xref: /freebsd/sys/kern/vfs_subr.c (revision 74bf4e164ba5851606a27d4feff27717452583e5)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_mac.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bio.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/event.h>
53 #include <sys/eventhandler.h>
54 #include <sys/extattr.h>
55 #include <sys/fcntl.h>
56 #include <sys/kdb.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/mac.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/namei.h>
63 #include <sys/reboot.h>
64 #include <sys/sleepqueue.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_extern.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_kern.h>
78 #include <vm/uma.h>
79 
80 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81 
82 static void	addalias(struct vnode *vp, struct cdev *nvp_rdev);
83 static void	delmntque(struct vnode *vp);
84 static void	insmntque(struct vnode *vp, struct mount *mp);
85 static void	vclean(struct vnode *vp, int flags, struct thread *td);
86 static void	vlruvp(struct vnode *vp);
87 static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
88 		    int slpflag, int slptimeo, int *errorp);
89 static void	syncer_shutdown(void *arg, int howto);
90 static int	vtryrecycle(struct vnode *vp);
91 static void	vx_lock(struct vnode *vp);
92 static void	vx_unlock(struct vnode *vp);
93 static void	vgonechrl(struct vnode *vp, struct thread *td);
94 
95 
96 /*
97  * Number of vnodes in existence.  Increased whenever getnewvnode()
98  * allocates a new vnode, never decreased.
99  */
100 static unsigned long	numvnodes;
101 
102 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
103 
104 /*
105  * Conversion tables for conversion from vnode types to inode formats
106  * and back.
107  */
108 enum vtype iftovt_tab[16] = {
109 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
110 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
111 };
112 int vttoif_tab[9] = {
113 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
114 	S_IFSOCK, S_IFIFO, S_IFMT,
115 };
116 
117 /*
118  * List of vnodes that are ready for recycling.
119  */
120 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
121 
122 /*
123  * Minimum number of free vnodes.  If there are fewer than this free vnodes,
124  * getnewvnode() will return a newly allocated vnode.
125  */
126 static u_long wantfreevnodes = 25;
127 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
128 /* Number of vnodes in the free list. */
129 static u_long freevnodes;
130 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
131 
132 /*
133  * Various variables used for debugging the new implementation of
134  * reassignbuf().
135  * XXX these are probably of (very) limited utility now.
136  */
137 static int reassignbufcalls;
138 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
139 static int nameileafonly;
140 SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
141 
142 /*
143  * Cache for the mount type id assigned to NFS.  This is used for
144  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
145  */
146 int	nfs_mount_type = -1;
147 
148 /* To keep more than one thread at a time from running vfs_getnewfsid */
149 static struct mtx mntid_mtx;
150 
151 /*
152  * Lock for any access to the following:
153  *	vnode_free_list
154  *	numvnodes
155  *	freevnodes
156  */
157 static struct mtx vnode_free_list_mtx;
158 
159 /*
160  * For any iteration/modification of dev->si_hlist (linked through
161  * v_specnext)
162  */
163 static struct mtx spechash_mtx;
164 
165 /* Publicly exported FS */
166 struct nfs_public nfs_pub;
167 
168 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
169 static uma_zone_t vnode_zone;
170 static uma_zone_t vnodepoll_zone;
171 
172 /* Set to 1 to print out reclaim of active vnodes */
173 int	prtactive;
174 
175 /*
176  * The workitem queue.
177  *
178  * It is useful to delay writes of file data and filesystem metadata
179  * for tens of seconds so that quickly created and deleted files need
180  * not waste disk bandwidth being created and removed. To realize this,
181  * we append vnodes to a "workitem" queue. When running with a soft
182  * updates implementation, most pending metadata dependencies should
183  * not wait for more than a few seconds. Thus, mounted on block devices
184  * are delayed only about a half the time that file data is delayed.
185  * Similarly, directory updates are more critical, so are only delayed
186  * about a third the time that file data is delayed. Thus, there are
187  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
188  * one each second (driven off the filesystem syncer process). The
189  * syncer_delayno variable indicates the next queue that is to be processed.
190  * Items that need to be processed soon are placed in this queue:
191  *
192  *	syncer_workitem_pending[syncer_delayno]
193  *
194  * A delay of fifteen seconds is done by placing the request fifteen
195  * entries later in the queue:
196  *
197  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
198  *
199  */
200 static int syncer_delayno;
201 static long syncer_mask;
202 LIST_HEAD(synclist, vnode);
203 static struct synclist *syncer_workitem_pending;
204 /*
205  * The sync_mtx protects:
206  *	vp->v_synclist
207  *	sync_vnode_count
208  *	syncer_delayno
209  *	syncer_state
210  *	syncer_workitem_pending
211  *	syncer_worklist_len
212  *	rushjob
213  */
214 static struct mtx sync_mtx;
215 
216 #define SYNCER_MAXDELAY		32
217 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
218 static int syncdelay = 30;		/* max time to delay syncing data */
219 static int filedelay = 30;		/* time to delay syncing files */
220 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
221 static int dirdelay = 29;		/* time to delay syncing directories */
222 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
223 static int metadelay = 28;		/* time to delay syncing metadata */
224 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
225 static int rushjob;		/* number of slots to run ASAP */
226 static int stat_rush_requests;	/* number of times I/O speeded up */
227 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
228 
229 /*
230  * When shutting down the syncer, run it at four times normal speed.
231  */
232 #define SYNCER_SHUTDOWN_SPEEDUP		4
233 static int sync_vnode_count;
234 static int syncer_worklist_len;
235 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
236     syncer_state;
237 
238 /*
239  * Number of vnodes we want to exist at any one time.  This is mostly used
240  * to size hash tables in vnode-related code.  It is normally not used in
241  * getnewvnode(), as wantfreevnodes is normally nonzero.)
242  *
243  * XXX desiredvnodes is historical cruft and should not exist.
244  */
245 int desiredvnodes;
246 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
247     &desiredvnodes, 0, "Maximum number of vnodes");
248 static int minvnodes;
249 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
250     &minvnodes, 0, "Minimum number of vnodes");
251 static int vnlru_nowhere;
252 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
253     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
254 
255 /* Hook for calling soft updates. */
256 int (*softdep_process_worklist_hook)(struct mount *);
257 
258 /*
259  * Initialize the vnode management data structures.
260  */
261 #ifndef	MAXVNODES_MAX
262 #define	MAXVNODES_MAX	100000
263 #endif
264 static void
265 vntblinit(void *dummy __unused)
266 {
267 
268 	/*
269 	 * Desiredvnodes is a function of the physical memory size and
270 	 * the kernel's heap size.  Specifically, desiredvnodes scales
271 	 * in proportion to the physical memory size until two fifths
272 	 * of the kernel's heap size is consumed by vnodes and vm
273 	 * objects.
274 	 */
275 	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
276 	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
277 	if (desiredvnodes > MAXVNODES_MAX) {
278 		if (bootverbose)
279 			printf("Reducing kern.maxvnodes %d -> %d\n",
280 			    desiredvnodes, MAXVNODES_MAX);
281 		desiredvnodes = MAXVNODES_MAX;
282 	}
283 	minvnodes = desiredvnodes / 4;
284 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
285 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
286 	mtx_init(&spechash_mtx, "spechash", NULL, MTX_DEF);
287 	TAILQ_INIT(&vnode_free_list);
288 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
289 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
290 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
291 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
292 	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
293 	/*
294 	 * Initialize the filesystem syncer.
295 	 */
296 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
297 		&syncer_mask);
298 	syncer_maxdelay = syncer_mask + 1;
299 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
300 }
301 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
302 
303 
304 /*
305  * Mark a mount point as busy. Used to synchronize access and to delay
306  * unmounting. Interlock is not released on failure.
307  */
308 int
309 vfs_busy(mp, flags, interlkp, td)
310 	struct mount *mp;
311 	int flags;
312 	struct mtx *interlkp;
313 	struct thread *td;
314 {
315 	int lkflags;
316 
317 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
318 		if (flags & LK_NOWAIT)
319 			return (ENOENT);
320 		mp->mnt_kern_flag |= MNTK_MWAIT;
321 		/*
322 		 * Since all busy locks are shared except the exclusive
323 		 * lock granted when unmounting, the only place that a
324 		 * wakeup needs to be done is at the release of the
325 		 * exclusive lock at the end of dounmount.
326 		 */
327 		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
328 		return (ENOENT);
329 	}
330 	lkflags = LK_SHARED | LK_NOPAUSE;
331 	if (interlkp)
332 		lkflags |= LK_INTERLOCK;
333 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
334 		panic("vfs_busy: unexpected lock failure");
335 	return (0);
336 }
337 
338 /*
339  * Free a busy filesystem.
340  */
341 void
342 vfs_unbusy(mp, td)
343 	struct mount *mp;
344 	struct thread *td;
345 {
346 
347 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
348 }
349 
350 /*
351  * Lookup a mount point by filesystem identifier.
352  */
353 struct mount *
354 vfs_getvfs(fsid)
355 	fsid_t *fsid;
356 {
357 	register struct mount *mp;
358 
359 	mtx_lock(&mountlist_mtx);
360 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
361 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
362 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
363 			mtx_unlock(&mountlist_mtx);
364 			return (mp);
365 		}
366 	}
367 	mtx_unlock(&mountlist_mtx);
368 	return ((struct mount *) 0);
369 }
370 
371 /*
372  * Check if a user can access priveledged mount options.
373  */
374 int
375 vfs_suser(struct mount *mp, struct thread *td)
376 {
377 	int error;
378 
379 	if ((mp->mnt_flag & MNT_USER) == 0 ||
380 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
381 		if ((error = suser(td)) != 0)
382 			return (error);
383 	}
384 	return (0);
385 }
386 
387 /*
388  * Get a new unique fsid.  Try to make its val[0] unique, since this value
389  * will be used to create fake device numbers for stat().  Also try (but
390  * not so hard) make its val[0] unique mod 2^16, since some emulators only
391  * support 16-bit device numbers.  We end up with unique val[0]'s for the
392  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
393  *
394  * Keep in mind that several mounts may be running in parallel.  Starting
395  * the search one past where the previous search terminated is both a
396  * micro-optimization and a defense against returning the same fsid to
397  * different mounts.
398  */
399 void
400 vfs_getnewfsid(mp)
401 	struct mount *mp;
402 {
403 	static u_int16_t mntid_base;
404 	fsid_t tfsid;
405 	int mtype;
406 
407 	mtx_lock(&mntid_mtx);
408 	mtype = mp->mnt_vfc->vfc_typenum;
409 	tfsid.val[1] = mtype;
410 	mtype = (mtype & 0xFF) << 24;
411 	for (;;) {
412 		tfsid.val[0] = makedev(255,
413 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
414 		mntid_base++;
415 		if (vfs_getvfs(&tfsid) == NULL)
416 			break;
417 	}
418 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
419 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
420 	mtx_unlock(&mntid_mtx);
421 }
422 
423 /*
424  * Knob to control the precision of file timestamps:
425  *
426  *   0 = seconds only; nanoseconds zeroed.
427  *   1 = seconds and nanoseconds, accurate within 1/HZ.
428  *   2 = seconds and nanoseconds, truncated to microseconds.
429  * >=3 = seconds and nanoseconds, maximum precision.
430  */
431 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
432 
433 static int timestamp_precision = TSP_SEC;
434 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
435     &timestamp_precision, 0, "");
436 
437 /*
438  * Get a current timestamp.
439  */
440 void
441 vfs_timestamp(tsp)
442 	struct timespec *tsp;
443 {
444 	struct timeval tv;
445 
446 	switch (timestamp_precision) {
447 	case TSP_SEC:
448 		tsp->tv_sec = time_second;
449 		tsp->tv_nsec = 0;
450 		break;
451 	case TSP_HZ:
452 		getnanotime(tsp);
453 		break;
454 	case TSP_USEC:
455 		microtime(&tv);
456 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
457 		break;
458 	case TSP_NSEC:
459 	default:
460 		nanotime(tsp);
461 		break;
462 	}
463 }
464 
465 /*
466  * Set vnode attributes to VNOVAL
467  */
468 void
469 vattr_null(vap)
470 	register struct vattr *vap;
471 {
472 
473 	vap->va_type = VNON;
474 	vap->va_size = VNOVAL;
475 	vap->va_bytes = VNOVAL;
476 	vap->va_mode = VNOVAL;
477 	vap->va_nlink = VNOVAL;
478 	vap->va_uid = VNOVAL;
479 	vap->va_gid = VNOVAL;
480 	vap->va_fsid = VNOVAL;
481 	vap->va_fileid = VNOVAL;
482 	vap->va_blocksize = VNOVAL;
483 	vap->va_rdev = VNOVAL;
484 	vap->va_atime.tv_sec = VNOVAL;
485 	vap->va_atime.tv_nsec = VNOVAL;
486 	vap->va_mtime.tv_sec = VNOVAL;
487 	vap->va_mtime.tv_nsec = VNOVAL;
488 	vap->va_ctime.tv_sec = VNOVAL;
489 	vap->va_ctime.tv_nsec = VNOVAL;
490 	vap->va_birthtime.tv_sec = VNOVAL;
491 	vap->va_birthtime.tv_nsec = VNOVAL;
492 	vap->va_flags = VNOVAL;
493 	vap->va_gen = VNOVAL;
494 	vap->va_vaflags = 0;
495 }
496 
497 /*
498  * This routine is called when we have too many vnodes.  It attempts
499  * to free <count> vnodes and will potentially free vnodes that still
500  * have VM backing store (VM backing store is typically the cause
501  * of a vnode blowout so we want to do this).  Therefore, this operation
502  * is not considered cheap.
503  *
504  * A number of conditions may prevent a vnode from being reclaimed.
505  * the buffer cache may have references on the vnode, a directory
506  * vnode may still have references due to the namei cache representing
507  * underlying files, or the vnode may be in active use.   It is not
508  * desireable to reuse such vnodes.  These conditions may cause the
509  * number of vnodes to reach some minimum value regardless of what
510  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
511  */
512 static int
513 vlrureclaim(struct mount *mp)
514 {
515 	struct vnode *vp;
516 	int done;
517 	int trigger;
518 	int usevnodes;
519 	int count;
520 
521 	/*
522 	 * Calculate the trigger point, don't allow user
523 	 * screwups to blow us up.   This prevents us from
524 	 * recycling vnodes with lots of resident pages.  We
525 	 * aren't trying to free memory, we are trying to
526 	 * free vnodes.
527 	 */
528 	usevnodes = desiredvnodes;
529 	if (usevnodes <= 0)
530 		usevnodes = 1;
531 	trigger = cnt.v_page_count * 2 / usevnodes;
532 
533 	done = 0;
534 	MNT_ILOCK(mp);
535 	count = mp->mnt_nvnodelistsize / 10 + 1;
536 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
537 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
538 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
539 
540 		if (vp->v_type != VNON &&
541 		    vp->v_type != VBAD &&
542 		    VI_TRYLOCK(vp)) {
543 			if (VMIGHTFREE(vp) &&           /* critical path opt */
544 			    (vp->v_object == NULL ||
545 			    vp->v_object->resident_page_count < trigger)) {
546 				MNT_IUNLOCK(mp);
547 				vgonel(vp, curthread);
548 				done++;
549 				MNT_ILOCK(mp);
550 			} else
551 				VI_UNLOCK(vp);
552 		}
553 		--count;
554 	}
555 	MNT_IUNLOCK(mp);
556 	return done;
557 }
558 
559 /*
560  * Attempt to recycle vnodes in a context that is always safe to block.
561  * Calling vlrurecycle() from the bowels of filesystem code has some
562  * interesting deadlock problems.
563  */
564 static struct proc *vnlruproc;
565 static int vnlruproc_sig;
566 
567 static void
568 vnlru_proc(void)
569 {
570 	struct mount *mp, *nmp;
571 	int done;
572 	struct proc *p = vnlruproc;
573 	struct thread *td = FIRST_THREAD_IN_PROC(p);
574 
575 	mtx_lock(&Giant);
576 
577 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
578 	    SHUTDOWN_PRI_FIRST);
579 
580 	for (;;) {
581 		kthread_suspend_check(p);
582 		mtx_lock(&vnode_free_list_mtx);
583 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
584 			mtx_unlock(&vnode_free_list_mtx);
585 			vnlruproc_sig = 0;
586 			wakeup(&vnlruproc_sig);
587 			tsleep(vnlruproc, PVFS, "vlruwt", hz);
588 			continue;
589 		}
590 		mtx_unlock(&vnode_free_list_mtx);
591 		done = 0;
592 		mtx_lock(&mountlist_mtx);
593 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
594 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
595 				nmp = TAILQ_NEXT(mp, mnt_list);
596 				continue;
597 			}
598 			done += vlrureclaim(mp);
599 			mtx_lock(&mountlist_mtx);
600 			nmp = TAILQ_NEXT(mp, mnt_list);
601 			vfs_unbusy(mp, td);
602 		}
603 		mtx_unlock(&mountlist_mtx);
604 		if (done == 0) {
605 #if 0
606 			/* These messages are temporary debugging aids */
607 			if (vnlru_nowhere < 5)
608 				printf("vnlru process getting nowhere..\n");
609 			else if (vnlru_nowhere == 5)
610 				printf("vnlru process messages stopped.\n");
611 #endif
612 			vnlru_nowhere++;
613 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
614 		}
615 	}
616 }
617 
618 static struct kproc_desc vnlru_kp = {
619 	"vnlru",
620 	vnlru_proc,
621 	&vnlruproc
622 };
623 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
624 
625 
626 /*
627  * Routines having to do with the management of the vnode table.
628  */
629 
630 /*
631  * Check to see if a free vnode can be recycled. If it can,
632  * recycle it and return it with the vnode interlock held.
633  */
634 static int
635 vtryrecycle(struct vnode *vp)
636 {
637 	struct thread *td = curthread;
638 	vm_object_t object;
639 	struct mount *vnmp;
640 	int error;
641 
642 	/* Don't recycle if we can't get the interlock */
643 	if (!VI_TRYLOCK(vp))
644 		return (EWOULDBLOCK);
645 	/*
646 	 * This vnode may found and locked via some other list, if so we
647 	 * can't recycle it yet.
648 	 */
649 	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
650 		return (EWOULDBLOCK);
651 	/*
652 	 * Don't recycle if its filesystem is being suspended.
653 	 */
654 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
655 		VOP_UNLOCK(vp, 0, td);
656 		return (EBUSY);
657 	}
658 
659 	/*
660 	 * Don't recycle if we still have cached pages.
661 	 */
662 	if (VOP_GETVOBJECT(vp, &object) == 0) {
663 		VM_OBJECT_LOCK(object);
664 		if (object->resident_page_count ||
665 		    object->ref_count) {
666 			VM_OBJECT_UNLOCK(object);
667 			error = EBUSY;
668 			goto done;
669 		}
670 		VM_OBJECT_UNLOCK(object);
671 	}
672 	if (LIST_FIRST(&vp->v_cache_src)) {
673 		/*
674 		 * note: nameileafonly sysctl is temporary,
675 		 * for debugging only, and will eventually be
676 		 * removed.
677 		 */
678 		if (nameileafonly > 0) {
679 			/*
680 			 * Do not reuse namei-cached directory
681 			 * vnodes that have cached
682 			 * subdirectories.
683 			 */
684 			if (cache_leaf_test(vp) < 0) {
685 				error = EISDIR;
686 				goto done;
687 			}
688 		} else if (nameileafonly < 0 ||
689 			    vmiodirenable == 0) {
690 			/*
691 			 * Do not reuse namei-cached directory
692 			 * vnodes if nameileafonly is -1 or
693 			 * if VMIO backing for directories is
694 			 * turned off (otherwise we reuse them
695 			 * too quickly).
696 			 */
697 			error = EBUSY;
698 			goto done;
699 		}
700 	}
701 	/*
702 	 * If we got this far, we need to acquire the interlock and see if
703 	 * anyone picked up this vnode from another list.  If not, we will
704 	 * mark it with XLOCK via vgonel() so that anyone who does find it
705 	 * will skip over it.
706 	 */
707 	VI_LOCK(vp);
708 	if (VSHOULDBUSY(vp) && (vp->v_iflag & VI_XLOCK) == 0) {
709 		VI_UNLOCK(vp);
710 		error = EBUSY;
711 		goto done;
712 	}
713 	mtx_lock(&vnode_free_list_mtx);
714 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
715 	vp->v_iflag &= ~VI_FREE;
716 	mtx_unlock(&vnode_free_list_mtx);
717 	vp->v_iflag |= VI_DOOMED;
718 	if (vp->v_type != VBAD) {
719 		VOP_UNLOCK(vp, 0, td);
720 		vgonel(vp, td);
721 		VI_LOCK(vp);
722 	} else
723 		VOP_UNLOCK(vp, 0, td);
724 	vn_finished_write(vnmp);
725 	return (0);
726 done:
727 	VOP_UNLOCK(vp, 0, td);
728 	vn_finished_write(vnmp);
729 	return (error);
730 }
731 
732 /*
733  * Return the next vnode from the free list.
734  */
735 int
736 getnewvnode(tag, mp, vops, vpp)
737 	const char *tag;
738 	struct mount *mp;
739 	vop_t **vops;
740 	struct vnode **vpp;
741 {
742 	struct vnode *vp = NULL;
743 	struct vpollinfo *pollinfo = NULL;
744 
745 	mtx_lock(&vnode_free_list_mtx);
746 
747 	/*
748 	 * Try to reuse vnodes if we hit the max.  This situation only
749 	 * occurs in certain large-memory (2G+) situations.  We cannot
750 	 * attempt to directly reclaim vnodes due to nasty recursion
751 	 * problems.
752 	 */
753 	while (numvnodes - freevnodes > desiredvnodes) {
754 		if (vnlruproc_sig == 0) {
755 			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
756 			wakeup(vnlruproc);
757 		}
758 		mtx_unlock(&vnode_free_list_mtx);
759 		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
760 		mtx_lock(&vnode_free_list_mtx);
761 	}
762 
763 	/*
764 	 * Attempt to reuse a vnode already on the free list, allocating
765 	 * a new vnode if we can't find one or if we have not reached a
766 	 * good minimum for good LRU performance.
767 	 */
768 
769 	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
770 		int error;
771 		int count;
772 
773 		for (count = 0; count < freevnodes; count++) {
774 			vp = TAILQ_FIRST(&vnode_free_list);
775 
776 			KASSERT(vp->v_usecount == 0 &&
777 			    (vp->v_iflag & VI_DOINGINACT) == 0,
778 			    ("getnewvnode: free vnode isn't"));
779 
780 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
781 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
782 			mtx_unlock(&vnode_free_list_mtx);
783 			error = vtryrecycle(vp);
784 			mtx_lock(&vnode_free_list_mtx);
785 			if (error == 0)
786 				break;
787 			vp = NULL;
788 		}
789 	}
790 	if (vp) {
791 		freevnodes--;
792 		mtx_unlock(&vnode_free_list_mtx);
793 
794 #ifdef INVARIANTS
795 		{
796 			if (vp->v_data)
797 				panic("cleaned vnode isn't");
798 			if (vp->v_numoutput)
799 				panic("Clean vnode has pending I/O's");
800 			if (vp->v_writecount != 0)
801 				panic("Non-zero write count");
802 		}
803 #endif
804 		if ((pollinfo = vp->v_pollinfo) != NULL) {
805 			/*
806 			 * To avoid lock order reversals, the call to
807 			 * uma_zfree() must be delayed until the vnode
808 			 * interlock is released.
809 			 */
810 			vp->v_pollinfo = NULL;
811 		}
812 #ifdef MAC
813 		mac_destroy_vnode(vp);
814 #endif
815 		vp->v_iflag = 0;
816 		vp->v_vflag = 0;
817 		vp->v_lastw = 0;
818 		vp->v_lasta = 0;
819 		vp->v_cstart = 0;
820 		vp->v_clen = 0;
821 		vp->v_socket = 0;
822 		lockdestroy(vp->v_vnlock);
823 		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
824 		KASSERT(vp->v_cleanbufcnt == 0, ("cleanbufcnt not 0"));
825 		KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL"));
826 		KASSERT(vp->v_dirtybufcnt == 0, ("dirtybufcnt not 0"));
827 		KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
828 	} else {
829 		numvnodes++;
830 		mtx_unlock(&vnode_free_list_mtx);
831 
832 		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
833 		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
834 		VI_LOCK(vp);
835 		vp->v_dd = vp;
836 		vp->v_vnlock = &vp->v_lock;
837 		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
838 		cache_purge(vp);		/* Sets up v_id. */
839 		LIST_INIT(&vp->v_cache_src);
840 		TAILQ_INIT(&vp->v_cache_dst);
841 	}
842 
843 	TAILQ_INIT(&vp->v_cleanblkhd);
844 	TAILQ_INIT(&vp->v_dirtyblkhd);
845 	vp->v_type = VNON;
846 	vp->v_tag = tag;
847 	vp->v_op = vops;
848 	*vpp = vp;
849 	vp->v_usecount = 1;
850 	vp->v_data = 0;
851 	vp->v_cachedid = -1;
852 	VI_UNLOCK(vp);
853 	if (pollinfo != NULL) {
854 		knlist_destroy(&pollinfo->vpi_selinfo.si_note);
855 		mtx_destroy(&pollinfo->vpi_lock);
856 		uma_zfree(vnodepoll_zone, pollinfo);
857 	}
858 #ifdef MAC
859 	mac_init_vnode(vp);
860 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
861 		mac_associate_vnode_singlelabel(mp, vp);
862 #endif
863 	delmntque(vp);
864 	if (mp != NULL) {
865 		insmntque(vp, mp);
866 		vp->v_bsize = mp->mnt_stat.f_iosize;
867 	}
868 
869 	return (0);
870 }
871 
872 /*
873  * Delete from old mount point vnode list, if on one.
874  */
875 static void
876 delmntque(struct vnode *vp)
877 {
878 	struct mount *mp;
879 
880 	if (vp->v_mount == NULL)
881 		return;
882 	mp = vp->v_mount;
883 	MNT_ILOCK(mp);
884 	vp->v_mount = NULL;
885 	KASSERT(mp->mnt_nvnodelistsize > 0,
886 		("bad mount point vnode list size"));
887 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
888 	mp->mnt_nvnodelistsize--;
889 	MNT_IUNLOCK(mp);
890 }
891 
892 /*
893  * Insert into list of vnodes for the new mount point, if available.
894  */
895 static void
896 insmntque(struct vnode *vp, struct mount *mp)
897 {
898 
899 	vp->v_mount = mp;
900 	KASSERT(mp != NULL, ("Don't call insmntque(foo, NULL)"));
901 	MNT_ILOCK(vp->v_mount);
902 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
903 	mp->mnt_nvnodelistsize++;
904 	MNT_IUNLOCK(vp->v_mount);
905 }
906 
907 /*
908  * Update outstanding I/O count and do wakeup if requested.
909  */
910 void
911 vwakeup(bp)
912 	register struct buf *bp;
913 {
914 	register struct vnode *vp;
915 
916 	bp->b_flags &= ~B_WRITEINPROG;
917 	if ((vp = bp->b_vp)) {
918 		VI_LOCK(vp);
919 		vp->v_numoutput--;
920 		if (vp->v_numoutput < 0)
921 			panic("vwakeup: neg numoutput");
922 		if ((vp->v_numoutput == 0) && (vp->v_iflag & VI_BWAIT)) {
923 			vp->v_iflag &= ~VI_BWAIT;
924 			wakeup(&vp->v_numoutput);
925 		}
926 		VI_UNLOCK(vp);
927 	}
928 }
929 
930 /*
931  * Flush out and invalidate all buffers associated with a vnode.
932  * Called with the underlying object locked.
933  */
934 int
935 vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
936 	struct vnode *vp;
937 	int flags;
938 	struct ucred *cred;
939 	struct thread *td;
940 	int slpflag, slptimeo;
941 {
942 	struct buf *blist;
943 	int error;
944 	vm_object_t object;
945 
946 	GIANT_REQUIRED;
947 
948 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
949 
950 	VI_LOCK(vp);
951 	if (flags & V_SAVE) {
952 		while (vp->v_numoutput) {
953 			vp->v_iflag |= VI_BWAIT;
954 			error = msleep(&vp->v_numoutput, VI_MTX(vp),
955 			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
956 			if (error) {
957 				VI_UNLOCK(vp);
958 				return (error);
959 			}
960 		}
961 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
962 			VI_UNLOCK(vp);
963 			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
964 				return (error);
965 			/*
966 			 * XXX We could save a lock/unlock if this was only
967 			 * enabled under INVARIANTS
968 			 */
969 			VI_LOCK(vp);
970 			if (vp->v_numoutput > 0 ||
971 			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
972 				panic("vinvalbuf: dirty bufs");
973 		}
974 	}
975 	/*
976 	 * If you alter this loop please notice that interlock is dropped and
977 	 * reacquired in flushbuflist.  Special care is needed to ensure that
978 	 * no race conditions occur from this.
979 	 */
980 	for (error = 0;;) {
981 		if ((blist = TAILQ_FIRST(&vp->v_cleanblkhd)) != 0 &&
982 		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
983 			if (error)
984 				break;
985 			continue;
986 		}
987 		if ((blist = TAILQ_FIRST(&vp->v_dirtyblkhd)) != 0 &&
988 		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
989 			if (error)
990 				break;
991 			continue;
992 		}
993 		break;
994 	}
995 	if (error) {
996 		VI_UNLOCK(vp);
997 		return (error);
998 	}
999 
1000 	/*
1001 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1002 	 * have write I/O in-progress but if there is a VM object then the
1003 	 * VM object can also have read-I/O in-progress.
1004 	 */
1005 	do {
1006 		while (vp->v_numoutput > 0) {
1007 			vp->v_iflag |= VI_BWAIT;
1008 			msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vnvlbv", 0);
1009 		}
1010 		VI_UNLOCK(vp);
1011 		if (VOP_GETVOBJECT(vp, &object) == 0) {
1012 			VM_OBJECT_LOCK(object);
1013 			vm_object_pip_wait(object, "vnvlbx");
1014 			VM_OBJECT_UNLOCK(object);
1015 		}
1016 		VI_LOCK(vp);
1017 	} while (vp->v_numoutput > 0);
1018 	VI_UNLOCK(vp);
1019 
1020 	/*
1021 	 * Destroy the copy in the VM cache, too.
1022 	 */
1023 	if (VOP_GETVOBJECT(vp, &object) == 0) {
1024 		VM_OBJECT_LOCK(object);
1025 		vm_object_page_remove(object, 0, 0,
1026 			(flags & V_SAVE) ? TRUE : FALSE);
1027 		VM_OBJECT_UNLOCK(object);
1028 	}
1029 
1030 #ifdef INVARIANTS
1031 	VI_LOCK(vp);
1032 	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1033 	    (!TAILQ_EMPTY(&vp->v_dirtyblkhd) ||
1034 	     !TAILQ_EMPTY(&vp->v_cleanblkhd)))
1035 		panic("vinvalbuf: flush failed");
1036 	VI_UNLOCK(vp);
1037 #endif
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Flush out buffers on the specified list.
1043  *
1044  */
1045 static int
1046 flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1047 	struct buf *blist;
1048 	int flags;
1049 	struct vnode *vp;
1050 	int slpflag, slptimeo;
1051 	int *errorp;
1052 {
1053 	struct buf *bp, *nbp;
1054 	int found, error;
1055 
1056 	ASSERT_VI_LOCKED(vp, "flushbuflist");
1057 
1058 	for (found = 0, bp = blist; bp; bp = nbp) {
1059 		nbp = TAILQ_NEXT(bp, b_vnbufs);
1060 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1061 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1062 			continue;
1063 		}
1064 		found += 1;
1065 		error = BUF_TIMELOCK(bp,
1066 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, VI_MTX(vp),
1067 		    "flushbuf", slpflag, slptimeo);
1068 		if (error) {
1069 			if (error != ENOLCK)
1070 				*errorp = error;
1071 			goto done;
1072 		}
1073 		/*
1074 		 * XXX Since there are no node locks for NFS, I
1075 		 * believe there is a slight chance that a delayed
1076 		 * write will occur while sleeping just above, so
1077 		 * check for it.  Note that vfs_bio_awrite expects
1078 		 * buffers to reside on a queue, while bwrite and
1079 		 * brelse do not.
1080 		 */
1081 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1082 			(flags & V_SAVE)) {
1083 
1084 			if (bp->b_vp == vp) {
1085 				if (bp->b_flags & B_CLUSTEROK) {
1086 					vfs_bio_awrite(bp);
1087 				} else {
1088 					bremfree(bp);
1089 					bp->b_flags |= B_ASYNC;
1090 					bwrite(bp);
1091 				}
1092 			} else {
1093 				bremfree(bp);
1094 				(void) bwrite(bp);
1095 			}
1096 			goto done;
1097 		}
1098 		bremfree(bp);
1099 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1100 		bp->b_flags &= ~B_ASYNC;
1101 		brelse(bp);
1102 		VI_LOCK(vp);
1103 	}
1104 	return (found);
1105 done:
1106 	VI_LOCK(vp);
1107 	return (found);
1108 }
1109 
1110 /*
1111  * Truncate a file's buffer and pages to a specified length.  This
1112  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1113  * sync activity.
1114  */
1115 int
1116 vtruncbuf(vp, cred, td, length, blksize)
1117 	register struct vnode *vp;
1118 	struct ucred *cred;
1119 	struct thread *td;
1120 	off_t length;
1121 	int blksize;
1122 {
1123 	register struct buf *bp;
1124 	struct buf *nbp;
1125 	int anyfreed;
1126 	int trunclbn;
1127 
1128 	/*
1129 	 * Round up to the *next* lbn.
1130 	 */
1131 	trunclbn = (length + blksize - 1) / blksize;
1132 
1133 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1134 restart:
1135 	VI_LOCK(vp);
1136 	anyfreed = 1;
1137 	for (;anyfreed;) {
1138 		anyfreed = 0;
1139 		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1140 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1141 			if (bp->b_lblkno >= trunclbn) {
1142 				if (BUF_LOCK(bp,
1143 				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1144 				    VI_MTX(vp)) == ENOLCK)
1145 					goto restart;
1146 
1147 				bremfree(bp);
1148 				bp->b_flags |= (B_INVAL | B_RELBUF);
1149 				bp->b_flags &= ~B_ASYNC;
1150 				brelse(bp);
1151 				anyfreed = 1;
1152 
1153 				if (nbp &&
1154 				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1155 				    (nbp->b_vp != vp) ||
1156 				    (nbp->b_flags & B_DELWRI))) {
1157 					goto restart;
1158 				}
1159 				VI_LOCK(vp);
1160 			}
1161 		}
1162 
1163 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1164 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1165 			if (bp->b_lblkno >= trunclbn) {
1166 				if (BUF_LOCK(bp,
1167 				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1168 				    VI_MTX(vp)) == ENOLCK)
1169 					goto restart;
1170 				bremfree(bp);
1171 				bp->b_flags |= (B_INVAL | B_RELBUF);
1172 				bp->b_flags &= ~B_ASYNC;
1173 				brelse(bp);
1174 				anyfreed = 1;
1175 				if (nbp &&
1176 				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1177 				    (nbp->b_vp != vp) ||
1178 				    (nbp->b_flags & B_DELWRI) == 0)) {
1179 					goto restart;
1180 				}
1181 				VI_LOCK(vp);
1182 			}
1183 		}
1184 	}
1185 
1186 	if (length > 0) {
1187 restartsync:
1188 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1189 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1190 			if (bp->b_lblkno > 0)
1191 				continue;
1192 			/*
1193 			 * Since we hold the vnode lock this should only
1194 			 * fail if we're racing with the buf daemon.
1195 			 */
1196 			if (BUF_LOCK(bp,
1197 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1198 			    VI_MTX(vp)) == ENOLCK) {
1199 				goto restart;
1200 			}
1201 			KASSERT((bp->b_flags & B_DELWRI),
1202 			    ("buf(%p) on dirty queue without DELWRI", bp));
1203 
1204 			bremfree(bp);
1205 			bawrite(bp);
1206 			VI_LOCK(vp);
1207 			goto restartsync;
1208 		}
1209 	}
1210 
1211 	while (vp->v_numoutput > 0) {
1212 		vp->v_iflag |= VI_BWAIT;
1213 		msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vbtrunc", 0);
1214 	}
1215 	VI_UNLOCK(vp);
1216 	vnode_pager_setsize(vp, length);
1217 
1218 	return (0);
1219 }
1220 
1221 /*
1222  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1223  * 		 a vnode.
1224  *
1225  *	NOTE: We have to deal with the special case of a background bitmap
1226  *	buffer, a situation where two buffers will have the same logical
1227  *	block offset.  We want (1) only the foreground buffer to be accessed
1228  *	in a lookup and (2) must differentiate between the foreground and
1229  *	background buffer in the splay tree algorithm because the splay
1230  *	tree cannot normally handle multiple entities with the same 'index'.
1231  *	We accomplish this by adding differentiating flags to the splay tree's
1232  *	numerical domain.
1233  */
1234 static
1235 struct buf *
1236 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1237 {
1238 	struct buf dummy;
1239 	struct buf *lefttreemax, *righttreemin, *y;
1240 
1241 	if (root == NULL)
1242 		return (NULL);
1243 	lefttreemax = righttreemin = &dummy;
1244 	for (;;) {
1245 		if (lblkno < root->b_lblkno ||
1246 		    (lblkno == root->b_lblkno &&
1247 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1248 			if ((y = root->b_left) == NULL)
1249 				break;
1250 			if (lblkno < y->b_lblkno) {
1251 				/* Rotate right. */
1252 				root->b_left = y->b_right;
1253 				y->b_right = root;
1254 				root = y;
1255 				if ((y = root->b_left) == NULL)
1256 					break;
1257 			}
1258 			/* Link into the new root's right tree. */
1259 			righttreemin->b_left = root;
1260 			righttreemin = root;
1261 		} else if (lblkno > root->b_lblkno ||
1262 		    (lblkno == root->b_lblkno &&
1263 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1264 			if ((y = root->b_right) == NULL)
1265 				break;
1266 			if (lblkno > y->b_lblkno) {
1267 				/* Rotate left. */
1268 				root->b_right = y->b_left;
1269 				y->b_left = root;
1270 				root = y;
1271 				if ((y = root->b_right) == NULL)
1272 					break;
1273 			}
1274 			/* Link into the new root's left tree. */
1275 			lefttreemax->b_right = root;
1276 			lefttreemax = root;
1277 		} else {
1278 			break;
1279 		}
1280 		root = y;
1281 	}
1282 	/* Assemble the new root. */
1283 	lefttreemax->b_right = root->b_left;
1284 	righttreemin->b_left = root->b_right;
1285 	root->b_left = dummy.b_right;
1286 	root->b_right = dummy.b_left;
1287 	return (root);
1288 }
1289 
1290 static
1291 void
1292 buf_vlist_remove(struct buf *bp)
1293 {
1294 	struct vnode *vp = bp->b_vp;
1295 	struct buf *root;
1296 
1297 	ASSERT_VI_LOCKED(vp, "buf_vlist_remove");
1298 	if (bp->b_xflags & BX_VNDIRTY) {
1299 		if (bp != vp->v_dirtyblkroot) {
1300 			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1301 			    vp->v_dirtyblkroot);
1302 			KASSERT(root == bp,
1303 			    ("splay lookup failed during dirty remove"));
1304 		}
1305 		if (bp->b_left == NULL) {
1306 			root = bp->b_right;
1307 		} else {
1308 			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1309 			    bp->b_left);
1310 			root->b_right = bp->b_right;
1311 		}
1312 		vp->v_dirtyblkroot = root;
1313 		TAILQ_REMOVE(&vp->v_dirtyblkhd, bp, b_vnbufs);
1314 		vp->v_dirtybufcnt--;
1315 	} else {
1316 		/* KASSERT(bp->b_xflags & BX_VNCLEAN, ("bp wasn't clean")); */
1317 		if (bp != vp->v_cleanblkroot) {
1318 			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1319 			    vp->v_cleanblkroot);
1320 			KASSERT(root == bp,
1321 			    ("splay lookup failed during clean remove"));
1322 		}
1323 		if (bp->b_left == NULL) {
1324 			root = bp->b_right;
1325 		} else {
1326 			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1327 			    bp->b_left);
1328 			root->b_right = bp->b_right;
1329 		}
1330 		vp->v_cleanblkroot = root;
1331 		TAILQ_REMOVE(&vp->v_cleanblkhd, bp, b_vnbufs);
1332 		vp->v_cleanbufcnt--;
1333 	}
1334 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1335 }
1336 
1337 /*
1338  * Add the buffer to the sorted clean or dirty block list using a
1339  * splay tree algorithm.
1340  *
1341  * NOTE: xflags is passed as a constant, optimizing this inline function!
1342  */
1343 static
1344 void
1345 buf_vlist_add(struct buf *bp, struct vnode *vp, b_xflags_t xflags)
1346 {
1347 	struct buf *root;
1348 
1349 	ASSERT_VI_LOCKED(vp, "buf_vlist_add");
1350 	bp->b_xflags |= xflags;
1351 	if (xflags & BX_VNDIRTY) {
1352 		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1353 		if (root == NULL) {
1354 			bp->b_left = NULL;
1355 			bp->b_right = NULL;
1356 			TAILQ_INSERT_TAIL(&vp->v_dirtyblkhd, bp, b_vnbufs);
1357 		} else if (bp->b_lblkno < root->b_lblkno ||
1358 		    (bp->b_lblkno == root->b_lblkno &&
1359 		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1360 			bp->b_left = root->b_left;
1361 			bp->b_right = root;
1362 			root->b_left = NULL;
1363 			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1364 		} else {
1365 			bp->b_right = root->b_right;
1366 			bp->b_left = root;
1367 			root->b_right = NULL;
1368 			TAILQ_INSERT_AFTER(&vp->v_dirtyblkhd,
1369 			    root, bp, b_vnbufs);
1370 		}
1371 		vp->v_dirtybufcnt++;
1372 		vp->v_dirtyblkroot = bp;
1373 	} else {
1374 		/* KASSERT(xflags & BX_VNCLEAN, ("xflags not clean")); */
1375 		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1376 		if (root == NULL) {
1377 			bp->b_left = NULL;
1378 			bp->b_right = NULL;
1379 			TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1380 		} else if (bp->b_lblkno < root->b_lblkno ||
1381 		    (bp->b_lblkno == root->b_lblkno &&
1382 		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1383 			bp->b_left = root->b_left;
1384 			bp->b_right = root;
1385 			root->b_left = NULL;
1386 			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1387 		} else {
1388 			bp->b_right = root->b_right;
1389 			bp->b_left = root;
1390 			root->b_right = NULL;
1391 			TAILQ_INSERT_AFTER(&vp->v_cleanblkhd,
1392 			    root, bp, b_vnbufs);
1393 		}
1394 		vp->v_cleanbufcnt++;
1395 		vp->v_cleanblkroot = bp;
1396 	}
1397 }
1398 
1399 /*
1400  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1401  * shadow buffers used in background bitmap writes.
1402  *
1403  * This code isn't quite efficient as it could be because we are maintaining
1404  * two sorted lists and do not know which list the block resides in.
1405  *
1406  * During a "make buildworld" the desired buffer is found at one of
1407  * the roots more than 60% of the time.  Thus, checking both roots
1408  * before performing either splay eliminates unnecessary splays on the
1409  * first tree splayed.
1410  */
1411 struct buf *
1412 gbincore(struct vnode *vp, daddr_t lblkno)
1413 {
1414 	struct buf *bp;
1415 
1416 	GIANT_REQUIRED;
1417 
1418 	ASSERT_VI_LOCKED(vp, "gbincore");
1419 	if ((bp = vp->v_cleanblkroot) != NULL &&
1420 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1421 		return (bp);
1422 	if ((bp = vp->v_dirtyblkroot) != NULL &&
1423 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1424 		return (bp);
1425 	if ((bp = vp->v_cleanblkroot) != NULL) {
1426 		vp->v_cleanblkroot = bp = buf_splay(lblkno, 0, bp);
1427 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1428 			return (bp);
1429 	}
1430 	if ((bp = vp->v_dirtyblkroot) != NULL) {
1431 		vp->v_dirtyblkroot = bp = buf_splay(lblkno, 0, bp);
1432 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1433 			return (bp);
1434 	}
1435 	return (NULL);
1436 }
1437 
1438 /*
1439  * Associate a buffer with a vnode.
1440  */
1441 void
1442 bgetvp(vp, bp)
1443 	register struct vnode *vp;
1444 	register struct buf *bp;
1445 {
1446 
1447 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1448 
1449 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1450 	    ("bgetvp: bp already attached! %p", bp));
1451 
1452 	ASSERT_VI_LOCKED(vp, "bgetvp");
1453 	vholdl(vp);
1454 	bp->b_vp = vp;
1455 	bp->b_dev = vn_todev(vp);
1456 	/*
1457 	 * Insert onto list for new vnode.
1458 	 */
1459 	buf_vlist_add(bp, vp, BX_VNCLEAN);
1460 }
1461 
1462 /*
1463  * Disassociate a buffer from a vnode.
1464  */
1465 void
1466 brelvp(bp)
1467 	register struct buf *bp;
1468 {
1469 	struct vnode *vp;
1470 
1471 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1472 
1473 	/*
1474 	 * Delete from old vnode list, if on one.
1475 	 */
1476 	vp = bp->b_vp;
1477 	VI_LOCK(vp);
1478 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1479 		buf_vlist_remove(bp);
1480 	if ((vp->v_iflag & VI_ONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1481 		vp->v_iflag &= ~VI_ONWORKLST;
1482 		mtx_lock(&sync_mtx);
1483 		LIST_REMOVE(vp, v_synclist);
1484  		syncer_worklist_len--;
1485 		mtx_unlock(&sync_mtx);
1486 	}
1487 	vdropl(vp);
1488 	bp->b_vp = (struct vnode *) 0;
1489 	if (bp->b_object)
1490 		bp->b_object = NULL;
1491 	VI_UNLOCK(vp);
1492 }
1493 
1494 /*
1495  * Add an item to the syncer work queue.
1496  */
1497 static void
1498 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1499 {
1500 	int slot;
1501 
1502 	ASSERT_VI_LOCKED(vp, "vn_syncer_add_to_worklist");
1503 
1504 	mtx_lock(&sync_mtx);
1505 	if (vp->v_iflag & VI_ONWORKLST)
1506 		LIST_REMOVE(vp, v_synclist);
1507 	else {
1508 		vp->v_iflag |= VI_ONWORKLST;
1509  		syncer_worklist_len++;
1510 	}
1511 
1512 	if (delay > syncer_maxdelay - 2)
1513 		delay = syncer_maxdelay - 2;
1514 	slot = (syncer_delayno + delay) & syncer_mask;
1515 
1516 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1517 	mtx_unlock(&sync_mtx);
1518 }
1519 
1520 static int
1521 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1522 {
1523 	int error, len;
1524 
1525 	mtx_lock(&sync_mtx);
1526 	len = syncer_worklist_len - sync_vnode_count;
1527 	mtx_unlock(&sync_mtx);
1528 	error = SYSCTL_OUT(req, &len, sizeof(len));
1529 	return (error);
1530 }
1531 
1532 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1533     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1534 
1535 struct  proc *updateproc;
1536 static void sched_sync(void);
1537 static struct kproc_desc up_kp = {
1538 	"syncer",
1539 	sched_sync,
1540 	&updateproc
1541 };
1542 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1543 
1544 /*
1545  * System filesystem synchronizer daemon.
1546  */
1547 static void
1548 sched_sync(void)
1549 {
1550 	struct synclist *next;
1551 	struct synclist *slp;
1552 	struct vnode *vp;
1553 	struct mount *mp;
1554 	long starttime;
1555 	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);
1556 	static int dummychan;
1557 	int last_work_seen;
1558 	int net_worklist_len;
1559 	int syncer_final_iter;
1560 	int first_printf;
1561 
1562 	mtx_lock(&Giant);
1563 	last_work_seen = 0;
1564 	syncer_final_iter = 0;
1565 	first_printf = 1;
1566 	syncer_state = SYNCER_RUNNING;
1567 	starttime = time_second;
1568 
1569 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1570 	    SHUTDOWN_PRI_LAST);
1571 
1572 	for (;;) {
1573 		mtx_lock(&sync_mtx);
1574 		if (syncer_state == SYNCER_FINAL_DELAY &&
1575 		    syncer_final_iter == 0) {
1576 			mtx_unlock(&sync_mtx);
1577 			kthread_suspend_check(td->td_proc);
1578 			mtx_lock(&sync_mtx);
1579 		}
1580 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1581 		if (syncer_state != SYNCER_RUNNING &&
1582 		    starttime != time_second) {
1583 			if (first_printf) {
1584 				printf("\nSyncing disks, vnodes remaining...");
1585 				first_printf = 0;
1586 			}
1587 			printf("%d ", net_worklist_len);
1588 		}
1589 		starttime = time_second;
1590 
1591 		/*
1592 		 * Push files whose dirty time has expired.  Be careful
1593 		 * of interrupt race on slp queue.
1594 		 *
1595 		 * Skip over empty worklist slots when shutting down.
1596 		 */
1597 		do {
1598 			slp = &syncer_workitem_pending[syncer_delayno];
1599 			syncer_delayno += 1;
1600 			if (syncer_delayno == syncer_maxdelay)
1601 				syncer_delayno = 0;
1602 			next = &syncer_workitem_pending[syncer_delayno];
1603 			/*
1604 			 * If the worklist has wrapped since the
1605 			 * it was emptied of all but syncer vnodes,
1606 			 * switch to the FINAL_DELAY state and run
1607 			 * for one more second.
1608 			 */
1609 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1610 			    net_worklist_len == 0 &&
1611 			    last_work_seen == syncer_delayno) {
1612 				syncer_state = SYNCER_FINAL_DELAY;
1613 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1614 			}
1615 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1616 		    syncer_worklist_len > 0);
1617 
1618 		/*
1619 		 * Keep track of the last time there was anything
1620 		 * on the worklist other than syncer vnodes.
1621 		 * Return to the SHUTTING_DOWN state if any
1622 		 * new work appears.
1623 		 */
1624 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1625 			last_work_seen = syncer_delayno;
1626 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1627 			syncer_state = SYNCER_SHUTTING_DOWN;
1628 		while ((vp = LIST_FIRST(slp)) != NULL) {
1629 			if (VOP_ISLOCKED(vp, NULL) != 0 ||
1630 			    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1631 				LIST_REMOVE(vp, v_synclist);
1632 				LIST_INSERT_HEAD(next, vp, v_synclist);
1633 				continue;
1634 			}
1635 			if (VI_TRYLOCK(vp) == 0) {
1636 				LIST_REMOVE(vp, v_synclist);
1637 				LIST_INSERT_HEAD(next, vp, v_synclist);
1638 				vn_finished_write(mp);
1639 				continue;
1640 			}
1641 			/*
1642 			 * We use vhold in case the vnode does not
1643 			 * successfully sync.  vhold prevents the vnode from
1644 			 * going away when we unlock the sync_mtx so that
1645 			 * we can acquire the vnode interlock.
1646 			 */
1647 			vholdl(vp);
1648 			mtx_unlock(&sync_mtx);
1649 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, td);
1650 			(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1651 			VOP_UNLOCK(vp, 0, td);
1652 			vn_finished_write(mp);
1653 			VI_LOCK(vp);
1654 			if ((vp->v_iflag & VI_ONWORKLST) != 0) {
1655 				/*
1656 				 * Put us back on the worklist.  The worklist
1657 				 * routine will remove us from our current
1658 				 * position and then add us back in at a later
1659 				 * position.
1660 				 */
1661 				vn_syncer_add_to_worklist(vp, syncdelay);
1662 			}
1663 			vdropl(vp);
1664 			VI_UNLOCK(vp);
1665 			mtx_lock(&sync_mtx);
1666 		}
1667 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1668 			syncer_final_iter--;
1669 		mtx_unlock(&sync_mtx);
1670 
1671 		/*
1672 		 * Do soft update processing.
1673 		 */
1674 		if (softdep_process_worklist_hook != NULL)
1675 			(*softdep_process_worklist_hook)(NULL);
1676 
1677 		/*
1678 		 * The variable rushjob allows the kernel to speed up the
1679 		 * processing of the filesystem syncer process. A rushjob
1680 		 * value of N tells the filesystem syncer to process the next
1681 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1682 		 * is used by the soft update code to speed up the filesystem
1683 		 * syncer process when the incore state is getting so far
1684 		 * ahead of the disk that the kernel memory pool is being
1685 		 * threatened with exhaustion.
1686 		 */
1687 		mtx_lock(&sync_mtx);
1688 		if (rushjob > 0) {
1689 			rushjob -= 1;
1690 			mtx_unlock(&sync_mtx);
1691 			continue;
1692 		}
1693 		mtx_unlock(&sync_mtx);
1694 		/*
1695 		 * Just sleep for a short period if time between
1696 		 * iterations when shutting down to allow some I/O
1697 		 * to happen.
1698 		 *
1699 		 * If it has taken us less than a second to process the
1700 		 * current work, then wait. Otherwise start right over
1701 		 * again. We can still lose time if any single round
1702 		 * takes more than two seconds, but it does not really
1703 		 * matter as we are just trying to generally pace the
1704 		 * filesystem activity.
1705 		 */
1706 		if (syncer_state != SYNCER_RUNNING)
1707 			tsleep(&dummychan, PPAUSE, "syncfnl",
1708 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1709 		else if (time_second == starttime)
1710 			tsleep(&lbolt, PPAUSE, "syncer", 0);
1711 	}
1712 }
1713 
1714 /*
1715  * Request the syncer daemon to speed up its work.
1716  * We never push it to speed up more than half of its
1717  * normal turn time, otherwise it could take over the cpu.
1718  */
1719 int
1720 speedup_syncer()
1721 {
1722 	struct thread *td;
1723 	int ret = 0;
1724 
1725 	td = FIRST_THREAD_IN_PROC(updateproc);
1726 	sleepq_remove(td, &lbolt);
1727 	mtx_lock(&sync_mtx);
1728 	if (rushjob < syncdelay / 2) {
1729 		rushjob += 1;
1730 		stat_rush_requests += 1;
1731 		ret = 1;
1732 	}
1733 	mtx_unlock(&sync_mtx);
1734 	return (ret);
1735 }
1736 
1737 /*
1738  * Tell the syncer to speed up its work and run though its work
1739  * list several times, then tell it to shut down.
1740  */
1741 static void
1742 syncer_shutdown(void *arg, int howto)
1743 {
1744 	struct thread *td;
1745 
1746 	if (howto & RB_NOSYNC)
1747 		return;
1748 	td = FIRST_THREAD_IN_PROC(updateproc);
1749 	sleepq_remove(td, &lbolt);
1750 	mtx_lock(&sync_mtx);
1751 	syncer_state = SYNCER_SHUTTING_DOWN;
1752 	rushjob = 0;
1753 	mtx_unlock(&sync_mtx);
1754 	kproc_shutdown(arg, howto);
1755 }
1756 
1757 /*
1758  * Associate a p-buffer with a vnode.
1759  *
1760  * Also sets B_PAGING flag to indicate that vnode is not fully associated
1761  * with the buffer.  i.e. the bp has not been linked into the vnode or
1762  * ref-counted.
1763  */
1764 void
1765 pbgetvp(vp, bp)
1766 	register struct vnode *vp;
1767 	register struct buf *bp;
1768 {
1769 
1770 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1771 
1772 	bp->b_vp = vp;
1773 	bp->b_object = vp->v_object;
1774 	bp->b_flags |= B_PAGING;
1775 	bp->b_dev = vn_todev(vp);
1776 }
1777 
1778 /*
1779  * Disassociate a p-buffer from a vnode.
1780  */
1781 void
1782 pbrelvp(bp)
1783 	register struct buf *bp;
1784 {
1785 
1786 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1787 
1788 	/* XXX REMOVE ME */
1789 	VI_LOCK(bp->b_vp);
1790 	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1791 		panic(
1792 		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1793 		    bp,
1794 		    (int)bp->b_flags
1795 		);
1796 	}
1797 	VI_UNLOCK(bp->b_vp);
1798 	bp->b_vp = (struct vnode *) 0;
1799 	bp->b_object = NULL;
1800 	bp->b_flags &= ~B_PAGING;
1801 }
1802 
1803 /*
1804  * Reassign a buffer from one vnode to another.
1805  * Used to assign file specific control information
1806  * (indirect blocks) to the vnode to which they belong.
1807  */
1808 void
1809 reassignbuf(struct buf *bp)
1810 {
1811 	struct vnode *vp;
1812 	int delay;
1813 
1814 	vp = bp->b_vp;
1815 	++reassignbufcalls;
1816 
1817 	/*
1818 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1819 	 * is not fully linked in.
1820 	 */
1821 	if (bp->b_flags & B_PAGING)
1822 		panic("cannot reassign paging buffer");
1823 
1824 	/*
1825 	 * Delete from old vnode list, if on one.
1826 	 */
1827 	VI_LOCK(vp);
1828 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1829 		buf_vlist_remove(bp);
1830 	/*
1831 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1832 	 * of clean buffers.
1833 	 */
1834 	if (bp->b_flags & B_DELWRI) {
1835 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1836 			switch (vp->v_type) {
1837 			case VDIR:
1838 				delay = dirdelay;
1839 				break;
1840 			case VCHR:
1841 				delay = metadelay;
1842 				break;
1843 			default:
1844 				delay = filedelay;
1845 			}
1846 			vn_syncer_add_to_worklist(vp, delay);
1847 		}
1848 		buf_vlist_add(bp, vp, BX_VNDIRTY);
1849 	} else {
1850 		buf_vlist_add(bp, vp, BX_VNCLEAN);
1851 
1852 		if ((vp->v_iflag & VI_ONWORKLST) &&
1853 		    TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1854 			mtx_lock(&sync_mtx);
1855 			LIST_REMOVE(vp, v_synclist);
1856  			syncer_worklist_len--;
1857 			mtx_unlock(&sync_mtx);
1858 			vp->v_iflag &= ~VI_ONWORKLST;
1859 		}
1860 	}
1861 	VI_UNLOCK(vp);
1862 }
1863 
1864 /*
1865  * Create a vnode for a device.
1866  * Used for mounting the root filesystem.
1867  */
1868 int
1869 bdevvp(dev, vpp)
1870 	struct cdev *dev;
1871 	struct vnode **vpp;
1872 {
1873 	register struct vnode *vp;
1874 	struct vnode *nvp;
1875 	int error;
1876 
1877 	if (dev == NULL) {
1878 		*vpp = NULLVP;
1879 		return (ENXIO);
1880 	}
1881 	if (vfinddev(dev, vpp))
1882 		return (0);
1883 
1884 	error = getnewvnode("none", (struct mount *)0, spec_vnodeop_p, &nvp);
1885 	if (error) {
1886 		*vpp = NULLVP;
1887 		return (error);
1888 	}
1889 	vp = nvp;
1890 	vp->v_type = VCHR;
1891 	vp->v_bsize = DEV_BSIZE;
1892 	addalias(vp, dev);
1893 	*vpp = vp;
1894 	return (0);
1895 }
1896 
1897 static void
1898 v_incr_usecount(struct vnode *vp, int delta)
1899 {
1900 
1901 	vp->v_usecount += delta;
1902 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1903 		mtx_lock(&spechash_mtx);
1904 		vp->v_rdev->si_usecount += delta;
1905 		mtx_unlock(&spechash_mtx);
1906 	}
1907 }
1908 
1909 /*
1910  * Add vnode to the alias list hung off the struct cdev *.
1911  *
1912  * The reason for this gunk is that multiple vnodes can reference
1913  * the same physical device, so checking vp->v_usecount to see
1914  * how many users there are is inadequate; the v_usecount for
1915  * the vnodes need to be accumulated.  vcount() does that.
1916  */
1917 struct vnode *
1918 addaliasu(nvp, nvp_rdev)
1919 	struct vnode *nvp;
1920 	dev_t nvp_rdev;
1921 {
1922 	struct vnode *ovp;
1923 	vop_t **ops;
1924 	struct cdev *dev;
1925 
1926 	if (nvp->v_type == VBLK)
1927 		return (nvp);
1928 	if (nvp->v_type != VCHR)
1929 		panic("addaliasu on non-special vnode");
1930 	dev = findcdev(nvp_rdev);
1931 	if (dev == NULL)
1932 		return (nvp);
1933 	/*
1934 	 * Check to see if we have a bdevvp vnode with no associated
1935 	 * filesystem. If so, we want to associate the filesystem of
1936 	 * the new newly instigated vnode with the bdevvp vnode and
1937 	 * discard the newly created vnode rather than leaving the
1938 	 * bdevvp vnode lying around with no associated filesystem.
1939 	 */
1940 	if (vfinddev(dev, &ovp) == 0 || ovp->v_data != NULL) {
1941 		addalias(nvp, dev);
1942 		return (nvp);
1943 	}
1944 	/*
1945 	 * Discard unneeded vnode, but save its node specific data.
1946 	 * Note that if there is a lock, it is carried over in the
1947 	 * node specific data to the replacement vnode.
1948 	 */
1949 	vref(ovp);
1950 	ovp->v_data = nvp->v_data;
1951 	ovp->v_tag = nvp->v_tag;
1952 	nvp->v_data = NULL;
1953 	lockdestroy(ovp->v_vnlock);
1954 	lockinit(ovp->v_vnlock, PVFS, nvp->v_vnlock->lk_wmesg,
1955 	    nvp->v_vnlock->lk_timo, nvp->v_vnlock->lk_flags & LK_EXTFLG_MASK);
1956 	ops = ovp->v_op;
1957 	ovp->v_op = nvp->v_op;
1958 	if (VOP_ISLOCKED(nvp, curthread)) {
1959 		VOP_UNLOCK(nvp, 0, curthread);
1960 		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
1961 	}
1962 	nvp->v_op = ops;
1963 	delmntque(ovp);
1964 	insmntque(ovp, nvp->v_mount);
1965 	vrele(nvp);
1966 	vgone(nvp);
1967 	return (ovp);
1968 }
1969 
1970 /* This is a local helper function that do the same as addaliasu, but for a
1971  * struct cdev *instead of an dev_t. */
1972 static void
1973 addalias(nvp, dev)
1974 	struct vnode *nvp;
1975 	struct cdev *dev;
1976 {
1977 
1978 	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1979 	dev_ref(dev);
1980 	nvp->v_rdev = dev;
1981 	VI_LOCK(nvp);
1982 	mtx_lock(&spechash_mtx);
1983 	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1984 	dev->si_usecount += nvp->v_usecount;
1985 	mtx_unlock(&spechash_mtx);
1986 	VI_UNLOCK(nvp);
1987 }
1988 
1989 /*
1990  * Grab a particular vnode from the free list, increment its
1991  * reference count and lock it. The vnode lock bit is set if the
1992  * vnode is being eliminated in vgone. The process is awakened
1993  * when the transition is completed, and an error returned to
1994  * indicate that the vnode is no longer usable (possibly having
1995  * been changed to a new filesystem type).
1996  */
1997 int
1998 vget(vp, flags, td)
1999 	register struct vnode *vp;
2000 	int flags;
2001 	struct thread *td;
2002 {
2003 	int error;
2004 
2005 	/*
2006 	 * If the vnode is in the process of being cleaned out for
2007 	 * another use, we wait for the cleaning to finish and then
2008 	 * return failure. Cleaning is determined by checking that
2009 	 * the VI_XLOCK flag is set.
2010 	 */
2011 	if ((flags & LK_INTERLOCK) == 0)
2012 		VI_LOCK(vp);
2013 	if (vp->v_iflag & VI_XLOCK && vp->v_vxthread != curthread) {
2014 		if ((flags & LK_NOWAIT) == 0) {
2015 			vp->v_iflag |= VI_XWANT;
2016 			msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
2017 			return (ENOENT);
2018 		}
2019 		VI_UNLOCK(vp);
2020 		return (EBUSY);
2021 	}
2022 
2023 	v_incr_usecount(vp, 1);
2024 
2025 	if (VSHOULDBUSY(vp))
2026 		vbusy(vp);
2027 	if (flags & LK_TYPE_MASK) {
2028 		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
2029 			/*
2030 			 * must expand vrele here because we do not want
2031 			 * to call VOP_INACTIVE if the reference count
2032 			 * drops back to zero since it was never really
2033 			 * active. We must remove it from the free list
2034 			 * before sleeping so that multiple processes do
2035 			 * not try to recycle it.
2036 			 */
2037 			VI_LOCK(vp);
2038 			v_incr_usecount(vp, -1);
2039 			if (VSHOULDFREE(vp))
2040 				vfree(vp);
2041 			else
2042 				vlruvp(vp);
2043 			VI_UNLOCK(vp);
2044 		}
2045 		return (error);
2046 	}
2047 	VI_UNLOCK(vp);
2048 	return (0);
2049 }
2050 
2051 /*
2052  * Increase the reference count of a vnode.
2053  */
2054 void
2055 vref(struct vnode *vp)
2056 {
2057 
2058 	VI_LOCK(vp);
2059 	v_incr_usecount(vp, 1);
2060 	VI_UNLOCK(vp);
2061 }
2062 
2063 /*
2064  * Return reference count of a vnode.
2065  *
2066  * The results of this call are only guaranteed when some mechanism other
2067  * than the VI lock is used to stop other processes from gaining references
2068  * to the vnode.  This may be the case if the caller holds the only reference.
2069  * This is also useful when stale data is acceptable as race conditions may
2070  * be accounted for by some other means.
2071  */
2072 int
2073 vrefcnt(struct vnode *vp)
2074 {
2075 	int usecnt;
2076 
2077 	VI_LOCK(vp);
2078 	usecnt = vp->v_usecount;
2079 	VI_UNLOCK(vp);
2080 
2081 	return (usecnt);
2082 }
2083 
2084 
2085 /*
2086  * Vnode put/release.
2087  * If count drops to zero, call inactive routine and return to freelist.
2088  */
2089 void
2090 vrele(vp)
2091 	struct vnode *vp;
2092 {
2093 	struct thread *td = curthread;	/* XXX */
2094 
2095 	GIANT_REQUIRED;
2096 
2097 	KASSERT(vp != NULL, ("vrele: null vp"));
2098 
2099 	VI_LOCK(vp);
2100 
2101 	/* Skip this v_writecount check if we're going to panic below. */
2102 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2103 	    ("vrele: missed vn_close"));
2104 
2105 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2106 	    vp->v_usecount == 1)) {
2107 		v_incr_usecount(vp, -1);
2108 		VI_UNLOCK(vp);
2109 
2110 		return;
2111 	}
2112 
2113 	if (vp->v_usecount == 1) {
2114 		v_incr_usecount(vp, -1);
2115 		/*
2116 		 * We must call VOP_INACTIVE with the node locked. Mark
2117 		 * as VI_DOINGINACT to avoid recursion.
2118 		 */
2119 		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
2120 			VI_LOCK(vp);
2121 			vp->v_iflag |= VI_DOINGINACT;
2122 			VI_UNLOCK(vp);
2123 			VOP_INACTIVE(vp, td);
2124 			VI_LOCK(vp);
2125 			KASSERT(vp->v_iflag & VI_DOINGINACT,
2126 			    ("vrele: lost VI_DOINGINACT"));
2127 			vp->v_iflag &= ~VI_DOINGINACT;
2128 		} else
2129 			VI_LOCK(vp);
2130 		if (VSHOULDFREE(vp))
2131 			vfree(vp);
2132 		else
2133 			vlruvp(vp);
2134 		VI_UNLOCK(vp);
2135 
2136 	} else {
2137 #ifdef DIAGNOSTIC
2138 		vprint("vrele: negative ref count", vp);
2139 #endif
2140 		VI_UNLOCK(vp);
2141 		panic("vrele: negative ref cnt");
2142 	}
2143 }
2144 
2145 /*
2146  * Release an already locked vnode.  This give the same effects as
2147  * unlock+vrele(), but takes less time and avoids releasing and
2148  * re-aquiring the lock (as vrele() aquires the lock internally.)
2149  */
2150 void
2151 vput(vp)
2152 	struct vnode *vp;
2153 {
2154 	struct thread *td = curthread;	/* XXX */
2155 
2156 	GIANT_REQUIRED;
2157 
2158 	KASSERT(vp != NULL, ("vput: null vp"));
2159 	VI_LOCK(vp);
2160 	/* Skip this v_writecount check if we're going to panic below. */
2161 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2162 	    ("vput: missed vn_close"));
2163 
2164 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2165 	    vp->v_usecount == 1)) {
2166 		v_incr_usecount(vp, -1);
2167 		VOP_UNLOCK(vp, LK_INTERLOCK, td);
2168 		return;
2169 	}
2170 
2171 	if (vp->v_usecount == 1) {
2172 		v_incr_usecount(vp, -1);
2173 		/*
2174 		 * We must call VOP_INACTIVE with the node locked, so
2175 		 * we just need to release the vnode mutex. Mark as
2176 		 * as VI_DOINGINACT to avoid recursion.
2177 		 */
2178 		vp->v_iflag |= VI_DOINGINACT;
2179 		VI_UNLOCK(vp);
2180 		VOP_INACTIVE(vp, td);
2181 		VI_LOCK(vp);
2182 		KASSERT(vp->v_iflag & VI_DOINGINACT,
2183 		    ("vput: lost VI_DOINGINACT"));
2184 		vp->v_iflag &= ~VI_DOINGINACT;
2185 		if (VSHOULDFREE(vp))
2186 			vfree(vp);
2187 		else
2188 			vlruvp(vp);
2189 		VI_UNLOCK(vp);
2190 
2191 	} else {
2192 #ifdef DIAGNOSTIC
2193 		vprint("vput: negative ref count", vp);
2194 #endif
2195 		panic("vput: negative ref cnt");
2196 	}
2197 }
2198 
2199 /*
2200  * Somebody doesn't want the vnode recycled.
2201  */
2202 void
2203 vhold(struct vnode *vp)
2204 {
2205 
2206 	VI_LOCK(vp);
2207 	vholdl(vp);
2208 	VI_UNLOCK(vp);
2209 }
2210 
2211 void
2212 vholdl(vp)
2213 	register struct vnode *vp;
2214 {
2215 
2216 	vp->v_holdcnt++;
2217 	if (VSHOULDBUSY(vp))
2218 		vbusy(vp);
2219 }
2220 
2221 /*
2222  * Note that there is one less who cares about this vnode.  vdrop() is the
2223  * opposite of vhold().
2224  */
2225 void
2226 vdrop(struct vnode *vp)
2227 {
2228 
2229 	VI_LOCK(vp);
2230 	vdropl(vp);
2231 	VI_UNLOCK(vp);
2232 }
2233 
2234 void
2235 vdropl(vp)
2236 	register struct vnode *vp;
2237 {
2238 
2239 	if (vp->v_holdcnt <= 0)
2240 		panic("vdrop: holdcnt");
2241 	vp->v_holdcnt--;
2242 	if (VSHOULDFREE(vp))
2243 		vfree(vp);
2244 	else
2245 		vlruvp(vp);
2246 }
2247 
2248 /*
2249  * Remove any vnodes in the vnode table belonging to mount point mp.
2250  *
2251  * If FORCECLOSE is not specified, there should not be any active ones,
2252  * return error if any are found (nb: this is a user error, not a
2253  * system error). If FORCECLOSE is specified, detach any active vnodes
2254  * that are found.
2255  *
2256  * If WRITECLOSE is set, only flush out regular file vnodes open for
2257  * writing.
2258  *
2259  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2260  *
2261  * `rootrefs' specifies the base reference count for the root vnode
2262  * of this filesystem. The root vnode is considered busy if its
2263  * v_usecount exceeds this value. On a successful return, vflush(, td)
2264  * will call vrele() on the root vnode exactly rootrefs times.
2265  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2266  * be zero.
2267  */
2268 #ifdef DIAGNOSTIC
2269 static int busyprt = 0;		/* print out busy vnodes */
2270 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2271 #endif
2272 
2273 int
2274 vflush(mp, rootrefs, flags, td)
2275 	struct mount *mp;
2276 	int rootrefs;
2277 	int flags;
2278 	struct thread *td;
2279 {
2280 	struct vnode *vp, *nvp, *rootvp = NULL;
2281 	struct vattr vattr;
2282 	int busy = 0, error;
2283 
2284 	if (rootrefs > 0) {
2285 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2286 		    ("vflush: bad args"));
2287 		/*
2288 		 * Get the filesystem root vnode. We can vput() it
2289 		 * immediately, since with rootrefs > 0, it won't go away.
2290 		 */
2291 		if ((error = VFS_ROOT(mp, &rootvp, td)) != 0)
2292 			return (error);
2293 		vput(rootvp);
2294 
2295 	}
2296 	MNT_ILOCK(mp);
2297 loop:
2298 	MNT_VNODE_FOREACH(vp, mp, nvp) {
2299 
2300 		VI_LOCK(vp);
2301 		MNT_IUNLOCK(mp);
2302 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
2303 		if (error) {
2304 			MNT_ILOCK(mp);
2305 			goto loop;
2306 		}
2307 		/*
2308 		 * Skip over a vnodes marked VV_SYSTEM.
2309 		 */
2310 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2311 			VOP_UNLOCK(vp, 0, td);
2312 			MNT_ILOCK(mp);
2313 			continue;
2314 		}
2315 		/*
2316 		 * If WRITECLOSE is set, flush out unlinked but still open
2317 		 * files (even if open only for reading) and regular file
2318 		 * vnodes open for writing.
2319 		 */
2320 		if (flags & WRITECLOSE) {
2321 			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2322 			VI_LOCK(vp);
2323 
2324 			if ((vp->v_type == VNON ||
2325 			    (error == 0 && vattr.va_nlink > 0)) &&
2326 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2327 				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2328 				MNT_ILOCK(mp);
2329 				continue;
2330 			}
2331 		} else
2332 			VI_LOCK(vp);
2333 
2334 		VOP_UNLOCK(vp, 0, td);
2335 
2336 		/*
2337 		 * With v_usecount == 0, all we need to do is clear out the
2338 		 * vnode data structures and we are done.
2339 		 */
2340 		if (vp->v_usecount == 0) {
2341 			vgonel(vp, td);
2342 			MNT_ILOCK(mp);
2343 			continue;
2344 		}
2345 
2346 		/*
2347 		 * If FORCECLOSE is set, forcibly close the vnode. For block
2348 		 * or character devices, revert to an anonymous device. For
2349 		 * all other files, just kill them.
2350 		 */
2351 		if (flags & FORCECLOSE) {
2352 			if (vp->v_type != VCHR)
2353 				vgonel(vp, td);
2354 			else
2355 				vgonechrl(vp, td);
2356 			MNT_ILOCK(mp);
2357 			continue;
2358 		}
2359 #ifdef DIAGNOSTIC
2360 		if (busyprt)
2361 			vprint("vflush: busy vnode", vp);
2362 #endif
2363 		VI_UNLOCK(vp);
2364 		MNT_ILOCK(mp);
2365 		busy++;
2366 	}
2367 	MNT_IUNLOCK(mp);
2368 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2369 		/*
2370 		 * If just the root vnode is busy, and if its refcount
2371 		 * is equal to `rootrefs', then go ahead and kill it.
2372 		 */
2373 		VI_LOCK(rootvp);
2374 		KASSERT(busy > 0, ("vflush: not busy"));
2375 		KASSERT(rootvp->v_usecount >= rootrefs,
2376 		    ("vflush: usecount %d < rootrefs %d",
2377 		     rootvp->v_usecount, rootrefs));
2378 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2379 			vgonel(rootvp, td);
2380 			busy = 0;
2381 		} else
2382 			VI_UNLOCK(rootvp);
2383 	}
2384 	if (busy)
2385 		return (EBUSY);
2386 	for (; rootrefs > 0; rootrefs--)
2387 		vrele(rootvp);
2388 	return (0);
2389 }
2390 
2391 /*
2392  * This moves a now (likely recyclable) vnode to the end of the
2393  * mountlist.  XXX However, it is temporarily disabled until we
2394  * can clean up ffs_sync() and friends, which have loop restart
2395  * conditions which this code causes to operate O(N^2).
2396  */
2397 static void
2398 vlruvp(struct vnode *vp)
2399 {
2400 #if 0
2401 	struct mount *mp;
2402 
2403 	if ((mp = vp->v_mount) != NULL) {
2404 		MNT_ILOCK(mp);
2405 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2406 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2407 		MNT_IUNLOCK(mp);
2408 	}
2409 #endif
2410 }
2411 
2412 static void
2413 vx_lock(struct vnode *vp)
2414 {
2415 
2416 	ASSERT_VI_LOCKED(vp, "vx_lock");
2417 
2418 	/*
2419 	 * Prevent the vnode from being recycled or brought into use while we
2420 	 * clean it out.
2421 	 */
2422 	if (vp->v_iflag & VI_XLOCK)
2423 		panic("vclean: deadlock");
2424 	vp->v_iflag |= VI_XLOCK;
2425 	vp->v_vxthread = curthread;
2426 }
2427 
2428 static void
2429 vx_unlock(struct vnode *vp)
2430 {
2431 	ASSERT_VI_LOCKED(vp, "vx_unlock");
2432 	vp->v_iflag &= ~VI_XLOCK;
2433 	vp->v_vxthread = NULL;
2434 	if (vp->v_iflag & VI_XWANT) {
2435 		vp->v_iflag &= ~VI_XWANT;
2436 		wakeup(vp);
2437 	}
2438 }
2439 
2440 /*
2441  * Disassociate the underlying filesystem from a vnode.
2442  */
2443 static void
2444 vclean(vp, flags, td)
2445 	struct vnode *vp;
2446 	int flags;
2447 	struct thread *td;
2448 {
2449 	int active;
2450 
2451 	ASSERT_VI_LOCKED(vp, "vclean");
2452 	/*
2453 	 * Check to see if the vnode is in use. If so we have to reference it
2454 	 * before we clean it out so that its count cannot fall to zero and
2455 	 * generate a race against ourselves to recycle it.
2456 	 */
2457 	if ((active = vp->v_usecount))
2458 		v_incr_usecount(vp, 1);
2459 
2460 	/*
2461 	 * Even if the count is zero, the VOP_INACTIVE routine may still
2462 	 * have the object locked while it cleans it out. The VOP_LOCK
2463 	 * ensures that the VOP_INACTIVE routine is done with its work.
2464 	 * For active vnodes, it ensures that no other activity can
2465 	 * occur while the underlying object is being cleaned out.
2466 	 */
2467 	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2468 
2469 	/*
2470 	 * Clean out any buffers associated with the vnode.
2471 	 * If the flush fails, just toss the buffers.
2472 	 */
2473 	if (flags & DOCLOSE) {
2474 		struct buf *bp;
2475 		bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
2476 		if (bp != NULL)
2477 			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2478 		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2479 			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2480 	}
2481 
2482 	VOP_DESTROYVOBJECT(vp);
2483 
2484 	/*
2485 	 * Any other processes trying to obtain this lock must first
2486 	 * wait for VXLOCK to clear, then call the new lock operation.
2487 	 */
2488 	VOP_UNLOCK(vp, 0, td);
2489 
2490 	/*
2491 	 * If purging an active vnode, it must be closed and
2492 	 * deactivated before being reclaimed. Note that the
2493 	 * VOP_INACTIVE will unlock the vnode.
2494 	 */
2495 	if (active) {
2496 		if (flags & DOCLOSE)
2497 			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2498 		VI_LOCK(vp);
2499 		if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2500 			vp->v_iflag |= VI_DOINGINACT;
2501 			VI_UNLOCK(vp);
2502 			if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2503 				panic("vclean: cannot relock.");
2504 			VOP_INACTIVE(vp, td);
2505 			VI_LOCK(vp);
2506 			KASSERT(vp->v_iflag & VI_DOINGINACT,
2507 			    ("vclean: lost VI_DOINGINACT"));
2508 			vp->v_iflag &= ~VI_DOINGINACT;
2509 		}
2510 		VI_UNLOCK(vp);
2511 	}
2512 	/*
2513 	 * Reclaim the vnode.
2514 	 */
2515 	if (VOP_RECLAIM(vp, td))
2516 		panic("vclean: cannot reclaim");
2517 
2518 	if (active) {
2519 		/*
2520 		 * Inline copy of vrele() since VOP_INACTIVE
2521 		 * has already been called.
2522 		 */
2523 		VI_LOCK(vp);
2524 		v_incr_usecount(vp, -1);
2525 		if (vp->v_usecount <= 0) {
2526 #ifdef INVARIANTS
2527 			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2528 				vprint("vclean: bad ref count", vp);
2529 				panic("vclean: ref cnt");
2530 			}
2531 #endif
2532 			if (VSHOULDFREE(vp))
2533 				vfree(vp);
2534 		}
2535 		VI_UNLOCK(vp);
2536 	}
2537 	/*
2538 	 * Delete from old mount point vnode list.
2539 	 */
2540 	delmntque(vp);
2541 	cache_purge(vp);
2542 	VI_LOCK(vp);
2543 	if (VSHOULDFREE(vp))
2544 		vfree(vp);
2545 
2546 	/*
2547 	 * Done with purge, reset to the standard lock and
2548 	 * notify sleepers of the grim news.
2549 	 */
2550 	vp->v_vnlock = &vp->v_lock;
2551 	vp->v_op = dead_vnodeop_p;
2552 	if (vp->v_pollinfo != NULL)
2553 		vn_pollgone(vp);
2554 	vp->v_tag = "none";
2555 }
2556 
2557 /*
2558  * Eliminate all activity associated with the requested vnode
2559  * and with all vnodes aliased to the requested vnode.
2560  */
2561 int
2562 vop_revoke(ap)
2563 	struct vop_revoke_args /* {
2564 		struct vnode *a_vp;
2565 		int a_flags;
2566 	} */ *ap;
2567 {
2568 	struct vnode *vp, *vq;
2569 	struct cdev *dev;
2570 
2571 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2572 	vp = ap->a_vp;
2573 	KASSERT((vp->v_type == VCHR), ("vop_revoke: not VCHR"));
2574 
2575 	VI_LOCK(vp);
2576 	/*
2577 	 * If a vgone (or vclean) is already in progress,
2578 	 * wait until it is done and return.
2579 	 */
2580 	if (vp->v_iflag & VI_XLOCK) {
2581 		vp->v_iflag |= VI_XWANT;
2582 		msleep(vp, VI_MTX(vp), PINOD | PDROP,
2583 		    "vop_revokeall", 0);
2584 		return (0);
2585 	}
2586 	VI_UNLOCK(vp);
2587 	dev = vp->v_rdev;
2588 	for (;;) {
2589 		mtx_lock(&spechash_mtx);
2590 		vq = SLIST_FIRST(&dev->si_hlist);
2591 		mtx_unlock(&spechash_mtx);
2592 		if (vq == NULL)
2593 			break;
2594 		vgone(vq);
2595 	}
2596 	return (0);
2597 }
2598 
2599 /*
2600  * Recycle an unused vnode to the front of the free list.
2601  * Release the passed interlock if the vnode will be recycled.
2602  */
2603 int
2604 vrecycle(vp, inter_lkp, td)
2605 	struct vnode *vp;
2606 	struct mtx *inter_lkp;
2607 	struct thread *td;
2608 {
2609 
2610 	VI_LOCK(vp);
2611 	if (vp->v_usecount == 0) {
2612 		if (inter_lkp) {
2613 			mtx_unlock(inter_lkp);
2614 		}
2615 		vgonel(vp, td);
2616 		return (1);
2617 	}
2618 	VI_UNLOCK(vp);
2619 	return (0);
2620 }
2621 
2622 /*
2623  * Eliminate all activity associated with a vnode
2624  * in preparation for reuse.
2625  */
2626 void
2627 vgone(vp)
2628 	register struct vnode *vp;
2629 {
2630 	struct thread *td = curthread;	/* XXX */
2631 
2632 	VI_LOCK(vp);
2633 	vgonel(vp, td);
2634 }
2635 
2636 /*
2637  * Disassociate a character device from the its underlying filesystem and
2638  * attach it to spec.  This is for use when the chr device is still active
2639  * and the filesystem is going away.
2640  */
2641 static void
2642 vgonechrl(struct vnode *vp, struct thread *td)
2643 {
2644 	ASSERT_VI_LOCKED(vp, "vgonechrl");
2645 	vx_lock(vp);
2646 	/*
2647 	 * This is a custom version of vclean() which does not tearm down
2648 	 * the bufs or vm objects held by this vnode.  This allows filesystems
2649 	 * to continue using devices which were discovered via another
2650 	 * filesystem that has been unmounted.
2651 	 */
2652 	if (vp->v_usecount != 0) {
2653 		v_incr_usecount(vp, 1);
2654 		/*
2655 		 * Ensure that no other activity can occur while the
2656 		 * underlying object is being cleaned out.
2657 		 */
2658 		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2659 		/*
2660 		 * Any other processes trying to obtain this lock must first
2661 		 * wait for VXLOCK to clear, then call the new lock operation.
2662 		 */
2663 		VOP_UNLOCK(vp, 0, td);
2664 		vp->v_vnlock = &vp->v_lock;
2665 		vp->v_tag = "orphanchr";
2666 		vp->v_op = spec_vnodeop_p;
2667 		delmntque(vp);
2668 		cache_purge(vp);
2669 		vrele(vp);
2670 		VI_LOCK(vp);
2671 	} else
2672 		vclean(vp, 0, td);
2673 	vp->v_op = spec_vnodeop_p;
2674 	vx_unlock(vp);
2675 	VI_UNLOCK(vp);
2676 }
2677 
2678 /*
2679  * vgone, with the vp interlock held.
2680  */
2681 void
2682 vgonel(vp, td)
2683 	struct vnode *vp;
2684 	struct thread *td;
2685 {
2686 	/*
2687 	 * If a vgone (or vclean) is already in progress,
2688 	 * wait until it is done and return.
2689 	 */
2690 	ASSERT_VI_LOCKED(vp, "vgonel");
2691 	if (vp->v_iflag & VI_XLOCK) {
2692 		vp->v_iflag |= VI_XWANT;
2693 		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2694 		return;
2695 	}
2696 	vx_lock(vp);
2697 
2698 	/*
2699 	 * Clean out the filesystem specific data.
2700 	 */
2701 	vclean(vp, DOCLOSE, td);
2702 	VI_UNLOCK(vp);
2703 
2704 	/*
2705 	 * If special device, remove it from special device alias list
2706 	 * if it is on one.
2707 	 */
2708 	VI_LOCK(vp);
2709 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2710 		mtx_lock(&spechash_mtx);
2711 		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2712 		vp->v_rdev->si_usecount -= vp->v_usecount;
2713 		mtx_unlock(&spechash_mtx);
2714 		dev_rel(vp->v_rdev);
2715 		vp->v_rdev = NULL;
2716 	}
2717 
2718 	/*
2719 	 * If it is on the freelist and not already at the head,
2720 	 * move it to the head of the list. The test of the
2721 	 * VDOOMED flag and the reference count of zero is because
2722 	 * it will be removed from the free list by getnewvnode,
2723 	 * but will not have its reference count incremented until
2724 	 * after calling vgone. If the reference count were
2725 	 * incremented first, vgone would (incorrectly) try to
2726 	 * close the previous instance of the underlying object.
2727 	 */
2728 	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2729 		mtx_lock(&vnode_free_list_mtx);
2730 		if (vp->v_iflag & VI_FREE) {
2731 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2732 		} else {
2733 			vp->v_iflag |= VI_FREE;
2734 			freevnodes++;
2735 		}
2736 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2737 		mtx_unlock(&vnode_free_list_mtx);
2738 	}
2739 
2740 	vp->v_type = VBAD;
2741 	vx_unlock(vp);
2742 	VI_UNLOCK(vp);
2743 }
2744 
2745 /*
2746  * Lookup a vnode by device number.
2747  */
2748 int
2749 vfinddev(dev, vpp)
2750 	struct cdev *dev;
2751 	struct vnode **vpp;
2752 {
2753 	struct vnode *vp;
2754 
2755 	mtx_lock(&spechash_mtx);
2756 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2757 		*vpp = vp;
2758 		mtx_unlock(&spechash_mtx);
2759 		return (1);
2760 	}
2761 	mtx_unlock(&spechash_mtx);
2762 	return (0);
2763 }
2764 
2765 /*
2766  * Calculate the total number of references to a special device.
2767  */
2768 int
2769 vcount(vp)
2770 	struct vnode *vp;
2771 {
2772 	int count;
2773 
2774 	mtx_lock(&spechash_mtx);
2775 	count = vp->v_rdev->si_usecount;
2776 	mtx_unlock(&spechash_mtx);
2777 	return (count);
2778 }
2779 
2780 /*
2781  * Same as above, but using the struct cdev *as argument
2782  */
2783 int
2784 count_dev(dev)
2785 	struct cdev *dev;
2786 {
2787 	int count;
2788 
2789 	mtx_lock(&spechash_mtx);
2790 	count = dev->si_usecount;
2791 	mtx_unlock(&spechash_mtx);
2792 	return(count);
2793 }
2794 
2795 /*
2796  * Print out a description of a vnode.
2797  */
2798 static char *typename[] =
2799 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2800 
2801 void
2802 vprint(label, vp)
2803 	char *label;
2804 	struct vnode *vp;
2805 {
2806 	char buf[96];
2807 
2808 	if (label != NULL)
2809 		printf("%s: %p: ", label, (void *)vp);
2810 	else
2811 		printf("%p: ", (void *)vp);
2812 	printf("tag %s, type %s, usecount %d, writecount %d, refcount %d,",
2813 	    vp->v_tag, typename[vp->v_type], vp->v_usecount,
2814 	    vp->v_writecount, vp->v_holdcnt);
2815 	buf[0] = '\0';
2816 	if (vp->v_vflag & VV_ROOT)
2817 		strcat(buf, "|VV_ROOT");
2818 	if (vp->v_vflag & VV_TEXT)
2819 		strcat(buf, "|VV_TEXT");
2820 	if (vp->v_vflag & VV_SYSTEM)
2821 		strcat(buf, "|VV_SYSTEM");
2822 	if (vp->v_iflag & VI_XLOCK)
2823 		strcat(buf, "|VI_XLOCK");
2824 	if (vp->v_iflag & VI_XWANT)
2825 		strcat(buf, "|VI_XWANT");
2826 	if (vp->v_iflag & VI_BWAIT)
2827 		strcat(buf, "|VI_BWAIT");
2828 	if (vp->v_iflag & VI_DOOMED)
2829 		strcat(buf, "|VI_DOOMED");
2830 	if (vp->v_iflag & VI_FREE)
2831 		strcat(buf, "|VI_FREE");
2832 	if (vp->v_vflag & VV_OBJBUF)
2833 		strcat(buf, "|VV_OBJBUF");
2834 	if (buf[0] != '\0')
2835 		printf(" flags (%s),", &buf[1]);
2836 	lockmgr_printinfo(vp->v_vnlock);
2837 	printf("\n");
2838 	if (vp->v_data != NULL)
2839 		VOP_PRINT(vp);
2840 }
2841 
2842 #ifdef DDB
2843 #include <ddb/ddb.h>
2844 /*
2845  * List all of the locked vnodes in the system.
2846  * Called when debugging the kernel.
2847  */
2848 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2849 {
2850 	struct mount *mp, *nmp;
2851 	struct vnode *vp;
2852 
2853 	/*
2854 	 * Note: because this is DDB, we can't obey the locking semantics
2855 	 * for these structures, which means we could catch an inconsistent
2856 	 * state and dereference a nasty pointer.  Not much to be done
2857 	 * about that.
2858 	 */
2859 	printf("Locked vnodes\n");
2860 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2861 		nmp = TAILQ_NEXT(mp, mnt_list);
2862 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2863 			if (VOP_ISLOCKED(vp, NULL))
2864 				vprint(NULL, vp);
2865 		}
2866 		nmp = TAILQ_NEXT(mp, mnt_list);
2867 	}
2868 }
2869 #endif
2870 
2871 /*
2872  * Fill in a struct xvfsconf based on a struct vfsconf.
2873  */
2874 static void
2875 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2876 {
2877 
2878 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2879 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2880 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2881 	xvfsp->vfc_flags = vfsp->vfc_flags;
2882 	/*
2883 	 * These are unused in userland, we keep them
2884 	 * to not break binary compatibility.
2885 	 */
2886 	xvfsp->vfc_vfsops = NULL;
2887 	xvfsp->vfc_next = NULL;
2888 }
2889 
2890 /*
2891  * Top level filesystem related information gathering.
2892  */
2893 static int
2894 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2895 {
2896 	struct vfsconf *vfsp;
2897 	struct xvfsconf xvfsp;
2898 	int error;
2899 
2900 	error = 0;
2901 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2902 		vfsconf2x(vfsp, &xvfsp);
2903 		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2904 		if (error)
2905 			break;
2906 	}
2907 	return (error);
2908 }
2909 
2910 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2911     "S,xvfsconf", "List of all configured filesystems");
2912 
2913 #ifndef BURN_BRIDGES
2914 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2915 
2916 static int
2917 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2918 {
2919 	int *name = (int *)arg1 - 1;	/* XXX */
2920 	u_int namelen = arg2 + 1;	/* XXX */
2921 	struct vfsconf *vfsp;
2922 	struct xvfsconf xvfsp;
2923 
2924 	printf("WARNING: userland calling deprecated sysctl, "
2925 	    "please rebuild world\n");
2926 
2927 #if 1 || defined(COMPAT_PRELITE2)
2928 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2929 	if (namelen == 1)
2930 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2931 #endif
2932 
2933 	switch (name[1]) {
2934 	case VFS_MAXTYPENUM:
2935 		if (namelen != 2)
2936 			return (ENOTDIR);
2937 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2938 	case VFS_CONF:
2939 		if (namelen != 3)
2940 			return (ENOTDIR);	/* overloaded */
2941 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2942 			if (vfsp->vfc_typenum == name[2])
2943 				break;
2944 		if (vfsp == NULL)
2945 			return (EOPNOTSUPP);
2946 		vfsconf2x(vfsp, &xvfsp);
2947 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2948 	}
2949 	return (EOPNOTSUPP);
2950 }
2951 
2952 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
2953 	"Generic filesystem");
2954 
2955 #if 1 || defined(COMPAT_PRELITE2)
2956 
2957 static int
2958 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2959 {
2960 	int error;
2961 	struct vfsconf *vfsp;
2962 	struct ovfsconf ovfs;
2963 
2964 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2965 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2966 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2967 		ovfs.vfc_index = vfsp->vfc_typenum;
2968 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2969 		ovfs.vfc_flags = vfsp->vfc_flags;
2970 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2971 		if (error)
2972 			return error;
2973 	}
2974 	return 0;
2975 }
2976 
2977 #endif /* 1 || COMPAT_PRELITE2 */
2978 #endif /* !BURN_BRIDGES */
2979 
2980 #define KINFO_VNODESLOP		10
2981 #ifdef notyet
2982 /*
2983  * Dump vnode list (via sysctl).
2984  */
2985 /* ARGSUSED */
2986 static int
2987 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2988 {
2989 	struct xvnode *xvn;
2990 	struct thread *td = req->td;
2991 	struct mount *mp;
2992 	struct vnode *vp;
2993 	int error, len, n;
2994 
2995 	/*
2996 	 * Stale numvnodes access is not fatal here.
2997 	 */
2998 	req->lock = 0;
2999 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3000 	if (!req->oldptr)
3001 		/* Make an estimate */
3002 		return (SYSCTL_OUT(req, 0, len));
3003 
3004 	error = sysctl_wire_old_buffer(req, 0);
3005 	if (error != 0)
3006 		return (error);
3007 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3008 	n = 0;
3009 	mtx_lock(&mountlist_mtx);
3010 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3011 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
3012 			continue;
3013 		MNT_ILOCK(mp);
3014 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3015 			if (n == len)
3016 				break;
3017 			vref(vp);
3018 			xvn[n].xv_size = sizeof *xvn;
3019 			xvn[n].xv_vnode = vp;
3020 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3021 			XV_COPY(usecount);
3022 			XV_COPY(writecount);
3023 			XV_COPY(holdcnt);
3024 			XV_COPY(id);
3025 			XV_COPY(mount);
3026 			XV_COPY(numoutput);
3027 			XV_COPY(type);
3028 #undef XV_COPY
3029 			xvn[n].xv_flag = vp->v_vflag;
3030 
3031 			switch (vp->v_type) {
3032 			case VREG:
3033 			case VDIR:
3034 			case VLNK:
3035 				xvn[n].xv_dev = vp->v_cachedfs;
3036 				xvn[n].xv_ino = vp->v_cachedid;
3037 				break;
3038 			case VBLK:
3039 			case VCHR:
3040 				if (vp->v_rdev == NULL) {
3041 					vrele(vp);
3042 					continue;
3043 				}
3044 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3045 				break;
3046 			case VSOCK:
3047 				xvn[n].xv_socket = vp->v_socket;
3048 				break;
3049 			case VFIFO:
3050 				xvn[n].xv_fifo = vp->v_fifoinfo;
3051 				break;
3052 			case VNON:
3053 			case VBAD:
3054 			default:
3055 				/* shouldn't happen? */
3056 				vrele(vp);
3057 				continue;
3058 			}
3059 			vrele(vp);
3060 			++n;
3061 		}
3062 		MNT_IUNLOCK(mp);
3063 		mtx_lock(&mountlist_mtx);
3064 		vfs_unbusy(mp, td);
3065 		if (n == len)
3066 			break;
3067 	}
3068 	mtx_unlock(&mountlist_mtx);
3069 
3070 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3071 	free(xvn, M_TEMP);
3072 	return (error);
3073 }
3074 
3075 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3076 	0, 0, sysctl_vnode, "S,xvnode", "");
3077 #endif
3078 
3079 /*
3080  * Check to see if a filesystem is mounted on a block device.
3081  */
3082 int
3083 vfs_mountedon(vp)
3084 	struct vnode *vp;
3085 {
3086 
3087 	if (vp->v_rdev->si_mountpoint != NULL)
3088 		return (EBUSY);
3089 	return (0);
3090 }
3091 
3092 /*
3093  * Unmount all filesystems. The list is traversed in reverse order
3094  * of mounting to avoid dependencies.
3095  */
3096 void
3097 vfs_unmountall()
3098 {
3099 	struct mount *mp;
3100 	struct thread *td;
3101 	int error;
3102 
3103 	if (curthread != NULL)
3104 		td = curthread;
3105 	else
3106 		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
3107 	/*
3108 	 * Since this only runs when rebooting, it is not interlocked.
3109 	 */
3110 	while(!TAILQ_EMPTY(&mountlist)) {
3111 		mp = TAILQ_LAST(&mountlist, mntlist);
3112 		error = dounmount(mp, MNT_FORCE, td);
3113 		if (error) {
3114 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3115 			printf("unmount of %s failed (",
3116 			    mp->mnt_stat.f_mntonname);
3117 			if (error == EBUSY)
3118 				printf("BUSY)\n");
3119 			else
3120 				printf("%d)\n", error);
3121 		} else {
3122 			/* The unmount has removed mp from the mountlist */
3123 		}
3124 	}
3125 }
3126 
3127 /*
3128  * perform msync on all vnodes under a mount point
3129  * the mount point must be locked.
3130  */
3131 void
3132 vfs_msync(struct mount *mp, int flags)
3133 {
3134 	struct vnode *vp, *nvp;
3135 	struct vm_object *obj;
3136 	int tries;
3137 
3138 	GIANT_REQUIRED;
3139 
3140 	tries = 5;
3141 	MNT_ILOCK(mp);
3142 loop:
3143 	TAILQ_FOREACH_SAFE(vp, &mp->mnt_nvnodelist, v_nmntvnodes, nvp) {
3144 		if (vp->v_mount != mp) {
3145 			if (--tries > 0)
3146 				goto loop;
3147 			break;
3148 		}
3149 
3150 		VI_LOCK(vp);
3151 		if (vp->v_iflag & VI_XLOCK) {
3152 			VI_UNLOCK(vp);
3153 			continue;
3154 		}
3155 
3156 		if ((vp->v_iflag & VI_OBJDIRTY) &&
3157 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
3158 			MNT_IUNLOCK(mp);
3159 			if (!vget(vp,
3160 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3161 			    curthread)) {
3162 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3163 					vput(vp);
3164 					MNT_ILOCK(mp);
3165 					continue;
3166 				}
3167 
3168 				if (VOP_GETVOBJECT(vp, &obj) == 0) {
3169 					VM_OBJECT_LOCK(obj);
3170 					vm_object_page_clean(obj, 0, 0,
3171 					    flags == MNT_WAIT ?
3172 					    OBJPC_SYNC : OBJPC_NOSYNC);
3173 					VM_OBJECT_UNLOCK(obj);
3174 				}
3175 				vput(vp);
3176 			}
3177 			MNT_ILOCK(mp);
3178 			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
3179 				if (--tries > 0)
3180 					goto loop;
3181 				break;
3182 			}
3183 		} else
3184 			VI_UNLOCK(vp);
3185 	}
3186 	MNT_IUNLOCK(mp);
3187 }
3188 
3189 /*
3190  * Create the VM object needed for VMIO and mmap support.  This
3191  * is done for all VREG files in the system.  Some filesystems might
3192  * afford the additional metadata buffering capability of the
3193  * VMIO code by making the device node be VMIO mode also.
3194  *
3195  * vp must be locked when vfs_object_create is called.
3196  */
3197 int
3198 vfs_object_create(vp, td, cred)
3199 	struct vnode *vp;
3200 	struct thread *td;
3201 	struct ucred *cred;
3202 {
3203 
3204 	GIANT_REQUIRED;
3205 	return (VOP_CREATEVOBJECT(vp, cred, td));
3206 }
3207 
3208 /*
3209  * Mark a vnode as free, putting it up for recycling.
3210  */
3211 void
3212 vfree(vp)
3213 	struct vnode *vp;
3214 {
3215 
3216 	ASSERT_VI_LOCKED(vp, "vfree");
3217 	mtx_lock(&vnode_free_list_mtx);
3218 	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3219 	if (vp->v_iflag & VI_AGE) {
3220 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3221 	} else {
3222 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3223 	}
3224 	freevnodes++;
3225 	mtx_unlock(&vnode_free_list_mtx);
3226 	vp->v_iflag &= ~VI_AGE;
3227 	vp->v_iflag |= VI_FREE;
3228 }
3229 
3230 /*
3231  * Opposite of vfree() - mark a vnode as in use.
3232  */
3233 void
3234 vbusy(vp)
3235 	struct vnode *vp;
3236 {
3237 
3238 	ASSERT_VI_LOCKED(vp, "vbusy");
3239 	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
3240 
3241 	mtx_lock(&vnode_free_list_mtx);
3242 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3243 	freevnodes--;
3244 	mtx_unlock(&vnode_free_list_mtx);
3245 
3246 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3247 }
3248 
3249 /*
3250  * Initalize per-vnode helper structure to hold poll-related state.
3251  */
3252 void
3253 v_addpollinfo(struct vnode *vp)
3254 {
3255 	struct vpollinfo *vi;
3256 
3257 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3258 	if (vp->v_pollinfo != NULL) {
3259 		uma_zfree(vnodepoll_zone, vi);
3260 		return;
3261 	}
3262 	vp->v_pollinfo = vi;
3263 	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3264 	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note,
3265 	    &vp->v_pollinfo->vpi_lock);
3266 }
3267 
3268 /*
3269  * Record a process's interest in events which might happen to
3270  * a vnode.  Because poll uses the historic select-style interface
3271  * internally, this routine serves as both the ``check for any
3272  * pending events'' and the ``record my interest in future events''
3273  * functions.  (These are done together, while the lock is held,
3274  * to avoid race conditions.)
3275  */
3276 int
3277 vn_pollrecord(vp, td, events)
3278 	struct vnode *vp;
3279 	struct thread *td;
3280 	short events;
3281 {
3282 
3283 	if (vp->v_pollinfo == NULL)
3284 		v_addpollinfo(vp);
3285 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3286 	if (vp->v_pollinfo->vpi_revents & events) {
3287 		/*
3288 		 * This leaves events we are not interested
3289 		 * in available for the other process which
3290 		 * which presumably had requested them
3291 		 * (otherwise they would never have been
3292 		 * recorded).
3293 		 */
3294 		events &= vp->v_pollinfo->vpi_revents;
3295 		vp->v_pollinfo->vpi_revents &= ~events;
3296 
3297 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3298 		return events;
3299 	}
3300 	vp->v_pollinfo->vpi_events |= events;
3301 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3302 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3303 	return 0;
3304 }
3305 
3306 /*
3307  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3308  * it is possible for us to miss an event due to race conditions, but
3309  * that condition is expected to be rare, so for the moment it is the
3310  * preferred interface.
3311  */
3312 void
3313 vn_pollevent(vp, events)
3314 	struct vnode *vp;
3315 	short events;
3316 {
3317 
3318 	if (vp->v_pollinfo == NULL)
3319 		v_addpollinfo(vp);
3320 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3321 	if (vp->v_pollinfo->vpi_events & events) {
3322 		/*
3323 		 * We clear vpi_events so that we don't
3324 		 * call selwakeup() twice if two events are
3325 		 * posted before the polling process(es) is
3326 		 * awakened.  This also ensures that we take at
3327 		 * most one selwakeup() if the polling process
3328 		 * is no longer interested.  However, it does
3329 		 * mean that only one event can be noticed at
3330 		 * a time.  (Perhaps we should only clear those
3331 		 * event bits which we note?) XXX
3332 		 */
3333 		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3334 		vp->v_pollinfo->vpi_revents |= events;
3335 		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3336 	}
3337 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3338 }
3339 
3340 /*
3341  * Wake up anyone polling on vp because it is being revoked.
3342  * This depends on dead_poll() returning POLLHUP for correct
3343  * behavior.
3344  */
3345 void
3346 vn_pollgone(vp)
3347 	struct vnode *vp;
3348 {
3349 
3350 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3351 	VN_KNOTE_LOCKED(vp, NOTE_REVOKE);
3352 	if (vp->v_pollinfo->vpi_events) {
3353 		vp->v_pollinfo->vpi_events = 0;
3354 		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3355 	}
3356 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3357 }
3358 
3359 
3360 
3361 /*
3362  * Routine to create and manage a filesystem syncer vnode.
3363  */
3364 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3365 static int	sync_fsync(struct  vop_fsync_args *);
3366 static int	sync_inactive(struct  vop_inactive_args *);
3367 static int	sync_reclaim(struct  vop_reclaim_args *);
3368 
3369 static vop_t **sync_vnodeop_p;
3370 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3371 	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
3372 	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3373 	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3374 	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3375 	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3376 	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3377 	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3378 	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3379 	{ NULL, NULL }
3380 };
3381 static struct vnodeopv_desc sync_vnodeop_opv_desc =
3382 	{ &sync_vnodeop_p, sync_vnodeop_entries };
3383 
3384 VNODEOP_SET(sync_vnodeop_opv_desc);
3385 
3386 /*
3387  * Create a new filesystem syncer vnode for the specified mount point.
3388  */
3389 int
3390 vfs_allocate_syncvnode(mp)
3391 	struct mount *mp;
3392 {
3393 	struct vnode *vp;
3394 	static long start, incr, next;
3395 	int error;
3396 
3397 	/* Allocate a new vnode */
3398 	if ((error = getnewvnode("syncer", mp, sync_vnodeop_p, &vp)) != 0) {
3399 		mp->mnt_syncer = NULL;
3400 		return (error);
3401 	}
3402 	vp->v_type = VNON;
3403 	/*
3404 	 * Place the vnode onto the syncer worklist. We attempt to
3405 	 * scatter them about on the list so that they will go off
3406 	 * at evenly distributed times even if all the filesystems
3407 	 * are mounted at once.
3408 	 */
3409 	next += incr;
3410 	if (next == 0 || next > syncer_maxdelay) {
3411 		start /= 2;
3412 		incr /= 2;
3413 		if (start == 0) {
3414 			start = syncer_maxdelay / 2;
3415 			incr = syncer_maxdelay;
3416 		}
3417 		next = start;
3418 	}
3419 	VI_LOCK(vp);
3420 	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3421 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3422 	mtx_lock(&sync_mtx);
3423 	sync_vnode_count++;
3424 	mtx_unlock(&sync_mtx);
3425 	VI_UNLOCK(vp);
3426 	mp->mnt_syncer = vp;
3427 	return (0);
3428 }
3429 
3430 /*
3431  * Do a lazy sync of the filesystem.
3432  */
3433 static int
3434 sync_fsync(ap)
3435 	struct vop_fsync_args /* {
3436 		struct vnode *a_vp;
3437 		struct ucred *a_cred;
3438 		int a_waitfor;
3439 		struct thread *a_td;
3440 	} */ *ap;
3441 {
3442 	struct vnode *syncvp = ap->a_vp;
3443 	struct mount *mp = syncvp->v_mount;
3444 	struct thread *td = ap->a_td;
3445 	int error, asyncflag;
3446 
3447 	/*
3448 	 * We only need to do something if this is a lazy evaluation.
3449 	 */
3450 	if (ap->a_waitfor != MNT_LAZY)
3451 		return (0);
3452 
3453 	/*
3454 	 * Move ourselves to the back of the sync list.
3455 	 */
3456 	VI_LOCK(syncvp);
3457 	vn_syncer_add_to_worklist(syncvp, syncdelay);
3458 	VI_UNLOCK(syncvp);
3459 
3460 	/*
3461 	 * Walk the list of vnodes pushing all that are dirty and
3462 	 * not already on the sync list.
3463 	 */
3464 	mtx_lock(&mountlist_mtx);
3465 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3466 		mtx_unlock(&mountlist_mtx);
3467 		return (0);
3468 	}
3469 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3470 		vfs_unbusy(mp, td);
3471 		return (0);
3472 	}
3473 	asyncflag = mp->mnt_flag & MNT_ASYNC;
3474 	mp->mnt_flag &= ~MNT_ASYNC;
3475 	vfs_msync(mp, MNT_NOWAIT);
3476 	error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3477 	if (asyncflag)
3478 		mp->mnt_flag |= MNT_ASYNC;
3479 	vn_finished_write(mp);
3480 	vfs_unbusy(mp, td);
3481 	return (error);
3482 }
3483 
3484 /*
3485  * The syncer vnode is no referenced.
3486  */
3487 static int
3488 sync_inactive(ap)
3489 	struct vop_inactive_args /* {
3490 		struct vnode *a_vp;
3491 		struct thread *a_td;
3492 	} */ *ap;
3493 {
3494 
3495 	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3496 	vgone(ap->a_vp);
3497 	return (0);
3498 }
3499 
3500 /*
3501  * The syncer vnode is no longer needed and is being decommissioned.
3502  *
3503  * Modifications to the worklist must be protected by sync_mtx.
3504  */
3505 static int
3506 sync_reclaim(ap)
3507 	struct vop_reclaim_args /* {
3508 		struct vnode *a_vp;
3509 	} */ *ap;
3510 {
3511 	struct vnode *vp = ap->a_vp;
3512 
3513 	VI_LOCK(vp);
3514 	vp->v_mount->mnt_syncer = NULL;
3515 	if (vp->v_iflag & VI_ONWORKLST) {
3516 		mtx_lock(&sync_mtx);
3517 		LIST_REMOVE(vp, v_synclist);
3518  		syncer_worklist_len--;
3519 		sync_vnode_count--;
3520 		mtx_unlock(&sync_mtx);
3521 		vp->v_iflag &= ~VI_ONWORKLST;
3522 	}
3523 	VI_UNLOCK(vp);
3524 
3525 	return (0);
3526 }
3527 
3528 /*
3529  * extract the struct cdev *from a VCHR
3530  */
3531 struct cdev *
3532 vn_todev(vp)
3533 	struct vnode *vp;
3534 {
3535 
3536 	if (vp->v_type != VCHR)
3537 		return (NULL);
3538 	return (vp->v_rdev);
3539 }
3540 
3541 /*
3542  * Check if vnode represents a disk device
3543  */
3544 int
3545 vn_isdisk(vp, errp)
3546 	struct vnode *vp;
3547 	int *errp;
3548 {
3549 	int error;
3550 
3551 	error = 0;
3552 	if (vp->v_type != VCHR)
3553 		error = ENOTBLK;
3554 	else if (vp->v_rdev == NULL)
3555 		error = ENXIO;
3556 	else if (!(devsw(vp->v_rdev)->d_flags & D_DISK))
3557 		error = ENOTBLK;
3558 	if (errp != NULL)
3559 		*errp = error;
3560 	return (error == 0);
3561 }
3562 
3563 /*
3564  * Free data allocated by namei(); see namei(9) for details.
3565  */
3566 void
3567 NDFREE(ndp, flags)
3568      struct nameidata *ndp;
3569      const u_int flags;
3570 {
3571 
3572 	if (!(flags & NDF_NO_FREE_PNBUF) &&
3573 	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3574 		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3575 		ndp->ni_cnd.cn_flags &= ~HASBUF;
3576 	}
3577 	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3578 	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3579 	    ndp->ni_dvp != ndp->ni_vp)
3580 		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3581 	if (!(flags & NDF_NO_DVP_RELE) &&
3582 	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3583 		vrele(ndp->ni_dvp);
3584 		ndp->ni_dvp = NULL;
3585 	}
3586 	if (!(flags & NDF_NO_VP_UNLOCK) &&
3587 	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3588 		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3589 	if (!(flags & NDF_NO_VP_RELE) &&
3590 	    ndp->ni_vp) {
3591 		vrele(ndp->ni_vp);
3592 		ndp->ni_vp = NULL;
3593 	}
3594 	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3595 	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3596 		vrele(ndp->ni_startdir);
3597 		ndp->ni_startdir = NULL;
3598 	}
3599 }
3600 
3601 /*
3602  * Common filesystem object access control check routine.  Accepts a
3603  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3604  * and optional call-by-reference privused argument allowing vaccess()
3605  * to indicate to the caller whether privilege was used to satisfy the
3606  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3607  */
3608 int
3609 vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3610 	enum vtype type;
3611 	mode_t file_mode;
3612 	uid_t file_uid;
3613 	gid_t file_gid;
3614 	mode_t acc_mode;
3615 	struct ucred *cred;
3616 	int *privused;
3617 {
3618 	mode_t dac_granted;
3619 #ifdef CAPABILITIES
3620 	mode_t cap_granted;
3621 #endif
3622 
3623 	/*
3624 	 * Look for a normal, non-privileged way to access the file/directory
3625 	 * as requested.  If it exists, go with that.
3626 	 */
3627 
3628 	if (privused != NULL)
3629 		*privused = 0;
3630 
3631 	dac_granted = 0;
3632 
3633 	/* Check the owner. */
3634 	if (cred->cr_uid == file_uid) {
3635 		dac_granted |= VADMIN;
3636 		if (file_mode & S_IXUSR)
3637 			dac_granted |= VEXEC;
3638 		if (file_mode & S_IRUSR)
3639 			dac_granted |= VREAD;
3640 		if (file_mode & S_IWUSR)
3641 			dac_granted |= (VWRITE | VAPPEND);
3642 
3643 		if ((acc_mode & dac_granted) == acc_mode)
3644 			return (0);
3645 
3646 		goto privcheck;
3647 	}
3648 
3649 	/* Otherwise, check the groups (first match) */
3650 	if (groupmember(file_gid, cred)) {
3651 		if (file_mode & S_IXGRP)
3652 			dac_granted |= VEXEC;
3653 		if (file_mode & S_IRGRP)
3654 			dac_granted |= VREAD;
3655 		if (file_mode & S_IWGRP)
3656 			dac_granted |= (VWRITE | VAPPEND);
3657 
3658 		if ((acc_mode & dac_granted) == acc_mode)
3659 			return (0);
3660 
3661 		goto privcheck;
3662 	}
3663 
3664 	/* Otherwise, check everyone else. */
3665 	if (file_mode & S_IXOTH)
3666 		dac_granted |= VEXEC;
3667 	if (file_mode & S_IROTH)
3668 		dac_granted |= VREAD;
3669 	if (file_mode & S_IWOTH)
3670 		dac_granted |= (VWRITE | VAPPEND);
3671 	if ((acc_mode & dac_granted) == acc_mode)
3672 		return (0);
3673 
3674 privcheck:
3675 	if (!suser_cred(cred, SUSER_ALLOWJAIL)) {
3676 		/* XXX audit: privilege used */
3677 		if (privused != NULL)
3678 			*privused = 1;
3679 		return (0);
3680 	}
3681 
3682 #ifdef CAPABILITIES
3683 	/*
3684 	 * Build a capability mask to determine if the set of capabilities
3685 	 * satisfies the requirements when combined with the granted mask
3686 	 * from above.
3687 	 * For each capability, if the capability is required, bitwise
3688 	 * or the request type onto the cap_granted mask.
3689 	 */
3690 	cap_granted = 0;
3691 
3692 	if (type == VDIR) {
3693 		/*
3694 		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3695 		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3696 		 */
3697 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3698 		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3699 			cap_granted |= VEXEC;
3700 	} else {
3701 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3702 		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, SUSER_ALLOWJAIL))
3703 			cap_granted |= VEXEC;
3704 	}
3705 
3706 	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3707 	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3708 		cap_granted |= VREAD;
3709 
3710 	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3711 	    !cap_check(cred, NULL, CAP_DAC_WRITE, SUSER_ALLOWJAIL))
3712 		cap_granted |= (VWRITE | VAPPEND);
3713 
3714 	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3715 	    !cap_check(cred, NULL, CAP_FOWNER, SUSER_ALLOWJAIL))
3716 		cap_granted |= VADMIN;
3717 
3718 	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3719 		/* XXX audit: privilege used */
3720 		if (privused != NULL)
3721 			*privused = 1;
3722 		return (0);
3723 	}
3724 #endif
3725 
3726 	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3727 }
3728 
3729 /*
3730  * Credential check based on process requesting service, and per-attribute
3731  * permissions.
3732  */
3733 int
3734 extattr_check_cred(struct vnode *vp, int attrnamespace,
3735     struct ucred *cred, struct thread *td, int access)
3736 {
3737 
3738 	/*
3739 	 * Kernel-invoked always succeeds.
3740 	 */
3741 	if (cred == NOCRED)
3742 		return (0);
3743 
3744 	/*
3745 	 * Do not allow privileged processes in jail to directly
3746 	 * manipulate system attributes.
3747 	 *
3748 	 * XXX What capability should apply here?
3749 	 * Probably CAP_SYS_SETFFLAG.
3750 	 */
3751 	switch (attrnamespace) {
3752 	case EXTATTR_NAMESPACE_SYSTEM:
3753 		/* Potentially should be: return (EPERM); */
3754 		return (suser_cred(cred, 0));
3755 	case EXTATTR_NAMESPACE_USER:
3756 		return (VOP_ACCESS(vp, access, cred, td));
3757 	default:
3758 		return (EPERM);
3759 	}
3760 }
3761 
3762 #ifdef DEBUG_VFS_LOCKS
3763 /*
3764  * This only exists to supress warnings from unlocked specfs accesses.  It is
3765  * no longer ok to have an unlocked VFS.
3766  */
3767 #define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3768 
3769 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3770 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3771 
3772 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3773 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3774 
3775 int vfs_badlock_print = 1;	/* Print lock violations. */
3776 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3777 
3778 #ifdef KDB
3779 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3780 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3781 #endif
3782 
3783 static void
3784 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3785 {
3786 
3787 #ifdef KDB
3788 	if (vfs_badlock_backtrace)
3789 		kdb_backtrace();
3790 #endif
3791 	if (vfs_badlock_print)
3792 		printf("%s: %p %s\n", str, (void *)vp, msg);
3793 	if (vfs_badlock_ddb)
3794 		kdb_enter("lock violation");
3795 }
3796 
3797 void
3798 assert_vi_locked(struct vnode *vp, const char *str)
3799 {
3800 
3801 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3802 		vfs_badlock("interlock is not locked but should be", str, vp);
3803 }
3804 
3805 void
3806 assert_vi_unlocked(struct vnode *vp, const char *str)
3807 {
3808 
3809 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3810 		vfs_badlock("interlock is locked but should not be", str, vp);
3811 }
3812 
3813 void
3814 assert_vop_locked(struct vnode *vp, const char *str)
3815 {
3816 
3817 	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3818 		vfs_badlock("is not locked but should be", str, vp);
3819 }
3820 
3821 void
3822 assert_vop_unlocked(struct vnode *vp, const char *str)
3823 {
3824 
3825 	if (vp && !IGNORE_LOCK(vp) &&
3826 	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3827 		vfs_badlock("is locked but should not be", str, vp);
3828 }
3829 
3830 #if 0
3831 void
3832 assert_vop_elocked(struct vnode *vp, const char *str)
3833 {
3834 
3835 	if (vp && !IGNORE_LOCK(vp) &&
3836 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3837 		vfs_badlock("is not exclusive locked but should be", str, vp);
3838 }
3839 
3840 void
3841 assert_vop_elocked_other(struct vnode *vp, const char *str)
3842 {
3843 
3844 	if (vp && !IGNORE_LOCK(vp) &&
3845 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3846 		vfs_badlock("is not exclusive locked by another thread",
3847 		    str, vp);
3848 }
3849 
3850 void
3851 assert_vop_slocked(struct vnode *vp, const char *str)
3852 {
3853 
3854 	if (vp && !IGNORE_LOCK(vp) &&
3855 	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3856 		vfs_badlock("is not locked shared but should be", str, vp);
3857 }
3858 #endif /* 0 */
3859 
3860 void
3861 vop_rename_pre(void *ap)
3862 {
3863 	struct vop_rename_args *a = ap;
3864 
3865 	if (a->a_tvp)
3866 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3867 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3868 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3869 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3870 
3871 	/* Check the source (from). */
3872 	if (a->a_tdvp != a->a_fdvp)
3873 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3874 	if (a->a_tvp != a->a_fvp)
3875 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");
3876 
3877 	/* Check the target. */
3878 	if (a->a_tvp)
3879 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3880 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3881 }
3882 
3883 void
3884 vop_strategy_pre(void *ap)
3885 {
3886 	struct vop_strategy_args *a;
3887 	struct buf *bp;
3888 
3889 	a = ap;
3890 	bp = a->a_bp;
3891 
3892 	/*
3893 	 * Cluster ops lock their component buffers but not the IO container.
3894 	 */
3895 	if ((bp->b_flags & B_CLUSTER) != 0)
3896 		return;
3897 
3898 	if (BUF_REFCNT(bp) < 1) {
3899 		if (vfs_badlock_print)
3900 			printf(
3901 			    "VOP_STRATEGY: bp is not locked but should be\n");
3902 		if (vfs_badlock_ddb)
3903 			kdb_enter("lock violation");
3904 	}
3905 }
3906 
3907 void
3908 vop_lookup_pre(void *ap)
3909 {
3910 	struct vop_lookup_args *a;
3911 	struct vnode *dvp;
3912 
3913 	a = ap;
3914 	dvp = a->a_dvp;
3915 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3916 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3917 }
3918 
3919 void
3920 vop_lookup_post(void *ap, int rc)
3921 {
3922 	struct vop_lookup_args *a;
3923 	struct componentname *cnp;
3924 	struct vnode *dvp;
3925 	struct vnode *vp;
3926 	int flags;
3927 
3928 	a = ap;
3929 	dvp = a->a_dvp;
3930 	cnp = a->a_cnp;
3931 	vp = *(a->a_vpp);
3932 	flags = cnp->cn_flags;
3933 
3934 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3935 
3936 	/*
3937 	 * If this is the last path component for this lookup and LOCKPARENT
3938 	 * is set, OR if there is an error the directory has to be locked.
3939 	 */
3940 	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
3941 		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
3942 	else if (rc != 0)
3943 		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
3944 	else if (dvp != vp)
3945 		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
3946 	if (flags & PDIRUNLOCK)
3947 		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
3948 }
3949 
3950 void
3951 vop_lock_pre(void *ap)
3952 {
3953 	struct vop_lock_args *a = ap;
3954 
3955 	if ((a->a_flags & LK_INTERLOCK) == 0)
3956 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3957 	else
3958 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3959 }
3960 
3961 void
3962 vop_lock_post(void *ap, int rc)
3963 {
3964 	struct vop_lock_args *a = ap;
3965 
3966 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3967 	if (rc == 0)
3968 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3969 }
3970 
3971 void
3972 vop_unlock_pre(void *ap)
3973 {
3974 	struct vop_unlock_args *a = ap;
3975 
3976 	if (a->a_flags & LK_INTERLOCK)
3977 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3978 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3979 }
3980 
3981 void
3982 vop_unlock_post(void *ap, int rc)
3983 {
3984 	struct vop_unlock_args *a = ap;
3985 
3986 	if (a->a_flags & LK_INTERLOCK)
3987 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3988 }
3989 #endif /* DEBUG_VFS_LOCKS */
3990 
3991 static struct knlist fs_knlist;
3992 
3993 static void
3994 vfs_event_init(void *arg)
3995 {
3996 	knlist_init(&fs_knlist, NULL);
3997 }
3998 /* XXX - correct order? */
3999 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4000 
4001 void
4002 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
4003 {
4004 
4005 	KNOTE_UNLOCKED(&fs_knlist, event);
4006 }
4007 
4008 static int	filt_fsattach(struct knote *kn);
4009 static void	filt_fsdetach(struct knote *kn);
4010 static int	filt_fsevent(struct knote *kn, long hint);
4011 
4012 struct filterops fs_filtops =
4013 	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
4014 
4015 static int
4016 filt_fsattach(struct knote *kn)
4017 {
4018 
4019 	kn->kn_flags |= EV_CLEAR;
4020 	knlist_add(&fs_knlist, kn, 0);
4021 	return (0);
4022 }
4023 
4024 static void
4025 filt_fsdetach(struct knote *kn)
4026 {
4027 
4028 	knlist_remove(&fs_knlist, kn, 0);
4029 }
4030 
4031 static int
4032 filt_fsevent(struct knote *kn, long hint)
4033 {
4034 
4035 	kn->kn_fflags |= hint;
4036 	return (kn->kn_fflags != 0);
4037 }
4038 
4039 static int
4040 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4041 {
4042 	struct vfsidctl vc;
4043 	int error;
4044 	struct mount *mp;
4045 
4046 	error = SYSCTL_IN(req, &vc, sizeof(vc));
4047 	if (error)
4048 		return (error);
4049 	if (vc.vc_vers != VFS_CTL_VERS1)
4050 		return (EINVAL);
4051 	mp = vfs_getvfs(&vc.vc_fsid);
4052 	if (mp == NULL)
4053 		return (ENOENT);
4054 	/* ensure that a specific sysctl goes to the right filesystem. */
4055 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4056 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4057 		return (EINVAL);
4058 	}
4059 	VCTLTOREQ(&vc, req);
4060 	return (VFS_SYSCTL(mp, vc.vc_op, req));
4061 }
4062 
4063 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR,
4064         NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid");
4065