then tell it to shut down. 2803 */ 2804 static void 2805 syncer_shutdown(void *arg, int howto) 2806 { 2807 2808 if (howto & RB_NOSYNC) 2809 return; 2810 mtx_lock(&sync_mtx); 2811 syncer_state = SYNCER_SHUTTING_DOWN; 2812 rushjob = 0; 2813 mtx_unlock(&sync_mtx); 2814 cv_broadcast(&sync_wakeup); 2815 kproc_shutdown(arg, howto); 2816 } 2817 2818 void 2819 syncer_suspend(void) 2820 { 2821 2822 syncer_shutdown(updateproc, 0); 2823 } 2824 2825 void 2826 syncer_resume(void) 2827 { 2828 2829 mtx_lock(&sync_mtx); 2830 first_printf = 1; 2831 syncer_state = SYNCER_RUNNING; 2832 mtx_unlock(&sync_mtx); 2833 cv_broadcast(&sync_wakeup); 2834 kproc_resume(updateproc); 2835 } 2836 2837 /* 2838 * Move the buffer between the clean and dirty lists of its vnode. 2839 */ 2840 void 2841 reassignbuf(struct buf *bp) 2842 { 2843 struct vnode *vp; 2844 struct bufobj *bo; 2845 int delay; 2846 #ifdef INVARIANTS 2847 struct bufv *bv; 2848 #endif 2849 2850 vp = bp->b_vp; 2851 bo = bp->b_bufobj; 2852 2853 KASSERT((bp->b_flags & B_PAGING) == 0, 2854 ("%s: cannot reassign paging buffer %p", __func__, bp)); 2855 2856 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 2857 bp, bp->b_vp, bp->b_flags); 2858 2859 BO_LOCK(bo); 2860 buf_vlist_remove(bp); 2861 2862 /* 2863 * If dirty, put on list of dirty buffers; otherwise insert onto list 2864 * of clean buffers. 2865 */ 2866 if (bp->b_flags & B_DELWRI) { 2867 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 2868 switch (vp->v_type) { 2869 case VDIR: 2870 delay = dirdelay; 2871 break; 2872 case VCHR: 2873 delay = metadelay; 2874 break; 2875 default: 2876 delay = filedelay; 2877 } 2878 vn_syncer_add_to_worklist(bo, delay); 2879 } 2880 buf_vlist_add(bp, bo, BX_VNDIRTY); 2881 } else { 2882 buf_vlist_add(bp, bo, BX_VNCLEAN); 2883 2884 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2885 mtx_lock(&sync_mtx); 2886 LIST_REMOVE(bo, bo_synclist); 2887 syncer_worklist_len--; 2888 mtx_unlock(&sync_mtx); 2889 bo->bo_flag &= ~BO_ONWORKLST; 2890 } 2891 } 2892 #ifdef INVARIANTS 2893 bv = &bo->bo_clean; 2894 bp = TAILQ_FIRST(&bv->bv_hd); 2895 KASSERT(bp == NULL || bp->b_bufobj == bo, 2896 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2897 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2898 KASSERT(bp == NULL || bp->b_bufobj == bo, 2899 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2900 bv = &bo->bo_dirty; 2901 bp = TAILQ_FIRST(&bv->bv_hd); 2902 KASSERT(bp == NULL || bp->b_bufobj == bo, 2903 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2904 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2905 KASSERT(bp == NULL || bp->b_bufobj == bo, 2906 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2907 #endif 2908 BO_UNLOCK(bo); 2909 } 2910 2911 static void 2912 v_init_counters(struct vnode *vp) 2913 { 2914 2915 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, 2916 vp, ("%s called for an initialized vnode", __FUNCTION__)); 2917 ASSERT_VI_UNLOCKED(vp, __FUNCTION__); 2918 2919 refcount_init(&vp->v_holdcnt, 1); 2920 refcount_init(&vp->v_usecount, 1); 2921 } 2922 2923 /* 2924 * Grab a particular vnode from the free list, increment its 2925 * reference count and lock it. VIRF_DOOMED is set if the vnode 2926 * is being destroyed. Only callers who specify LK_RETRY will 2927 * see doomed vnodes. If inactive processing was delayed in 2928 * vput try to do it here. 2929 * 2930 * usecount is manipulated using atomics without holding any locks. 2931 * 2932 * holdcnt can be manipulated using atomics without holding any locks, 2933 * except when transitioning 1<->0, in which case the interlock is held. 2934 * 2935 * Consumers which don't guarantee liveness of the vnode can use SMR to 2936 * try to get a reference. Note this operation can fail since the vnode 2937 * may be awaiting getting freed by the time they get to it. 2938 */ 2939 enum vgetstate 2940 vget_prep_smr(struct vnode *vp) 2941 { 2942 enum vgetstate vs; 2943 2944 VFS_SMR_ASSERT_ENTERED(); 2945 2946 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 2947 vs = VGET_USECOUNT; 2948 } else { 2949 if (vhold_smr(vp)) 2950 vs = VGET_HOLDCNT; 2951 else 2952 vs = VGET_NONE; 2953 } 2954 return (vs); 2955 } 2956 2957 enum vgetstate 2958 vget_prep(struct vnode *vp) 2959 { 2960 enum vgetstate vs; 2961 2962 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 2963 vs = VGET_USECOUNT; 2964 } else { 2965 vhold(vp); 2966 vs = VGET_HOLDCNT; 2967 } 2968 return (vs); 2969 } 2970 2971 void 2972 vget_abort(struct vnode *vp, enum vgetstate vs) 2973 { 2974 2975 switch (vs) { 2976 case VGET_USECOUNT: 2977 vrele(vp); 2978 break; 2979 case VGET_HOLDCNT: 2980 vdrop(vp); 2981 break; 2982 default: 2983 __assert_unreachable(); 2984 } 2985 } 2986 2987 int 2988 vget(struct vnode *vp, int flags) 2989 { 2990 enum vgetstate vs; 2991 2992 vs = vget_prep(vp); 2993 return (vget_finish(vp, flags, vs)); 2994 } 2995 2996 int 2997 vget_finish(struct vnode *vp, int flags, enum vgetstate vs) 2998 { 2999 int error; 3000 3001 if ((flags & LK_INTERLOCK) != 0) 3002 ASSERT_VI_LOCKED(vp, __func__); 3003 else 3004 ASSERT_VI_UNLOCKED(vp, __func__); 3005 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3006 VNPASS(vp->v_holdcnt > 0, vp); 3007 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3008 3009 error = vn_lock(vp, flags); 3010 if (__predict_false(error != 0)) { 3011 vget_abort(vp, vs); 3012 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 3013 vp); 3014 return (error); 3015 } 3016 3017 vget_finish_ref(vp, vs); 3018 return (0); 3019 } 3020 3021 void 3022 vget_finish_ref(struct vnode *vp, enum vgetstate vs) 3023 { 3024 int old; 3025 3026 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3027 VNPASS(vp->v_holdcnt > 0, vp); 3028 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3029 3030 if (vs == VGET_USECOUNT) 3031 return; 3032 3033 /* 3034 * We hold the vnode. If the usecount is 0 it will be utilized to keep 3035 * the vnode around. Otherwise someone else lended their hold count and 3036 * we have to drop ours. 3037 */ 3038 old = atomic_fetchadd_int(&vp->v_usecount, 1); 3039 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old)); 3040 if (old != 0) { 3041 #ifdef INVARIANTS 3042 old = atomic_fetchadd_int(&vp->v_holdcnt, -1); 3043 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); 3044 #else 3045 refcount_release(&vp->v_holdcnt); 3046 #endif 3047 } 3048 } 3049 3050 void 3051 vref(struct vnode *vp) 3052 { 3053 enum vgetstate vs; 3054 3055 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3056 vs = vget_prep(vp); 3057 vget_finish_ref(vp, vs); 3058 } 3059 3060 void 3061 vrefact(struct vnode *vp) 3062 { 3063 3064 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3065 #ifdef INVARIANTS 3066 int old = atomic_fetchadd_int(&vp->v_usecount, 1); 3067 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old)); 3068 #else 3069 refcount_acquire(&vp->v_usecount); 3070 #endif 3071 } 3072 3073 void 3074 vlazy(struct vnode *vp) 3075 { 3076 struct mount *mp; 3077 3078 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__)); 3079 3080 if ((vp->v_mflag & VMP_LAZYLIST) != 0) 3081 return; 3082 /* 3083 * We may get here for inactive routines after the vnode got doomed. 3084 */ 3085 if (VN_IS_DOOMED(vp)) 3086 return; 3087 mp = vp->v_mount; 3088 mtx_lock(&mp->mnt_listmtx); 3089 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 3090 vp->v_mflag |= VMP_LAZYLIST; 3091 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3092 mp->mnt_lazyvnodelistsize++; 3093 } 3094 mtx_unlock(&mp->mnt_listmtx); 3095 } 3096 3097 static void 3098 vunlazy(struct vnode *vp) 3099 { 3100 struct mount *mp; 3101 3102 ASSERT_VI_LOCKED(vp, __func__); 3103 VNPASS(!VN_IS_DOOMED(vp), vp); 3104 3105 mp = vp->v_mount; 3106 mtx_lock(&mp->mnt_listmtx); 3107 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3108 /* 3109 * Don't remove the vnode from the lazy list if another thread 3110 * has increased the hold count. It may have re-enqueued the 3111 * vnode to the lazy list and is now responsible for its 3112 * removal. 3113 */ 3114 if (vp->v_holdcnt == 0) { 3115 vp->v_mflag &= ~VMP_LAZYLIST; 3116 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3117 mp->mnt_lazyvnodelistsize--; 3118 } 3119 mtx_unlock(&mp->mnt_listmtx); 3120 } 3121 3122 /* 3123 * This routine is only meant to be called from vgonel prior to dooming 3124 * the vnode. 3125 */ 3126 static void 3127 vunlazy_gone(struct vnode *vp) 3128 { 3129 struct mount *mp; 3130 3131 ASSERT_VOP_ELOCKED(vp, __func__); 3132 ASSERT_VI_LOCKED(vp, __func__); 3133 VNPASS(!VN_IS_DOOMED(vp), vp); 3134 3135 if (vp->v_mflag & VMP_LAZYLIST) { 3136 mp = vp->v_mount; 3137 mtx_lock(&mp->mnt_listmtx); 3138 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3139 vp->v_mflag &= ~VMP_LAZYLIST; 3140 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3141 mp->mnt_lazyvnodelistsize--; 3142 mtx_unlock(&mp->mnt_listmtx); 3143 } 3144 } 3145 3146 static void 3147 vdefer_inactive(struct vnode *vp) 3148 { 3149 3150 ASSERT_VI_LOCKED(vp, __func__); 3151 VNASSERT(vp->v_holdcnt > 0, vp, 3152 ("%s: vnode without hold count", __func__)); 3153 if (VN_IS_DOOMED(vp)) { 3154 vdropl(vp); 3155 return; 3156 } 3157 if (vp->v_iflag & VI_DEFINACT) { 3158 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); 3159 vdropl(vp); 3160 return; 3161 } 3162 if (vp->v_usecount > 0) { 3163 vp->v_iflag &= ~VI_OWEINACT; 3164 vdropl(vp); 3165 return; 3166 } 3167 vlazy(vp); 3168 vp->v_iflag |= VI_DEFINACT; 3169 VI_UNLOCK(vp); 3170 counter_u64_add(deferred_inact, 1); 3171 } 3172 3173 static void 3174 vdefer_inactive_unlocked(struct vnode *vp) 3175 { 3176 3177 VI_LOCK(vp); 3178 if ((vp->v_iflag & VI_OWEINACT) == 0) { 3179 vdropl(vp); 3180 return; 3181 } 3182 vdefer_inactive(vp); 3183 } 3184 3185 enum vput_op { VRELE, VPUT, VUNREF }; 3186 3187 /* 3188 * Handle ->v_usecount transitioning to 0. 3189 * 3190 * By releasing the last usecount we take ownership of the hold count which 3191 * provides liveness of the vnode, meaning we have to vdrop. 3192 * 3193 * For all vnodes we may need to perform inactive processing. It requires an 3194 * exclusive lock on the vnode, while it is legal to call here with only a 3195 * shared lock (or no locks). If locking the vnode in an expected manner fails, 3196 * inactive processing gets deferred to the syncer. 3197 * 3198 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend 3199 * on the lock being held all the way until VOP_INACTIVE. This in particular 3200 * happens with UFS which adds half-constructed vnodes to the hash, where they 3201 * can be found by other code. 3202 */ 3203 static void 3204 vput_final(struct vnode *vp, enum vput_op func) 3205 { 3206 int error; 3207 bool want_unlock; 3208 3209 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3210 VNPASS(vp->v_holdcnt > 0, vp); 3211 3212 VI_LOCK(vp); 3213 3214 /* 3215 * By the time we got here someone else might have transitioned 3216 * the count back to > 0. 3217 */ 3218 if (vp->v_usecount > 0) 3219 goto out; 3220 3221 /* 3222 * If the vnode is doomed vgone already performed inactive processing 3223 * (if needed). 3224 */ 3225 if (VN_IS_DOOMED(vp)) 3226 goto out; 3227 3228 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0)) 3229 goto out; 3230 3231 if (vp->v_iflag & VI_DOINGINACT) 3232 goto out; 3233 3234 /* 3235 * Locking operations here will drop the interlock and possibly the 3236 * vnode lock, opening a window where the vnode can get doomed all the 3237 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to 3238 * perform inactive. 3239 */ 3240 vp->v_iflag |= VI_OWEINACT; 3241 want_unlock = false; 3242 error = 0; 3243 switch (func) { 3244 case VRELE: 3245 switch (VOP_ISLOCKED(vp)) { 3246 case LK_EXCLUSIVE: 3247 break; 3248 case LK_EXCLOTHER: 3249 case 0: 3250 want_unlock = true; 3251 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 3252 VI_LOCK(vp); 3253 break; 3254 default: 3255 /* 3256 * The lock has at least one sharer, but we have no way 3257 * to conclude whether this is us. Play it safe and 3258 * defer processing. 3259 */ 3260 error = EAGAIN; 3261 break; 3262 } 3263 break; 3264 case VPUT: 3265 want_unlock = true; 3266 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3267 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 3268 LK_NOWAIT); 3269 VI_LOCK(vp); 3270 } 3271 break; 3272 case VUNREF: 3273 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3274 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 3275 VI_LOCK(vp); 3276 } 3277 break; 3278 } 3279 if (error == 0) { 3280 if (func == VUNREF) { 3281 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp, 3282 ("recursive vunref")); 3283 vp->v_vflag |= VV_UNREF; 3284 } 3285 for (;;) { 3286 error = vinactive(vp); 3287 if (want_unlock) 3288 VOP_UNLOCK(vp); 3289 if (error != ERELOOKUP || !want_unlock) 3290 break; 3291 VOP_LOCK(vp, LK_EXCLUSIVE); 3292 } 3293 if (func == VUNREF) 3294 vp->v_vflag &= ~VV_UNREF; 3295 vdropl(vp); 3296 } else { 3297 vdefer_inactive(vp); 3298 } 3299 return; 3300 out: 3301 if (func == VPUT) 3302 VOP_UNLOCK(vp); 3303 vdropl(vp); 3304 } 3305 3306 /* 3307 * Decrement ->v_usecount for a vnode. 3308 * 3309 * Releasing the last use count requires additional processing, see vput_final 3310 * above for details. 3311 * 3312 * Comment above each variant denotes lock state on entry and exit. 3313 */ 3314 3315 /* 3316 * in: any 3317 * out: same as passed in 3318 */ 3319 void 3320 vrele(struct vnode *vp) 3321 { 3322 3323 ASSERT_VI_UNLOCKED(vp, __func__); 3324 if (!refcount_release(&vp->v_usecount)) 3325 return; 3326 vput_final(vp, VRELE); 3327 } 3328 3329 /* 3330 * in: locked 3331 * out: unlocked 3332 */ 3333 void 3334 vput(struct vnode *vp) 3335 { 3336 3337 ASSERT_VOP_LOCKED(vp, __func__); 3338 ASSERT_VI_UNLOCKED(vp, __func__); 3339 if (!refcount_release(&vp->v_usecount)) { 3340 VOP_UNLOCK(vp); 3341 return; 3342 } 3343 vput_final(vp, VPUT); 3344 } 3345 3346 /* 3347 * in: locked 3348 * out: locked 3349 */ 3350 void 3351 vunref(struct vnode *vp) 3352 { 3353 3354 ASSERT_VOP_LOCKED(vp, __func__); 3355 ASSERT_VI_UNLOCKED(vp, __func__); 3356 if (!refcount_release(&vp->v_usecount)) 3357 return; 3358 vput_final(vp, VUNREF); 3359 } 3360 3361 void 3362 vhold(struct vnode *vp) 3363 { 3364 int old; 3365 3366 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3367 old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3368 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3369 ("%s: wrong hold count %d", __func__, old)); 3370 if (old == 0) 3371 vfs_freevnodes_dec(); 3372 } 3373 3374 void 3375 vholdnz(struct vnode *vp) 3376 { 3377 3378 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3379 #ifdef INVARIANTS 3380 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3381 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3382 ("%s: wrong hold count %d", __func__, old)); 3383 #else 3384 atomic_add_int(&vp->v_holdcnt, 1); 3385 #endif 3386 } 3387 3388 /* 3389 * Grab a hold count unless the vnode is freed. 3390 * 3391 * Only use this routine if vfs smr is the only protection you have against 3392 * freeing the vnode. 3393 * 3394 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag 3395 * is not set. After the flag is set the vnode becomes immutable to anyone but 3396 * the thread which managed to set the flag. 3397 * 3398 * It may be tempting to replace the loop with: 3399 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3400 * if (count & VHOLD_NO_SMR) { 3401 * backpedal and error out; 3402 * } 3403 * 3404 * However, while this is more performant, it hinders debugging by eliminating 3405 * the previously mentioned invariant. 3406 */ 3407 bool 3408 vhold_smr(struct vnode *vp) 3409 { 3410 int count; 3411 3412 VFS_SMR_ASSERT_ENTERED(); 3413 3414 count = atomic_load_int(&vp->v_holdcnt); 3415 for (;;) { 3416 if (count & VHOLD_NO_SMR) { 3417 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3418 ("non-zero hold count with flags %d\n", count)); 3419 return (false); 3420 } 3421 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3422 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3423 if (count == 0) 3424 vfs_freevnodes_dec(); 3425 return (true); 3426 } 3427 } 3428 } 3429 3430 /* 3431 * Hold a free vnode for recycling. 3432 * 3433 * Note: vnode_init references this comment. 3434 * 3435 * Attempts to recycle only need the global vnode list lock and have no use for 3436 * SMR. 3437 * 3438 * However, vnodes get inserted into the global list before they get fully 3439 * initialized and stay there until UMA decides to free the memory. This in 3440 * particular means the target can be found before it becomes usable and after 3441 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to 3442 * VHOLD_NO_SMR. 3443 * 3444 * Note: the vnode may gain more references after we transition the count 0->1. 3445 */ 3446 static bool 3447 vhold_recycle_free(struct vnode *vp) 3448 { 3449 int count; 3450 3451 mtx_assert(&vnode_list_mtx, MA_OWNED); 3452 3453 count = atomic_load_int(&vp->v_holdcnt); 3454 for (;;) { 3455 if (count & VHOLD_NO_SMR) { 3456 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3457 ("non-zero hold count with flags %d\n", count)); 3458 return (false); 3459 } 3460 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3461 if (count > 0) { 3462 return (false); 3463 } 3464 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3465 vfs_freevnodes_dec(); 3466 return (true); 3467 } 3468 } 3469 } 3470 3471 static void __noinline 3472 vdbatch_process(struct vdbatch *vd) 3473 { 3474 struct vnode *vp; 3475 int i; 3476 3477 mtx_assert(&vd->lock, MA_OWNED); 3478 MPASS(curthread->td_pinned > 0); 3479 MPASS(vd->index == VDBATCH_SIZE); 3480 3481 mtx_lock(&vnode_list_mtx); 3482 critical_enter(); 3483 freevnodes += vd->freevnodes; 3484 for (i = 0; i < VDBATCH_SIZE; i++) { 3485 vp = vd->tab[i]; 3486 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 3487 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist); 3488 MPASS(vp->v_dbatchcpu != NOCPU); 3489 vp->v_dbatchcpu = NOCPU; 3490 } 3491 mtx_unlock(&vnode_list_mtx); 3492 vd->freevnodes = 0; 3493 bzero(vd->tab, sizeof(vd->tab)); 3494 vd->index = 0; 3495 critical_exit(); 3496 } 3497 3498 static void 3499 vdbatch_enqueue(struct vnode *vp) 3500 { 3501 struct vdbatch *vd; 3502 3503 ASSERT_VI_LOCKED(vp, __func__); 3504 VNASSERT(!VN_IS_DOOMED(vp), vp, 3505 ("%s: deferring requeue of a doomed vnode", __func__)); 3506 3507 if (vp->v_dbatchcpu != NOCPU) { 3508 VI_UNLOCK(vp); 3509 return; 3510 } 3511 3512 sched_pin(); 3513 vd = DPCPU_PTR(vd); 3514 mtx_lock(&vd->lock); 3515 MPASS(vd->index < VDBATCH_SIZE); 3516 MPASS(vd->tab[vd->index] == NULL); 3517 /* 3518 * A hack: we depend on being pinned so that we know what to put in 3519 * ->v_dbatchcpu. 3520 */ 3521 vp->v_dbatchcpu = curcpu; 3522 vd->tab[vd->index] = vp; 3523 vd->index++; 3524 VI_UNLOCK(vp); 3525 if (vd->index == VDBATCH_SIZE) 3526 vdbatch_process(vd); 3527 mtx_unlock(&vd->lock); 3528 sched_unpin(); 3529 } 3530 3531 /* 3532 * This routine must only be called for vnodes which are about to be 3533 * deallocated. Supporting dequeue for arbitrary vndoes would require 3534 * validating that the locked batch matches. 3535 */ 3536 static void 3537 vdbatch_dequeue(struct vnode *vp) 3538 { 3539 struct vdbatch *vd; 3540 int i; 3541 short cpu; 3542 3543 VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp, 3544 ("%s: called for a used vnode\n", __func__)); 3545 3546 cpu = vp->v_dbatchcpu; 3547 if (cpu == NOCPU) 3548 return; 3549 3550 vd = DPCPU_ID_PTR(cpu, vd); 3551 mtx_lock(&vd->lock); 3552 for (i = 0; i < vd->index; i++) { 3553 if (vd->tab[i] != vp) 3554 continue; 3555 vp->v_dbatchcpu = NOCPU; 3556 vd->index--; 3557 vd->tab[i] = vd->tab[vd->index]; 3558 vd->tab[vd->index] = NULL; 3559 break; 3560 } 3561 mtx_unlock(&vd->lock); 3562 /* 3563 * Either we dequeued the vnode above or the target CPU beat us to it. 3564 */ 3565 MPASS(vp->v_dbatchcpu == NOCPU); 3566 } 3567 3568 /* 3569 * Drop the hold count of the vnode. If this is the last reference to 3570 * the vnode we place it on the free list unless it has been vgone'd 3571 * (marked VIRF_DOOMED) in which case we will free it. 3572 * 3573 * Because the vnode vm object keeps a hold reference on the vnode if 3574 * there is at least one resident non-cached page, the vnode cannot 3575 * leave the active list without the page cleanup done. 3576 */ 3577 static void __noinline 3578 vdropl_final(struct vnode *vp) 3579 { 3580 3581 ASSERT_VI_LOCKED(vp, __func__); 3582 VNPASS(VN_IS_DOOMED(vp), vp); 3583 /* 3584 * Set the VHOLD_NO_SMR flag. 3585 * 3586 * We may be racing against vhold_smr. If they win we can just pretend 3587 * we never got this far, they will vdrop later. 3588 */ 3589 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) { 3590 vfs_freevnodes_inc(); 3591 VI_UNLOCK(vp); 3592 /* 3593 * We lost the aforementioned race. Any subsequent access is 3594 * invalid as they might have managed to vdropl on their own. 3595 */ 3596 return; 3597 } 3598 /* 3599 * Don't bump freevnodes as this one is going away. 3600 */ 3601 freevnode(vp); 3602 } 3603 3604 void 3605 vdrop(struct vnode *vp) 3606 { 3607 3608 ASSERT_VI_UNLOCKED(vp, __func__); 3609 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3610 if (refcount_release_if_not_last(&vp->v_holdcnt)) 3611 return; 3612 VI_LOCK(vp); 3613 vdropl(vp); 3614 } 3615 3616 void 3617 vdropl(struct vnode *vp) 3618 { 3619 3620 ASSERT_VI_LOCKED(vp, __func__); 3621 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3622 if (!refcount_release(&vp->v_holdcnt)) { 3623 VI_UNLOCK(vp); 3624 return; 3625 } 3626 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp); 3627 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 3628 if (VN_IS_DOOMED(vp)) { 3629 vdropl_final(vp); 3630 return; 3631 } 3632 3633 vfs_freevnodes_inc(); 3634 if (vp->v_mflag & VMP_LAZYLIST) { 3635 vunlazy(vp); 3636 } 3637 /* 3638 * Also unlocks the interlock. We can't assert on it as we 3639 * released our hold and by now the vnode might have been 3640 * freed. 3641 */ 3642 vdbatch_enqueue(vp); 3643 } 3644 3645 /* 3646 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 3647 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 3648 */ 3649 static int 3650 vinactivef(struct vnode *vp) 3651 { 3652 struct vm_object *obj; 3653 int error; 3654 3655 ASSERT_VOP_ELOCKED(vp, "vinactive"); 3656 ASSERT_VI_LOCKED(vp, "vinactive"); 3657 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp, 3658 ("vinactive: recursed on VI_DOINGINACT")); 3659 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3660 vp->v_iflag |= VI_DOINGINACT; 3661 vp->v_iflag &= ~VI_OWEINACT; 3662 VI_UNLOCK(vp); 3663 /* 3664 * Before moving off the active list, we must be sure that any 3665 * modified pages are converted into the vnode's dirty 3666 * buffers, since these will no longer be checked once the 3667 * vnode is on the inactive list. 3668 * 3669 * The write-out of the dirty pages is asynchronous. At the 3670 * point that VOP_INACTIVE() is called, there could still be 3671 * pending I/O and dirty pages in the object. 3672 */ 3673 if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 3674 vm_object_mightbedirty(obj)) { 3675 VM_OBJECT_WLOCK(obj); 3676 vm_object_page_clean(obj, 0, 0, 0); 3677 VM_OBJECT_WUNLOCK(obj); 3678 } 3679 error = VOP_INACTIVE(vp); 3680 VI_LOCK(vp); 3681 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp, 3682 ("vinactive: lost VI_DOINGINACT")); 3683 vp->v_iflag &= ~VI_DOINGINACT; 3684 return (error); 3685 } 3686 3687 int 3688 vinactive(struct vnode *vp) 3689 { 3690 3691 ASSERT_VOP_ELOCKED(vp, "vinactive"); 3692 ASSERT_VI_LOCKED(vp, "vinactive"); 3693 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3694 3695 if ((vp->v_iflag & VI_OWEINACT) == 0) 3696 return (0); 3697 if (vp->v_iflag & VI_DOINGINACT) 3698 return (0); 3699 if (vp->v_usecount > 0) { 3700 vp->v_iflag &= ~VI_OWEINACT; 3701 return (0); 3702 } 3703 return (vinactivef(vp)); 3704 } 3705 3706 /* 3707 * Remove any vnodes in the vnode table belonging to mount point mp. 3708 * 3709 * If FORCECLOSE is not specified, there should not be any active ones, 3710 * return error if any are found (nb: this is a user error, not a 3711 * system error). If FORCECLOSE is specified, detach any active vnodes 3712 * that are found. 3713 * 3714 * If WRITECLOSE is set, only flush out regular file vnodes open for 3715 * writing. 3716 * 3717 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 3718 * 3719 * `rootrefs' specifies the base reference count for the root vnode 3720 * of this filesystem. The root vnode is considered busy if its 3721 * v_usecount exceeds this value. On a successful return, vflush(, td) 3722 * will call vrele() on the root vnode exactly rootrefs times. 3723 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 3724 * be zero. 3725 */ 3726 #ifdef DIAGNOSTIC 3727 static int busyprt = 0; /* print out busy vnodes */ 3728 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 3729 #endif 3730 3731 int 3732 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 3733 { 3734 struct vnode *vp, *mvp, *rootvp = NULL; 3735 struct vattr vattr; 3736 int busy = 0, error; 3737 3738 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 3739 rootrefs, flags); 3740 if (rootrefs > 0) { 3741 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 3742 ("vflush: bad args")); 3743 /* 3744 * Get the filesystem root vnode. We can vput() it 3745 * immediately, since with rootrefs > 0, it won't go away. 3746 */ 3747 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 3748 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 3749 __func__, error); 3750 return (error); 3751 } 3752 vput(rootvp); 3753 } 3754 loop: 3755 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 3756 vholdl(vp); 3757 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 3758 if (error) { 3759 vdrop(vp); 3760 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3761 goto loop; 3762 } 3763 /* 3764 * Skip over a vnodes marked VV_SYSTEM. 3765 */ 3766 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 3767 VOP_UNLOCK(vp); 3768 vdrop(vp); 3769 continue; 3770 } 3771 /* 3772 * If WRITECLOSE is set, flush out unlinked but still open 3773 * files (even if open only for reading) and regular file 3774 * vnodes open for writing. 3775 */ 3776 if (flags & WRITECLOSE) { 3777 if (vp->v_object != NULL) { 3778 VM_OBJECT_WLOCK(vp->v_object); 3779 vm_object_page_clean(vp->v_object, 0, 0, 0); 3780 VM_OBJECT_WUNLOCK(vp->v_object); 3781 } 3782 do { 3783 error = VOP_FSYNC(vp, MNT_WAIT, td); 3784 } while (error == ERELOOKUP); 3785 if (error != 0) { 3786 VOP_UNLOCK(vp); 3787 vdrop(vp); 3788 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3789 return (error); 3790 } 3791 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 3792 VI_LOCK(vp); 3793 3794 if ((vp->v_type == VNON || 3795 (error == 0 && vattr.va_nlink > 0)) && 3796 (vp->v_writecount <= 0 || vp->v_type != VREG)) { 3797 VOP_UNLOCK(vp); 3798 vdropl(vp); 3799 continue; 3800 } 3801 } else 3802 VI_LOCK(vp); 3803 /* 3804 * With v_usecount == 0, all we need to do is clear out the 3805 * vnode data structures and we are done. 3806 * 3807 * If FORCECLOSE is set, forcibly close the vnode. 3808 */ 3809 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 3810 vgonel(vp); 3811 } else { 3812 busy++; 3813 #ifdef DIAGNOSTIC 3814 if (busyprt) 3815 vn_printf(vp, "vflush: busy vnode "); 3816 #endif 3817 } 3818 VOP_UNLOCK(vp); 3819 vdropl(vp); 3820 } 3821 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 3822 /* 3823 * If just the root vnode is busy, and if its refcount 3824 * is equal to `rootrefs', then go ahead and kill it. 3825 */ 3826 VI_LOCK(rootvp); 3827 KASSERT(busy > 0, ("vflush: not busy")); 3828 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 3829 ("vflush: usecount %d < rootrefs %d", 3830 rootvp->v_usecount, rootrefs)); 3831 if (busy == 1 && rootvp->v_usecount == rootrefs) { 3832 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 3833 vgone(rootvp); 3834 VOP_UNLOCK(rootvp); 3835 busy = 0; 3836 } else 3837 VI_UNLOCK(rootvp); 3838 } 3839 if (busy) { 3840 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 3841 busy); 3842 return (EBUSY); 3843 } 3844 for (; rootrefs > 0; rootrefs--) 3845 vrele(rootvp); 3846 return (0); 3847 } 3848 3849 /* 3850 * Recycle an unused vnode to the front of the free list. 3851 */ 3852 int 3853 vrecycle(struct vnode *vp) 3854 { 3855 int recycled; 3856 3857 VI_LOCK(vp); 3858 recycled = vrecyclel(vp); 3859 VI_UNLOCK(vp); 3860 return (recycled); 3861 } 3862 3863 /* 3864 * vrecycle, with the vp interlock held. 3865 */ 3866 int 3867 vrecyclel(struct vnode *vp) 3868 { 3869 int recycled; 3870 3871 ASSERT_VOP_ELOCKED(vp, __func__); 3872 ASSERT_VI_LOCKED(vp, __func__); 3873 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3874 recycled = 0; 3875 if (vp->v_usecount == 0) { 3876 recycled = 1; 3877 vgonel(vp); 3878 } 3879 return (recycled); 3880 } 3881 3882 /* 3883 * Eliminate all activity associated with a vnode 3884 * in preparation for reuse. 3885 */ 3886 void 3887 vgone(struct vnode *vp) 3888 { 3889 VI_LOCK(vp); 3890 vgonel(vp); 3891 VI_UNLOCK(vp); 3892 } 3893 3894 static void 3895 notify_lowervp_vfs_dummy(struct mount *mp __unused, 3896 struct vnode *lowervp __unused) 3897 { 3898 } 3899 3900 /* 3901 * Notify upper mounts about reclaimed or unlinked vnode. 3902 */ 3903 void 3904 vfs_notify_upper(struct vnode *vp, int event) 3905 { 3906 static struct vfsops vgonel_vfsops = { 3907 .vfs_reclaim_lowervp = notify_lowervp_vfs_dummy, 3908 .vfs_unlink_lowervp = notify_lowervp_vfs_dummy, 3909 }; 3910 struct mount *mp, *ump, *mmp; 3911 3912 mp = vp->v_mount; 3913 if (mp == NULL) 3914 return; 3915 if (TAILQ_EMPTY(&mp->mnt_uppers)) 3916 return; 3917 3918 mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO); 3919 mmp->mnt_op = &vgonel_vfsops; 3920 mmp->mnt_kern_flag |= MNTK_MARKER; 3921 MNT_ILOCK(mp); 3922 mp->mnt_kern_flag |= MNTK_VGONE_UPPER; 3923 for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) { 3924 if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) { 3925 ump = TAILQ_NEXT(ump, mnt_upper_link); 3926 continue; 3927 } 3928 TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link); 3929 MNT_IUNLOCK(mp); 3930 switch (event) { 3931 case VFS_NOTIFY_UPPER_RECLAIM: 3932 VFS_RECLAIM_LOWERVP(ump, vp); 3933 break; 3934 case VFS_NOTIFY_UPPER_UNLINK: 3935 VFS_UNLINK_LOWERVP(ump, vp); 3936 break; 3937 default: 3938 KASSERT(0, ("invalid event %d", event)); 3939 break; 3940 } 3941 MNT_ILOCK(mp); 3942 ump = TAILQ_NEXT(mmp, mnt_upper_link); 3943 TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link); 3944 } 3945 free(mmp, M_TEMP); 3946 mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER; 3947 if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) { 3948 mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER; 3949 wakeup(&mp->mnt_uppers); 3950 } 3951 MNT_IUNLOCK(mp); 3952 } 3953 3954 /* 3955 * vgone, with the vp interlock held. 3956 */ 3957 static void 3958 vgonel(struct vnode *vp) 3959 { 3960 struct thread *td; 3961 struct mount *mp; 3962 vm_object_t object; 3963 bool active, doinginact, oweinact; 3964 3965 ASSERT_VOP_ELOCKED(vp, "vgonel"); 3966 ASSERT_VI_LOCKED(vp, "vgonel"); 3967 VNASSERT(vp->v_holdcnt, vp, 3968 ("vgonel: vp %p has no reference.", vp)); 3969 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3970 td = curthread; 3971 3972 /* 3973 * Don't vgonel if we're already doomed. 3974 */ 3975 if (VN_IS_DOOMED(vp)) 3976 return; 3977 /* 3978 * Paired with freevnode. 3979 */ 3980 vn_seqc_write_begin_locked(vp); 3981 vunlazy_gone(vp); 3982 vn_irflag_set_locked(vp, VIRF_DOOMED); 3983 3984 /* 3985 * Check to see if the vnode is in use. If so, we have to 3986 * call VOP_CLOSE() and VOP_INACTIVE(). 3987 * 3988 * It could be that VOP_INACTIVE() requested reclamation, in 3989 * which case we should avoid recursion, so check 3990 * VI_DOINGINACT. This is not precise but good enough. 3991 */ 3992 active = vp->v_usecount > 0; 3993 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 3994 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0; 3995 3996 /* 3997 * If we need to do inactive VI_OWEINACT will be set. 3998 */ 3999 if (vp->v_iflag & VI_DEFINACT) { 4000 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); 4001 vp->v_iflag &= ~VI_DEFINACT; 4002 vdropl(vp); 4003 } else { 4004 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count")); 4005 VI_UNLOCK(vp); 4006 } 4007 cache_purge_vgone(vp); 4008 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 4009 4010 /* 4011 * If purging an active vnode, it must be closed and 4012 * deactivated before being reclaimed. 4013 */ 4014 if (active) 4015 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 4016 if (!doinginact) { 4017 do { 4018 if (oweinact || active) { 4019 VI_LOCK(vp); 4020 vinactivef(vp); 4021 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4022 VI_UNLOCK(vp); 4023 } 4024 } while (oweinact); 4025 } 4026 if (vp->v_type == VSOCK) 4027 vfs_unp_reclaim(vp); 4028 4029 /* 4030 * Clean out any buffers associated with the vnode. 4031 * If the flush fails, just toss the buffers. 4032 */ 4033 mp = NULL; 4034 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 4035 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 4036 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 4037 while (vinvalbuf(vp, 0, 0, 0) != 0) 4038 ; 4039 } 4040 4041 BO_LOCK(&vp->v_bufobj); 4042 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 4043 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 4044 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 4045 vp->v_bufobj.bo_clean.bv_cnt == 0, 4046 ("vp %p bufobj not invalidated", vp)); 4047 4048 /* 4049 * For VMIO bufobj, BO_DEAD is set later, or in 4050 * vm_object_terminate() after the object's page queue is 4051 * flushed. 4052 */ 4053 object = vp->v_bufobj.bo_object; 4054 if (object == NULL) 4055 vp->v_bufobj.bo_flag |= BO_DEAD; 4056 BO_UNLOCK(&vp->v_bufobj); 4057 4058 /* 4059 * Handle the VM part. Tmpfs handles v_object on its own (the 4060 * OBJT_VNODE check). Nullfs or other bypassing filesystems 4061 * should not touch the object borrowed from the lower vnode 4062 * (the handle check). 4063 */ 4064 if (object != NULL && object->type == OBJT_VNODE && 4065 object->handle == vp) 4066 vnode_destroy_vobject(vp); 4067 4068 /* 4069 * Reclaim the vnode. 4070 */ 4071 if (VOP_RECLAIM(vp)) 4072 panic("vgone: cannot reclaim"); 4073 if (mp != NULL) 4074 vn_finished_secondary_write(mp); 4075 VNASSERT(vp->v_object == NULL, vp, 4076 ("vop_reclaim left v_object vp=%p", vp)); 4077 /* 4078 * Clear the advisory locks and wake up waiting threads. 4079 */ 4080 (void)VOP_ADVLOCKPURGE(vp); 4081 vp->v_lockf = NULL; 4082 /* 4083 * Delete from old mount point vnode list. 4084 */ 4085 delmntque(vp); 4086 /* 4087 * Done with purge, reset to the standard lock and invalidate 4088 * the vnode. 4089 */ 4090 VI_LOCK(vp); 4091 vp->v_vnlock = &vp->v_lock; 4092 vp->v_op = &dead_vnodeops; 4093 vp->v_type = VBAD; 4094 } 4095 4096 /* 4097 * Print out a description of a vnode. 4098 */ 4099 static const char * const typename[] = 4100 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", 4101 "VMARKER"}; 4102 4103 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0, 4104 "new hold count flag not added to vn_printf"); 4105 4106 void 4107 vn_printf(struct vnode *vp, const char *fmt, ...) 4108 { 4109 va_list ap; 4110 char buf[256], buf2[16]; 4111 u_long flags; 4112 u_int holdcnt; 4113 short irflag; 4114 4115 va_start(ap, fmt); 4116 vprintf(fmt, ap); 4117 va_end(ap); 4118 printf("%p: ", (void *)vp); 4119 printf("type %s\n", typename[vp->v_type]); 4120 holdcnt = atomic_load_int(&vp->v_holdcnt); 4121 printf(" usecount %d, writecount %d, refcount %d seqc users %d", 4122 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS, 4123 vp->v_seqc_users); 4124 switch (vp->v_type) { 4125 case VDIR: 4126 printf(" mountedhere %p\n", vp->v_mountedhere); 4127 break; 4128 case VCHR: 4129 printf(" rdev %p\n", vp->v_rdev); 4130 break; 4131 case VSOCK: 4132 printf(" socket %p\n", vp->v_unpcb); 4133 break; 4134 case VFIFO: 4135 printf(" fifoinfo %p\n", vp->v_fifoinfo); 4136 break; 4137 default: 4138 printf("\n"); 4139 break; 4140 } 4141 buf[0] = '\0'; 4142 buf[1] = '\0'; 4143 if (holdcnt & VHOLD_NO_SMR) 4144 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf)); 4145 printf(" hold count flags (%s)\n", buf + 1); 4146 4147 buf[0] = '\0'; 4148 buf[1] = '\0'; 4149 irflag = vn_irflag_read(vp); 4150 if (irflag & VIRF_DOOMED) 4151 strlcat(buf, "|VIRF_DOOMED", sizeof(buf)); 4152 if (irflag & VIRF_PGREAD) 4153 strlcat(buf, "|VIRF_PGREAD", sizeof(buf)); 4154 if (irflag & VIRF_MOUNTPOINT) 4155 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf)); 4156 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT); 4157 if (flags != 0) { 4158 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags); 4159 strlcat(buf, buf2, sizeof(buf)); 4160 } 4161 if (vp->v_vflag & VV_ROOT) 4162 strlcat(buf, "|VV_ROOT", sizeof(buf)); 4163 if (vp->v_vflag & VV_ISTTY) 4164 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 4165 if (vp->v_vflag & VV_NOSYNC) 4166 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 4167 if (vp->v_vflag & VV_ETERNALDEV) 4168 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 4169 if (vp->v_vflag & VV_CACHEDLABEL) 4170 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 4171 if (vp->v_vflag & VV_VMSIZEVNLOCK) 4172 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf)); 4173 if (vp->v_vflag & VV_COPYONWRITE) 4174 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 4175 if (vp->v_vflag & VV_SYSTEM) 4176 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 4177 if (vp->v_vflag & VV_PROCDEP) 4178 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 4179 if (vp->v_vflag & VV_NOKNOTE) 4180 strlcat(buf, "|VV_NOKNOTE", sizeof(buf)); 4181 if (vp->v_vflag & VV_DELETED) 4182 strlcat(buf, "|VV_DELETED", sizeof(buf)); 4183 if (vp->v_vflag & VV_MD) 4184 strlcat(buf, "|VV_MD", sizeof(buf)); 4185 if (vp->v_vflag & VV_FORCEINSMQ) 4186 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 4187 if (vp->v_vflag & VV_READLINK) 4188 strlcat(buf, "|VV_READLINK", sizeof(buf)); 4189 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 4190 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM | 4191 VV_PROCDEP | VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ | 4192 VV_READLINK); 4193 if (flags != 0) { 4194 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 4195 strlcat(buf, buf2, sizeof(buf)); 4196 } 4197 if (vp->v_iflag & VI_TEXT_REF) 4198 strlcat(buf, "|VI_TEXT_REF", sizeof(buf)); 4199 if (vp->v_iflag & VI_MOUNT) 4200 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 4201 if (vp->v_iflag & VI_DOINGINACT) 4202 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 4203 if (vp->v_iflag & VI_OWEINACT) 4204 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 4205 if (vp->v_iflag & VI_DEFINACT) 4206 strlcat(buf, "|VI_DEFINACT", sizeof(buf)); 4207 if (vp->v_iflag & VI_FOPENING) 4208 strlcat(buf, "|VI_FOPENING", sizeof(buf)); 4209 flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT | 4210 VI_OWEINACT | VI_DEFINACT | VI_FOPENING); 4211 if (flags != 0) { 4212 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 4213 strlcat(buf, buf2, sizeof(buf)); 4214 } 4215 if (vp->v_mflag & VMP_LAZYLIST) 4216 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf)); 4217 flags = vp->v_mflag & ~(VMP_LAZYLIST); 4218 if (flags != 0) { 4219 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags); 4220 strlcat(buf, buf2, sizeof(buf)); 4221 } 4222 printf(" flags (%s)", buf + 1); 4223 if (mtx_owned(VI_MTX(vp))) 4224 printf(" VI_LOCKed"); 4225 printf("\n"); 4226 if (vp->v_object != NULL) 4227 printf(" v_object %p ref %d pages %d " 4228 "cleanbuf %d dirtybuf %d\n", 4229 vp->v_object, vp->v_object->ref_count, 4230 vp->v_object->resident_page_count, 4231 vp->v_bufobj.bo_clean.bv_cnt, 4232 vp->v_bufobj.bo_dirty.bv_cnt); 4233 printf(" "); 4234 lockmgr_printinfo(vp->v_vnlock); 4235 if (vp->v_data != NULL) 4236 VOP_PRINT(vp); 4237 } 4238 4239 #ifdef DDB 4240 /* 4241 * List all of the locked vnodes in the system. 4242 * Called when debugging the kernel. 4243 */ 4244 DB_SHOW_COMMAND(lockedvnods, lockedvnodes) 4245 { 4246 struct mount *mp; 4247 struct vnode *vp; 4248 4249 /* 4250 * Note: because this is DDB, we can't obey the locking semantics 4251 * for these structures, which means we could catch an inconsistent 4252 * state and dereference a nasty pointer. Not much to be done 4253 * about that. 4254 */ 4255 db_printf("Locked vnodes\n"); 4256 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4257 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4258 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 4259 vn_printf(vp, "vnode "); 4260 } 4261 } 4262 } 4263 4264 /* 4265 * Show details about the given vnode. 4266 */ 4267 DB_SHOW_COMMAND(vnode, db_show_vnode) 4268 { 4269 struct vnode *vp; 4270 4271 if (!have_addr) 4272 return; 4273 vp = (struct vnode *)addr; 4274 vn_printf(vp, "vnode "); 4275 } 4276 4277 /* 4278 * Show details about the given mount point. 4279 */ 4280 DB_SHOW_COMMAND(mount, db_show_mount) 4281 { 4282 struct mount *mp; 4283 struct vfsopt *opt; 4284 struct statfs *sp; 4285 struct vnode *vp; 4286 char buf[512]; 4287 uint64_t mflags; 4288 u_int flags; 4289 4290 if (!have_addr) { 4291 /* No address given, print short info about all mount points. */ 4292 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4293 db_printf("%p %s on %s (%s)\n", mp, 4294 mp->mnt_stat.f_mntfromname, 4295 mp->mnt_stat.f_mntonname, 4296 mp->mnt_stat.f_fstypename); 4297 if (db_pager_quit) 4298 break; 4299 } 4300 db_printf("\nMore info: show mount <addr>\n"); 4301 return; 4302 } 4303 4304 mp = (struct mount *)addr; 4305 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 4306 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 4307 4308 buf[0] = '\0'; 4309 mflags = mp->mnt_flag; 4310 #define MNT_FLAG(flag) do { \ 4311 if (mflags & (flag)) { \ 4312 if (buf[0] != '\0') \ 4313 strlcat(buf, ", ", sizeof(buf)); \ 4314 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 4315 mflags &= ~(flag); \ 4316 } \ 4317 } while (0) 4318 MNT_FLAG(MNT_RDONLY); 4319 MNT_FLAG(MNT_SYNCHRONOUS); 4320 MNT_FLAG(MNT_NOEXEC); 4321 MNT_FLAG(MNT_NOSUID); 4322 MNT_FLAG(MNT_NFS4ACLS); 4323 MNT_FLAG(MNT_UNION); 4324 MNT_FLAG(MNT_ASYNC); 4325 MNT_FLAG(MNT_SUIDDIR); 4326 MNT_FLAG(MNT_SOFTDEP); 4327 MNT_FLAG(MNT_NOSYMFOLLOW); 4328 MNT_FLAG(MNT_GJOURNAL); 4329 MNT_FLAG(MNT_MULTILABEL); 4330 MNT_FLAG(MNT_ACLS); 4331 MNT_FLAG(MNT_NOATIME); 4332 MNT_FLAG(MNT_NOCLUSTERR); 4333 MNT_FLAG(MNT_NOCLUSTERW); 4334 MNT_FLAG(MNT_SUJ); 4335 MNT_FLAG(MNT_EXRDONLY); 4336 MNT_FLAG(MNT_EXPORTED); 4337 MNT_FLAG(MNT_DEFEXPORTED); 4338 MNT_FLAG(MNT_EXPORTANON); 4339 MNT_FLAG(MNT_EXKERB); 4340 MNT_FLAG(MNT_EXPUBLIC); 4341 MNT_FLAG(MNT_LOCAL); 4342 MNT_FLAG(MNT_QUOTA); 4343 MNT_FLAG(MNT_ROOTFS); 4344 MNT_FLAG(MNT_USER); 4345 MNT_FLAG(MNT_IGNORE); 4346 MNT_FLAG(MNT_UPDATE); 4347 MNT_FLAG(MNT_DELEXPORT); 4348 MNT_FLAG(MNT_RELOAD); 4349 MNT_FLAG(MNT_FORCE); 4350 MNT_FLAG(MNT_SNAPSHOT); 4351 MNT_FLAG(MNT_BYFSID); 4352 #undef MNT_FLAG 4353 if (mflags != 0) { 4354 if (buf[0] != '\0') 4355 strlcat(buf, ", ", sizeof(buf)); 4356 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4357 "0x%016jx", mflags); 4358 } 4359 db_printf(" mnt_flag = %s\n", buf); 4360 4361 buf[0] = '\0'; 4362 flags = mp->mnt_kern_flag; 4363 #define MNT_KERN_FLAG(flag) do { \ 4364 if (flags & (flag)) { \ 4365 if (buf[0] != '\0') \ 4366 strlcat(buf, ", ", sizeof(buf)); \ 4367 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 4368 flags &= ~(flag); \ 4369 } \ 4370 } while (0) 4371 MNT_KERN_FLAG(MNTK_UNMOUNTF); 4372 MNT_KERN_FLAG(MNTK_ASYNC); 4373 MNT_KERN_FLAG(MNTK_SOFTDEP); 4374 MNT_KERN_FLAG(MNTK_DRAINING); 4375 MNT_KERN_FLAG(MNTK_REFEXPIRE); 4376 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 4377 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 4378 MNT_KERN_FLAG(MNTK_NO_IOPF); 4379 MNT_KERN_FLAG(MNTK_VGONE_UPPER); 4380 MNT_KERN_FLAG(MNTK_VGONE_WAITER); 4381 MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT); 4382 MNT_KERN_FLAG(MNTK_MARKER); 4383 MNT_KERN_FLAG(MNTK_USES_BCACHE); 4384 MNT_KERN_FLAG(MNTK_FPLOOKUP); 4385 MNT_KERN_FLAG(MNTK_NOASYNC); 4386 MNT_KERN_FLAG(MNTK_UNMOUNT); 4387 MNT_KERN_FLAG(MNTK_MWAIT); 4388 MNT_KERN_FLAG(MNTK_SUSPEND); 4389 MNT_KERN_FLAG(MNTK_SUSPEND2); 4390 MNT_KERN_FLAG(MNTK_SUSPENDED); 4391 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 4392 MNT_KERN_FLAG(MNTK_NOKNOTE); 4393 #undef MNT_KERN_FLAG 4394 if (flags != 0) { 4395 if (buf[0] != '\0') 4396 strlcat(buf, ", ", sizeof(buf)); 4397 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4398 "0x%08x", flags); 4399 } 4400 db_printf(" mnt_kern_flag = %s\n", buf); 4401 4402 db_printf(" mnt_opt = "); 4403 opt = TAILQ_FIRST(mp->mnt_opt); 4404 if (opt != NULL) { 4405 db_printf("%s", opt->name); 4406 opt = TAILQ_NEXT(opt, link); 4407 while (opt != NULL) { 4408 db_printf(", %s", opt->name); 4409 opt = TAILQ_NEXT(opt, link); 4410 } 4411 } 4412 db_printf("\n"); 4413 4414 sp = &mp->mnt_stat; 4415 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 4416 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 4417 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 4418 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 4419 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 4420 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 4421 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 4422 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 4423 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 4424 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 4425 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 4426 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 4427 4428 db_printf(" mnt_cred = { uid=%u ruid=%u", 4429 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 4430 if (jailed(mp->mnt_cred)) 4431 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 4432 db_printf(" }\n"); 4433 db_printf(" mnt_ref = %d (with %d in the struct)\n", 4434 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref); 4435 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 4436 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 4437 db_printf(" mnt_lazyvnodelistsize = %d\n", 4438 mp->mnt_lazyvnodelistsize); 4439 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n", 4440 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount); 4441 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 4442 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 4443 db_printf(" mnt_lockref = %d (with %d in the struct)\n", 4444 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref); 4445 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 4446 db_printf(" mnt_secondary_accwrites = %d\n", 4447 mp->mnt_secondary_accwrites); 4448 db_printf(" mnt_gjprovider = %s\n", 4449 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 4450 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops); 4451 4452 db_printf("\n\nList of active vnodes\n"); 4453 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4454 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) { 4455 vn_printf(vp, "vnode "); 4456 if (db_pager_quit) 4457 break; 4458 } 4459 } 4460 db_printf("\n\nList of inactive vnodes\n"); 4461 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4462 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) { 4463 vn_printf(vp, "vnode "); 4464 if (db_pager_quit) 4465 break; 4466 } 4467 } 4468 } 4469 #endif /* DDB */ 4470 4471 /* 4472 * Fill in a struct xvfsconf based on a struct vfsconf. 4473 */ 4474 static int 4475 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 4476 { 4477 struct xvfsconf xvfsp; 4478 4479 bzero(&xvfsp, sizeof(xvfsp)); 4480 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4481 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4482 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4483 xvfsp.vfc_flags = vfsp->vfc_flags; 4484 /* 4485 * These are unused in userland, we keep them 4486 * to not break binary compatibility. 4487 */ 4488 xvfsp.vfc_vfsops = NULL; 4489 xvfsp.vfc_next = NULL; 4490 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4491 } 4492 4493 #ifdef COMPAT_FREEBSD32 4494 struct xvfsconf32 { 4495 uint32_t vfc_vfsops; 4496 char vfc_name[MFSNAMELEN]; 4497 int32_t vfc_typenum; 4498 int32_t vfc_refcount; 4499 int32_t vfc_flags; 4500 uint32_t vfc_next; 4501 }; 4502 4503 static int 4504 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 4505 { 4506 struct xvfsconf32 xvfsp; 4507 4508 bzero(&xvfsp, sizeof(xvfsp)); 4509 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4510 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4511 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4512 xvfsp.vfc_flags = vfsp->vfc_flags; 4513 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4514 } 4515 #endif 4516 4517 /* 4518 * Top level filesystem related information gathering. 4519 */ 4520 static int 4521 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 4522 { 4523 struct vfsconf *vfsp; 4524 int error; 4525 4526 error = 0; 4527 vfsconf_slock(); 4528 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4529 #ifdef COMPAT_FREEBSD32 4530 if (req->flags & SCTL_MASK32) 4531 error = vfsconf2x32(req, vfsp); 4532 else 4533 #endif 4534 error = vfsconf2x(req, vfsp); 4535 if (error) 4536 break; 4537 } 4538 vfsconf_sunlock(); 4539 return (error); 4540 } 4541 4542 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 4543 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 4544 "S,xvfsconf", "List of all configured filesystems"); 4545 4546 #ifndef BURN_BRIDGES 4547 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 4548 4549 static int 4550 vfs_sysctl(SYSCTL_HANDLER_ARGS) 4551 { 4552 int *name = (int *)arg1 - 1; /* XXX */ 4553 u_int namelen = arg2 + 1; /* XXX */ 4554 struct vfsconf *vfsp; 4555 4556 log(LOG_WARNING, "userland calling deprecated sysctl, " 4557 "please rebuild world\n"); 4558 4559 #if 1 || defined(COMPAT_PRELITE2) 4560 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 4561 if (namelen == 1) 4562 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 4563 #endif 4564 4565 switch (name[1]) { 4566 case VFS_MAXTYPENUM: 4567 if (namelen != 2) 4568 return (ENOTDIR); 4569 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 4570 case VFS_CONF: 4571 if (namelen != 3) 4572 return (ENOTDIR); /* overloaded */ 4573 vfsconf_slock(); 4574 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4575 if (vfsp->vfc_typenum == name[2]) 4576 break; 4577 } 4578 vfsconf_sunlock(); 4579 if (vfsp == NULL) 4580 return (EOPNOTSUPP); 4581 #ifdef COMPAT_FREEBSD32 4582 if (req->flags & SCTL_MASK32) 4583 return (vfsconf2x32(req, vfsp)); 4584 else 4585 #endif 4586 return (vfsconf2x(req, vfsp)); 4587 } 4588 return (EOPNOTSUPP); 4589 } 4590 4591 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 4592 CTLFLAG_MPSAFE, vfs_sysctl, 4593 "Generic filesystem"); 4594 4595 #if 1 || defined(COMPAT_PRELITE2) 4596 4597 static int 4598 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 4599 { 4600 int error; 4601 struct vfsconf *vfsp; 4602 struct ovfsconf ovfs; 4603 4604 vfsconf_slock(); 4605 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4606 bzero(&ovfs, sizeof(ovfs)); 4607 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 4608 strcpy(ovfs.vfc_name, vfsp->vfc_name); 4609 ovfs.vfc_index = vfsp->vfc_typenum; 4610 ovfs.vfc_refcount = vfsp->vfc_refcount; 4611 ovfs.vfc_flags = vfsp->vfc_flags; 4612 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 4613 if (error != 0) { 4614 vfsconf_sunlock(); 4615 return (error); 4616 } 4617 } 4618 vfsconf_sunlock(); 4619 return (0); 4620 } 4621 4622 #endif /* 1 || COMPAT_PRELITE2 */ 4623 #endif /* !BURN_BRIDGES */ 4624 4625 #define KINFO_VNODESLOP 10 4626 #ifdef notyet 4627 /* 4628 * Dump vnode list (via sysctl). 4629 */ 4630 /* ARGSUSED */ 4631 static int 4632 sysctl_vnode(SYSCTL_HANDLER_ARGS) 4633 { 4634 struct xvnode *xvn; 4635 struct mount *mp; 4636 struct vnode *vp; 4637 int error, len, n; 4638 4639 /* 4640 * Stale numvnodes access is not fatal here. 4641 */ 4642 req->lock = 0; 4643 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; 4644 if (!req->oldptr) 4645 /* Make an estimate */ 4646 return (SYSCTL_OUT(req, 0, len)); 4647 4648 error = sysctl_wire_old_buffer(req, 0); 4649 if (error != 0) 4650 return (error); 4651 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); 4652 n = 0; 4653 mtx_lock(&mountlist_mtx); 4654 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4655 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 4656 continue; 4657 MNT_ILOCK(mp); 4658 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4659 if (n == len) 4660 break; 4661 vref(vp); 4662 xvn[n].xv_size = sizeof *xvn; 4663 xvn[n].xv_vnode = vp; 4664 xvn[n].xv_id = 0; /* XXX compat */ 4665 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field 4666 XV_COPY(usecount); 4667 XV_COPY(writecount); 4668 XV_COPY(holdcnt); 4669 XV_COPY(mount); 4670 XV_COPY(numoutput); 4671 XV_COPY(type); 4672 #undef XV_COPY 4673 xvn[n].xv_flag = vp->v_vflag; 4674 4675 switch (vp->v_type) { 4676 case VREG: 4677 case VDIR: 4678 case VLNK: 4679 break; 4680 case VBLK: 4681 case VCHR: 4682 if (vp->v_rdev == NULL) { 4683 vrele(vp); 4684 continue; 4685 } 4686 xvn[n].xv_dev = dev2udev(vp->v_rdev); 4687 break; 4688 case VSOCK: 4689 xvn[n].xv_socket = vp->v_socket; 4690 break; 4691 case VFIFO: 4692 xvn[n].xv_fifo = vp->v_fifoinfo; 4693 break; 4694 case VNON: 4695 case VBAD: 4696 default: 4697 /* shouldn't happen? */ 4698 vrele(vp); 4699 continue; 4700 } 4701 vrele(vp); 4702 ++n; 4703 } 4704 MNT_IUNLOCK(mp); 4705 mtx_lock(&mountlist_mtx); 4706 vfs_unbusy(mp); 4707 if (n == len) 4708 break; 4709 } 4710 mtx_unlock(&mountlist_mtx); 4711 4712 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); 4713 free(xvn, M_TEMP); 4714 return (error); 4715 } 4716 4717 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD | 4718 CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode", 4719 ""); 4720 #endif 4721 4722 static void 4723 unmount_or_warn(struct mount *mp) 4724 { 4725 int error; 4726 4727 error = dounmount(mp, MNT_FORCE, curthread); 4728 if (error != 0) { 4729 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); 4730 if (error == EBUSY) 4731 printf("BUSY)\n"); 4732 else 4733 printf("%d)\n", error); 4734 } 4735 } 4736 4737 /* 4738 * Unmount all filesystems. The list is traversed in reverse order 4739 * of mounting to avoid dependencies. 4740 */ 4741 void 4742 vfs_unmountall(void) 4743 { 4744 struct mount *mp, *tmp; 4745 4746 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 4747 4748 /* 4749 * Since this only runs when rebooting, it is not interlocked. 4750 */ 4751 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { 4752 vfs_ref(mp); 4753 4754 /* 4755 * Forcibly unmounting "/dev" before "/" would prevent clean 4756 * unmount of the latter. 4757 */ 4758 if (mp == rootdevmp) 4759 continue; 4760 4761 unmount_or_warn(mp); 4762 } 4763 4764 if (rootdevmp != NULL) 4765 unmount_or_warn(rootdevmp); 4766 } 4767 4768 static void 4769 vfs_deferred_inactive(struct vnode *vp, int lkflags) 4770 { 4771 4772 ASSERT_VI_LOCKED(vp, __func__); 4773 VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set")); 4774 if ((vp->v_iflag & VI_OWEINACT) == 0) { 4775 vdropl(vp); 4776 return; 4777 } 4778 if (vn_lock(vp, lkflags) == 0) { 4779 VI_LOCK(vp); 4780 vinactive(vp); 4781 VOP_UNLOCK(vp); 4782 vdropl(vp); 4783 return; 4784 } 4785 vdefer_inactive_unlocked(vp); 4786 } 4787 4788 static int 4789 vfs_periodic_inactive_filter(struct vnode *vp, void *arg) 4790 { 4791 4792 return (vp->v_iflag & VI_DEFINACT); 4793 } 4794 4795 static void __noinline 4796 vfs_periodic_inactive(struct mount *mp, int flags) 4797 { 4798 struct vnode *vp, *mvp; 4799 int lkflags; 4800 4801 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 4802 if (flags != MNT_WAIT) 4803 lkflags |= LK_NOWAIT; 4804 4805 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) { 4806 if ((vp->v_iflag & VI_DEFINACT) == 0) { 4807 VI_UNLOCK(vp); 4808 continue; 4809 } 4810 vp->v_iflag &= ~VI_DEFINACT; 4811 vfs_deferred_inactive(vp, lkflags); 4812 } 4813 } 4814 4815 static inline bool 4816 vfs_want_msync(struct vnode *vp) 4817 { 4818 struct vm_object *obj; 4819 4820 /* 4821 * This test may be performed without any locks held. 4822 * We rely on vm_object's type stability. 4823 */ 4824 if (vp->v_vflag & VV_NOSYNC) 4825 return (false); 4826 obj = vp->v_object; 4827 return (obj != NULL && vm_object_mightbedirty(obj)); 4828 } 4829 4830 static int 4831 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused) 4832 { 4833 4834 if (vp->v_vflag & VV_NOSYNC) 4835 return (false); 4836 if (vp->v_iflag & VI_DEFINACT) 4837 return (true); 4838 return (vfs_want_msync(vp)); 4839 } 4840 4841 static void __noinline 4842 vfs_periodic_msync_inactive(struct mount *mp, int flags) 4843 { 4844 struct vnode *vp, *mvp; 4845 struct vm_object *obj; 4846 int lkflags, objflags; 4847 bool seen_defer; 4848 4849 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 4850 if (flags != MNT_WAIT) { 4851 lkflags |= LK_NOWAIT; 4852 objflags = OBJPC_NOSYNC; 4853 } else { 4854 objflags = OBJPC_SYNC; 4855 } 4856 4857 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) { 4858 seen_defer = false; 4859 if (vp->v_iflag & VI_DEFINACT) { 4860 vp->v_iflag &= ~VI_DEFINACT; 4861 seen_defer = true; 4862 } 4863 if (!vfs_want_msync(vp)) { 4864 if (seen_defer) 4865 vfs_deferred_inactive(vp, lkflags); 4866 else 4867 VI_UNLOCK(vp); 4868 continue; 4869 } 4870 if (vget(vp, lkflags) == 0) { 4871 obj = vp->v_object; 4872 if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) { 4873 VM_OBJECT_WLOCK(obj); 4874 vm_object_page_clean(obj, 0, 0, objflags); 4875 VM_OBJECT_WUNLOCK(obj); 4876 } 4877 vput(vp); 4878 if (seen_defer) 4879 vdrop(vp); 4880 } else { 4881 if (seen_defer) 4882 vdefer_inactive_unlocked(vp); 4883 } 4884 } 4885 } 4886 4887 void 4888 vfs_periodic(struct mount *mp, int flags) 4889 { 4890 4891 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 4892 4893 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0) 4894 vfs_periodic_inactive(mp, flags); 4895 else 4896 vfs_periodic_msync_inactive(mp, flags); 4897 } 4898 4899 static void 4900 destroy_vpollinfo_free(struct vpollinfo *vi) 4901 { 4902 4903 knlist_destroy(&vi->vpi_selinfo.si_note); 4904 mtx_destroy(&vi->vpi_lock); 4905 free(vi, M_VNODEPOLL); 4906 } 4907 4908 static void 4909 destroy_vpollinfo(struct vpollinfo *vi) 4910 { 4911 4912 knlist_clear(&vi->vpi_selinfo.si_note, 1); 4913 seldrain(&vi->vpi_selinfo); 4914 destroy_vpollinfo_free(vi); 4915 } 4916 4917 /* 4918 * Initialize per-vnode helper structure to hold poll-related state. 4919 */ 4920 void 4921 v_addpollinfo(struct vnode *vp) 4922 { 4923 struct vpollinfo *vi; 4924 4925 if (vp->v_pollinfo != NULL) 4926 return; 4927 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO); 4928 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 4929 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 4930 vfs_knlunlock, vfs_knl_assert_lock); 4931 VI_LOCK(vp); 4932 if (vp->v_pollinfo != NULL) { 4933 VI_UNLOCK(vp); 4934 destroy_vpollinfo_free(vi); 4935 return; 4936 } 4937 vp->v_pollinfo = vi; 4938 VI_UNLOCK(vp); 4939 } 4940 4941 /* 4942 * Record a process's interest in events which might happen to 4943 * a vnode. Because poll uses the historic select-style interface 4944 * internally, this routine serves as both the ``check for any 4945 * pending events'' and the ``record my interest in future events'' 4946 * functions. (These are done together, while the lock is held, 4947 * to avoid race conditions.) 4948 */ 4949 int 4950 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 4951 { 4952 4953 v_addpollinfo(vp); 4954 mtx_lock(&vp->v_pollinfo->vpi_lock); 4955 if (vp->v_pollinfo->vpi_revents & events) { 4956 /* 4957 * This leaves events we are not interested 4958 * in available for the other process which 4959 * which presumably had requested them 4960 * (otherwise they would never have been 4961 * recorded). 4962 */ 4963 events &= vp->v_pollinfo->vpi_revents; 4964 vp->v_pollinfo->vpi_revents &= ~events; 4965 4966 mtx_unlock(&vp->v_pollinfo->vpi_lock); 4967 return (events); 4968 } 4969 vp->v_pollinfo->vpi_events |= events; 4970 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 4971 mtx_unlock(&vp->v_pollinfo->vpi_lock); 4972 return (0); 4973 } 4974 4975 /* 4976 * Routine to create and manage a filesystem syncer vnode. 4977 */ 4978 #define sync_close ((int (*)(struct vop_close_args *))nullop) 4979 static int sync_fsync(struct vop_fsync_args *); 4980 static int sync_inactive(struct vop_inactive_args *); 4981 static int sync_reclaim(struct vop_reclaim_args *); 4982 4983 static struct vop_vector sync_vnodeops = { 4984 .vop_bypass = VOP_EOPNOTSUPP, 4985 .vop_close = sync_close, /* close */ 4986 .vop_fsync = sync_fsync, /* fsync */ 4987 .vop_inactive = sync_inactive, /* inactive */ 4988 .vop_need_inactive = vop_stdneed_inactive, /* need_inactive */ 4989 .vop_reclaim = sync_reclaim, /* reclaim */ 4990 .vop_lock1 = vop_stdlock, /* lock */ 4991 .vop_unlock = vop_stdunlock, /* unlock */ 4992 .vop_islocked = vop_stdislocked, /* islocked */ 4993 }; 4994 VFS_VOP_VECTOR_REGISTER(sync_vnodeops); 4995 4996 /* 4997 * Create a new filesystem syncer vnode for the specified mount point. 4998 */ 4999 void 5000 vfs_allocate_syncvnode(struct mount *mp) 5001 { 5002 struct vnode *vp; 5003 struct bufobj *bo; 5004 static long start, incr, next; 5005 int error; 5006 5007 /* Allocate a new vnode */ 5008 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 5009 if (error != 0) 5010 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 5011 vp->v_type = VNON; 5012 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5013 vp->v_vflag |= VV_FORCEINSMQ; 5014 error = insmntque(vp, mp); 5015 if (error != 0) 5016 panic("vfs_allocate_syncvnode: insmntque() failed"); 5017 vp->v_vflag &= ~VV_FORCEINSMQ; 5018 VOP_UNLOCK(vp); 5019 /* 5020 * Place the vnode onto the syncer worklist. We attempt to 5021 * scatter them about on the list so that they will go off 5022 * at evenly distributed times even if all the filesystems 5023 * are mounted at once. 5024 */ 5025 next += incr; 5026 if (next == 0 || next > syncer_maxdelay) { 5027 start /= 2; 5028 incr /= 2; 5029 if (start == 0) { 5030 start = syncer_maxdelay / 2; 5031 incr = syncer_maxdelay; 5032 } 5033 next = start; 5034 } 5035 bo = &vp->v_bufobj; 5036 BO_LOCK(bo); 5037 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 5038 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 5039 mtx_lock(&sync_mtx); 5040 sync_vnode_count++; 5041 if (mp->mnt_syncer == NULL) { 5042 mp->mnt_syncer = vp; 5043 vp = NULL; 5044 } 5045 mtx_unlock(&sync_mtx); 5046 BO_UNLOCK(bo); 5047 if (vp != NULL) { 5048 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5049 vgone(vp); 5050 vput(vp); 5051 } 5052 } 5053 5054 void 5055 vfs_deallocate_syncvnode(struct mount *mp) 5056 { 5057 struct vnode *vp; 5058 5059 mtx_lock(&sync_mtx); 5060 vp = mp->mnt_syncer; 5061 if (vp != NULL) 5062 mp->mnt_syncer = NULL; 5063 mtx_unlock(&sync_mtx); 5064 if (vp != NULL) 5065 vrele(vp); 5066 } 5067 5068 /* 5069 * Do a lazy sync of the filesystem. 5070 */ 5071 static int 5072 sync_fsync(struct vop_fsync_args *ap) 5073 { 5074 struct vnode *syncvp = ap->a_vp; 5075 struct mount *mp = syncvp->v_mount; 5076 int error, save; 5077 struct bufobj *bo; 5078 5079 /* 5080 * We only need to do something if this is a lazy evaluation. 5081 */ 5082 if (ap->a_waitfor != MNT_LAZY) 5083 return (0); 5084 5085 /* 5086 * Move ourselves to the back of the sync list. 5087 */ 5088 bo = &syncvp->v_bufobj; 5089 BO_LOCK(bo); 5090 vn_syncer_add_to_worklist(bo, syncdelay); 5091 BO_UNLOCK(bo); 5092 5093 /* 5094 * Walk the list of vnodes pushing all that are dirty and 5095 * not already on the sync list. 5096 */ 5097 if (vfs_busy(mp, MBF_NOWAIT) != 0) 5098 return (0); 5099 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 5100 vfs_unbusy(mp); 5101 return (0); 5102 } 5103 save = curthread_pflags_set(TDP_SYNCIO); 5104 /* 5105 * The filesystem at hand may be idle with free vnodes stored in the 5106 * batch. Return them instead of letting them stay there indefinitely. 5107 */ 5108 vfs_periodic(mp, MNT_NOWAIT); 5109 error = VFS_SYNC(mp, MNT_LAZY); 5110 curthread_pflags_restore(save); 5111 vn_finished_write(mp); 5112 vfs_unbusy(mp); 5113 return (error); 5114 } 5115 5116 /* 5117 * The syncer vnode is no referenced. 5118 */ 5119 static int 5120 sync_inactive(struct vop_inactive_args *ap) 5121 { 5122 5123 vgone(ap->a_vp); 5124 return (0); 5125 } 5126 5127 /* 5128 * The syncer vnode is no longer needed and is being decommissioned. 5129 * 5130 * Modifications to the worklist must be protected by sync_mtx. 5131 */ 5132 static int 5133 sync_reclaim(struct vop_reclaim_args *ap) 5134 { 5135 struct vnode *vp = ap->a_vp; 5136 struct bufobj *bo; 5137 5138 bo = &vp->v_bufobj; 5139 BO_LOCK(bo); 5140 mtx_lock(&sync_mtx); 5141 if (vp->v_mount->mnt_syncer == vp) 5142 vp->v_mount->mnt_syncer = NULL; 5143 if (bo->bo_flag & BO_ONWORKLST) { 5144 LIST_REMOVE(bo, bo_synclist); 5145 syncer_worklist_len--; 5146 sync_vnode_count--; 5147 bo->bo_flag &= ~BO_ONWORKLST; 5148 } 5149 mtx_unlock(&sync_mtx); 5150 BO_UNLOCK(bo); 5151 5152 return (0); 5153 } 5154 5155 int 5156 vn_need_pageq_flush(struct vnode *vp) 5157 { 5158 struct vm_object *obj; 5159 5160 obj = vp->v_object; 5161 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 5162 vm_object_mightbedirty(obj)); 5163 } 5164 5165 /* 5166 * Check if vnode represents a disk device 5167 */ 5168 bool 5169 vn_isdisk_error(struct vnode *vp, int *errp) 5170 { 5171 int error; 5172 5173 if (vp->v_type != VCHR) { 5174 error = ENOTBLK; 5175 goto out; 5176 } 5177 error = 0; 5178 dev_lock(); 5179 if (vp->v_rdev == NULL) 5180 error = ENXIO; 5181 else if (vp->v_rdev->si_devsw == NULL) 5182 error = ENXIO; 5183 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 5184 error = ENOTBLK; 5185 dev_unlock(); 5186 out: 5187 *errp = error; 5188 return (error == 0); 5189 } 5190 5191 bool 5192 vn_isdisk(struct vnode *vp) 5193 { 5194 int error; 5195 5196 return (vn_isdisk_error(vp, &error)); 5197 } 5198 5199 /* 5200 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see 5201 * the comment above cache_fplookup for details. 5202 */ 5203 int 5204 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred) 5205 { 5206 int error; 5207 5208 VFS_SMR_ASSERT_ENTERED(); 5209 5210 /* Check the owner. */ 5211 if (cred->cr_uid == file_uid) { 5212 if (file_mode & S_IXUSR) 5213 return (0); 5214 goto out_error; 5215 } 5216 5217 /* Otherwise, check the groups (first match) */ 5218 if (groupmember(file_gid, cred)) { 5219 if (file_mode & S_IXGRP) 5220 return (0); 5221 goto out_error; 5222 } 5223 5224 /* Otherwise, check everyone else. */ 5225 if (file_mode & S_IXOTH) 5226 return (0); 5227 out_error: 5228 /* 5229 * Permission check failed, but it is possible denial will get overwritten 5230 * (e.g., when root is traversing through a 700 directory owned by someone 5231 * else). 5232 * 5233 * vaccess() calls priv_check_cred which in turn can descent into MAC 5234 * modules overriding this result. It's quite unclear what semantics 5235 * are allowed for them to operate, thus for safety we don't call them 5236 * from within the SMR section. This also means if any such modules 5237 * are present, we have to let the regular lookup decide. 5238 */ 5239 error = priv_check_cred_vfs_lookup_nomac(cred); 5240 switch (error) { 5241 case 0: 5242 return (0); 5243 case EAGAIN: 5244 /* 5245 * MAC modules present. 5246 */ 5247 return (EAGAIN); 5248 case EPERM: 5249 return (EACCES); 5250 default: 5251 return (error); 5252 } 5253 } 5254 5255 /* 5256 * Common filesystem object access control check routine. Accepts a 5257 * vnode's type, "mode", uid and gid, requested access mode, and credentials. 5258 * Returns 0 on success, or an errno on failure. 5259 */ 5260 int 5261 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 5262 accmode_t accmode, struct ucred *cred) 5263 { 5264 accmode_t dac_granted; 5265 accmode_t priv_granted; 5266 5267 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 5268 ("invalid bit in accmode")); 5269 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 5270 ("VAPPEND without VWRITE")); 5271 5272 /* 5273 * Look for a normal, non-privileged way to access the file/directory 5274 * as requested. If it exists, go with that. 5275 */ 5276 5277 dac_granted = 0; 5278 5279 /* Check the owner. */ 5280 if (cred->cr_uid == file_uid) { 5281 dac_granted |= VADMIN; 5282 if (file_mode & S_IXUSR) 5283 dac_granted |= VEXEC; 5284 if (file_mode & S_IRUSR) 5285 dac_granted |= VREAD; 5286 if (file_mode & S_IWUSR) 5287 dac_granted |= (VWRITE | VAPPEND); 5288 5289 if ((accmode & dac_granted) == accmode) 5290 return (0); 5291 5292 goto privcheck; 5293 } 5294 5295 /* Otherwise, check the groups (first match) */ 5296 if (groupmember(file_gid, cred)) { 5297 if (file_mode & S_IXGRP) 5298 dac_granted |= VEXEC; 5299 if (file_mode & S_IRGRP) 5300 dac_granted |= VREAD; 5301 if (file_mode & S_IWGRP) 5302 dac_granted |= (VWRITE | VAPPEND); 5303 5304 if ((accmode & dac_granted) == accmode) 5305 return (0); 5306 5307 goto privcheck; 5308 } 5309 5310 /* Otherwise, check everyone else. */ 5311 if (file_mode & S_IXOTH) 5312 dac_granted |= VEXEC; 5313 if (file_mode & S_IROTH) 5314 dac_granted |= VREAD; 5315 if (file_mode & S_IWOTH) 5316 dac_granted |= (VWRITE | VAPPEND); 5317 if ((accmode & dac_granted) == accmode) 5318 return (0); 5319 5320 privcheck: 5321 /* 5322 * Build a privilege mask to determine if the set of privileges 5323 * satisfies the requirements when combined with the granted mask 5324 * from above. For each privilege, if the privilege is required, 5325 * bitwise or the request type onto the priv_granted mask. 5326 */ 5327 priv_granted = 0; 5328 5329 if (type == VDIR) { 5330 /* 5331 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 5332 * requests, instead of PRIV_VFS_EXEC. 5333 */ 5334 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5335 !priv_check_cred(cred, PRIV_VFS_LOOKUP)) 5336 priv_granted |= VEXEC; 5337 } else { 5338 /* 5339 * Ensure that at least one execute bit is on. Otherwise, 5340 * a privileged user will always succeed, and we don't want 5341 * this to happen unless the file really is executable. 5342 */ 5343 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5344 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 5345 !priv_check_cred(cred, PRIV_VFS_EXEC)) 5346 priv_granted |= VEXEC; 5347 } 5348 5349 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 5350 !priv_check_cred(cred, PRIV_VFS_READ)) 5351 priv_granted |= VREAD; 5352 5353 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 5354 !priv_check_cred(cred, PRIV_VFS_WRITE)) 5355 priv_granted |= (VWRITE | VAPPEND); 5356 5357 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 5358 !priv_check_cred(cred, PRIV_VFS_ADMIN)) 5359 priv_granted |= VADMIN; 5360 5361 if ((accmode & (priv_granted | dac_granted)) == accmode) { 5362 return (0); 5363 } 5364 5365 return ((accmode & VADMIN) ? EPERM : EACCES); 5366 } 5367 5368 /* 5369 * Credential check based on process requesting service, and per-attribute 5370 * permissions. 5371 */ 5372 int 5373 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 5374 struct thread *td, accmode_t accmode) 5375 { 5376 5377 /* 5378 * Kernel-invoked always succeeds. 5379 */ 5380 if (cred == NOCRED) 5381 return (0); 5382 5383 /* 5384 * Do not allow privileged processes in jail to directly manipulate 5385 * system attributes. 5386 */ 5387 switch (attrnamespace) { 5388 case EXTATTR_NAMESPACE_SYSTEM: 5389 /* Potentially should be: return (EPERM); */ 5390 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM)); 5391 case EXTATTR_NAMESPACE_USER: 5392 return (VOP_ACCESS(vp, accmode, cred, td)); 5393 default: 5394 return (EPERM); 5395 } 5396 } 5397 5398 #ifdef DEBUG_VFS_LOCKS 5399 /* 5400 * This only exists to suppress warnings from unlocked specfs accesses. It is 5401 * no longer ok to have an unlocked VFS. 5402 */ 5403 #define IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL || \ 5404 (vp)->v_type == VCHR || (vp)->v_type == VBAD) 5405 5406 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 5407 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 5408 "Drop into debugger on lock violation"); 5409 5410 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 5411 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 5412 0, "Check for interlock across VOPs"); 5413 5414 int vfs_badlock_print = 1; /* Print lock violations. */ 5415 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 5416 0, "Print lock violations"); 5417 5418 int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */ 5419 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode, 5420 0, "Print vnode details on lock violations"); 5421 5422 #ifdef KDB 5423 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 5424 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 5425 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 5426 #endif 5427 5428 static void 5429 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 5430 { 5431 5432 #ifdef KDB 5433 if (vfs_badlock_backtrace) 5434 kdb_backtrace(); 5435 #endif 5436 if (vfs_badlock_vnode) 5437 vn_printf(vp, "vnode "); 5438 if (vfs_badlock_print) 5439 printf("%s: %p %s\n", str, (void *)vp, msg); 5440 if (vfs_badlock_ddb) 5441 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5442 } 5443 5444 void 5445 assert_vi_locked(struct vnode *vp, const char *str) 5446 { 5447 5448 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 5449 vfs_badlock("interlock is not locked but should be", str, vp); 5450 } 5451 5452 void 5453 assert_vi_unlocked(struct vnode *vp, const char *str) 5454 { 5455 5456 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 5457 vfs_badlock("interlock is locked but should not be", str, vp); 5458 } 5459 5460 void 5461 assert_vop_locked(struct vnode *vp, const char *str) 5462 { 5463 int locked; 5464 5465 if (!IGNORE_LOCK(vp)) { 5466 locked = VOP_ISLOCKED(vp); 5467 if (locked == 0 || locked == LK_EXCLOTHER) 5468 vfs_badlock("is not locked but should be", str, vp); 5469 } 5470 } 5471 5472 void 5473 assert_vop_unlocked(struct vnode *vp, const char *str) 5474 { 5475 5476 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 5477 vfs_badlock("is locked but should not be", str, vp); 5478 } 5479 5480 void 5481 assert_vop_elocked(struct vnode *vp, const char *str) 5482 { 5483 5484 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 5485 vfs_badlock("is not exclusive locked but should be", str, vp); 5486 } 5487 #endif /* DEBUG_VFS_LOCKS */ 5488 5489 void 5490 vop_rename_fail(struct vop_rename_args *ap) 5491 { 5492 5493 if (ap->a_tvp != NULL) 5494 vput(ap->a_tvp); 5495 if (ap->a_tdvp == ap->a_tvp) 5496 vrele(ap->a_tdvp); 5497 else 5498 vput(ap->a_tdvp); 5499 vrele(ap->a_fdvp); 5500 vrele(ap->a_fvp); 5501 } 5502 5503 void 5504 vop_rename_pre(void *ap) 5505 { 5506 struct vop_rename_args *a = ap; 5507 5508 #ifdef DEBUG_VFS_LOCKS 5509 if (a->a_tvp) 5510 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 5511 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 5512 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 5513 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 5514 5515 /* Check the source (from). */ 5516 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 5517 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 5518 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 5519 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 5520 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 5521 5522 /* Check the target. */ 5523 if (a->a_tvp) 5524 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 5525 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 5526 #endif 5527 /* 5528 * It may be tempting to add vn_seqc_write_begin/end calls here and 5529 * in vop_rename_post but that's not going to work out since some 5530 * filesystems relookup vnodes mid-rename. This is probably a bug. 5531 * 5532 * For now filesystems are expected to do the relevant calls after they 5533 * decide what vnodes to operate on. 5534 */ 5535 if (a->a_tdvp != a->a_fdvp) 5536 vhold(a->a_fdvp); 5537 if (a->a_tvp != a->a_fvp) 5538 vhold(a->a_fvp); 5539 vhold(a->a_tdvp); 5540 if (a->a_tvp) 5541 vhold(a->a_tvp); 5542 } 5543 5544 #ifdef DEBUG_VFS_LOCKS 5545 void 5546 vop_fplookup_vexec_debugpre(void *ap __unused) 5547 { 5548 5549 VFS_SMR_ASSERT_ENTERED(); 5550 } 5551 5552 void 5553 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused) 5554 { 5555 5556 VFS_SMR_ASSERT_ENTERED(); 5557 } 5558 5559 void 5560 vop_fplookup_symlink_debugpre(void *ap __unused) 5561 { 5562 5563 VFS_SMR_ASSERT_ENTERED(); 5564 } 5565 5566 void 5567 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused) 5568 { 5569 5570 VFS_SMR_ASSERT_ENTERED(); 5571 } 5572 void 5573 vop_strategy_debugpre(void *ap) 5574 { 5575 struct vop_strategy_args *a; 5576 struct buf *bp; 5577 5578 a = ap; 5579 bp = a->a_bp; 5580 5581 /* 5582 * Cluster ops lock their component buffers but not the IO container. 5583 */ 5584 if ((bp->b_flags & B_CLUSTER) != 0) 5585 return; 5586 5587 if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) { 5588 if (vfs_badlock_print) 5589 printf( 5590 "VOP_STRATEGY: bp is not locked but should be\n"); 5591 if (vfs_badlock_ddb) 5592 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5593 } 5594 } 5595 5596 void 5597 vop_lock_debugpre(void *ap) 5598 { 5599 struct vop_lock1_args *a = ap; 5600 5601 if ((a->a_flags & LK_INTERLOCK) == 0) 5602 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 5603 else 5604 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 5605 } 5606 5607 void 5608 vop_lock_debugpost(void *ap, int rc) 5609 { 5610 struct vop_lock1_args *a = ap; 5611 5612 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 5613 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 5614 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 5615 } 5616 5617 void 5618 vop_unlock_debugpre(void *ap) 5619 { 5620 struct vop_unlock_args *a = ap; 5621 5622 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); 5623 } 5624 5625 void 5626 vop_need_inactive_debugpre(void *ap) 5627 { 5628 struct vop_need_inactive_args *a = ap; 5629 5630 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 5631 } 5632 5633 void 5634 vop_need_inactive_debugpost(void *ap, int rc) 5635 { 5636 struct vop_need_inactive_args *a = ap; 5637 5638 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 5639 } 5640 #endif 5641 5642 void 5643 vop_create_pre(void *ap) 5644 { 5645 struct vop_create_args *a; 5646 struct vnode *dvp; 5647 5648 a = ap; 5649 dvp = a->a_dvp; 5650 vn_seqc_write_begin(dvp); 5651 } 5652 5653 void 5654 vop_create_post(void *ap, int rc) 5655 { 5656 struct vop_create_args *a; 5657 struct vnode *dvp; 5658 5659 a = ap; 5660 dvp = a->a_dvp; 5661 vn_seqc_write_end(dvp); 5662 if (!rc) 5663 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5664 } 5665 5666 void 5667 vop_whiteout_pre(void *ap) 5668 { 5669 struct vop_whiteout_args *a; 5670 struct vnode *dvp; 5671 5672 a = ap; 5673 dvp = a->a_dvp; 5674 vn_seqc_write_begin(dvp); 5675 } 5676 5677 void 5678 vop_whiteout_post(void *ap, int rc) 5679 { 5680 struct vop_whiteout_args *a; 5681 struct vnode *dvp; 5682 5683 a = ap; 5684 dvp = a->a_dvp; 5685 vn_seqc_write_end(dvp); 5686 } 5687 5688 void 5689 vop_deleteextattr_pre(void *ap) 5690 { 5691 struct vop_deleteextattr_args *a; 5692 struct vnode *vp; 5693 5694 a = ap; 5695 vp = a->a_vp; 5696 vn_seqc_write_begin(vp); 5697 } 5698 5699 void 5700 vop_deleteextattr_post(void *ap, int rc) 5701 { 5702 struct vop_deleteextattr_args *a; 5703 struct vnode *vp; 5704 5705 a = ap; 5706 vp = a->a_vp; 5707 vn_seqc_write_end(vp); 5708 if (!rc) 5709 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 5710 } 5711 5712 void 5713 vop_link_pre(void *ap) 5714 { 5715 struct vop_link_args *a; 5716 struct vnode *vp, *tdvp; 5717 5718 a = ap; 5719 vp = a->a_vp; 5720 tdvp = a->a_tdvp; 5721 vn_seqc_write_begin(vp); 5722 vn_seqc_write_begin(tdvp); 5723 } 5724 5725 void 5726 vop_link_post(void *ap, int rc) 5727 { 5728 struct vop_link_args *a; 5729 struct vnode *vp, *tdvp; 5730 5731 a = ap; 5732 vp = a->a_vp; 5733 tdvp = a->a_tdvp; 5734 vn_seqc_write_end(vp); 5735 vn_seqc_write_end(tdvp); 5736 if (!rc) { 5737 VFS_KNOTE_LOCKED(vp, NOTE_LINK); 5738 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE); 5739 } 5740 } 5741 5742 void 5743 vop_mkdir_pre(void *ap) 5744 { 5745 struct vop_mkdir_args *a; 5746 struct vnode *dvp; 5747 5748 a = ap; 5749 dvp = a->a_dvp; 5750 vn_seqc_write_begin(dvp); 5751 } 5752 5753 void 5754 vop_mkdir_post(void *ap, int rc) 5755 { 5756 struct vop_mkdir_args *a; 5757 struct vnode *dvp; 5758 5759 a = ap; 5760 dvp = a->a_dvp; 5761 vn_seqc_write_end(dvp); 5762 if (!rc) 5763 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 5764 } 5765 5766 #ifdef DEBUG_VFS_LOCKS 5767 void 5768 vop_mkdir_debugpost(void *ap, int rc) 5769 { 5770 struct vop_mkdir_args *a; 5771 5772 a = ap; 5773 if (!rc) 5774 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp); 5775 } 5776 #endif 5777 5778 void 5779 vop_mknod_pre(void *ap) 5780 { 5781 struct vop_mknod_args *a; 5782 struct vnode *dvp; 5783 5784 a = ap; 5785 dvp = a->a_dvp; 5786 vn_seqc_write_begin(dvp); 5787 } 5788 5789 void 5790 vop_mknod_post(void *ap, int rc) 5791 { 5792 struct vop_mknod_args *a; 5793 struct vnode *dvp; 5794 5795 a = ap; 5796 dvp = a->a_dvp; 5797 vn_seqc_write_end(dvp); 5798 if (!rc) 5799 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5800 } 5801 5802 void 5803 vop_reclaim_post(void *ap, int rc) 5804 { 5805 struct vop_reclaim_args *a; 5806 struct vnode *vp; 5807 5808 a = ap; 5809 vp = a->a_vp; 5810 ASSERT_VOP_IN_SEQC(vp); 5811 if (!rc) 5812 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE); 5813 } 5814 5815 void 5816 vop_remove_pre(void *ap) 5817 { 5818 struct vop_remove_args *a; 5819 struct vnode *dvp, *vp; 5820 5821 a = ap; 5822 dvp = a->a_dvp; 5823 vp = a->a_vp; 5824 vn_seqc_write_begin(dvp); 5825 vn_seqc_write_begin(vp); 5826 } 5827 5828 void 5829 vop_remove_post(void *ap, int rc) 5830 { 5831 struct vop_remove_args *a; 5832 struct vnode *dvp, *vp; 5833 5834 a = ap; 5835 dvp = a->a_dvp; 5836 vp = a->a_vp; 5837 vn_seqc_write_end(dvp); 5838 vn_seqc_write_end(vp); 5839 if (!rc) { 5840 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5841 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 5842 } 5843 } 5844 5845 void 5846 vop_rename_post(void *ap, int rc) 5847 { 5848 struct vop_rename_args *a = ap; 5849 long hint; 5850 5851 if (!rc) { 5852 hint = NOTE_WRITE; 5853 if (a->a_fdvp == a->a_tdvp) { 5854 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR) 5855 hint |= NOTE_LINK; 5856 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 5857 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 5858 } else { 5859 hint |= NOTE_EXTEND; 5860 if (a->a_fvp->v_type == VDIR) 5861 hint |= NOTE_LINK; 5862 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 5863 5864 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL && 5865 a->a_tvp->v_type == VDIR) 5866 hint &= ~NOTE_LINK; 5867 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 5868 } 5869 5870 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 5871 if (a->a_tvp) 5872 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 5873 } 5874 if (a->a_tdvp != a->a_fdvp) 5875 vdrop(a->a_fdvp); 5876 if (a->a_tvp != a->a_fvp) 5877 vdrop(a->a_fvp); 5878 vdrop(a->a_tdvp); 5879 if (a->a_tvp) 5880 vdrop(a->a_tvp); 5881 } 5882 5883 void 5884 vop_rmdir_pre(void *ap) 5885 { 5886 struct vop_rmdir_args *a; 5887 struct vnode *dvp, *vp; 5888 5889 a = ap; 5890 dvp = a->a_dvp; 5891 vp = a->a_vp; 5892 vn_seqc_write_begin(dvp); 5893 vn_seqc_write_begin(vp); 5894 } 5895 5896 void 5897 vop_rmdir_post(void *ap, int rc) 5898 { 5899 struct vop_rmdir_args *a; 5900 struct vnode *dvp, *vp; 5901 5902 a = ap; 5903 dvp = a->a_dvp; 5904 vp = a->a_vp; 5905 vn_seqc_write_end(dvp); 5906 vn_seqc_write_end(vp); 5907 if (!rc) { 5908 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 5909 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 5910 } 5911 } 5912 5913 void 5914 vop_setattr_pre(void *ap) 5915 { 5916 struct vop_setattr_args *a; 5917 struct vnode *vp; 5918 5919 a = ap; 5920 vp = a->a_vp; 5921 vn_seqc_write_begin(vp); 5922 } 5923 5924 void 5925 vop_setattr_post(void *ap, int rc) 5926 { 5927 struct vop_setattr_args *a; 5928 struct vnode *vp; 5929 5930 a = ap; 5931 vp = a->a_vp; 5932 vn_seqc_write_end(vp); 5933 if (!rc) 5934 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 5935 } 5936 5937 void 5938 vop_setacl_pre(void *ap) 5939 { 5940 struct vop_setacl_args *a; 5941 struct vnode *vp; 5942 5943 a = ap; 5944 vp = a->a_vp; 5945 vn_seqc_write_begin(vp); 5946 } 5947 5948 void 5949 vop_setacl_post(void *ap, int rc __unused) 5950 { 5951 struct vop_setacl_args *a; 5952 struct vnode *vp; 5953 5954 a = ap; 5955 vp = a->a_vp; 5956 vn_seqc_write_end(vp); 5957 } 5958 5959 void 5960 vop_setextattr_pre(void *ap) 5961 { 5962 struct vop_setextattr_args *a; 5963 struct vnode *vp; 5964 5965 a = ap; 5966 vp = a->a_vp; 5967 vn_seqc_write_begin(vp); 5968 } 5969 5970 void 5971 vop_setextattr_post(void *ap, int rc) 5972 { 5973 struct vop_setextattr_args *a; 5974 struct vnode *vp; 5975 5976 a = ap; 5977 vp = a->a_vp; 5978 vn_seqc_write_end(vp); 5979 if (!rc) 5980 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 5981 } 5982 5983 void 5984 vop_symlink_pre(void *ap) 5985 { 5986 struct vop_symlink_args *a; 5987 struct vnode *dvp; 5988 5989 a = ap; 5990 dvp = a->a_dvp; 5991 vn_seqc_write_begin(dvp); 5992 } 5993 5994 void 5995 vop_symlink_post(void *ap, int rc) 5996 { 5997 struct vop_symlink_args *a; 5998 struct vnode *dvp; 5999 6000 a = ap; 6001 dvp = a->a_dvp; 6002 vn_seqc_write_end(dvp); 6003 if (!rc) 6004 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6005 } 6006 6007 void 6008 vop_open_post(void *ap, int rc) 6009 { 6010 struct vop_open_args *a = ap; 6011 6012 if (!rc) 6013 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN); 6014 } 6015 6016 void 6017 vop_close_post(void *ap, int rc) 6018 { 6019 struct vop_close_args *a = ap; 6020 6021 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */ 6022 !VN_IS_DOOMED(a->a_vp))) { 6023 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ? 6024 NOTE_CLOSE_WRITE : NOTE_CLOSE); 6025 } 6026 } 6027 6028 void 6029 vop_read_post(void *ap, int rc) 6030 { 6031 struct vop_read_args *a = ap; 6032 6033 if (!rc) 6034 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6035 } 6036 6037 void 6038 vop_read_pgcache_post(void *ap, int rc) 6039 { 6040 struct vop_read_pgcache_args *a = ap; 6041 6042 if (!rc) 6043 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ); 6044 } 6045 6046 void 6047 vop_readdir_post(void *ap, int rc) 6048 { 6049 struct vop_readdir_args *a = ap; 6050 6051 if (!rc) 6052 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6053 } 6054 6055 static struct knlist fs_knlist; 6056 6057 static void 6058 vfs_event_init(void *arg) 6059 { 6060 knlist_init_mtx(&fs_knlist, NULL); 6061 } 6062 /* XXX - correct order? */ 6063 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 6064 6065 void 6066 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 6067 { 6068 6069 KNOTE_UNLOCKED(&fs_knlist, event); 6070 } 6071 6072 static int filt_fsattach(struct knote *kn); 6073 static void filt_fsdetach(struct knote *kn); 6074 static int filt_fsevent(struct knote *kn, long hint); 6075 6076 struct filterops fs_filtops = { 6077 .f_isfd = 0, 6078 .f_attach = filt_fsattach, 6079 .f_detach = filt_fsdetach, 6080 .f_event = filt_fsevent 6081 }; 6082 6083 static int 6084 filt_fsattach(struct knote *kn) 6085 { 6086 6087 kn->kn_flags |= EV_CLEAR; 6088 knlist_add(&fs_knlist, kn, 0); 6089 return (0); 6090 } 6091 6092 static void 6093 filt_fsdetach(struct knote *kn) 6094 { 6095 6096 knlist_remove(&fs_knlist, kn, 0); 6097 } 6098 6099 static int 6100 filt_fsevent(struct knote *kn, long hint) 6101 { 6102 6103 kn->kn_fflags |= kn->kn_sfflags & hint; 6104 6105 return (kn->kn_fflags != 0); 6106 } 6107 6108 static int 6109 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 6110 { 6111 struct vfsidctl vc; 6112 int error; 6113 struct mount *mp; 6114 6115 error = SYSCTL_IN(req, &vc, sizeof(vc)); 6116 if (error) 6117 return (error); 6118 if (vc.vc_vers != VFS_CTL_VERS1) 6119 return (EINVAL); 6120 mp = vfs_getvfs(&vc.vc_fsid); 6121 if (mp == NULL) 6122 return (ENOENT); 6123 /* ensure that a specific sysctl goes to the right filesystem. */ 6124 if (strcmp(vc.vc_fstypename, "*") != 0 && 6125 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 6126 vfs_rel(mp); 6127 return (EINVAL); 6128 } 6129 VCTLTOREQ(&vc, req); 6130 error = VFS_SYSCTL(mp, vc.vc_op, req); 6131 vfs_rel(mp); 6132 return (error); 6133 } 6134 6135 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR, 6136 NULL, 0, sysctl_vfs_ctl, "", 6137 "Sysctl by fsid"); 6138 6139 /* 6140 * Function to initialize a va_filerev field sensibly. 6141 * XXX: Wouldn't a random number make a lot more sense ?? 6142 */ 6143 u_quad_t 6144 init_va_filerev(void) 6145 { 6146 struct bintime bt; 6147 6148 getbinuptime(&bt); 6149 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 6150 } 6151 6152 static int filt_vfsread(struct knote *kn, long hint); 6153 static int filt_vfswrite(struct knote *kn, long hint); 6154 static int filt_vfsvnode(struct knote *kn, long hint); 6155 static void filt_vfsdetach(struct knote *kn); 6156 static struct filterops vfsread_filtops = { 6157 .f_isfd = 1, 6158 .f_detach = filt_vfsdetach, 6159 .f_event = filt_vfsread 6160 }; 6161 static struct filterops vfswrite_filtops = { 6162 .f_isfd = 1, 6163 .f_detach = filt_vfsdetach, 6164 .f_event = filt_vfswrite 6165 }; 6166 static struct filterops vfsvnode_filtops = { 6167 .f_isfd = 1, 6168 .f_detach = filt_vfsdetach, 6169 .f_event = filt_vfsvnode 6170 }; 6171 6172 static void 6173 vfs_knllock(void *arg) 6174 { 6175 struct vnode *vp = arg; 6176 6177 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 6178 } 6179 6180 static void 6181 vfs_knlunlock(void *arg) 6182 { 6183 struct vnode *vp = arg; 6184 6185 VOP_UNLOCK(vp); 6186 } 6187 6188 static void 6189 vfs_knl_assert_lock(void *arg, int what) 6190 { 6191 #ifdef DEBUG_VFS_LOCKS 6192 struct vnode *vp = arg; 6193 6194 if (what == LA_LOCKED) 6195 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 6196 else 6197 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 6198 #endif 6199 } 6200 6201 int 6202 vfs_kqfilter(struct vop_kqfilter_args *ap) 6203 { 6204 struct vnode *vp = ap->a_vp; 6205 struct knote *kn = ap->a_kn; 6206 struct knlist *knl; 6207 6208 switch (kn->kn_filter) { 6209 case EVFILT_READ: 6210 kn->kn_fop = &vfsread_filtops; 6211 break; 6212 case EVFILT_WRITE: 6213 kn->kn_fop = &vfswrite_filtops; 6214 break; 6215 case EVFILT_VNODE: 6216 kn->kn_fop = &vfsvnode_filtops; 6217 break; 6218 default: 6219 return (EINVAL); 6220 } 6221 6222 kn->kn_hook = (caddr_t)vp; 6223 6224 v_addpollinfo(vp); 6225 if (vp->v_pollinfo == NULL) 6226 return (ENOMEM); 6227 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 6228 vhold(vp); 6229 knlist_add(knl, kn, 0); 6230 6231 return (0); 6232 } 6233 6234 /* 6235 * Detach knote from vnode 6236 */ 6237 static void 6238 filt_vfsdetach(struct knote *kn) 6239 { 6240 struct vnode *vp = (struct vnode *)kn->kn_hook; 6241 6242 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 6243 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 6244 vdrop(vp); 6245 } 6246 6247 /*ARGSUSED*/ 6248 static int 6249 filt_vfsread(struct knote *kn, long hint) 6250 { 6251 struct vnode *vp = (struct vnode *)kn->kn_hook; 6252 struct vattr va; 6253 int res; 6254 6255 /* 6256 * filesystem is gone, so set the EOF flag and schedule 6257 * the knote for deletion. 6258 */ 6259 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6260 VI_LOCK(vp); 6261 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6262 VI_UNLOCK(vp); 6263 return (1); 6264 } 6265 6266 if (VOP_GETATTR(vp, &va, curthread->td_ucred)) 6267 return (0); 6268 6269 VI_LOCK(vp); 6270 kn->kn_data = va.va_size - kn->kn_fp->f_offset; 6271 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; 6272 VI_UNLOCK(vp); 6273 return (res); 6274 } 6275 6276 /*ARGSUSED*/ 6277 static int 6278 filt_vfswrite(struct knote *kn, long hint) 6279 { 6280 struct vnode *vp = (struct vnode *)kn->kn_hook; 6281 6282 VI_LOCK(vp); 6283 6284 /* 6285 * filesystem is gone, so set the EOF flag and schedule 6286 * the knote for deletion. 6287 */ 6288 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) 6289 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6290 6291 kn->kn_data = 0; 6292 VI_UNLOCK(vp); 6293 return (1); 6294 } 6295 6296 static int 6297 filt_vfsvnode(struct knote *kn, long hint) 6298 { 6299 struct vnode *vp = (struct vnode *)kn->kn_hook; 6300 int res; 6301 6302 VI_LOCK(vp); 6303 if (kn->kn_sfflags & hint) 6304 kn->kn_fflags |= hint; 6305 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6306 kn->kn_flags |= EV_EOF; 6307 VI_UNLOCK(vp); 6308 return (1); 6309 } 6310 res = (kn->kn_fflags != 0); 6311 VI_UNLOCK(vp); 6312 return (res); 6313 } 6314 6315 /* 6316 * Returns whether the directory is empty or not. 6317 * If it is empty, the return value is 0; otherwise 6318 * the return value is an error value (which may 6319 * be ENOTEMPTY). 6320 */ 6321 int 6322 vfs_emptydir(struct vnode *vp) 6323 { 6324 struct uio uio; 6325 struct iovec iov; 6326 struct dirent *dirent, *dp, *endp; 6327 int error, eof; 6328 6329 error = 0; 6330 eof = 0; 6331 6332 ASSERT_VOP_LOCKED(vp, "vfs_emptydir"); 6333 6334 dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK); 6335 iov.iov_base = dirent; 6336 iov.iov_len = sizeof(struct dirent); 6337 6338 uio.uio_iov = &iov; 6339 uio.uio_iovcnt = 1; 6340 uio.uio_offset = 0; 6341 uio.uio_resid = sizeof(struct dirent); 6342 uio.uio_segflg = UIO_SYSSPACE; 6343 uio.uio_rw = UIO_READ; 6344 uio.uio_td = curthread; 6345 6346 while (eof == 0 && error == 0) { 6347 error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof, 6348 NULL, NULL); 6349 if (error != 0) 6350 break; 6351 endp = (void *)((uint8_t *)dirent + 6352 sizeof(struct dirent) - uio.uio_resid); 6353 for (dp = dirent; dp < endp; 6354 dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) { 6355 if (dp->d_type == DT_WHT) 6356 continue; 6357 if (dp->d_namlen == 0) 6358 continue; 6359 if (dp->d_type != DT_DIR && 6360 dp->d_type != DT_UNKNOWN) { 6361 error = ENOTEMPTY; 6362 break; 6363 } 6364 if (dp->d_namlen > 2) { 6365 error = ENOTEMPTY; 6366 break; 6367 } 6368 if (dp->d_namlen == 1 && 6369 dp->d_name[0] != '.') { 6370 error = ENOTEMPTY; 6371 break; 6372 } 6373 if (dp->d_namlen == 2 && 6374 dp->d_name[1] != '.') { 6375 error = ENOTEMPTY; 6376 break; 6377 } 6378 uio.uio_resid = sizeof(struct dirent); 6379 } 6380 } 6381 free(dirent, M_TEMP); 6382 return (error); 6383 } 6384 6385 int 6386 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 6387 { 6388 int error; 6389 6390 if (dp->d_reclen > ap->a_uio->uio_resid) 6391 return (ENAMETOOLONG); 6392 error = uiomove(dp, dp->d_reclen, ap->a_uio); 6393 if (error) { 6394 if (ap->a_ncookies != NULL) { 6395 if (ap->a_cookies != NULL) 6396 free(ap->a_cookies, M_TEMP); 6397 ap->a_cookies = NULL; 6398 *ap->a_ncookies = 0; 6399 } 6400 return (error); 6401 } 6402 if (ap->a_ncookies == NULL) 6403 return (0); 6404 6405 KASSERT(ap->a_cookies, 6406 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 6407 6408 *ap->a_cookies = realloc(*ap->a_cookies, 6409 (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO); 6410 (*ap->a_cookies)[*ap->a_ncookies] = off; 6411 *ap->a_ncookies += 1; 6412 return (0); 6413 } 6414 6415 /* 6416 * The purpose of this routine is to remove granularity from accmode_t, 6417 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 6418 * VADMIN and VAPPEND. 6419 * 6420 * If it returns 0, the caller is supposed to continue with the usual 6421 * access checks using 'accmode' as modified by this routine. If it 6422 * returns nonzero value, the caller is supposed to return that value 6423 * as errno. 6424 * 6425 * Note that after this routine runs, accmode may be zero. 6426 */ 6427 int 6428 vfs_unixify_accmode(accmode_t *accmode) 6429 { 6430 /* 6431 * There is no way to specify explicit "deny" rule using 6432 * file mode or POSIX.1e ACLs. 6433 */ 6434 if (*accmode & VEXPLICIT_DENY) { 6435 *accmode = 0; 6436 return (0); 6437 } 6438 6439 /* 6440 * None of these can be translated into usual access bits. 6441 * Also, the common case for NFSv4 ACLs is to not contain 6442 * either of these bits. Caller should check for VWRITE 6443 * on the containing directory instead. 6444 */ 6445 if (*accmode & (VDELETE_CHILD | VDELETE)) 6446 return (EPERM); 6447 6448 if (*accmode & VADMIN_PERMS) { 6449 *accmode &= ~VADMIN_PERMS; 6450 *accmode |= VADMIN; 6451 } 6452 6453 /* 6454 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 6455 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 6456 */ 6457 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 6458 6459 return (0); 6460 } 6461 6462 /* 6463 * Clear out a doomed vnode (if any) and replace it with a new one as long 6464 * as the fs is not being unmounted. Return the root vnode to the caller. 6465 */ 6466 static int __noinline 6467 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp) 6468 { 6469 struct vnode *vp; 6470 int error; 6471 6472 restart: 6473 if (mp->mnt_rootvnode != NULL) { 6474 MNT_ILOCK(mp); 6475 vp = mp->mnt_rootvnode; 6476 if (vp != NULL) { 6477 if (!VN_IS_DOOMED(vp)) { 6478 vrefact(vp); 6479 MNT_IUNLOCK(mp); 6480 error = vn_lock(vp, flags); 6481 if (error == 0) { 6482 *vpp = vp; 6483 return (0); 6484 } 6485 vrele(vp); 6486 goto restart; 6487 } 6488 /* 6489 * Clear the old one. 6490 */ 6491 mp->mnt_rootvnode = NULL; 6492 } 6493 MNT_IUNLOCK(mp); 6494 if (vp != NULL) { 6495 vfs_op_barrier_wait(mp); 6496 vrele(vp); 6497 } 6498 } 6499 error = VFS_CACHEDROOT(mp, flags, vpp); 6500 if (error != 0) 6501 return (error); 6502 if (mp->mnt_vfs_ops == 0) { 6503 MNT_ILOCK(mp); 6504 if (mp->mnt_vfs_ops != 0) { 6505 MNT_IUNLOCK(mp); 6506 return (0); 6507 } 6508 if (mp->mnt_rootvnode == NULL) { 6509 vrefact(*vpp); 6510 mp->mnt_rootvnode = *vpp; 6511 } else { 6512 if (mp->mnt_rootvnode != *vpp) { 6513 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) { 6514 panic("%s: mismatch between vnode returned " 6515 " by VFS_CACHEDROOT and the one cached " 6516 " (%p != %p)", 6517 __func__, *vpp, mp->mnt_rootvnode); 6518 } 6519 } 6520 } 6521 MNT_IUNLOCK(mp); 6522 } 6523 return (0); 6524 } 6525 6526 int 6527 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp) 6528 { 6529 struct mount_pcpu *mpcpu; 6530 struct vnode *vp; 6531 int error; 6532 6533 if (!vfs_op_thread_enter(mp, mpcpu)) 6534 return (vfs_cache_root_fallback(mp, flags, vpp)); 6535 vp = atomic_load_ptr(&mp->mnt_rootvnode); 6536 if (vp == NULL || VN_IS_DOOMED(vp)) { 6537 vfs_op_thread_exit(mp, mpcpu); 6538 return (vfs_cache_root_fallback(mp, flags, vpp)); 6539 } 6540 vrefact(vp); 6541 vfs_op_thread_exit(mp, mpcpu); 6542 error = vn_lock(vp, flags); 6543 if (error != 0) { 6544 vrele(vp); 6545 return (vfs_cache_root_fallback(mp, flags, vpp)); 6546 } 6547 *vpp = vp; 6548 return (0); 6549 } 6550 6551 struct vnode * 6552 vfs_cache_root_clear(struct mount *mp) 6553 { 6554 struct vnode *vp; 6555 6556 /* 6557 * ops > 0 guarantees there is nobody who can see this vnode 6558 */ 6559 MPASS(mp->mnt_vfs_ops > 0); 6560 vp = mp->mnt_rootvnode; 6561 if (vp != NULL) 6562 vn_seqc_write_begin(vp); 6563 mp->mnt_rootvnode = NULL; 6564 return (vp); 6565 } 6566 6567 void 6568 vfs_cache_root_set(struct mount *mp, struct vnode *vp) 6569 { 6570 6571 MPASS(mp->mnt_vfs_ops > 0); 6572 vrefact(vp); 6573 mp->mnt_rootvnode = vp; 6574 } 6575 6576 /* 6577 * These are helper functions for filesystems to traverse all 6578 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 6579 * 6580 * This interface replaces MNT_VNODE_FOREACH. 6581 */ 6582 6583 struct vnode * 6584 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 6585 { 6586 struct vnode *vp; 6587 6588 if (should_yield()) 6589 kern_yield(PRI_USER); 6590 MNT_ILOCK(mp); 6591 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6592 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL; 6593 vp = TAILQ_NEXT(vp, v_nmntvnodes)) { 6594 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6595 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6596 continue; 6597 VI_LOCK(vp); 6598 if (VN_IS_DOOMED(vp)) { 6599 VI_UNLOCK(vp); 6600 continue; 6601 } 6602 break; 6603 } 6604 if (vp == NULL) { 6605 __mnt_vnode_markerfree_all(mvp, mp); 6606 /* MNT_IUNLOCK(mp); -- done in above function */ 6607 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 6608 return (NULL); 6609 } 6610 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6611 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6612 MNT_IUNLOCK(mp); 6613 return (vp); 6614 } 6615 6616 struct vnode * 6617 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 6618 { 6619 struct vnode *vp; 6620 6621 *mvp = vn_alloc_marker(mp); 6622 MNT_ILOCK(mp); 6623 MNT_REF(mp); 6624 6625 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 6626 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6627 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6628 continue; 6629 VI_LOCK(vp); 6630 if (VN_IS_DOOMED(vp)) { 6631 VI_UNLOCK(vp); 6632 continue; 6633 } 6634 break; 6635 } 6636 if (vp == NULL) { 6637 MNT_REL(mp); 6638 MNT_IUNLOCK(mp); 6639 vn_free_marker(*mvp); 6640 *mvp = NULL; 6641 return (NULL); 6642 } 6643 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6644 MNT_IUNLOCK(mp); 6645 return (vp); 6646 } 6647 6648 void 6649 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 6650 { 6651 6652 if (*mvp == NULL) { 6653 MNT_IUNLOCK(mp); 6654 return; 6655 } 6656 6657 mtx_assert(MNT_MTX(mp), MA_OWNED); 6658 6659 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6660 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6661 MNT_REL(mp); 6662 MNT_IUNLOCK(mp); 6663 vn_free_marker(*mvp); 6664 *mvp = NULL; 6665 } 6666 6667 /* 6668 * These are helper functions for filesystems to traverse their 6669 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h 6670 */ 6671 static void 6672 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 6673 { 6674 6675 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6676 6677 MNT_ILOCK(mp); 6678 MNT_REL(mp); 6679 MNT_IUNLOCK(mp); 6680 vn_free_marker(*mvp); 6681 *mvp = NULL; 6682 } 6683 6684 /* 6685 * Relock the mp mount vnode list lock with the vp vnode interlock in the 6686 * conventional lock order during mnt_vnode_next_lazy iteration. 6687 * 6688 * On entry, the mount vnode list lock is held and the vnode interlock is not. 6689 * The list lock is dropped and reacquired. On success, both locks are held. 6690 * On failure, the mount vnode list lock is held but the vnode interlock is 6691 * not, and the procedure may have yielded. 6692 */ 6693 static bool 6694 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp, 6695 struct vnode *vp) 6696 { 6697 6698 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER && 6699 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp, 6700 ("%s: bad marker", __func__)); 6701 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp, 6702 ("%s: inappropriate vnode", __func__)); 6703 ASSERT_VI_UNLOCKED(vp, __func__); 6704 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 6705 6706 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist); 6707 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist); 6708 6709 /* 6710 * Note we may be racing against vdrop which transitioned the hold 6711 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine, 6712 * if we are the only user after we get the interlock we will just 6713 * vdrop. 6714 */ 6715 vhold(vp); 6716 mtx_unlock(&mp->mnt_listmtx); 6717 VI_LOCK(vp); 6718 if (VN_IS_DOOMED(vp)) { 6719 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 6720 goto out_lost; 6721 } 6722 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 6723 /* 6724 * There is nothing to do if we are the last user. 6725 */ 6726 if (!refcount_release_if_not_last(&vp->v_holdcnt)) 6727 goto out_lost; 6728 mtx_lock(&mp->mnt_listmtx); 6729 return (true); 6730 out_lost: 6731 vdropl(vp); 6732 maybe_yield(); 6733 mtx_lock(&mp->mnt_listmtx); 6734 return (false); 6735 } 6736 6737 static struct vnode * 6738 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6739 void *cbarg) 6740 { 6741 struct vnode *vp; 6742 6743 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 6744 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6745 restart: 6746 vp = TAILQ_NEXT(*mvp, v_lazylist); 6747 while (vp != NULL) { 6748 if (vp->v_type == VMARKER) { 6749 vp = TAILQ_NEXT(vp, v_lazylist); 6750 continue; 6751 } 6752 /* 6753 * See if we want to process the vnode. Note we may encounter a 6754 * long string of vnodes we don't care about and hog the list 6755 * as a result. Check for it and requeue the marker. 6756 */ 6757 VNPASS(!VN_IS_DOOMED(vp), vp); 6758 if (!cb(vp, cbarg)) { 6759 if (!should_yield()) { 6760 vp = TAILQ_NEXT(vp, v_lazylist); 6761 continue; 6762 } 6763 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, 6764 v_lazylist); 6765 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, 6766 v_lazylist); 6767 mtx_unlock(&mp->mnt_listmtx); 6768 kern_yield(PRI_USER); 6769 mtx_lock(&mp->mnt_listmtx); 6770 goto restart; 6771 } 6772 /* 6773 * Try-lock because this is the wrong lock order. 6774 */ 6775 if (!VI_TRYLOCK(vp) && 6776 !mnt_vnode_next_lazy_relock(*mvp, mp, vp)) 6777 goto restart; 6778 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 6779 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 6780 ("alien vnode on the lazy list %p %p", vp, mp)); 6781 VNPASS(vp->v_mount == mp, vp); 6782 VNPASS(!VN_IS_DOOMED(vp), vp); 6783 break; 6784 } 6785 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 6786 6787 /* Check if we are done */ 6788 if (vp == NULL) { 6789 mtx_unlock(&mp->mnt_listmtx); 6790 mnt_vnode_markerfree_lazy(mvp, mp); 6791 return (NULL); 6792 } 6793 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist); 6794 mtx_unlock(&mp->mnt_listmtx); 6795 ASSERT_VI_LOCKED(vp, "lazy iter"); 6796 return (vp); 6797 } 6798 6799 struct vnode * 6800 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6801 void *cbarg) 6802 { 6803 6804 if (should_yield()) 6805 kern_yield(PRI_USER); 6806 mtx_lock(&mp->mnt_listmtx); 6807 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 6808 } 6809 6810 struct vnode * 6811 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6812 void *cbarg) 6813 { 6814 struct vnode *vp; 6815 6816 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist)) 6817 return (NULL); 6818 6819 *mvp = vn_alloc_marker(mp); 6820 MNT_ILOCK(mp); 6821 MNT_REF(mp); 6822 MNT_IUNLOCK(mp); 6823 6824 mtx_lock(&mp->mnt_listmtx); 6825 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist); 6826 if (vp == NULL) { 6827 mtx_unlock(&mp->mnt_listmtx); 6828 mnt_vnode_markerfree_lazy(mvp, mp); 6829 return (NULL); 6830 } 6831 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist); 6832 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 6833 } 6834 6835 void 6836 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 6837 { 6838 6839 if (*mvp == NULL) 6840 return; 6841 6842 mtx_lock(&mp->mnt_listmtx); 6843 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 6844 mtx_unlock(&mp->mnt_listmtx); 6845 mnt_vnode_markerfree_lazy(mvp, mp); 6846 } 6847 6848 int 6849 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp) 6850 { 6851 6852 if ((cnp->cn_flags & NOEXECCHECK) != 0) { 6853 cnp->cn_flags &= ~NOEXECCHECK; 6854 return (0); 6855 } 6856 6857 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread)); 6858 } 6859 6860 /* 6861 * Do not use this variant unless you have means other than the hold count 6862 * to prevent the vnode from getting freed. 6863 */ 6864 void 6865 vn_seqc_write_begin_locked(struct vnode *vp) 6866 { 6867 6868 ASSERT_VI_LOCKED(vp, __func__); 6869 VNPASS(vp->v_holdcnt > 0, vp); 6870 VNPASS(vp->v_seqc_users >= 0, vp); 6871 vp->v_seqc_users++; 6872 if (vp->v_seqc_users == 1) 6873 seqc_sleepable_write_begin(&vp->v_seqc); 6874 } 6875 6876 void 6877 vn_seqc_write_begin(struct vnode *vp) 6878 { 6879 6880 VI_LOCK(vp); 6881 vn_seqc_write_begin_locked(vp); 6882 VI_UNLOCK(vp); 6883 } 6884 6885 void 6886 vn_seqc_write_end_locked(struct vnode *vp) 6887 { 6888 6889 ASSERT_VI_LOCKED(vp, __func__); 6890 VNPASS(vp->v_seqc_users > 0, vp); 6891 vp->v_seqc_users--; 6892 if (vp->v_seqc_users == 0) 6893 seqc_sleepable_write_end(&vp->v_seqc); 6894 } 6895 6896 void 6897 vn_seqc_write_end(struct vnode *vp) 6898 { 6899 6900 VI_LOCK(vp); 6901 vn_seqc_write_end_locked(vp); 6902 VI_UNLOCK(vp); 6903 } 6904 6905 /* 6906 * Special case handling for allocating and freeing vnodes. 6907 * 6908 * The counter remains unchanged on free so that a doomed vnode will 6909 * keep testing as in modify as long as it is accessible with SMR. 6910 */ 6911 static void 6912 vn_seqc_init(struct vnode *vp) 6913 { 6914 6915 vp->v_seqc = 0; 6916 vp->v_seqc_users = 0; 6917 } 6918 6919 static void 6920 vn_seqc_write_end_free(struct vnode *vp) 6921 { 6922 6923 VNPASS(seqc_in_modify(vp->v_seqc), vp); 6924 VNPASS(vp->v_seqc_users == 1, vp); 6925 } 6926 6927 void 6928 vn_irflag_set_locked(struct vnode *vp, short toset) 6929 { 6930 short flags; 6931 6932 ASSERT_VI_LOCKED(vp, __func__); 6933 flags = vn_irflag_read(vp); 6934 VNASSERT((flags & toset) == 0, vp, 6935 ("%s: some of the passed flags already set (have %d, passed %d)\n", 6936 __func__, flags, toset)); 6937 atomic_store_short(&vp->v_irflag, flags | toset); 6938 } 6939 6940 void 6941 vn_irflag_set(struct vnode *vp, short toset) 6942 { 6943 6944 VI_LOCK(vp); 6945 vn_irflag_set_locked(vp, toset); 6946 VI_UNLOCK(vp); 6947 } 6948 6949 void 6950 vn_irflag_set_cond_locked(struct vnode *vp, short toset) 6951 { 6952 short flags; 6953 6954 ASSERT_VI_LOCKED(vp, __func__); 6955 flags = vn_irflag_read(vp); 6956 atomic_store_short(&vp->v_irflag, flags | toset); 6957 } 6958 6959 void 6960 vn_irflag_set_cond(struct vnode *vp, short toset) 6961 { 6962 6963 VI_LOCK(vp); 6964 vn_irflag_set_cond_locked(vp, toset); 6965 VI_UNLOCK(vp); 6966 } 6967 6968 void 6969 vn_irflag_unset_locked(struct vnode *vp, short tounset) 6970 { 6971 short flags; 6972 6973 ASSERT_VI_LOCKED(vp, __func__); 6974 flags = vn_irflag_read(vp); 6975 VNASSERT((flags & tounset) == tounset, vp, 6976 ("%s: some of the passed flags not set (have %d, passed %d)\n", 6977 __func__, flags, tounset)); 6978 atomic_store_short(&vp->v_irflag, flags & ~tounset); 6979 } 6980 6981 void 6982 vn_irflag_unset(struct vnode *vp, short tounset) 6983 { 6984 6985 VI_LOCK(vp); 6986 vn_irflag_unset_locked(vp, tounset); 6987 VI_UNLOCK(vp); 6988 } 6989