xref: /freebsd/sys/kern/vfs_subr.c (revision 70fe064ad7cab6c0444b91622f60ec6a462f308a)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD$
40  */
41 
42 /*
43  * External virtual filesystem routines
44  */
45 #include "opt_ddb.h"
46 #include "opt_ffs.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/eventhandler.h>
54 #include <sys/fcntl.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/stat.h>
61 #include <sys/sysctl.h>
62 #include <sys/syslog.h>
63 #include <sys/vmmeter.h>
64 #include <sys/vnode.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_extern.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_zone.h>
73 
74 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
75 
76 static void	addalias __P((struct vnode *vp, dev_t nvp_rdev));
77 static void	insmntque __P((struct vnode *vp, struct mount *mp));
78 static void	vclean __P((struct vnode *vp, int flags, struct thread *td));
79 static void	vlruvp(struct vnode *vp);
80 
81 /*
82  * Number of vnodes in existence.  Increased whenever getnewvnode()
83  * allocates a new vnode, never decreased.
84  */
85 static unsigned long	numvnodes;
86 
87 SYSCTL_LONG(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
88 
89 /*
90  * Conversion tables for conversion from vnode types to inode formats
91  * and back.
92  */
93 enum vtype iftovt_tab[16] = {
94 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
95 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
96 };
97 int vttoif_tab[9] = {
98 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
99 	S_IFSOCK, S_IFIFO, S_IFMT,
100 };
101 
102 /*
103  * List of vnodes that are ready for recycling.
104  */
105 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
106 
107 /*
108  * Minimum number of free vnodes.  If there are fewer than this free vnodes,
109  * getnewvnode() will return a newly allocated vnode.
110  */
111 static u_long wantfreevnodes = 25;
112 SYSCTL_LONG(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
113 /* Number of vnodes in the free list. */
114 static u_long freevnodes;
115 SYSCTL_LONG(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
116 
117 #if 0
118 /* Number of vnode allocation. */
119 static u_long vnodeallocs;
120 SYSCTL_LONG(_debug, OID_AUTO, vnodeallocs, CTLFLAG_RD, &vnodeallocs, 0, "");
121 /* Period of vnode recycle from namecache in vnode allocation times. */
122 static u_long vnoderecycleperiod = 1000;
123 SYSCTL_LONG(_debug, OID_AUTO, vnoderecycleperiod, CTLFLAG_RW, &vnoderecycleperiod, 0, "");
124 /* Minimum number of total vnodes required to invoke vnode recycle from namecache. */
125 static u_long vnoderecyclemintotalvn = 2000;
126 SYSCTL_LONG(_debug, OID_AUTO, vnoderecyclemintotalvn, CTLFLAG_RW, &vnoderecyclemintotalvn, 0, "");
127 /* Minimum number of free vnodes required to invoke vnode recycle from namecache. */
128 static u_long vnoderecycleminfreevn = 2000;
129 SYSCTL_LONG(_debug, OID_AUTO, vnoderecycleminfreevn, CTLFLAG_RW, &vnoderecycleminfreevn, 0, "");
130 /* Number of vnodes attempted to recycle at a time. */
131 static u_long vnoderecyclenumber = 3000;
132 SYSCTL_LONG(_debug, OID_AUTO, vnoderecyclenumber, CTLFLAG_RW, &vnoderecyclenumber, 0, "");
133 #endif
134 
135 /*
136  * Various variables used for debugging the new implementation of
137  * reassignbuf().
138  * XXX these are probably of (very) limited utility now.
139  */
140 static int reassignbufcalls;
141 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
142 static int reassignbufloops;
143 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
144 static int reassignbufsortgood;
145 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
146 static int reassignbufsortbad;
147 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
148 /* Set to 0 for old insertion-sort based reassignbuf, 1 for modern method. */
149 static int reassignbufmethod = 1;
150 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
151 static int nameileafonly;
152 SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
153 
154 #ifdef ENABLE_VFS_IOOPT
155 /* See NOTES for a description of this setting. */
156 int vfs_ioopt;
157 SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
158 #endif
159 
160 /* List of mounted filesystems. */
161 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
162 
163 /* For any iteration/modification of mountlist */
164 struct mtx mountlist_mtx;
165 
166 /* For any iteration/modification of mnt_vnodelist */
167 struct mtx mntvnode_mtx;
168 
169 /*
170  * Cache for the mount type id assigned to NFS.  This is used for
171  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
172  */
173 int	nfs_mount_type = -1;
174 
175 /* To keep more than one thread at a time from running vfs_getnewfsid */
176 static struct mtx mntid_mtx;
177 
178 /* For any iteration/modification of vnode_free_list */
179 static struct mtx vnode_free_list_mtx;
180 
181 /*
182  * For any iteration/modification of dev->si_hlist (linked through
183  * v_specnext)
184  */
185 static struct mtx spechash_mtx;
186 
187 /* Publicly exported FS */
188 struct nfs_public nfs_pub;
189 
190 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
191 static vm_zone_t vnode_zone;
192 
193 /* Set to 1 to print out reclaim of active vnodes */
194 int	prtactive;
195 
196 /*
197  * The workitem queue.
198  *
199  * It is useful to delay writes of file data and filesystem metadata
200  * for tens of seconds so that quickly created and deleted files need
201  * not waste disk bandwidth being created and removed. To realize this,
202  * we append vnodes to a "workitem" queue. When running with a soft
203  * updates implementation, most pending metadata dependencies should
204  * not wait for more than a few seconds. Thus, mounted on block devices
205  * are delayed only about a half the time that file data is delayed.
206  * Similarly, directory updates are more critical, so are only delayed
207  * about a third the time that file data is delayed. Thus, there are
208  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
209  * one each second (driven off the filesystem syncer process). The
210  * syncer_delayno variable indicates the next queue that is to be processed.
211  * Items that need to be processed soon are placed in this queue:
212  *
213  *	syncer_workitem_pending[syncer_delayno]
214  *
215  * A delay of fifteen seconds is done by placing the request fifteen
216  * entries later in the queue:
217  *
218  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
219  *
220  */
221 static int syncer_delayno;
222 static long syncer_mask;
223 LIST_HEAD(synclist, vnode);
224 static struct synclist *syncer_workitem_pending;
225 
226 #define SYNCER_MAXDELAY		32
227 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
228 static int syncdelay = 30;		/* max time to delay syncing data */
229 static int filedelay = 30;		/* time to delay syncing files */
230 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
231 static int dirdelay = 29;		/* time to delay syncing directories */
232 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
233 static int metadelay = 28;		/* time to delay syncing metadata */
234 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
235 static int rushjob;		/* number of slots to run ASAP */
236 static int stat_rush_requests;	/* number of times I/O speeded up */
237 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
238 
239 /*
240  * Number of vnodes we want to exist at any one time.  This is mostly used
241  * to size hash tables in vnode-related code.  It is normally not used in
242  * getnewvnode(), as wantfreevnodes is normally nonzero.)
243  *
244  * XXX desiredvnodes is historical cruft and should not exist.
245  */
246 int desiredvnodes;
247 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
248     &desiredvnodes, 0, "Maximum number of vnodes");
249 static int minvnodes;
250 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
251     &minvnodes, 0, "Minimum number of vnodes");
252 static int vnlru_nowhere;
253 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
254     "Number of times the vnlru process ran without success");
255 
256 /*
257  * Initialize the vnode management data structures.
258  */
259 static void
260 vntblinit(void *dummy __unused)
261 {
262 
263 	desiredvnodes = maxproc + cnt.v_page_count / 4;
264 	minvnodes = desiredvnodes / 4;
265 	mtx_init(&mountlist_mtx, "mountlist", MTX_DEF);
266 	mtx_init(&mntvnode_mtx, "mntvnode", MTX_DEF);
267 	mtx_init(&mntid_mtx, "mntid", MTX_DEF);
268 	mtx_init(&spechash_mtx, "spechash", MTX_DEF);
269 	TAILQ_INIT(&vnode_free_list);
270 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", MTX_DEF);
271 	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
272 	/*
273 	 * Initialize the filesystem syncer.
274 	 */
275 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
276 		&syncer_mask);
277 	syncer_maxdelay = syncer_mask + 1;
278 }
279 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
280 
281 
282 /*
283  * Mark a mount point as busy. Used to synchronize access and to delay
284  * unmounting. Interlock is not released on failure.
285  */
286 int
287 vfs_busy(mp, flags, interlkp, td)
288 	struct mount *mp;
289 	int flags;
290 	struct mtx *interlkp;
291 	struct thread *td;
292 {
293 	int lkflags;
294 
295 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
296 		if (flags & LK_NOWAIT)
297 			return (ENOENT);
298 		mp->mnt_kern_flag |= MNTK_MWAIT;
299 		/*
300 		 * Since all busy locks are shared except the exclusive
301 		 * lock granted when unmounting, the only place that a
302 		 * wakeup needs to be done is at the release of the
303 		 * exclusive lock at the end of dounmount.
304 		 */
305 		msleep((caddr_t)mp, interlkp, PVFS, "vfs_busy", 0);
306 		return (ENOENT);
307 	}
308 	lkflags = LK_SHARED | LK_NOPAUSE;
309 	if (interlkp)
310 		lkflags |= LK_INTERLOCK;
311 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
312 		panic("vfs_busy: unexpected lock failure");
313 	return (0);
314 }
315 
316 /*
317  * Free a busy filesystem.
318  */
319 void
320 vfs_unbusy(mp, td)
321 	struct mount *mp;
322 	struct thread *td;
323 {
324 
325 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
326 }
327 
328 /*
329  * Lookup a filesystem type, and if found allocate and initialize
330  * a mount structure for it.
331  *
332  * Devname is usually updated by mount(8) after booting.
333  */
334 int
335 vfs_rootmountalloc(fstypename, devname, mpp)
336 	char *fstypename;
337 	char *devname;
338 	struct mount **mpp;
339 {
340 	struct thread *td = curthread;	/* XXX */
341 	struct vfsconf *vfsp;
342 	struct mount *mp;
343 
344 	if (fstypename == NULL)
345 		return (ENODEV);
346 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
347 		if (!strcmp(vfsp->vfc_name, fstypename))
348 			break;
349 	if (vfsp == NULL)
350 		return (ENODEV);
351 	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
352 	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
353 	(void)vfs_busy(mp, LK_NOWAIT, 0, td);
354 	TAILQ_INIT(&mp->mnt_nvnodelist);
355 	TAILQ_INIT(&mp->mnt_reservedvnlist);
356 	mp->mnt_vfc = vfsp;
357 	mp->mnt_op = vfsp->vfc_vfsops;
358 	mp->mnt_flag = MNT_RDONLY;
359 	mp->mnt_vnodecovered = NULLVP;
360 	vfsp->vfc_refcount++;
361 	mp->mnt_iosize_max = DFLTPHYS;
362 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
363 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
364 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
365 	mp->mnt_stat.f_mntonname[0] = '/';
366 	mp->mnt_stat.f_mntonname[1] = 0;
367 	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
368 	*mpp = mp;
369 	return (0);
370 }
371 
372 /*
373  * Find an appropriate filesystem to use for the root. If a filesystem
374  * has not been preselected, walk through the list of known filesystems
375  * trying those that have mountroot routines, and try them until one
376  * works or we have tried them all.
377  */
378 #ifdef notdef	/* XXX JH */
379 int
380 lite2_vfs_mountroot()
381 {
382 	struct vfsconf *vfsp;
383 	extern int (*lite2_mountroot) __P((void));
384 	int error;
385 
386 	if (lite2_mountroot != NULL)
387 		return ((*lite2_mountroot)());
388 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
389 		if (vfsp->vfc_mountroot == NULL)
390 			continue;
391 		if ((error = (*vfsp->vfc_mountroot)()) == 0)
392 			return (0);
393 		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
394 	}
395 	return (ENODEV);
396 }
397 #endif
398 
399 /*
400  * Lookup a mount point by filesystem identifier.
401  */
402 struct mount *
403 vfs_getvfs(fsid)
404 	fsid_t *fsid;
405 {
406 	register struct mount *mp;
407 
408 	mtx_lock(&mountlist_mtx);
409 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
410 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
411 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
412 			mtx_unlock(&mountlist_mtx);
413 			return (mp);
414 	    }
415 	}
416 	mtx_unlock(&mountlist_mtx);
417 	return ((struct mount *) 0);
418 }
419 
420 /*
421  * Get a new unique fsid.  Try to make its val[0] unique, since this value
422  * will be used to create fake device numbers for stat().  Also try (but
423  * not so hard) make its val[0] unique mod 2^16, since some emulators only
424  * support 16-bit device numbers.  We end up with unique val[0]'s for the
425  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
426  *
427  * Keep in mind that several mounts may be running in parallel.  Starting
428  * the search one past where the previous search terminated is both a
429  * micro-optimization and a defense against returning the same fsid to
430  * different mounts.
431  */
432 void
433 vfs_getnewfsid(mp)
434 	struct mount *mp;
435 {
436 	static u_int16_t mntid_base;
437 	fsid_t tfsid;
438 	int mtype;
439 
440 	mtx_lock(&mntid_mtx);
441 	mtype = mp->mnt_vfc->vfc_typenum;
442 	tfsid.val[1] = mtype;
443 	mtype = (mtype & 0xFF) << 24;
444 	for (;;) {
445 		tfsid.val[0] = makeudev(255,
446 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
447 		mntid_base++;
448 		if (vfs_getvfs(&tfsid) == NULL)
449 			break;
450 	}
451 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
452 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
453 	mtx_unlock(&mntid_mtx);
454 }
455 
456 /*
457  * Knob to control the precision of file timestamps:
458  *
459  *   0 = seconds only; nanoseconds zeroed.
460  *   1 = seconds and nanoseconds, accurate within 1/HZ.
461  *   2 = seconds and nanoseconds, truncated to microseconds.
462  * >=3 = seconds and nanoseconds, maximum precision.
463  */
464 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
465 
466 static int timestamp_precision = TSP_SEC;
467 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
468     &timestamp_precision, 0, "");
469 
470 /*
471  * Get a current timestamp.
472  */
473 void
474 vfs_timestamp(tsp)
475 	struct timespec *tsp;
476 {
477 	struct timeval tv;
478 
479 	switch (timestamp_precision) {
480 	case TSP_SEC:
481 		tsp->tv_sec = time_second;
482 		tsp->tv_nsec = 0;
483 		break;
484 	case TSP_HZ:
485 		getnanotime(tsp);
486 		break;
487 	case TSP_USEC:
488 		microtime(&tv);
489 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
490 		break;
491 	case TSP_NSEC:
492 	default:
493 		nanotime(tsp);
494 		break;
495 	}
496 }
497 
498 /*
499  * Set vnode attributes to VNOVAL
500  */
501 void
502 vattr_null(vap)
503 	register struct vattr *vap;
504 {
505 
506 	vap->va_type = VNON;
507 	vap->va_size = VNOVAL;
508 	vap->va_bytes = VNOVAL;
509 	vap->va_mode = VNOVAL;
510 	vap->va_nlink = VNOVAL;
511 	vap->va_uid = VNOVAL;
512 	vap->va_gid = VNOVAL;
513 	vap->va_fsid = VNOVAL;
514 	vap->va_fileid = VNOVAL;
515 	vap->va_blocksize = VNOVAL;
516 	vap->va_rdev = VNOVAL;
517 	vap->va_atime.tv_sec = VNOVAL;
518 	vap->va_atime.tv_nsec = VNOVAL;
519 	vap->va_mtime.tv_sec = VNOVAL;
520 	vap->va_mtime.tv_nsec = VNOVAL;
521 	vap->va_ctime.tv_sec = VNOVAL;
522 	vap->va_ctime.tv_nsec = VNOVAL;
523 	vap->va_flags = VNOVAL;
524 	vap->va_gen = VNOVAL;
525 	vap->va_vaflags = 0;
526 }
527 
528 /*
529  * This routine is called when we have too many vnodes.  It attempts
530  * to free <count> vnodes and will potentially free vnodes that still
531  * have VM backing store (VM backing store is typically the cause
532  * of a vnode blowout so we want to do this).  Therefore, this operation
533  * is not considered cheap.
534  *
535  * A number of conditions may prevent a vnode from being reclaimed.
536  * the buffer cache may have references on the vnode, a directory
537  * vnode may still have references due to the namei cache representing
538  * underlying files, or the vnode may be in active use.   It is not
539  * desireable to reuse such vnodes.  These conditions may cause the
540  * number of vnodes to reach some minimum value regardless of what
541  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
542  */
543 static int
544 vlrureclaim(struct mount *mp, int count)
545 {
546 	struct vnode *vp;
547 	int done;
548 	int trigger;
549 	int usevnodes;
550 
551 	/*
552 	 * Calculate the trigger point, don't allow user
553 	 * screwups to blow us up.   This prevents us from
554 	 * recycling vnodes with lots of resident pages.  We
555 	 * aren't trying to free memory, we are trying to
556 	 * free vnodes.
557 	 */
558 	usevnodes = desiredvnodes;
559 	if (usevnodes <= 0)
560 		usevnodes = 1;
561 	trigger = cnt.v_page_count * 2 / usevnodes;
562 
563 	done = 0;
564 	mtx_lock(&mntvnode_mtx);
565 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
566 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
567 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
568 
569 		if (vp->v_type != VNON &&
570 		    vp->v_type != VBAD &&
571 		    VMIGHTFREE(vp) &&           /* critical path opt */
572 		    (vp->v_object == NULL || vp->v_object->resident_page_count < trigger) &&
573 		    mtx_trylock(&vp->v_interlock)
574 		) {
575 			mtx_unlock(&mntvnode_mtx);
576 			if (VMIGHTFREE(vp)) {
577 				vgonel(vp, curthread);
578 				done++;
579 			} else {
580 				mtx_unlock(&vp->v_interlock);
581 			}
582 			mtx_lock(&mntvnode_mtx);
583 		}
584 		--count;
585 	}
586 	mtx_unlock(&mntvnode_mtx);
587 	return done;
588 }
589 
590 /*
591  * Attempt to recycle vnodes in a context that is always safe to block.
592  * Calling vlrurecycle() from the bowels of file system code has some
593  * interesting deadlock problems.
594  */
595 static struct proc *vnlruproc;
596 static int vnlruproc_sig;
597 
598 static void
599 vnlru_proc(void)
600 {
601 	struct mount *mp, *nmp;
602 	int s;
603 	int done;
604 	struct proc *p = vnlruproc;
605 	struct thread *td = &p->p_thread;	/* XXXKSE */
606 
607 	mtx_lock(&Giant);
608 
609 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
610 	    SHUTDOWN_PRI_FIRST);
611 
612 	s = splbio();
613 	for (;;) {
614 		kthread_suspend_check(p);
615 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
616 			vnlruproc_sig = 0;
617 			tsleep(vnlruproc, PVFS, "vlruwt", 0);
618 			continue;
619 		}
620 		done = 0;
621 		mtx_lock(&mountlist_mtx);
622 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
623 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
624 				nmp = TAILQ_NEXT(mp, mnt_list);
625 				continue;
626 			}
627 			done += vlrureclaim(mp, 10);
628 			mtx_lock(&mountlist_mtx);
629 			nmp = TAILQ_NEXT(mp, mnt_list);
630 			vfs_unbusy(mp, td);
631 		}
632 		mtx_unlock(&mountlist_mtx);
633 		if (done == 0) {
634 #if 0
635 			/* These messages are temporary debugging aids */
636 			if (vnlru_nowhere < 5)
637 				printf("vnlru process getting nowhere..\n");
638 			else if (vnlru_nowhere == 5)
639 				printf("vnlru process messages stopped.\n");
640 #endif
641 			vnlru_nowhere++;
642 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
643 		}
644 	}
645 	splx(s);
646 }
647 
648 static struct kproc_desc vnlru_kp = {
649 	"vnlru",
650 	vnlru_proc,
651 	&vnlruproc
652 };
653 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
654 
655 
656 /*
657  * Routines having to do with the management of the vnode table.
658  */
659 
660 /*
661  * Return the next vnode from the free list.
662  */
663 int
664 getnewvnode(tag, mp, vops, vpp)
665 	enum vtagtype tag;
666 	struct mount *mp;
667 	vop_t **vops;
668 	struct vnode **vpp;
669 {
670 	int s;
671 	struct thread *td = curthread;	/* XXX */
672 	struct vnode *vp = NULL;
673 	struct mount *vnmp;
674 	vm_object_t object;
675 
676 	s = splbio();
677 	/*
678 	 * Try to reuse vnodes if we hit the max.  This situation only
679 	 * occurs in certain large-memory (2G+) situations.  We cannot
680 	 * attempt to directly reclaim vnodes due to nasty recursion
681 	 * problems.
682 	 */
683 	if (vnlruproc_sig == 0 && numvnodes - freevnodes > desiredvnodes) {
684 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
685 		wakeup(vnlruproc);
686 	}
687 
688 	/*
689 	 * Attempt to reuse a vnode already on the free list, allocating
690 	 * a new vnode if we can't find one or if we have not reached a
691 	 * good minimum for good LRU performance.
692 	 */
693 
694 	mtx_lock(&vnode_free_list_mtx);
695 
696 	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
697 		int count;
698 
699 		for (count = 0; count < freevnodes; count++) {
700 			vp = TAILQ_FIRST(&vnode_free_list);
701 			if (vp == NULL || vp->v_usecount)
702 				panic("getnewvnode: free vnode isn't");
703 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
704 
705 			/*
706 			 * Don't recycle if we still have cached pages or if
707 			 * we cannot get the interlock.
708 			 */
709 			if ((VOP_GETVOBJECT(vp, &object) == 0 &&
710 			     (object->resident_page_count ||
711 			      object->ref_count)) ||
712 			     !mtx_trylock(&vp->v_interlock)) {
713 				TAILQ_INSERT_TAIL(&vnode_free_list, vp,
714 						    v_freelist);
715 				vp = NULL;
716 				continue;
717 			}
718 			if (LIST_FIRST(&vp->v_cache_src)) {
719 				/*
720 				 * note: nameileafonly sysctl is temporary,
721 				 * for debugging only, and will eventually be
722 				 * removed.
723 				 */
724 				if (nameileafonly > 0) {
725 					/*
726 					 * Do not reuse namei-cached directory
727 					 * vnodes that have cached
728 					 * subdirectories.
729 					 */
730 					if (cache_leaf_test(vp) < 0) {
731 						mtx_unlock(&vp->v_interlock);
732 						TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
733 						vp = NULL;
734 						continue;
735 					}
736 				} else if (nameileafonly < 0 ||
737 					    vmiodirenable == 0) {
738 					/*
739 					 * Do not reuse namei-cached directory
740 					 * vnodes if nameileafonly is -1 or
741 					 * if VMIO backing for directories is
742 					 * turned off (otherwise we reuse them
743 					 * too quickly).
744 					 */
745 					mtx_unlock(&vp->v_interlock);
746 					TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
747 					vp = NULL;
748 					continue;
749 				}
750 			}
751 			/*
752 			 * Skip over it if its filesystem is being suspended.
753 			 */
754 			if (vn_start_write(vp, &vnmp, V_NOWAIT) == 0)
755 				break;
756 			mtx_unlock(&vp->v_interlock);
757 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
758 			vp = NULL;
759 		}
760 	}
761 	if (vp) {
762 		vp->v_flag |= VDOOMED;
763 		vp->v_flag &= ~VFREE;
764 		freevnodes--;
765 		mtx_unlock(&vnode_free_list_mtx);
766 		cache_purge(vp);
767 		vp->v_lease = NULL;
768 		if (vp->v_type != VBAD) {
769 			vgonel(vp, td);
770 		} else {
771 			mtx_unlock(&vp->v_interlock);
772 		}
773 		vn_finished_write(vnmp);
774 
775 #ifdef INVARIANTS
776 		{
777 			int s;
778 
779 			if (vp->v_data)
780 				panic("cleaned vnode isn't");
781 			s = splbio();
782 			if (vp->v_numoutput)
783 				panic("Clean vnode has pending I/O's");
784 			splx(s);
785 			if (vp->v_writecount != 0)
786 				panic("Non-zero write count");
787 		}
788 #endif
789 		vp->v_flag = 0;
790 		vp->v_lastw = 0;
791 		vp->v_lasta = 0;
792 		vp->v_cstart = 0;
793 		vp->v_clen = 0;
794 		vp->v_socket = 0;
795 	} else {
796 		mtx_unlock(&vnode_free_list_mtx);
797 		vp = (struct vnode *) zalloc(vnode_zone);
798 		bzero((char *) vp, sizeof *vp);
799 		mtx_init(&vp->v_interlock, "vnode interlock", MTX_DEF);
800 		vp->v_dd = vp;
801 		mtx_init(&vp->v_pollinfo.vpi_lock, "vnode pollinfo", MTX_DEF);
802 		cache_purge(vp);
803 		LIST_INIT(&vp->v_cache_src);
804 		TAILQ_INIT(&vp->v_cache_dst);
805 		numvnodes++;
806 	}
807 
808 	TAILQ_INIT(&vp->v_cleanblkhd);
809 	TAILQ_INIT(&vp->v_dirtyblkhd);
810 	vp->v_type = VNON;
811 	vp->v_tag = tag;
812 	vp->v_op = vops;
813 	lockinit(&vp->v_lock, PVFS, "vnlock", VLKTIMEOUT, LK_NOPAUSE);
814 	insmntque(vp, mp);
815 	*vpp = vp;
816 	vp->v_usecount = 1;
817 	vp->v_data = 0;
818 
819 	splx(s);
820 
821 	vfs_object_create(vp, td, td->td_proc->p_ucred);
822 
823 #if 0
824 	vnodeallocs++;
825 	if (vnodeallocs % vnoderecycleperiod == 0 &&
826 	    freevnodes < vnoderecycleminfreevn &&
827 	    vnoderecyclemintotalvn < numvnodes) {
828 		/* Recycle vnodes. */
829 		cache_purgeleafdirs(vnoderecyclenumber);
830 	}
831 #endif
832 
833 	return (0);
834 }
835 
836 /*
837  * Move a vnode from one mount queue to another.
838  */
839 static void
840 insmntque(vp, mp)
841 	register struct vnode *vp;
842 	register struct mount *mp;
843 {
844 
845 	mtx_lock(&mntvnode_mtx);
846 	/*
847 	 * Delete from old mount point vnode list, if on one.
848 	 */
849 	if (vp->v_mount != NULL)
850 		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
851 	/*
852 	 * Insert into list of vnodes for the new mount point, if available.
853 	 */
854 	if ((vp->v_mount = mp) == NULL) {
855 		mtx_unlock(&mntvnode_mtx);
856 		return;
857 	}
858 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
859 	mtx_unlock(&mntvnode_mtx);
860 }
861 
862 /*
863  * Update outstanding I/O count and do wakeup if requested.
864  */
865 void
866 vwakeup(bp)
867 	register struct buf *bp;
868 {
869 	register struct vnode *vp;
870 
871 	bp->b_flags &= ~B_WRITEINPROG;
872 	if ((vp = bp->b_vp)) {
873 		vp->v_numoutput--;
874 		if (vp->v_numoutput < 0)
875 			panic("vwakeup: neg numoutput");
876 		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
877 			vp->v_flag &= ~VBWAIT;
878 			wakeup((caddr_t) &vp->v_numoutput);
879 		}
880 	}
881 }
882 
883 /*
884  * Flush out and invalidate all buffers associated with a vnode.
885  * Called with the underlying object locked.
886  */
887 int
888 vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
889 	register struct vnode *vp;
890 	int flags;
891 	struct ucred *cred;
892 	struct thread *td;
893 	int slpflag, slptimeo;
894 {
895 	register struct buf *bp;
896 	struct buf *nbp, *blist;
897 	int s, error;
898 	vm_object_t object;
899 
900 	GIANT_REQUIRED;
901 
902 	if (flags & V_SAVE) {
903 		s = splbio();
904 		while (vp->v_numoutput) {
905 			vp->v_flag |= VBWAIT;
906 			error = tsleep((caddr_t)&vp->v_numoutput,
907 			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
908 			if (error) {
909 				splx(s);
910 				return (error);
911 			}
912 		}
913 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
914 			splx(s);
915 			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
916 				return (error);
917 			s = splbio();
918 			if (vp->v_numoutput > 0 ||
919 			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
920 				panic("vinvalbuf: dirty bufs");
921 		}
922 		splx(s);
923   	}
924 	s = splbio();
925 	for (;;) {
926 		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
927 		if (!blist)
928 			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
929 		if (!blist)
930 			break;
931 
932 		for (bp = blist; bp; bp = nbp) {
933 			nbp = TAILQ_NEXT(bp, b_vnbufs);
934 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
935 				error = BUF_TIMELOCK(bp,
936 				    LK_EXCLUSIVE | LK_SLEEPFAIL,
937 				    "vinvalbuf", slpflag, slptimeo);
938 				if (error == ENOLCK)
939 					break;
940 				splx(s);
941 				return (error);
942 			}
943 			/*
944 			 * XXX Since there are no node locks for NFS, I
945 			 * believe there is a slight chance that a delayed
946 			 * write will occur while sleeping just above, so
947 			 * check for it.  Note that vfs_bio_awrite expects
948 			 * buffers to reside on a queue, while BUF_WRITE and
949 			 * brelse do not.
950 			 */
951 			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
952 				(flags & V_SAVE)) {
953 
954 				if (bp->b_vp == vp) {
955 					if (bp->b_flags & B_CLUSTEROK) {
956 						BUF_UNLOCK(bp);
957 						vfs_bio_awrite(bp);
958 					} else {
959 						bremfree(bp);
960 						bp->b_flags |= B_ASYNC;
961 						BUF_WRITE(bp);
962 					}
963 				} else {
964 					bremfree(bp);
965 					(void) BUF_WRITE(bp);
966 				}
967 				break;
968 			}
969 			bremfree(bp);
970 			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
971 			bp->b_flags &= ~B_ASYNC;
972 			brelse(bp);
973 		}
974 	}
975 
976 	/*
977 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
978 	 * have write I/O in-progress but if there is a VM object then the
979 	 * VM object can also have read-I/O in-progress.
980 	 */
981 	do {
982 		while (vp->v_numoutput > 0) {
983 			vp->v_flag |= VBWAIT;
984 			tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
985 		}
986 		if (VOP_GETVOBJECT(vp, &object) == 0) {
987 			while (object->paging_in_progress)
988 			vm_object_pip_sleep(object, "vnvlbx");
989 		}
990 	} while (vp->v_numoutput > 0);
991 
992 	splx(s);
993 
994 	/*
995 	 * Destroy the copy in the VM cache, too.
996 	 */
997 	mtx_lock(&vp->v_interlock);
998 	if (VOP_GETVOBJECT(vp, &object) == 0) {
999 		vm_object_page_remove(object, 0, 0,
1000 			(flags & V_SAVE) ? TRUE : FALSE);
1001 	}
1002 	mtx_unlock(&vp->v_interlock);
1003 
1004 	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
1005 		panic("vinvalbuf: flush failed");
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Truncate a file's buffer and pages to a specified length.  This
1011  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1012  * sync activity.
1013  */
1014 int
1015 vtruncbuf(vp, cred, td, length, blksize)
1016 	register struct vnode *vp;
1017 	struct ucred *cred;
1018 	struct thread *td;
1019 	off_t length;
1020 	int blksize;
1021 {
1022 	register struct buf *bp;
1023 	struct buf *nbp;
1024 	int s, anyfreed;
1025 	int trunclbn;
1026 
1027 	/*
1028 	 * Round up to the *next* lbn.
1029 	 */
1030 	trunclbn = (length + blksize - 1) / blksize;
1031 
1032 	s = splbio();
1033 restart:
1034 	anyfreed = 1;
1035 	for (;anyfreed;) {
1036 		anyfreed = 0;
1037 		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1038 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1039 			if (bp->b_lblkno >= trunclbn) {
1040 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1041 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1042 					goto restart;
1043 				} else {
1044 					bremfree(bp);
1045 					bp->b_flags |= (B_INVAL | B_RELBUF);
1046 					bp->b_flags &= ~B_ASYNC;
1047 					brelse(bp);
1048 					anyfreed = 1;
1049 				}
1050 				if (nbp &&
1051 				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1052 				    (nbp->b_vp != vp) ||
1053 				    (nbp->b_flags & B_DELWRI))) {
1054 					goto restart;
1055 				}
1056 			}
1057 		}
1058 
1059 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1060 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1061 			if (bp->b_lblkno >= trunclbn) {
1062 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1063 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1064 					goto restart;
1065 				} else {
1066 					bremfree(bp);
1067 					bp->b_flags |= (B_INVAL | B_RELBUF);
1068 					bp->b_flags &= ~B_ASYNC;
1069 					brelse(bp);
1070 					anyfreed = 1;
1071 				}
1072 				if (nbp &&
1073 				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1074 				    (nbp->b_vp != vp) ||
1075 				    (nbp->b_flags & B_DELWRI) == 0)) {
1076 					goto restart;
1077 				}
1078 			}
1079 		}
1080 	}
1081 
1082 	if (length > 0) {
1083 restartsync:
1084 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1085 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1086 			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1087 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1088 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1089 					goto restart;
1090 				} else {
1091 					bremfree(bp);
1092 					if (bp->b_vp == vp) {
1093 						bp->b_flags |= B_ASYNC;
1094 					} else {
1095 						bp->b_flags &= ~B_ASYNC;
1096 					}
1097 					BUF_WRITE(bp);
1098 				}
1099 				goto restartsync;
1100 			}
1101 
1102 		}
1103 	}
1104 
1105 	while (vp->v_numoutput > 0) {
1106 		vp->v_flag |= VBWAIT;
1107 		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
1108 	}
1109 
1110 	splx(s);
1111 
1112 	vnode_pager_setsize(vp, length);
1113 
1114 	return (0);
1115 }
1116 
1117 /*
1118  * Associate a buffer with a vnode.
1119  */
1120 void
1121 bgetvp(vp, bp)
1122 	register struct vnode *vp;
1123 	register struct buf *bp;
1124 {
1125 	int s;
1126 
1127 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1128 
1129 	vhold(vp);
1130 	bp->b_vp = vp;
1131 	bp->b_dev = vn_todev(vp);
1132 	/*
1133 	 * Insert onto list for new vnode.
1134 	 */
1135 	s = splbio();
1136 	bp->b_xflags |= BX_VNCLEAN;
1137 	bp->b_xflags &= ~BX_VNDIRTY;
1138 	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1139 	splx(s);
1140 }
1141 
1142 /*
1143  * Disassociate a buffer from a vnode.
1144  */
1145 void
1146 brelvp(bp)
1147 	register struct buf *bp;
1148 {
1149 	struct vnode *vp;
1150 	struct buflists *listheadp;
1151 	int s;
1152 
1153 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1154 
1155 	/*
1156 	 * Delete from old vnode list, if on one.
1157 	 */
1158 	vp = bp->b_vp;
1159 	s = splbio();
1160 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1161 		if (bp->b_xflags & BX_VNDIRTY)
1162 			listheadp = &vp->v_dirtyblkhd;
1163 		else
1164 			listheadp = &vp->v_cleanblkhd;
1165 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1166 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1167 	}
1168 	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1169 		vp->v_flag &= ~VONWORKLST;
1170 		LIST_REMOVE(vp, v_synclist);
1171 	}
1172 	splx(s);
1173 	bp->b_vp = (struct vnode *) 0;
1174 	vdrop(vp);
1175 }
1176 
1177 /*
1178  * Add an item to the syncer work queue.
1179  */
1180 static void
1181 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1182 {
1183 	int s, slot;
1184 
1185 	s = splbio();
1186 
1187 	if (vp->v_flag & VONWORKLST) {
1188 		LIST_REMOVE(vp, v_synclist);
1189 	}
1190 
1191 	if (delay > syncer_maxdelay - 2)
1192 		delay = syncer_maxdelay - 2;
1193 	slot = (syncer_delayno + delay) & syncer_mask;
1194 
1195 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1196 	vp->v_flag |= VONWORKLST;
1197 	splx(s);
1198 }
1199 
1200 struct  proc *updateproc;
1201 static void sched_sync __P((void));
1202 static struct kproc_desc up_kp = {
1203 	"syncer",
1204 	sched_sync,
1205 	&updateproc
1206 };
1207 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1208 
1209 /*
1210  * System filesystem synchronizer daemon.
1211  */
1212 void
1213 sched_sync(void)
1214 {
1215 	struct synclist *slp;
1216 	struct vnode *vp;
1217 	struct mount *mp;
1218 	long starttime;
1219 	int s;
1220 	struct thread *td = &updateproc->p_thread;  /* XXXKSE */
1221 
1222 	mtx_lock(&Giant);
1223 
1224 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, td->td_proc,
1225 	    SHUTDOWN_PRI_LAST);
1226 
1227 	for (;;) {
1228 		kthread_suspend_check(td->td_proc);
1229 
1230 		starttime = time_second;
1231 
1232 		/*
1233 		 * Push files whose dirty time has expired.  Be careful
1234 		 * of interrupt race on slp queue.
1235 		 */
1236 		s = splbio();
1237 		slp = &syncer_workitem_pending[syncer_delayno];
1238 		syncer_delayno += 1;
1239 		if (syncer_delayno == syncer_maxdelay)
1240 			syncer_delayno = 0;
1241 		splx(s);
1242 
1243 		while ((vp = LIST_FIRST(slp)) != NULL) {
1244 			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1245 			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1246 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1247 				(void) VOP_FSYNC(vp, td->td_proc->p_ucred, MNT_LAZY, td);
1248 				VOP_UNLOCK(vp, 0, td);
1249 				vn_finished_write(mp);
1250 			}
1251 			s = splbio();
1252 			if (LIST_FIRST(slp) == vp) {
1253 				/*
1254 				 * Note: v_tag VT_VFS vps can remain on the
1255 				 * worklist too with no dirty blocks, but
1256 				 * since sync_fsync() moves it to a different
1257 				 * slot we are safe.
1258 				 */
1259 				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1260 				    !vn_isdisk(vp, NULL))
1261 					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1262 				/*
1263 				 * Put us back on the worklist.  The worklist
1264 				 * routine will remove us from our current
1265 				 * position and then add us back in at a later
1266 				 * position.
1267 				 */
1268 				vn_syncer_add_to_worklist(vp, syncdelay);
1269 			}
1270 			splx(s);
1271 		}
1272 
1273 		/*
1274 		 * Do soft update processing.
1275 		 */
1276 #ifdef SOFTUPDATES
1277 		softdep_process_worklist(NULL);
1278 #endif
1279 
1280 		/*
1281 		 * The variable rushjob allows the kernel to speed up the
1282 		 * processing of the filesystem syncer process. A rushjob
1283 		 * value of N tells the filesystem syncer to process the next
1284 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1285 		 * is used by the soft update code to speed up the filesystem
1286 		 * syncer process when the incore state is getting so far
1287 		 * ahead of the disk that the kernel memory pool is being
1288 		 * threatened with exhaustion.
1289 		 */
1290 		if (rushjob > 0) {
1291 			rushjob -= 1;
1292 			continue;
1293 		}
1294 		/*
1295 		 * If it has taken us less than a second to process the
1296 		 * current work, then wait. Otherwise start right over
1297 		 * again. We can still lose time if any single round
1298 		 * takes more than two seconds, but it does not really
1299 		 * matter as we are just trying to generally pace the
1300 		 * filesystem activity.
1301 		 */
1302 		if (time_second == starttime)
1303 			tsleep(&lbolt, PPAUSE, "syncer", 0);
1304 	}
1305 }
1306 
1307 /*
1308  * Request the syncer daemon to speed up its work.
1309  * We never push it to speed up more than half of its
1310  * normal turn time, otherwise it could take over the cpu.
1311  * XXXKSE  only one update?
1312  */
1313 int
1314 speedup_syncer()
1315 {
1316 
1317 	mtx_lock_spin(&sched_lock);
1318 	if (updateproc->p_thread.td_wchan == &lbolt) /* XXXKSE */
1319 		setrunnable(&updateproc->p_thread);
1320 	mtx_unlock_spin(&sched_lock);
1321 	if (rushjob < syncdelay / 2) {
1322 		rushjob += 1;
1323 		stat_rush_requests += 1;
1324 		return (1);
1325 	}
1326 	return(0);
1327 }
1328 
1329 /*
1330  * Associate a p-buffer with a vnode.
1331  *
1332  * Also sets B_PAGING flag to indicate that vnode is not fully associated
1333  * with the buffer.  i.e. the bp has not been linked into the vnode or
1334  * ref-counted.
1335  */
1336 void
1337 pbgetvp(vp, bp)
1338 	register struct vnode *vp;
1339 	register struct buf *bp;
1340 {
1341 
1342 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1343 
1344 	bp->b_vp = vp;
1345 	bp->b_flags |= B_PAGING;
1346 	bp->b_dev = vn_todev(vp);
1347 }
1348 
1349 /*
1350  * Disassociate a p-buffer from a vnode.
1351  */
1352 void
1353 pbrelvp(bp)
1354 	register struct buf *bp;
1355 {
1356 
1357 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1358 
1359 	/* XXX REMOVE ME */
1360 	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1361 		panic(
1362 		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1363 		    bp,
1364 		    (int)bp->b_flags
1365 		);
1366 	}
1367 	bp->b_vp = (struct vnode *) 0;
1368 	bp->b_flags &= ~B_PAGING;
1369 }
1370 
1371 /*
1372  * Change the vnode a pager buffer is associated with.
1373  */
1374 void
1375 pbreassignbuf(bp, newvp)
1376 	struct buf *bp;
1377 	struct vnode *newvp;
1378 {
1379 
1380 	KASSERT(bp->b_flags & B_PAGING,
1381 	    ("pbreassignbuf() on non phys bp %p", bp));
1382 	bp->b_vp = newvp;
1383 }
1384 
1385 /*
1386  * Reassign a buffer from one vnode to another.
1387  * Used to assign file specific control information
1388  * (indirect blocks) to the vnode to which they belong.
1389  */
1390 void
1391 reassignbuf(bp, newvp)
1392 	register struct buf *bp;
1393 	register struct vnode *newvp;
1394 {
1395 	struct buflists *listheadp;
1396 	int delay;
1397 	int s;
1398 
1399 	if (newvp == NULL) {
1400 		printf("reassignbuf: NULL");
1401 		return;
1402 	}
1403 	++reassignbufcalls;
1404 
1405 	/*
1406 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1407 	 * is not fully linked in.
1408 	 */
1409 	if (bp->b_flags & B_PAGING)
1410 		panic("cannot reassign paging buffer");
1411 
1412 	s = splbio();
1413 	/*
1414 	 * Delete from old vnode list, if on one.
1415 	 */
1416 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1417 		if (bp->b_xflags & BX_VNDIRTY)
1418 			listheadp = &bp->b_vp->v_dirtyblkhd;
1419 		else
1420 			listheadp = &bp->b_vp->v_cleanblkhd;
1421 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1422 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1423 		if (bp->b_vp != newvp) {
1424 			vdrop(bp->b_vp);
1425 			bp->b_vp = NULL;	/* for clarification */
1426 		}
1427 	}
1428 	/*
1429 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1430 	 * of clean buffers.
1431 	 */
1432 	if (bp->b_flags & B_DELWRI) {
1433 		struct buf *tbp;
1434 
1435 		listheadp = &newvp->v_dirtyblkhd;
1436 		if ((newvp->v_flag & VONWORKLST) == 0) {
1437 			switch (newvp->v_type) {
1438 			case VDIR:
1439 				delay = dirdelay;
1440 				break;
1441 			case VCHR:
1442 				if (newvp->v_rdev->si_mountpoint != NULL) {
1443 					delay = metadelay;
1444 					break;
1445 				}
1446 				/* fall through */
1447 			default:
1448 				delay = filedelay;
1449 			}
1450 			vn_syncer_add_to_worklist(newvp, delay);
1451 		}
1452 		bp->b_xflags |= BX_VNDIRTY;
1453 		tbp = TAILQ_FIRST(listheadp);
1454 		if (tbp == NULL ||
1455 		    bp->b_lblkno == 0 ||
1456 		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1457 		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1458 			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1459 			++reassignbufsortgood;
1460 		} else if (bp->b_lblkno < 0) {
1461 			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1462 			++reassignbufsortgood;
1463 		} else if (reassignbufmethod == 1) {
1464 			/*
1465 			 * New sorting algorithm, only handle sequential case,
1466 			 * otherwise append to end (but before metadata)
1467 			 */
1468 			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1469 			    (tbp->b_xflags & BX_VNDIRTY)) {
1470 				/*
1471 				 * Found the best place to insert the buffer
1472 				 */
1473 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1474 				++reassignbufsortgood;
1475 			} else {
1476 				/*
1477 				 * Missed, append to end, but before meta-data.
1478 				 * We know that the head buffer in the list is
1479 				 * not meta-data due to prior conditionals.
1480 				 *
1481 				 * Indirect effects:  NFS second stage write
1482 				 * tends to wind up here, giving maximum
1483 				 * distance between the unstable write and the
1484 				 * commit rpc.
1485 				 */
1486 				tbp = TAILQ_LAST(listheadp, buflists);
1487 				while (tbp && tbp->b_lblkno < 0)
1488 					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1489 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1490 				++reassignbufsortbad;
1491 			}
1492 		} else {
1493 			/*
1494 			 * Old sorting algorithm, scan queue and insert
1495 			 */
1496 			struct buf *ttbp;
1497 			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1498 			    (ttbp->b_lblkno < bp->b_lblkno)) {
1499 				++reassignbufloops;
1500 				tbp = ttbp;
1501 			}
1502 			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1503 		}
1504 	} else {
1505 		bp->b_xflags |= BX_VNCLEAN;
1506 		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1507 		if ((newvp->v_flag & VONWORKLST) &&
1508 		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1509 			newvp->v_flag &= ~VONWORKLST;
1510 			LIST_REMOVE(newvp, v_synclist);
1511 		}
1512 	}
1513 	if (bp->b_vp != newvp) {
1514 		bp->b_vp = newvp;
1515 		vhold(bp->b_vp);
1516 	}
1517 	splx(s);
1518 }
1519 
1520 /*
1521  * Create a vnode for a device.
1522  * Used for mounting the root file system.
1523  */
1524 int
1525 bdevvp(dev, vpp)
1526 	dev_t dev;
1527 	struct vnode **vpp;
1528 {
1529 	register struct vnode *vp;
1530 	struct vnode *nvp;
1531 	int error;
1532 
1533 	if (dev == NODEV) {
1534 		*vpp = NULLVP;
1535 		return (ENXIO);
1536 	}
1537 	if (vfinddev(dev, VCHR, vpp))
1538 		return (0);
1539 	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1540 	if (error) {
1541 		*vpp = NULLVP;
1542 		return (error);
1543 	}
1544 	vp = nvp;
1545 	vp->v_type = VCHR;
1546 	addalias(vp, dev);
1547 	*vpp = vp;
1548 	return (0);
1549 }
1550 
1551 /*
1552  * Add vnode to the alias list hung off the dev_t.
1553  *
1554  * The reason for this gunk is that multiple vnodes can reference
1555  * the same physical device, so checking vp->v_usecount to see
1556  * how many users there are is inadequate; the v_usecount for
1557  * the vnodes need to be accumulated.  vcount() does that.
1558  */
1559 struct vnode *
1560 addaliasu(nvp, nvp_rdev)
1561 	struct vnode *nvp;
1562 	udev_t nvp_rdev;
1563 {
1564 	struct vnode *ovp;
1565 	vop_t **ops;
1566 	dev_t dev;
1567 
1568 	if (nvp->v_type == VBLK)
1569 		return (nvp);
1570 	if (nvp->v_type != VCHR)
1571 		panic("addaliasu on non-special vnode");
1572 	dev = udev2dev(nvp_rdev, 0);
1573 	/*
1574 	 * Check to see if we have a bdevvp vnode with no associated
1575 	 * filesystem. If so, we want to associate the filesystem of
1576 	 * the new newly instigated vnode with the bdevvp vnode and
1577 	 * discard the newly created vnode rather than leaving the
1578 	 * bdevvp vnode lying around with no associated filesystem.
1579 	 */
1580 	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
1581 		addalias(nvp, dev);
1582 		return (nvp);
1583 	}
1584 	/*
1585 	 * Discard unneeded vnode, but save its node specific data.
1586 	 * Note that if there is a lock, it is carried over in the
1587 	 * node specific data to the replacement vnode.
1588 	 */
1589 	vref(ovp);
1590 	ovp->v_data = nvp->v_data;
1591 	ovp->v_tag = nvp->v_tag;
1592 	nvp->v_data = NULL;
1593 	lockinit(&ovp->v_lock, PVFS, nvp->v_lock.lk_wmesg,
1594 	    nvp->v_lock.lk_timo, nvp->v_lock.lk_flags & LK_EXTFLG_MASK);
1595 	if (nvp->v_vnlock)
1596 		ovp->v_vnlock = &ovp->v_lock;
1597 	ops = ovp->v_op;
1598 	ovp->v_op = nvp->v_op;
1599 	if (VOP_ISLOCKED(nvp, curthread)) {
1600 		VOP_UNLOCK(nvp, 0, curthread);
1601 		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
1602 	}
1603 	nvp->v_op = ops;
1604 	insmntque(ovp, nvp->v_mount);
1605 	vrele(nvp);
1606 	vgone(nvp);
1607 	return (ovp);
1608 }
1609 
1610 /* This is a local helper function that do the same as addaliasu, but for a
1611  * dev_t instead of an udev_t. */
1612 static void
1613 addalias(nvp, dev)
1614 	struct vnode *nvp;
1615 	dev_t dev;
1616 {
1617 
1618 	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1619 	nvp->v_rdev = dev;
1620 	mtx_lock(&spechash_mtx);
1621 	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1622 	mtx_unlock(&spechash_mtx);
1623 }
1624 
1625 /*
1626  * Grab a particular vnode from the free list, increment its
1627  * reference count and lock it. The vnode lock bit is set if the
1628  * vnode is being eliminated in vgone. The process is awakened
1629  * when the transition is completed, and an error returned to
1630  * indicate that the vnode is no longer usable (possibly having
1631  * been changed to a new file system type).
1632  */
1633 int
1634 vget(vp, flags, td)
1635 	register struct vnode *vp;
1636 	int flags;
1637 	struct thread *td;
1638 {
1639 	int error;
1640 
1641 	/*
1642 	 * If the vnode is in the process of being cleaned out for
1643 	 * another use, we wait for the cleaning to finish and then
1644 	 * return failure. Cleaning is determined by checking that
1645 	 * the VXLOCK flag is set.
1646 	 */
1647 	if ((flags & LK_INTERLOCK) == 0)
1648 		mtx_lock(&vp->v_interlock);
1649 	if (vp->v_flag & VXLOCK) {
1650 		if (vp->v_vxproc == curthread) {
1651 #if 0
1652 			/* this can now occur in normal operation */
1653 			log(LOG_INFO, "VXLOCK interlock avoided\n");
1654 #endif
1655 		} else {
1656 			vp->v_flag |= VXWANT;
1657 			msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
1658 			    "vget", 0);
1659 			return (ENOENT);
1660 		}
1661 	}
1662 
1663 	vp->v_usecount++;
1664 
1665 	if (VSHOULDBUSY(vp))
1666 		vbusy(vp);
1667 	if (flags & LK_TYPE_MASK) {
1668 		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1669 			/*
1670 			 * must expand vrele here because we do not want
1671 			 * to call VOP_INACTIVE if the reference count
1672 			 * drops back to zero since it was never really
1673 			 * active. We must remove it from the free list
1674 			 * before sleeping so that multiple processes do
1675 			 * not try to recycle it.
1676 			 */
1677 			mtx_lock(&vp->v_interlock);
1678 			vp->v_usecount--;
1679 			if (VSHOULDFREE(vp))
1680 				vfree(vp);
1681 			else
1682 				vlruvp(vp);
1683 			mtx_unlock(&vp->v_interlock);
1684 		}
1685 		return (error);
1686 	}
1687 	mtx_unlock(&vp->v_interlock);
1688 	return (0);
1689 }
1690 
1691 /*
1692  * Increase the reference count of a vnode.
1693  */
1694 void
1695 vref(struct vnode *vp)
1696 {
1697 	mtx_lock(&vp->v_interlock);
1698 	vp->v_usecount++;
1699 	mtx_unlock(&vp->v_interlock);
1700 }
1701 
1702 /*
1703  * Vnode put/release.
1704  * If count drops to zero, call inactive routine and return to freelist.
1705  */
1706 void
1707 vrele(vp)
1708 	struct vnode *vp;
1709 {
1710 	struct thread *td = curthread;	/* XXX */
1711 
1712 	KASSERT(vp != NULL, ("vrele: null vp"));
1713 
1714 	mtx_lock(&vp->v_interlock);
1715 
1716 	/* Skip this v_writecount check if we're going to panic below. */
1717 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1718 	    ("vrele: missed vn_close"));
1719 
1720 	if (vp->v_usecount > 1) {
1721 
1722 		vp->v_usecount--;
1723 		mtx_unlock(&vp->v_interlock);
1724 
1725 		return;
1726 	}
1727 
1728 	if (vp->v_usecount == 1) {
1729 		vp->v_usecount--;
1730 		if (VSHOULDFREE(vp))
1731 			vfree(vp);
1732 		else
1733 			vlruvp(vp);
1734 	/*
1735 	 * If we are doing a vput, the node is already locked, and we must
1736 	 * call VOP_INACTIVE with the node locked.  So, in the case of
1737 	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1738 	 */
1739 		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
1740 			VOP_INACTIVE(vp, td);
1741 		}
1742 
1743 	} else {
1744 #ifdef DIAGNOSTIC
1745 		vprint("vrele: negative ref count", vp);
1746 		mtx_unlock(&vp->v_interlock);
1747 #endif
1748 		panic("vrele: negative ref cnt");
1749 	}
1750 }
1751 
1752 /*
1753  * Release an already locked vnode.  This give the same effects as
1754  * unlock+vrele(), but takes less time and avoids releasing and
1755  * re-aquiring the lock (as vrele() aquires the lock internally.)
1756  */
1757 void
1758 vput(vp)
1759 	struct vnode *vp;
1760 {
1761 	struct thread *td = curthread;	/* XXX */
1762 
1763 	GIANT_REQUIRED;
1764 
1765 	KASSERT(vp != NULL, ("vput: null vp"));
1766 	mtx_lock(&vp->v_interlock);
1767 	/* Skip this v_writecount check if we're going to panic below. */
1768 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1769 	    ("vput: missed vn_close"));
1770 
1771 	if (vp->v_usecount > 1) {
1772 		vp->v_usecount--;
1773 		VOP_UNLOCK(vp, LK_INTERLOCK, td);
1774 		return;
1775 	}
1776 
1777 	if (vp->v_usecount == 1) {
1778 		vp->v_usecount--;
1779 		if (VSHOULDFREE(vp))
1780 			vfree(vp);
1781 		else
1782 			vlruvp(vp);
1783 	/*
1784 	 * If we are doing a vput, the node is already locked, and we must
1785 	 * call VOP_INACTIVE with the node locked.  So, in the case of
1786 	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1787 	 */
1788 		mtx_unlock(&vp->v_interlock);
1789 		VOP_INACTIVE(vp, td);
1790 
1791 	} else {
1792 #ifdef DIAGNOSTIC
1793 		vprint("vput: negative ref count", vp);
1794 #endif
1795 		panic("vput: negative ref cnt");
1796 	}
1797 }
1798 
1799 /*
1800  * Somebody doesn't want the vnode recycled.
1801  */
1802 void
1803 vhold(vp)
1804 	register struct vnode *vp;
1805 {
1806 	int s;
1807 
1808   	s = splbio();
1809 	vp->v_holdcnt++;
1810 	if (VSHOULDBUSY(vp))
1811 		vbusy(vp);
1812 	splx(s);
1813 }
1814 
1815 /*
1816  * Note that there is one less who cares about this vnode.  vdrop() is the
1817  * opposite of vhold().
1818  */
1819 void
1820 vdrop(vp)
1821 	register struct vnode *vp;
1822 {
1823 	int s;
1824 
1825 	s = splbio();
1826 	if (vp->v_holdcnt <= 0)
1827 		panic("vdrop: holdcnt");
1828 	vp->v_holdcnt--;
1829 	if (VSHOULDFREE(vp))
1830 		vfree(vp);
1831 	else
1832 		vlruvp(vp);
1833 	splx(s);
1834 }
1835 
1836 /*
1837  * Remove any vnodes in the vnode table belonging to mount point mp.
1838  *
1839  * If FORCECLOSE is not specified, there should not be any active ones,
1840  * return error if any are found (nb: this is a user error, not a
1841  * system error). If FORCECLOSE is specified, detach any active vnodes
1842  * that are found.
1843  *
1844  * If WRITECLOSE is set, only flush out regular file vnodes open for
1845  * writing.
1846  *
1847  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1848  *
1849  * `rootrefs' specifies the base reference count for the root vnode
1850  * of this filesystem. The root vnode is considered busy if its
1851  * v_usecount exceeds this value. On a successful return, vflush()
1852  * will call vrele() on the root vnode exactly rootrefs times.
1853  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1854  * be zero.
1855  */
1856 #ifdef DIAGNOSTIC
1857 static int busyprt = 0;		/* print out busy vnodes */
1858 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1859 #endif
1860 
1861 int
1862 vflush(mp, rootrefs, flags)
1863 	struct mount *mp;
1864 	int rootrefs;
1865 	int flags;
1866 {
1867 	struct thread *td = curthread;	/* XXX */
1868 	struct vnode *vp, *nvp, *rootvp = NULL;
1869 	struct vattr vattr;
1870 	int busy = 0, error;
1871 
1872 	if (rootrefs > 0) {
1873 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1874 		    ("vflush: bad args"));
1875 		/*
1876 		 * Get the filesystem root vnode. We can vput() it
1877 		 * immediately, since with rootrefs > 0, it won't go away.
1878 		 */
1879 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1880 			return (error);
1881 		vput(rootvp);
1882 	}
1883 	mtx_lock(&mntvnode_mtx);
1884 loop:
1885 	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
1886 		/*
1887 		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1888 		 * Start over if it has (it won't be on the list anymore).
1889 		 */
1890 		if (vp->v_mount != mp)
1891 			goto loop;
1892 		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
1893 
1894 		mtx_unlock(&mntvnode_mtx);
1895 		mtx_lock(&vp->v_interlock);
1896 		/*
1897 		 * Skip over a vnodes marked VSYSTEM.
1898 		 */
1899 		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1900 			mtx_unlock(&vp->v_interlock);
1901 			mtx_lock(&mntvnode_mtx);
1902 			continue;
1903 		}
1904 		/*
1905 		 * If WRITECLOSE is set, flush out unlinked but still open
1906 		 * files (even if open only for reading) and regular file
1907 		 * vnodes open for writing.
1908 		 */
1909 		if ((flags & WRITECLOSE) &&
1910 		    (vp->v_type == VNON ||
1911 		    (VOP_GETATTR(vp, &vattr, td->td_proc->p_ucred, td) == 0 &&
1912 		    vattr.va_nlink > 0)) &&
1913 		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1914 			mtx_unlock(&vp->v_interlock);
1915 			mtx_lock(&mntvnode_mtx);
1916 			continue;
1917 		}
1918 
1919 		/*
1920 		 * With v_usecount == 0, all we need to do is clear out the
1921 		 * vnode data structures and we are done.
1922 		 */
1923 		if (vp->v_usecount == 0) {
1924 			vgonel(vp, td);
1925 			mtx_lock(&mntvnode_mtx);
1926 			continue;
1927 		}
1928 
1929 		/*
1930 		 * If FORCECLOSE is set, forcibly close the vnode. For block
1931 		 * or character devices, revert to an anonymous device. For
1932 		 * all other files, just kill them.
1933 		 */
1934 		if (flags & FORCECLOSE) {
1935 			if (vp->v_type != VCHR) {
1936 				vgonel(vp, td);
1937 			} else {
1938 				vclean(vp, 0, td);
1939 				vp->v_op = spec_vnodeop_p;
1940 				insmntque(vp, (struct mount *) 0);
1941 			}
1942 			mtx_lock(&mntvnode_mtx);
1943 			continue;
1944 		}
1945 #ifdef DIAGNOSTIC
1946 		if (busyprt)
1947 			vprint("vflush: busy vnode", vp);
1948 #endif
1949 		mtx_unlock(&vp->v_interlock);
1950 		mtx_lock(&mntvnode_mtx);
1951 		busy++;
1952 	}
1953 	mtx_unlock(&mntvnode_mtx);
1954 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1955 		/*
1956 		 * If just the root vnode is busy, and if its refcount
1957 		 * is equal to `rootrefs', then go ahead and kill it.
1958 		 */
1959 		mtx_lock(&rootvp->v_interlock);
1960 		KASSERT(busy > 0, ("vflush: not busy"));
1961 		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1962 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
1963 			vgonel(rootvp, td);
1964 			busy = 0;
1965 		} else
1966 			mtx_unlock(&rootvp->v_interlock);
1967 	}
1968 	if (busy)
1969 		return (EBUSY);
1970 	for (; rootrefs > 0; rootrefs--)
1971 		vrele(rootvp);
1972 	return (0);
1973 }
1974 
1975 /*
1976  * This moves a now (likely recyclable) vnode to the end of the
1977  * mountlist.  XXX However, it is temporarily disabled until we
1978  * can clean up ffs_sync() and friends, which have loop restart
1979  * conditions which this code causes to operate O(N^2).
1980  */
1981 static void
1982 vlruvp(struct vnode *vp)
1983 {
1984 #if 0
1985 	struct mount *mp;
1986 
1987 	if ((mp = vp->v_mount) != NULL) {
1988 		mtx_lock(&mntvnode_mtx);
1989 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1990 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1991 		mtx_unlock(&mntvnode_mtx);
1992 	}
1993 #endif
1994 }
1995 
1996 /*
1997  * Disassociate the underlying file system from a vnode.
1998  */
1999 static void
2000 vclean(vp, flags, td)
2001 	struct vnode *vp;
2002 	int flags;
2003 	struct thread *td;
2004 {
2005 	int active;
2006 
2007 	/*
2008 	 * Check to see if the vnode is in use. If so we have to reference it
2009 	 * before we clean it out so that its count cannot fall to zero and
2010 	 * generate a race against ourselves to recycle it.
2011 	 */
2012 	if ((active = vp->v_usecount))
2013 		vp->v_usecount++;
2014 
2015 	/*
2016 	 * Prevent the vnode from being recycled or brought into use while we
2017 	 * clean it out.
2018 	 */
2019 	if (vp->v_flag & VXLOCK)
2020 		panic("vclean: deadlock");
2021 	vp->v_flag |= VXLOCK;
2022 	vp->v_vxproc = curthread;
2023 	/*
2024 	 * Even if the count is zero, the VOP_INACTIVE routine may still
2025 	 * have the object locked while it cleans it out. The VOP_LOCK
2026 	 * ensures that the VOP_INACTIVE routine is done with its work.
2027 	 * For active vnodes, it ensures that no other activity can
2028 	 * occur while the underlying object is being cleaned out.
2029 	 */
2030 	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2031 
2032 	/*
2033 	 * Clean out any buffers associated with the vnode.
2034 	 * If the flush fails, just toss the buffers.
2035 	 */
2036 	if (flags & DOCLOSE) {
2037 		if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL)
2038 			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2039 		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2040 			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2041 	}
2042 
2043 	VOP_DESTROYVOBJECT(vp);
2044 
2045 	/*
2046 	 * If purging an active vnode, it must be closed and
2047 	 * deactivated before being reclaimed. Note that the
2048 	 * VOP_INACTIVE will unlock the vnode.
2049 	 */
2050 	if (active) {
2051 		if (flags & DOCLOSE)
2052 			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2053 		VOP_INACTIVE(vp, td);
2054 	} else {
2055 		/*
2056 		 * Any other processes trying to obtain this lock must first
2057 		 * wait for VXLOCK to clear, then call the new lock operation.
2058 		 */
2059 		VOP_UNLOCK(vp, 0, td);
2060 	}
2061 	/*
2062 	 * Reclaim the vnode.
2063 	 */
2064 	if (VOP_RECLAIM(vp, td))
2065 		panic("vclean: cannot reclaim");
2066 
2067 	if (active) {
2068 		/*
2069 		 * Inline copy of vrele() since VOP_INACTIVE
2070 		 * has already been called.
2071 		 */
2072 		mtx_lock(&vp->v_interlock);
2073 		if (--vp->v_usecount <= 0) {
2074 #ifdef DIAGNOSTIC
2075 			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2076 				vprint("vclean: bad ref count", vp);
2077 				panic("vclean: ref cnt");
2078 			}
2079 #endif
2080 			vfree(vp);
2081 		}
2082 		mtx_unlock(&vp->v_interlock);
2083 	}
2084 
2085 	cache_purge(vp);
2086 	vp->v_vnlock = NULL;
2087 	lockdestroy(&vp->v_lock);
2088 
2089 	if (VSHOULDFREE(vp))
2090 		vfree(vp);
2091 
2092 	/*
2093 	 * Done with purge, notify sleepers of the grim news.
2094 	 */
2095 	vp->v_op = dead_vnodeop_p;
2096 	vn_pollgone(vp);
2097 	vp->v_tag = VT_NON;
2098 	vp->v_flag &= ~VXLOCK;
2099 	vp->v_vxproc = NULL;
2100 	if (vp->v_flag & VXWANT) {
2101 		vp->v_flag &= ~VXWANT;
2102 		wakeup((caddr_t) vp);
2103 	}
2104 }
2105 
2106 /*
2107  * Eliminate all activity associated with the requested vnode
2108  * and with all vnodes aliased to the requested vnode.
2109  */
2110 int
2111 vop_revoke(ap)
2112 	struct vop_revoke_args /* {
2113 		struct vnode *a_vp;
2114 		int a_flags;
2115 	} */ *ap;
2116 {
2117 	struct vnode *vp, *vq;
2118 	dev_t dev;
2119 
2120 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2121 
2122 	vp = ap->a_vp;
2123 	/*
2124 	 * If a vgone (or vclean) is already in progress,
2125 	 * wait until it is done and return.
2126 	 */
2127 	if (vp->v_flag & VXLOCK) {
2128 		vp->v_flag |= VXWANT;
2129 		msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
2130 		    "vop_revokeall", 0);
2131 		return (0);
2132 	}
2133 	dev = vp->v_rdev;
2134 	for (;;) {
2135 		mtx_lock(&spechash_mtx);
2136 		vq = SLIST_FIRST(&dev->si_hlist);
2137 		mtx_unlock(&spechash_mtx);
2138 		if (!vq)
2139 			break;
2140 		vgone(vq);
2141 	}
2142 	return (0);
2143 }
2144 
2145 /*
2146  * Recycle an unused vnode to the front of the free list.
2147  * Release the passed interlock if the vnode will be recycled.
2148  */
2149 int
2150 vrecycle(vp, inter_lkp, td)
2151 	struct vnode *vp;
2152 	struct mtx *inter_lkp;
2153 	struct thread *td;
2154 {
2155 
2156 	mtx_lock(&vp->v_interlock);
2157 	if (vp->v_usecount == 0) {
2158 		if (inter_lkp) {
2159 			mtx_unlock(inter_lkp);
2160 		}
2161 		vgonel(vp, td);
2162 		return (1);
2163 	}
2164 	mtx_unlock(&vp->v_interlock);
2165 	return (0);
2166 }
2167 
2168 /*
2169  * Eliminate all activity associated with a vnode
2170  * in preparation for reuse.
2171  */
2172 void
2173 vgone(vp)
2174 	register struct vnode *vp;
2175 {
2176 	struct thread *td = curthread;	/* XXX */
2177 
2178 	mtx_lock(&vp->v_interlock);
2179 	vgonel(vp, td);
2180 }
2181 
2182 /*
2183  * vgone, with the vp interlock held.
2184  */
2185 void
2186 vgonel(vp, td)
2187 	struct vnode *vp;
2188 	struct thread *td;
2189 {
2190 	int s;
2191 
2192 	/*
2193 	 * If a vgone (or vclean) is already in progress,
2194 	 * wait until it is done and return.
2195 	 */
2196 	if (vp->v_flag & VXLOCK) {
2197 		vp->v_flag |= VXWANT;
2198 		msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
2199 		    "vgone", 0);
2200 		return;
2201 	}
2202 
2203 	/*
2204 	 * Clean out the filesystem specific data.
2205 	 */
2206 	vclean(vp, DOCLOSE, td);
2207 	mtx_lock(&vp->v_interlock);
2208 
2209 	/*
2210 	 * Delete from old mount point vnode list, if on one.
2211 	 */
2212 	if (vp->v_mount != NULL)
2213 		insmntque(vp, (struct mount *)0);
2214 	/*
2215 	 * If special device, remove it from special device alias list
2216 	 * if it is on one.
2217 	 */
2218 	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
2219 		mtx_lock(&spechash_mtx);
2220 		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2221 		freedev(vp->v_rdev);
2222 		mtx_unlock(&spechash_mtx);
2223 		vp->v_rdev = NULL;
2224 	}
2225 
2226 	/*
2227 	 * If it is on the freelist and not already at the head,
2228 	 * move it to the head of the list. The test of the
2229 	 * VDOOMED flag and the reference count of zero is because
2230 	 * it will be removed from the free list by getnewvnode,
2231 	 * but will not have its reference count incremented until
2232 	 * after calling vgone. If the reference count were
2233 	 * incremented first, vgone would (incorrectly) try to
2234 	 * close the previous instance of the underlying object.
2235 	 */
2236 	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2237 		s = splbio();
2238 		mtx_lock(&vnode_free_list_mtx);
2239 		if (vp->v_flag & VFREE)
2240 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2241 		else
2242 			freevnodes++;
2243 		vp->v_flag |= VFREE;
2244 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2245 		mtx_unlock(&vnode_free_list_mtx);
2246 		splx(s);
2247 	}
2248 
2249 	vp->v_type = VBAD;
2250 	mtx_unlock(&vp->v_interlock);
2251 }
2252 
2253 /*
2254  * Lookup a vnode by device number.
2255  */
2256 int
2257 vfinddev(dev, type, vpp)
2258 	dev_t dev;
2259 	enum vtype type;
2260 	struct vnode **vpp;
2261 {
2262 	struct vnode *vp;
2263 
2264 	mtx_lock(&spechash_mtx);
2265 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2266 		if (type == vp->v_type) {
2267 			*vpp = vp;
2268 			mtx_unlock(&spechash_mtx);
2269 			return (1);
2270 		}
2271 	}
2272 	mtx_unlock(&spechash_mtx);
2273 	return (0);
2274 }
2275 
2276 /*
2277  * Calculate the total number of references to a special device.
2278  */
2279 int
2280 vcount(vp)
2281 	struct vnode *vp;
2282 {
2283 	struct vnode *vq;
2284 	int count;
2285 
2286 	count = 0;
2287 	mtx_lock(&spechash_mtx);
2288 	SLIST_FOREACH(vq, &vp->v_rdev->si_hlist, v_specnext)
2289 		count += vq->v_usecount;
2290 	mtx_unlock(&spechash_mtx);
2291 	return (count);
2292 }
2293 
2294 /*
2295  * Same as above, but using the dev_t as argument
2296  */
2297 int
2298 count_dev(dev)
2299 	dev_t dev;
2300 {
2301 	struct vnode *vp;
2302 
2303 	vp = SLIST_FIRST(&dev->si_hlist);
2304 	if (vp == NULL)
2305 		return (0);
2306 	return(vcount(vp));
2307 }
2308 
2309 /*
2310  * Print out a description of a vnode.
2311  */
2312 static char *typename[] =
2313 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2314 
2315 void
2316 vprint(label, vp)
2317 	char *label;
2318 	struct vnode *vp;
2319 {
2320 	char buf[96];
2321 
2322 	if (label != NULL)
2323 		printf("%s: %p: ", label, (void *)vp);
2324 	else
2325 		printf("%p: ", (void *)vp);
2326 	printf("type %s, usecount %d, writecount %d, refcount %d,",
2327 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2328 	    vp->v_holdcnt);
2329 	buf[0] = '\0';
2330 	if (vp->v_flag & VROOT)
2331 		strcat(buf, "|VROOT");
2332 	if (vp->v_flag & VTEXT)
2333 		strcat(buf, "|VTEXT");
2334 	if (vp->v_flag & VSYSTEM)
2335 		strcat(buf, "|VSYSTEM");
2336 	if (vp->v_flag & VXLOCK)
2337 		strcat(buf, "|VXLOCK");
2338 	if (vp->v_flag & VXWANT)
2339 		strcat(buf, "|VXWANT");
2340 	if (vp->v_flag & VBWAIT)
2341 		strcat(buf, "|VBWAIT");
2342 	if (vp->v_flag & VDOOMED)
2343 		strcat(buf, "|VDOOMED");
2344 	if (vp->v_flag & VFREE)
2345 		strcat(buf, "|VFREE");
2346 	if (vp->v_flag & VOBJBUF)
2347 		strcat(buf, "|VOBJBUF");
2348 	if (buf[0] != '\0')
2349 		printf(" flags (%s)", &buf[1]);
2350 	if (vp->v_data == NULL) {
2351 		printf("\n");
2352 	} else {
2353 		printf("\n\t");
2354 		VOP_PRINT(vp);
2355 	}
2356 }
2357 
2358 #ifdef DDB
2359 #include <ddb/ddb.h>
2360 /*
2361  * List all of the locked vnodes in the system.
2362  * Called when debugging the kernel.
2363  */
2364 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2365 {
2366 	struct thread *td = curthread;	/* XXX */
2367 	struct mount *mp, *nmp;
2368 	struct vnode *vp;
2369 
2370 	printf("Locked vnodes\n");
2371 	mtx_lock(&mountlist_mtx);
2372 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2373 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
2374 			nmp = TAILQ_NEXT(mp, mnt_list);
2375 			continue;
2376 		}
2377 		mtx_lock(&mntvnode_mtx);
2378 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2379 			if (VOP_ISLOCKED(vp, NULL))
2380 				vprint((char *)0, vp);
2381 		}
2382 		mtx_unlock(&mntvnode_mtx);
2383 		mtx_lock(&mountlist_mtx);
2384 		nmp = TAILQ_NEXT(mp, mnt_list);
2385 		vfs_unbusy(mp, td);
2386 	}
2387 	mtx_unlock(&mountlist_mtx);
2388 }
2389 #endif
2390 
2391 /*
2392  * Top level filesystem related information gathering.
2393  */
2394 static int	sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
2395 
2396 static int
2397 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2398 {
2399 	int *name = (int *)arg1 - 1;	/* XXX */
2400 	u_int namelen = arg2 + 1;	/* XXX */
2401 	struct vfsconf *vfsp;
2402 
2403 #if 1 || defined(COMPAT_PRELITE2)
2404 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2405 	if (namelen == 1)
2406 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2407 #endif
2408 
2409 	/* XXX the below code does not compile; vfs_sysctl does not exist. */
2410 #ifdef notyet
2411 	/* all sysctl names at this level are at least name and field */
2412 	if (namelen < 2)
2413 		return (ENOTDIR);		/* overloaded */
2414 	if (name[0] != VFS_GENERIC) {
2415 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2416 			if (vfsp->vfc_typenum == name[0])
2417 				break;
2418 		if (vfsp == NULL)
2419 			return (EOPNOTSUPP);
2420 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2421 		    oldp, oldlenp, newp, newlen, td));
2422 	}
2423 #endif
2424 	switch (name[1]) {
2425 	case VFS_MAXTYPENUM:
2426 		if (namelen != 2)
2427 			return (ENOTDIR);
2428 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2429 	case VFS_CONF:
2430 		if (namelen != 3)
2431 			return (ENOTDIR);	/* overloaded */
2432 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2433 			if (vfsp->vfc_typenum == name[2])
2434 				break;
2435 		if (vfsp == NULL)
2436 			return (EOPNOTSUPP);
2437 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2438 	}
2439 	return (EOPNOTSUPP);
2440 }
2441 
2442 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2443 	"Generic filesystem");
2444 
2445 #if 1 || defined(COMPAT_PRELITE2)
2446 
2447 static int
2448 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2449 {
2450 	int error;
2451 	struct vfsconf *vfsp;
2452 	struct ovfsconf ovfs;
2453 
2454 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2455 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2456 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2457 		ovfs.vfc_index = vfsp->vfc_typenum;
2458 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2459 		ovfs.vfc_flags = vfsp->vfc_flags;
2460 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2461 		if (error)
2462 			return error;
2463 	}
2464 	return 0;
2465 }
2466 
2467 #endif /* 1 || COMPAT_PRELITE2 */
2468 
2469 #if COMPILING_LINT
2470 #define KINFO_VNODESLOP	10
2471 /*
2472  * Dump vnode list (via sysctl).
2473  * Copyout address of vnode followed by vnode.
2474  */
2475 /* ARGSUSED */
2476 static int
2477 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2478 {
2479 	struct thread *td = curthread;	/* XXX */
2480 	struct mount *mp, *nmp;
2481 	struct vnode *nvp, *vp;
2482 	int error;
2483 
2484 #define VPTRSZ	sizeof (struct vnode *)
2485 #define VNODESZ	sizeof (struct vnode)
2486 
2487 	req->lock = 0;
2488 	if (!req->oldptr) /* Make an estimate */
2489 		return (SYSCTL_OUT(req, 0,
2490 			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2491 
2492 	mtx_lock(&mountlist_mtx);
2493 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2494 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
2495 			nmp = TAILQ_NEXT(mp, mnt_list);
2496 			continue;
2497 		}
2498 		mtx_lock(&mntvnode_mtx);
2499 again:
2500 		for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2501 		     vp != NULL;
2502 		     vp = nvp) {
2503 			/*
2504 			 * Check that the vp is still associated with
2505 			 * this filesystem.  RACE: could have been
2506 			 * recycled onto the same filesystem.
2507 			 */
2508 			if (vp->v_mount != mp)
2509 				goto again;
2510 			nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2511 			mtx_unlock(&mntvnode_mtx);
2512 			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2513 			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2514 				return (error);
2515 			mtx_lock(&mntvnode_mtx);
2516 		}
2517 		mtx_unlock(&mntvnode_mtx);
2518 		mtx_lock(&mountlist_mtx);
2519 		nmp = TAILQ_NEXT(mp, mnt_list);
2520 		vfs_unbusy(mp, td);
2521 	}
2522 	mtx_unlock(&mountlist_mtx);
2523 
2524 	return (0);
2525 }
2526 
2527 /*
2528  * XXX
2529  * Exporting the vnode list on large systems causes them to crash.
2530  * Exporting the vnode list on medium systems causes sysctl to coredump.
2531  */
2532 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2533 	0, 0, sysctl_vnode, "S,vnode", "");
2534 #endif
2535 
2536 /*
2537  * Check to see if a filesystem is mounted on a block device.
2538  */
2539 int
2540 vfs_mountedon(vp)
2541 	struct vnode *vp;
2542 {
2543 
2544 	if (vp->v_rdev->si_mountpoint != NULL)
2545 		return (EBUSY);
2546 	return (0);
2547 }
2548 
2549 /*
2550  * Unmount all filesystems. The list is traversed in reverse order
2551  * of mounting to avoid dependencies.
2552  */
2553 void
2554 vfs_unmountall()
2555 {
2556 	struct mount *mp;
2557 	struct thread *td;
2558 	int error;
2559 
2560 	if (curthread != NULL)
2561 		td = curthread;
2562 	else
2563 		td = &initproc->p_thread;	/* XXX XXX should this be proc0? */
2564 	/*
2565 	 * Since this only runs when rebooting, it is not interlocked.
2566 	 */
2567 	while(!TAILQ_EMPTY(&mountlist)) {
2568 		mp = TAILQ_LAST(&mountlist, mntlist);
2569 		error = dounmount(mp, MNT_FORCE, td);
2570 		if (error) {
2571 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2572 			printf("unmount of %s failed (",
2573 			    mp->mnt_stat.f_mntonname);
2574 			if (error == EBUSY)
2575 				printf("BUSY)\n");
2576 			else
2577 				printf("%d)\n", error);
2578 		} else {
2579 			/* The unmount has removed mp from the mountlist */
2580 		}
2581 	}
2582 }
2583 
2584 /*
2585  * perform msync on all vnodes under a mount point
2586  * the mount point must be locked.
2587  */
2588 void
2589 vfs_msync(struct mount *mp, int flags)
2590 {
2591 	struct vnode *vp, *nvp;
2592 	struct vm_object *obj;
2593 	int tries;
2594 
2595 	GIANT_REQUIRED;
2596 
2597 	tries = 5;
2598 	mtx_lock(&mntvnode_mtx);
2599 loop:
2600 	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
2601 		if (vp->v_mount != mp) {
2602 			if (--tries > 0)
2603 				goto loop;
2604 			break;
2605 		}
2606 		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2607 
2608 		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2609 			continue;
2610 
2611 		if (vp->v_flag & VNOSYNC)	/* unlinked, skip it */
2612 			continue;
2613 
2614 		if ((vp->v_flag & VOBJDIRTY) &&
2615 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2616 			mtx_unlock(&mntvnode_mtx);
2617 			if (!vget(vp,
2618 			    LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curthread)) {
2619 				if (VOP_GETVOBJECT(vp, &obj) == 0) {
2620 					vm_object_page_clean(obj, 0, 0,
2621 					    flags == MNT_WAIT ?
2622 					    OBJPC_SYNC : OBJPC_NOSYNC);
2623 				}
2624 				vput(vp);
2625 			}
2626 			mtx_lock(&mntvnode_mtx);
2627 			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
2628 				if (--tries > 0)
2629 					goto loop;
2630 				break;
2631 			}
2632 		}
2633 	}
2634 	mtx_unlock(&mntvnode_mtx);
2635 }
2636 
2637 /*
2638  * Create the VM object needed for VMIO and mmap support.  This
2639  * is done for all VREG files in the system.  Some filesystems might
2640  * afford the additional metadata buffering capability of the
2641  * VMIO code by making the device node be VMIO mode also.
2642  *
2643  * vp must be locked when vfs_object_create is called.
2644  */
2645 int
2646 vfs_object_create(vp, td, cred)
2647 	struct vnode *vp;
2648 	struct thread *td;
2649 	struct ucred *cred;
2650 {
2651 	GIANT_REQUIRED;
2652 	return (VOP_CREATEVOBJECT(vp, cred, td));
2653 }
2654 
2655 /*
2656  * Mark a vnode as free, putting it up for recycling.
2657  */
2658 void
2659 vfree(vp)
2660 	struct vnode *vp;
2661 {
2662 	int s;
2663 
2664 	s = splbio();
2665 	mtx_lock(&vnode_free_list_mtx);
2666 	KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2667 	if (vp->v_flag & VAGE) {
2668 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2669 	} else {
2670 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2671 	}
2672 	freevnodes++;
2673 	mtx_unlock(&vnode_free_list_mtx);
2674 	vp->v_flag &= ~VAGE;
2675 	vp->v_flag |= VFREE;
2676 	splx(s);
2677 }
2678 
2679 /*
2680  * Opposite of vfree() - mark a vnode as in use.
2681  */
2682 void
2683 vbusy(vp)
2684 	struct vnode *vp;
2685 {
2686 	int s;
2687 
2688 	s = splbio();
2689 	mtx_lock(&vnode_free_list_mtx);
2690 	KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2691 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2692 	freevnodes--;
2693 	mtx_unlock(&vnode_free_list_mtx);
2694 	vp->v_flag &= ~(VFREE|VAGE);
2695 	splx(s);
2696 }
2697 
2698 /*
2699  * Record a process's interest in events which might happen to
2700  * a vnode.  Because poll uses the historic select-style interface
2701  * internally, this routine serves as both the ``check for any
2702  * pending events'' and the ``record my interest in future events''
2703  * functions.  (These are done together, while the lock is held,
2704  * to avoid race conditions.)
2705  */
2706 int
2707 vn_pollrecord(vp, td, events)
2708 	struct vnode *vp;
2709 	struct thread *td;
2710 	short events;
2711 {
2712 	mtx_lock(&vp->v_pollinfo.vpi_lock);
2713 	if (vp->v_pollinfo.vpi_revents & events) {
2714 		/*
2715 		 * This leaves events we are not interested
2716 		 * in available for the other process which
2717 		 * which presumably had requested them
2718 		 * (otherwise they would never have been
2719 		 * recorded).
2720 		 */
2721 		events &= vp->v_pollinfo.vpi_revents;
2722 		vp->v_pollinfo.vpi_revents &= ~events;
2723 
2724 		mtx_unlock(&vp->v_pollinfo.vpi_lock);
2725 		return events;
2726 	}
2727 	vp->v_pollinfo.vpi_events |= events;
2728 	selrecord(td, &vp->v_pollinfo.vpi_selinfo);
2729 	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2730 	return 0;
2731 }
2732 
2733 /*
2734  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2735  * it is possible for us to miss an event due to race conditions, but
2736  * that condition is expected to be rare, so for the moment it is the
2737  * preferred interface.
2738  */
2739 void
2740 vn_pollevent(vp, events)
2741 	struct vnode *vp;
2742 	short events;
2743 {
2744 	mtx_lock(&vp->v_pollinfo.vpi_lock);
2745 	if (vp->v_pollinfo.vpi_events & events) {
2746 		/*
2747 		 * We clear vpi_events so that we don't
2748 		 * call selwakeup() twice if two events are
2749 		 * posted before the polling process(es) is
2750 		 * awakened.  This also ensures that we take at
2751 		 * most one selwakeup() if the polling process
2752 		 * is no longer interested.  However, it does
2753 		 * mean that only one event can be noticed at
2754 		 * a time.  (Perhaps we should only clear those
2755 		 * event bits which we note?) XXX
2756 		 */
2757 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2758 		vp->v_pollinfo.vpi_revents |= events;
2759 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2760 	}
2761 	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2762 }
2763 
2764 #define VN_KNOTE(vp, b) \
2765 	KNOTE((struct klist *)&vp->v_pollinfo.vpi_selinfo.si_note, (b))
2766 
2767 /*
2768  * Wake up anyone polling on vp because it is being revoked.
2769  * This depends on dead_poll() returning POLLHUP for correct
2770  * behavior.
2771  */
2772 void
2773 vn_pollgone(vp)
2774 	struct vnode *vp;
2775 {
2776 	mtx_lock(&vp->v_pollinfo.vpi_lock);
2777         VN_KNOTE(vp, NOTE_REVOKE);
2778 	if (vp->v_pollinfo.vpi_events) {
2779 		vp->v_pollinfo.vpi_events = 0;
2780 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2781 	}
2782 	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2783 }
2784 
2785 
2786 
2787 /*
2788  * Routine to create and manage a filesystem syncer vnode.
2789  */
2790 #define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2791 static int	sync_fsync __P((struct  vop_fsync_args *));
2792 static int	sync_inactive __P((struct  vop_inactive_args *));
2793 static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2794 #define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2795 #define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2796 static int	sync_print __P((struct vop_print_args *));
2797 #define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2798 
2799 static vop_t **sync_vnodeop_p;
2800 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2801 	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2802 	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2803 	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2804 	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2805 	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2806 	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2807 	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2808 	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2809 	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2810 	{ NULL, NULL }
2811 };
2812 static struct vnodeopv_desc sync_vnodeop_opv_desc =
2813 	{ &sync_vnodeop_p, sync_vnodeop_entries };
2814 
2815 VNODEOP_SET(sync_vnodeop_opv_desc);
2816 
2817 /*
2818  * Create a new filesystem syncer vnode for the specified mount point.
2819  */
2820 int
2821 vfs_allocate_syncvnode(mp)
2822 	struct mount *mp;
2823 {
2824 	struct vnode *vp;
2825 	static long start, incr, next;
2826 	int error;
2827 
2828 	/* Allocate a new vnode */
2829 	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2830 		mp->mnt_syncer = NULL;
2831 		return (error);
2832 	}
2833 	vp->v_type = VNON;
2834 	/*
2835 	 * Place the vnode onto the syncer worklist. We attempt to
2836 	 * scatter them about on the list so that they will go off
2837 	 * at evenly distributed times even if all the filesystems
2838 	 * are mounted at once.
2839 	 */
2840 	next += incr;
2841 	if (next == 0 || next > syncer_maxdelay) {
2842 		start /= 2;
2843 		incr /= 2;
2844 		if (start == 0) {
2845 			start = syncer_maxdelay / 2;
2846 			incr = syncer_maxdelay;
2847 		}
2848 		next = start;
2849 	}
2850 	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2851 	mp->mnt_syncer = vp;
2852 	return (0);
2853 }
2854 
2855 /*
2856  * Do a lazy sync of the filesystem.
2857  */
2858 static int
2859 sync_fsync(ap)
2860 	struct vop_fsync_args /* {
2861 		struct vnode *a_vp;
2862 		struct ucred *a_cred;
2863 		int a_waitfor;
2864 		struct thread *a_td;
2865 	} */ *ap;
2866 {
2867 	struct vnode *syncvp = ap->a_vp;
2868 	struct mount *mp = syncvp->v_mount;
2869 	struct thread *td = ap->a_td;
2870 	int asyncflag;
2871 
2872 	/*
2873 	 * We only need to do something if this is a lazy evaluation.
2874 	 */
2875 	if (ap->a_waitfor != MNT_LAZY)
2876 		return (0);
2877 
2878 	/*
2879 	 * Move ourselves to the back of the sync list.
2880 	 */
2881 	vn_syncer_add_to_worklist(syncvp, syncdelay);
2882 
2883 	/*
2884 	 * Walk the list of vnodes pushing all that are dirty and
2885 	 * not already on the sync list.
2886 	 */
2887 	mtx_lock(&mountlist_mtx);
2888 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
2889 		mtx_unlock(&mountlist_mtx);
2890 		return (0);
2891 	}
2892 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
2893 		vfs_unbusy(mp, td);
2894 		return (0);
2895 	}
2896 	asyncflag = mp->mnt_flag & MNT_ASYNC;
2897 	mp->mnt_flag &= ~MNT_ASYNC;
2898 	vfs_msync(mp, MNT_NOWAIT);
2899 	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
2900 	if (asyncflag)
2901 		mp->mnt_flag |= MNT_ASYNC;
2902 	vn_finished_write(mp);
2903 	vfs_unbusy(mp, td);
2904 	return (0);
2905 }
2906 
2907 /*
2908  * The syncer vnode is no referenced.
2909  */
2910 static int
2911 sync_inactive(ap)
2912 	struct vop_inactive_args /* {
2913 		struct vnode *a_vp;
2914 		struct thread *a_td;
2915 	} */ *ap;
2916 {
2917 
2918 	vgone(ap->a_vp);
2919 	return (0);
2920 }
2921 
2922 /*
2923  * The syncer vnode is no longer needed and is being decommissioned.
2924  *
2925  * Modifications to the worklist must be protected at splbio().
2926  */
2927 static int
2928 sync_reclaim(ap)
2929 	struct vop_reclaim_args /* {
2930 		struct vnode *a_vp;
2931 	} */ *ap;
2932 {
2933 	struct vnode *vp = ap->a_vp;
2934 	int s;
2935 
2936 	s = splbio();
2937 	vp->v_mount->mnt_syncer = NULL;
2938 	if (vp->v_flag & VONWORKLST) {
2939 		LIST_REMOVE(vp, v_synclist);
2940 		vp->v_flag &= ~VONWORKLST;
2941 	}
2942 	splx(s);
2943 
2944 	return (0);
2945 }
2946 
2947 /*
2948  * Print out a syncer vnode.
2949  */
2950 static int
2951 sync_print(ap)
2952 	struct vop_print_args /* {
2953 		struct vnode *a_vp;
2954 	} */ *ap;
2955 {
2956 	struct vnode *vp = ap->a_vp;
2957 
2958 	printf("syncer vnode");
2959 	if (vp->v_vnlock != NULL)
2960 		lockmgr_printinfo(vp->v_vnlock);
2961 	printf("\n");
2962 	return (0);
2963 }
2964 
2965 /*
2966  * extract the dev_t from a VCHR
2967  */
2968 dev_t
2969 vn_todev(vp)
2970 	struct vnode *vp;
2971 {
2972 	if (vp->v_type != VCHR)
2973 		return (NODEV);
2974 	return (vp->v_rdev);
2975 }
2976 
2977 /*
2978  * Check if vnode represents a disk device
2979  */
2980 int
2981 vn_isdisk(vp, errp)
2982 	struct vnode *vp;
2983 	int *errp;
2984 {
2985 	struct cdevsw *cdevsw;
2986 
2987 	if (vp->v_type != VCHR) {
2988 		if (errp != NULL)
2989 			*errp = ENOTBLK;
2990 		return (0);
2991 	}
2992 	if (vp->v_rdev == NULL) {
2993 		if (errp != NULL)
2994 			*errp = ENXIO;
2995 		return (0);
2996 	}
2997 	cdevsw = devsw(vp->v_rdev);
2998 	if (cdevsw == NULL) {
2999 		if (errp != NULL)
3000 			*errp = ENXIO;
3001 		return (0);
3002 	}
3003 	if (!(cdevsw->d_flags & D_DISK)) {
3004 		if (errp != NULL)
3005 			*errp = ENOTBLK;
3006 		return (0);
3007 	}
3008 	if (errp != NULL)
3009 		*errp = 0;
3010 	return (1);
3011 }
3012 
3013 /*
3014  * Free data allocated by namei(); see namei(9) for details.
3015  */
3016 void
3017 NDFREE(ndp, flags)
3018      struct nameidata *ndp;
3019      const uint flags;
3020 {
3021 	if (!(flags & NDF_NO_FREE_PNBUF) &&
3022 	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3023 		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3024 		ndp->ni_cnd.cn_flags &= ~HASBUF;
3025 	}
3026 	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3027 	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3028 	    ndp->ni_dvp != ndp->ni_vp)
3029 		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3030 	if (!(flags & NDF_NO_DVP_RELE) &&
3031 	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3032 		vrele(ndp->ni_dvp);
3033 		ndp->ni_dvp = NULL;
3034 	}
3035 	if (!(flags & NDF_NO_VP_UNLOCK) &&
3036 	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3037 		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3038 	if (!(flags & NDF_NO_VP_RELE) &&
3039 	    ndp->ni_vp) {
3040 		vrele(ndp->ni_vp);
3041 		ndp->ni_vp = NULL;
3042 	}
3043 	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3044 	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3045 		vrele(ndp->ni_startdir);
3046 		ndp->ni_startdir = NULL;
3047 	}
3048 }
3049 
3050 /*
3051  * Common file system object access control check routine.  Accepts a
3052  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3053  * and optional call-by-reference privused argument allowing vaccess()
3054  * to indicate to the caller whether privilege was used to satisfy the
3055  * request.  Returns 0 on success, or an errno on failure.
3056  */
3057 int
3058 vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3059 	enum vtype type;
3060 	mode_t file_mode;
3061 	uid_t file_uid;
3062 	gid_t file_gid;
3063 	mode_t acc_mode;
3064 	struct ucred *cred;
3065 	int *privused;
3066 {
3067 	mode_t dac_granted;
3068 #ifdef CAPABILITIES
3069 	mode_t cap_granted;
3070 #endif
3071 
3072 	/*
3073 	 * Look for a normal, non-privileged way to access the file/directory
3074 	 * as requested.  If it exists, go with that.
3075 	 */
3076 
3077 	if (privused != NULL)
3078 		*privused = 0;
3079 
3080 	dac_granted = 0;
3081 
3082 	/* Check the owner. */
3083 	if (cred->cr_uid == file_uid) {
3084 		dac_granted |= VADMIN;
3085 		if (file_mode & S_IXUSR)
3086 			dac_granted |= VEXEC;
3087 		if (file_mode & S_IRUSR)
3088 			dac_granted |= VREAD;
3089 		if (file_mode & S_IWUSR)
3090 			dac_granted |= VWRITE;
3091 
3092 		if ((acc_mode & dac_granted) == acc_mode)
3093 			return (0);
3094 
3095 		goto privcheck;
3096 	}
3097 
3098 	/* Otherwise, check the groups (first match) */
3099 	if (groupmember(file_gid, cred)) {
3100 		if (file_mode & S_IXGRP)
3101 			dac_granted |= VEXEC;
3102 		if (file_mode & S_IRGRP)
3103 			dac_granted |= VREAD;
3104 		if (file_mode & S_IWGRP)
3105 			dac_granted |= VWRITE;
3106 
3107 		if ((acc_mode & dac_granted) == acc_mode)
3108 			return (0);
3109 
3110 		goto privcheck;
3111 	}
3112 
3113 	/* Otherwise, check everyone else. */
3114 	if (file_mode & S_IXOTH)
3115 		dac_granted |= VEXEC;
3116 	if (file_mode & S_IROTH)
3117 		dac_granted |= VREAD;
3118 	if (file_mode & S_IWOTH)
3119 		dac_granted |= VWRITE;
3120 	if ((acc_mode & dac_granted) == acc_mode)
3121 		return (0);
3122 
3123 privcheck:
3124 	if (!suser_xxx(cred, NULL, PRISON_ROOT)) {
3125 		/* XXX audit: privilege used */
3126 		if (privused != NULL)
3127 			*privused = 1;
3128 		return (0);
3129 	}
3130 
3131 #ifdef CAPABILITIES
3132 	/*
3133 	 * Build a capability mask to determine if the set of capabilities
3134 	 * satisfies the requirements when combined with the granted mask
3135 	 * from above.
3136 	 * For each capability, if the capability is required, bitwise
3137 	 * or the request type onto the cap_granted mask.
3138 	 */
3139 	cap_granted = 0;
3140 
3141 	if (type == VDIR) {
3142 		/*
3143 		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3144 		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3145 		 */
3146 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3147 		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3148 			cap_granted |= VEXEC;
3149 	} else {
3150 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3151 		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3152 			cap_granted |= VEXEC;
3153 	}
3154 
3155 	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3156 	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3157 		cap_granted |= VREAD;
3158 
3159 	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3160 	    !cap_check(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3161 		cap_granted |= VWRITE;
3162 
3163 	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3164 	    !cap_check(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3165 		cap_granted |= VADMIN;
3166 
3167 	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3168 		/* XXX audit: privilege used */
3169 		if (privused != NULL)
3170 			*privused = 1;
3171 		return (0);
3172 	}
3173 #endif
3174 
3175 	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3176 }
3177 
3178