1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 35 */ 36 37 /* 38 * External virtual filesystem routines 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/bio.h> 49 #include <sys/buf.h> 50 #include <sys/condvar.h> 51 #include <sys/conf.h> 52 #include <sys/dirent.h> 53 #include <sys/event.h> 54 #include <sys/eventhandler.h> 55 #include <sys/extattr.h> 56 #include <sys/file.h> 57 #include <sys/fcntl.h> 58 #include <sys/jail.h> 59 #include <sys/kdb.h> 60 #include <sys/kernel.h> 61 #include <sys/kthread.h> 62 #include <sys/lockf.h> 63 #include <sys/malloc.h> 64 #include <sys/mount.h> 65 #include <sys/namei.h> 66 #include <sys/priv.h> 67 #include <sys/reboot.h> 68 #include <sys/sleepqueue.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vmmeter.h> 73 #include <sys/vnode.h> 74 75 #include <machine/stdarg.h> 76 77 #include <security/mac/mac_framework.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_kern.h> 86 #include <vm/uma.h> 87 88 #ifdef DDB 89 #include <ddb/ddb.h> 90 #endif 91 92 #define WI_MPSAFEQ 0 93 #define WI_GIANTQ 1 94 95 static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure"); 96 97 static void delmntque(struct vnode *vp); 98 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 99 int slpflag, int slptimeo); 100 static void syncer_shutdown(void *arg, int howto); 101 static int vtryrecycle(struct vnode *vp); 102 static void vbusy(struct vnode *vp); 103 static void vinactive(struct vnode *, struct thread *); 104 static void v_incr_usecount(struct vnode *); 105 static void v_decr_usecount(struct vnode *); 106 static void v_decr_useonly(struct vnode *); 107 static void v_upgrade_usecount(struct vnode *); 108 static void vfree(struct vnode *); 109 static void vnlru_free(int); 110 static void vgonel(struct vnode *); 111 static void vfs_knllock(void *arg); 112 static void vfs_knlunlock(void *arg); 113 static void vfs_knl_assert_locked(void *arg); 114 static void vfs_knl_assert_unlocked(void *arg); 115 static void destroy_vpollinfo(struct vpollinfo *vi); 116 117 /* 118 * Number of vnodes in existence. Increased whenever getnewvnode() 119 * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed 120 * vnode. 121 */ 122 static unsigned long numvnodes; 123 124 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, ""); 125 126 /* 127 * Conversion tables for conversion from vnode types to inode formats 128 * and back. 129 */ 130 enum vtype iftovt_tab[16] = { 131 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 132 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 133 }; 134 int vttoif_tab[10] = { 135 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 136 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 137 }; 138 139 /* 140 * List of vnodes that are ready for recycling. 141 */ 142 static TAILQ_HEAD(freelst, vnode) vnode_free_list; 143 144 /* 145 * Free vnode target. Free vnodes may simply be files which have been stat'd 146 * but not read. This is somewhat common, and a small cache of such files 147 * should be kept to avoid recreation costs. 148 */ 149 static u_long wantfreevnodes; 150 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, ""); 151 /* Number of vnodes in the free list. */ 152 static u_long freevnodes; 153 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, ""); 154 155 static int vlru_allow_cache_src; 156 SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW, 157 &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode"); 158 159 /* 160 * Various variables used for debugging the new implementation of 161 * reassignbuf(). 162 * XXX these are probably of (very) limited utility now. 163 */ 164 static int reassignbufcalls; 165 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, ""); 166 167 /* 168 * Cache for the mount type id assigned to NFS. This is used for 169 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c. 170 */ 171 int nfs_mount_type = -1; 172 173 /* To keep more than one thread at a time from running vfs_getnewfsid */ 174 static struct mtx mntid_mtx; 175 176 /* 177 * Lock for any access to the following: 178 * vnode_free_list 179 * numvnodes 180 * freevnodes 181 */ 182 static struct mtx vnode_free_list_mtx; 183 184 /* Publicly exported FS */ 185 struct nfs_public nfs_pub; 186 187 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 188 static uma_zone_t vnode_zone; 189 static uma_zone_t vnodepoll_zone; 190 191 /* Set to 1 to print out reclaim of active vnodes */ 192 int prtactive; 193 194 /* 195 * The workitem queue. 196 * 197 * It is useful to delay writes of file data and filesystem metadata 198 * for tens of seconds so that quickly created and deleted files need 199 * not waste disk bandwidth being created and removed. To realize this, 200 * we append vnodes to a "workitem" queue. When running with a soft 201 * updates implementation, most pending metadata dependencies should 202 * not wait for more than a few seconds. Thus, mounted on block devices 203 * are delayed only about a half the time that file data is delayed. 204 * Similarly, directory updates are more critical, so are only delayed 205 * about a third the time that file data is delayed. Thus, there are 206 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 207 * one each second (driven off the filesystem syncer process). The 208 * syncer_delayno variable indicates the next queue that is to be processed. 209 * Items that need to be processed soon are placed in this queue: 210 * 211 * syncer_workitem_pending[syncer_delayno] 212 * 213 * A delay of fifteen seconds is done by placing the request fifteen 214 * entries later in the queue: 215 * 216 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 217 * 218 */ 219 static int syncer_delayno; 220 static long syncer_mask; 221 LIST_HEAD(synclist, bufobj); 222 static struct synclist *syncer_workitem_pending[2]; 223 /* 224 * The sync_mtx protects: 225 * bo->bo_synclist 226 * sync_vnode_count 227 * syncer_delayno 228 * syncer_state 229 * syncer_workitem_pending 230 * syncer_worklist_len 231 * rushjob 232 */ 233 static struct mtx sync_mtx; 234 static struct cv sync_wakeup; 235 236 #define SYNCER_MAXDELAY 32 237 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 238 static int syncdelay = 30; /* max time to delay syncing data */ 239 static int filedelay = 30; /* time to delay syncing files */ 240 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, ""); 241 static int dirdelay = 29; /* time to delay syncing directories */ 242 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, ""); 243 static int metadelay = 28; /* time to delay syncing metadata */ 244 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, ""); 245 static int rushjob; /* number of slots to run ASAP */ 246 static int stat_rush_requests; /* number of times I/O speeded up */ 247 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, ""); 248 249 /* 250 * When shutting down the syncer, run it at four times normal speed. 251 */ 252 #define SYNCER_SHUTDOWN_SPEEDUP 4 253 static int sync_vnode_count; 254 static int syncer_worklist_len; 255 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 256 syncer_state; 257 258 /* 259 * Number of vnodes we want to exist at any one time. This is mostly used 260 * to size hash tables in vnode-related code. It is normally not used in 261 * getnewvnode(), as wantfreevnodes is normally nonzero.) 262 * 263 * XXX desiredvnodes is historical cruft and should not exist. 264 */ 265 int desiredvnodes; 266 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, 267 &desiredvnodes, 0, "Maximum number of vnodes"); 268 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 269 &wantfreevnodes, 0, "Minimum number of vnodes (legacy)"); 270 static int vnlru_nowhere; 271 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, 272 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 273 274 /* 275 * Macros to control when a vnode is freed and recycled. All require 276 * the vnode interlock. 277 */ 278 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt) 279 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt) 280 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt) 281 282 283 /* 284 * Initialize the vnode management data structures. 285 */ 286 #ifndef MAXVNODES_MAX 287 #define MAXVNODES_MAX 100000 288 #endif 289 static void 290 vntblinit(void *dummy __unused) 291 { 292 293 /* 294 * Desiredvnodes is a function of the physical memory size and 295 * the kernel's heap size. Specifically, desiredvnodes scales 296 * in proportion to the physical memory size until two fifths 297 * of the kernel's heap size is consumed by vnodes and vm 298 * objects. 299 */ 300 desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size / 301 (5 * (sizeof(struct vm_object) + sizeof(struct vnode)))); 302 if (desiredvnodes > MAXVNODES_MAX) { 303 if (bootverbose) 304 printf("Reducing kern.maxvnodes %d -> %d\n", 305 desiredvnodes, MAXVNODES_MAX); 306 desiredvnodes = MAXVNODES_MAX; 307 } 308 wantfreevnodes = desiredvnodes / 4; 309 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 310 TAILQ_INIT(&vnode_free_list); 311 mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF); 312 vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL, 313 NULL, NULL, UMA_ALIGN_PTR, 0); 314 vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo), 315 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 316 /* 317 * Initialize the filesystem syncer. 318 */ 319 syncer_workitem_pending[WI_MPSAFEQ] = hashinit(syncer_maxdelay, M_VNODE, 320 &syncer_mask); 321 syncer_workitem_pending[WI_GIANTQ] = hashinit(syncer_maxdelay, M_VNODE, 322 &syncer_mask); 323 syncer_maxdelay = syncer_mask + 1; 324 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 325 cv_init(&sync_wakeup, "syncer"); 326 } 327 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 328 329 330 /* 331 * Mark a mount point as busy. Used to synchronize access and to delay 332 * unmounting. Eventually, mountlist_mtx is not released on failure. 333 */ 334 int 335 vfs_busy(struct mount *mp, int flags) 336 { 337 338 MPASS((flags & ~MBF_MASK) == 0); 339 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 340 341 MNT_ILOCK(mp); 342 MNT_REF(mp); 343 /* 344 * If mount point is currenly being unmounted, sleep until the 345 * mount point fate is decided. If thread doing the unmounting fails, 346 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 347 * that this mount point has survived the unmount attempt and vfs_busy 348 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 349 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 350 * about to be really destroyed. vfs_busy needs to release its 351 * reference on the mount point in this case and return with ENOENT, 352 * telling the caller that mount mount it tried to busy is no longer 353 * valid. 354 */ 355 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 356 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 357 MNT_REL(mp); 358 MNT_IUNLOCK(mp); 359 CTR1(KTR_VFS, "%s: failed busying before sleeping", 360 __func__); 361 return (ENOENT); 362 } 363 if (flags & MBF_MNTLSTLOCK) 364 mtx_unlock(&mountlist_mtx); 365 mp->mnt_kern_flag |= MNTK_MWAIT; 366 msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0); 367 if (flags & MBF_MNTLSTLOCK) 368 mtx_lock(&mountlist_mtx); 369 } 370 if (flags & MBF_MNTLSTLOCK) 371 mtx_unlock(&mountlist_mtx); 372 mp->mnt_lockref++; 373 MNT_IUNLOCK(mp); 374 return (0); 375 } 376 377 /* 378 * Free a busy filesystem. 379 */ 380 void 381 vfs_unbusy(struct mount *mp) 382 { 383 384 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 385 MNT_ILOCK(mp); 386 MNT_REL(mp); 387 KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref")); 388 mp->mnt_lockref--; 389 if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 390 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 391 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 392 mp->mnt_kern_flag &= ~MNTK_DRAINING; 393 wakeup(&mp->mnt_lockref); 394 } 395 MNT_IUNLOCK(mp); 396 } 397 398 /* 399 * Lookup a mount point by filesystem identifier. 400 */ 401 struct mount * 402 vfs_getvfs(fsid_t *fsid) 403 { 404 struct mount *mp; 405 406 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 407 mtx_lock(&mountlist_mtx); 408 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 409 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 410 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 411 vfs_ref(mp); 412 mtx_unlock(&mountlist_mtx); 413 return (mp); 414 } 415 } 416 mtx_unlock(&mountlist_mtx); 417 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 418 return ((struct mount *) 0); 419 } 420 421 /* 422 * Lookup a mount point by filesystem identifier, busying it before 423 * returning. 424 */ 425 struct mount * 426 vfs_busyfs(fsid_t *fsid) 427 { 428 struct mount *mp; 429 int error; 430 431 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 432 mtx_lock(&mountlist_mtx); 433 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 434 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 435 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 436 error = vfs_busy(mp, MBF_MNTLSTLOCK); 437 if (error) { 438 mtx_unlock(&mountlist_mtx); 439 return (NULL); 440 } 441 return (mp); 442 } 443 } 444 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 445 mtx_unlock(&mountlist_mtx); 446 return ((struct mount *) 0); 447 } 448 449 /* 450 * Check if a user can access privileged mount options. 451 */ 452 int 453 vfs_suser(struct mount *mp, struct thread *td) 454 { 455 int error; 456 457 /* 458 * If the thread is jailed, but this is not a jail-friendly file 459 * system, deny immediately. 460 */ 461 if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred)) 462 return (EPERM); 463 464 /* 465 * If the file system was mounted outside the jail of the calling 466 * thread, deny immediately. 467 */ 468 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 469 return (EPERM); 470 471 /* 472 * If file system supports delegated administration, we don't check 473 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 474 * by the file system itself. 475 * If this is not the user that did original mount, we check for 476 * the PRIV_VFS_MOUNT_OWNER privilege. 477 */ 478 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 479 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 480 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 481 return (error); 482 } 483 return (0); 484 } 485 486 /* 487 * Get a new unique fsid. Try to make its val[0] unique, since this value 488 * will be used to create fake device numbers for stat(). Also try (but 489 * not so hard) make its val[0] unique mod 2^16, since some emulators only 490 * support 16-bit device numbers. We end up with unique val[0]'s for the 491 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 492 * 493 * Keep in mind that several mounts may be running in parallel. Starting 494 * the search one past where the previous search terminated is both a 495 * micro-optimization and a defense against returning the same fsid to 496 * different mounts. 497 */ 498 void 499 vfs_getnewfsid(struct mount *mp) 500 { 501 static uint16_t mntid_base; 502 struct mount *nmp; 503 fsid_t tfsid; 504 int mtype; 505 506 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 507 mtx_lock(&mntid_mtx); 508 mtype = mp->mnt_vfc->vfc_typenum; 509 tfsid.val[1] = mtype; 510 mtype = (mtype & 0xFF) << 24; 511 for (;;) { 512 tfsid.val[0] = makedev(255, 513 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 514 mntid_base++; 515 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 516 break; 517 vfs_rel(nmp); 518 } 519 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 520 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 521 mtx_unlock(&mntid_mtx); 522 } 523 524 /* 525 * Knob to control the precision of file timestamps: 526 * 527 * 0 = seconds only; nanoseconds zeroed. 528 * 1 = seconds and nanoseconds, accurate within 1/HZ. 529 * 2 = seconds and nanoseconds, truncated to microseconds. 530 * >=3 = seconds and nanoseconds, maximum precision. 531 */ 532 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 533 534 static int timestamp_precision = TSP_SEC; 535 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 536 ×tamp_precision, 0, ""); 537 538 /* 539 * Get a current timestamp. 540 */ 541 void 542 vfs_timestamp(struct timespec *tsp) 543 { 544 struct timeval tv; 545 546 switch (timestamp_precision) { 547 case TSP_SEC: 548 tsp->tv_sec = time_second; 549 tsp->tv_nsec = 0; 550 break; 551 case TSP_HZ: 552 getnanotime(tsp); 553 break; 554 case TSP_USEC: 555 microtime(&tv); 556 TIMEVAL_TO_TIMESPEC(&tv, tsp); 557 break; 558 case TSP_NSEC: 559 default: 560 nanotime(tsp); 561 break; 562 } 563 } 564 565 /* 566 * Set vnode attributes to VNOVAL 567 */ 568 void 569 vattr_null(struct vattr *vap) 570 { 571 572 vap->va_type = VNON; 573 vap->va_size = VNOVAL; 574 vap->va_bytes = VNOVAL; 575 vap->va_mode = VNOVAL; 576 vap->va_nlink = VNOVAL; 577 vap->va_uid = VNOVAL; 578 vap->va_gid = VNOVAL; 579 vap->va_fsid = VNOVAL; 580 vap->va_fileid = VNOVAL; 581 vap->va_blocksize = VNOVAL; 582 vap->va_rdev = VNOVAL; 583 vap->va_atime.tv_sec = VNOVAL; 584 vap->va_atime.tv_nsec = VNOVAL; 585 vap->va_mtime.tv_sec = VNOVAL; 586 vap->va_mtime.tv_nsec = VNOVAL; 587 vap->va_ctime.tv_sec = VNOVAL; 588 vap->va_ctime.tv_nsec = VNOVAL; 589 vap->va_birthtime.tv_sec = VNOVAL; 590 vap->va_birthtime.tv_nsec = VNOVAL; 591 vap->va_flags = VNOVAL; 592 vap->va_gen = VNOVAL; 593 vap->va_vaflags = 0; 594 } 595 596 /* 597 * This routine is called when we have too many vnodes. It attempts 598 * to free <count> vnodes and will potentially free vnodes that still 599 * have VM backing store (VM backing store is typically the cause 600 * of a vnode blowout so we want to do this). Therefore, this operation 601 * is not considered cheap. 602 * 603 * A number of conditions may prevent a vnode from being reclaimed. 604 * the buffer cache may have references on the vnode, a directory 605 * vnode may still have references due to the namei cache representing 606 * underlying files, or the vnode may be in active use. It is not 607 * desireable to reuse such vnodes. These conditions may cause the 608 * number of vnodes to reach some minimum value regardless of what 609 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 610 */ 611 static int 612 vlrureclaim(struct mount *mp) 613 { 614 struct vnode *vp; 615 int done; 616 int trigger; 617 int usevnodes; 618 int count; 619 620 /* 621 * Calculate the trigger point, don't allow user 622 * screwups to blow us up. This prevents us from 623 * recycling vnodes with lots of resident pages. We 624 * aren't trying to free memory, we are trying to 625 * free vnodes. 626 */ 627 usevnodes = desiredvnodes; 628 if (usevnodes <= 0) 629 usevnodes = 1; 630 trigger = cnt.v_page_count * 2 / usevnodes; 631 done = 0; 632 vn_start_write(NULL, &mp, V_WAIT); 633 MNT_ILOCK(mp); 634 count = mp->mnt_nvnodelistsize / 10 + 1; 635 while (count != 0) { 636 vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 637 while (vp != NULL && vp->v_type == VMARKER) 638 vp = TAILQ_NEXT(vp, v_nmntvnodes); 639 if (vp == NULL) 640 break; 641 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 642 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 643 --count; 644 if (!VI_TRYLOCK(vp)) 645 goto next_iter; 646 /* 647 * If it's been deconstructed already, it's still 648 * referenced, or it exceeds the trigger, skip it. 649 */ 650 if (vp->v_usecount || 651 (!vlru_allow_cache_src && 652 !LIST_EMPTY(&(vp)->v_cache_src)) || 653 (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL && 654 vp->v_object->resident_page_count > trigger)) { 655 VI_UNLOCK(vp); 656 goto next_iter; 657 } 658 MNT_IUNLOCK(mp); 659 vholdl(vp); 660 if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) { 661 vdrop(vp); 662 goto next_iter_mntunlocked; 663 } 664 VI_LOCK(vp); 665 /* 666 * v_usecount may have been bumped after VOP_LOCK() dropped 667 * the vnode interlock and before it was locked again. 668 * 669 * It is not necessary to recheck VI_DOOMED because it can 670 * only be set by another thread that holds both the vnode 671 * lock and vnode interlock. If another thread has the 672 * vnode lock before we get to VOP_LOCK() and obtains the 673 * vnode interlock after VOP_LOCK() drops the vnode 674 * interlock, the other thread will be unable to drop the 675 * vnode lock before our VOP_LOCK() call fails. 676 */ 677 if (vp->v_usecount || 678 (!vlru_allow_cache_src && 679 !LIST_EMPTY(&(vp)->v_cache_src)) || 680 (vp->v_object != NULL && 681 vp->v_object->resident_page_count > trigger)) { 682 VOP_UNLOCK(vp, LK_INTERLOCK); 683 goto next_iter_mntunlocked; 684 } 685 KASSERT((vp->v_iflag & VI_DOOMED) == 0, 686 ("VI_DOOMED unexpectedly detected in vlrureclaim()")); 687 vgonel(vp); 688 VOP_UNLOCK(vp, 0); 689 vdropl(vp); 690 done++; 691 next_iter_mntunlocked: 692 if ((count % 256) != 0) 693 goto relock_mnt; 694 goto yield; 695 next_iter: 696 if ((count % 256) != 0) 697 continue; 698 MNT_IUNLOCK(mp); 699 yield: 700 uio_yield(); 701 relock_mnt: 702 MNT_ILOCK(mp); 703 } 704 MNT_IUNLOCK(mp); 705 vn_finished_write(mp); 706 return done; 707 } 708 709 /* 710 * Attempt to keep the free list at wantfreevnodes length. 711 */ 712 static void 713 vnlru_free(int count) 714 { 715 struct vnode *vp; 716 int vfslocked; 717 718 mtx_assert(&vnode_free_list_mtx, MA_OWNED); 719 for (; count > 0; count--) { 720 vp = TAILQ_FIRST(&vnode_free_list); 721 /* 722 * The list can be modified while the free_list_mtx 723 * has been dropped and vp could be NULL here. 724 */ 725 if (!vp) 726 break; 727 VNASSERT(vp->v_op != NULL, vp, 728 ("vnlru_free: vnode already reclaimed.")); 729 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 730 /* 731 * Don't recycle if we can't get the interlock. 732 */ 733 if (!VI_TRYLOCK(vp)) { 734 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 735 continue; 736 } 737 VNASSERT(VCANRECYCLE(vp), vp, 738 ("vp inconsistent on freelist")); 739 freevnodes--; 740 vp->v_iflag &= ~VI_FREE; 741 vholdl(vp); 742 mtx_unlock(&vnode_free_list_mtx); 743 VI_UNLOCK(vp); 744 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 745 vtryrecycle(vp); 746 VFS_UNLOCK_GIANT(vfslocked); 747 /* 748 * If the recycled succeeded this vdrop will actually free 749 * the vnode. If not it will simply place it back on 750 * the free list. 751 */ 752 vdrop(vp); 753 mtx_lock(&vnode_free_list_mtx); 754 } 755 } 756 /* 757 * Attempt to recycle vnodes in a context that is always safe to block. 758 * Calling vlrurecycle() from the bowels of filesystem code has some 759 * interesting deadlock problems. 760 */ 761 static struct proc *vnlruproc; 762 static int vnlruproc_sig; 763 764 static void 765 vnlru_proc(void) 766 { 767 struct mount *mp, *nmp; 768 int done, vfslocked; 769 struct proc *p = vnlruproc; 770 771 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p, 772 SHUTDOWN_PRI_FIRST); 773 774 for (;;) { 775 kproc_suspend_check(p); 776 mtx_lock(&vnode_free_list_mtx); 777 if (freevnodes > wantfreevnodes) 778 vnlru_free(freevnodes - wantfreevnodes); 779 if (numvnodes <= desiredvnodes * 9 / 10) { 780 vnlruproc_sig = 0; 781 wakeup(&vnlruproc_sig); 782 msleep(vnlruproc, &vnode_free_list_mtx, 783 PVFS|PDROP, "vlruwt", hz); 784 continue; 785 } 786 mtx_unlock(&vnode_free_list_mtx); 787 done = 0; 788 mtx_lock(&mountlist_mtx); 789 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 790 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) { 791 nmp = TAILQ_NEXT(mp, mnt_list); 792 continue; 793 } 794 vfslocked = VFS_LOCK_GIANT(mp); 795 done += vlrureclaim(mp); 796 VFS_UNLOCK_GIANT(vfslocked); 797 mtx_lock(&mountlist_mtx); 798 nmp = TAILQ_NEXT(mp, mnt_list); 799 vfs_unbusy(mp); 800 } 801 mtx_unlock(&mountlist_mtx); 802 if (done == 0) { 803 #if 0 804 /* These messages are temporary debugging aids */ 805 if (vnlru_nowhere < 5) 806 printf("vnlru process getting nowhere..\n"); 807 else if (vnlru_nowhere == 5) 808 printf("vnlru process messages stopped.\n"); 809 #endif 810 vnlru_nowhere++; 811 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 812 } else 813 uio_yield(); 814 } 815 } 816 817 static struct kproc_desc vnlru_kp = { 818 "vnlru", 819 vnlru_proc, 820 &vnlruproc 821 }; 822 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 823 &vnlru_kp); 824 825 /* 826 * Routines having to do with the management of the vnode table. 827 */ 828 829 void 830 vdestroy(struct vnode *vp) 831 { 832 struct bufobj *bo; 833 834 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 835 mtx_lock(&vnode_free_list_mtx); 836 numvnodes--; 837 mtx_unlock(&vnode_free_list_mtx); 838 bo = &vp->v_bufobj; 839 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, 840 ("cleaned vnode still on the free list.")); 841 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 842 VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count")); 843 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 844 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 845 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 846 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 847 VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL")); 848 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 849 VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL")); 850 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst")); 851 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src")); 852 VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for ..")); 853 VI_UNLOCK(vp); 854 #ifdef MAC 855 mac_vnode_destroy(vp); 856 #endif 857 if (vp->v_pollinfo != NULL) 858 destroy_vpollinfo(vp->v_pollinfo); 859 #ifdef INVARIANTS 860 /* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */ 861 vp->v_op = NULL; 862 #endif 863 lockdestroy(vp->v_vnlock); 864 mtx_destroy(&vp->v_interlock); 865 mtx_destroy(BO_MTX(bo)); 866 uma_zfree(vnode_zone, vp); 867 } 868 869 /* 870 * Try to recycle a freed vnode. We abort if anyone picks up a reference 871 * before we actually vgone(). This function must be called with the vnode 872 * held to prevent the vnode from being returned to the free list midway 873 * through vgone(). 874 */ 875 static int 876 vtryrecycle(struct vnode *vp) 877 { 878 struct mount *vnmp; 879 880 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 881 VNASSERT(vp->v_holdcnt, vp, 882 ("vtryrecycle: Recycling vp %p without a reference.", vp)); 883 /* 884 * This vnode may found and locked via some other list, if so we 885 * can't recycle it yet. 886 */ 887 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 888 CTR2(KTR_VFS, 889 "%s: impossible to recycle, vp %p lock is already held", 890 __func__, vp); 891 return (EWOULDBLOCK); 892 } 893 /* 894 * Don't recycle if its filesystem is being suspended. 895 */ 896 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 897 VOP_UNLOCK(vp, 0); 898 CTR2(KTR_VFS, 899 "%s: impossible to recycle, cannot start the write for %p", 900 __func__, vp); 901 return (EBUSY); 902 } 903 /* 904 * If we got this far, we need to acquire the interlock and see if 905 * anyone picked up this vnode from another list. If not, we will 906 * mark it with DOOMED via vgonel() so that anyone who does find it 907 * will skip over it. 908 */ 909 VI_LOCK(vp); 910 if (vp->v_usecount) { 911 VOP_UNLOCK(vp, LK_INTERLOCK); 912 vn_finished_write(vnmp); 913 CTR2(KTR_VFS, 914 "%s: impossible to recycle, %p is already referenced", 915 __func__, vp); 916 return (EBUSY); 917 } 918 if ((vp->v_iflag & VI_DOOMED) == 0) 919 vgonel(vp); 920 VOP_UNLOCK(vp, LK_INTERLOCK); 921 vn_finished_write(vnmp); 922 return (0); 923 } 924 925 /* 926 * Return the next vnode from the free list. 927 */ 928 int 929 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 930 struct vnode **vpp) 931 { 932 struct vnode *vp = NULL; 933 struct bufobj *bo; 934 935 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 936 mtx_lock(&vnode_free_list_mtx); 937 /* 938 * Lend our context to reclaim vnodes if they've exceeded the max. 939 */ 940 if (freevnodes > wantfreevnodes) 941 vnlru_free(1); 942 /* 943 * Wait for available vnodes. 944 */ 945 if (numvnodes > desiredvnodes) { 946 if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) { 947 /* 948 * File system is beeing suspended, we cannot risk a 949 * deadlock here, so allocate new vnode anyway. 950 */ 951 if (freevnodes > wantfreevnodes) 952 vnlru_free(freevnodes - wantfreevnodes); 953 goto alloc; 954 } 955 if (vnlruproc_sig == 0) { 956 vnlruproc_sig = 1; /* avoid unnecessary wakeups */ 957 wakeup(vnlruproc); 958 } 959 msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS, 960 "vlruwk", hz); 961 #if 0 /* XXX Not all VFS_VGET/ffs_vget callers check returns. */ 962 if (numvnodes > desiredvnodes) { 963 mtx_unlock(&vnode_free_list_mtx); 964 return (ENFILE); 965 } 966 #endif 967 } 968 alloc: 969 numvnodes++; 970 mtx_unlock(&vnode_free_list_mtx); 971 vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO); 972 /* 973 * Setup locks. 974 */ 975 vp->v_vnlock = &vp->v_lock; 976 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 977 /* 978 * By default, don't allow shared locks unless filesystems 979 * opt-in. 980 */ 981 lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE); 982 /* 983 * Initialize bufobj. 984 */ 985 bo = &vp->v_bufobj; 986 bo->__bo_vnode = vp; 987 mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF); 988 bo->bo_ops = &buf_ops_bio; 989 bo->bo_private = vp; 990 TAILQ_INIT(&bo->bo_clean.bv_hd); 991 TAILQ_INIT(&bo->bo_dirty.bv_hd); 992 /* 993 * Initialize namecache. 994 */ 995 LIST_INIT(&vp->v_cache_src); 996 TAILQ_INIT(&vp->v_cache_dst); 997 /* 998 * Finalize various vnode identity bits. 999 */ 1000 vp->v_type = VNON; 1001 vp->v_tag = tag; 1002 vp->v_op = vops; 1003 v_incr_usecount(vp); 1004 vp->v_data = 0; 1005 #ifdef MAC 1006 mac_vnode_init(vp); 1007 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 1008 mac_vnode_associate_singlelabel(mp, vp); 1009 else if (mp == NULL && vops != &dead_vnodeops) 1010 printf("NULL mp in getnewvnode()\n"); 1011 #endif 1012 if (mp != NULL) { 1013 bo->bo_bsize = mp->mnt_stat.f_iosize; 1014 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0) 1015 vp->v_vflag |= VV_NOKNOTE; 1016 } 1017 1018 *vpp = vp; 1019 return (0); 1020 } 1021 1022 /* 1023 * Delete from old mount point vnode list, if on one. 1024 */ 1025 static void 1026 delmntque(struct vnode *vp) 1027 { 1028 struct mount *mp; 1029 1030 mp = vp->v_mount; 1031 if (mp == NULL) 1032 return; 1033 MNT_ILOCK(mp); 1034 vp->v_mount = NULL; 1035 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 1036 ("bad mount point vnode list size")); 1037 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1038 mp->mnt_nvnodelistsize--; 1039 MNT_REL(mp); 1040 MNT_IUNLOCK(mp); 1041 } 1042 1043 static void 1044 insmntque_stddtr(struct vnode *vp, void *dtr_arg) 1045 { 1046 1047 vp->v_data = NULL; 1048 vp->v_op = &dead_vnodeops; 1049 /* XXX non mp-safe fs may still call insmntque with vnode 1050 unlocked */ 1051 if (!VOP_ISLOCKED(vp)) 1052 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1053 vgone(vp); 1054 vput(vp); 1055 } 1056 1057 /* 1058 * Insert into list of vnodes for the new mount point, if available. 1059 */ 1060 int 1061 insmntque1(struct vnode *vp, struct mount *mp, 1062 void (*dtr)(struct vnode *, void *), void *dtr_arg) 1063 { 1064 int locked; 1065 1066 KASSERT(vp->v_mount == NULL, 1067 ("insmntque: vnode already on per mount vnode list")); 1068 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 1069 #ifdef DEBUG_VFS_LOCKS 1070 if (!VFS_NEEDSGIANT(mp)) 1071 ASSERT_VOP_ELOCKED(vp, 1072 "insmntque: mp-safe fs and non-locked vp"); 1073 #endif 1074 MNT_ILOCK(mp); 1075 if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 && 1076 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 1077 mp->mnt_nvnodelistsize == 0)) { 1078 locked = VOP_ISLOCKED(vp); 1079 if (!locked || (locked == LK_EXCLUSIVE && 1080 (vp->v_vflag & VV_FORCEINSMQ) == 0)) { 1081 MNT_IUNLOCK(mp); 1082 if (dtr != NULL) 1083 dtr(vp, dtr_arg); 1084 return (EBUSY); 1085 } 1086 } 1087 vp->v_mount = mp; 1088 MNT_REF(mp); 1089 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1090 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 1091 ("neg mount point vnode list size")); 1092 mp->mnt_nvnodelistsize++; 1093 MNT_IUNLOCK(mp); 1094 return (0); 1095 } 1096 1097 int 1098 insmntque(struct vnode *vp, struct mount *mp) 1099 { 1100 1101 return (insmntque1(vp, mp, insmntque_stddtr, NULL)); 1102 } 1103 1104 /* 1105 * Flush out and invalidate all buffers associated with a bufobj 1106 * Called with the underlying object locked. 1107 */ 1108 int 1109 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 1110 { 1111 int error; 1112 1113 BO_LOCK(bo); 1114 if (flags & V_SAVE) { 1115 error = bufobj_wwait(bo, slpflag, slptimeo); 1116 if (error) { 1117 BO_UNLOCK(bo); 1118 return (error); 1119 } 1120 if (bo->bo_dirty.bv_cnt > 0) { 1121 BO_UNLOCK(bo); 1122 if ((error = BO_SYNC(bo, MNT_WAIT)) != 0) 1123 return (error); 1124 /* 1125 * XXX We could save a lock/unlock if this was only 1126 * enabled under INVARIANTS 1127 */ 1128 BO_LOCK(bo); 1129 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) 1130 panic("vinvalbuf: dirty bufs"); 1131 } 1132 } 1133 /* 1134 * If you alter this loop please notice that interlock is dropped and 1135 * reacquired in flushbuflist. Special care is needed to ensure that 1136 * no race conditions occur from this. 1137 */ 1138 do { 1139 error = flushbuflist(&bo->bo_clean, 1140 flags, bo, slpflag, slptimeo); 1141 if (error == 0) 1142 error = flushbuflist(&bo->bo_dirty, 1143 flags, bo, slpflag, slptimeo); 1144 if (error != 0 && error != EAGAIN) { 1145 BO_UNLOCK(bo); 1146 return (error); 1147 } 1148 } while (error != 0); 1149 1150 /* 1151 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 1152 * have write I/O in-progress but if there is a VM object then the 1153 * VM object can also have read-I/O in-progress. 1154 */ 1155 do { 1156 bufobj_wwait(bo, 0, 0); 1157 BO_UNLOCK(bo); 1158 if (bo->bo_object != NULL) { 1159 VM_OBJECT_LOCK(bo->bo_object); 1160 vm_object_pip_wait(bo->bo_object, "bovlbx"); 1161 VM_OBJECT_UNLOCK(bo->bo_object); 1162 } 1163 BO_LOCK(bo); 1164 } while (bo->bo_numoutput > 0); 1165 BO_UNLOCK(bo); 1166 1167 /* 1168 * Destroy the copy in the VM cache, too. 1169 */ 1170 if (bo->bo_object != NULL && (flags & (V_ALT | V_NORMAL)) == 0) { 1171 VM_OBJECT_LOCK(bo->bo_object); 1172 vm_object_page_remove(bo->bo_object, 0, 0, 1173 (flags & V_SAVE) ? TRUE : FALSE); 1174 VM_OBJECT_UNLOCK(bo->bo_object); 1175 } 1176 1177 #ifdef INVARIANTS 1178 BO_LOCK(bo); 1179 if ((flags & (V_ALT | V_NORMAL)) == 0 && 1180 (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) 1181 panic("vinvalbuf: flush failed"); 1182 BO_UNLOCK(bo); 1183 #endif 1184 return (0); 1185 } 1186 1187 /* 1188 * Flush out and invalidate all buffers associated with a vnode. 1189 * Called with the underlying object locked. 1190 */ 1191 int 1192 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 1193 { 1194 1195 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 1196 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 1197 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 1198 } 1199 1200 /* 1201 * Flush out buffers on the specified list. 1202 * 1203 */ 1204 static int 1205 flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 1206 int slptimeo) 1207 { 1208 struct buf *bp, *nbp; 1209 int retval, error; 1210 daddr_t lblkno; 1211 b_xflags_t xflags; 1212 1213 ASSERT_BO_LOCKED(bo); 1214 1215 retval = 0; 1216 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 1217 if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) || 1218 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) { 1219 continue; 1220 } 1221 lblkno = 0; 1222 xflags = 0; 1223 if (nbp != NULL) { 1224 lblkno = nbp->b_lblkno; 1225 xflags = nbp->b_xflags & 1226 (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN); 1227 } 1228 retval = EAGAIN; 1229 error = BUF_TIMELOCK(bp, 1230 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo), 1231 "flushbuf", slpflag, slptimeo); 1232 if (error) { 1233 BO_LOCK(bo); 1234 return (error != ENOLCK ? error : EAGAIN); 1235 } 1236 KASSERT(bp->b_bufobj == bo, 1237 ("bp %p wrong b_bufobj %p should be %p", 1238 bp, bp->b_bufobj, bo)); 1239 if (bp->b_bufobj != bo) { /* XXX: necessary ? */ 1240 BUF_UNLOCK(bp); 1241 BO_LOCK(bo); 1242 return (EAGAIN); 1243 } 1244 /* 1245 * XXX Since there are no node locks for NFS, I 1246 * believe there is a slight chance that a delayed 1247 * write will occur while sleeping just above, so 1248 * check for it. 1249 */ 1250 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 1251 (flags & V_SAVE)) { 1252 bremfree(bp); 1253 bp->b_flags |= B_ASYNC; 1254 bwrite(bp); 1255 BO_LOCK(bo); 1256 return (EAGAIN); /* XXX: why not loop ? */ 1257 } 1258 bremfree(bp); 1259 bp->b_flags |= (B_INVAL | B_RELBUF); 1260 bp->b_flags &= ~B_ASYNC; 1261 brelse(bp); 1262 BO_LOCK(bo); 1263 if (nbp != NULL && 1264 (nbp->b_bufobj != bo || 1265 nbp->b_lblkno != lblkno || 1266 (nbp->b_xflags & 1267 (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags)) 1268 break; /* nbp invalid */ 1269 } 1270 return (retval); 1271 } 1272 1273 /* 1274 * Truncate a file's buffer and pages to a specified length. This 1275 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 1276 * sync activity. 1277 */ 1278 int 1279 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td, 1280 off_t length, int blksize) 1281 { 1282 struct buf *bp, *nbp; 1283 int anyfreed; 1284 int trunclbn; 1285 struct bufobj *bo; 1286 1287 CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__, 1288 vp, cred, blksize, (uintmax_t)length); 1289 1290 /* 1291 * Round up to the *next* lbn. 1292 */ 1293 trunclbn = (length + blksize - 1) / blksize; 1294 1295 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 1296 restart: 1297 bo = &vp->v_bufobj; 1298 BO_LOCK(bo); 1299 anyfreed = 1; 1300 for (;anyfreed;) { 1301 anyfreed = 0; 1302 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 1303 if (bp->b_lblkno < trunclbn) 1304 continue; 1305 if (BUF_LOCK(bp, 1306 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1307 BO_MTX(bo)) == ENOLCK) 1308 goto restart; 1309 1310 bremfree(bp); 1311 bp->b_flags |= (B_INVAL | B_RELBUF); 1312 bp->b_flags &= ~B_ASYNC; 1313 brelse(bp); 1314 anyfreed = 1; 1315 1316 if (nbp != NULL && 1317 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 1318 (nbp->b_vp != vp) || 1319 (nbp->b_flags & B_DELWRI))) { 1320 goto restart; 1321 } 1322 BO_LOCK(bo); 1323 } 1324 1325 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1326 if (bp->b_lblkno < trunclbn) 1327 continue; 1328 if (BUF_LOCK(bp, 1329 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1330 BO_MTX(bo)) == ENOLCK) 1331 goto restart; 1332 bremfree(bp); 1333 bp->b_flags |= (B_INVAL | B_RELBUF); 1334 bp->b_flags &= ~B_ASYNC; 1335 brelse(bp); 1336 anyfreed = 1; 1337 if (nbp != NULL && 1338 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 1339 (nbp->b_vp != vp) || 1340 (nbp->b_flags & B_DELWRI) == 0)) { 1341 goto restart; 1342 } 1343 BO_LOCK(bo); 1344 } 1345 } 1346 1347 if (length > 0) { 1348 restartsync: 1349 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 1350 if (bp->b_lblkno > 0) 1351 continue; 1352 /* 1353 * Since we hold the vnode lock this should only 1354 * fail if we're racing with the buf daemon. 1355 */ 1356 if (BUF_LOCK(bp, 1357 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 1358 BO_MTX(bo)) == ENOLCK) { 1359 goto restart; 1360 } 1361 VNASSERT((bp->b_flags & B_DELWRI), vp, 1362 ("buf(%p) on dirty queue without DELWRI", bp)); 1363 1364 bremfree(bp); 1365 bawrite(bp); 1366 BO_LOCK(bo); 1367 goto restartsync; 1368 } 1369 } 1370 1371 bufobj_wwait(bo, 0, 0); 1372 BO_UNLOCK(bo); 1373 vnode_pager_setsize(vp, length); 1374 1375 return (0); 1376 } 1377 1378 /* 1379 * buf_splay() - splay tree core for the clean/dirty list of buffers in 1380 * a vnode. 1381 * 1382 * NOTE: We have to deal with the special case of a background bitmap 1383 * buffer, a situation where two buffers will have the same logical 1384 * block offset. We want (1) only the foreground buffer to be accessed 1385 * in a lookup and (2) must differentiate between the foreground and 1386 * background buffer in the splay tree algorithm because the splay 1387 * tree cannot normally handle multiple entities with the same 'index'. 1388 * We accomplish this by adding differentiating flags to the splay tree's 1389 * numerical domain. 1390 */ 1391 static 1392 struct buf * 1393 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root) 1394 { 1395 struct buf dummy; 1396 struct buf *lefttreemax, *righttreemin, *y; 1397 1398 if (root == NULL) 1399 return (NULL); 1400 lefttreemax = righttreemin = &dummy; 1401 for (;;) { 1402 if (lblkno < root->b_lblkno || 1403 (lblkno == root->b_lblkno && 1404 (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) { 1405 if ((y = root->b_left) == NULL) 1406 break; 1407 if (lblkno < y->b_lblkno) { 1408 /* Rotate right. */ 1409 root->b_left = y->b_right; 1410 y->b_right = root; 1411 root = y; 1412 if ((y = root->b_left) == NULL) 1413 break; 1414 } 1415 /* Link into the new root's right tree. */ 1416 righttreemin->b_left = root; 1417 righttreemin = root; 1418 } else if (lblkno > root->b_lblkno || 1419 (lblkno == root->b_lblkno && 1420 (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) { 1421 if ((y = root->b_right) == NULL) 1422 break; 1423 if (lblkno > y->b_lblkno) { 1424 /* Rotate left. */ 1425 root->b_right = y->b_left; 1426 y->b_left = root; 1427 root = y; 1428 if ((y = root->b_right) == NULL) 1429 break; 1430 } 1431 /* Link into the new root's left tree. */ 1432 lefttreemax->b_right = root; 1433 lefttreemax = root; 1434 } else { 1435 break; 1436 } 1437 root = y; 1438 } 1439 /* Assemble the new root. */ 1440 lefttreemax->b_right = root->b_left; 1441 righttreemin->b_left = root->b_right; 1442 root->b_left = dummy.b_right; 1443 root->b_right = dummy.b_left; 1444 return (root); 1445 } 1446 1447 static void 1448 buf_vlist_remove(struct buf *bp) 1449 { 1450 struct buf *root; 1451 struct bufv *bv; 1452 1453 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1454 ASSERT_BO_LOCKED(bp->b_bufobj); 1455 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) != 1456 (BX_VNDIRTY|BX_VNCLEAN), 1457 ("buf_vlist_remove: Buf %p is on two lists", bp)); 1458 if (bp->b_xflags & BX_VNDIRTY) 1459 bv = &bp->b_bufobj->bo_dirty; 1460 else 1461 bv = &bp->b_bufobj->bo_clean; 1462 if (bp != bv->bv_root) { 1463 root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root); 1464 KASSERT(root == bp, ("splay lookup failed in remove")); 1465 } 1466 if (bp->b_left == NULL) { 1467 root = bp->b_right; 1468 } else { 1469 root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left); 1470 root->b_right = bp->b_right; 1471 } 1472 bv->bv_root = root; 1473 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 1474 bv->bv_cnt--; 1475 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 1476 } 1477 1478 /* 1479 * Add the buffer to the sorted clean or dirty block list using a 1480 * splay tree algorithm. 1481 * 1482 * NOTE: xflags is passed as a constant, optimizing this inline function! 1483 */ 1484 static void 1485 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 1486 { 1487 struct buf *root; 1488 struct bufv *bv; 1489 1490 ASSERT_BO_LOCKED(bo); 1491 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 1492 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 1493 bp->b_xflags |= xflags; 1494 if (xflags & BX_VNDIRTY) 1495 bv = &bo->bo_dirty; 1496 else 1497 bv = &bo->bo_clean; 1498 1499 root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root); 1500 if (root == NULL) { 1501 bp->b_left = NULL; 1502 bp->b_right = NULL; 1503 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 1504 } else if (bp->b_lblkno < root->b_lblkno || 1505 (bp->b_lblkno == root->b_lblkno && 1506 (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) { 1507 bp->b_left = root->b_left; 1508 bp->b_right = root; 1509 root->b_left = NULL; 1510 TAILQ_INSERT_BEFORE(root, bp, b_bobufs); 1511 } else { 1512 bp->b_right = root->b_right; 1513 bp->b_left = root; 1514 root->b_right = NULL; 1515 TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs); 1516 } 1517 bv->bv_cnt++; 1518 bv->bv_root = bp; 1519 } 1520 1521 /* 1522 * Lookup a buffer using the splay tree. Note that we specifically avoid 1523 * shadow buffers used in background bitmap writes. 1524 * 1525 * This code isn't quite efficient as it could be because we are maintaining 1526 * two sorted lists and do not know which list the block resides in. 1527 * 1528 * During a "make buildworld" the desired buffer is found at one of 1529 * the roots more than 60% of the time. Thus, checking both roots 1530 * before performing either splay eliminates unnecessary splays on the 1531 * first tree splayed. 1532 */ 1533 struct buf * 1534 gbincore(struct bufobj *bo, daddr_t lblkno) 1535 { 1536 struct buf *bp; 1537 1538 ASSERT_BO_LOCKED(bo); 1539 if ((bp = bo->bo_clean.bv_root) != NULL && 1540 bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1541 return (bp); 1542 if ((bp = bo->bo_dirty.bv_root) != NULL && 1543 bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1544 return (bp); 1545 if ((bp = bo->bo_clean.bv_root) != NULL) { 1546 bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp); 1547 if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1548 return (bp); 1549 } 1550 if ((bp = bo->bo_dirty.bv_root) != NULL) { 1551 bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp); 1552 if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER)) 1553 return (bp); 1554 } 1555 return (NULL); 1556 } 1557 1558 /* 1559 * Associate a buffer with a vnode. 1560 */ 1561 void 1562 bgetvp(struct vnode *vp, struct buf *bp) 1563 { 1564 struct bufobj *bo; 1565 1566 bo = &vp->v_bufobj; 1567 ASSERT_BO_LOCKED(bo); 1568 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 1569 1570 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 1571 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 1572 ("bgetvp: bp already attached! %p", bp)); 1573 1574 vhold(vp); 1575 if (VFS_NEEDSGIANT(vp->v_mount) || bo->bo_flag & BO_NEEDSGIANT) 1576 bp->b_flags |= B_NEEDSGIANT; 1577 bp->b_vp = vp; 1578 bp->b_bufobj = bo; 1579 /* 1580 * Insert onto list for new vnode. 1581 */ 1582 buf_vlist_add(bp, bo, BX_VNCLEAN); 1583 } 1584 1585 /* 1586 * Disassociate a buffer from a vnode. 1587 */ 1588 void 1589 brelvp(struct buf *bp) 1590 { 1591 struct bufobj *bo; 1592 struct vnode *vp; 1593 1594 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1595 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 1596 1597 /* 1598 * Delete from old vnode list, if on one. 1599 */ 1600 vp = bp->b_vp; /* XXX */ 1601 bo = bp->b_bufobj; 1602 BO_LOCK(bo); 1603 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 1604 buf_vlist_remove(bp); 1605 else 1606 panic("brelvp: Buffer %p not on queue.", bp); 1607 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 1608 bo->bo_flag &= ~BO_ONWORKLST; 1609 mtx_lock(&sync_mtx); 1610 LIST_REMOVE(bo, bo_synclist); 1611 syncer_worklist_len--; 1612 mtx_unlock(&sync_mtx); 1613 } 1614 bp->b_flags &= ~B_NEEDSGIANT; 1615 bp->b_vp = NULL; 1616 bp->b_bufobj = NULL; 1617 BO_UNLOCK(bo); 1618 vdrop(vp); 1619 } 1620 1621 /* 1622 * Add an item to the syncer work queue. 1623 */ 1624 static void 1625 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 1626 { 1627 int queue, slot; 1628 1629 ASSERT_BO_LOCKED(bo); 1630 1631 mtx_lock(&sync_mtx); 1632 if (bo->bo_flag & BO_ONWORKLST) 1633 LIST_REMOVE(bo, bo_synclist); 1634 else { 1635 bo->bo_flag |= BO_ONWORKLST; 1636 syncer_worklist_len++; 1637 } 1638 1639 if (delay > syncer_maxdelay - 2) 1640 delay = syncer_maxdelay - 2; 1641 slot = (syncer_delayno + delay) & syncer_mask; 1642 1643 queue = VFS_NEEDSGIANT(bo->__bo_vnode->v_mount) ? WI_GIANTQ : 1644 WI_MPSAFEQ; 1645 LIST_INSERT_HEAD(&syncer_workitem_pending[queue][slot], bo, 1646 bo_synclist); 1647 mtx_unlock(&sync_mtx); 1648 } 1649 1650 static int 1651 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 1652 { 1653 int error, len; 1654 1655 mtx_lock(&sync_mtx); 1656 len = syncer_worklist_len - sync_vnode_count; 1657 mtx_unlock(&sync_mtx); 1658 error = SYSCTL_OUT(req, &len, sizeof(len)); 1659 return (error); 1660 } 1661 1662 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 1663 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 1664 1665 static struct proc *updateproc; 1666 static void sched_sync(void); 1667 static struct kproc_desc up_kp = { 1668 "syncer", 1669 sched_sync, 1670 &updateproc 1671 }; 1672 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 1673 1674 static int 1675 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 1676 { 1677 struct vnode *vp; 1678 struct mount *mp; 1679 1680 *bo = LIST_FIRST(slp); 1681 if (*bo == NULL) 1682 return (0); 1683 vp = (*bo)->__bo_vnode; /* XXX */ 1684 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 1685 return (1); 1686 /* 1687 * We use vhold in case the vnode does not 1688 * successfully sync. vhold prevents the vnode from 1689 * going away when we unlock the sync_mtx so that 1690 * we can acquire the vnode interlock. 1691 */ 1692 vholdl(vp); 1693 mtx_unlock(&sync_mtx); 1694 VI_UNLOCK(vp); 1695 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1696 vdrop(vp); 1697 mtx_lock(&sync_mtx); 1698 return (*bo == LIST_FIRST(slp)); 1699 } 1700 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1701 (void) VOP_FSYNC(vp, MNT_LAZY, td); 1702 VOP_UNLOCK(vp, 0); 1703 vn_finished_write(mp); 1704 BO_LOCK(*bo); 1705 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 1706 /* 1707 * Put us back on the worklist. The worklist 1708 * routine will remove us from our current 1709 * position and then add us back in at a later 1710 * position. 1711 */ 1712 vn_syncer_add_to_worklist(*bo, syncdelay); 1713 } 1714 BO_UNLOCK(*bo); 1715 vdrop(vp); 1716 mtx_lock(&sync_mtx); 1717 return (0); 1718 } 1719 1720 /* 1721 * System filesystem synchronizer daemon. 1722 */ 1723 static void 1724 sched_sync(void) 1725 { 1726 struct synclist *gnext, *next; 1727 struct synclist *gslp, *slp; 1728 struct bufobj *bo; 1729 long starttime; 1730 struct thread *td = curthread; 1731 int last_work_seen; 1732 int net_worklist_len; 1733 int syncer_final_iter; 1734 int first_printf; 1735 int error; 1736 1737 last_work_seen = 0; 1738 syncer_final_iter = 0; 1739 first_printf = 1; 1740 syncer_state = SYNCER_RUNNING; 1741 starttime = time_uptime; 1742 td->td_pflags |= TDP_NORUNNINGBUF; 1743 1744 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 1745 SHUTDOWN_PRI_LAST); 1746 1747 mtx_lock(&sync_mtx); 1748 for (;;) { 1749 if (syncer_state == SYNCER_FINAL_DELAY && 1750 syncer_final_iter == 0) { 1751 mtx_unlock(&sync_mtx); 1752 kproc_suspend_check(td->td_proc); 1753 mtx_lock(&sync_mtx); 1754 } 1755 net_worklist_len = syncer_worklist_len - sync_vnode_count; 1756 if (syncer_state != SYNCER_RUNNING && 1757 starttime != time_uptime) { 1758 if (first_printf) { 1759 printf("\nSyncing disks, vnodes remaining..."); 1760 first_printf = 0; 1761 } 1762 printf("%d ", net_worklist_len); 1763 } 1764 starttime = time_uptime; 1765 1766 /* 1767 * Push files whose dirty time has expired. Be careful 1768 * of interrupt race on slp queue. 1769 * 1770 * Skip over empty worklist slots when shutting down. 1771 */ 1772 do { 1773 slp = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno]; 1774 gslp = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno]; 1775 syncer_delayno += 1; 1776 if (syncer_delayno == syncer_maxdelay) 1777 syncer_delayno = 0; 1778 next = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno]; 1779 gnext = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno]; 1780 /* 1781 * If the worklist has wrapped since the 1782 * it was emptied of all but syncer vnodes, 1783 * switch to the FINAL_DELAY state and run 1784 * for one more second. 1785 */ 1786 if (syncer_state == SYNCER_SHUTTING_DOWN && 1787 net_worklist_len == 0 && 1788 last_work_seen == syncer_delayno) { 1789 syncer_state = SYNCER_FINAL_DELAY; 1790 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 1791 } 1792 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 1793 LIST_EMPTY(gslp) && syncer_worklist_len > 0); 1794 1795 /* 1796 * Keep track of the last time there was anything 1797 * on the worklist other than syncer vnodes. 1798 * Return to the SHUTTING_DOWN state if any 1799 * new work appears. 1800 */ 1801 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 1802 last_work_seen = syncer_delayno; 1803 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 1804 syncer_state = SYNCER_SHUTTING_DOWN; 1805 while (!LIST_EMPTY(slp)) { 1806 error = sync_vnode(slp, &bo, td); 1807 if (error == 1) { 1808 LIST_REMOVE(bo, bo_synclist); 1809 LIST_INSERT_HEAD(next, bo, bo_synclist); 1810 continue; 1811 } 1812 } 1813 if (!LIST_EMPTY(gslp)) { 1814 mtx_unlock(&sync_mtx); 1815 mtx_lock(&Giant); 1816 mtx_lock(&sync_mtx); 1817 while (!LIST_EMPTY(gslp)) { 1818 error = sync_vnode(gslp, &bo, td); 1819 if (error == 1) { 1820 LIST_REMOVE(bo, bo_synclist); 1821 LIST_INSERT_HEAD(gnext, bo, 1822 bo_synclist); 1823 continue; 1824 } 1825 } 1826 mtx_unlock(&Giant); 1827 } 1828 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 1829 syncer_final_iter--; 1830 /* 1831 * The variable rushjob allows the kernel to speed up the 1832 * processing of the filesystem syncer process. A rushjob 1833 * value of N tells the filesystem syncer to process the next 1834 * N seconds worth of work on its queue ASAP. Currently rushjob 1835 * is used by the soft update code to speed up the filesystem 1836 * syncer process when the incore state is getting so far 1837 * ahead of the disk that the kernel memory pool is being 1838 * threatened with exhaustion. 1839 */ 1840 if (rushjob > 0) { 1841 rushjob -= 1; 1842 continue; 1843 } 1844 /* 1845 * Just sleep for a short period of time between 1846 * iterations when shutting down to allow some I/O 1847 * to happen. 1848 * 1849 * If it has taken us less than a second to process the 1850 * current work, then wait. Otherwise start right over 1851 * again. We can still lose time if any single round 1852 * takes more than two seconds, but it does not really 1853 * matter as we are just trying to generally pace the 1854 * filesystem activity. 1855 */ 1856 if (syncer_state != SYNCER_RUNNING) 1857 cv_timedwait(&sync_wakeup, &sync_mtx, 1858 hz / SYNCER_SHUTDOWN_SPEEDUP); 1859 else if (time_uptime == starttime) 1860 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 1861 } 1862 } 1863 1864 /* 1865 * Request the syncer daemon to speed up its work. 1866 * We never push it to speed up more than half of its 1867 * normal turn time, otherwise it could take over the cpu. 1868 */ 1869 int 1870 speedup_syncer(void) 1871 { 1872 int ret = 0; 1873 1874 mtx_lock(&sync_mtx); 1875 if (rushjob < syncdelay / 2) { 1876 rushjob += 1; 1877 stat_rush_requests += 1; 1878 ret = 1; 1879 } 1880 mtx_unlock(&sync_mtx); 1881 cv_broadcast(&sync_wakeup); 1882 return (ret); 1883 } 1884 1885 /* 1886 * Tell the syncer to speed up its work and run though its work 1887 * list several times, then tell it to shut down. 1888 */ 1889 static void 1890 syncer_shutdown(void *arg, int howto) 1891 { 1892 1893 if (howto & RB_NOSYNC) 1894 return; 1895 mtx_lock(&sync_mtx); 1896 syncer_state = SYNCER_SHUTTING_DOWN; 1897 rushjob = 0; 1898 mtx_unlock(&sync_mtx); 1899 cv_broadcast(&sync_wakeup); 1900 kproc_shutdown(arg, howto); 1901 } 1902 1903 /* 1904 * Reassign a buffer from one vnode to another. 1905 * Used to assign file specific control information 1906 * (indirect blocks) to the vnode to which they belong. 1907 */ 1908 void 1909 reassignbuf(struct buf *bp) 1910 { 1911 struct vnode *vp; 1912 struct bufobj *bo; 1913 int delay; 1914 #ifdef INVARIANTS 1915 struct bufv *bv; 1916 #endif 1917 1918 vp = bp->b_vp; 1919 bo = bp->b_bufobj; 1920 ++reassignbufcalls; 1921 1922 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 1923 bp, bp->b_vp, bp->b_flags); 1924 /* 1925 * B_PAGING flagged buffers cannot be reassigned because their vp 1926 * is not fully linked in. 1927 */ 1928 if (bp->b_flags & B_PAGING) 1929 panic("cannot reassign paging buffer"); 1930 1931 /* 1932 * Delete from old vnode list, if on one. 1933 */ 1934 BO_LOCK(bo); 1935 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 1936 buf_vlist_remove(bp); 1937 else 1938 panic("reassignbuf: Buffer %p not on queue.", bp); 1939 /* 1940 * If dirty, put on list of dirty buffers; otherwise insert onto list 1941 * of clean buffers. 1942 */ 1943 if (bp->b_flags & B_DELWRI) { 1944 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 1945 switch (vp->v_type) { 1946 case VDIR: 1947 delay = dirdelay; 1948 break; 1949 case VCHR: 1950 delay = metadelay; 1951 break; 1952 default: 1953 delay = filedelay; 1954 } 1955 vn_syncer_add_to_worklist(bo, delay); 1956 } 1957 buf_vlist_add(bp, bo, BX_VNDIRTY); 1958 } else { 1959 buf_vlist_add(bp, bo, BX_VNCLEAN); 1960 1961 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 1962 mtx_lock(&sync_mtx); 1963 LIST_REMOVE(bo, bo_synclist); 1964 syncer_worklist_len--; 1965 mtx_unlock(&sync_mtx); 1966 bo->bo_flag &= ~BO_ONWORKLST; 1967 } 1968 } 1969 #ifdef INVARIANTS 1970 bv = &bo->bo_clean; 1971 bp = TAILQ_FIRST(&bv->bv_hd); 1972 KASSERT(bp == NULL || bp->b_bufobj == bo, 1973 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 1974 bp = TAILQ_LAST(&bv->bv_hd, buflists); 1975 KASSERT(bp == NULL || bp->b_bufobj == bo, 1976 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 1977 bv = &bo->bo_dirty; 1978 bp = TAILQ_FIRST(&bv->bv_hd); 1979 KASSERT(bp == NULL || bp->b_bufobj == bo, 1980 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 1981 bp = TAILQ_LAST(&bv->bv_hd, buflists); 1982 KASSERT(bp == NULL || bp->b_bufobj == bo, 1983 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 1984 #endif 1985 BO_UNLOCK(bo); 1986 } 1987 1988 /* 1989 * Increment the use and hold counts on the vnode, taking care to reference 1990 * the driver's usecount if this is a chardev. The vholdl() will remove 1991 * the vnode from the free list if it is presently free. Requires the 1992 * vnode interlock and returns with it held. 1993 */ 1994 static void 1995 v_incr_usecount(struct vnode *vp) 1996 { 1997 1998 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 1999 vp->v_usecount++; 2000 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2001 dev_lock(); 2002 vp->v_rdev->si_usecount++; 2003 dev_unlock(); 2004 } 2005 vholdl(vp); 2006 } 2007 2008 /* 2009 * Turn a holdcnt into a use+holdcnt such that only one call to 2010 * v_decr_usecount is needed. 2011 */ 2012 static void 2013 v_upgrade_usecount(struct vnode *vp) 2014 { 2015 2016 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2017 vp->v_usecount++; 2018 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2019 dev_lock(); 2020 vp->v_rdev->si_usecount++; 2021 dev_unlock(); 2022 } 2023 } 2024 2025 /* 2026 * Decrement the vnode use and hold count along with the driver's usecount 2027 * if this is a chardev. The vdropl() below releases the vnode interlock 2028 * as it may free the vnode. 2029 */ 2030 static void 2031 v_decr_usecount(struct vnode *vp) 2032 { 2033 2034 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2035 VNASSERT(vp->v_usecount > 0, vp, 2036 ("v_decr_usecount: negative usecount")); 2037 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2038 vp->v_usecount--; 2039 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2040 dev_lock(); 2041 vp->v_rdev->si_usecount--; 2042 dev_unlock(); 2043 } 2044 vdropl(vp); 2045 } 2046 2047 /* 2048 * Decrement only the use count and driver use count. This is intended to 2049 * be paired with a follow on vdropl() to release the remaining hold count. 2050 * In this way we may vgone() a vnode with a 0 usecount without risk of 2051 * having it end up on a free list because the hold count is kept above 0. 2052 */ 2053 static void 2054 v_decr_useonly(struct vnode *vp) 2055 { 2056 2057 ASSERT_VI_LOCKED(vp, __FUNCTION__); 2058 VNASSERT(vp->v_usecount > 0, vp, 2059 ("v_decr_useonly: negative usecount")); 2060 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2061 vp->v_usecount--; 2062 if (vp->v_type == VCHR && vp->v_rdev != NULL) { 2063 dev_lock(); 2064 vp->v_rdev->si_usecount--; 2065 dev_unlock(); 2066 } 2067 } 2068 2069 /* 2070 * Grab a particular vnode from the free list, increment its 2071 * reference count and lock it. VI_DOOMED is set if the vnode 2072 * is being destroyed. Only callers who specify LK_RETRY will 2073 * see doomed vnodes. If inactive processing was delayed in 2074 * vput try to do it here. 2075 */ 2076 int 2077 vget(struct vnode *vp, int flags, struct thread *td) 2078 { 2079 int error; 2080 2081 error = 0; 2082 VFS_ASSERT_GIANT(vp->v_mount); 2083 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 2084 ("vget: invalid lock operation")); 2085 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2086 2087 if ((flags & LK_INTERLOCK) == 0) 2088 VI_LOCK(vp); 2089 vholdl(vp); 2090 if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) { 2091 vdrop(vp); 2092 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 2093 vp); 2094 return (error); 2095 } 2096 if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0) 2097 panic("vget: vn_lock failed to return ENOENT\n"); 2098 VI_LOCK(vp); 2099 /* Upgrade our holdcnt to a usecount. */ 2100 v_upgrade_usecount(vp); 2101 /* 2102 * We don't guarantee that any particular close will 2103 * trigger inactive processing so just make a best effort 2104 * here at preventing a reference to a removed file. If 2105 * we don't succeed no harm is done. 2106 */ 2107 if (vp->v_iflag & VI_OWEINACT) { 2108 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && 2109 (flags & LK_NOWAIT) == 0) 2110 vinactive(vp, td); 2111 vp->v_iflag &= ~VI_OWEINACT; 2112 } 2113 VI_UNLOCK(vp); 2114 return (0); 2115 } 2116 2117 /* 2118 * Increase the reference count of a vnode. 2119 */ 2120 void 2121 vref(struct vnode *vp) 2122 { 2123 2124 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2125 VI_LOCK(vp); 2126 v_incr_usecount(vp); 2127 VI_UNLOCK(vp); 2128 } 2129 2130 /* 2131 * Return reference count of a vnode. 2132 * 2133 * The results of this call are only guaranteed when some mechanism other 2134 * than the VI lock is used to stop other processes from gaining references 2135 * to the vnode. This may be the case if the caller holds the only reference. 2136 * This is also useful when stale data is acceptable as race conditions may 2137 * be accounted for by some other means. 2138 */ 2139 int 2140 vrefcnt(struct vnode *vp) 2141 { 2142 int usecnt; 2143 2144 VI_LOCK(vp); 2145 usecnt = vp->v_usecount; 2146 VI_UNLOCK(vp); 2147 2148 return (usecnt); 2149 } 2150 2151 #define VPUTX_VRELE 1 2152 #define VPUTX_VPUT 2 2153 #define VPUTX_VUNREF 3 2154 2155 static void 2156 vputx(struct vnode *vp, int func) 2157 { 2158 int error; 2159 2160 KASSERT(vp != NULL, ("vputx: null vp")); 2161 if (func == VPUTX_VUNREF) 2162 ASSERT_VOP_ELOCKED(vp, "vunref"); 2163 else if (func == VPUTX_VPUT) 2164 ASSERT_VOP_LOCKED(vp, "vput"); 2165 else 2166 KASSERT(func == VPUTX_VRELE, ("vputx: wrong func")); 2167 VFS_ASSERT_GIANT(vp->v_mount); 2168 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2169 VI_LOCK(vp); 2170 2171 /* Skip this v_writecount check if we're going to panic below. */ 2172 VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp, 2173 ("vputx: missed vn_close")); 2174 error = 0; 2175 2176 if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) && 2177 vp->v_usecount == 1)) { 2178 if (func == VPUTX_VPUT) 2179 VOP_UNLOCK(vp, 0); 2180 v_decr_usecount(vp); 2181 return; 2182 } 2183 2184 if (vp->v_usecount != 1) { 2185 #ifdef DIAGNOSTIC 2186 vprint("vputx: negative ref count", vp); 2187 #endif 2188 panic("vputx: negative ref cnt"); 2189 } 2190 CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp); 2191 /* 2192 * We want to hold the vnode until the inactive finishes to 2193 * prevent vgone() races. We drop the use count here and the 2194 * hold count below when we're done. 2195 */ 2196 v_decr_useonly(vp); 2197 /* 2198 * We must call VOP_INACTIVE with the node locked. Mark 2199 * as VI_DOINGINACT to avoid recursion. 2200 */ 2201 vp->v_iflag |= VI_OWEINACT; 2202 if (func == VPUTX_VRELE) { 2203 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 2204 VI_LOCK(vp); 2205 } else if (func == VPUTX_VPUT && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 2206 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | LK_NOWAIT); 2207 VI_LOCK(vp); 2208 } 2209 if (vp->v_usecount > 0) 2210 vp->v_iflag &= ~VI_OWEINACT; 2211 if (error == 0) { 2212 if (vp->v_iflag & VI_OWEINACT) 2213 vinactive(vp, curthread); 2214 if (func != VPUTX_VUNREF) 2215 VOP_UNLOCK(vp, 0); 2216 } 2217 vdropl(vp); 2218 } 2219 2220 /* 2221 * Vnode put/release. 2222 * If count drops to zero, call inactive routine and return to freelist. 2223 */ 2224 void 2225 vrele(struct vnode *vp) 2226 { 2227 2228 vputx(vp, VPUTX_VRELE); 2229 } 2230 2231 /* 2232 * Release an already locked vnode. This give the same effects as 2233 * unlock+vrele(), but takes less time and avoids releasing and 2234 * re-aquiring the lock (as vrele() acquires the lock internally.) 2235 */ 2236 void 2237 vput(struct vnode *vp) 2238 { 2239 2240 vputx(vp, VPUTX_VPUT); 2241 } 2242 2243 /* 2244 * Release an exclusively locked vnode. Do not unlock the vnode lock. 2245 */ 2246 void 2247 vunref(struct vnode *vp) 2248 { 2249 2250 vputx(vp, VPUTX_VUNREF); 2251 } 2252 2253 /* 2254 * Somebody doesn't want the vnode recycled. 2255 */ 2256 void 2257 vhold(struct vnode *vp) 2258 { 2259 2260 VI_LOCK(vp); 2261 vholdl(vp); 2262 VI_UNLOCK(vp); 2263 } 2264 2265 void 2266 vholdl(struct vnode *vp) 2267 { 2268 2269 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2270 vp->v_holdcnt++; 2271 if (VSHOULDBUSY(vp)) 2272 vbusy(vp); 2273 } 2274 2275 /* 2276 * Note that there is one less who cares about this vnode. vdrop() is the 2277 * opposite of vhold(). 2278 */ 2279 void 2280 vdrop(struct vnode *vp) 2281 { 2282 2283 VI_LOCK(vp); 2284 vdropl(vp); 2285 } 2286 2287 /* 2288 * Drop the hold count of the vnode. If this is the last reference to 2289 * the vnode we will free it if it has been vgone'd otherwise it is 2290 * placed on the free list. 2291 */ 2292 void 2293 vdropl(struct vnode *vp) 2294 { 2295 2296 ASSERT_VI_LOCKED(vp, "vdropl"); 2297 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2298 if (vp->v_holdcnt <= 0) 2299 panic("vdrop: holdcnt %d", vp->v_holdcnt); 2300 vp->v_holdcnt--; 2301 if (vp->v_holdcnt == 0) { 2302 if (vp->v_iflag & VI_DOOMED) { 2303 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, 2304 vp); 2305 vdestroy(vp); 2306 return; 2307 } else 2308 vfree(vp); 2309 } 2310 VI_UNLOCK(vp); 2311 } 2312 2313 /* 2314 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 2315 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 2316 * OWEINACT tracks whether a vnode missed a call to inactive due to a 2317 * failed lock upgrade. 2318 */ 2319 static void 2320 vinactive(struct vnode *vp, struct thread *td) 2321 { 2322 2323 ASSERT_VOP_ELOCKED(vp, "vinactive"); 2324 ASSERT_VI_LOCKED(vp, "vinactive"); 2325 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp, 2326 ("vinactive: recursed on VI_DOINGINACT")); 2327 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2328 vp->v_iflag |= VI_DOINGINACT; 2329 vp->v_iflag &= ~VI_OWEINACT; 2330 VI_UNLOCK(vp); 2331 VOP_INACTIVE(vp, td); 2332 VI_LOCK(vp); 2333 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp, 2334 ("vinactive: lost VI_DOINGINACT")); 2335 vp->v_iflag &= ~VI_DOINGINACT; 2336 } 2337 2338 /* 2339 * Remove any vnodes in the vnode table belonging to mount point mp. 2340 * 2341 * If FORCECLOSE is not specified, there should not be any active ones, 2342 * return error if any are found (nb: this is a user error, not a 2343 * system error). If FORCECLOSE is specified, detach any active vnodes 2344 * that are found. 2345 * 2346 * If WRITECLOSE is set, only flush out regular file vnodes open for 2347 * writing. 2348 * 2349 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 2350 * 2351 * `rootrefs' specifies the base reference count for the root vnode 2352 * of this filesystem. The root vnode is considered busy if its 2353 * v_usecount exceeds this value. On a successful return, vflush(, td) 2354 * will call vrele() on the root vnode exactly rootrefs times. 2355 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 2356 * be zero. 2357 */ 2358 #ifdef DIAGNOSTIC 2359 static int busyprt = 0; /* print out busy vnodes */ 2360 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, ""); 2361 #endif 2362 2363 int 2364 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 2365 { 2366 struct vnode *vp, *mvp, *rootvp = NULL; 2367 struct vattr vattr; 2368 int busy = 0, error; 2369 2370 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 2371 rootrefs, flags); 2372 if (rootrefs > 0) { 2373 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 2374 ("vflush: bad args")); 2375 /* 2376 * Get the filesystem root vnode. We can vput() it 2377 * immediately, since with rootrefs > 0, it won't go away. 2378 */ 2379 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 2380 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 2381 __func__, error); 2382 return (error); 2383 } 2384 vput(rootvp); 2385 } 2386 MNT_ILOCK(mp); 2387 loop: 2388 MNT_VNODE_FOREACH(vp, mp, mvp) { 2389 VI_LOCK(vp); 2390 vholdl(vp); 2391 MNT_IUNLOCK(mp); 2392 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 2393 if (error) { 2394 vdrop(vp); 2395 MNT_ILOCK(mp); 2396 MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp); 2397 goto loop; 2398 } 2399 /* 2400 * Skip over a vnodes marked VV_SYSTEM. 2401 */ 2402 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 2403 VOP_UNLOCK(vp, 0); 2404 vdrop(vp); 2405 MNT_ILOCK(mp); 2406 continue; 2407 } 2408 /* 2409 * If WRITECLOSE is set, flush out unlinked but still open 2410 * files (even if open only for reading) and regular file 2411 * vnodes open for writing. 2412 */ 2413 if (flags & WRITECLOSE) { 2414 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 2415 VI_LOCK(vp); 2416 2417 if ((vp->v_type == VNON || 2418 (error == 0 && vattr.va_nlink > 0)) && 2419 (vp->v_writecount == 0 || vp->v_type != VREG)) { 2420 VOP_UNLOCK(vp, 0); 2421 vdropl(vp); 2422 MNT_ILOCK(mp); 2423 continue; 2424 } 2425 } else 2426 VI_LOCK(vp); 2427 /* 2428 * With v_usecount == 0, all we need to do is clear out the 2429 * vnode data structures and we are done. 2430 * 2431 * If FORCECLOSE is set, forcibly close the vnode. 2432 */ 2433 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 2434 VNASSERT(vp->v_usecount == 0 || 2435 (vp->v_type != VCHR && vp->v_type != VBLK), vp, 2436 ("device VNODE %p is FORCECLOSED", vp)); 2437 vgonel(vp); 2438 } else { 2439 busy++; 2440 #ifdef DIAGNOSTIC 2441 if (busyprt) 2442 vprint("vflush: busy vnode", vp); 2443 #endif 2444 } 2445 VOP_UNLOCK(vp, 0); 2446 vdropl(vp); 2447 MNT_ILOCK(mp); 2448 } 2449 MNT_IUNLOCK(mp); 2450 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 2451 /* 2452 * If just the root vnode is busy, and if its refcount 2453 * is equal to `rootrefs', then go ahead and kill it. 2454 */ 2455 VI_LOCK(rootvp); 2456 KASSERT(busy > 0, ("vflush: not busy")); 2457 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 2458 ("vflush: usecount %d < rootrefs %d", 2459 rootvp->v_usecount, rootrefs)); 2460 if (busy == 1 && rootvp->v_usecount == rootrefs) { 2461 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 2462 vgone(rootvp); 2463 VOP_UNLOCK(rootvp, 0); 2464 busy = 0; 2465 } else 2466 VI_UNLOCK(rootvp); 2467 } 2468 if (busy) { 2469 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 2470 busy); 2471 return (EBUSY); 2472 } 2473 for (; rootrefs > 0; rootrefs--) 2474 vrele(rootvp); 2475 return (0); 2476 } 2477 2478 /* 2479 * Recycle an unused vnode to the front of the free list. 2480 */ 2481 int 2482 vrecycle(struct vnode *vp, struct thread *td) 2483 { 2484 int recycled; 2485 2486 ASSERT_VOP_ELOCKED(vp, "vrecycle"); 2487 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2488 recycled = 0; 2489 VI_LOCK(vp); 2490 if (vp->v_usecount == 0) { 2491 recycled = 1; 2492 vgonel(vp); 2493 } 2494 VI_UNLOCK(vp); 2495 return (recycled); 2496 } 2497 2498 /* 2499 * Eliminate all activity associated with a vnode 2500 * in preparation for reuse. 2501 */ 2502 void 2503 vgone(struct vnode *vp) 2504 { 2505 VI_LOCK(vp); 2506 vgonel(vp); 2507 VI_UNLOCK(vp); 2508 } 2509 2510 /* 2511 * vgone, with the vp interlock held. 2512 */ 2513 void 2514 vgonel(struct vnode *vp) 2515 { 2516 struct thread *td; 2517 int oweinact; 2518 int active; 2519 struct mount *mp; 2520 2521 ASSERT_VOP_ELOCKED(vp, "vgonel"); 2522 ASSERT_VI_LOCKED(vp, "vgonel"); 2523 VNASSERT(vp->v_holdcnt, vp, 2524 ("vgonel: vp %p has no reference.", vp)); 2525 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2526 td = curthread; 2527 2528 /* 2529 * Don't vgonel if we're already doomed. 2530 */ 2531 if (vp->v_iflag & VI_DOOMED) 2532 return; 2533 vp->v_iflag |= VI_DOOMED; 2534 /* 2535 * Check to see if the vnode is in use. If so, we have to call 2536 * VOP_CLOSE() and VOP_INACTIVE(). 2537 */ 2538 active = vp->v_usecount; 2539 oweinact = (vp->v_iflag & VI_OWEINACT); 2540 VI_UNLOCK(vp); 2541 /* 2542 * Clean out any buffers associated with the vnode. 2543 * If the flush fails, just toss the buffers. 2544 */ 2545 mp = NULL; 2546 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 2547 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 2548 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) 2549 vinvalbuf(vp, 0, 0, 0); 2550 2551 /* 2552 * If purging an active vnode, it must be closed and 2553 * deactivated before being reclaimed. 2554 */ 2555 if (active) 2556 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 2557 if (oweinact || active) { 2558 VI_LOCK(vp); 2559 if ((vp->v_iflag & VI_DOINGINACT) == 0) 2560 vinactive(vp, td); 2561 VI_UNLOCK(vp); 2562 } 2563 /* 2564 * Reclaim the vnode. 2565 */ 2566 if (VOP_RECLAIM(vp, td)) 2567 panic("vgone: cannot reclaim"); 2568 if (mp != NULL) 2569 vn_finished_secondary_write(mp); 2570 VNASSERT(vp->v_object == NULL, vp, 2571 ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag)); 2572 /* 2573 * Clear the advisory locks and wake up waiting threads. 2574 */ 2575 (void)VOP_ADVLOCKPURGE(vp); 2576 /* 2577 * Delete from old mount point vnode list. 2578 */ 2579 delmntque(vp); 2580 cache_purge(vp); 2581 /* 2582 * Done with purge, reset to the standard lock and invalidate 2583 * the vnode. 2584 */ 2585 VI_LOCK(vp); 2586 vp->v_vnlock = &vp->v_lock; 2587 vp->v_op = &dead_vnodeops; 2588 vp->v_tag = "none"; 2589 vp->v_type = VBAD; 2590 } 2591 2592 /* 2593 * Calculate the total number of references to a special device. 2594 */ 2595 int 2596 vcount(struct vnode *vp) 2597 { 2598 int count; 2599 2600 dev_lock(); 2601 count = vp->v_rdev->si_usecount; 2602 dev_unlock(); 2603 return (count); 2604 } 2605 2606 /* 2607 * Same as above, but using the struct cdev *as argument 2608 */ 2609 int 2610 count_dev(struct cdev *dev) 2611 { 2612 int count; 2613 2614 dev_lock(); 2615 count = dev->si_usecount; 2616 dev_unlock(); 2617 return(count); 2618 } 2619 2620 /* 2621 * Print out a description of a vnode. 2622 */ 2623 static char *typename[] = 2624 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", 2625 "VMARKER"}; 2626 2627 void 2628 vn_printf(struct vnode *vp, const char *fmt, ...) 2629 { 2630 va_list ap; 2631 char buf[256], buf2[16]; 2632 u_long flags; 2633 2634 va_start(ap, fmt); 2635 vprintf(fmt, ap); 2636 va_end(ap); 2637 printf("%p: ", (void *)vp); 2638 printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]); 2639 printf(" usecount %d, writecount %d, refcount %d mountedhere %p\n", 2640 vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere); 2641 buf[0] = '\0'; 2642 buf[1] = '\0'; 2643 if (vp->v_vflag & VV_ROOT) 2644 strlcat(buf, "|VV_ROOT", sizeof(buf)); 2645 if (vp->v_vflag & VV_ISTTY) 2646 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 2647 if (vp->v_vflag & VV_NOSYNC) 2648 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 2649 if (vp->v_vflag & VV_CACHEDLABEL) 2650 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 2651 if (vp->v_vflag & VV_TEXT) 2652 strlcat(buf, "|VV_TEXT", sizeof(buf)); 2653 if (vp->v_vflag & VV_COPYONWRITE) 2654 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 2655 if (vp->v_vflag & VV_SYSTEM) 2656 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 2657 if (vp->v_vflag & VV_PROCDEP) 2658 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 2659 if (vp->v_vflag & VV_NOKNOTE) 2660 strlcat(buf, "|VV_NOKNOTE", sizeof(buf)); 2661 if (vp->v_vflag & VV_DELETED) 2662 strlcat(buf, "|VV_DELETED", sizeof(buf)); 2663 if (vp->v_vflag & VV_MD) 2664 strlcat(buf, "|VV_MD", sizeof(buf)); 2665 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | 2666 VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP | 2667 VV_NOKNOTE | VV_DELETED | VV_MD); 2668 if (flags != 0) { 2669 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 2670 strlcat(buf, buf2, sizeof(buf)); 2671 } 2672 if (vp->v_iflag & VI_MOUNT) 2673 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 2674 if (vp->v_iflag & VI_AGE) 2675 strlcat(buf, "|VI_AGE", sizeof(buf)); 2676 if (vp->v_iflag & VI_DOOMED) 2677 strlcat(buf, "|VI_DOOMED", sizeof(buf)); 2678 if (vp->v_iflag & VI_FREE) 2679 strlcat(buf, "|VI_FREE", sizeof(buf)); 2680 if (vp->v_iflag & VI_DOINGINACT) 2681 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 2682 if (vp->v_iflag & VI_OWEINACT) 2683 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 2684 flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE | 2685 VI_DOINGINACT | VI_OWEINACT); 2686 if (flags != 0) { 2687 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 2688 strlcat(buf, buf2, sizeof(buf)); 2689 } 2690 printf(" flags (%s)\n", buf + 1); 2691 if (mtx_owned(VI_MTX(vp))) 2692 printf(" VI_LOCKed"); 2693 if (vp->v_object != NULL) 2694 printf(" v_object %p ref %d pages %d\n", 2695 vp->v_object, vp->v_object->ref_count, 2696 vp->v_object->resident_page_count); 2697 printf(" "); 2698 lockmgr_printinfo(vp->v_vnlock); 2699 if (vp->v_data != NULL) 2700 VOP_PRINT(vp); 2701 } 2702 2703 #ifdef DDB 2704 /* 2705 * List all of the locked vnodes in the system. 2706 * Called when debugging the kernel. 2707 */ 2708 DB_SHOW_COMMAND(lockedvnods, lockedvnodes) 2709 { 2710 struct mount *mp, *nmp; 2711 struct vnode *vp; 2712 2713 /* 2714 * Note: because this is DDB, we can't obey the locking semantics 2715 * for these structures, which means we could catch an inconsistent 2716 * state and dereference a nasty pointer. Not much to be done 2717 * about that. 2718 */ 2719 db_printf("Locked vnodes\n"); 2720 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 2721 nmp = TAILQ_NEXT(mp, mnt_list); 2722 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 2723 if (vp->v_type != VMARKER && 2724 VOP_ISLOCKED(vp)) 2725 vprint("", vp); 2726 } 2727 nmp = TAILQ_NEXT(mp, mnt_list); 2728 } 2729 } 2730 2731 /* 2732 * Show details about the given vnode. 2733 */ 2734 DB_SHOW_COMMAND(vnode, db_show_vnode) 2735 { 2736 struct vnode *vp; 2737 2738 if (!have_addr) 2739 return; 2740 vp = (struct vnode *)addr; 2741 vn_printf(vp, "vnode "); 2742 } 2743 2744 /* 2745 * Show details about the given mount point. 2746 */ 2747 DB_SHOW_COMMAND(mount, db_show_mount) 2748 { 2749 struct mount *mp; 2750 struct vfsopt *opt; 2751 struct statfs *sp; 2752 struct vnode *vp; 2753 char buf[512]; 2754 u_int flags; 2755 2756 if (!have_addr) { 2757 /* No address given, print short info about all mount points. */ 2758 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2759 db_printf("%p %s on %s (%s)\n", mp, 2760 mp->mnt_stat.f_mntfromname, 2761 mp->mnt_stat.f_mntonname, 2762 mp->mnt_stat.f_fstypename); 2763 if (db_pager_quit) 2764 break; 2765 } 2766 db_printf("\nMore info: show mount <addr>\n"); 2767 return; 2768 } 2769 2770 mp = (struct mount *)addr; 2771 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 2772 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 2773 2774 buf[0] = '\0'; 2775 flags = mp->mnt_flag; 2776 #define MNT_FLAG(flag) do { \ 2777 if (flags & (flag)) { \ 2778 if (buf[0] != '\0') \ 2779 strlcat(buf, ", ", sizeof(buf)); \ 2780 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 2781 flags &= ~(flag); \ 2782 } \ 2783 } while (0) 2784 MNT_FLAG(MNT_RDONLY); 2785 MNT_FLAG(MNT_SYNCHRONOUS); 2786 MNT_FLAG(MNT_NOEXEC); 2787 MNT_FLAG(MNT_NOSUID); 2788 MNT_FLAG(MNT_UNION); 2789 MNT_FLAG(MNT_ASYNC); 2790 MNT_FLAG(MNT_SUIDDIR); 2791 MNT_FLAG(MNT_SOFTDEP); 2792 MNT_FLAG(MNT_NOSYMFOLLOW); 2793 MNT_FLAG(MNT_GJOURNAL); 2794 MNT_FLAG(MNT_MULTILABEL); 2795 MNT_FLAG(MNT_ACLS); 2796 MNT_FLAG(MNT_NOATIME); 2797 MNT_FLAG(MNT_NOCLUSTERR); 2798 MNT_FLAG(MNT_NOCLUSTERW); 2799 MNT_FLAG(MNT_NFS4ACLS); 2800 MNT_FLAG(MNT_EXRDONLY); 2801 MNT_FLAG(MNT_EXPORTED); 2802 MNT_FLAG(MNT_DEFEXPORTED); 2803 MNT_FLAG(MNT_EXPORTANON); 2804 MNT_FLAG(MNT_EXKERB); 2805 MNT_FLAG(MNT_EXPUBLIC); 2806 MNT_FLAG(MNT_LOCAL); 2807 MNT_FLAG(MNT_QUOTA); 2808 MNT_FLAG(MNT_ROOTFS); 2809 MNT_FLAG(MNT_USER); 2810 MNT_FLAG(MNT_IGNORE); 2811 MNT_FLAG(MNT_UPDATE); 2812 MNT_FLAG(MNT_DELEXPORT); 2813 MNT_FLAG(MNT_RELOAD); 2814 MNT_FLAG(MNT_FORCE); 2815 MNT_FLAG(MNT_SNAPSHOT); 2816 MNT_FLAG(MNT_BYFSID); 2817 MNT_FLAG(MNT_SOFTDEP); 2818 #undef MNT_FLAG 2819 if (flags != 0) { 2820 if (buf[0] != '\0') 2821 strlcat(buf, ", ", sizeof(buf)); 2822 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 2823 "0x%08x", flags); 2824 } 2825 db_printf(" mnt_flag = %s\n", buf); 2826 2827 buf[0] = '\0'; 2828 flags = mp->mnt_kern_flag; 2829 #define MNT_KERN_FLAG(flag) do { \ 2830 if (flags & (flag)) { \ 2831 if (buf[0] != '\0') \ 2832 strlcat(buf, ", ", sizeof(buf)); \ 2833 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 2834 flags &= ~(flag); \ 2835 } \ 2836 } while (0) 2837 MNT_KERN_FLAG(MNTK_UNMOUNTF); 2838 MNT_KERN_FLAG(MNTK_ASYNC); 2839 MNT_KERN_FLAG(MNTK_SOFTDEP); 2840 MNT_KERN_FLAG(MNTK_NOINSMNTQ); 2841 MNT_KERN_FLAG(MNTK_DRAINING); 2842 MNT_KERN_FLAG(MNTK_REFEXPIRE); 2843 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 2844 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 2845 MNT_KERN_FLAG(MNTK_UNMOUNT); 2846 MNT_KERN_FLAG(MNTK_MWAIT); 2847 MNT_KERN_FLAG(MNTK_SUSPEND); 2848 MNT_KERN_FLAG(MNTK_SUSPEND2); 2849 MNT_KERN_FLAG(MNTK_SUSPENDED); 2850 MNT_KERN_FLAG(MNTK_MPSAFE); 2851 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 2852 MNT_KERN_FLAG(MNTK_NOKNOTE); 2853 #undef MNT_KERN_FLAG 2854 if (flags != 0) { 2855 if (buf[0] != '\0') 2856 strlcat(buf, ", ", sizeof(buf)); 2857 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 2858 "0x%08x", flags); 2859 } 2860 db_printf(" mnt_kern_flag = %s\n", buf); 2861 2862 db_printf(" mnt_opt = "); 2863 opt = TAILQ_FIRST(mp->mnt_opt); 2864 if (opt != NULL) { 2865 db_printf("%s", opt->name); 2866 opt = TAILQ_NEXT(opt, link); 2867 while (opt != NULL) { 2868 db_printf(", %s", opt->name); 2869 opt = TAILQ_NEXT(opt, link); 2870 } 2871 } 2872 db_printf("\n"); 2873 2874 sp = &mp->mnt_stat; 2875 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 2876 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 2877 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 2878 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 2879 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 2880 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 2881 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 2882 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 2883 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 2884 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 2885 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 2886 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 2887 2888 db_printf(" mnt_cred = { uid=%u ruid=%u", 2889 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 2890 if (jailed(mp->mnt_cred)) 2891 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 2892 db_printf(" }\n"); 2893 db_printf(" mnt_ref = %d\n", mp->mnt_ref); 2894 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 2895 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 2896 db_printf(" mnt_writeopcount = %d\n", mp->mnt_writeopcount); 2897 db_printf(" mnt_noasync = %u\n", mp->mnt_noasync); 2898 db_printf(" mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen); 2899 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 2900 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 2901 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 2902 db_printf(" mnt_secondary_accwrites = %d\n", 2903 mp->mnt_secondary_accwrites); 2904 db_printf(" mnt_gjprovider = %s\n", 2905 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 2906 db_printf("\n"); 2907 2908 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 2909 if (vp->v_type != VMARKER) { 2910 vn_printf(vp, "vnode "); 2911 if (db_pager_quit) 2912 break; 2913 } 2914 } 2915 } 2916 #endif /* DDB */ 2917 2918 /* 2919 * Fill in a struct xvfsconf based on a struct vfsconf. 2920 */ 2921 static void 2922 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp) 2923 { 2924 2925 strcpy(xvfsp->vfc_name, vfsp->vfc_name); 2926 xvfsp->vfc_typenum = vfsp->vfc_typenum; 2927 xvfsp->vfc_refcount = vfsp->vfc_refcount; 2928 xvfsp->vfc_flags = vfsp->vfc_flags; 2929 /* 2930 * These are unused in userland, we keep them 2931 * to not break binary compatibility. 2932 */ 2933 xvfsp->vfc_vfsops = NULL; 2934 xvfsp->vfc_next = NULL; 2935 } 2936 2937 /* 2938 * Top level filesystem related information gathering. 2939 */ 2940 static int 2941 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 2942 { 2943 struct vfsconf *vfsp; 2944 struct xvfsconf xvfsp; 2945 int error; 2946 2947 error = 0; 2948 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 2949 bzero(&xvfsp, sizeof(xvfsp)); 2950 vfsconf2x(vfsp, &xvfsp); 2951 error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp); 2952 if (error) 2953 break; 2954 } 2955 return (error); 2956 } 2957 2958 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist, 2959 "S,xvfsconf", "List of all configured filesystems"); 2960 2961 #ifndef BURN_BRIDGES 2962 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 2963 2964 static int 2965 vfs_sysctl(SYSCTL_HANDLER_ARGS) 2966 { 2967 int *name = (int *)arg1 - 1; /* XXX */ 2968 u_int namelen = arg2 + 1; /* XXX */ 2969 struct vfsconf *vfsp; 2970 struct xvfsconf xvfsp; 2971 2972 printf("WARNING: userland calling deprecated sysctl, " 2973 "please rebuild world\n"); 2974 2975 #if 1 || defined(COMPAT_PRELITE2) 2976 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 2977 if (namelen == 1) 2978 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 2979 #endif 2980 2981 switch (name[1]) { 2982 case VFS_MAXTYPENUM: 2983 if (namelen != 2) 2984 return (ENOTDIR); 2985 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 2986 case VFS_CONF: 2987 if (namelen != 3) 2988 return (ENOTDIR); /* overloaded */ 2989 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) 2990 if (vfsp->vfc_typenum == name[2]) 2991 break; 2992 if (vfsp == NULL) 2993 return (EOPNOTSUPP); 2994 bzero(&xvfsp, sizeof(xvfsp)); 2995 vfsconf2x(vfsp, &xvfsp); 2996 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 2997 } 2998 return (EOPNOTSUPP); 2999 } 3000 3001 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, 3002 vfs_sysctl, "Generic filesystem"); 3003 3004 #if 1 || defined(COMPAT_PRELITE2) 3005 3006 static int 3007 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 3008 { 3009 int error; 3010 struct vfsconf *vfsp; 3011 struct ovfsconf ovfs; 3012 3013 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 3014 bzero(&ovfs, sizeof(ovfs)); 3015 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 3016 strcpy(ovfs.vfc_name, vfsp->vfc_name); 3017 ovfs.vfc_index = vfsp->vfc_typenum; 3018 ovfs.vfc_refcount = vfsp->vfc_refcount; 3019 ovfs.vfc_flags = vfsp->vfc_flags; 3020 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 3021 if (error) 3022 return error; 3023 } 3024 return 0; 3025 } 3026 3027 #endif /* 1 || COMPAT_PRELITE2 */ 3028 #endif /* !BURN_BRIDGES */ 3029 3030 #define KINFO_VNODESLOP 10 3031 #ifdef notyet 3032 /* 3033 * Dump vnode list (via sysctl). 3034 */ 3035 /* ARGSUSED */ 3036 static int 3037 sysctl_vnode(SYSCTL_HANDLER_ARGS) 3038 { 3039 struct xvnode *xvn; 3040 struct mount *mp; 3041 struct vnode *vp; 3042 int error, len, n; 3043 3044 /* 3045 * Stale numvnodes access is not fatal here. 3046 */ 3047 req->lock = 0; 3048 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; 3049 if (!req->oldptr) 3050 /* Make an estimate */ 3051 return (SYSCTL_OUT(req, 0, len)); 3052 3053 error = sysctl_wire_old_buffer(req, 0); 3054 if (error != 0) 3055 return (error); 3056 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); 3057 n = 0; 3058 mtx_lock(&mountlist_mtx); 3059 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 3060 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 3061 continue; 3062 MNT_ILOCK(mp); 3063 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 3064 if (n == len) 3065 break; 3066 vref(vp); 3067 xvn[n].xv_size = sizeof *xvn; 3068 xvn[n].xv_vnode = vp; 3069 xvn[n].xv_id = 0; /* XXX compat */ 3070 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field 3071 XV_COPY(usecount); 3072 XV_COPY(writecount); 3073 XV_COPY(holdcnt); 3074 XV_COPY(mount); 3075 XV_COPY(numoutput); 3076 XV_COPY(type); 3077 #undef XV_COPY 3078 xvn[n].xv_flag = vp->v_vflag; 3079 3080 switch (vp->v_type) { 3081 case VREG: 3082 case VDIR: 3083 case VLNK: 3084 break; 3085 case VBLK: 3086 case VCHR: 3087 if (vp->v_rdev == NULL) { 3088 vrele(vp); 3089 continue; 3090 } 3091 xvn[n].xv_dev = dev2udev(vp->v_rdev); 3092 break; 3093 case VSOCK: 3094 xvn[n].xv_socket = vp->v_socket; 3095 break; 3096 case VFIFO: 3097 xvn[n].xv_fifo = vp->v_fifoinfo; 3098 break; 3099 case VNON: 3100 case VBAD: 3101 default: 3102 /* shouldn't happen? */ 3103 vrele(vp); 3104 continue; 3105 } 3106 vrele(vp); 3107 ++n; 3108 } 3109 MNT_IUNLOCK(mp); 3110 mtx_lock(&mountlist_mtx); 3111 vfs_unbusy(mp); 3112 if (n == len) 3113 break; 3114 } 3115 mtx_unlock(&mountlist_mtx); 3116 3117 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); 3118 free(xvn, M_TEMP); 3119 return (error); 3120 } 3121 3122 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD, 3123 0, 0, sysctl_vnode, "S,xvnode", ""); 3124 #endif 3125 3126 /* 3127 * Unmount all filesystems. The list is traversed in reverse order 3128 * of mounting to avoid dependencies. 3129 */ 3130 void 3131 vfs_unmountall(void) 3132 { 3133 struct mount *mp; 3134 struct thread *td; 3135 int error; 3136 3137 KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread")); 3138 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 3139 td = curthread; 3140 3141 /* 3142 * Since this only runs when rebooting, it is not interlocked. 3143 */ 3144 while(!TAILQ_EMPTY(&mountlist)) { 3145 mp = TAILQ_LAST(&mountlist, mntlist); 3146 error = dounmount(mp, MNT_FORCE, td); 3147 if (error) { 3148 TAILQ_REMOVE(&mountlist, mp, mnt_list); 3149 /* 3150 * XXX: Due to the way in which we mount the root 3151 * file system off of devfs, devfs will generate a 3152 * "busy" warning when we try to unmount it before 3153 * the root. Don't print a warning as a result in 3154 * order to avoid false positive errors that may 3155 * cause needless upset. 3156 */ 3157 if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) { 3158 printf("unmount of %s failed (", 3159 mp->mnt_stat.f_mntonname); 3160 if (error == EBUSY) 3161 printf("BUSY)\n"); 3162 else 3163 printf("%d)\n", error); 3164 } 3165 } else { 3166 /* The unmount has removed mp from the mountlist */ 3167 } 3168 } 3169 } 3170 3171 /* 3172 * perform msync on all vnodes under a mount point 3173 * the mount point must be locked. 3174 */ 3175 void 3176 vfs_msync(struct mount *mp, int flags) 3177 { 3178 struct vnode *vp, *mvp; 3179 struct vm_object *obj; 3180 3181 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 3182 MNT_ILOCK(mp); 3183 MNT_VNODE_FOREACH(vp, mp, mvp) { 3184 VI_LOCK(vp); 3185 obj = vp->v_object; 3186 if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 && 3187 (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) { 3188 MNT_IUNLOCK(mp); 3189 if (!vget(vp, 3190 LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, 3191 curthread)) { 3192 if (vp->v_vflag & VV_NOSYNC) { /* unlinked */ 3193 vput(vp); 3194 MNT_ILOCK(mp); 3195 continue; 3196 } 3197 3198 obj = vp->v_object; 3199 if (obj != NULL) { 3200 VM_OBJECT_LOCK(obj); 3201 vm_object_page_clean(obj, 0, 0, 3202 flags == MNT_WAIT ? 3203 OBJPC_SYNC : OBJPC_NOSYNC); 3204 VM_OBJECT_UNLOCK(obj); 3205 } 3206 vput(vp); 3207 } 3208 MNT_ILOCK(mp); 3209 } else 3210 VI_UNLOCK(vp); 3211 } 3212 MNT_IUNLOCK(mp); 3213 } 3214 3215 /* 3216 * Mark a vnode as free, putting it up for recycling. 3217 */ 3218 static void 3219 vfree(struct vnode *vp) 3220 { 3221 3222 ASSERT_VI_LOCKED(vp, "vfree"); 3223 mtx_lock(&vnode_free_list_mtx); 3224 VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed.")); 3225 VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free")); 3226 VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't")); 3227 VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp, 3228 ("vfree: Freeing doomed vnode")); 3229 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3230 if (vp->v_iflag & VI_AGE) { 3231 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 3232 } else { 3233 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 3234 } 3235 freevnodes++; 3236 vp->v_iflag &= ~VI_AGE; 3237 vp->v_iflag |= VI_FREE; 3238 mtx_unlock(&vnode_free_list_mtx); 3239 } 3240 3241 /* 3242 * Opposite of vfree() - mark a vnode as in use. 3243 */ 3244 static void 3245 vbusy(struct vnode *vp) 3246 { 3247 ASSERT_VI_LOCKED(vp, "vbusy"); 3248 VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free")); 3249 VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed.")); 3250 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3251 3252 mtx_lock(&vnode_free_list_mtx); 3253 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 3254 freevnodes--; 3255 vp->v_iflag &= ~(VI_FREE|VI_AGE); 3256 mtx_unlock(&vnode_free_list_mtx); 3257 } 3258 3259 static void 3260 destroy_vpollinfo(struct vpollinfo *vi) 3261 { 3262 knlist_destroy(&vi->vpi_selinfo.si_note); 3263 mtx_destroy(&vi->vpi_lock); 3264 uma_zfree(vnodepoll_zone, vi); 3265 } 3266 3267 /* 3268 * Initalize per-vnode helper structure to hold poll-related state. 3269 */ 3270 void 3271 v_addpollinfo(struct vnode *vp) 3272 { 3273 struct vpollinfo *vi; 3274 3275 if (vp->v_pollinfo != NULL) 3276 return; 3277 vi = uma_zalloc(vnodepoll_zone, M_WAITOK); 3278 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 3279 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 3280 vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked); 3281 VI_LOCK(vp); 3282 if (vp->v_pollinfo != NULL) { 3283 VI_UNLOCK(vp); 3284 destroy_vpollinfo(vi); 3285 return; 3286 } 3287 vp->v_pollinfo = vi; 3288 VI_UNLOCK(vp); 3289 } 3290 3291 /* 3292 * Record a process's interest in events which might happen to 3293 * a vnode. Because poll uses the historic select-style interface 3294 * internally, this routine serves as both the ``check for any 3295 * pending events'' and the ``record my interest in future events'' 3296 * functions. (These are done together, while the lock is held, 3297 * to avoid race conditions.) 3298 */ 3299 int 3300 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 3301 { 3302 3303 v_addpollinfo(vp); 3304 mtx_lock(&vp->v_pollinfo->vpi_lock); 3305 if (vp->v_pollinfo->vpi_revents & events) { 3306 /* 3307 * This leaves events we are not interested 3308 * in available for the other process which 3309 * which presumably had requested them 3310 * (otherwise they would never have been 3311 * recorded). 3312 */ 3313 events &= vp->v_pollinfo->vpi_revents; 3314 vp->v_pollinfo->vpi_revents &= ~events; 3315 3316 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3317 return (events); 3318 } 3319 vp->v_pollinfo->vpi_events |= events; 3320 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 3321 mtx_unlock(&vp->v_pollinfo->vpi_lock); 3322 return (0); 3323 } 3324 3325 /* 3326 * Routine to create and manage a filesystem syncer vnode. 3327 */ 3328 #define sync_close ((int (*)(struct vop_close_args *))nullop) 3329 static int sync_fsync(struct vop_fsync_args *); 3330 static int sync_inactive(struct vop_inactive_args *); 3331 static int sync_reclaim(struct vop_reclaim_args *); 3332 3333 static struct vop_vector sync_vnodeops = { 3334 .vop_bypass = VOP_EOPNOTSUPP, 3335 .vop_close = sync_close, /* close */ 3336 .vop_fsync = sync_fsync, /* fsync */ 3337 .vop_inactive = sync_inactive, /* inactive */ 3338 .vop_reclaim = sync_reclaim, /* reclaim */ 3339 .vop_lock1 = vop_stdlock, /* lock */ 3340 .vop_unlock = vop_stdunlock, /* unlock */ 3341 .vop_islocked = vop_stdislocked, /* islocked */ 3342 }; 3343 3344 /* 3345 * Create a new filesystem syncer vnode for the specified mount point. 3346 */ 3347 int 3348 vfs_allocate_syncvnode(struct mount *mp) 3349 { 3350 struct vnode *vp; 3351 struct bufobj *bo; 3352 static long start, incr, next; 3353 int error; 3354 3355 /* Allocate a new vnode */ 3356 if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) { 3357 mp->mnt_syncer = NULL; 3358 return (error); 3359 } 3360 vp->v_type = VNON; 3361 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3362 vp->v_vflag |= VV_FORCEINSMQ; 3363 error = insmntque(vp, mp); 3364 if (error != 0) 3365 panic("vfs_allocate_syncvnode: insmntque failed"); 3366 vp->v_vflag &= ~VV_FORCEINSMQ; 3367 VOP_UNLOCK(vp, 0); 3368 /* 3369 * Place the vnode onto the syncer worklist. We attempt to 3370 * scatter them about on the list so that they will go off 3371 * at evenly distributed times even if all the filesystems 3372 * are mounted at once. 3373 */ 3374 next += incr; 3375 if (next == 0 || next > syncer_maxdelay) { 3376 start /= 2; 3377 incr /= 2; 3378 if (start == 0) { 3379 start = syncer_maxdelay / 2; 3380 incr = syncer_maxdelay; 3381 } 3382 next = start; 3383 } 3384 bo = &vp->v_bufobj; 3385 BO_LOCK(bo); 3386 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 3387 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 3388 mtx_lock(&sync_mtx); 3389 sync_vnode_count++; 3390 mtx_unlock(&sync_mtx); 3391 BO_UNLOCK(bo); 3392 mp->mnt_syncer = vp; 3393 return (0); 3394 } 3395 3396 /* 3397 * Do a lazy sync of the filesystem. 3398 */ 3399 static int 3400 sync_fsync(struct vop_fsync_args *ap) 3401 { 3402 struct vnode *syncvp = ap->a_vp; 3403 struct mount *mp = syncvp->v_mount; 3404 int error; 3405 struct bufobj *bo; 3406 3407 /* 3408 * We only need to do something if this is a lazy evaluation. 3409 */ 3410 if (ap->a_waitfor != MNT_LAZY) 3411 return (0); 3412 3413 /* 3414 * Move ourselves to the back of the sync list. 3415 */ 3416 bo = &syncvp->v_bufobj; 3417 BO_LOCK(bo); 3418 vn_syncer_add_to_worklist(bo, syncdelay); 3419 BO_UNLOCK(bo); 3420 3421 /* 3422 * Walk the list of vnodes pushing all that are dirty and 3423 * not already on the sync list. 3424 */ 3425 mtx_lock(&mountlist_mtx); 3426 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) { 3427 mtx_unlock(&mountlist_mtx); 3428 return (0); 3429 } 3430 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 3431 vfs_unbusy(mp); 3432 return (0); 3433 } 3434 MNT_ILOCK(mp); 3435 mp->mnt_noasync++; 3436 mp->mnt_kern_flag &= ~MNTK_ASYNC; 3437 MNT_IUNLOCK(mp); 3438 vfs_msync(mp, MNT_NOWAIT); 3439 error = VFS_SYNC(mp, MNT_LAZY); 3440 MNT_ILOCK(mp); 3441 mp->mnt_noasync--; 3442 if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0) 3443 mp->mnt_kern_flag |= MNTK_ASYNC; 3444 MNT_IUNLOCK(mp); 3445 vn_finished_write(mp); 3446 vfs_unbusy(mp); 3447 return (error); 3448 } 3449 3450 /* 3451 * The syncer vnode is no referenced. 3452 */ 3453 static int 3454 sync_inactive(struct vop_inactive_args *ap) 3455 { 3456 3457 vgone(ap->a_vp); 3458 return (0); 3459 } 3460 3461 /* 3462 * The syncer vnode is no longer needed and is being decommissioned. 3463 * 3464 * Modifications to the worklist must be protected by sync_mtx. 3465 */ 3466 static int 3467 sync_reclaim(struct vop_reclaim_args *ap) 3468 { 3469 struct vnode *vp = ap->a_vp; 3470 struct bufobj *bo; 3471 3472 bo = &vp->v_bufobj; 3473 BO_LOCK(bo); 3474 vp->v_mount->mnt_syncer = NULL; 3475 if (bo->bo_flag & BO_ONWORKLST) { 3476 mtx_lock(&sync_mtx); 3477 LIST_REMOVE(bo, bo_synclist); 3478 syncer_worklist_len--; 3479 sync_vnode_count--; 3480 mtx_unlock(&sync_mtx); 3481 bo->bo_flag &= ~BO_ONWORKLST; 3482 } 3483 BO_UNLOCK(bo); 3484 3485 return (0); 3486 } 3487 3488 /* 3489 * Check if vnode represents a disk device 3490 */ 3491 int 3492 vn_isdisk(struct vnode *vp, int *errp) 3493 { 3494 int error; 3495 3496 error = 0; 3497 dev_lock(); 3498 if (vp->v_type != VCHR) 3499 error = ENOTBLK; 3500 else if (vp->v_rdev == NULL) 3501 error = ENXIO; 3502 else if (vp->v_rdev->si_devsw == NULL) 3503 error = ENXIO; 3504 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 3505 error = ENOTBLK; 3506 dev_unlock(); 3507 if (errp != NULL) 3508 *errp = error; 3509 return (error == 0); 3510 } 3511 3512 /* 3513 * Common filesystem object access control check routine. Accepts a 3514 * vnode's type, "mode", uid and gid, requested access mode, credentials, 3515 * and optional call-by-reference privused argument allowing vaccess() 3516 * to indicate to the caller whether privilege was used to satisfy the 3517 * request (obsoleted). Returns 0 on success, or an errno on failure. 3518 * 3519 * The ifdef'd CAPABILITIES version is here for reference, but is not 3520 * actually used. 3521 */ 3522 int 3523 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 3524 accmode_t accmode, struct ucred *cred, int *privused) 3525 { 3526 accmode_t dac_granted; 3527 accmode_t priv_granted; 3528 3529 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 3530 ("invalid bit in accmode")); 3531 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 3532 ("VAPPEND without VWRITE")); 3533 3534 /* 3535 * Look for a normal, non-privileged way to access the file/directory 3536 * as requested. If it exists, go with that. 3537 */ 3538 3539 if (privused != NULL) 3540 *privused = 0; 3541 3542 dac_granted = 0; 3543 3544 /* Check the owner. */ 3545 if (cred->cr_uid == file_uid) { 3546 dac_granted |= VADMIN; 3547 if (file_mode & S_IXUSR) 3548 dac_granted |= VEXEC; 3549 if (file_mode & S_IRUSR) 3550 dac_granted |= VREAD; 3551 if (file_mode & S_IWUSR) 3552 dac_granted |= (VWRITE | VAPPEND); 3553 3554 if ((accmode & dac_granted) == accmode) 3555 return (0); 3556 3557 goto privcheck; 3558 } 3559 3560 /* Otherwise, check the groups (first match) */ 3561 if (groupmember(file_gid, cred)) { 3562 if (file_mode & S_IXGRP) 3563 dac_granted |= VEXEC; 3564 if (file_mode & S_IRGRP) 3565 dac_granted |= VREAD; 3566 if (file_mode & S_IWGRP) 3567 dac_granted |= (VWRITE | VAPPEND); 3568 3569 if ((accmode & dac_granted) == accmode) 3570 return (0); 3571 3572 goto privcheck; 3573 } 3574 3575 /* Otherwise, check everyone else. */ 3576 if (file_mode & S_IXOTH) 3577 dac_granted |= VEXEC; 3578 if (file_mode & S_IROTH) 3579 dac_granted |= VREAD; 3580 if (file_mode & S_IWOTH) 3581 dac_granted |= (VWRITE | VAPPEND); 3582 if ((accmode & dac_granted) == accmode) 3583 return (0); 3584 3585 privcheck: 3586 /* 3587 * Build a privilege mask to determine if the set of privileges 3588 * satisfies the requirements when combined with the granted mask 3589 * from above. For each privilege, if the privilege is required, 3590 * bitwise or the request type onto the priv_granted mask. 3591 */ 3592 priv_granted = 0; 3593 3594 if (type == VDIR) { 3595 /* 3596 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 3597 * requests, instead of PRIV_VFS_EXEC. 3598 */ 3599 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3600 !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0)) 3601 priv_granted |= VEXEC; 3602 } else { 3603 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 3604 !priv_check_cred(cred, PRIV_VFS_EXEC, 0)) 3605 priv_granted |= VEXEC; 3606 } 3607 3608 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 3609 !priv_check_cred(cred, PRIV_VFS_READ, 0)) 3610 priv_granted |= VREAD; 3611 3612 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 3613 !priv_check_cred(cred, PRIV_VFS_WRITE, 0)) 3614 priv_granted |= (VWRITE | VAPPEND); 3615 3616 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 3617 !priv_check_cred(cred, PRIV_VFS_ADMIN, 0)) 3618 priv_granted |= VADMIN; 3619 3620 if ((accmode & (priv_granted | dac_granted)) == accmode) { 3621 /* XXX audit: privilege used */ 3622 if (privused != NULL) 3623 *privused = 1; 3624 return (0); 3625 } 3626 3627 return ((accmode & VADMIN) ? EPERM : EACCES); 3628 } 3629 3630 /* 3631 * Credential check based on process requesting service, and per-attribute 3632 * permissions. 3633 */ 3634 int 3635 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 3636 struct thread *td, accmode_t accmode) 3637 { 3638 3639 /* 3640 * Kernel-invoked always succeeds. 3641 */ 3642 if (cred == NOCRED) 3643 return (0); 3644 3645 /* 3646 * Do not allow privileged processes in jail to directly manipulate 3647 * system attributes. 3648 */ 3649 switch (attrnamespace) { 3650 case EXTATTR_NAMESPACE_SYSTEM: 3651 /* Potentially should be: return (EPERM); */ 3652 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0)); 3653 case EXTATTR_NAMESPACE_USER: 3654 return (VOP_ACCESS(vp, accmode, cred, td)); 3655 default: 3656 return (EPERM); 3657 } 3658 } 3659 3660 #ifdef DEBUG_VFS_LOCKS 3661 /* 3662 * This only exists to supress warnings from unlocked specfs accesses. It is 3663 * no longer ok to have an unlocked VFS. 3664 */ 3665 #define IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL || \ 3666 (vp)->v_type == VCHR || (vp)->v_type == VBAD) 3667 3668 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 3669 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, ""); 3670 3671 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 3672 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, ""); 3673 3674 int vfs_badlock_print = 1; /* Print lock violations. */ 3675 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, ""); 3676 3677 #ifdef KDB 3678 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 3679 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, ""); 3680 #endif 3681 3682 static void 3683 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 3684 { 3685 3686 #ifdef KDB 3687 if (vfs_badlock_backtrace) 3688 kdb_backtrace(); 3689 #endif 3690 if (vfs_badlock_print) 3691 printf("%s: %p %s\n", str, (void *)vp, msg); 3692 if (vfs_badlock_ddb) 3693 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 3694 } 3695 3696 void 3697 assert_vi_locked(struct vnode *vp, const char *str) 3698 { 3699 3700 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 3701 vfs_badlock("interlock is not locked but should be", str, vp); 3702 } 3703 3704 void 3705 assert_vi_unlocked(struct vnode *vp, const char *str) 3706 { 3707 3708 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 3709 vfs_badlock("interlock is locked but should not be", str, vp); 3710 } 3711 3712 void 3713 assert_vop_locked(struct vnode *vp, const char *str) 3714 { 3715 3716 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0) 3717 vfs_badlock("is not locked but should be", str, vp); 3718 } 3719 3720 void 3721 assert_vop_unlocked(struct vnode *vp, const char *str) 3722 { 3723 3724 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 3725 vfs_badlock("is locked but should not be", str, vp); 3726 } 3727 3728 void 3729 assert_vop_elocked(struct vnode *vp, const char *str) 3730 { 3731 3732 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 3733 vfs_badlock("is not exclusive locked but should be", str, vp); 3734 } 3735 3736 #if 0 3737 void 3738 assert_vop_elocked_other(struct vnode *vp, const char *str) 3739 { 3740 3741 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER) 3742 vfs_badlock("is not exclusive locked by another thread", 3743 str, vp); 3744 } 3745 3746 void 3747 assert_vop_slocked(struct vnode *vp, const char *str) 3748 { 3749 3750 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED) 3751 vfs_badlock("is not locked shared but should be", str, vp); 3752 } 3753 #endif /* 0 */ 3754 #endif /* DEBUG_VFS_LOCKS */ 3755 3756 void 3757 vop_rename_fail(struct vop_rename_args *ap) 3758 { 3759 3760 if (ap->a_tvp != NULL) 3761 vput(ap->a_tvp); 3762 if (ap->a_tdvp == ap->a_tvp) 3763 vrele(ap->a_tdvp); 3764 else 3765 vput(ap->a_tdvp); 3766 vrele(ap->a_fdvp); 3767 vrele(ap->a_fvp); 3768 } 3769 3770 void 3771 vop_rename_pre(void *ap) 3772 { 3773 struct vop_rename_args *a = ap; 3774 3775 #ifdef DEBUG_VFS_LOCKS 3776 if (a->a_tvp) 3777 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 3778 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 3779 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 3780 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 3781 3782 /* Check the source (from). */ 3783 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 3784 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 3785 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 3786 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 3787 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 3788 3789 /* Check the target. */ 3790 if (a->a_tvp) 3791 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 3792 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 3793 #endif 3794 if (a->a_tdvp != a->a_fdvp) 3795 vhold(a->a_fdvp); 3796 if (a->a_tvp != a->a_fvp) 3797 vhold(a->a_fvp); 3798 vhold(a->a_tdvp); 3799 if (a->a_tvp) 3800 vhold(a->a_tvp); 3801 } 3802 3803 void 3804 vop_strategy_pre(void *ap) 3805 { 3806 #ifdef DEBUG_VFS_LOCKS 3807 struct vop_strategy_args *a; 3808 struct buf *bp; 3809 3810 a = ap; 3811 bp = a->a_bp; 3812 3813 /* 3814 * Cluster ops lock their component buffers but not the IO container. 3815 */ 3816 if ((bp->b_flags & B_CLUSTER) != 0) 3817 return; 3818 3819 if (!BUF_ISLOCKED(bp)) { 3820 if (vfs_badlock_print) 3821 printf( 3822 "VOP_STRATEGY: bp is not locked but should be\n"); 3823 if (vfs_badlock_ddb) 3824 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 3825 } 3826 #endif 3827 } 3828 3829 void 3830 vop_lookup_pre(void *ap) 3831 { 3832 #ifdef DEBUG_VFS_LOCKS 3833 struct vop_lookup_args *a; 3834 struct vnode *dvp; 3835 3836 a = ap; 3837 dvp = a->a_dvp; 3838 ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP"); 3839 ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP"); 3840 #endif 3841 } 3842 3843 void 3844 vop_lookup_post(void *ap, int rc) 3845 { 3846 #ifdef DEBUG_VFS_LOCKS 3847 struct vop_lookup_args *a; 3848 struct vnode *dvp; 3849 struct vnode *vp; 3850 3851 a = ap; 3852 dvp = a->a_dvp; 3853 vp = *(a->a_vpp); 3854 3855 ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP"); 3856 ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP"); 3857 3858 if (!rc) 3859 ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)"); 3860 #endif 3861 } 3862 3863 void 3864 vop_lock_pre(void *ap) 3865 { 3866 #ifdef DEBUG_VFS_LOCKS 3867 struct vop_lock1_args *a = ap; 3868 3869 if ((a->a_flags & LK_INTERLOCK) == 0) 3870 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 3871 else 3872 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 3873 #endif 3874 } 3875 3876 void 3877 vop_lock_post(void *ap, int rc) 3878 { 3879 #ifdef DEBUG_VFS_LOCKS 3880 struct vop_lock1_args *a = ap; 3881 3882 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 3883 if (rc == 0) 3884 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 3885 #endif 3886 } 3887 3888 void 3889 vop_unlock_pre(void *ap) 3890 { 3891 #ifdef DEBUG_VFS_LOCKS 3892 struct vop_unlock_args *a = ap; 3893 3894 if (a->a_flags & LK_INTERLOCK) 3895 ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK"); 3896 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); 3897 #endif 3898 } 3899 3900 void 3901 vop_unlock_post(void *ap, int rc) 3902 { 3903 #ifdef DEBUG_VFS_LOCKS 3904 struct vop_unlock_args *a = ap; 3905 3906 if (a->a_flags & LK_INTERLOCK) 3907 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK"); 3908 #endif 3909 } 3910 3911 void 3912 vop_create_post(void *ap, int rc) 3913 { 3914 struct vop_create_args *a = ap; 3915 3916 if (!rc) 3917 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 3918 } 3919 3920 void 3921 vop_link_post(void *ap, int rc) 3922 { 3923 struct vop_link_args *a = ap; 3924 3925 if (!rc) { 3926 VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK); 3927 VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE); 3928 } 3929 } 3930 3931 void 3932 vop_mkdir_post(void *ap, int rc) 3933 { 3934 struct vop_mkdir_args *a = ap; 3935 3936 if (!rc) 3937 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 3938 } 3939 3940 void 3941 vop_mknod_post(void *ap, int rc) 3942 { 3943 struct vop_mknod_args *a = ap; 3944 3945 if (!rc) 3946 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 3947 } 3948 3949 void 3950 vop_remove_post(void *ap, int rc) 3951 { 3952 struct vop_remove_args *a = ap; 3953 3954 if (!rc) { 3955 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 3956 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 3957 } 3958 } 3959 3960 void 3961 vop_rename_post(void *ap, int rc) 3962 { 3963 struct vop_rename_args *a = ap; 3964 3965 if (!rc) { 3966 VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE); 3967 VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE); 3968 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 3969 if (a->a_tvp) 3970 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 3971 } 3972 if (a->a_tdvp != a->a_fdvp) 3973 vdrop(a->a_fdvp); 3974 if (a->a_tvp != a->a_fvp) 3975 vdrop(a->a_fvp); 3976 vdrop(a->a_tdvp); 3977 if (a->a_tvp) 3978 vdrop(a->a_tvp); 3979 } 3980 3981 void 3982 vop_rmdir_post(void *ap, int rc) 3983 { 3984 struct vop_rmdir_args *a = ap; 3985 3986 if (!rc) { 3987 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); 3988 VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); 3989 } 3990 } 3991 3992 void 3993 vop_setattr_post(void *ap, int rc) 3994 { 3995 struct vop_setattr_args *a = ap; 3996 3997 if (!rc) 3998 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 3999 } 4000 4001 void 4002 vop_symlink_post(void *ap, int rc) 4003 { 4004 struct vop_symlink_args *a = ap; 4005 4006 if (!rc) 4007 VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 4008 } 4009 4010 static struct knlist fs_knlist; 4011 4012 static void 4013 vfs_event_init(void *arg) 4014 { 4015 knlist_init_mtx(&fs_knlist, NULL); 4016 } 4017 /* XXX - correct order? */ 4018 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 4019 4020 void 4021 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 4022 { 4023 4024 KNOTE_UNLOCKED(&fs_knlist, event); 4025 } 4026 4027 static int filt_fsattach(struct knote *kn); 4028 static void filt_fsdetach(struct knote *kn); 4029 static int filt_fsevent(struct knote *kn, long hint); 4030 4031 struct filterops fs_filtops = { 4032 .f_isfd = 0, 4033 .f_attach = filt_fsattach, 4034 .f_detach = filt_fsdetach, 4035 .f_event = filt_fsevent 4036 }; 4037 4038 static int 4039 filt_fsattach(struct knote *kn) 4040 { 4041 4042 kn->kn_flags |= EV_CLEAR; 4043 knlist_add(&fs_knlist, kn, 0); 4044 return (0); 4045 } 4046 4047 static void 4048 filt_fsdetach(struct knote *kn) 4049 { 4050 4051 knlist_remove(&fs_knlist, kn, 0); 4052 } 4053 4054 static int 4055 filt_fsevent(struct knote *kn, long hint) 4056 { 4057 4058 kn->kn_fflags |= hint; 4059 return (kn->kn_fflags != 0); 4060 } 4061 4062 static int 4063 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 4064 { 4065 struct vfsidctl vc; 4066 int error; 4067 struct mount *mp; 4068 4069 error = SYSCTL_IN(req, &vc, sizeof(vc)); 4070 if (error) 4071 return (error); 4072 if (vc.vc_vers != VFS_CTL_VERS1) 4073 return (EINVAL); 4074 mp = vfs_getvfs(&vc.vc_fsid); 4075 if (mp == NULL) 4076 return (ENOENT); 4077 /* ensure that a specific sysctl goes to the right filesystem. */ 4078 if (strcmp(vc.vc_fstypename, "*") != 0 && 4079 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 4080 vfs_rel(mp); 4081 return (EINVAL); 4082 } 4083 VCTLTOREQ(&vc, req); 4084 error = VFS_SYSCTL(mp, vc.vc_op, req); 4085 vfs_rel(mp); 4086 return (error); 4087 } 4088 4089 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "", 4090 "Sysctl by fsid"); 4091 4092 /* 4093 * Function to initialize a va_filerev field sensibly. 4094 * XXX: Wouldn't a random number make a lot more sense ?? 4095 */ 4096 u_quad_t 4097 init_va_filerev(void) 4098 { 4099 struct bintime bt; 4100 4101 getbinuptime(&bt); 4102 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 4103 } 4104 4105 static int filt_vfsread(struct knote *kn, long hint); 4106 static int filt_vfswrite(struct knote *kn, long hint); 4107 static int filt_vfsvnode(struct knote *kn, long hint); 4108 static void filt_vfsdetach(struct knote *kn); 4109 static struct filterops vfsread_filtops = { 4110 .f_isfd = 1, 4111 .f_detach = filt_vfsdetach, 4112 .f_event = filt_vfsread 4113 }; 4114 static struct filterops vfswrite_filtops = { 4115 .f_isfd = 1, 4116 .f_detach = filt_vfsdetach, 4117 .f_event = filt_vfswrite 4118 }; 4119 static struct filterops vfsvnode_filtops = { 4120 .f_isfd = 1, 4121 .f_detach = filt_vfsdetach, 4122 .f_event = filt_vfsvnode 4123 }; 4124 4125 static void 4126 vfs_knllock(void *arg) 4127 { 4128 struct vnode *vp = arg; 4129 4130 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 4131 } 4132 4133 static void 4134 vfs_knlunlock(void *arg) 4135 { 4136 struct vnode *vp = arg; 4137 4138 VOP_UNLOCK(vp, 0); 4139 } 4140 4141 static void 4142 vfs_knl_assert_locked(void *arg) 4143 { 4144 #ifdef DEBUG_VFS_LOCKS 4145 struct vnode *vp = arg; 4146 4147 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 4148 #endif 4149 } 4150 4151 static void 4152 vfs_knl_assert_unlocked(void *arg) 4153 { 4154 #ifdef DEBUG_VFS_LOCKS 4155 struct vnode *vp = arg; 4156 4157 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 4158 #endif 4159 } 4160 4161 int 4162 vfs_kqfilter(struct vop_kqfilter_args *ap) 4163 { 4164 struct vnode *vp = ap->a_vp; 4165 struct knote *kn = ap->a_kn; 4166 struct knlist *knl; 4167 4168 switch (kn->kn_filter) { 4169 case EVFILT_READ: 4170 kn->kn_fop = &vfsread_filtops; 4171 break; 4172 case EVFILT_WRITE: 4173 kn->kn_fop = &vfswrite_filtops; 4174 break; 4175 case EVFILT_VNODE: 4176 kn->kn_fop = &vfsvnode_filtops; 4177 break; 4178 default: 4179 return (EINVAL); 4180 } 4181 4182 kn->kn_hook = (caddr_t)vp; 4183 4184 v_addpollinfo(vp); 4185 if (vp->v_pollinfo == NULL) 4186 return (ENOMEM); 4187 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 4188 knlist_add(knl, kn, 0); 4189 4190 return (0); 4191 } 4192 4193 /* 4194 * Detach knote from vnode 4195 */ 4196 static void 4197 filt_vfsdetach(struct knote *kn) 4198 { 4199 struct vnode *vp = (struct vnode *)kn->kn_hook; 4200 4201 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 4202 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 4203 } 4204 4205 /*ARGSUSED*/ 4206 static int 4207 filt_vfsread(struct knote *kn, long hint) 4208 { 4209 struct vnode *vp = (struct vnode *)kn->kn_hook; 4210 struct vattr va; 4211 int res; 4212 4213 /* 4214 * filesystem is gone, so set the EOF flag and schedule 4215 * the knote for deletion. 4216 */ 4217 if (hint == NOTE_REVOKE) { 4218 VI_LOCK(vp); 4219 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 4220 VI_UNLOCK(vp); 4221 return (1); 4222 } 4223 4224 if (VOP_GETATTR(vp, &va, curthread->td_ucred)) 4225 return (0); 4226 4227 VI_LOCK(vp); 4228 kn->kn_data = va.va_size - kn->kn_fp->f_offset; 4229 res = (kn->kn_data != 0); 4230 VI_UNLOCK(vp); 4231 return (res); 4232 } 4233 4234 /*ARGSUSED*/ 4235 static int 4236 filt_vfswrite(struct knote *kn, long hint) 4237 { 4238 struct vnode *vp = (struct vnode *)kn->kn_hook; 4239 4240 VI_LOCK(vp); 4241 4242 /* 4243 * filesystem is gone, so set the EOF flag and schedule 4244 * the knote for deletion. 4245 */ 4246 if (hint == NOTE_REVOKE) 4247 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 4248 4249 kn->kn_data = 0; 4250 VI_UNLOCK(vp); 4251 return (1); 4252 } 4253 4254 static int 4255 filt_vfsvnode(struct knote *kn, long hint) 4256 { 4257 struct vnode *vp = (struct vnode *)kn->kn_hook; 4258 int res; 4259 4260 VI_LOCK(vp); 4261 if (kn->kn_sfflags & hint) 4262 kn->kn_fflags |= hint; 4263 if (hint == NOTE_REVOKE) { 4264 kn->kn_flags |= EV_EOF; 4265 VI_UNLOCK(vp); 4266 return (1); 4267 } 4268 res = (kn->kn_fflags != 0); 4269 VI_UNLOCK(vp); 4270 return (res); 4271 } 4272 4273 int 4274 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 4275 { 4276 int error; 4277 4278 if (dp->d_reclen > ap->a_uio->uio_resid) 4279 return (ENAMETOOLONG); 4280 error = uiomove(dp, dp->d_reclen, ap->a_uio); 4281 if (error) { 4282 if (ap->a_ncookies != NULL) { 4283 if (ap->a_cookies != NULL) 4284 free(ap->a_cookies, M_TEMP); 4285 ap->a_cookies = NULL; 4286 *ap->a_ncookies = 0; 4287 } 4288 return (error); 4289 } 4290 if (ap->a_ncookies == NULL) 4291 return (0); 4292 4293 KASSERT(ap->a_cookies, 4294 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 4295 4296 *ap->a_cookies = realloc(*ap->a_cookies, 4297 (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO); 4298 (*ap->a_cookies)[*ap->a_ncookies] = off; 4299 return (0); 4300 } 4301 4302 /* 4303 * Mark for update the access time of the file if the filesystem 4304 * supports VOP_MARKATIME. This functionality is used by execve and 4305 * mmap, so we want to avoid the I/O implied by directly setting 4306 * va_atime for the sake of efficiency. 4307 */ 4308 void 4309 vfs_mark_atime(struct vnode *vp, struct ucred *cred) 4310 { 4311 struct mount *mp; 4312 4313 mp = vp->v_mount; 4314 VFS_ASSERT_GIANT(mp); 4315 ASSERT_VOP_LOCKED(vp, "vfs_mark_atime"); 4316 if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 4317 (void)VOP_MARKATIME(vp); 4318 } 4319 4320 /* 4321 * The purpose of this routine is to remove granularity from accmode_t, 4322 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 4323 * VADMIN and VAPPEND. 4324 * 4325 * If it returns 0, the caller is supposed to continue with the usual 4326 * access checks using 'accmode' as modified by this routine. If it 4327 * returns nonzero value, the caller is supposed to return that value 4328 * as errno. 4329 * 4330 * Note that after this routine runs, accmode may be zero. 4331 */ 4332 int 4333 vfs_unixify_accmode(accmode_t *accmode) 4334 { 4335 /* 4336 * There is no way to specify explicit "deny" rule using 4337 * file mode or POSIX.1e ACLs. 4338 */ 4339 if (*accmode & VEXPLICIT_DENY) { 4340 *accmode = 0; 4341 return (0); 4342 } 4343 4344 /* 4345 * None of these can be translated into usual access bits. 4346 * Also, the common case for NFSv4 ACLs is to not contain 4347 * either of these bits. Caller should check for VWRITE 4348 * on the containing directory instead. 4349 */ 4350 if (*accmode & (VDELETE_CHILD | VDELETE)) 4351 return (EPERM); 4352 4353 if (*accmode & VADMIN_PERMS) { 4354 *accmode &= ~VADMIN_PERMS; 4355 *accmode |= VADMIN; 4356 } 4357 4358 /* 4359 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 4360 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 4361 */ 4362 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 4363 4364 return (0); 4365 } 4366