1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 37 /* 38 * External virtual filesystem routines 39 */ 40 41 #include <sys/cdefs.h> 42 #include "opt_ddb.h" 43 #include "opt_watchdog.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/asan.h> 48 #include <sys/bio.h> 49 #include <sys/buf.h> 50 #include <sys/capsicum.h> 51 #include <sys/condvar.h> 52 #include <sys/conf.h> 53 #include <sys/counter.h> 54 #include <sys/dirent.h> 55 #include <sys/event.h> 56 #include <sys/eventhandler.h> 57 #include <sys/extattr.h> 58 #include <sys/file.h> 59 #include <sys/fcntl.h> 60 #include <sys/jail.h> 61 #include <sys/kdb.h> 62 #include <sys/kernel.h> 63 #include <sys/kthread.h> 64 #include <sys/ktr.h> 65 #include <sys/limits.h> 66 #include <sys/lockf.h> 67 #include <sys/malloc.h> 68 #include <sys/mount.h> 69 #include <sys/namei.h> 70 #include <sys/pctrie.h> 71 #include <sys/priv.h> 72 #include <sys/reboot.h> 73 #include <sys/refcount.h> 74 #include <sys/rwlock.h> 75 #include <sys/sched.h> 76 #include <sys/sleepqueue.h> 77 #include <sys/smr.h> 78 #include <sys/smp.h> 79 #include <sys/stat.h> 80 #include <sys/sysctl.h> 81 #include <sys/syslog.h> 82 #include <sys/vmmeter.h> 83 #include <sys/vnode.h> 84 #include <sys/watchdog.h> 85 86 #include <machine/stdarg.h> 87 88 #include <security/mac/mac_framework.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_extern.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_page.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/uma.h> 99 100 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS)) 101 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS 102 #endif 103 104 #ifdef DDB 105 #include <ddb/ddb.h> 106 #endif 107 108 static void delmntque(struct vnode *vp); 109 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 110 int slpflag, int slptimeo); 111 static void syncer_shutdown(void *arg, int howto); 112 static int vtryrecycle(struct vnode *vp, bool isvnlru); 113 static void v_init_counters(struct vnode *); 114 static void vn_seqc_init(struct vnode *); 115 static void vn_seqc_write_end_free(struct vnode *vp); 116 static void vgonel(struct vnode *); 117 static bool vhold_recycle_free(struct vnode *); 118 static void vdropl_recycle(struct vnode *vp); 119 static void vdrop_recycle(struct vnode *vp); 120 static void vfs_knllock(void *arg); 121 static void vfs_knlunlock(void *arg); 122 static void vfs_knl_assert_lock(void *arg, int what); 123 static void destroy_vpollinfo(struct vpollinfo *vi); 124 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 125 daddr_t startlbn, daddr_t endlbn); 126 static void vnlru_recalc(void); 127 128 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 129 "vnode configuration and statistics"); 130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 131 "vnode configuration"); 132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 133 "vnode statistics"); 134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 135 "vnode recycling"); 136 137 /* 138 * Number of vnodes in existence. Increased whenever getnewvnode() 139 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode. 140 */ 141 static u_long __exclusive_cache_line numvnodes; 142 143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 144 "Number of vnodes in existence (legacy)"); 145 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0, 146 "Number of vnodes in existence"); 147 148 static counter_u64_t vnodes_created; 149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 150 "Number of vnodes created by getnewvnode (legacy)"); 151 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created, 152 "Number of vnodes created by getnewvnode"); 153 154 /* 155 * Conversion tables for conversion from vnode types to inode formats 156 * and back. 157 */ 158 __enum_uint8(vtype) iftovt_tab[16] = { 159 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 160 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 161 }; 162 int vttoif_tab[10] = { 163 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 164 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 165 }; 166 167 /* 168 * List of allocates vnodes in the system. 169 */ 170 static TAILQ_HEAD(freelst, vnode) vnode_list; 171 static struct vnode *vnode_list_free_marker; 172 static struct vnode *vnode_list_reclaim_marker; 173 174 /* 175 * "Free" vnode target. Free vnodes are rarely completely free, but are 176 * just ones that are cheap to recycle. Usually they are for files which 177 * have been stat'd but not read; these usually have inode and namecache 178 * data attached to them. This target is the preferred minimum size of a 179 * sub-cache consisting mostly of such files. The system balances the size 180 * of this sub-cache with its complement to try to prevent either from 181 * thrashing while the other is relatively inactive. The targets express 182 * a preference for the best balance. 183 * 184 * "Above" this target there are 2 further targets (watermarks) related 185 * to recyling of free vnodes. In the best-operating case, the cache is 186 * exactly full, the free list has size between vlowat and vhiwat above the 187 * free target, and recycling from it and normal use maintains this state. 188 * Sometimes the free list is below vlowat or even empty, but this state 189 * is even better for immediate use provided the cache is not full. 190 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free 191 * ones) to reach one of these states. The watermarks are currently hard- 192 * coded as 4% and 9% of the available space higher. These and the default 193 * of 25% for wantfreevnodes are too large if the memory size is large. 194 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim 195 * whenever vnlru_proc() becomes active. 196 */ 197 static long wantfreevnodes; 198 static long __exclusive_cache_line freevnodes; 199 static long freevnodes_old; 200 201 static u_long recycles_count; 202 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0, 203 "Number of vnodes recycled to meet vnode cache targets (legacy)"); 204 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, 205 &recycles_count, 0, 206 "Number of vnodes recycled to meet vnode cache targets"); 207 208 static u_long recycles_free_count; 209 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS, 210 &recycles_free_count, 0, 211 "Number of free vnodes recycled to meet vnode cache targets (legacy)"); 212 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS, 213 &recycles_free_count, 0, 214 "Number of free vnodes recycled to meet vnode cache targets"); 215 216 static counter_u64_t direct_recycles_free_count; 217 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD, 218 &direct_recycles_free_count, 219 "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets"); 220 221 static counter_u64_t vnode_skipped_requeues; 222 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues, 223 "Number of times LRU requeue was skipped due to lock contention"); 224 225 static __read_mostly bool vnode_can_skip_requeue; 226 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW, 227 &vnode_can_skip_requeue, 0, "Is LRU requeue skippable"); 228 229 static u_long deferred_inact; 230 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, 231 &deferred_inact, 0, "Number of times inactive processing was deferred"); 232 233 /* To keep more than one thread at a time from running vfs_getnewfsid */ 234 static struct mtx mntid_mtx; 235 236 /* 237 * Lock for any access to the following: 238 * vnode_list 239 * numvnodes 240 * freevnodes 241 */ 242 static struct mtx __exclusive_cache_line vnode_list_mtx; 243 244 /* Publicly exported FS */ 245 struct nfs_public nfs_pub; 246 247 static uma_zone_t buf_trie_zone; 248 static smr_t buf_trie_smr; 249 250 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 251 static uma_zone_t vnode_zone; 252 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll"); 253 254 __read_frequently smr_t vfs_smr; 255 256 /* 257 * The workitem queue. 258 * 259 * It is useful to delay writes of file data and filesystem metadata 260 * for tens of seconds so that quickly created and deleted files need 261 * not waste disk bandwidth being created and removed. To realize this, 262 * we append vnodes to a "workitem" queue. When running with a soft 263 * updates implementation, most pending metadata dependencies should 264 * not wait for more than a few seconds. Thus, mounted on block devices 265 * are delayed only about a half the time that file data is delayed. 266 * Similarly, directory updates are more critical, so are only delayed 267 * about a third the time that file data is delayed. Thus, there are 268 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 269 * one each second (driven off the filesystem syncer process). The 270 * syncer_delayno variable indicates the next queue that is to be processed. 271 * Items that need to be processed soon are placed in this queue: 272 * 273 * syncer_workitem_pending[syncer_delayno] 274 * 275 * A delay of fifteen seconds is done by placing the request fifteen 276 * entries later in the queue: 277 * 278 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 279 * 280 */ 281 static int syncer_delayno; 282 static long syncer_mask; 283 LIST_HEAD(synclist, bufobj); 284 static struct synclist *syncer_workitem_pending; 285 /* 286 * The sync_mtx protects: 287 * bo->bo_synclist 288 * sync_vnode_count 289 * syncer_delayno 290 * syncer_state 291 * syncer_workitem_pending 292 * syncer_worklist_len 293 * rushjob 294 */ 295 static struct mtx sync_mtx; 296 static struct cv sync_wakeup; 297 298 #define SYNCER_MAXDELAY 32 299 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 300 static int syncdelay = 30; /* max time to delay syncing data */ 301 static int filedelay = 30; /* time to delay syncing files */ 302 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 303 "Time to delay syncing files (in seconds)"); 304 static int dirdelay = 29; /* time to delay syncing directories */ 305 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 306 "Time to delay syncing directories (in seconds)"); 307 static int metadelay = 28; /* time to delay syncing metadata */ 308 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 309 "Time to delay syncing metadata (in seconds)"); 310 static int rushjob; /* number of slots to run ASAP */ 311 static int stat_rush_requests; /* number of times I/O speeded up */ 312 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 313 "Number of times I/O speeded up (rush requests)"); 314 315 #define VDBATCH_SIZE 8 316 struct vdbatch { 317 u_int index; 318 struct mtx lock; 319 struct vnode *tab[VDBATCH_SIZE]; 320 }; 321 DPCPU_DEFINE_STATIC(struct vdbatch, vd); 322 323 static void vdbatch_dequeue(struct vnode *vp); 324 325 /* 326 * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown; 327 * we probably don't want to pause for the whole second each time. 328 */ 329 #define SYNCER_SHUTDOWN_SPEEDUP 32 330 static int sync_vnode_count; 331 static int syncer_worklist_len; 332 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 333 syncer_state; 334 335 /* Target for maximum number of vnodes. */ 336 u_long desiredvnodes; 337 static u_long gapvnodes; /* gap between wanted and desired */ 338 static u_long vhiwat; /* enough extras after expansion */ 339 static u_long vlowat; /* minimal extras before expansion */ 340 static bool vstir; /* nonzero to stir non-free vnodes */ 341 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */ 342 343 static u_long vnlru_read_freevnodes(void); 344 345 /* 346 * Note that no attempt is made to sanitize these parameters. 347 */ 348 static int 349 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS) 350 { 351 u_long val; 352 int error; 353 354 val = desiredvnodes; 355 error = sysctl_handle_long(oidp, &val, 0, req); 356 if (error != 0 || req->newptr == NULL) 357 return (error); 358 359 if (val == desiredvnodes) 360 return (0); 361 mtx_lock(&vnode_list_mtx); 362 desiredvnodes = val; 363 wantfreevnodes = desiredvnodes / 4; 364 vnlru_recalc(); 365 mtx_unlock(&vnode_list_mtx); 366 /* 367 * XXX There is no protection against multiple threads changing 368 * desiredvnodes at the same time. Locking above only helps vnlru and 369 * getnewvnode. 370 */ 371 vfs_hash_changesize(desiredvnodes); 372 cache_changesize(desiredvnodes); 373 return (0); 374 } 375 376 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, 377 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 378 "LU", "Target for maximum number of vnodes (legacy)"); 379 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit, 380 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 381 "LU", "Target for maximum number of vnodes"); 382 383 static int 384 sysctl_freevnodes(SYSCTL_HANDLER_ARGS) 385 { 386 u_long rfreevnodes; 387 388 rfreevnodes = vnlru_read_freevnodes(); 389 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req)); 390 } 391 392 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes, 393 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes, 394 "LU", "Number of \"free\" vnodes (legacy)"); 395 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free, 396 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes, 397 "LU", "Number of \"free\" vnodes"); 398 399 static int 400 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS) 401 { 402 u_long val; 403 int error; 404 405 val = wantfreevnodes; 406 error = sysctl_handle_long(oidp, &val, 0, req); 407 if (error != 0 || req->newptr == NULL) 408 return (error); 409 410 if (val == wantfreevnodes) 411 return (0); 412 mtx_lock(&vnode_list_mtx); 413 wantfreevnodes = val; 414 vnlru_recalc(); 415 mtx_unlock(&vnode_list_mtx); 416 return (0); 417 } 418 419 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes, 420 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 421 "LU", "Target for minimum number of \"free\" vnodes (legacy)"); 422 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree, 423 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 424 "LU", "Target for minimum number of \"free\" vnodes"); 425 426 static int vnlru_nowhere; 427 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS, 428 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 429 430 static int 431 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS) 432 { 433 struct vnode *vp; 434 struct nameidata nd; 435 char *buf; 436 unsigned long ndflags; 437 int error; 438 439 if (req->newptr == NULL) 440 return (EINVAL); 441 if (req->newlen >= PATH_MAX) 442 return (E2BIG); 443 444 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK); 445 error = SYSCTL_IN(req, buf, req->newlen); 446 if (error != 0) 447 goto out; 448 449 buf[req->newlen] = '\0'; 450 451 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1; 452 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf); 453 if ((error = namei(&nd)) != 0) 454 goto out; 455 vp = nd.ni_vp; 456 457 if (VN_IS_DOOMED(vp)) { 458 /* 459 * This vnode is being recycled. Return != 0 to let the caller 460 * know that the sysctl had no effect. Return EAGAIN because a 461 * subsequent call will likely succeed (since namei will create 462 * a new vnode if necessary) 463 */ 464 error = EAGAIN; 465 goto putvnode; 466 } 467 468 vgone(vp); 469 putvnode: 470 vput(vp); 471 NDFREE_PNBUF(&nd); 472 out: 473 free(buf, M_TEMP); 474 return (error); 475 } 476 477 static int 478 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS) 479 { 480 struct thread *td = curthread; 481 struct vnode *vp; 482 struct file *fp; 483 int error; 484 int fd; 485 486 if (req->newptr == NULL) 487 return (EBADF); 488 489 error = sysctl_handle_int(oidp, &fd, 0, req); 490 if (error != 0) 491 return (error); 492 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp); 493 if (error != 0) 494 return (error); 495 vp = fp->f_vnode; 496 497 error = vn_lock(vp, LK_EXCLUSIVE); 498 if (error != 0) 499 goto drop; 500 501 vgone(vp); 502 VOP_UNLOCK(vp); 503 drop: 504 fdrop(fp, td); 505 return (error); 506 } 507 508 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode, 509 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 510 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname"); 511 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode, 512 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 513 sysctl_ftry_reclaim_vnode, "I", 514 "Try to reclaim a vnode by its file descriptor"); 515 516 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 517 #define vnsz2log 8 518 #ifndef DEBUG_LOCKS 519 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log && 520 sizeof(struct vnode) < 1UL << (vnsz2log + 1), 521 "vnsz2log needs to be updated"); 522 #endif 523 524 /* 525 * Support for the bufobj clean & dirty pctrie. 526 */ 527 static void * 528 buf_trie_alloc(struct pctrie *ptree) 529 { 530 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT)); 531 } 532 533 static void 534 buf_trie_free(struct pctrie *ptree, void *node) 535 { 536 uma_zfree_smr(buf_trie_zone, node); 537 } 538 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free, 539 buf_trie_smr); 540 541 /* 542 * Lookup the next element greater than or equal to lblkno, accounting for the 543 * fact that, for pctries, negative values are greater than nonnegative ones. 544 */ 545 static struct buf * 546 buf_lookup_ge(struct bufv *bv, daddr_t lblkno) 547 { 548 struct buf *bp; 549 550 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno); 551 if (bp == NULL && lblkno < 0) 552 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0); 553 if (bp != NULL && bp->b_lblkno < lblkno) 554 bp = NULL; 555 return (bp); 556 } 557 558 /* 559 * Insert bp, and find the next element smaller than bp, accounting for the fact 560 * that, for pctries, negative values are greater than nonnegative ones. 561 */ 562 static int 563 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n) 564 { 565 int error; 566 567 error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n); 568 if (error != EEXIST) { 569 if (*n == NULL && bp->b_lblkno >= 0) 570 *n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L); 571 if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno) 572 *n = NULL; 573 } 574 return (error); 575 } 576 577 /* 578 * Initialize the vnode management data structures. 579 * 580 * Reevaluate the following cap on the number of vnodes after the physical 581 * memory size exceeds 512GB. In the limit, as the physical memory size 582 * grows, the ratio of the memory size in KB to vnodes approaches 64:1. 583 */ 584 #ifndef MAXVNODES_MAX 585 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */ 586 #endif 587 588 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 589 590 static struct vnode * 591 vn_alloc_marker(struct mount *mp) 592 { 593 struct vnode *vp; 594 595 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 596 vp->v_type = VMARKER; 597 vp->v_mount = mp; 598 599 return (vp); 600 } 601 602 static void 603 vn_free_marker(struct vnode *vp) 604 { 605 606 MPASS(vp->v_type == VMARKER); 607 free(vp, M_VNODE_MARKER); 608 } 609 610 #ifdef KASAN 611 static int 612 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused) 613 { 614 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0); 615 return (0); 616 } 617 618 static void 619 vnode_dtor(void *mem, int size, void *arg __unused) 620 { 621 size_t end1, end2, off1, off2; 622 623 _Static_assert(offsetof(struct vnode, v_vnodelist) < 624 offsetof(struct vnode, v_dbatchcpu), 625 "KASAN marks require updating"); 626 627 off1 = offsetof(struct vnode, v_vnodelist); 628 off2 = offsetof(struct vnode, v_dbatchcpu); 629 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist); 630 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu); 631 632 /* 633 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even 634 * after the vnode has been freed. Try to get some KASAN coverage by 635 * marking everything except those two fields as invalid. Because 636 * KASAN's tracking is not byte-granular, any preceding fields sharing 637 * the same 8-byte aligned word must also be marked valid. 638 */ 639 640 /* Handle the area from the start until v_vnodelist... */ 641 off1 = rounddown2(off1, KASAN_SHADOW_SCALE); 642 kasan_mark(mem, off1, off1, KASAN_UMA_FREED); 643 644 /* ... then the area between v_vnodelist and v_dbatchcpu ... */ 645 off1 = roundup2(end1, KASAN_SHADOW_SCALE); 646 off2 = rounddown2(off2, KASAN_SHADOW_SCALE); 647 if (off2 > off1) 648 kasan_mark((void *)((char *)mem + off1), off2 - off1, 649 off2 - off1, KASAN_UMA_FREED); 650 651 /* ... and finally the area from v_dbatchcpu to the end. */ 652 off2 = roundup2(end2, KASAN_SHADOW_SCALE); 653 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2, 654 KASAN_UMA_FREED); 655 } 656 #endif /* KASAN */ 657 658 /* 659 * Initialize a vnode as it first enters the zone. 660 */ 661 static int 662 vnode_init(void *mem, int size, int flags) 663 { 664 struct vnode *vp; 665 666 vp = mem; 667 bzero(vp, size); 668 /* 669 * Setup locks. 670 */ 671 vp->v_vnlock = &vp->v_lock; 672 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 673 /* 674 * By default, don't allow shared locks unless filesystems opt-in. 675 */ 676 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT, 677 LK_NOSHARE | LK_IS_VNODE); 678 /* 679 * Initialize bufobj. 680 */ 681 bufobj_init(&vp->v_bufobj, vp); 682 /* 683 * Initialize namecache. 684 */ 685 cache_vnode_init(vp); 686 /* 687 * Initialize rangelocks. 688 */ 689 rangelock_init(&vp->v_rl); 690 691 vp->v_dbatchcpu = NOCPU; 692 693 vp->v_state = VSTATE_DEAD; 694 695 /* 696 * Check vhold_recycle_free for an explanation. 697 */ 698 vp->v_holdcnt = VHOLD_NO_SMR; 699 vp->v_type = VNON; 700 mtx_lock(&vnode_list_mtx); 701 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist); 702 mtx_unlock(&vnode_list_mtx); 703 return (0); 704 } 705 706 /* 707 * Free a vnode when it is cleared from the zone. 708 */ 709 static void 710 vnode_fini(void *mem, int size) 711 { 712 struct vnode *vp; 713 struct bufobj *bo; 714 715 vp = mem; 716 vdbatch_dequeue(vp); 717 mtx_lock(&vnode_list_mtx); 718 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 719 mtx_unlock(&vnode_list_mtx); 720 rangelock_destroy(&vp->v_rl); 721 lockdestroy(vp->v_vnlock); 722 mtx_destroy(&vp->v_interlock); 723 bo = &vp->v_bufobj; 724 rw_destroy(BO_LOCKPTR(bo)); 725 726 kasan_mark(mem, size, size, 0); 727 } 728 729 /* 730 * Provide the size of NFS nclnode and NFS fh for calculation of the 731 * vnode memory consumption. The size is specified directly to 732 * eliminate dependency on NFS-private header. 733 * 734 * Other filesystems may use bigger or smaller (like UFS and ZFS) 735 * private inode data, but the NFS-based estimation is ample enough. 736 * Still, we care about differences in the size between 64- and 32-bit 737 * platforms. 738 * 739 * Namecache structure size is heuristically 740 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1. 741 */ 742 #ifdef _LP64 743 #define NFS_NCLNODE_SZ (528 + 64) 744 #define NC_SZ 148 745 #else 746 #define NFS_NCLNODE_SZ (360 + 32) 747 #define NC_SZ 92 748 #endif 749 750 static void 751 vntblinit(void *dummy __unused) 752 { 753 struct vdbatch *vd; 754 uma_ctor ctor; 755 uma_dtor dtor; 756 int cpu, physvnodes, virtvnodes; 757 758 /* 759 * Desiredvnodes is a function of the physical memory size and the 760 * kernel's heap size. Generally speaking, it scales with the 761 * physical memory size. The ratio of desiredvnodes to the physical 762 * memory size is 1:16 until desiredvnodes exceeds 98,304. 763 * Thereafter, the 764 * marginal ratio of desiredvnodes to the physical memory size is 765 * 1:64. However, desiredvnodes is limited by the kernel's heap 766 * size. The memory required by desiredvnodes vnodes and vm objects 767 * must not exceed 1/10th of the kernel's heap size. 768 */ 769 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 + 770 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64; 771 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) + 772 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ)); 773 desiredvnodes = min(physvnodes, virtvnodes); 774 if (desiredvnodes > MAXVNODES_MAX) { 775 if (bootverbose) 776 printf("Reducing kern.maxvnodes %lu -> %lu\n", 777 desiredvnodes, MAXVNODES_MAX); 778 desiredvnodes = MAXVNODES_MAX; 779 } 780 wantfreevnodes = desiredvnodes / 4; 781 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 782 TAILQ_INIT(&vnode_list); 783 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF); 784 /* 785 * The lock is taken to appease WITNESS. 786 */ 787 mtx_lock(&vnode_list_mtx); 788 vnlru_recalc(); 789 mtx_unlock(&vnode_list_mtx); 790 vnode_list_free_marker = vn_alloc_marker(NULL); 791 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist); 792 vnode_list_reclaim_marker = vn_alloc_marker(NULL); 793 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist); 794 795 #ifdef KASAN 796 ctor = vnode_ctor; 797 dtor = vnode_dtor; 798 #else 799 ctor = NULL; 800 dtor = NULL; 801 #endif 802 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor, 803 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN); 804 uma_zone_set_smr(vnode_zone, vfs_smr); 805 806 /* 807 * Preallocate enough nodes to support one-per buf so that 808 * we can not fail an insert. reassignbuf() callers can not 809 * tolerate the insertion failure. 810 */ 811 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 812 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 813 UMA_ZONE_NOFREE | UMA_ZONE_SMR); 814 buf_trie_smr = uma_zone_get_smr(buf_trie_zone); 815 uma_prealloc(buf_trie_zone, nbuf); 816 817 vnodes_created = counter_u64_alloc(M_WAITOK); 818 direct_recycles_free_count = counter_u64_alloc(M_WAITOK); 819 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK); 820 821 /* 822 * Initialize the filesystem syncer. 823 */ 824 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 825 &syncer_mask); 826 syncer_maxdelay = syncer_mask + 1; 827 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 828 cv_init(&sync_wakeup, "syncer"); 829 830 CPU_FOREACH(cpu) { 831 vd = DPCPU_ID_PTR((cpu), vd); 832 bzero(vd, sizeof(*vd)); 833 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF); 834 } 835 } 836 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 837 838 /* 839 * Mark a mount point as busy. Used to synchronize access and to delay 840 * unmounting. Eventually, mountlist_mtx is not released on failure. 841 * 842 * vfs_busy() is a custom lock, it can block the caller. 843 * vfs_busy() only sleeps if the unmount is active on the mount point. 844 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 845 * vnode belonging to mp. 846 * 847 * Lookup uses vfs_busy() to traverse mount points. 848 * root fs var fs 849 * / vnode lock A / vnode lock (/var) D 850 * /var vnode lock B /log vnode lock(/var/log) E 851 * vfs_busy lock C vfs_busy lock F 852 * 853 * Within each file system, the lock order is C->A->B and F->D->E. 854 * 855 * When traversing across mounts, the system follows that lock order: 856 * 857 * C->A->B 858 * | 859 * +->F->D->E 860 * 861 * The lookup() process for namei("/var") illustrates the process: 862 * 1. VOP_LOOKUP() obtains B while A is held 863 * 2. vfs_busy() obtains a shared lock on F while A and B are held 864 * 3. vput() releases lock on B 865 * 4. vput() releases lock on A 866 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held 867 * 6. vfs_unbusy() releases shared lock on F 868 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 869 * Attempt to lock A (instead of vp_crossmp) while D is held would 870 * violate the global order, causing deadlocks. 871 * 872 * dounmount() locks B while F is drained. Note that for stacked 873 * filesystems, D and B in the example above may be the same lock, 874 * which introdues potential lock order reversal deadlock between 875 * dounmount() and step 5 above. These filesystems may avoid the LOR 876 * by setting VV_CROSSLOCK on the covered vnode so that lock B will 877 * remain held until after step 5. 878 */ 879 int 880 vfs_busy(struct mount *mp, int flags) 881 { 882 struct mount_pcpu *mpcpu; 883 884 MPASS((flags & ~MBF_MASK) == 0); 885 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 886 887 if (vfs_op_thread_enter(mp, mpcpu)) { 888 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 889 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0); 890 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0); 891 vfs_mp_count_add_pcpu(mpcpu, ref, 1); 892 vfs_mp_count_add_pcpu(mpcpu, lockref, 1); 893 vfs_op_thread_exit(mp, mpcpu); 894 if (flags & MBF_MNTLSTLOCK) 895 mtx_unlock(&mountlist_mtx); 896 return (0); 897 } 898 899 MNT_ILOCK(mp); 900 vfs_assert_mount_counters(mp); 901 MNT_REF(mp); 902 /* 903 * If mount point is currently being unmounted, sleep until the 904 * mount point fate is decided. If thread doing the unmounting fails, 905 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 906 * that this mount point has survived the unmount attempt and vfs_busy 907 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 908 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 909 * about to be really destroyed. vfs_busy needs to release its 910 * reference on the mount point in this case and return with ENOENT, 911 * telling the caller the mount it tried to busy is no longer valid. 912 */ 913 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 914 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), 915 ("%s: non-empty upper mount list with pending unmount", 916 __func__)); 917 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 918 MNT_REL(mp); 919 MNT_IUNLOCK(mp); 920 CTR1(KTR_VFS, "%s: failed busying before sleeping", 921 __func__); 922 return (ENOENT); 923 } 924 if (flags & MBF_MNTLSTLOCK) 925 mtx_unlock(&mountlist_mtx); 926 mp->mnt_kern_flag |= MNTK_MWAIT; 927 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 928 if (flags & MBF_MNTLSTLOCK) 929 mtx_lock(&mountlist_mtx); 930 MNT_ILOCK(mp); 931 } 932 if (flags & MBF_MNTLSTLOCK) 933 mtx_unlock(&mountlist_mtx); 934 mp->mnt_lockref++; 935 MNT_IUNLOCK(mp); 936 return (0); 937 } 938 939 /* 940 * Free a busy filesystem. 941 */ 942 void 943 vfs_unbusy(struct mount *mp) 944 { 945 struct mount_pcpu *mpcpu; 946 int c; 947 948 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 949 950 if (vfs_op_thread_enter(mp, mpcpu)) { 951 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 952 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1); 953 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 954 vfs_op_thread_exit(mp, mpcpu); 955 return; 956 } 957 958 MNT_ILOCK(mp); 959 vfs_assert_mount_counters(mp); 960 MNT_REL(mp); 961 c = --mp->mnt_lockref; 962 if (mp->mnt_vfs_ops == 0) { 963 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 964 MNT_IUNLOCK(mp); 965 return; 966 } 967 if (c < 0) 968 vfs_dump_mount_counters(mp); 969 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 970 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 971 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 972 mp->mnt_kern_flag &= ~MNTK_DRAINING; 973 wakeup(&mp->mnt_lockref); 974 } 975 MNT_IUNLOCK(mp); 976 } 977 978 /* 979 * Lookup a mount point by filesystem identifier. 980 */ 981 struct mount * 982 vfs_getvfs(fsid_t *fsid) 983 { 984 struct mount *mp; 985 986 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 987 mtx_lock(&mountlist_mtx); 988 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 989 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 990 vfs_ref(mp); 991 mtx_unlock(&mountlist_mtx); 992 return (mp); 993 } 994 } 995 mtx_unlock(&mountlist_mtx); 996 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 997 return ((struct mount *) 0); 998 } 999 1000 /* 1001 * Lookup a mount point by filesystem identifier, busying it before 1002 * returning. 1003 * 1004 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 1005 * cache for popular filesystem identifiers. The cache is lockess, using 1006 * the fact that struct mount's are never freed. In worst case we may 1007 * get pointer to unmounted or even different filesystem, so we have to 1008 * check what we got, and go slow way if so. 1009 */ 1010 struct mount * 1011 vfs_busyfs(fsid_t *fsid) 1012 { 1013 #define FSID_CACHE_SIZE 256 1014 typedef struct mount * volatile vmp_t; 1015 static vmp_t cache[FSID_CACHE_SIZE]; 1016 struct mount *mp; 1017 int error; 1018 uint32_t hash; 1019 1020 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 1021 hash = fsid->val[0] ^ fsid->val[1]; 1022 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 1023 mp = cache[hash]; 1024 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0) 1025 goto slow; 1026 if (vfs_busy(mp, 0) != 0) { 1027 cache[hash] = NULL; 1028 goto slow; 1029 } 1030 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) 1031 return (mp); 1032 else 1033 vfs_unbusy(mp); 1034 1035 slow: 1036 mtx_lock(&mountlist_mtx); 1037 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 1038 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 1039 error = vfs_busy(mp, MBF_MNTLSTLOCK); 1040 if (error) { 1041 cache[hash] = NULL; 1042 mtx_unlock(&mountlist_mtx); 1043 return (NULL); 1044 } 1045 cache[hash] = mp; 1046 return (mp); 1047 } 1048 } 1049 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 1050 mtx_unlock(&mountlist_mtx); 1051 return ((struct mount *) 0); 1052 } 1053 1054 /* 1055 * Check if a user can access privileged mount options. 1056 */ 1057 int 1058 vfs_suser(struct mount *mp, struct thread *td) 1059 { 1060 int error; 1061 1062 if (jailed(td->td_ucred)) { 1063 /* 1064 * If the jail of the calling thread lacks permission for 1065 * this type of file system, deny immediately. 1066 */ 1067 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag)) 1068 return (EPERM); 1069 1070 /* 1071 * If the file system was mounted outside the jail of the 1072 * calling thread, deny immediately. 1073 */ 1074 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 1075 return (EPERM); 1076 } 1077 1078 /* 1079 * If file system supports delegated administration, we don't check 1080 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 1081 * by the file system itself. 1082 * If this is not the user that did original mount, we check for 1083 * the PRIV_VFS_MOUNT_OWNER privilege. 1084 */ 1085 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 1086 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 1087 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 1088 return (error); 1089 } 1090 return (0); 1091 } 1092 1093 /* 1094 * Get a new unique fsid. Try to make its val[0] unique, since this value 1095 * will be used to create fake device numbers for stat(). Also try (but 1096 * not so hard) make its val[0] unique mod 2^16, since some emulators only 1097 * support 16-bit device numbers. We end up with unique val[0]'s for the 1098 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 1099 * 1100 * Keep in mind that several mounts may be running in parallel. Starting 1101 * the search one past where the previous search terminated is both a 1102 * micro-optimization and a defense against returning the same fsid to 1103 * different mounts. 1104 */ 1105 void 1106 vfs_getnewfsid(struct mount *mp) 1107 { 1108 static uint16_t mntid_base; 1109 struct mount *nmp; 1110 fsid_t tfsid; 1111 int mtype; 1112 1113 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 1114 mtx_lock(&mntid_mtx); 1115 mtype = mp->mnt_vfc->vfc_typenum; 1116 tfsid.val[1] = mtype; 1117 mtype = (mtype & 0xFF) << 24; 1118 for (;;) { 1119 tfsid.val[0] = makedev(255, 1120 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 1121 mntid_base++; 1122 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 1123 break; 1124 vfs_rel(nmp); 1125 } 1126 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 1127 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 1128 mtx_unlock(&mntid_mtx); 1129 } 1130 1131 /* 1132 * Knob to control the precision of file timestamps: 1133 * 1134 * 0 = seconds only; nanoseconds zeroed. 1135 * 1 = seconds and nanoseconds, accurate within 1/HZ. 1136 * 2 = seconds and nanoseconds, truncated to microseconds. 1137 * >=3 = seconds and nanoseconds, maximum precision. 1138 */ 1139 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 1140 1141 static int timestamp_precision = TSP_USEC; 1142 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 1143 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 1144 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, " 1145 "3+: sec + ns (max. precision))"); 1146 1147 /* 1148 * Get a current timestamp. 1149 */ 1150 void 1151 vfs_timestamp(struct timespec *tsp) 1152 { 1153 struct timeval tv; 1154 1155 switch (timestamp_precision) { 1156 case TSP_SEC: 1157 tsp->tv_sec = time_second; 1158 tsp->tv_nsec = 0; 1159 break; 1160 case TSP_HZ: 1161 getnanotime(tsp); 1162 break; 1163 case TSP_USEC: 1164 microtime(&tv); 1165 TIMEVAL_TO_TIMESPEC(&tv, tsp); 1166 break; 1167 case TSP_NSEC: 1168 default: 1169 nanotime(tsp); 1170 break; 1171 } 1172 } 1173 1174 /* 1175 * Set vnode attributes to VNOVAL 1176 */ 1177 void 1178 vattr_null(struct vattr *vap) 1179 { 1180 1181 vap->va_type = VNON; 1182 vap->va_size = VNOVAL; 1183 vap->va_bytes = VNOVAL; 1184 vap->va_mode = VNOVAL; 1185 vap->va_nlink = VNOVAL; 1186 vap->va_uid = VNOVAL; 1187 vap->va_gid = VNOVAL; 1188 vap->va_fsid = VNOVAL; 1189 vap->va_fileid = VNOVAL; 1190 vap->va_blocksize = VNOVAL; 1191 vap->va_rdev = VNOVAL; 1192 vap->va_atime.tv_sec = VNOVAL; 1193 vap->va_atime.tv_nsec = VNOVAL; 1194 vap->va_mtime.tv_sec = VNOVAL; 1195 vap->va_mtime.tv_nsec = VNOVAL; 1196 vap->va_ctime.tv_sec = VNOVAL; 1197 vap->va_ctime.tv_nsec = VNOVAL; 1198 vap->va_birthtime.tv_sec = VNOVAL; 1199 vap->va_birthtime.tv_nsec = VNOVAL; 1200 vap->va_flags = VNOVAL; 1201 vap->va_gen = VNOVAL; 1202 vap->va_vaflags = 0; 1203 vap->va_filerev = VNOVAL; 1204 } 1205 1206 /* 1207 * Try to reduce the total number of vnodes. 1208 * 1209 * This routine (and its user) are buggy in at least the following ways: 1210 * - all parameters were picked years ago when RAM sizes were significantly 1211 * smaller 1212 * - it can pick vnodes based on pages used by the vm object, but filesystems 1213 * like ZFS don't use it making the pick broken 1214 * - since ZFS has its own aging policy it gets partially combated by this one 1215 * - a dedicated method should be provided for filesystems to let them decide 1216 * whether the vnode should be recycled 1217 * 1218 * This routine is called when we have too many vnodes. It attempts 1219 * to free <count> vnodes and will potentially free vnodes that still 1220 * have VM backing store (VM backing store is typically the cause 1221 * of a vnode blowout so we want to do this). Therefore, this operation 1222 * is not considered cheap. 1223 * 1224 * A number of conditions may prevent a vnode from being reclaimed. 1225 * the buffer cache may have references on the vnode, a directory 1226 * vnode may still have references due to the namei cache representing 1227 * underlying files, or the vnode may be in active use. It is not 1228 * desirable to reuse such vnodes. These conditions may cause the 1229 * number of vnodes to reach some minimum value regardless of what 1230 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 1231 * 1232 * @param reclaim_nc_src Only reclaim directories with outgoing namecache 1233 * entries if this argument is strue 1234 * @param trigger Only reclaim vnodes with fewer than this many resident 1235 * pages. 1236 * @param target How many vnodes to reclaim. 1237 * @return The number of vnodes that were reclaimed. 1238 */ 1239 static int 1240 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target) 1241 { 1242 struct vnode *vp, *mvp; 1243 struct mount *mp; 1244 struct vm_object *object; 1245 u_long done; 1246 bool retried; 1247 1248 mtx_assert(&vnode_list_mtx, MA_OWNED); 1249 1250 retried = false; 1251 done = 0; 1252 1253 mvp = vnode_list_reclaim_marker; 1254 restart: 1255 vp = mvp; 1256 while (done < target) { 1257 vp = TAILQ_NEXT(vp, v_vnodelist); 1258 if (__predict_false(vp == NULL)) 1259 break; 1260 1261 if (__predict_false(vp->v_type == VMARKER)) 1262 continue; 1263 1264 /* 1265 * If it's been deconstructed already, it's still 1266 * referenced, or it exceeds the trigger, skip it. 1267 * Also skip free vnodes. We are trying to make space 1268 * for more free vnodes, not reduce their count. 1269 */ 1270 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 || 1271 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src))) 1272 goto next_iter; 1273 1274 if (vp->v_type == VBAD || vp->v_type == VNON) 1275 goto next_iter; 1276 1277 object = atomic_load_ptr(&vp->v_object); 1278 if (object == NULL || object->resident_page_count > trigger) { 1279 goto next_iter; 1280 } 1281 1282 /* 1283 * Handle races against vnode allocation. Filesystems lock the 1284 * vnode some time after it gets returned from getnewvnode, 1285 * despite type and hold count being manipulated earlier. 1286 * Resorting to checking v_mount restores guarantees present 1287 * before the global list was reworked to contain all vnodes. 1288 */ 1289 if (!VI_TRYLOCK(vp)) 1290 goto next_iter; 1291 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1292 VI_UNLOCK(vp); 1293 goto next_iter; 1294 } 1295 if (vp->v_mount == NULL) { 1296 VI_UNLOCK(vp); 1297 goto next_iter; 1298 } 1299 vholdl(vp); 1300 VI_UNLOCK(vp); 1301 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1302 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1303 mtx_unlock(&vnode_list_mtx); 1304 1305 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1306 vdrop_recycle(vp); 1307 goto next_iter_unlocked; 1308 } 1309 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) { 1310 vdrop_recycle(vp); 1311 vn_finished_write(mp); 1312 goto next_iter_unlocked; 1313 } 1314 1315 VI_LOCK(vp); 1316 if (vp->v_usecount > 0 || 1317 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || 1318 (vp->v_object != NULL && vp->v_object->handle == vp && 1319 vp->v_object->resident_page_count > trigger)) { 1320 VOP_UNLOCK(vp); 1321 vdropl_recycle(vp); 1322 vn_finished_write(mp); 1323 goto next_iter_unlocked; 1324 } 1325 recycles_count++; 1326 vgonel(vp); 1327 VOP_UNLOCK(vp); 1328 vdropl_recycle(vp); 1329 vn_finished_write(mp); 1330 done++; 1331 next_iter_unlocked: 1332 maybe_yield(); 1333 mtx_lock(&vnode_list_mtx); 1334 goto restart; 1335 next_iter: 1336 MPASS(vp->v_type != VMARKER); 1337 if (!should_yield()) 1338 continue; 1339 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1340 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1341 mtx_unlock(&vnode_list_mtx); 1342 kern_yield(PRI_USER); 1343 mtx_lock(&vnode_list_mtx); 1344 goto restart; 1345 } 1346 if (done == 0 && !retried) { 1347 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1348 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1349 retried = true; 1350 goto restart; 1351 } 1352 return (done); 1353 } 1354 1355 static int max_free_per_call = 10000; 1356 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0, 1357 "limit on vnode free requests per call to the vnlru_free routine (legacy)"); 1358 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW, 1359 &max_free_per_call, 0, 1360 "limit on vnode free requests per call to the vnlru_free routine"); 1361 1362 /* 1363 * Attempt to recycle requested amount of free vnodes. 1364 */ 1365 static int 1366 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru) 1367 { 1368 struct vnode *vp; 1369 struct mount *mp; 1370 int ocount; 1371 bool retried; 1372 1373 mtx_assert(&vnode_list_mtx, MA_OWNED); 1374 if (count > max_free_per_call) 1375 count = max_free_per_call; 1376 if (count == 0) { 1377 mtx_unlock(&vnode_list_mtx); 1378 return (0); 1379 } 1380 ocount = count; 1381 retried = false; 1382 vp = mvp; 1383 for (;;) { 1384 vp = TAILQ_NEXT(vp, v_vnodelist); 1385 if (__predict_false(vp == NULL)) { 1386 /* 1387 * The free vnode marker can be past eligible vnodes: 1388 * 1. if vdbatch_process trylock failed 1389 * 2. if vtryrecycle failed 1390 * 1391 * If so, start the scan from scratch. 1392 */ 1393 if (!retried && vnlru_read_freevnodes() > 0) { 1394 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1395 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1396 vp = mvp; 1397 retried = true; 1398 continue; 1399 } 1400 1401 /* 1402 * Give up 1403 */ 1404 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1405 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist); 1406 mtx_unlock(&vnode_list_mtx); 1407 break; 1408 } 1409 if (__predict_false(vp->v_type == VMARKER)) 1410 continue; 1411 if (vp->v_holdcnt > 0) 1412 continue; 1413 /* 1414 * Don't recycle if our vnode is from different type 1415 * of mount point. Note that mp is type-safe, the 1416 * check does not reach unmapped address even if 1417 * vnode is reclaimed. 1418 */ 1419 if (mnt_op != NULL && (mp = vp->v_mount) != NULL && 1420 mp->mnt_op != mnt_op) { 1421 continue; 1422 } 1423 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1424 continue; 1425 } 1426 if (!vhold_recycle_free(vp)) 1427 continue; 1428 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1429 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1430 mtx_unlock(&vnode_list_mtx); 1431 /* 1432 * FIXME: ignores the return value, meaning it may be nothing 1433 * got recycled but it claims otherwise to the caller. 1434 * 1435 * Originally the value started being ignored in 2005 with 1436 * 114a1006a8204aa156e1f9ad6476cdff89cada7f . 1437 * 1438 * Respecting the value can run into significant stalls if most 1439 * vnodes belong to one file system and it has writes 1440 * suspended. In presence of many threads and millions of 1441 * vnodes they keep contending on the vnode_list_mtx lock only 1442 * to find vnodes they can't recycle. 1443 * 1444 * The solution would be to pre-check if the vnode is likely to 1445 * be recycle-able, but it needs to happen with the 1446 * vnode_list_mtx lock held. This runs into a problem where 1447 * VOP_GETWRITEMOUNT (currently needed to find out about if 1448 * writes are frozen) can take locks which LOR against it. 1449 * 1450 * Check nullfs for one example (null_getwritemount). 1451 */ 1452 vtryrecycle(vp, isvnlru); 1453 count--; 1454 if (count == 0) { 1455 break; 1456 } 1457 mtx_lock(&vnode_list_mtx); 1458 vp = mvp; 1459 } 1460 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1461 return (ocount - count); 1462 } 1463 1464 /* 1465 * XXX: returns without vnode_list_mtx locked! 1466 */ 1467 static int 1468 vnlru_free_locked_direct(int count) 1469 { 1470 int ret; 1471 1472 mtx_assert(&vnode_list_mtx, MA_OWNED); 1473 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false); 1474 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1475 return (ret); 1476 } 1477 1478 static int 1479 vnlru_free_locked_vnlru(int count) 1480 { 1481 int ret; 1482 1483 mtx_assert(&vnode_list_mtx, MA_OWNED); 1484 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true); 1485 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1486 return (ret); 1487 } 1488 1489 static int 1490 vnlru_free_vnlru(int count) 1491 { 1492 1493 mtx_lock(&vnode_list_mtx); 1494 return (vnlru_free_locked_vnlru(count)); 1495 } 1496 1497 void 1498 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp) 1499 { 1500 1501 MPASS(mnt_op != NULL); 1502 MPASS(mvp != NULL); 1503 VNPASS(mvp->v_type == VMARKER, mvp); 1504 mtx_lock(&vnode_list_mtx); 1505 vnlru_free_impl(count, mnt_op, mvp, true); 1506 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1507 } 1508 1509 struct vnode * 1510 vnlru_alloc_marker(void) 1511 { 1512 struct vnode *mvp; 1513 1514 mvp = vn_alloc_marker(NULL); 1515 mtx_lock(&vnode_list_mtx); 1516 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist); 1517 mtx_unlock(&vnode_list_mtx); 1518 return (mvp); 1519 } 1520 1521 void 1522 vnlru_free_marker(struct vnode *mvp) 1523 { 1524 mtx_lock(&vnode_list_mtx); 1525 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1526 mtx_unlock(&vnode_list_mtx); 1527 vn_free_marker(mvp); 1528 } 1529 1530 static void 1531 vnlru_recalc(void) 1532 { 1533 1534 mtx_assert(&vnode_list_mtx, MA_OWNED); 1535 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100); 1536 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */ 1537 vlowat = vhiwat / 2; 1538 } 1539 1540 /* 1541 * Attempt to recycle vnodes in a context that is always safe to block. 1542 * Calling vlrurecycle() from the bowels of filesystem code has some 1543 * interesting deadlock problems. 1544 */ 1545 static struct proc *vnlruproc; 1546 static int vnlruproc_sig; 1547 static u_long vnlruproc_kicks; 1548 1549 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0, 1550 "Number of times vnlru awakened due to vnode shortage"); 1551 1552 #define VNLRU_COUNT_SLOP 100 1553 1554 /* 1555 * The main freevnodes counter is only updated when a counter local to CPU 1556 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally 1557 * walked to compute a more accurate total. 1558 * 1559 * Note: the actual value at any given moment can still exceed slop, but it 1560 * should not be by significant margin in practice. 1561 */ 1562 #define VNLRU_FREEVNODES_SLOP 126 1563 1564 static void __noinline 1565 vfs_freevnodes_rollup(int8_t *lfreevnodes) 1566 { 1567 1568 atomic_add_long(&freevnodes, *lfreevnodes); 1569 *lfreevnodes = 0; 1570 critical_exit(); 1571 } 1572 1573 static __inline void 1574 vfs_freevnodes_inc(void) 1575 { 1576 int8_t *lfreevnodes; 1577 1578 critical_enter(); 1579 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1580 (*lfreevnodes)++; 1581 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP)) 1582 vfs_freevnodes_rollup(lfreevnodes); 1583 else 1584 critical_exit(); 1585 } 1586 1587 static __inline void 1588 vfs_freevnodes_dec(void) 1589 { 1590 int8_t *lfreevnodes; 1591 1592 critical_enter(); 1593 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1594 (*lfreevnodes)--; 1595 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP)) 1596 vfs_freevnodes_rollup(lfreevnodes); 1597 else 1598 critical_exit(); 1599 } 1600 1601 static u_long 1602 vnlru_read_freevnodes(void) 1603 { 1604 long slop, rfreevnodes, rfreevnodes_old; 1605 int cpu; 1606 1607 rfreevnodes = atomic_load_long(&freevnodes); 1608 rfreevnodes_old = atomic_load_long(&freevnodes_old); 1609 1610 if (rfreevnodes > rfreevnodes_old) 1611 slop = rfreevnodes - rfreevnodes_old; 1612 else 1613 slop = rfreevnodes_old - rfreevnodes; 1614 if (slop < VNLRU_FREEVNODES_SLOP) 1615 return (rfreevnodes >= 0 ? rfreevnodes : 0); 1616 CPU_FOREACH(cpu) { 1617 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes; 1618 } 1619 atomic_store_long(&freevnodes_old, rfreevnodes); 1620 return (freevnodes_old >= 0 ? freevnodes_old : 0); 1621 } 1622 1623 static bool 1624 vnlru_under(u_long rnumvnodes, u_long limit) 1625 { 1626 u_long rfreevnodes, space; 1627 1628 if (__predict_false(rnumvnodes > desiredvnodes)) 1629 return (true); 1630 1631 space = desiredvnodes - rnumvnodes; 1632 if (space < limit) { 1633 rfreevnodes = vnlru_read_freevnodes(); 1634 if (rfreevnodes > wantfreevnodes) 1635 space += rfreevnodes - wantfreevnodes; 1636 } 1637 return (space < limit); 1638 } 1639 1640 static void 1641 vnlru_kick_locked(void) 1642 { 1643 1644 mtx_assert(&vnode_list_mtx, MA_OWNED); 1645 if (vnlruproc_sig == 0) { 1646 vnlruproc_sig = 1; 1647 vnlruproc_kicks++; 1648 wakeup(vnlruproc); 1649 } 1650 } 1651 1652 static void 1653 vnlru_kick_cond(void) 1654 { 1655 1656 if (vnlru_read_freevnodes() > wantfreevnodes) 1657 return; 1658 1659 if (vnlruproc_sig) 1660 return; 1661 mtx_lock(&vnode_list_mtx); 1662 vnlru_kick_locked(); 1663 mtx_unlock(&vnode_list_mtx); 1664 } 1665 1666 static void 1667 vnlru_proc_sleep(void) 1668 { 1669 1670 if (vnlruproc_sig) { 1671 vnlruproc_sig = 0; 1672 wakeup(&vnlruproc_sig); 1673 } 1674 msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz); 1675 } 1676 1677 /* 1678 * A lighter version of the machinery below. 1679 * 1680 * Tries to reach goals only by recycling free vnodes and does not invoke 1681 * uma_reclaim(UMA_RECLAIM_DRAIN). 1682 * 1683 * This works around pathological behavior in vnlru in presence of tons of free 1684 * vnodes, but without having to rewrite the machinery at this time. Said 1685 * behavior boils down to continuously trying to reclaim all kinds of vnodes 1686 * (cycling through all levels of "force") when the count is transiently above 1687 * limit. This happens a lot when all vnodes are used up and vn_alloc 1688 * speculatively increments the counter. 1689 * 1690 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with 1691 * 1 million files in total and 20 find(1) processes stating them in parallel 1692 * (one per each tree). 1693 * 1694 * On a kernel with only stock machinery this needs anywhere between 60 and 120 1695 * seconds to execute (time varies *wildly* between runs). With the workaround 1696 * it consistently stays around 20 seconds [it got further down with later 1697 * changes]. 1698 * 1699 * That is to say the entire thing needs a fundamental redesign (most notably 1700 * to accommodate faster recycling), the above only tries to get it ouf the way. 1701 * 1702 * Return values are: 1703 * -1 -- fallback to regular vnlru loop 1704 * 0 -- do nothing, go to sleep 1705 * >0 -- recycle this many vnodes 1706 */ 1707 static long 1708 vnlru_proc_light_pick(void) 1709 { 1710 u_long rnumvnodes, rfreevnodes; 1711 1712 if (vstir || vnlruproc_sig == 1) 1713 return (-1); 1714 1715 rnumvnodes = atomic_load_long(&numvnodes); 1716 rfreevnodes = vnlru_read_freevnodes(); 1717 1718 /* 1719 * vnode limit might have changed and now we may be at a significant 1720 * excess. Bail if we can't sort it out with free vnodes. 1721 * 1722 * Due to atomic updates the count can legitimately go above 1723 * the limit for a short period, don't bother doing anything in 1724 * that case. 1725 */ 1726 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) { 1727 if (rnumvnodes - rfreevnodes >= desiredvnodes || 1728 rfreevnodes <= wantfreevnodes) { 1729 return (-1); 1730 } 1731 1732 return (rnumvnodes - desiredvnodes); 1733 } 1734 1735 /* 1736 * Don't try to reach wantfreevnodes target if there are too few vnodes 1737 * to begin with. 1738 */ 1739 if (rnumvnodes < wantfreevnodes) { 1740 return (0); 1741 } 1742 1743 if (rfreevnodes < wantfreevnodes) { 1744 return (-1); 1745 } 1746 1747 return (0); 1748 } 1749 1750 static bool 1751 vnlru_proc_light(void) 1752 { 1753 long freecount; 1754 1755 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1756 1757 freecount = vnlru_proc_light_pick(); 1758 if (freecount == -1) 1759 return (false); 1760 1761 if (freecount != 0) { 1762 vnlru_free_vnlru(freecount); 1763 } 1764 1765 mtx_lock(&vnode_list_mtx); 1766 vnlru_proc_sleep(); 1767 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1768 return (true); 1769 } 1770 1771 static u_long uma_reclaim_calls; 1772 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS, 1773 &uma_reclaim_calls, 0, "Number of calls to uma_reclaim"); 1774 1775 static void 1776 vnlru_proc(void) 1777 { 1778 u_long rnumvnodes, rfreevnodes, target; 1779 unsigned long onumvnodes; 1780 int done, force, trigger, usevnodes; 1781 bool reclaim_nc_src, want_reread; 1782 1783 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc, 1784 SHUTDOWN_PRI_FIRST); 1785 1786 force = 0; 1787 want_reread = false; 1788 for (;;) { 1789 kproc_suspend_check(vnlruproc); 1790 1791 if (force == 0 && vnlru_proc_light()) 1792 continue; 1793 1794 mtx_lock(&vnode_list_mtx); 1795 rnumvnodes = atomic_load_long(&numvnodes); 1796 1797 if (want_reread) { 1798 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0; 1799 want_reread = false; 1800 } 1801 1802 /* 1803 * If numvnodes is too large (due to desiredvnodes being 1804 * adjusted using its sysctl, or emergency growth), first 1805 * try to reduce it by discarding free vnodes. 1806 */ 1807 if (rnumvnodes > desiredvnodes + 10) { 1808 vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes); 1809 mtx_lock(&vnode_list_mtx); 1810 rnumvnodes = atomic_load_long(&numvnodes); 1811 } 1812 /* 1813 * Sleep if the vnode cache is in a good state. This is 1814 * when it is not over-full and has space for about a 4% 1815 * or 9% expansion (by growing its size or inexcessively 1816 * reducing free vnode count). Otherwise, try to reclaim 1817 * space for a 10% expansion. 1818 */ 1819 if (vstir && force == 0) { 1820 force = 1; 1821 vstir = false; 1822 } 1823 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) { 1824 vnlru_proc_sleep(); 1825 continue; 1826 } 1827 rfreevnodes = vnlru_read_freevnodes(); 1828 1829 onumvnodes = rnumvnodes; 1830 /* 1831 * Calculate parameters for recycling. These are the same 1832 * throughout the loop to give some semblance of fairness. 1833 * The trigger point is to avoid recycling vnodes with lots 1834 * of resident pages. We aren't trying to free memory; we 1835 * are trying to recycle or at least free vnodes. 1836 */ 1837 if (rnumvnodes <= desiredvnodes) 1838 usevnodes = rnumvnodes - rfreevnodes; 1839 else 1840 usevnodes = rnumvnodes; 1841 if (usevnodes <= 0) 1842 usevnodes = 1; 1843 /* 1844 * The trigger value is chosen to give a conservatively 1845 * large value to ensure that it alone doesn't prevent 1846 * making progress. The value can easily be so large that 1847 * it is effectively infinite in some congested and 1848 * misconfigured cases, and this is necessary. Normally 1849 * it is about 8 to 100 (pages), which is quite large. 1850 */ 1851 trigger = vm_cnt.v_page_count * 2 / usevnodes; 1852 if (force < 2) 1853 trigger = vsmalltrigger; 1854 reclaim_nc_src = force >= 3; 1855 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1); 1856 target = target / 10 + 1; 1857 done = vlrureclaim(reclaim_nc_src, trigger, target); 1858 mtx_unlock(&vnode_list_mtx); 1859 /* 1860 * Total number of vnodes can transiently go slightly above the 1861 * limit (see vn_alloc_hard), no need to call uma_reclaim if 1862 * this happens. 1863 */ 1864 if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes && 1865 numvnodes <= desiredvnodes) { 1866 uma_reclaim_calls++; 1867 uma_reclaim(UMA_RECLAIM_DRAIN); 1868 } 1869 if (done == 0) { 1870 if (force == 0 || force == 1) { 1871 force = 2; 1872 continue; 1873 } 1874 if (force == 2) { 1875 force = 3; 1876 continue; 1877 } 1878 want_reread = true; 1879 force = 0; 1880 vnlru_nowhere++; 1881 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 1882 } else { 1883 want_reread = true; 1884 kern_yield(PRI_USER); 1885 } 1886 } 1887 } 1888 1889 static struct kproc_desc vnlru_kp = { 1890 "vnlru", 1891 vnlru_proc, 1892 &vnlruproc 1893 }; 1894 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 1895 &vnlru_kp); 1896 1897 /* 1898 * Routines having to do with the management of the vnode table. 1899 */ 1900 1901 /* 1902 * Try to recycle a freed vnode. 1903 */ 1904 static int 1905 vtryrecycle(struct vnode *vp, bool isvnlru) 1906 { 1907 struct mount *vnmp; 1908 1909 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 1910 VNPASS(vp->v_holdcnt > 0, vp); 1911 /* 1912 * This vnode may found and locked via some other list, if so we 1913 * can't recycle it yet. 1914 */ 1915 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1916 CTR2(KTR_VFS, 1917 "%s: impossible to recycle, vp %p lock is already held", 1918 __func__, vp); 1919 vdrop_recycle(vp); 1920 return (EWOULDBLOCK); 1921 } 1922 /* 1923 * Don't recycle if its filesystem is being suspended. 1924 */ 1925 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 1926 VOP_UNLOCK(vp); 1927 CTR2(KTR_VFS, 1928 "%s: impossible to recycle, cannot start the write for %p", 1929 __func__, vp); 1930 vdrop_recycle(vp); 1931 return (EBUSY); 1932 } 1933 /* 1934 * If we got this far, we need to acquire the interlock and see if 1935 * anyone picked up this vnode from another list. If not, we will 1936 * mark it with DOOMED via vgonel() so that anyone who does find it 1937 * will skip over it. 1938 */ 1939 VI_LOCK(vp); 1940 if (vp->v_usecount) { 1941 VOP_UNLOCK(vp); 1942 vdropl_recycle(vp); 1943 vn_finished_write(vnmp); 1944 CTR2(KTR_VFS, 1945 "%s: impossible to recycle, %p is already referenced", 1946 __func__, vp); 1947 return (EBUSY); 1948 } 1949 if (!VN_IS_DOOMED(vp)) { 1950 if (isvnlru) 1951 recycles_free_count++; 1952 else 1953 counter_u64_add(direct_recycles_free_count, 1); 1954 vgonel(vp); 1955 } 1956 VOP_UNLOCK(vp); 1957 vdropl_recycle(vp); 1958 vn_finished_write(vnmp); 1959 return (0); 1960 } 1961 1962 /* 1963 * Allocate a new vnode. 1964 * 1965 * The operation never returns an error. Returning an error was disabled 1966 * in r145385 (dated 2005) with the following comment: 1967 * 1968 * XXX Not all VFS_VGET/ffs_vget callers check returns. 1969 * 1970 * Given the age of this commit (almost 15 years at the time of writing this 1971 * comment) restoring the ability to fail requires a significant audit of 1972 * all codepaths. 1973 * 1974 * The routine can try to free a vnode or stall for up to 1 second waiting for 1975 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation. 1976 */ 1977 static u_long vn_alloc_cyclecount; 1978 static u_long vn_alloc_sleeps; 1979 1980 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0, 1981 "Number of times vnode allocation blocked waiting on vnlru"); 1982 1983 static struct vnode * __noinline 1984 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped) 1985 { 1986 u_long rfreevnodes; 1987 1988 if (bumped) { 1989 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) { 1990 atomic_subtract_long(&numvnodes, 1); 1991 bumped = false; 1992 } 1993 } 1994 1995 mtx_lock(&vnode_list_mtx); 1996 1997 rfreevnodes = vnlru_read_freevnodes(); 1998 if (vn_alloc_cyclecount++ >= rfreevnodes) { 1999 vn_alloc_cyclecount = 0; 2000 vstir = true; 2001 } 2002 /* 2003 * Grow the vnode cache if it will not be above its target max after 2004 * growing. Otherwise, if there is at least one free vnode, try to 2005 * reclaim 1 item from it before growing the cache (possibly above its 2006 * target max if the reclamation failed or is delayed). 2007 */ 2008 if (vnlru_free_locked_direct(1) > 0) 2009 goto alloc; 2010 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 2011 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2012 /* 2013 * Wait for space for a new vnode. 2014 */ 2015 if (bumped) { 2016 atomic_subtract_long(&numvnodes, 1); 2017 bumped = false; 2018 } 2019 mtx_lock(&vnode_list_mtx); 2020 vnlru_kick_locked(); 2021 vn_alloc_sleeps++; 2022 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz); 2023 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes && 2024 vnlru_read_freevnodes() > 1) 2025 vnlru_free_locked_direct(1); 2026 else 2027 mtx_unlock(&vnode_list_mtx); 2028 } 2029 alloc: 2030 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 2031 if (!bumped) 2032 atomic_add_long(&numvnodes, 1); 2033 vnlru_kick_cond(); 2034 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 2035 } 2036 2037 static struct vnode * 2038 vn_alloc(struct mount *mp) 2039 { 2040 u_long rnumvnodes; 2041 2042 if (__predict_false(vn_alloc_cyclecount != 0)) 2043 return (vn_alloc_hard(mp, 0, false)); 2044 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 2045 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) { 2046 return (vn_alloc_hard(mp, rnumvnodes, true)); 2047 } 2048 2049 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 2050 } 2051 2052 static void 2053 vn_free(struct vnode *vp) 2054 { 2055 2056 atomic_subtract_long(&numvnodes, 1); 2057 uma_zfree_smr(vnode_zone, vp); 2058 } 2059 2060 /* 2061 * Allocate a new vnode. 2062 */ 2063 int 2064 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 2065 struct vnode **vpp) 2066 { 2067 struct vnode *vp; 2068 struct thread *td; 2069 struct lock_object *lo; 2070 2071 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 2072 2073 KASSERT(vops->registered, 2074 ("%s: not registered vector op %p\n", __func__, vops)); 2075 cache_validate_vop_vector(mp, vops); 2076 2077 td = curthread; 2078 if (td->td_vp_reserved != NULL) { 2079 vp = td->td_vp_reserved; 2080 td->td_vp_reserved = NULL; 2081 } else { 2082 vp = vn_alloc(mp); 2083 } 2084 counter_u64_add(vnodes_created, 1); 2085 2086 vn_set_state(vp, VSTATE_UNINITIALIZED); 2087 2088 /* 2089 * Locks are given the generic name "vnode" when created. 2090 * Follow the historic practice of using the filesystem 2091 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc. 2092 * 2093 * Locks live in a witness group keyed on their name. Thus, 2094 * when a lock is renamed, it must also move from the witness 2095 * group of its old name to the witness group of its new name. 2096 * 2097 * The change only needs to be made when the vnode moves 2098 * from one filesystem type to another. We ensure that each 2099 * filesystem use a single static name pointer for its tag so 2100 * that we can compare pointers rather than doing a strcmp(). 2101 */ 2102 lo = &vp->v_vnlock->lock_object; 2103 #ifdef WITNESS 2104 if (lo->lo_name != tag) { 2105 #endif 2106 lo->lo_name = tag; 2107 #ifdef WITNESS 2108 WITNESS_DESTROY(lo); 2109 WITNESS_INIT(lo, tag); 2110 } 2111 #endif 2112 /* 2113 * By default, don't allow shared locks unless filesystems opt-in. 2114 */ 2115 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE; 2116 /* 2117 * Finalize various vnode identity bits. 2118 */ 2119 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp)); 2120 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp)); 2121 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp)); 2122 vp->v_type = VNON; 2123 vp->v_op = vops; 2124 vp->v_irflag = 0; 2125 v_init_counters(vp); 2126 vn_seqc_init(vp); 2127 vp->v_bufobj.bo_ops = &buf_ops_bio; 2128 #ifdef DIAGNOSTIC 2129 if (mp == NULL && vops != &dead_vnodeops) 2130 printf("NULL mp in getnewvnode(9), tag %s\n", tag); 2131 #endif 2132 #ifdef MAC 2133 mac_vnode_init(vp); 2134 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 2135 mac_vnode_associate_singlelabel(mp, vp); 2136 #endif 2137 if (mp != NULL) { 2138 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize; 2139 } 2140 2141 /* 2142 * For the filesystems which do not use vfs_hash_insert(), 2143 * still initialize v_hash to have vfs_hash_index() useful. 2144 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 2145 * its own hashing. 2146 */ 2147 vp->v_hash = (uintptr_t)vp >> vnsz2log; 2148 2149 *vpp = vp; 2150 return (0); 2151 } 2152 2153 void 2154 getnewvnode_reserve(void) 2155 { 2156 struct thread *td; 2157 2158 td = curthread; 2159 MPASS(td->td_vp_reserved == NULL); 2160 td->td_vp_reserved = vn_alloc(NULL); 2161 } 2162 2163 void 2164 getnewvnode_drop_reserve(void) 2165 { 2166 struct thread *td; 2167 2168 td = curthread; 2169 if (td->td_vp_reserved != NULL) { 2170 vn_free(td->td_vp_reserved); 2171 td->td_vp_reserved = NULL; 2172 } 2173 } 2174 2175 static void __noinline 2176 freevnode(struct vnode *vp) 2177 { 2178 struct bufobj *bo; 2179 2180 /* 2181 * The vnode has been marked for destruction, so free it. 2182 * 2183 * The vnode will be returned to the zone where it will 2184 * normally remain until it is needed for another vnode. We 2185 * need to cleanup (or verify that the cleanup has already 2186 * been done) any residual data left from its current use 2187 * so as not to contaminate the freshly allocated vnode. 2188 */ 2189 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 2190 /* 2191 * Paired with vgone. 2192 */ 2193 vn_seqc_write_end_free(vp); 2194 2195 bo = &vp->v_bufobj; 2196 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 2197 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp); 2198 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 2199 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 2200 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 2201 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 2202 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 2203 ("clean blk trie not empty")); 2204 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 2205 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 2206 ("dirty blk trie not empty")); 2207 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp, 2208 ("Leaked inactivation")); 2209 VI_UNLOCK(vp); 2210 cache_assert_no_entries(vp); 2211 2212 #ifdef MAC 2213 mac_vnode_destroy(vp); 2214 #endif 2215 if (vp->v_pollinfo != NULL) { 2216 /* 2217 * Use LK_NOWAIT to shut up witness about the lock. We may get 2218 * here while having another vnode locked when trying to 2219 * satisfy a lookup and needing to recycle. 2220 */ 2221 VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT); 2222 destroy_vpollinfo(vp->v_pollinfo); 2223 VOP_UNLOCK(vp); 2224 vp->v_pollinfo = NULL; 2225 } 2226 vp->v_mountedhere = NULL; 2227 vp->v_unpcb = NULL; 2228 vp->v_rdev = NULL; 2229 vp->v_fifoinfo = NULL; 2230 vp->v_iflag = 0; 2231 vp->v_vflag = 0; 2232 bo->bo_flag = 0; 2233 vn_free(vp); 2234 } 2235 2236 /* 2237 * Delete from old mount point vnode list, if on one. 2238 */ 2239 static void 2240 delmntque(struct vnode *vp) 2241 { 2242 struct mount *mp; 2243 2244 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 2245 2246 mp = vp->v_mount; 2247 MNT_ILOCK(mp); 2248 VI_LOCK(vp); 2249 vp->v_mount = NULL; 2250 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 2251 ("bad mount point vnode list size")); 2252 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2253 mp->mnt_nvnodelistsize--; 2254 MNT_REL(mp); 2255 MNT_IUNLOCK(mp); 2256 /* 2257 * The caller expects the interlock to be still held. 2258 */ 2259 ASSERT_VI_LOCKED(vp, __func__); 2260 } 2261 2262 static int 2263 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr) 2264 { 2265 2266 KASSERT(vp->v_mount == NULL, 2267 ("insmntque: vnode already on per mount vnode list")); 2268 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 2269 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) { 2270 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 2271 } else { 2272 KASSERT(!dtr, 2273 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup", 2274 __func__)); 2275 } 2276 2277 /* 2278 * We acquire the vnode interlock early to ensure that the 2279 * vnode cannot be recycled by another process releasing a 2280 * holdcnt on it before we get it on both the vnode list 2281 * and the active vnode list. The mount mutex protects only 2282 * manipulation of the vnode list and the vnode freelist 2283 * mutex protects only manipulation of the active vnode list. 2284 * Hence the need to hold the vnode interlock throughout. 2285 */ 2286 MNT_ILOCK(mp); 2287 VI_LOCK(vp); 2288 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 && 2289 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 2290 mp->mnt_nvnodelistsize == 0)) && 2291 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 2292 VI_UNLOCK(vp); 2293 MNT_IUNLOCK(mp); 2294 if (dtr) { 2295 vp->v_data = NULL; 2296 vp->v_op = &dead_vnodeops; 2297 vgone(vp); 2298 vput(vp); 2299 } 2300 return (EBUSY); 2301 } 2302 vp->v_mount = mp; 2303 MNT_REF(mp); 2304 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2305 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 2306 ("neg mount point vnode list size")); 2307 mp->mnt_nvnodelistsize++; 2308 VI_UNLOCK(vp); 2309 MNT_IUNLOCK(mp); 2310 return (0); 2311 } 2312 2313 /* 2314 * Insert into list of vnodes for the new mount point, if available. 2315 * insmntque() reclaims the vnode on insertion failure, insmntque1() 2316 * leaves handling of the vnode to the caller. 2317 */ 2318 int 2319 insmntque(struct vnode *vp, struct mount *mp) 2320 { 2321 return (insmntque1_int(vp, mp, true)); 2322 } 2323 2324 int 2325 insmntque1(struct vnode *vp, struct mount *mp) 2326 { 2327 return (insmntque1_int(vp, mp, false)); 2328 } 2329 2330 /* 2331 * Flush out and invalidate all buffers associated with a bufobj 2332 * Called with the underlying object locked. 2333 */ 2334 int 2335 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 2336 { 2337 int error; 2338 2339 BO_LOCK(bo); 2340 if (flags & V_SAVE) { 2341 error = bufobj_wwait(bo, slpflag, slptimeo); 2342 if (error) { 2343 BO_UNLOCK(bo); 2344 return (error); 2345 } 2346 if (bo->bo_dirty.bv_cnt > 0) { 2347 BO_UNLOCK(bo); 2348 do { 2349 error = BO_SYNC(bo, MNT_WAIT); 2350 } while (error == ERELOOKUP); 2351 if (error != 0) 2352 return (error); 2353 BO_LOCK(bo); 2354 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 2355 BO_UNLOCK(bo); 2356 return (EBUSY); 2357 } 2358 } 2359 } 2360 /* 2361 * If you alter this loop please notice that interlock is dropped and 2362 * reacquired in flushbuflist. Special care is needed to ensure that 2363 * no race conditions occur from this. 2364 */ 2365 do { 2366 error = flushbuflist(&bo->bo_clean, 2367 flags, bo, slpflag, slptimeo); 2368 if (error == 0 && !(flags & V_CLEANONLY)) 2369 error = flushbuflist(&bo->bo_dirty, 2370 flags, bo, slpflag, slptimeo); 2371 if (error != 0 && error != EAGAIN) { 2372 BO_UNLOCK(bo); 2373 return (error); 2374 } 2375 } while (error != 0); 2376 2377 /* 2378 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 2379 * have write I/O in-progress but if there is a VM object then the 2380 * VM object can also have read-I/O in-progress. 2381 */ 2382 do { 2383 bufobj_wwait(bo, 0, 0); 2384 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) { 2385 BO_UNLOCK(bo); 2386 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx"); 2387 BO_LOCK(bo); 2388 } 2389 } while (bo->bo_numoutput > 0); 2390 BO_UNLOCK(bo); 2391 2392 /* 2393 * Destroy the copy in the VM cache, too. 2394 */ 2395 if (bo->bo_object != NULL && 2396 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) { 2397 VM_OBJECT_WLOCK(bo->bo_object); 2398 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 2399 OBJPR_CLEANONLY : 0); 2400 VM_OBJECT_WUNLOCK(bo->bo_object); 2401 } 2402 2403 #ifdef INVARIANTS 2404 BO_LOCK(bo); 2405 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO | 2406 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 || 2407 bo->bo_clean.bv_cnt > 0)) 2408 panic("vinvalbuf: flush failed"); 2409 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 && 2410 bo->bo_dirty.bv_cnt > 0) 2411 panic("vinvalbuf: flush dirty failed"); 2412 BO_UNLOCK(bo); 2413 #endif 2414 return (0); 2415 } 2416 2417 /* 2418 * Flush out and invalidate all buffers associated with a vnode. 2419 * Called with the underlying object locked. 2420 */ 2421 int 2422 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 2423 { 2424 2425 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2426 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 2427 if (vp->v_object != NULL && vp->v_object->handle != vp) 2428 return (0); 2429 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 2430 } 2431 2432 /* 2433 * Flush out buffers on the specified list. 2434 * 2435 */ 2436 static int 2437 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 2438 int slptimeo) 2439 { 2440 struct buf *bp, *nbp; 2441 int retval, error; 2442 daddr_t lblkno; 2443 b_xflags_t xflags; 2444 2445 ASSERT_BO_WLOCKED(bo); 2446 2447 retval = 0; 2448 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 2449 /* 2450 * If we are flushing both V_NORMAL and V_ALT buffers then 2451 * do not skip any buffers. If we are flushing only V_NORMAL 2452 * buffers then skip buffers marked as BX_ALTDATA. If we are 2453 * flushing only V_ALT buffers then skip buffers not marked 2454 * as BX_ALTDATA. 2455 */ 2456 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) && 2457 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) || 2458 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) { 2459 continue; 2460 } 2461 if (nbp != NULL) { 2462 lblkno = nbp->b_lblkno; 2463 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 2464 } 2465 retval = EAGAIN; 2466 error = BUF_TIMELOCK(bp, 2467 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 2468 "flushbuf", slpflag, slptimeo); 2469 if (error) { 2470 BO_LOCK(bo); 2471 return (error != ENOLCK ? error : EAGAIN); 2472 } 2473 KASSERT(bp->b_bufobj == bo, 2474 ("bp %p wrong b_bufobj %p should be %p", 2475 bp, bp->b_bufobj, bo)); 2476 /* 2477 * XXX Since there are no node locks for NFS, I 2478 * believe there is a slight chance that a delayed 2479 * write will occur while sleeping just above, so 2480 * check for it. 2481 */ 2482 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 2483 (flags & V_SAVE)) { 2484 bremfree(bp); 2485 bp->b_flags |= B_ASYNC; 2486 bwrite(bp); 2487 BO_LOCK(bo); 2488 return (EAGAIN); /* XXX: why not loop ? */ 2489 } 2490 bremfree(bp); 2491 bp->b_flags |= (B_INVAL | B_RELBUF); 2492 bp->b_flags &= ~B_ASYNC; 2493 brelse(bp); 2494 BO_LOCK(bo); 2495 if (nbp == NULL) 2496 break; 2497 nbp = gbincore(bo, lblkno); 2498 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2499 != xflags) 2500 break; /* nbp invalid */ 2501 } 2502 return (retval); 2503 } 2504 2505 int 2506 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn) 2507 { 2508 struct buf *bp; 2509 int error; 2510 daddr_t lblkno; 2511 2512 ASSERT_BO_LOCKED(bo); 2513 2514 for (lblkno = startn;;) { 2515 again: 2516 bp = buf_lookup_ge(bufv, lblkno); 2517 if (bp == NULL || bp->b_lblkno >= endn) 2518 break; 2519 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 2520 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0); 2521 if (error != 0) { 2522 BO_RLOCK(bo); 2523 if (error == ENOLCK) 2524 goto again; 2525 return (error); 2526 } 2527 KASSERT(bp->b_bufobj == bo, 2528 ("bp %p wrong b_bufobj %p should be %p", 2529 bp, bp->b_bufobj, bo)); 2530 lblkno = bp->b_lblkno + 1; 2531 if ((bp->b_flags & B_MANAGED) == 0) 2532 bremfree(bp); 2533 bp->b_flags |= B_RELBUF; 2534 /* 2535 * In the VMIO case, use the B_NOREUSE flag to hint that the 2536 * pages backing each buffer in the range are unlikely to be 2537 * reused. Dirty buffers will have the hint applied once 2538 * they've been written. 2539 */ 2540 if ((bp->b_flags & B_VMIO) != 0) 2541 bp->b_flags |= B_NOREUSE; 2542 brelse(bp); 2543 BO_RLOCK(bo); 2544 } 2545 return (0); 2546 } 2547 2548 /* 2549 * Truncate a file's buffer and pages to a specified length. This 2550 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 2551 * sync activity. 2552 */ 2553 int 2554 vtruncbuf(struct vnode *vp, off_t length, int blksize) 2555 { 2556 struct buf *bp, *nbp; 2557 struct bufobj *bo; 2558 daddr_t startlbn; 2559 2560 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__, 2561 vp, blksize, (uintmax_t)length); 2562 2563 /* 2564 * Round up to the *next* lbn. 2565 */ 2566 startlbn = howmany(length, blksize); 2567 2568 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 2569 2570 bo = &vp->v_bufobj; 2571 restart_unlocked: 2572 BO_LOCK(bo); 2573 2574 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN) 2575 ; 2576 2577 if (length > 0) { 2578 /* 2579 * Write out vnode metadata, e.g. indirect blocks. 2580 */ 2581 restartsync: 2582 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2583 if (bp->b_lblkno >= 0) 2584 continue; 2585 /* 2586 * Since we hold the vnode lock this should only 2587 * fail if we're racing with the buf daemon. 2588 */ 2589 if (BUF_LOCK(bp, 2590 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2591 BO_LOCKPTR(bo)) == ENOLCK) 2592 goto restart_unlocked; 2593 2594 VNASSERT((bp->b_flags & B_DELWRI), vp, 2595 ("buf(%p) on dirty queue without DELWRI", bp)); 2596 2597 bremfree(bp); 2598 bawrite(bp); 2599 BO_LOCK(bo); 2600 goto restartsync; 2601 } 2602 } 2603 2604 bufobj_wwait(bo, 0, 0); 2605 BO_UNLOCK(bo); 2606 vnode_pager_setsize(vp, length); 2607 2608 return (0); 2609 } 2610 2611 /* 2612 * Invalidate the cached pages of a file's buffer within the range of block 2613 * numbers [startlbn, endlbn). 2614 */ 2615 void 2616 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, 2617 int blksize) 2618 { 2619 struct bufobj *bo; 2620 off_t start, end; 2621 2622 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range"); 2623 2624 start = blksize * startlbn; 2625 end = blksize * endlbn; 2626 2627 bo = &vp->v_bufobj; 2628 BO_LOCK(bo); 2629 MPASS(blksize == bo->bo_bsize); 2630 2631 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN) 2632 ; 2633 2634 BO_UNLOCK(bo); 2635 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1)); 2636 } 2637 2638 static int 2639 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 2640 daddr_t startlbn, daddr_t endlbn) 2641 { 2642 struct bufv *bv; 2643 struct buf *bp, *nbp; 2644 uint8_t anyfreed; 2645 bool clean; 2646 2647 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked"); 2648 ASSERT_BO_LOCKED(bo); 2649 2650 anyfreed = 1; 2651 clean = true; 2652 do { 2653 bv = clean ? &bo->bo_clean : &bo->bo_dirty; 2654 bp = buf_lookup_ge(bv, startlbn); 2655 if (bp == NULL) 2656 continue; 2657 TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) { 2658 if (bp->b_lblkno >= endlbn) 2659 break; 2660 if (BUF_LOCK(bp, 2661 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2662 BO_LOCKPTR(bo)) == ENOLCK) { 2663 BO_LOCK(bo); 2664 return (EAGAIN); 2665 } 2666 2667 bremfree(bp); 2668 bp->b_flags |= B_INVAL | B_RELBUF; 2669 bp->b_flags &= ~B_ASYNC; 2670 brelse(bp); 2671 anyfreed = 2; 2672 2673 BO_LOCK(bo); 2674 if (nbp != NULL && 2675 (((nbp->b_xflags & 2676 (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) || 2677 nbp->b_vp != vp || 2678 (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0))) 2679 return (EAGAIN); 2680 } 2681 } while (clean = !clean, anyfreed-- > 0); 2682 return (0); 2683 } 2684 2685 static void 2686 buf_vlist_remove(struct buf *bp) 2687 { 2688 struct bufv *bv; 2689 b_xflags_t flags; 2690 2691 flags = bp->b_xflags; 2692 2693 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2694 ASSERT_BO_WLOCKED(bp->b_bufobj); 2695 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 && 2696 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN), 2697 ("%s: buffer %p has invalid queue state", __func__, bp)); 2698 2699 if ((flags & BX_VNDIRTY) != 0) 2700 bv = &bp->b_bufobj->bo_dirty; 2701 else 2702 bv = &bp->b_bufobj->bo_clean; 2703 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 2704 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 2705 bv->bv_cnt--; 2706 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 2707 } 2708 2709 /* 2710 * Add the buffer to the sorted clean or dirty block list. Return zero on 2711 * success, EEXIST if a buffer with this identity already exists, or another 2712 * error on allocation failure. 2713 */ 2714 static inline int 2715 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2716 { 2717 struct bufv *bv; 2718 struct buf *n; 2719 int error; 2720 2721 ASSERT_BO_WLOCKED(bo); 2722 KASSERT((bo->bo_flag & BO_NOBUFS) == 0, 2723 ("buf_vlist_add: bo %p does not allow bufs", bo)); 2724 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, 2725 ("dead bo %p", bo)); 2726 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags, 2727 ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp)); 2728 2729 if (xflags & BX_VNDIRTY) 2730 bv = &bo->bo_dirty; 2731 else 2732 bv = &bo->bo_clean; 2733 2734 error = buf_insert_lookup_le(bv, bp, &n); 2735 if (n == NULL) { 2736 KASSERT(error != EEXIST, 2737 ("buf_vlist_add: EEXIST but no existing buf found: bp %p", 2738 bp)); 2739 } else { 2740 KASSERT(n->b_lblkno <= bp->b_lblkno, 2741 ("buf_vlist_add: out of order insert/lookup: bp %p n %p", 2742 bp, n)); 2743 KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST), 2744 ("buf_vlist_add: inconsistent result for existing buf: " 2745 "error %d bp %p n %p", error, bp, n)); 2746 } 2747 if (error != 0) 2748 return (error); 2749 2750 /* Keep the list ordered. */ 2751 if (n == NULL) { 2752 KASSERT(TAILQ_EMPTY(&bv->bv_hd) || 2753 bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno, 2754 ("buf_vlist_add: queue order: " 2755 "%p should be before first %p", 2756 bp, TAILQ_FIRST(&bv->bv_hd))); 2757 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 2758 } else { 2759 KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL || 2760 bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno, 2761 ("buf_vlist_add: queue order: " 2762 "%p should be before next %p", 2763 bp, TAILQ_NEXT(n, b_bobufs))); 2764 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 2765 } 2766 2767 bv->bv_cnt++; 2768 return (0); 2769 } 2770 2771 /* 2772 * Add the buffer to the sorted clean or dirty block list. 2773 * 2774 * NOTE: xflags is passed as a constant, optimizing this inline function! 2775 */ 2776 static void 2777 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2778 { 2779 int error; 2780 2781 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0, 2782 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 2783 bp->b_xflags |= xflags; 2784 error = buf_vlist_find_or_add(bp, bo, xflags); 2785 if (error) 2786 panic("buf_vlist_add: error=%d", error); 2787 } 2788 2789 /* 2790 * Look up a buffer using the buffer tries. 2791 */ 2792 struct buf * 2793 gbincore(struct bufobj *bo, daddr_t lblkno) 2794 { 2795 struct buf *bp; 2796 2797 ASSERT_BO_LOCKED(bo); 2798 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 2799 if (bp != NULL) 2800 return (bp); 2801 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno)); 2802 } 2803 2804 /* 2805 * Look up a buf using the buffer tries, without the bufobj lock. This relies 2806 * on SMR for safe lookup, and bufs being in a no-free zone to provide type 2807 * stability of the result. Like other lockless lookups, the found buf may 2808 * already be invalid by the time this function returns. 2809 */ 2810 struct buf * 2811 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno) 2812 { 2813 struct buf *bp; 2814 2815 ASSERT_BO_UNLOCKED(bo); 2816 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno); 2817 if (bp != NULL) 2818 return (bp); 2819 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno)); 2820 } 2821 2822 /* 2823 * Associate a buffer with a vnode. 2824 */ 2825 int 2826 bgetvp(struct vnode *vp, struct buf *bp) 2827 { 2828 struct bufobj *bo; 2829 int error; 2830 2831 bo = &vp->v_bufobj; 2832 ASSERT_BO_UNLOCKED(bo); 2833 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 2834 2835 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 2836 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 2837 ("bgetvp: bp already attached! %p", bp)); 2838 2839 /* 2840 * Add the buf to the vnode's clean list unless we lost a race and find 2841 * an existing buf in either dirty or clean. 2842 */ 2843 bp->b_vp = vp; 2844 bp->b_bufobj = bo; 2845 bp->b_xflags |= BX_VNCLEAN; 2846 error = EEXIST; 2847 BO_LOCK(bo); 2848 if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL) 2849 error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN); 2850 BO_UNLOCK(bo); 2851 if (__predict_true(error == 0)) { 2852 vhold(vp); 2853 return (0); 2854 } 2855 if (error != EEXIST) 2856 panic("bgetvp: buf_vlist_add error: %d", error); 2857 bp->b_vp = NULL; 2858 bp->b_bufobj = NULL; 2859 bp->b_xflags &= ~BX_VNCLEAN; 2860 return (error); 2861 } 2862 2863 /* 2864 * Disassociate a buffer from a vnode. 2865 */ 2866 void 2867 brelvp(struct buf *bp) 2868 { 2869 struct bufobj *bo; 2870 struct vnode *vp; 2871 2872 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2873 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 2874 2875 /* 2876 * Delete from old vnode list, if on one. 2877 */ 2878 vp = bp->b_vp; /* XXX */ 2879 bo = bp->b_bufobj; 2880 BO_LOCK(bo); 2881 buf_vlist_remove(bp); 2882 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2883 bo->bo_flag &= ~BO_ONWORKLST; 2884 mtx_lock(&sync_mtx); 2885 LIST_REMOVE(bo, bo_synclist); 2886 syncer_worklist_len--; 2887 mtx_unlock(&sync_mtx); 2888 } 2889 bp->b_vp = NULL; 2890 bp->b_bufobj = NULL; 2891 BO_UNLOCK(bo); 2892 vdrop(vp); 2893 } 2894 2895 /* 2896 * Add an item to the syncer work queue. 2897 */ 2898 static void 2899 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 2900 { 2901 int slot; 2902 2903 ASSERT_BO_WLOCKED(bo); 2904 2905 mtx_lock(&sync_mtx); 2906 if (bo->bo_flag & BO_ONWORKLST) 2907 LIST_REMOVE(bo, bo_synclist); 2908 else { 2909 bo->bo_flag |= BO_ONWORKLST; 2910 syncer_worklist_len++; 2911 } 2912 2913 if (delay > syncer_maxdelay - 2) 2914 delay = syncer_maxdelay - 2; 2915 slot = (syncer_delayno + delay) & syncer_mask; 2916 2917 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 2918 mtx_unlock(&sync_mtx); 2919 } 2920 2921 static int 2922 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 2923 { 2924 int error, len; 2925 2926 mtx_lock(&sync_mtx); 2927 len = syncer_worklist_len - sync_vnode_count; 2928 mtx_unlock(&sync_mtx); 2929 error = SYSCTL_OUT(req, &len, sizeof(len)); 2930 return (error); 2931 } 2932 2933 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, 2934 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0, 2935 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 2936 2937 static struct proc *updateproc; 2938 static void sched_sync(void); 2939 static struct kproc_desc up_kp = { 2940 "syncer", 2941 sched_sync, 2942 &updateproc 2943 }; 2944 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 2945 2946 static int 2947 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 2948 { 2949 struct vnode *vp; 2950 struct mount *mp; 2951 2952 *bo = LIST_FIRST(slp); 2953 if (*bo == NULL) 2954 return (0); 2955 vp = bo2vnode(*bo); 2956 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 2957 return (1); 2958 /* 2959 * We use vhold in case the vnode does not 2960 * successfully sync. vhold prevents the vnode from 2961 * going away when we unlock the sync_mtx so that 2962 * we can acquire the vnode interlock. 2963 */ 2964 vholdl(vp); 2965 mtx_unlock(&sync_mtx); 2966 VI_UNLOCK(vp); 2967 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2968 vdrop(vp); 2969 mtx_lock(&sync_mtx); 2970 return (*bo == LIST_FIRST(slp)); 2971 } 2972 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 || 2973 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp, 2974 ("suspended mp syncing vp %p", vp)); 2975 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2976 (void) VOP_FSYNC(vp, MNT_LAZY, td); 2977 VOP_UNLOCK(vp); 2978 vn_finished_write(mp); 2979 BO_LOCK(*bo); 2980 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 2981 /* 2982 * Put us back on the worklist. The worklist 2983 * routine will remove us from our current 2984 * position and then add us back in at a later 2985 * position. 2986 */ 2987 vn_syncer_add_to_worklist(*bo, syncdelay); 2988 } 2989 BO_UNLOCK(*bo); 2990 vdrop(vp); 2991 mtx_lock(&sync_mtx); 2992 return (0); 2993 } 2994 2995 static int first_printf = 1; 2996 2997 /* 2998 * System filesystem synchronizer daemon. 2999 */ 3000 static void 3001 sched_sync(void) 3002 { 3003 struct synclist *next, *slp; 3004 struct bufobj *bo; 3005 long starttime; 3006 struct thread *td = curthread; 3007 int last_work_seen; 3008 int net_worklist_len; 3009 int syncer_final_iter; 3010 int error; 3011 3012 last_work_seen = 0; 3013 syncer_final_iter = 0; 3014 syncer_state = SYNCER_RUNNING; 3015 starttime = time_uptime; 3016 td->td_pflags |= TDP_NORUNNINGBUF; 3017 3018 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 3019 SHUTDOWN_PRI_LAST); 3020 3021 mtx_lock(&sync_mtx); 3022 for (;;) { 3023 if (syncer_state == SYNCER_FINAL_DELAY && 3024 syncer_final_iter == 0) { 3025 mtx_unlock(&sync_mtx); 3026 kproc_suspend_check(td->td_proc); 3027 mtx_lock(&sync_mtx); 3028 } 3029 net_worklist_len = syncer_worklist_len - sync_vnode_count; 3030 if (syncer_state != SYNCER_RUNNING && 3031 starttime != time_uptime) { 3032 if (first_printf) { 3033 printf("\nSyncing disks, vnodes remaining... "); 3034 first_printf = 0; 3035 } 3036 printf("%d ", net_worklist_len); 3037 } 3038 starttime = time_uptime; 3039 3040 /* 3041 * Push files whose dirty time has expired. Be careful 3042 * of interrupt race on slp queue. 3043 * 3044 * Skip over empty worklist slots when shutting down. 3045 */ 3046 do { 3047 slp = &syncer_workitem_pending[syncer_delayno]; 3048 syncer_delayno += 1; 3049 if (syncer_delayno == syncer_maxdelay) 3050 syncer_delayno = 0; 3051 next = &syncer_workitem_pending[syncer_delayno]; 3052 /* 3053 * If the worklist has wrapped since the 3054 * it was emptied of all but syncer vnodes, 3055 * switch to the FINAL_DELAY state and run 3056 * for one more second. 3057 */ 3058 if (syncer_state == SYNCER_SHUTTING_DOWN && 3059 net_worklist_len == 0 && 3060 last_work_seen == syncer_delayno) { 3061 syncer_state = SYNCER_FINAL_DELAY; 3062 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 3063 } 3064 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 3065 syncer_worklist_len > 0); 3066 3067 /* 3068 * Keep track of the last time there was anything 3069 * on the worklist other than syncer vnodes. 3070 * Return to the SHUTTING_DOWN state if any 3071 * new work appears. 3072 */ 3073 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 3074 last_work_seen = syncer_delayno; 3075 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 3076 syncer_state = SYNCER_SHUTTING_DOWN; 3077 while (!LIST_EMPTY(slp)) { 3078 error = sync_vnode(slp, &bo, td); 3079 if (error == 1) { 3080 LIST_REMOVE(bo, bo_synclist); 3081 LIST_INSERT_HEAD(next, bo, bo_synclist); 3082 continue; 3083 } 3084 3085 if (first_printf == 0) { 3086 /* 3087 * Drop the sync mutex, because some watchdog 3088 * drivers need to sleep while patting 3089 */ 3090 mtx_unlock(&sync_mtx); 3091 wdog_kern_pat(WD_LASTVAL); 3092 mtx_lock(&sync_mtx); 3093 } 3094 } 3095 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 3096 syncer_final_iter--; 3097 /* 3098 * The variable rushjob allows the kernel to speed up the 3099 * processing of the filesystem syncer process. A rushjob 3100 * value of N tells the filesystem syncer to process the next 3101 * N seconds worth of work on its queue ASAP. Currently rushjob 3102 * is used by the soft update code to speed up the filesystem 3103 * syncer process when the incore state is getting so far 3104 * ahead of the disk that the kernel memory pool is being 3105 * threatened with exhaustion. 3106 */ 3107 if (rushjob > 0) { 3108 rushjob -= 1; 3109 continue; 3110 } 3111 /* 3112 * Just sleep for a short period of time between 3113 * iterations when shutting down to allow some I/O 3114 * to happen. 3115 * 3116 * If it has taken us less than a second to process the 3117 * current work, then wait. Otherwise start right over 3118 * again. We can still lose time if any single round 3119 * takes more than two seconds, but it does not really 3120 * matter as we are just trying to generally pace the 3121 * filesystem activity. 3122 */ 3123 if (syncer_state != SYNCER_RUNNING || 3124 time_uptime == starttime) { 3125 thread_lock(td); 3126 sched_prio(td, PPAUSE); 3127 thread_unlock(td); 3128 } 3129 if (syncer_state != SYNCER_RUNNING) 3130 cv_timedwait(&sync_wakeup, &sync_mtx, 3131 hz / SYNCER_SHUTDOWN_SPEEDUP); 3132 else if (time_uptime == starttime) 3133 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 3134 } 3135 } 3136 3137 /* 3138 * Request the syncer daemon to speed up its work. 3139 * We never push it to speed up more than half of its 3140 * normal turn time, otherwise it could take over the cpu. 3141 */ 3142 int 3143 speedup_syncer(void) 3144 { 3145 int ret = 0; 3146 3147 mtx_lock(&sync_mtx); 3148 if (rushjob < syncdelay / 2) { 3149 rushjob += 1; 3150 stat_rush_requests += 1; 3151 ret = 1; 3152 } 3153 mtx_unlock(&sync_mtx); 3154 cv_broadcast(&sync_wakeup); 3155 return (ret); 3156 } 3157 3158 /* 3159 * Tell the syncer to speed up its work and run though its work 3160 * list several times, then tell it to shut down. 3161 */ 3162 static void 3163 syncer_shutdown(void *arg, int howto) 3164 { 3165 3166 if (howto & RB_NOSYNC) 3167 return; 3168 mtx_lock(&sync_mtx); 3169 syncer_state = SYNCER_SHUTTING_DOWN; 3170 rushjob = 0; 3171 mtx_unlock(&sync_mtx); 3172 cv_broadcast(&sync_wakeup); 3173 kproc_shutdown(arg, howto); 3174 } 3175 3176 void 3177 syncer_suspend(void) 3178 { 3179 3180 syncer_shutdown(updateproc, 0); 3181 } 3182 3183 void 3184 syncer_resume(void) 3185 { 3186 3187 mtx_lock(&sync_mtx); 3188 first_printf = 1; 3189 syncer_state = SYNCER_RUNNING; 3190 mtx_unlock(&sync_mtx); 3191 cv_broadcast(&sync_wakeup); 3192 kproc_resume(updateproc); 3193 } 3194 3195 /* 3196 * Move the buffer between the clean and dirty lists of its vnode. 3197 */ 3198 void 3199 reassignbuf(struct buf *bp) 3200 { 3201 struct vnode *vp; 3202 struct bufobj *bo; 3203 int delay; 3204 #ifdef INVARIANTS 3205 struct bufv *bv; 3206 #endif 3207 3208 vp = bp->b_vp; 3209 bo = bp->b_bufobj; 3210 3211 KASSERT((bp->b_flags & B_PAGING) == 0, 3212 ("%s: cannot reassign paging buffer %p", __func__, bp)); 3213 3214 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 3215 bp, bp->b_vp, bp->b_flags); 3216 3217 BO_LOCK(bo); 3218 if ((bo->bo_flag & BO_NONSTERILE) == 0) { 3219 /* 3220 * Coordinate with getblk's unlocked lookup. Make 3221 * BO_NONSTERILE visible before the first reassignbuf produces 3222 * any side effect. This could be outside the bo lock if we 3223 * used a separate atomic flag field. 3224 */ 3225 bo->bo_flag |= BO_NONSTERILE; 3226 atomic_thread_fence_rel(); 3227 } 3228 buf_vlist_remove(bp); 3229 3230 /* 3231 * If dirty, put on list of dirty buffers; otherwise insert onto list 3232 * of clean buffers. 3233 */ 3234 if (bp->b_flags & B_DELWRI) { 3235 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 3236 switch (vp->v_type) { 3237 case VDIR: 3238 delay = dirdelay; 3239 break; 3240 case VCHR: 3241 delay = metadelay; 3242 break; 3243 default: 3244 delay = filedelay; 3245 } 3246 vn_syncer_add_to_worklist(bo, delay); 3247 } 3248 buf_vlist_add(bp, bo, BX_VNDIRTY); 3249 } else { 3250 buf_vlist_add(bp, bo, BX_VNCLEAN); 3251 3252 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 3253 mtx_lock(&sync_mtx); 3254 LIST_REMOVE(bo, bo_synclist); 3255 syncer_worklist_len--; 3256 mtx_unlock(&sync_mtx); 3257 bo->bo_flag &= ~BO_ONWORKLST; 3258 } 3259 } 3260 #ifdef INVARIANTS 3261 bv = &bo->bo_clean; 3262 bp = TAILQ_FIRST(&bv->bv_hd); 3263 KASSERT(bp == NULL || bp->b_bufobj == bo, 3264 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3265 bp = TAILQ_LAST(&bv->bv_hd, buflists); 3266 KASSERT(bp == NULL || bp->b_bufobj == bo, 3267 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3268 bv = &bo->bo_dirty; 3269 bp = TAILQ_FIRST(&bv->bv_hd); 3270 KASSERT(bp == NULL || bp->b_bufobj == bo, 3271 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3272 bp = TAILQ_LAST(&bv->bv_hd, buflists); 3273 KASSERT(bp == NULL || bp->b_bufobj == bo, 3274 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3275 #endif 3276 BO_UNLOCK(bo); 3277 } 3278 3279 static void 3280 v_init_counters(struct vnode *vp) 3281 { 3282 3283 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, 3284 vp, ("%s called for an initialized vnode", __FUNCTION__)); 3285 ASSERT_VI_UNLOCKED(vp, __FUNCTION__); 3286 3287 refcount_init(&vp->v_holdcnt, 1); 3288 refcount_init(&vp->v_usecount, 1); 3289 } 3290 3291 /* 3292 * Get a usecount on a vnode. 3293 * 3294 * vget and vget_finish may fail to lock the vnode if they lose a race against 3295 * it being doomed. LK_RETRY can be passed in flags to lock it anyway. 3296 * 3297 * Consumers which don't guarantee liveness of the vnode can use SMR to 3298 * try to get a reference. Note this operation can fail since the vnode 3299 * may be awaiting getting freed by the time they get to it. 3300 */ 3301 enum vgetstate 3302 vget_prep_smr(struct vnode *vp) 3303 { 3304 enum vgetstate vs; 3305 3306 VFS_SMR_ASSERT_ENTERED(); 3307 3308 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 3309 vs = VGET_USECOUNT; 3310 } else { 3311 if (vhold_smr(vp)) 3312 vs = VGET_HOLDCNT; 3313 else 3314 vs = VGET_NONE; 3315 } 3316 return (vs); 3317 } 3318 3319 enum vgetstate 3320 vget_prep(struct vnode *vp) 3321 { 3322 enum vgetstate vs; 3323 3324 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 3325 vs = VGET_USECOUNT; 3326 } else { 3327 vhold(vp); 3328 vs = VGET_HOLDCNT; 3329 } 3330 return (vs); 3331 } 3332 3333 void 3334 vget_abort(struct vnode *vp, enum vgetstate vs) 3335 { 3336 3337 switch (vs) { 3338 case VGET_USECOUNT: 3339 vrele(vp); 3340 break; 3341 case VGET_HOLDCNT: 3342 vdrop(vp); 3343 break; 3344 default: 3345 __assert_unreachable(); 3346 } 3347 } 3348 3349 int 3350 vget(struct vnode *vp, int flags) 3351 { 3352 enum vgetstate vs; 3353 3354 vs = vget_prep(vp); 3355 return (vget_finish(vp, flags, vs)); 3356 } 3357 3358 int 3359 vget_finish(struct vnode *vp, int flags, enum vgetstate vs) 3360 { 3361 int error; 3362 3363 if ((flags & LK_INTERLOCK) != 0) 3364 ASSERT_VI_LOCKED(vp, __func__); 3365 else 3366 ASSERT_VI_UNLOCKED(vp, __func__); 3367 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3368 VNPASS(vp->v_holdcnt > 0, vp); 3369 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3370 3371 error = vn_lock(vp, flags); 3372 if (__predict_false(error != 0)) { 3373 vget_abort(vp, vs); 3374 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 3375 vp); 3376 return (error); 3377 } 3378 3379 vget_finish_ref(vp, vs); 3380 return (0); 3381 } 3382 3383 void 3384 vget_finish_ref(struct vnode *vp, enum vgetstate vs) 3385 { 3386 int old; 3387 3388 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3389 VNPASS(vp->v_holdcnt > 0, vp); 3390 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3391 3392 if (vs == VGET_USECOUNT) 3393 return; 3394 3395 /* 3396 * We hold the vnode. If the usecount is 0 it will be utilized to keep 3397 * the vnode around. Otherwise someone else lended their hold count and 3398 * we have to drop ours. 3399 */ 3400 old = atomic_fetchadd_int(&vp->v_usecount, 1); 3401 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old)); 3402 if (old != 0) { 3403 #ifdef INVARIANTS 3404 old = atomic_fetchadd_int(&vp->v_holdcnt, -1); 3405 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); 3406 #else 3407 refcount_release(&vp->v_holdcnt); 3408 #endif 3409 } 3410 } 3411 3412 void 3413 vref(struct vnode *vp) 3414 { 3415 enum vgetstate vs; 3416 3417 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3418 vs = vget_prep(vp); 3419 vget_finish_ref(vp, vs); 3420 } 3421 3422 void 3423 vrefact(struct vnode *vp) 3424 { 3425 int old __diagused; 3426 3427 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3428 old = refcount_acquire(&vp->v_usecount); 3429 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old)); 3430 } 3431 3432 void 3433 vlazy(struct vnode *vp) 3434 { 3435 struct mount *mp; 3436 3437 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__)); 3438 3439 if ((vp->v_mflag & VMP_LAZYLIST) != 0) 3440 return; 3441 /* 3442 * We may get here for inactive routines after the vnode got doomed. 3443 */ 3444 if (VN_IS_DOOMED(vp)) 3445 return; 3446 mp = vp->v_mount; 3447 mtx_lock(&mp->mnt_listmtx); 3448 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 3449 vp->v_mflag |= VMP_LAZYLIST; 3450 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3451 mp->mnt_lazyvnodelistsize++; 3452 } 3453 mtx_unlock(&mp->mnt_listmtx); 3454 } 3455 3456 static void 3457 vunlazy(struct vnode *vp) 3458 { 3459 struct mount *mp; 3460 3461 ASSERT_VI_LOCKED(vp, __func__); 3462 VNPASS(!VN_IS_DOOMED(vp), vp); 3463 3464 mp = vp->v_mount; 3465 mtx_lock(&mp->mnt_listmtx); 3466 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3467 /* 3468 * Don't remove the vnode from the lazy list if another thread 3469 * has increased the hold count. It may have re-enqueued the 3470 * vnode to the lazy list and is now responsible for its 3471 * removal. 3472 */ 3473 if (vp->v_holdcnt == 0) { 3474 vp->v_mflag &= ~VMP_LAZYLIST; 3475 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3476 mp->mnt_lazyvnodelistsize--; 3477 } 3478 mtx_unlock(&mp->mnt_listmtx); 3479 } 3480 3481 /* 3482 * This routine is only meant to be called from vgonel prior to dooming 3483 * the vnode. 3484 */ 3485 static void 3486 vunlazy_gone(struct vnode *vp) 3487 { 3488 struct mount *mp; 3489 3490 ASSERT_VOP_ELOCKED(vp, __func__); 3491 ASSERT_VI_LOCKED(vp, __func__); 3492 VNPASS(!VN_IS_DOOMED(vp), vp); 3493 3494 if (vp->v_mflag & VMP_LAZYLIST) { 3495 mp = vp->v_mount; 3496 mtx_lock(&mp->mnt_listmtx); 3497 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3498 vp->v_mflag &= ~VMP_LAZYLIST; 3499 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3500 mp->mnt_lazyvnodelistsize--; 3501 mtx_unlock(&mp->mnt_listmtx); 3502 } 3503 } 3504 3505 static void 3506 vdefer_inactive(struct vnode *vp) 3507 { 3508 3509 ASSERT_VI_LOCKED(vp, __func__); 3510 VNPASS(vp->v_holdcnt > 0, vp); 3511 if (VN_IS_DOOMED(vp)) { 3512 vdropl(vp); 3513 return; 3514 } 3515 if (vp->v_iflag & VI_DEFINACT) { 3516 VNPASS(vp->v_holdcnt > 1, vp); 3517 vdropl(vp); 3518 return; 3519 } 3520 if (vp->v_usecount > 0) { 3521 vp->v_iflag &= ~VI_OWEINACT; 3522 vdropl(vp); 3523 return; 3524 } 3525 vlazy(vp); 3526 vp->v_iflag |= VI_DEFINACT; 3527 VI_UNLOCK(vp); 3528 atomic_add_long(&deferred_inact, 1); 3529 } 3530 3531 static void 3532 vdefer_inactive_unlocked(struct vnode *vp) 3533 { 3534 3535 VI_LOCK(vp); 3536 if ((vp->v_iflag & VI_OWEINACT) == 0) { 3537 vdropl(vp); 3538 return; 3539 } 3540 vdefer_inactive(vp); 3541 } 3542 3543 enum vput_op { VRELE, VPUT, VUNREF }; 3544 3545 /* 3546 * Handle ->v_usecount transitioning to 0. 3547 * 3548 * By releasing the last usecount we take ownership of the hold count which 3549 * provides liveness of the vnode, meaning we have to vdrop. 3550 * 3551 * For all vnodes we may need to perform inactive processing. It requires an 3552 * exclusive lock on the vnode, while it is legal to call here with only a 3553 * shared lock (or no locks). If locking the vnode in an expected manner fails, 3554 * inactive processing gets deferred to the syncer. 3555 * 3556 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend 3557 * on the lock being held all the way until VOP_INACTIVE. This in particular 3558 * happens with UFS which adds half-constructed vnodes to the hash, where they 3559 * can be found by other code. 3560 */ 3561 static void 3562 vput_final(struct vnode *vp, enum vput_op func) 3563 { 3564 int error; 3565 bool want_unlock; 3566 3567 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3568 VNPASS(vp->v_holdcnt > 0, vp); 3569 3570 VI_LOCK(vp); 3571 3572 /* 3573 * By the time we got here someone else might have transitioned 3574 * the count back to > 0. 3575 */ 3576 if (vp->v_usecount > 0) 3577 goto out; 3578 3579 /* 3580 * If the vnode is doomed vgone already performed inactive processing 3581 * (if needed). 3582 */ 3583 if (VN_IS_DOOMED(vp)) 3584 goto out; 3585 3586 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0)) 3587 goto out; 3588 3589 if (vp->v_iflag & VI_DOINGINACT) 3590 goto out; 3591 3592 /* 3593 * Locking operations here will drop the interlock and possibly the 3594 * vnode lock, opening a window where the vnode can get doomed all the 3595 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to 3596 * perform inactive. 3597 */ 3598 vp->v_iflag |= VI_OWEINACT; 3599 want_unlock = false; 3600 error = 0; 3601 switch (func) { 3602 case VRELE: 3603 switch (VOP_ISLOCKED(vp)) { 3604 case LK_EXCLUSIVE: 3605 break; 3606 case LK_EXCLOTHER: 3607 case 0: 3608 want_unlock = true; 3609 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 3610 VI_LOCK(vp); 3611 break; 3612 default: 3613 /* 3614 * The lock has at least one sharer, but we have no way 3615 * to conclude whether this is us. Play it safe and 3616 * defer processing. 3617 */ 3618 error = EAGAIN; 3619 break; 3620 } 3621 break; 3622 case VPUT: 3623 want_unlock = true; 3624 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3625 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 3626 LK_NOWAIT); 3627 VI_LOCK(vp); 3628 } 3629 break; 3630 case VUNREF: 3631 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3632 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 3633 VI_LOCK(vp); 3634 } 3635 break; 3636 } 3637 if (error == 0) { 3638 if (func == VUNREF) { 3639 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp, 3640 ("recursive vunref")); 3641 vp->v_vflag |= VV_UNREF; 3642 } 3643 for (;;) { 3644 error = vinactive(vp); 3645 if (want_unlock) 3646 VOP_UNLOCK(vp); 3647 if (error != ERELOOKUP || !want_unlock) 3648 break; 3649 VOP_LOCK(vp, LK_EXCLUSIVE); 3650 } 3651 if (func == VUNREF) 3652 vp->v_vflag &= ~VV_UNREF; 3653 vdropl(vp); 3654 } else { 3655 vdefer_inactive(vp); 3656 } 3657 return; 3658 out: 3659 if (func == VPUT) 3660 VOP_UNLOCK(vp); 3661 vdropl(vp); 3662 } 3663 3664 /* 3665 * Decrement ->v_usecount for a vnode. 3666 * 3667 * Releasing the last use count requires additional processing, see vput_final 3668 * above for details. 3669 * 3670 * Comment above each variant denotes lock state on entry and exit. 3671 */ 3672 3673 /* 3674 * in: any 3675 * out: same as passed in 3676 */ 3677 void 3678 vrele(struct vnode *vp) 3679 { 3680 3681 ASSERT_VI_UNLOCKED(vp, __func__); 3682 if (!refcount_release(&vp->v_usecount)) 3683 return; 3684 vput_final(vp, VRELE); 3685 } 3686 3687 /* 3688 * in: locked 3689 * out: unlocked 3690 */ 3691 void 3692 vput(struct vnode *vp) 3693 { 3694 3695 ASSERT_VOP_LOCKED(vp, __func__); 3696 ASSERT_VI_UNLOCKED(vp, __func__); 3697 if (!refcount_release(&vp->v_usecount)) { 3698 VOP_UNLOCK(vp); 3699 return; 3700 } 3701 vput_final(vp, VPUT); 3702 } 3703 3704 /* 3705 * in: locked 3706 * out: locked 3707 */ 3708 void 3709 vunref(struct vnode *vp) 3710 { 3711 3712 ASSERT_VOP_LOCKED(vp, __func__); 3713 ASSERT_VI_UNLOCKED(vp, __func__); 3714 if (!refcount_release(&vp->v_usecount)) 3715 return; 3716 vput_final(vp, VUNREF); 3717 } 3718 3719 void 3720 vhold(struct vnode *vp) 3721 { 3722 int old; 3723 3724 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3725 old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3726 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3727 ("%s: wrong hold count %d", __func__, old)); 3728 if (old == 0) 3729 vfs_freevnodes_dec(); 3730 } 3731 3732 void 3733 vholdnz(struct vnode *vp) 3734 { 3735 3736 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3737 #ifdef INVARIANTS 3738 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3739 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3740 ("%s: wrong hold count %d", __func__, old)); 3741 #else 3742 atomic_add_int(&vp->v_holdcnt, 1); 3743 #endif 3744 } 3745 3746 /* 3747 * Grab a hold count unless the vnode is freed. 3748 * 3749 * Only use this routine if vfs smr is the only protection you have against 3750 * freeing the vnode. 3751 * 3752 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag 3753 * is not set. After the flag is set the vnode becomes immutable to anyone but 3754 * the thread which managed to set the flag. 3755 * 3756 * It may be tempting to replace the loop with: 3757 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3758 * if (count & VHOLD_NO_SMR) { 3759 * backpedal and error out; 3760 * } 3761 * 3762 * However, while this is more performant, it hinders debugging by eliminating 3763 * the previously mentioned invariant. 3764 */ 3765 bool 3766 vhold_smr(struct vnode *vp) 3767 { 3768 int count; 3769 3770 VFS_SMR_ASSERT_ENTERED(); 3771 3772 count = atomic_load_int(&vp->v_holdcnt); 3773 for (;;) { 3774 if (count & VHOLD_NO_SMR) { 3775 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3776 ("non-zero hold count with flags %d\n", count)); 3777 return (false); 3778 } 3779 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3780 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3781 if (count == 0) 3782 vfs_freevnodes_dec(); 3783 return (true); 3784 } 3785 } 3786 } 3787 3788 /* 3789 * Hold a free vnode for recycling. 3790 * 3791 * Note: vnode_init references this comment. 3792 * 3793 * Attempts to recycle only need the global vnode list lock and have no use for 3794 * SMR. 3795 * 3796 * However, vnodes get inserted into the global list before they get fully 3797 * initialized and stay there until UMA decides to free the memory. This in 3798 * particular means the target can be found before it becomes usable and after 3799 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to 3800 * VHOLD_NO_SMR. 3801 * 3802 * Note: the vnode may gain more references after we transition the count 0->1. 3803 */ 3804 static bool 3805 vhold_recycle_free(struct vnode *vp) 3806 { 3807 int count; 3808 3809 mtx_assert(&vnode_list_mtx, MA_OWNED); 3810 3811 count = atomic_load_int(&vp->v_holdcnt); 3812 for (;;) { 3813 if (count & VHOLD_NO_SMR) { 3814 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3815 ("non-zero hold count with flags %d\n", count)); 3816 return (false); 3817 } 3818 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3819 if (count > 0) { 3820 return (false); 3821 } 3822 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3823 vfs_freevnodes_dec(); 3824 return (true); 3825 } 3826 } 3827 } 3828 3829 static void __noinline 3830 vdbatch_process(struct vdbatch *vd) 3831 { 3832 struct vnode *vp; 3833 int i; 3834 3835 mtx_assert(&vd->lock, MA_OWNED); 3836 MPASS(curthread->td_pinned > 0); 3837 MPASS(vd->index == VDBATCH_SIZE); 3838 3839 /* 3840 * Attempt to requeue the passed batch, but give up easily. 3841 * 3842 * Despite batching the mechanism is prone to transient *significant* 3843 * lock contention, where vnode_list_mtx becomes the primary bottleneck 3844 * if multiple CPUs get here (one real-world example is highly parallel 3845 * do-nothing make , which will stat *tons* of vnodes). Since it is 3846 * quasi-LRU (read: not that great even if fully honoured) provide an 3847 * option to just dodge the problem. Parties which don't like it are 3848 * welcome to implement something better. 3849 */ 3850 if (vnode_can_skip_requeue) { 3851 if (!mtx_trylock(&vnode_list_mtx)) { 3852 counter_u64_add(vnode_skipped_requeues, 1); 3853 critical_enter(); 3854 for (i = 0; i < VDBATCH_SIZE; i++) { 3855 vp = vd->tab[i]; 3856 vd->tab[i] = NULL; 3857 MPASS(vp->v_dbatchcpu != NOCPU); 3858 vp->v_dbatchcpu = NOCPU; 3859 } 3860 vd->index = 0; 3861 critical_exit(); 3862 return; 3863 3864 } 3865 /* fallthrough to locked processing */ 3866 } else { 3867 mtx_lock(&vnode_list_mtx); 3868 } 3869 3870 mtx_assert(&vnode_list_mtx, MA_OWNED); 3871 critical_enter(); 3872 for (i = 0; i < VDBATCH_SIZE; i++) { 3873 vp = vd->tab[i]; 3874 vd->tab[i] = NULL; 3875 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 3876 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist); 3877 MPASS(vp->v_dbatchcpu != NOCPU); 3878 vp->v_dbatchcpu = NOCPU; 3879 } 3880 mtx_unlock(&vnode_list_mtx); 3881 vd->index = 0; 3882 critical_exit(); 3883 } 3884 3885 static void 3886 vdbatch_enqueue(struct vnode *vp) 3887 { 3888 struct vdbatch *vd; 3889 3890 ASSERT_VI_LOCKED(vp, __func__); 3891 VNPASS(!VN_IS_DOOMED(vp), vp); 3892 3893 if (vp->v_dbatchcpu != NOCPU) { 3894 VI_UNLOCK(vp); 3895 return; 3896 } 3897 3898 sched_pin(); 3899 vd = DPCPU_PTR(vd); 3900 mtx_lock(&vd->lock); 3901 MPASS(vd->index < VDBATCH_SIZE); 3902 MPASS(vd->tab[vd->index] == NULL); 3903 /* 3904 * A hack: we depend on being pinned so that we know what to put in 3905 * ->v_dbatchcpu. 3906 */ 3907 vp->v_dbatchcpu = curcpu; 3908 vd->tab[vd->index] = vp; 3909 vd->index++; 3910 VI_UNLOCK(vp); 3911 if (vd->index == VDBATCH_SIZE) 3912 vdbatch_process(vd); 3913 mtx_unlock(&vd->lock); 3914 sched_unpin(); 3915 } 3916 3917 /* 3918 * This routine must only be called for vnodes which are about to be 3919 * deallocated. Supporting dequeue for arbitrary vndoes would require 3920 * validating that the locked batch matches. 3921 */ 3922 static void 3923 vdbatch_dequeue(struct vnode *vp) 3924 { 3925 struct vdbatch *vd; 3926 int i; 3927 short cpu; 3928 3929 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp); 3930 3931 cpu = vp->v_dbatchcpu; 3932 if (cpu == NOCPU) 3933 return; 3934 3935 vd = DPCPU_ID_PTR(cpu, vd); 3936 mtx_lock(&vd->lock); 3937 for (i = 0; i < vd->index; i++) { 3938 if (vd->tab[i] != vp) 3939 continue; 3940 vp->v_dbatchcpu = NOCPU; 3941 vd->index--; 3942 vd->tab[i] = vd->tab[vd->index]; 3943 vd->tab[vd->index] = NULL; 3944 break; 3945 } 3946 mtx_unlock(&vd->lock); 3947 /* 3948 * Either we dequeued the vnode above or the target CPU beat us to it. 3949 */ 3950 MPASS(vp->v_dbatchcpu == NOCPU); 3951 } 3952 3953 /* 3954 * Drop the hold count of the vnode. 3955 * 3956 * It will only get freed if this is the last hold *and* it has been vgone'd. 3957 * 3958 * Because the vnode vm object keeps a hold reference on the vnode if 3959 * there is at least one resident non-cached page, the vnode cannot 3960 * leave the active list without the page cleanup done. 3961 */ 3962 static void __noinline 3963 vdropl_final(struct vnode *vp) 3964 { 3965 3966 ASSERT_VI_LOCKED(vp, __func__); 3967 VNPASS(VN_IS_DOOMED(vp), vp); 3968 /* 3969 * Set the VHOLD_NO_SMR flag. 3970 * 3971 * We may be racing against vhold_smr. If they win we can just pretend 3972 * we never got this far, they will vdrop later. 3973 */ 3974 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) { 3975 vfs_freevnodes_inc(); 3976 VI_UNLOCK(vp); 3977 /* 3978 * We lost the aforementioned race. Any subsequent access is 3979 * invalid as they might have managed to vdropl on their own. 3980 */ 3981 return; 3982 } 3983 /* 3984 * Don't bump freevnodes as this one is going away. 3985 */ 3986 freevnode(vp); 3987 } 3988 3989 void 3990 vdrop(struct vnode *vp) 3991 { 3992 3993 ASSERT_VI_UNLOCKED(vp, __func__); 3994 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3995 if (refcount_release_if_not_last(&vp->v_holdcnt)) 3996 return; 3997 VI_LOCK(vp); 3998 vdropl(vp); 3999 } 4000 4001 static __always_inline void 4002 vdropl_impl(struct vnode *vp, bool enqueue) 4003 { 4004 4005 ASSERT_VI_LOCKED(vp, __func__); 4006 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4007 if (!refcount_release(&vp->v_holdcnt)) { 4008 VI_UNLOCK(vp); 4009 return; 4010 } 4011 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp); 4012 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 4013 if (VN_IS_DOOMED(vp)) { 4014 vdropl_final(vp); 4015 return; 4016 } 4017 4018 vfs_freevnodes_inc(); 4019 if (vp->v_mflag & VMP_LAZYLIST) { 4020 vunlazy(vp); 4021 } 4022 4023 if (!enqueue) { 4024 VI_UNLOCK(vp); 4025 return; 4026 } 4027 4028 /* 4029 * Also unlocks the interlock. We can't assert on it as we 4030 * released our hold and by now the vnode might have been 4031 * freed. 4032 */ 4033 vdbatch_enqueue(vp); 4034 } 4035 4036 void 4037 vdropl(struct vnode *vp) 4038 { 4039 4040 vdropl_impl(vp, true); 4041 } 4042 4043 /* 4044 * vdrop a vnode when recycling 4045 * 4046 * This is a special case routine only to be used when recycling, differs from 4047 * regular vdrop by not requeieing the vnode on LRU. 4048 * 4049 * Consider a case where vtryrecycle continuously fails with all vnodes (due to 4050 * e.g., frozen writes on the filesystem), filling the batch and causing it to 4051 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a 4052 * loop which can last for as long as writes are frozen. 4053 */ 4054 static void 4055 vdropl_recycle(struct vnode *vp) 4056 { 4057 4058 vdropl_impl(vp, false); 4059 } 4060 4061 static void 4062 vdrop_recycle(struct vnode *vp) 4063 { 4064 4065 VI_LOCK(vp); 4066 vdropl_recycle(vp); 4067 } 4068 4069 /* 4070 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 4071 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 4072 */ 4073 static int 4074 vinactivef(struct vnode *vp) 4075 { 4076 int error; 4077 4078 ASSERT_VOP_ELOCKED(vp, "vinactive"); 4079 ASSERT_VI_LOCKED(vp, "vinactive"); 4080 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp); 4081 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4082 vp->v_iflag |= VI_DOINGINACT; 4083 vp->v_iflag &= ~VI_OWEINACT; 4084 VI_UNLOCK(vp); 4085 4086 /* 4087 * Before moving off the active list, we must be sure that any 4088 * modified pages are converted into the vnode's dirty 4089 * buffers, since these will no longer be checked once the 4090 * vnode is on the inactive list. 4091 * 4092 * The write-out of the dirty pages is asynchronous. At the 4093 * point that VOP_INACTIVE() is called, there could still be 4094 * pending I/O and dirty pages in the object. 4095 */ 4096 if ((vp->v_vflag & VV_NOSYNC) == 0) 4097 vnode_pager_clean_async(vp); 4098 4099 error = VOP_INACTIVE(vp); 4100 VI_LOCK(vp); 4101 VNPASS(vp->v_iflag & VI_DOINGINACT, vp); 4102 vp->v_iflag &= ~VI_DOINGINACT; 4103 return (error); 4104 } 4105 4106 int 4107 vinactive(struct vnode *vp) 4108 { 4109 4110 ASSERT_VOP_ELOCKED(vp, "vinactive"); 4111 ASSERT_VI_LOCKED(vp, "vinactive"); 4112 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4113 4114 if ((vp->v_iflag & VI_OWEINACT) == 0) 4115 return (0); 4116 if (vp->v_iflag & VI_DOINGINACT) 4117 return (0); 4118 if (vp->v_usecount > 0) { 4119 vp->v_iflag &= ~VI_OWEINACT; 4120 return (0); 4121 } 4122 return (vinactivef(vp)); 4123 } 4124 4125 /* 4126 * Remove any vnodes in the vnode table belonging to mount point mp. 4127 * 4128 * If FORCECLOSE is not specified, there should not be any active ones, 4129 * return error if any are found (nb: this is a user error, not a 4130 * system error). If FORCECLOSE is specified, detach any active vnodes 4131 * that are found. 4132 * 4133 * If WRITECLOSE is set, only flush out regular file vnodes open for 4134 * writing. 4135 * 4136 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 4137 * 4138 * `rootrefs' specifies the base reference count for the root vnode 4139 * of this filesystem. The root vnode is considered busy if its 4140 * v_usecount exceeds this value. On a successful return, vflush(, td) 4141 * will call vrele() on the root vnode exactly rootrefs times. 4142 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 4143 * be zero. 4144 */ 4145 #ifdef DIAGNOSTIC 4146 static int busyprt = 0; /* print out busy vnodes */ 4147 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 4148 #endif 4149 4150 int 4151 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 4152 { 4153 struct vnode *vp, *mvp, *rootvp = NULL; 4154 struct vattr vattr; 4155 int busy = 0, error; 4156 4157 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 4158 rootrefs, flags); 4159 if (rootrefs > 0) { 4160 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 4161 ("vflush: bad args")); 4162 /* 4163 * Get the filesystem root vnode. We can vput() it 4164 * immediately, since with rootrefs > 0, it won't go away. 4165 */ 4166 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 4167 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 4168 __func__, error); 4169 return (error); 4170 } 4171 vput(rootvp); 4172 } 4173 loop: 4174 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 4175 vholdl(vp); 4176 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 4177 if (error) { 4178 vdrop(vp); 4179 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 4180 goto loop; 4181 } 4182 /* 4183 * Skip over a vnodes marked VV_SYSTEM. 4184 */ 4185 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 4186 VOP_UNLOCK(vp); 4187 vdrop(vp); 4188 continue; 4189 } 4190 /* 4191 * If WRITECLOSE is set, flush out unlinked but still open 4192 * files (even if open only for reading) and regular file 4193 * vnodes open for writing. 4194 */ 4195 if (flags & WRITECLOSE) { 4196 vnode_pager_clean_async(vp); 4197 do { 4198 error = VOP_FSYNC(vp, MNT_WAIT, td); 4199 } while (error == ERELOOKUP); 4200 if (error != 0) { 4201 VOP_UNLOCK(vp); 4202 vdrop(vp); 4203 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 4204 return (error); 4205 } 4206 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 4207 VI_LOCK(vp); 4208 4209 if ((vp->v_type == VNON || 4210 (error == 0 && vattr.va_nlink > 0)) && 4211 (vp->v_writecount <= 0 || vp->v_type != VREG)) { 4212 VOP_UNLOCK(vp); 4213 vdropl(vp); 4214 continue; 4215 } 4216 } else 4217 VI_LOCK(vp); 4218 /* 4219 * With v_usecount == 0, all we need to do is clear out the 4220 * vnode data structures and we are done. 4221 * 4222 * If FORCECLOSE is set, forcibly close the vnode. 4223 */ 4224 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 4225 vgonel(vp); 4226 } else { 4227 busy++; 4228 #ifdef DIAGNOSTIC 4229 if (busyprt) 4230 vn_printf(vp, "vflush: busy vnode "); 4231 #endif 4232 } 4233 VOP_UNLOCK(vp); 4234 vdropl(vp); 4235 } 4236 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 4237 /* 4238 * If just the root vnode is busy, and if its refcount 4239 * is equal to `rootrefs', then go ahead and kill it. 4240 */ 4241 VI_LOCK(rootvp); 4242 KASSERT(busy > 0, ("vflush: not busy")); 4243 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 4244 ("vflush: usecount %d < rootrefs %d", 4245 rootvp->v_usecount, rootrefs)); 4246 if (busy == 1 && rootvp->v_usecount == rootrefs) { 4247 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 4248 vgone(rootvp); 4249 VOP_UNLOCK(rootvp); 4250 busy = 0; 4251 } else 4252 VI_UNLOCK(rootvp); 4253 } 4254 if (busy) { 4255 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 4256 busy); 4257 return (EBUSY); 4258 } 4259 for (; rootrefs > 0; rootrefs--) 4260 vrele(rootvp); 4261 return (0); 4262 } 4263 4264 /* 4265 * Recycle an unused vnode. 4266 */ 4267 int 4268 vrecycle(struct vnode *vp) 4269 { 4270 int recycled; 4271 4272 VI_LOCK(vp); 4273 recycled = vrecyclel(vp); 4274 VI_UNLOCK(vp); 4275 return (recycled); 4276 } 4277 4278 /* 4279 * vrecycle, with the vp interlock held. 4280 */ 4281 int 4282 vrecyclel(struct vnode *vp) 4283 { 4284 int recycled; 4285 4286 ASSERT_VOP_ELOCKED(vp, __func__); 4287 ASSERT_VI_LOCKED(vp, __func__); 4288 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4289 recycled = 0; 4290 if (vp->v_usecount == 0) { 4291 recycled = 1; 4292 vgonel(vp); 4293 } 4294 return (recycled); 4295 } 4296 4297 /* 4298 * Eliminate all activity associated with a vnode 4299 * in preparation for reuse. 4300 */ 4301 void 4302 vgone(struct vnode *vp) 4303 { 4304 VI_LOCK(vp); 4305 vgonel(vp); 4306 VI_UNLOCK(vp); 4307 } 4308 4309 /* 4310 * Notify upper mounts about reclaimed or unlinked vnode. 4311 */ 4312 void 4313 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event) 4314 { 4315 struct mount *mp; 4316 struct mount_upper_node *ump; 4317 4318 mp = atomic_load_ptr(&vp->v_mount); 4319 if (mp == NULL) 4320 return; 4321 if (TAILQ_EMPTY(&mp->mnt_notify)) 4322 return; 4323 4324 MNT_ILOCK(mp); 4325 mp->mnt_upper_pending++; 4326 KASSERT(mp->mnt_upper_pending > 0, 4327 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending)); 4328 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) { 4329 MNT_IUNLOCK(mp); 4330 switch (event) { 4331 case VFS_NOTIFY_UPPER_RECLAIM: 4332 VFS_RECLAIM_LOWERVP(ump->mp, vp); 4333 break; 4334 case VFS_NOTIFY_UPPER_UNLINK: 4335 VFS_UNLINK_LOWERVP(ump->mp, vp); 4336 break; 4337 } 4338 MNT_ILOCK(mp); 4339 } 4340 mp->mnt_upper_pending--; 4341 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 && 4342 mp->mnt_upper_pending == 0) { 4343 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER; 4344 wakeup(&mp->mnt_uppers); 4345 } 4346 MNT_IUNLOCK(mp); 4347 } 4348 4349 /* 4350 * vgone, with the vp interlock held. 4351 */ 4352 static void 4353 vgonel(struct vnode *vp) 4354 { 4355 struct thread *td; 4356 struct mount *mp; 4357 vm_object_t object; 4358 bool active, doinginact, oweinact; 4359 4360 ASSERT_VOP_ELOCKED(vp, "vgonel"); 4361 ASSERT_VI_LOCKED(vp, "vgonel"); 4362 VNASSERT(vp->v_holdcnt, vp, 4363 ("vgonel: vp %p has no reference.", vp)); 4364 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4365 td = curthread; 4366 4367 /* 4368 * Don't vgonel if we're already doomed. 4369 */ 4370 if (VN_IS_DOOMED(vp)) { 4371 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \ 4372 vn_get_state(vp) == VSTATE_DEAD, vp); 4373 return; 4374 } 4375 /* 4376 * Paired with freevnode. 4377 */ 4378 vn_seqc_write_begin_locked(vp); 4379 vunlazy_gone(vp); 4380 vn_irflag_set_locked(vp, VIRF_DOOMED); 4381 vn_set_state(vp, VSTATE_DESTROYING); 4382 4383 /* 4384 * Check to see if the vnode is in use. If so, we have to 4385 * call VOP_CLOSE() and VOP_INACTIVE(). 4386 * 4387 * It could be that VOP_INACTIVE() requested reclamation, in 4388 * which case we should avoid recursion, so check 4389 * VI_DOINGINACT. This is not precise but good enough. 4390 */ 4391 active = vp->v_usecount > 0; 4392 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4393 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0; 4394 4395 /* 4396 * If we need to do inactive VI_OWEINACT will be set. 4397 */ 4398 if (vp->v_iflag & VI_DEFINACT) { 4399 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); 4400 vp->v_iflag &= ~VI_DEFINACT; 4401 vdropl(vp); 4402 } else { 4403 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count")); 4404 VI_UNLOCK(vp); 4405 } 4406 cache_purge_vgone(vp); 4407 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 4408 4409 /* 4410 * If purging an active vnode, it must be closed and 4411 * deactivated before being reclaimed. 4412 */ 4413 if (active) 4414 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 4415 if (!doinginact) { 4416 do { 4417 if (oweinact || active) { 4418 VI_LOCK(vp); 4419 vinactivef(vp); 4420 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4421 VI_UNLOCK(vp); 4422 } 4423 } while (oweinact); 4424 } 4425 if (vp->v_type == VSOCK) 4426 vfs_unp_reclaim(vp); 4427 4428 /* 4429 * Clean out any buffers associated with the vnode. 4430 * If the flush fails, just toss the buffers. 4431 */ 4432 mp = NULL; 4433 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 4434 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 4435 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 4436 while (vinvalbuf(vp, 0, 0, 0) != 0) 4437 ; 4438 } 4439 4440 BO_LOCK(&vp->v_bufobj); 4441 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 4442 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 4443 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 4444 vp->v_bufobj.bo_clean.bv_cnt == 0, 4445 ("vp %p bufobj not invalidated", vp)); 4446 4447 /* 4448 * For VMIO bufobj, BO_DEAD is set later, or in 4449 * vm_object_terminate() after the object's page queue is 4450 * flushed. 4451 */ 4452 object = vp->v_bufobj.bo_object; 4453 if (object == NULL) 4454 vp->v_bufobj.bo_flag |= BO_DEAD; 4455 BO_UNLOCK(&vp->v_bufobj); 4456 4457 /* 4458 * Handle the VM part. Tmpfs handles v_object on its own (the 4459 * OBJT_VNODE check). Nullfs or other bypassing filesystems 4460 * should not touch the object borrowed from the lower vnode 4461 * (the handle check). 4462 */ 4463 if (object != NULL && object->type == OBJT_VNODE && 4464 object->handle == vp) 4465 vnode_destroy_vobject(vp); 4466 4467 /* 4468 * Reclaim the vnode. 4469 */ 4470 if (VOP_RECLAIM(vp)) 4471 panic("vgone: cannot reclaim"); 4472 if (mp != NULL) 4473 vn_finished_secondary_write(mp); 4474 VNASSERT(vp->v_object == NULL, vp, 4475 ("vop_reclaim left v_object vp=%p", vp)); 4476 /* 4477 * Clear the advisory locks and wake up waiting threads. 4478 */ 4479 if (vp->v_lockf != NULL) { 4480 (void)VOP_ADVLOCKPURGE(vp); 4481 vp->v_lockf = NULL; 4482 } 4483 /* 4484 * Delete from old mount point vnode list. 4485 */ 4486 if (vp->v_mount == NULL) { 4487 VI_LOCK(vp); 4488 } else { 4489 delmntque(vp); 4490 ASSERT_VI_LOCKED(vp, "vgonel 2"); 4491 } 4492 /* 4493 * Done with purge, reset to the standard lock and invalidate 4494 * the vnode. 4495 */ 4496 vp->v_vnlock = &vp->v_lock; 4497 vp->v_op = &dead_vnodeops; 4498 vp->v_type = VBAD; 4499 vn_set_state(vp, VSTATE_DEAD); 4500 } 4501 4502 /* 4503 * Print out a description of a vnode. 4504 */ 4505 static const char *const vtypename[] = { 4506 [VNON] = "VNON", 4507 [VREG] = "VREG", 4508 [VDIR] = "VDIR", 4509 [VBLK] = "VBLK", 4510 [VCHR] = "VCHR", 4511 [VLNK] = "VLNK", 4512 [VSOCK] = "VSOCK", 4513 [VFIFO] = "VFIFO", 4514 [VBAD] = "VBAD", 4515 [VMARKER] = "VMARKER", 4516 }; 4517 _Static_assert(nitems(vtypename) == VLASTTYPE + 1, 4518 "vnode type name not added to vtypename"); 4519 4520 static const char *const vstatename[] = { 4521 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED", 4522 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED", 4523 [VSTATE_DESTROYING] = "VSTATE_DESTROYING", 4524 [VSTATE_DEAD] = "VSTATE_DEAD", 4525 }; 4526 _Static_assert(nitems(vstatename) == VLASTSTATE + 1, 4527 "vnode state name not added to vstatename"); 4528 4529 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0, 4530 "new hold count flag not added to vn_printf"); 4531 4532 void 4533 vn_printf(struct vnode *vp, const char *fmt, ...) 4534 { 4535 va_list ap; 4536 char buf[256], buf2[16]; 4537 u_long flags; 4538 u_int holdcnt; 4539 short irflag; 4540 4541 va_start(ap, fmt); 4542 vprintf(fmt, ap); 4543 va_end(ap); 4544 printf("%p: ", (void *)vp); 4545 printf("type %s state %s op %p\n", vtypename[vp->v_type], 4546 vstatename[vp->v_state], vp->v_op); 4547 holdcnt = atomic_load_int(&vp->v_holdcnt); 4548 printf(" usecount %d, writecount %d, refcount %d seqc users %d", 4549 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS, 4550 vp->v_seqc_users); 4551 switch (vp->v_type) { 4552 case VDIR: 4553 printf(" mountedhere %p\n", vp->v_mountedhere); 4554 break; 4555 case VCHR: 4556 printf(" rdev %p\n", vp->v_rdev); 4557 break; 4558 case VSOCK: 4559 printf(" socket %p\n", vp->v_unpcb); 4560 break; 4561 case VFIFO: 4562 printf(" fifoinfo %p\n", vp->v_fifoinfo); 4563 break; 4564 default: 4565 printf("\n"); 4566 break; 4567 } 4568 buf[0] = '\0'; 4569 buf[1] = '\0'; 4570 if (holdcnt & VHOLD_NO_SMR) 4571 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf)); 4572 printf(" hold count flags (%s)\n", buf + 1); 4573 4574 buf[0] = '\0'; 4575 buf[1] = '\0'; 4576 irflag = vn_irflag_read(vp); 4577 if (irflag & VIRF_DOOMED) 4578 strlcat(buf, "|VIRF_DOOMED", sizeof(buf)); 4579 if (irflag & VIRF_PGREAD) 4580 strlcat(buf, "|VIRF_PGREAD", sizeof(buf)); 4581 if (irflag & VIRF_MOUNTPOINT) 4582 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf)); 4583 if (irflag & VIRF_TEXT_REF) 4584 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf)); 4585 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF); 4586 if (flags != 0) { 4587 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags); 4588 strlcat(buf, buf2, sizeof(buf)); 4589 } 4590 if (vp->v_vflag & VV_ROOT) 4591 strlcat(buf, "|VV_ROOT", sizeof(buf)); 4592 if (vp->v_vflag & VV_ISTTY) 4593 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 4594 if (vp->v_vflag & VV_NOSYNC) 4595 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 4596 if (vp->v_vflag & VV_ETERNALDEV) 4597 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 4598 if (vp->v_vflag & VV_CACHEDLABEL) 4599 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 4600 if (vp->v_vflag & VV_VMSIZEVNLOCK) 4601 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf)); 4602 if (vp->v_vflag & VV_COPYONWRITE) 4603 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 4604 if (vp->v_vflag & VV_SYSTEM) 4605 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 4606 if (vp->v_vflag & VV_PROCDEP) 4607 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 4608 if (vp->v_vflag & VV_DELETED) 4609 strlcat(buf, "|VV_DELETED", sizeof(buf)); 4610 if (vp->v_vflag & VV_MD) 4611 strlcat(buf, "|VV_MD", sizeof(buf)); 4612 if (vp->v_vflag & VV_FORCEINSMQ) 4613 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 4614 if (vp->v_vflag & VV_READLINK) 4615 strlcat(buf, "|VV_READLINK", sizeof(buf)); 4616 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 4617 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM | 4618 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK); 4619 if (flags != 0) { 4620 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 4621 strlcat(buf, buf2, sizeof(buf)); 4622 } 4623 if (vp->v_iflag & VI_MOUNT) 4624 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 4625 if (vp->v_iflag & VI_DOINGINACT) 4626 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 4627 if (vp->v_iflag & VI_OWEINACT) 4628 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 4629 if (vp->v_iflag & VI_DEFINACT) 4630 strlcat(buf, "|VI_DEFINACT", sizeof(buf)); 4631 if (vp->v_iflag & VI_FOPENING) 4632 strlcat(buf, "|VI_FOPENING", sizeof(buf)); 4633 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT | 4634 VI_OWEINACT | VI_DEFINACT | VI_FOPENING); 4635 if (flags != 0) { 4636 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 4637 strlcat(buf, buf2, sizeof(buf)); 4638 } 4639 if (vp->v_mflag & VMP_LAZYLIST) 4640 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf)); 4641 flags = vp->v_mflag & ~(VMP_LAZYLIST); 4642 if (flags != 0) { 4643 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags); 4644 strlcat(buf, buf2, sizeof(buf)); 4645 } 4646 printf(" flags (%s)", buf + 1); 4647 if (mtx_owned(VI_MTX(vp))) 4648 printf(" VI_LOCKed"); 4649 printf("\n"); 4650 if (vp->v_object != NULL) 4651 printf(" v_object %p ref %d pages %d " 4652 "cleanbuf %d dirtybuf %d\n", 4653 vp->v_object, vp->v_object->ref_count, 4654 vp->v_object->resident_page_count, 4655 vp->v_bufobj.bo_clean.bv_cnt, 4656 vp->v_bufobj.bo_dirty.bv_cnt); 4657 printf(" "); 4658 lockmgr_printinfo(vp->v_vnlock); 4659 if (vp->v_data != NULL) 4660 VOP_PRINT(vp); 4661 } 4662 4663 #ifdef DDB 4664 /* 4665 * List all of the locked vnodes in the system. 4666 * Called when debugging the kernel. 4667 */ 4668 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE) 4669 { 4670 struct mount *mp; 4671 struct vnode *vp; 4672 4673 /* 4674 * Note: because this is DDB, we can't obey the locking semantics 4675 * for these structures, which means we could catch an inconsistent 4676 * state and dereference a nasty pointer. Not much to be done 4677 * about that. 4678 */ 4679 db_printf("Locked vnodes\n"); 4680 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4681 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4682 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 4683 vn_printf(vp, "vnode "); 4684 } 4685 } 4686 } 4687 4688 /* 4689 * Show details about the given vnode. 4690 */ 4691 DB_SHOW_COMMAND(vnode, db_show_vnode) 4692 { 4693 struct vnode *vp; 4694 4695 if (!have_addr) 4696 return; 4697 vp = (struct vnode *)addr; 4698 vn_printf(vp, "vnode "); 4699 } 4700 4701 /* 4702 * Show details about the given mount point. 4703 */ 4704 DB_SHOW_COMMAND(mount, db_show_mount) 4705 { 4706 struct mount *mp; 4707 struct vfsopt *opt; 4708 struct statfs *sp; 4709 struct vnode *vp; 4710 char buf[512]; 4711 uint64_t mflags; 4712 u_int flags; 4713 4714 if (!have_addr) { 4715 /* No address given, print short info about all mount points. */ 4716 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4717 db_printf("%p %s on %s (%s)\n", mp, 4718 mp->mnt_stat.f_mntfromname, 4719 mp->mnt_stat.f_mntonname, 4720 mp->mnt_stat.f_fstypename); 4721 if (db_pager_quit) 4722 break; 4723 } 4724 db_printf("\nMore info: show mount <addr>\n"); 4725 return; 4726 } 4727 4728 mp = (struct mount *)addr; 4729 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 4730 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 4731 4732 buf[0] = '\0'; 4733 mflags = mp->mnt_flag; 4734 #define MNT_FLAG(flag) do { \ 4735 if (mflags & (flag)) { \ 4736 if (buf[0] != '\0') \ 4737 strlcat(buf, ", ", sizeof(buf)); \ 4738 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 4739 mflags &= ~(flag); \ 4740 } \ 4741 } while (0) 4742 MNT_FLAG(MNT_RDONLY); 4743 MNT_FLAG(MNT_SYNCHRONOUS); 4744 MNT_FLAG(MNT_NOEXEC); 4745 MNT_FLAG(MNT_NOSUID); 4746 MNT_FLAG(MNT_NFS4ACLS); 4747 MNT_FLAG(MNT_UNION); 4748 MNT_FLAG(MNT_ASYNC); 4749 MNT_FLAG(MNT_SUIDDIR); 4750 MNT_FLAG(MNT_SOFTDEP); 4751 MNT_FLAG(MNT_NOSYMFOLLOW); 4752 MNT_FLAG(MNT_GJOURNAL); 4753 MNT_FLAG(MNT_MULTILABEL); 4754 MNT_FLAG(MNT_ACLS); 4755 MNT_FLAG(MNT_NOATIME); 4756 MNT_FLAG(MNT_NOCLUSTERR); 4757 MNT_FLAG(MNT_NOCLUSTERW); 4758 MNT_FLAG(MNT_SUJ); 4759 MNT_FLAG(MNT_EXRDONLY); 4760 MNT_FLAG(MNT_EXPORTED); 4761 MNT_FLAG(MNT_DEFEXPORTED); 4762 MNT_FLAG(MNT_EXPORTANON); 4763 MNT_FLAG(MNT_EXKERB); 4764 MNT_FLAG(MNT_EXPUBLIC); 4765 MNT_FLAG(MNT_LOCAL); 4766 MNT_FLAG(MNT_QUOTA); 4767 MNT_FLAG(MNT_ROOTFS); 4768 MNT_FLAG(MNT_USER); 4769 MNT_FLAG(MNT_IGNORE); 4770 MNT_FLAG(MNT_UPDATE); 4771 MNT_FLAG(MNT_DELEXPORT); 4772 MNT_FLAG(MNT_RELOAD); 4773 MNT_FLAG(MNT_FORCE); 4774 MNT_FLAG(MNT_SNAPSHOT); 4775 MNT_FLAG(MNT_BYFSID); 4776 #undef MNT_FLAG 4777 if (mflags != 0) { 4778 if (buf[0] != '\0') 4779 strlcat(buf, ", ", sizeof(buf)); 4780 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4781 "0x%016jx", mflags); 4782 } 4783 db_printf(" mnt_flag = %s\n", buf); 4784 4785 buf[0] = '\0'; 4786 flags = mp->mnt_kern_flag; 4787 #define MNT_KERN_FLAG(flag) do { \ 4788 if (flags & (flag)) { \ 4789 if (buf[0] != '\0') \ 4790 strlcat(buf, ", ", sizeof(buf)); \ 4791 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 4792 flags &= ~(flag); \ 4793 } \ 4794 } while (0) 4795 MNT_KERN_FLAG(MNTK_UNMOUNTF); 4796 MNT_KERN_FLAG(MNTK_ASYNC); 4797 MNT_KERN_FLAG(MNTK_SOFTDEP); 4798 MNT_KERN_FLAG(MNTK_NOMSYNC); 4799 MNT_KERN_FLAG(MNTK_DRAINING); 4800 MNT_KERN_FLAG(MNTK_REFEXPIRE); 4801 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 4802 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 4803 MNT_KERN_FLAG(MNTK_NO_IOPF); 4804 MNT_KERN_FLAG(MNTK_RECURSE); 4805 MNT_KERN_FLAG(MNTK_UPPER_WAITER); 4806 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE); 4807 MNT_KERN_FLAG(MNTK_USES_BCACHE); 4808 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG); 4809 MNT_KERN_FLAG(MNTK_FPLOOKUP); 4810 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER); 4811 MNT_KERN_FLAG(MNTK_NOASYNC); 4812 MNT_KERN_FLAG(MNTK_UNMOUNT); 4813 MNT_KERN_FLAG(MNTK_MWAIT); 4814 MNT_KERN_FLAG(MNTK_SUSPEND); 4815 MNT_KERN_FLAG(MNTK_SUSPEND2); 4816 MNT_KERN_FLAG(MNTK_SUSPENDED); 4817 MNT_KERN_FLAG(MNTK_NULL_NOCACHE); 4818 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 4819 #undef MNT_KERN_FLAG 4820 if (flags != 0) { 4821 if (buf[0] != '\0') 4822 strlcat(buf, ", ", sizeof(buf)); 4823 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4824 "0x%08x", flags); 4825 } 4826 db_printf(" mnt_kern_flag = %s\n", buf); 4827 4828 db_printf(" mnt_opt = "); 4829 opt = TAILQ_FIRST(mp->mnt_opt); 4830 if (opt != NULL) { 4831 db_printf("%s", opt->name); 4832 opt = TAILQ_NEXT(opt, link); 4833 while (opt != NULL) { 4834 db_printf(", %s", opt->name); 4835 opt = TAILQ_NEXT(opt, link); 4836 } 4837 } 4838 db_printf("\n"); 4839 4840 sp = &mp->mnt_stat; 4841 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 4842 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 4843 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 4844 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 4845 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 4846 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 4847 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 4848 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 4849 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 4850 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 4851 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 4852 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 4853 4854 db_printf(" mnt_cred = { uid=%u ruid=%u", 4855 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 4856 if (jailed(mp->mnt_cred)) 4857 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 4858 db_printf(" }\n"); 4859 db_printf(" mnt_ref = %d (with %d in the struct)\n", 4860 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref); 4861 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 4862 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 4863 db_printf(" mnt_lazyvnodelistsize = %d\n", 4864 mp->mnt_lazyvnodelistsize); 4865 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n", 4866 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount); 4867 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 4868 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 4869 db_printf(" mnt_lockref = %d (with %d in the struct)\n", 4870 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref); 4871 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 4872 db_printf(" mnt_secondary_accwrites = %d\n", 4873 mp->mnt_secondary_accwrites); 4874 db_printf(" mnt_gjprovider = %s\n", 4875 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 4876 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops); 4877 4878 db_printf("\n\nList of active vnodes\n"); 4879 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4880 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) { 4881 vn_printf(vp, "vnode "); 4882 if (db_pager_quit) 4883 break; 4884 } 4885 } 4886 db_printf("\n\nList of inactive vnodes\n"); 4887 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4888 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) { 4889 vn_printf(vp, "vnode "); 4890 if (db_pager_quit) 4891 break; 4892 } 4893 } 4894 } 4895 #endif /* DDB */ 4896 4897 /* 4898 * Fill in a struct xvfsconf based on a struct vfsconf. 4899 */ 4900 static int 4901 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 4902 { 4903 struct xvfsconf xvfsp; 4904 4905 bzero(&xvfsp, sizeof(xvfsp)); 4906 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4907 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4908 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4909 xvfsp.vfc_flags = vfsp->vfc_flags; 4910 /* 4911 * These are unused in userland, we keep them 4912 * to not break binary compatibility. 4913 */ 4914 xvfsp.vfc_vfsops = NULL; 4915 xvfsp.vfc_next = NULL; 4916 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4917 } 4918 4919 #ifdef COMPAT_FREEBSD32 4920 struct xvfsconf32 { 4921 uint32_t vfc_vfsops; 4922 char vfc_name[MFSNAMELEN]; 4923 int32_t vfc_typenum; 4924 int32_t vfc_refcount; 4925 int32_t vfc_flags; 4926 uint32_t vfc_next; 4927 }; 4928 4929 static int 4930 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 4931 { 4932 struct xvfsconf32 xvfsp; 4933 4934 bzero(&xvfsp, sizeof(xvfsp)); 4935 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4936 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4937 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4938 xvfsp.vfc_flags = vfsp->vfc_flags; 4939 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4940 } 4941 #endif 4942 4943 /* 4944 * Top level filesystem related information gathering. 4945 */ 4946 static int 4947 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 4948 { 4949 struct vfsconf *vfsp; 4950 int error; 4951 4952 error = 0; 4953 vfsconf_slock(); 4954 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4955 #ifdef COMPAT_FREEBSD32 4956 if (req->flags & SCTL_MASK32) 4957 error = vfsconf2x32(req, vfsp); 4958 else 4959 #endif 4960 error = vfsconf2x(req, vfsp); 4961 if (error) 4962 break; 4963 } 4964 vfsconf_sunlock(); 4965 return (error); 4966 } 4967 4968 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 4969 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 4970 "S,xvfsconf", "List of all configured filesystems"); 4971 4972 #ifndef BURN_BRIDGES 4973 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 4974 4975 static int 4976 vfs_sysctl(SYSCTL_HANDLER_ARGS) 4977 { 4978 int *name = (int *)arg1 - 1; /* XXX */ 4979 u_int namelen = arg2 + 1; /* XXX */ 4980 struct vfsconf *vfsp; 4981 4982 log(LOG_WARNING, "userland calling deprecated sysctl, " 4983 "please rebuild world\n"); 4984 4985 #if 1 || defined(COMPAT_PRELITE2) 4986 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 4987 if (namelen == 1) 4988 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 4989 #endif 4990 4991 switch (name[1]) { 4992 case VFS_MAXTYPENUM: 4993 if (namelen != 2) 4994 return (ENOTDIR); 4995 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 4996 case VFS_CONF: 4997 if (namelen != 3) 4998 return (ENOTDIR); /* overloaded */ 4999 vfsconf_slock(); 5000 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 5001 if (vfsp->vfc_typenum == name[2]) 5002 break; 5003 } 5004 vfsconf_sunlock(); 5005 if (vfsp == NULL) 5006 return (EOPNOTSUPP); 5007 #ifdef COMPAT_FREEBSD32 5008 if (req->flags & SCTL_MASK32) 5009 return (vfsconf2x32(req, vfsp)); 5010 else 5011 #endif 5012 return (vfsconf2x(req, vfsp)); 5013 } 5014 return (EOPNOTSUPP); 5015 } 5016 5017 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 5018 CTLFLAG_MPSAFE, vfs_sysctl, 5019 "Generic filesystem"); 5020 5021 #if 1 || defined(COMPAT_PRELITE2) 5022 5023 static int 5024 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 5025 { 5026 int error; 5027 struct vfsconf *vfsp; 5028 struct ovfsconf ovfs; 5029 5030 vfsconf_slock(); 5031 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 5032 bzero(&ovfs, sizeof(ovfs)); 5033 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 5034 strcpy(ovfs.vfc_name, vfsp->vfc_name); 5035 ovfs.vfc_index = vfsp->vfc_typenum; 5036 ovfs.vfc_refcount = vfsp->vfc_refcount; 5037 ovfs.vfc_flags = vfsp->vfc_flags; 5038 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 5039 if (error != 0) { 5040 vfsconf_sunlock(); 5041 return (error); 5042 } 5043 } 5044 vfsconf_sunlock(); 5045 return (0); 5046 } 5047 5048 #endif /* 1 || COMPAT_PRELITE2 */ 5049 #endif /* !BURN_BRIDGES */ 5050 5051 static void 5052 unmount_or_warn(struct mount *mp) 5053 { 5054 int error; 5055 5056 error = dounmount(mp, MNT_FORCE, curthread); 5057 if (error != 0) { 5058 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); 5059 if (error == EBUSY) 5060 printf("BUSY)\n"); 5061 else 5062 printf("%d)\n", error); 5063 } 5064 } 5065 5066 /* 5067 * Unmount all filesystems. The list is traversed in reverse order 5068 * of mounting to avoid dependencies. 5069 */ 5070 void 5071 vfs_unmountall(void) 5072 { 5073 struct mount *mp, *tmp; 5074 5075 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 5076 5077 /* 5078 * Since this only runs when rebooting, it is not interlocked. 5079 */ 5080 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { 5081 vfs_ref(mp); 5082 5083 /* 5084 * Forcibly unmounting "/dev" before "/" would prevent clean 5085 * unmount of the latter. 5086 */ 5087 if (mp == rootdevmp) 5088 continue; 5089 5090 unmount_or_warn(mp); 5091 } 5092 5093 if (rootdevmp != NULL) 5094 unmount_or_warn(rootdevmp); 5095 } 5096 5097 static void 5098 vfs_deferred_inactive(struct vnode *vp, int lkflags) 5099 { 5100 5101 ASSERT_VI_LOCKED(vp, __func__); 5102 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 5103 if ((vp->v_iflag & VI_OWEINACT) == 0) { 5104 vdropl(vp); 5105 return; 5106 } 5107 if (vn_lock(vp, lkflags) == 0) { 5108 VI_LOCK(vp); 5109 vinactive(vp); 5110 VOP_UNLOCK(vp); 5111 vdropl(vp); 5112 return; 5113 } 5114 vdefer_inactive_unlocked(vp); 5115 } 5116 5117 static int 5118 vfs_periodic_inactive_filter(struct vnode *vp, void *arg) 5119 { 5120 5121 return (vp->v_iflag & VI_DEFINACT); 5122 } 5123 5124 static void __noinline 5125 vfs_periodic_inactive(struct mount *mp, int flags) 5126 { 5127 struct vnode *vp, *mvp; 5128 int lkflags; 5129 5130 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 5131 if (flags != MNT_WAIT) 5132 lkflags |= LK_NOWAIT; 5133 5134 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) { 5135 if ((vp->v_iflag & VI_DEFINACT) == 0) { 5136 VI_UNLOCK(vp); 5137 continue; 5138 } 5139 vp->v_iflag &= ~VI_DEFINACT; 5140 vfs_deferred_inactive(vp, lkflags); 5141 } 5142 } 5143 5144 static inline bool 5145 vfs_want_msync(struct vnode *vp) 5146 { 5147 struct vm_object *obj; 5148 5149 /* 5150 * This test may be performed without any locks held. 5151 * We rely on vm_object's type stability. 5152 */ 5153 if (vp->v_vflag & VV_NOSYNC) 5154 return (false); 5155 obj = vp->v_object; 5156 return (obj != NULL && vm_object_mightbedirty(obj)); 5157 } 5158 5159 static int 5160 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused) 5161 { 5162 5163 if (vp->v_vflag & VV_NOSYNC) 5164 return (false); 5165 if (vp->v_iflag & VI_DEFINACT) 5166 return (true); 5167 return (vfs_want_msync(vp)); 5168 } 5169 5170 static void __noinline 5171 vfs_periodic_msync_inactive(struct mount *mp, int flags) 5172 { 5173 struct vnode *vp, *mvp; 5174 int lkflags; 5175 bool seen_defer; 5176 5177 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 5178 if (flags != MNT_WAIT) 5179 lkflags |= LK_NOWAIT; 5180 5181 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) { 5182 seen_defer = false; 5183 if (vp->v_iflag & VI_DEFINACT) { 5184 vp->v_iflag &= ~VI_DEFINACT; 5185 seen_defer = true; 5186 } 5187 if (!vfs_want_msync(vp)) { 5188 if (seen_defer) 5189 vfs_deferred_inactive(vp, lkflags); 5190 else 5191 VI_UNLOCK(vp); 5192 continue; 5193 } 5194 if (vget(vp, lkflags) == 0) { 5195 if ((vp->v_vflag & VV_NOSYNC) == 0) { 5196 if (flags == MNT_WAIT) 5197 vnode_pager_clean_sync(vp); 5198 else 5199 vnode_pager_clean_async(vp); 5200 } 5201 vput(vp); 5202 if (seen_defer) 5203 vdrop(vp); 5204 } else { 5205 if (seen_defer) 5206 vdefer_inactive_unlocked(vp); 5207 } 5208 } 5209 } 5210 5211 void 5212 vfs_periodic(struct mount *mp, int flags) 5213 { 5214 5215 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 5216 5217 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0) 5218 vfs_periodic_inactive(mp, flags); 5219 else 5220 vfs_periodic_msync_inactive(mp, flags); 5221 } 5222 5223 static void 5224 destroy_vpollinfo_free(struct vpollinfo *vi) 5225 { 5226 5227 knlist_destroy(&vi->vpi_selinfo.si_note); 5228 mtx_destroy(&vi->vpi_lock); 5229 free(vi, M_VNODEPOLL); 5230 } 5231 5232 static void 5233 destroy_vpollinfo(struct vpollinfo *vi) 5234 { 5235 5236 knlist_clear(&vi->vpi_selinfo.si_note, 1); 5237 seldrain(&vi->vpi_selinfo); 5238 destroy_vpollinfo_free(vi); 5239 } 5240 5241 /* 5242 * Initialize per-vnode helper structure to hold poll-related state. 5243 */ 5244 void 5245 v_addpollinfo(struct vnode *vp) 5246 { 5247 struct vpollinfo *vi; 5248 5249 if (vp->v_pollinfo != NULL) 5250 return; 5251 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO); 5252 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 5253 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 5254 vfs_knlunlock, vfs_knl_assert_lock); 5255 VI_LOCK(vp); 5256 if (vp->v_pollinfo != NULL) { 5257 VI_UNLOCK(vp); 5258 destroy_vpollinfo_free(vi); 5259 return; 5260 } 5261 vp->v_pollinfo = vi; 5262 VI_UNLOCK(vp); 5263 } 5264 5265 /* 5266 * Record a process's interest in events which might happen to 5267 * a vnode. Because poll uses the historic select-style interface 5268 * internally, this routine serves as both the ``check for any 5269 * pending events'' and the ``record my interest in future events'' 5270 * functions. (These are done together, while the lock is held, 5271 * to avoid race conditions.) 5272 */ 5273 int 5274 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 5275 { 5276 5277 v_addpollinfo(vp); 5278 mtx_lock(&vp->v_pollinfo->vpi_lock); 5279 if (vp->v_pollinfo->vpi_revents & events) { 5280 /* 5281 * This leaves events we are not interested 5282 * in available for the other process which 5283 * which presumably had requested them 5284 * (otherwise they would never have been 5285 * recorded). 5286 */ 5287 events &= vp->v_pollinfo->vpi_revents; 5288 vp->v_pollinfo->vpi_revents &= ~events; 5289 5290 mtx_unlock(&vp->v_pollinfo->vpi_lock); 5291 return (events); 5292 } 5293 vp->v_pollinfo->vpi_events |= events; 5294 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 5295 mtx_unlock(&vp->v_pollinfo->vpi_lock); 5296 return (0); 5297 } 5298 5299 /* 5300 * Routine to create and manage a filesystem syncer vnode. 5301 */ 5302 #define sync_close ((int (*)(struct vop_close_args *))nullop) 5303 static int sync_fsync(struct vop_fsync_args *); 5304 static int sync_inactive(struct vop_inactive_args *); 5305 static int sync_reclaim(struct vop_reclaim_args *); 5306 5307 static struct vop_vector sync_vnodeops = { 5308 .vop_bypass = VOP_EOPNOTSUPP, 5309 .vop_close = sync_close, 5310 .vop_fsync = sync_fsync, 5311 .vop_getwritemount = vop_stdgetwritemount, 5312 .vop_inactive = sync_inactive, 5313 .vop_need_inactive = vop_stdneed_inactive, 5314 .vop_reclaim = sync_reclaim, 5315 .vop_lock1 = vop_stdlock, 5316 .vop_unlock = vop_stdunlock, 5317 .vop_islocked = vop_stdislocked, 5318 .vop_fplookup_vexec = VOP_EAGAIN, 5319 .vop_fplookup_symlink = VOP_EAGAIN, 5320 }; 5321 VFS_VOP_VECTOR_REGISTER(sync_vnodeops); 5322 5323 /* 5324 * Create a new filesystem syncer vnode for the specified mount point. 5325 */ 5326 void 5327 vfs_allocate_syncvnode(struct mount *mp) 5328 { 5329 struct vnode *vp; 5330 struct bufobj *bo; 5331 static long start, incr, next; 5332 int error; 5333 5334 /* Allocate a new vnode */ 5335 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 5336 if (error != 0) 5337 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 5338 vp->v_type = VNON; 5339 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5340 vp->v_vflag |= VV_FORCEINSMQ; 5341 error = insmntque1(vp, mp); 5342 if (error != 0) 5343 panic("vfs_allocate_syncvnode: insmntque() failed"); 5344 vp->v_vflag &= ~VV_FORCEINSMQ; 5345 vn_set_state(vp, VSTATE_CONSTRUCTED); 5346 VOP_UNLOCK(vp); 5347 /* 5348 * Place the vnode onto the syncer worklist. We attempt to 5349 * scatter them about on the list so that they will go off 5350 * at evenly distributed times even if all the filesystems 5351 * are mounted at once. 5352 */ 5353 next += incr; 5354 if (next == 0 || next > syncer_maxdelay) { 5355 start /= 2; 5356 incr /= 2; 5357 if (start == 0) { 5358 start = syncer_maxdelay / 2; 5359 incr = syncer_maxdelay; 5360 } 5361 next = start; 5362 } 5363 bo = &vp->v_bufobj; 5364 BO_LOCK(bo); 5365 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 5366 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 5367 mtx_lock(&sync_mtx); 5368 sync_vnode_count++; 5369 if (mp->mnt_syncer == NULL) { 5370 mp->mnt_syncer = vp; 5371 vp = NULL; 5372 } 5373 mtx_unlock(&sync_mtx); 5374 BO_UNLOCK(bo); 5375 if (vp != NULL) { 5376 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5377 vgone(vp); 5378 vput(vp); 5379 } 5380 } 5381 5382 void 5383 vfs_deallocate_syncvnode(struct mount *mp) 5384 { 5385 struct vnode *vp; 5386 5387 mtx_lock(&sync_mtx); 5388 vp = mp->mnt_syncer; 5389 if (vp != NULL) 5390 mp->mnt_syncer = NULL; 5391 mtx_unlock(&sync_mtx); 5392 if (vp != NULL) 5393 vrele(vp); 5394 } 5395 5396 /* 5397 * Do a lazy sync of the filesystem. 5398 */ 5399 static int 5400 sync_fsync(struct vop_fsync_args *ap) 5401 { 5402 struct vnode *syncvp = ap->a_vp; 5403 struct mount *mp = syncvp->v_mount; 5404 int error, save; 5405 struct bufobj *bo; 5406 5407 /* 5408 * We only need to do something if this is a lazy evaluation. 5409 */ 5410 if (ap->a_waitfor != MNT_LAZY) 5411 return (0); 5412 5413 /* 5414 * Move ourselves to the back of the sync list. 5415 */ 5416 bo = &syncvp->v_bufobj; 5417 BO_LOCK(bo); 5418 vn_syncer_add_to_worklist(bo, syncdelay); 5419 BO_UNLOCK(bo); 5420 5421 /* 5422 * Walk the list of vnodes pushing all that are dirty and 5423 * not already on the sync list. 5424 */ 5425 if (vfs_busy(mp, MBF_NOWAIT) != 0) 5426 return (0); 5427 VOP_UNLOCK(syncvp); 5428 save = curthread_pflags_set(TDP_SYNCIO); 5429 /* 5430 * The filesystem at hand may be idle with free vnodes stored in the 5431 * batch. Return them instead of letting them stay there indefinitely. 5432 */ 5433 vfs_periodic(mp, MNT_NOWAIT); 5434 error = VFS_SYNC(mp, MNT_LAZY); 5435 curthread_pflags_restore(save); 5436 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY); 5437 vfs_unbusy(mp); 5438 return (error); 5439 } 5440 5441 /* 5442 * The syncer vnode is no referenced. 5443 */ 5444 static int 5445 sync_inactive(struct vop_inactive_args *ap) 5446 { 5447 5448 vgone(ap->a_vp); 5449 return (0); 5450 } 5451 5452 /* 5453 * The syncer vnode is no longer needed and is being decommissioned. 5454 * 5455 * Modifications to the worklist must be protected by sync_mtx. 5456 */ 5457 static int 5458 sync_reclaim(struct vop_reclaim_args *ap) 5459 { 5460 struct vnode *vp = ap->a_vp; 5461 struct bufobj *bo; 5462 5463 bo = &vp->v_bufobj; 5464 BO_LOCK(bo); 5465 mtx_lock(&sync_mtx); 5466 if (vp->v_mount->mnt_syncer == vp) 5467 vp->v_mount->mnt_syncer = NULL; 5468 if (bo->bo_flag & BO_ONWORKLST) { 5469 LIST_REMOVE(bo, bo_synclist); 5470 syncer_worklist_len--; 5471 sync_vnode_count--; 5472 bo->bo_flag &= ~BO_ONWORKLST; 5473 } 5474 mtx_unlock(&sync_mtx); 5475 BO_UNLOCK(bo); 5476 5477 return (0); 5478 } 5479 5480 int 5481 vn_need_pageq_flush(struct vnode *vp) 5482 { 5483 struct vm_object *obj; 5484 5485 obj = vp->v_object; 5486 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 5487 vm_object_mightbedirty(obj)); 5488 } 5489 5490 /* 5491 * Check if vnode represents a disk device 5492 */ 5493 bool 5494 vn_isdisk_error(struct vnode *vp, int *errp) 5495 { 5496 int error; 5497 5498 if (vp->v_type != VCHR) { 5499 error = ENOTBLK; 5500 goto out; 5501 } 5502 error = 0; 5503 dev_lock(); 5504 if (vp->v_rdev == NULL) 5505 error = ENXIO; 5506 else if (vp->v_rdev->si_devsw == NULL) 5507 error = ENXIO; 5508 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 5509 error = ENOTBLK; 5510 dev_unlock(); 5511 out: 5512 *errp = error; 5513 return (error == 0); 5514 } 5515 5516 bool 5517 vn_isdisk(struct vnode *vp) 5518 { 5519 int error; 5520 5521 return (vn_isdisk_error(vp, &error)); 5522 } 5523 5524 /* 5525 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see 5526 * the comment above cache_fplookup for details. 5527 */ 5528 int 5529 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred) 5530 { 5531 int error; 5532 5533 VFS_SMR_ASSERT_ENTERED(); 5534 5535 /* Check the owner. */ 5536 if (cred->cr_uid == file_uid) { 5537 if (file_mode & S_IXUSR) 5538 return (0); 5539 goto out_error; 5540 } 5541 5542 /* Otherwise, check the groups (first match) */ 5543 if (groupmember(file_gid, cred)) { 5544 if (file_mode & S_IXGRP) 5545 return (0); 5546 goto out_error; 5547 } 5548 5549 /* Otherwise, check everyone else. */ 5550 if (file_mode & S_IXOTH) 5551 return (0); 5552 out_error: 5553 /* 5554 * Permission check failed, but it is possible denial will get overwritten 5555 * (e.g., when root is traversing through a 700 directory owned by someone 5556 * else). 5557 * 5558 * vaccess() calls priv_check_cred which in turn can descent into MAC 5559 * modules overriding this result. It's quite unclear what semantics 5560 * are allowed for them to operate, thus for safety we don't call them 5561 * from within the SMR section. This also means if any such modules 5562 * are present, we have to let the regular lookup decide. 5563 */ 5564 error = priv_check_cred_vfs_lookup_nomac(cred); 5565 switch (error) { 5566 case 0: 5567 return (0); 5568 case EAGAIN: 5569 /* 5570 * MAC modules present. 5571 */ 5572 return (EAGAIN); 5573 case EPERM: 5574 return (EACCES); 5575 default: 5576 return (error); 5577 } 5578 } 5579 5580 /* 5581 * Common filesystem object access control check routine. Accepts a 5582 * vnode's type, "mode", uid and gid, requested access mode, and credentials. 5583 * Returns 0 on success, or an errno on failure. 5584 */ 5585 int 5586 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 5587 accmode_t accmode, struct ucred *cred) 5588 { 5589 accmode_t dac_granted; 5590 accmode_t priv_granted; 5591 5592 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 5593 ("invalid bit in accmode")); 5594 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 5595 ("VAPPEND without VWRITE")); 5596 5597 /* 5598 * Look for a normal, non-privileged way to access the file/directory 5599 * as requested. If it exists, go with that. 5600 */ 5601 5602 dac_granted = 0; 5603 5604 /* Check the owner. */ 5605 if (cred->cr_uid == file_uid) { 5606 dac_granted |= VADMIN; 5607 if (file_mode & S_IXUSR) 5608 dac_granted |= VEXEC; 5609 if (file_mode & S_IRUSR) 5610 dac_granted |= VREAD; 5611 if (file_mode & S_IWUSR) 5612 dac_granted |= (VWRITE | VAPPEND); 5613 5614 if ((accmode & dac_granted) == accmode) 5615 return (0); 5616 5617 goto privcheck; 5618 } 5619 5620 /* Otherwise, check the groups (first match) */ 5621 if (groupmember(file_gid, cred)) { 5622 if (file_mode & S_IXGRP) 5623 dac_granted |= VEXEC; 5624 if (file_mode & S_IRGRP) 5625 dac_granted |= VREAD; 5626 if (file_mode & S_IWGRP) 5627 dac_granted |= (VWRITE | VAPPEND); 5628 5629 if ((accmode & dac_granted) == accmode) 5630 return (0); 5631 5632 goto privcheck; 5633 } 5634 5635 /* Otherwise, check everyone else. */ 5636 if (file_mode & S_IXOTH) 5637 dac_granted |= VEXEC; 5638 if (file_mode & S_IROTH) 5639 dac_granted |= VREAD; 5640 if (file_mode & S_IWOTH) 5641 dac_granted |= (VWRITE | VAPPEND); 5642 if ((accmode & dac_granted) == accmode) 5643 return (0); 5644 5645 privcheck: 5646 /* 5647 * Build a privilege mask to determine if the set of privileges 5648 * satisfies the requirements when combined with the granted mask 5649 * from above. For each privilege, if the privilege is required, 5650 * bitwise or the request type onto the priv_granted mask. 5651 */ 5652 priv_granted = 0; 5653 5654 if (type == VDIR) { 5655 /* 5656 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 5657 * requests, instead of PRIV_VFS_EXEC. 5658 */ 5659 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5660 !priv_check_cred(cred, PRIV_VFS_LOOKUP)) 5661 priv_granted |= VEXEC; 5662 } else { 5663 /* 5664 * Ensure that at least one execute bit is on. Otherwise, 5665 * a privileged user will always succeed, and we don't want 5666 * this to happen unless the file really is executable. 5667 */ 5668 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5669 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 5670 !priv_check_cred(cred, PRIV_VFS_EXEC)) 5671 priv_granted |= VEXEC; 5672 } 5673 5674 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 5675 !priv_check_cred(cred, PRIV_VFS_READ)) 5676 priv_granted |= VREAD; 5677 5678 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 5679 !priv_check_cred(cred, PRIV_VFS_WRITE)) 5680 priv_granted |= (VWRITE | VAPPEND); 5681 5682 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 5683 !priv_check_cred(cred, PRIV_VFS_ADMIN)) 5684 priv_granted |= VADMIN; 5685 5686 if ((accmode & (priv_granted | dac_granted)) == accmode) { 5687 return (0); 5688 } 5689 5690 return ((accmode & VADMIN) ? EPERM : EACCES); 5691 } 5692 5693 /* 5694 * Credential check based on process requesting service, and per-attribute 5695 * permissions. 5696 */ 5697 int 5698 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 5699 struct thread *td, accmode_t accmode) 5700 { 5701 5702 /* 5703 * Kernel-invoked always succeeds. 5704 */ 5705 if (cred == NOCRED) 5706 return (0); 5707 5708 /* 5709 * Do not allow privileged processes in jail to directly manipulate 5710 * system attributes. 5711 */ 5712 switch (attrnamespace) { 5713 case EXTATTR_NAMESPACE_SYSTEM: 5714 /* Potentially should be: return (EPERM); */ 5715 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM)); 5716 case EXTATTR_NAMESPACE_USER: 5717 return (VOP_ACCESS(vp, accmode, cred, td)); 5718 default: 5719 return (EPERM); 5720 } 5721 } 5722 5723 #ifdef DEBUG_VFS_LOCKS 5724 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 5725 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 5726 "Drop into debugger on lock violation"); 5727 5728 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 5729 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 5730 0, "Check for interlock across VOPs"); 5731 5732 int vfs_badlock_print = 1; /* Print lock violations. */ 5733 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 5734 0, "Print lock violations"); 5735 5736 int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */ 5737 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode, 5738 0, "Print vnode details on lock violations"); 5739 5740 #ifdef KDB 5741 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 5742 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 5743 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 5744 #endif 5745 5746 static void 5747 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 5748 { 5749 5750 #ifdef KDB 5751 if (vfs_badlock_backtrace) 5752 kdb_backtrace(); 5753 #endif 5754 if (vfs_badlock_vnode) 5755 vn_printf(vp, "vnode "); 5756 if (vfs_badlock_print) 5757 printf("%s: %p %s\n", str, (void *)vp, msg); 5758 if (vfs_badlock_ddb) 5759 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5760 } 5761 5762 void 5763 assert_vi_locked(struct vnode *vp, const char *str) 5764 { 5765 5766 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 5767 vfs_badlock("interlock is not locked but should be", str, vp); 5768 } 5769 5770 void 5771 assert_vi_unlocked(struct vnode *vp, const char *str) 5772 { 5773 5774 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 5775 vfs_badlock("interlock is locked but should not be", str, vp); 5776 } 5777 5778 void 5779 assert_vop_locked(struct vnode *vp, const char *str) 5780 { 5781 if (KERNEL_PANICKED() || vp == NULL) 5782 return; 5783 5784 #ifdef WITNESS 5785 if ((vp->v_irflag & VIRF_CROSSMP) == 0 && 5786 witness_is_owned(&vp->v_vnlock->lock_object) == -1) 5787 #else 5788 int locked = VOP_ISLOCKED(vp); 5789 if (locked == 0 || locked == LK_EXCLOTHER) 5790 #endif 5791 vfs_badlock("is not locked but should be", str, vp); 5792 } 5793 5794 void 5795 assert_vop_unlocked(struct vnode *vp, const char *str) 5796 { 5797 if (KERNEL_PANICKED() || vp == NULL) 5798 return; 5799 5800 #ifdef WITNESS 5801 if ((vp->v_irflag & VIRF_CROSSMP) == 0 && 5802 witness_is_owned(&vp->v_vnlock->lock_object) == 1) 5803 #else 5804 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 5805 #endif 5806 vfs_badlock("is locked but should not be", str, vp); 5807 } 5808 5809 void 5810 assert_vop_elocked(struct vnode *vp, const char *str) 5811 { 5812 if (KERNEL_PANICKED() || vp == NULL) 5813 return; 5814 5815 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 5816 vfs_badlock("is not exclusive locked but should be", str, vp); 5817 } 5818 #endif /* DEBUG_VFS_LOCKS */ 5819 5820 void 5821 vop_rename_fail(struct vop_rename_args *ap) 5822 { 5823 5824 if (ap->a_tvp != NULL) 5825 vput(ap->a_tvp); 5826 if (ap->a_tdvp == ap->a_tvp) 5827 vrele(ap->a_tdvp); 5828 else 5829 vput(ap->a_tdvp); 5830 vrele(ap->a_fdvp); 5831 vrele(ap->a_fvp); 5832 } 5833 5834 void 5835 vop_rename_pre(void *ap) 5836 { 5837 struct vop_rename_args *a = ap; 5838 5839 #ifdef DEBUG_VFS_LOCKS 5840 if (a->a_tvp) 5841 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 5842 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 5843 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 5844 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 5845 5846 /* Check the source (from). */ 5847 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 5848 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 5849 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 5850 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 5851 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 5852 5853 /* Check the target. */ 5854 if (a->a_tvp) 5855 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 5856 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 5857 #endif 5858 /* 5859 * It may be tempting to add vn_seqc_write_begin/end calls here and 5860 * in vop_rename_post but that's not going to work out since some 5861 * filesystems relookup vnodes mid-rename. This is probably a bug. 5862 * 5863 * For now filesystems are expected to do the relevant calls after they 5864 * decide what vnodes to operate on. 5865 */ 5866 if (a->a_tdvp != a->a_fdvp) 5867 vhold(a->a_fdvp); 5868 if (a->a_tvp != a->a_fvp) 5869 vhold(a->a_fvp); 5870 vhold(a->a_tdvp); 5871 if (a->a_tvp) 5872 vhold(a->a_tvp); 5873 } 5874 5875 #ifdef DEBUG_VFS_LOCKS 5876 void 5877 vop_fplookup_vexec_debugpre(void *ap __unused) 5878 { 5879 5880 VFS_SMR_ASSERT_ENTERED(); 5881 } 5882 5883 void 5884 vop_fplookup_vexec_debugpost(void *ap, int rc) 5885 { 5886 struct vop_fplookup_vexec_args *a; 5887 struct vnode *vp; 5888 5889 a = ap; 5890 vp = a->a_vp; 5891 5892 VFS_SMR_ASSERT_ENTERED(); 5893 if (rc == EOPNOTSUPP) 5894 VNPASS(VN_IS_DOOMED(vp), vp); 5895 } 5896 5897 void 5898 vop_fplookup_symlink_debugpre(void *ap __unused) 5899 { 5900 5901 VFS_SMR_ASSERT_ENTERED(); 5902 } 5903 5904 void 5905 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused) 5906 { 5907 5908 VFS_SMR_ASSERT_ENTERED(); 5909 } 5910 5911 static void 5912 vop_fsync_debugprepost(struct vnode *vp, const char *name) 5913 { 5914 if (vp->v_type == VCHR) 5915 ; 5916 /* 5917 * The shared vs. exclusive locking policy for fsync() 5918 * is actually determined by vp's write mount as indicated 5919 * by VOP_GETWRITEMOUNT(), which for stacked filesystems 5920 * may not be the same as vp->v_mount. However, if the 5921 * underlying filesystem which really handles the fsync() 5922 * supports shared locking, the stacked filesystem must also 5923 * be prepared for its VOP_FSYNC() operation to be called 5924 * with only a shared lock. On the other hand, if the 5925 * stacked filesystem claims support for shared write 5926 * locking but the underlying filesystem does not, and the 5927 * caller incorrectly uses a shared lock, this condition 5928 * should still be caught when the stacked filesystem 5929 * invokes VOP_FSYNC() on the underlying filesystem. 5930 */ 5931 else if (MNT_SHARED_WRITES(vp->v_mount)) 5932 ASSERT_VOP_LOCKED(vp, name); 5933 else 5934 ASSERT_VOP_ELOCKED(vp, name); 5935 } 5936 5937 void 5938 vop_fsync_debugpre(void *a) 5939 { 5940 struct vop_fsync_args *ap; 5941 5942 ap = a; 5943 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5944 } 5945 5946 void 5947 vop_fsync_debugpost(void *a, int rc __unused) 5948 { 5949 struct vop_fsync_args *ap; 5950 5951 ap = a; 5952 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5953 } 5954 5955 void 5956 vop_fdatasync_debugpre(void *a) 5957 { 5958 struct vop_fdatasync_args *ap; 5959 5960 ap = a; 5961 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5962 } 5963 5964 void 5965 vop_fdatasync_debugpost(void *a, int rc __unused) 5966 { 5967 struct vop_fdatasync_args *ap; 5968 5969 ap = a; 5970 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5971 } 5972 5973 void 5974 vop_strategy_debugpre(void *ap) 5975 { 5976 struct vop_strategy_args *a; 5977 struct buf *bp; 5978 5979 a = ap; 5980 bp = a->a_bp; 5981 5982 /* 5983 * Cluster ops lock their component buffers but not the IO container. 5984 */ 5985 if ((bp->b_flags & B_CLUSTER) != 0) 5986 return; 5987 5988 if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) { 5989 if (vfs_badlock_print) 5990 printf( 5991 "VOP_STRATEGY: bp is not locked but should be\n"); 5992 if (vfs_badlock_ddb) 5993 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5994 } 5995 } 5996 5997 void 5998 vop_lock_debugpre(void *ap) 5999 { 6000 struct vop_lock1_args *a = ap; 6001 6002 if ((a->a_flags & LK_INTERLOCK) == 0) 6003 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 6004 else 6005 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 6006 } 6007 6008 void 6009 vop_lock_debugpost(void *ap, int rc) 6010 { 6011 struct vop_lock1_args *a = ap; 6012 6013 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 6014 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 6015 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 6016 } 6017 6018 void 6019 vop_unlock_debugpre(void *ap) 6020 { 6021 struct vop_unlock_args *a = ap; 6022 struct vnode *vp = a->a_vp; 6023 6024 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp); 6025 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK"); 6026 } 6027 6028 void 6029 vop_need_inactive_debugpre(void *ap) 6030 { 6031 struct vop_need_inactive_args *a = ap; 6032 6033 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 6034 } 6035 6036 void 6037 vop_need_inactive_debugpost(void *ap, int rc) 6038 { 6039 struct vop_need_inactive_args *a = ap; 6040 6041 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 6042 } 6043 #endif 6044 6045 void 6046 vop_create_pre(void *ap) 6047 { 6048 struct vop_create_args *a; 6049 struct vnode *dvp; 6050 6051 a = ap; 6052 dvp = a->a_dvp; 6053 vn_seqc_write_begin(dvp); 6054 } 6055 6056 void 6057 vop_create_post(void *ap, int rc) 6058 { 6059 struct vop_create_args *a; 6060 struct vnode *dvp; 6061 6062 a = ap; 6063 dvp = a->a_dvp; 6064 vn_seqc_write_end(dvp); 6065 if (!rc) 6066 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6067 } 6068 6069 void 6070 vop_whiteout_pre(void *ap) 6071 { 6072 struct vop_whiteout_args *a; 6073 struct vnode *dvp; 6074 6075 a = ap; 6076 dvp = a->a_dvp; 6077 vn_seqc_write_begin(dvp); 6078 } 6079 6080 void 6081 vop_whiteout_post(void *ap, int rc) 6082 { 6083 struct vop_whiteout_args *a; 6084 struct vnode *dvp; 6085 6086 a = ap; 6087 dvp = a->a_dvp; 6088 vn_seqc_write_end(dvp); 6089 } 6090 6091 void 6092 vop_deleteextattr_pre(void *ap) 6093 { 6094 struct vop_deleteextattr_args *a; 6095 struct vnode *vp; 6096 6097 a = ap; 6098 vp = a->a_vp; 6099 vn_seqc_write_begin(vp); 6100 } 6101 6102 void 6103 vop_deleteextattr_post(void *ap, int rc) 6104 { 6105 struct vop_deleteextattr_args *a; 6106 struct vnode *vp; 6107 6108 a = ap; 6109 vp = a->a_vp; 6110 vn_seqc_write_end(vp); 6111 if (!rc) 6112 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 6113 } 6114 6115 void 6116 vop_link_pre(void *ap) 6117 { 6118 struct vop_link_args *a; 6119 struct vnode *vp, *tdvp; 6120 6121 a = ap; 6122 vp = a->a_vp; 6123 tdvp = a->a_tdvp; 6124 vn_seqc_write_begin(vp); 6125 vn_seqc_write_begin(tdvp); 6126 } 6127 6128 void 6129 vop_link_post(void *ap, int rc) 6130 { 6131 struct vop_link_args *a; 6132 struct vnode *vp, *tdvp; 6133 6134 a = ap; 6135 vp = a->a_vp; 6136 tdvp = a->a_tdvp; 6137 vn_seqc_write_end(vp); 6138 vn_seqc_write_end(tdvp); 6139 if (!rc) { 6140 VFS_KNOTE_LOCKED(vp, NOTE_LINK); 6141 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE); 6142 } 6143 } 6144 6145 void 6146 vop_mkdir_pre(void *ap) 6147 { 6148 struct vop_mkdir_args *a; 6149 struct vnode *dvp; 6150 6151 a = ap; 6152 dvp = a->a_dvp; 6153 vn_seqc_write_begin(dvp); 6154 } 6155 6156 void 6157 vop_mkdir_post(void *ap, int rc) 6158 { 6159 struct vop_mkdir_args *a; 6160 struct vnode *dvp; 6161 6162 a = ap; 6163 dvp = a->a_dvp; 6164 vn_seqc_write_end(dvp); 6165 if (!rc) 6166 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 6167 } 6168 6169 #ifdef DEBUG_VFS_LOCKS 6170 void 6171 vop_mkdir_debugpost(void *ap, int rc) 6172 { 6173 struct vop_mkdir_args *a; 6174 6175 a = ap; 6176 if (!rc) 6177 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp); 6178 } 6179 #endif 6180 6181 void 6182 vop_mknod_pre(void *ap) 6183 { 6184 struct vop_mknod_args *a; 6185 struct vnode *dvp; 6186 6187 a = ap; 6188 dvp = a->a_dvp; 6189 vn_seqc_write_begin(dvp); 6190 } 6191 6192 void 6193 vop_mknod_post(void *ap, int rc) 6194 { 6195 struct vop_mknod_args *a; 6196 struct vnode *dvp; 6197 6198 a = ap; 6199 dvp = a->a_dvp; 6200 vn_seqc_write_end(dvp); 6201 if (!rc) 6202 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6203 } 6204 6205 void 6206 vop_reclaim_post(void *ap, int rc) 6207 { 6208 struct vop_reclaim_args *a; 6209 struct vnode *vp; 6210 6211 a = ap; 6212 vp = a->a_vp; 6213 ASSERT_VOP_IN_SEQC(vp); 6214 if (!rc) 6215 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE); 6216 } 6217 6218 void 6219 vop_remove_pre(void *ap) 6220 { 6221 struct vop_remove_args *a; 6222 struct vnode *dvp, *vp; 6223 6224 a = ap; 6225 dvp = a->a_dvp; 6226 vp = a->a_vp; 6227 vn_seqc_write_begin(dvp); 6228 vn_seqc_write_begin(vp); 6229 } 6230 6231 void 6232 vop_remove_post(void *ap, int rc) 6233 { 6234 struct vop_remove_args *a; 6235 struct vnode *dvp, *vp; 6236 6237 a = ap; 6238 dvp = a->a_dvp; 6239 vp = a->a_vp; 6240 vn_seqc_write_end(dvp); 6241 vn_seqc_write_end(vp); 6242 if (!rc) { 6243 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6244 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 6245 } 6246 } 6247 6248 void 6249 vop_rename_post(void *ap, int rc) 6250 { 6251 struct vop_rename_args *a = ap; 6252 long hint; 6253 6254 if (!rc) { 6255 hint = NOTE_WRITE; 6256 if (a->a_fdvp == a->a_tdvp) { 6257 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR) 6258 hint |= NOTE_LINK; 6259 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 6260 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 6261 } else { 6262 hint |= NOTE_EXTEND; 6263 if (a->a_fvp->v_type == VDIR) 6264 hint |= NOTE_LINK; 6265 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 6266 6267 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL && 6268 a->a_tvp->v_type == VDIR) 6269 hint &= ~NOTE_LINK; 6270 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 6271 } 6272 6273 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 6274 if (a->a_tvp) 6275 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 6276 } 6277 if (a->a_tdvp != a->a_fdvp) 6278 vdrop(a->a_fdvp); 6279 if (a->a_tvp != a->a_fvp) 6280 vdrop(a->a_fvp); 6281 vdrop(a->a_tdvp); 6282 if (a->a_tvp) 6283 vdrop(a->a_tvp); 6284 } 6285 6286 void 6287 vop_rmdir_pre(void *ap) 6288 { 6289 struct vop_rmdir_args *a; 6290 struct vnode *dvp, *vp; 6291 6292 a = ap; 6293 dvp = a->a_dvp; 6294 vp = a->a_vp; 6295 vn_seqc_write_begin(dvp); 6296 vn_seqc_write_begin(vp); 6297 } 6298 6299 void 6300 vop_rmdir_post(void *ap, int rc) 6301 { 6302 struct vop_rmdir_args *a; 6303 struct vnode *dvp, *vp; 6304 6305 a = ap; 6306 dvp = a->a_dvp; 6307 vp = a->a_vp; 6308 vn_seqc_write_end(dvp); 6309 vn_seqc_write_end(vp); 6310 if (!rc) { 6311 vp->v_vflag |= VV_UNLINKED; 6312 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 6313 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 6314 } 6315 } 6316 6317 void 6318 vop_setattr_pre(void *ap) 6319 { 6320 struct vop_setattr_args *a; 6321 struct vnode *vp; 6322 6323 a = ap; 6324 vp = a->a_vp; 6325 vn_seqc_write_begin(vp); 6326 } 6327 6328 void 6329 vop_setattr_post(void *ap, int rc) 6330 { 6331 struct vop_setattr_args *a; 6332 struct vnode *vp; 6333 6334 a = ap; 6335 vp = a->a_vp; 6336 vn_seqc_write_end(vp); 6337 if (!rc) 6338 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 6339 } 6340 6341 void 6342 vop_setacl_pre(void *ap) 6343 { 6344 struct vop_setacl_args *a; 6345 struct vnode *vp; 6346 6347 a = ap; 6348 vp = a->a_vp; 6349 vn_seqc_write_begin(vp); 6350 } 6351 6352 void 6353 vop_setacl_post(void *ap, int rc __unused) 6354 { 6355 struct vop_setacl_args *a; 6356 struct vnode *vp; 6357 6358 a = ap; 6359 vp = a->a_vp; 6360 vn_seqc_write_end(vp); 6361 } 6362 6363 void 6364 vop_setextattr_pre(void *ap) 6365 { 6366 struct vop_setextattr_args *a; 6367 struct vnode *vp; 6368 6369 a = ap; 6370 vp = a->a_vp; 6371 vn_seqc_write_begin(vp); 6372 } 6373 6374 void 6375 vop_setextattr_post(void *ap, int rc) 6376 { 6377 struct vop_setextattr_args *a; 6378 struct vnode *vp; 6379 6380 a = ap; 6381 vp = a->a_vp; 6382 vn_seqc_write_end(vp); 6383 if (!rc) 6384 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 6385 } 6386 6387 void 6388 vop_symlink_pre(void *ap) 6389 { 6390 struct vop_symlink_args *a; 6391 struct vnode *dvp; 6392 6393 a = ap; 6394 dvp = a->a_dvp; 6395 vn_seqc_write_begin(dvp); 6396 } 6397 6398 void 6399 vop_symlink_post(void *ap, int rc) 6400 { 6401 struct vop_symlink_args *a; 6402 struct vnode *dvp; 6403 6404 a = ap; 6405 dvp = a->a_dvp; 6406 vn_seqc_write_end(dvp); 6407 if (!rc) 6408 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6409 } 6410 6411 void 6412 vop_open_post(void *ap, int rc) 6413 { 6414 struct vop_open_args *a = ap; 6415 6416 if (!rc) 6417 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN); 6418 } 6419 6420 void 6421 vop_close_post(void *ap, int rc) 6422 { 6423 struct vop_close_args *a = ap; 6424 6425 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */ 6426 !VN_IS_DOOMED(a->a_vp))) { 6427 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ? 6428 NOTE_CLOSE_WRITE : NOTE_CLOSE); 6429 } 6430 } 6431 6432 void 6433 vop_read_post(void *ap, int rc) 6434 { 6435 struct vop_read_args *a = ap; 6436 6437 if (!rc) 6438 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6439 } 6440 6441 void 6442 vop_read_pgcache_post(void *ap, int rc) 6443 { 6444 struct vop_read_pgcache_args *a = ap; 6445 6446 if (!rc) 6447 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ); 6448 } 6449 6450 void 6451 vop_readdir_post(void *ap, int rc) 6452 { 6453 struct vop_readdir_args *a = ap; 6454 6455 if (!rc) 6456 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6457 } 6458 6459 static struct knlist fs_knlist; 6460 6461 static void 6462 vfs_event_init(void *arg) 6463 { 6464 knlist_init_mtx(&fs_knlist, NULL); 6465 } 6466 /* XXX - correct order? */ 6467 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 6468 6469 void 6470 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 6471 { 6472 6473 KNOTE_UNLOCKED(&fs_knlist, event); 6474 } 6475 6476 static int filt_fsattach(struct knote *kn); 6477 static void filt_fsdetach(struct knote *kn); 6478 static int filt_fsevent(struct knote *kn, long hint); 6479 6480 const struct filterops fs_filtops = { 6481 .f_isfd = 0, 6482 .f_attach = filt_fsattach, 6483 .f_detach = filt_fsdetach, 6484 .f_event = filt_fsevent 6485 }; 6486 6487 static int 6488 filt_fsattach(struct knote *kn) 6489 { 6490 6491 kn->kn_flags |= EV_CLEAR; 6492 knlist_add(&fs_knlist, kn, 0); 6493 return (0); 6494 } 6495 6496 static void 6497 filt_fsdetach(struct knote *kn) 6498 { 6499 6500 knlist_remove(&fs_knlist, kn, 0); 6501 } 6502 6503 static int 6504 filt_fsevent(struct knote *kn, long hint) 6505 { 6506 6507 kn->kn_fflags |= kn->kn_sfflags & hint; 6508 6509 return (kn->kn_fflags != 0); 6510 } 6511 6512 static int 6513 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 6514 { 6515 struct vfsidctl vc; 6516 int error; 6517 struct mount *mp; 6518 6519 error = SYSCTL_IN(req, &vc, sizeof(vc)); 6520 if (error) 6521 return (error); 6522 if (vc.vc_vers != VFS_CTL_VERS1) 6523 return (EINVAL); 6524 mp = vfs_getvfs(&vc.vc_fsid); 6525 if (mp == NULL) 6526 return (ENOENT); 6527 /* ensure that a specific sysctl goes to the right filesystem. */ 6528 if (strcmp(vc.vc_fstypename, "*") != 0 && 6529 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 6530 vfs_rel(mp); 6531 return (EINVAL); 6532 } 6533 VCTLTOREQ(&vc, req); 6534 error = VFS_SYSCTL(mp, vc.vc_op, req); 6535 vfs_rel(mp); 6536 return (error); 6537 } 6538 6539 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR, 6540 NULL, 0, sysctl_vfs_ctl, "", 6541 "Sysctl by fsid"); 6542 6543 /* 6544 * Function to initialize a va_filerev field sensibly. 6545 * XXX: Wouldn't a random number make a lot more sense ?? 6546 */ 6547 u_quad_t 6548 init_va_filerev(void) 6549 { 6550 struct bintime bt; 6551 6552 getbinuptime(&bt); 6553 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 6554 } 6555 6556 static int filt_vfsread(struct knote *kn, long hint); 6557 static int filt_vfswrite(struct knote *kn, long hint); 6558 static int filt_vfsvnode(struct knote *kn, long hint); 6559 static void filt_vfsdetach(struct knote *kn); 6560 static const struct filterops vfsread_filtops = { 6561 .f_isfd = 1, 6562 .f_detach = filt_vfsdetach, 6563 .f_event = filt_vfsread 6564 }; 6565 static const struct filterops vfswrite_filtops = { 6566 .f_isfd = 1, 6567 .f_detach = filt_vfsdetach, 6568 .f_event = filt_vfswrite 6569 }; 6570 static const struct filterops vfsvnode_filtops = { 6571 .f_isfd = 1, 6572 .f_detach = filt_vfsdetach, 6573 .f_event = filt_vfsvnode 6574 }; 6575 6576 static void 6577 vfs_knllock(void *arg) 6578 { 6579 struct vnode *vp = arg; 6580 6581 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 6582 } 6583 6584 static void 6585 vfs_knlunlock(void *arg) 6586 { 6587 struct vnode *vp = arg; 6588 6589 VOP_UNLOCK(vp); 6590 } 6591 6592 static void 6593 vfs_knl_assert_lock(void *arg, int what) 6594 { 6595 #ifdef DEBUG_VFS_LOCKS 6596 struct vnode *vp = arg; 6597 6598 if (what == LA_LOCKED) 6599 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 6600 else 6601 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 6602 #endif 6603 } 6604 6605 int 6606 vfs_kqfilter(struct vop_kqfilter_args *ap) 6607 { 6608 struct vnode *vp = ap->a_vp; 6609 struct knote *kn = ap->a_kn; 6610 struct knlist *knl; 6611 6612 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ && 6613 kn->kn_filter != EVFILT_WRITE), 6614 ("READ/WRITE filter on a FIFO leaked through")); 6615 switch (kn->kn_filter) { 6616 case EVFILT_READ: 6617 kn->kn_fop = &vfsread_filtops; 6618 break; 6619 case EVFILT_WRITE: 6620 kn->kn_fop = &vfswrite_filtops; 6621 break; 6622 case EVFILT_VNODE: 6623 kn->kn_fop = &vfsvnode_filtops; 6624 break; 6625 default: 6626 return (EINVAL); 6627 } 6628 6629 kn->kn_hook = (caddr_t)vp; 6630 6631 v_addpollinfo(vp); 6632 if (vp->v_pollinfo == NULL) 6633 return (ENOMEM); 6634 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 6635 vhold(vp); 6636 knlist_add(knl, kn, 0); 6637 6638 return (0); 6639 } 6640 6641 /* 6642 * Detach knote from vnode 6643 */ 6644 static void 6645 filt_vfsdetach(struct knote *kn) 6646 { 6647 struct vnode *vp = (struct vnode *)kn->kn_hook; 6648 6649 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 6650 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 6651 vdrop(vp); 6652 } 6653 6654 /*ARGSUSED*/ 6655 static int 6656 filt_vfsread(struct knote *kn, long hint) 6657 { 6658 struct vnode *vp = (struct vnode *)kn->kn_hook; 6659 off_t size; 6660 int res; 6661 6662 /* 6663 * filesystem is gone, so set the EOF flag and schedule 6664 * the knote for deletion. 6665 */ 6666 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6667 VI_LOCK(vp); 6668 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6669 VI_UNLOCK(vp); 6670 return (1); 6671 } 6672 6673 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0) 6674 return (0); 6675 6676 VI_LOCK(vp); 6677 kn->kn_data = size - kn->kn_fp->f_offset; 6678 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; 6679 VI_UNLOCK(vp); 6680 return (res); 6681 } 6682 6683 /*ARGSUSED*/ 6684 static int 6685 filt_vfswrite(struct knote *kn, long hint) 6686 { 6687 struct vnode *vp = (struct vnode *)kn->kn_hook; 6688 6689 VI_LOCK(vp); 6690 6691 /* 6692 * filesystem is gone, so set the EOF flag and schedule 6693 * the knote for deletion. 6694 */ 6695 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) 6696 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6697 6698 kn->kn_data = 0; 6699 VI_UNLOCK(vp); 6700 return (1); 6701 } 6702 6703 static int 6704 filt_vfsvnode(struct knote *kn, long hint) 6705 { 6706 struct vnode *vp = (struct vnode *)kn->kn_hook; 6707 int res; 6708 6709 VI_LOCK(vp); 6710 if (kn->kn_sfflags & hint) 6711 kn->kn_fflags |= hint; 6712 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6713 kn->kn_flags |= EV_EOF; 6714 VI_UNLOCK(vp); 6715 return (1); 6716 } 6717 res = (kn->kn_fflags != 0); 6718 VI_UNLOCK(vp); 6719 return (res); 6720 } 6721 6722 int 6723 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 6724 { 6725 int error; 6726 6727 if (dp->d_reclen > ap->a_uio->uio_resid) 6728 return (ENAMETOOLONG); 6729 error = uiomove(dp, dp->d_reclen, ap->a_uio); 6730 if (error) { 6731 if (ap->a_ncookies != NULL) { 6732 if (ap->a_cookies != NULL) 6733 free(ap->a_cookies, M_TEMP); 6734 ap->a_cookies = NULL; 6735 *ap->a_ncookies = 0; 6736 } 6737 return (error); 6738 } 6739 if (ap->a_ncookies == NULL) 6740 return (0); 6741 6742 KASSERT(ap->a_cookies, 6743 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 6744 6745 *ap->a_cookies = realloc(*ap->a_cookies, 6746 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO); 6747 (*ap->a_cookies)[*ap->a_ncookies] = off; 6748 *ap->a_ncookies += 1; 6749 return (0); 6750 } 6751 6752 /* 6753 * The purpose of this routine is to remove granularity from accmode_t, 6754 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 6755 * VADMIN and VAPPEND. 6756 * 6757 * If it returns 0, the caller is supposed to continue with the usual 6758 * access checks using 'accmode' as modified by this routine. If it 6759 * returns nonzero value, the caller is supposed to return that value 6760 * as errno. 6761 * 6762 * Note that after this routine runs, accmode may be zero. 6763 */ 6764 int 6765 vfs_unixify_accmode(accmode_t *accmode) 6766 { 6767 /* 6768 * There is no way to specify explicit "deny" rule using 6769 * file mode or POSIX.1e ACLs. 6770 */ 6771 if (*accmode & VEXPLICIT_DENY) { 6772 *accmode = 0; 6773 return (0); 6774 } 6775 6776 /* 6777 * None of these can be translated into usual access bits. 6778 * Also, the common case for NFSv4 ACLs is to not contain 6779 * either of these bits. Caller should check for VWRITE 6780 * on the containing directory instead. 6781 */ 6782 if (*accmode & (VDELETE_CHILD | VDELETE)) 6783 return (EPERM); 6784 6785 if (*accmode & VADMIN_PERMS) { 6786 *accmode &= ~VADMIN_PERMS; 6787 *accmode |= VADMIN; 6788 } 6789 6790 /* 6791 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 6792 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 6793 */ 6794 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 6795 6796 return (0); 6797 } 6798 6799 /* 6800 * Clear out a doomed vnode (if any) and replace it with a new one as long 6801 * as the fs is not being unmounted. Return the root vnode to the caller. 6802 */ 6803 static int __noinline 6804 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp) 6805 { 6806 struct vnode *vp; 6807 int error; 6808 6809 restart: 6810 if (mp->mnt_rootvnode != NULL) { 6811 MNT_ILOCK(mp); 6812 vp = mp->mnt_rootvnode; 6813 if (vp != NULL) { 6814 if (!VN_IS_DOOMED(vp)) { 6815 vrefact(vp); 6816 MNT_IUNLOCK(mp); 6817 error = vn_lock(vp, flags); 6818 if (error == 0) { 6819 *vpp = vp; 6820 return (0); 6821 } 6822 vrele(vp); 6823 goto restart; 6824 } 6825 /* 6826 * Clear the old one. 6827 */ 6828 mp->mnt_rootvnode = NULL; 6829 } 6830 MNT_IUNLOCK(mp); 6831 if (vp != NULL) { 6832 vfs_op_barrier_wait(mp); 6833 vrele(vp); 6834 } 6835 } 6836 error = VFS_CACHEDROOT(mp, flags, vpp); 6837 if (error != 0) 6838 return (error); 6839 if (mp->mnt_vfs_ops == 0) { 6840 MNT_ILOCK(mp); 6841 if (mp->mnt_vfs_ops != 0) { 6842 MNT_IUNLOCK(mp); 6843 return (0); 6844 } 6845 if (mp->mnt_rootvnode == NULL) { 6846 vrefact(*vpp); 6847 mp->mnt_rootvnode = *vpp; 6848 } else { 6849 if (mp->mnt_rootvnode != *vpp) { 6850 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) { 6851 panic("%s: mismatch between vnode returned " 6852 " by VFS_CACHEDROOT and the one cached " 6853 " (%p != %p)", 6854 __func__, *vpp, mp->mnt_rootvnode); 6855 } 6856 } 6857 } 6858 MNT_IUNLOCK(mp); 6859 } 6860 return (0); 6861 } 6862 6863 int 6864 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp) 6865 { 6866 struct mount_pcpu *mpcpu; 6867 struct vnode *vp; 6868 int error; 6869 6870 if (!vfs_op_thread_enter(mp, mpcpu)) 6871 return (vfs_cache_root_fallback(mp, flags, vpp)); 6872 vp = atomic_load_ptr(&mp->mnt_rootvnode); 6873 if (vp == NULL || VN_IS_DOOMED(vp)) { 6874 vfs_op_thread_exit(mp, mpcpu); 6875 return (vfs_cache_root_fallback(mp, flags, vpp)); 6876 } 6877 vrefact(vp); 6878 vfs_op_thread_exit(mp, mpcpu); 6879 error = vn_lock(vp, flags); 6880 if (error != 0) { 6881 vrele(vp); 6882 return (vfs_cache_root_fallback(mp, flags, vpp)); 6883 } 6884 *vpp = vp; 6885 return (0); 6886 } 6887 6888 struct vnode * 6889 vfs_cache_root_clear(struct mount *mp) 6890 { 6891 struct vnode *vp; 6892 6893 /* 6894 * ops > 0 guarantees there is nobody who can see this vnode 6895 */ 6896 MPASS(mp->mnt_vfs_ops > 0); 6897 vp = mp->mnt_rootvnode; 6898 if (vp != NULL) 6899 vn_seqc_write_begin(vp); 6900 mp->mnt_rootvnode = NULL; 6901 return (vp); 6902 } 6903 6904 void 6905 vfs_cache_root_set(struct mount *mp, struct vnode *vp) 6906 { 6907 6908 MPASS(mp->mnt_vfs_ops > 0); 6909 vrefact(vp); 6910 mp->mnt_rootvnode = vp; 6911 } 6912 6913 /* 6914 * These are helper functions for filesystems to traverse all 6915 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 6916 * 6917 * This interface replaces MNT_VNODE_FOREACH. 6918 */ 6919 6920 struct vnode * 6921 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 6922 { 6923 struct vnode *vp; 6924 6925 maybe_yield(); 6926 MNT_ILOCK(mp); 6927 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6928 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL; 6929 vp = TAILQ_NEXT(vp, v_nmntvnodes)) { 6930 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6931 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6932 continue; 6933 VI_LOCK(vp); 6934 if (VN_IS_DOOMED(vp)) { 6935 VI_UNLOCK(vp); 6936 continue; 6937 } 6938 break; 6939 } 6940 if (vp == NULL) { 6941 __mnt_vnode_markerfree_all(mvp, mp); 6942 /* MNT_IUNLOCK(mp); -- done in above function */ 6943 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 6944 return (NULL); 6945 } 6946 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6947 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6948 MNT_IUNLOCK(mp); 6949 return (vp); 6950 } 6951 6952 struct vnode * 6953 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 6954 { 6955 struct vnode *vp; 6956 6957 *mvp = vn_alloc_marker(mp); 6958 MNT_ILOCK(mp); 6959 MNT_REF(mp); 6960 6961 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 6962 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6963 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6964 continue; 6965 VI_LOCK(vp); 6966 if (VN_IS_DOOMED(vp)) { 6967 VI_UNLOCK(vp); 6968 continue; 6969 } 6970 break; 6971 } 6972 if (vp == NULL) { 6973 MNT_REL(mp); 6974 MNT_IUNLOCK(mp); 6975 vn_free_marker(*mvp); 6976 *mvp = NULL; 6977 return (NULL); 6978 } 6979 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6980 MNT_IUNLOCK(mp); 6981 return (vp); 6982 } 6983 6984 void 6985 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 6986 { 6987 6988 if (*mvp == NULL) { 6989 MNT_IUNLOCK(mp); 6990 return; 6991 } 6992 6993 mtx_assert(MNT_MTX(mp), MA_OWNED); 6994 6995 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6996 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6997 MNT_REL(mp); 6998 MNT_IUNLOCK(mp); 6999 vn_free_marker(*mvp); 7000 *mvp = NULL; 7001 } 7002 7003 /* 7004 * These are helper functions for filesystems to traverse their 7005 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h 7006 */ 7007 static void 7008 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 7009 { 7010 7011 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 7012 7013 MNT_ILOCK(mp); 7014 MNT_REL(mp); 7015 MNT_IUNLOCK(mp); 7016 vn_free_marker(*mvp); 7017 *mvp = NULL; 7018 } 7019 7020 /* 7021 * Relock the mp mount vnode list lock with the vp vnode interlock in the 7022 * conventional lock order during mnt_vnode_next_lazy iteration. 7023 * 7024 * On entry, the mount vnode list lock is held and the vnode interlock is not. 7025 * The list lock is dropped and reacquired. On success, both locks are held. 7026 * On failure, the mount vnode list lock is held but the vnode interlock is 7027 * not, and the procedure may have yielded. 7028 */ 7029 static bool 7030 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp, 7031 struct vnode *vp) 7032 { 7033 7034 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER && 7035 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp, 7036 ("%s: bad marker", __func__)); 7037 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp, 7038 ("%s: inappropriate vnode", __func__)); 7039 ASSERT_VI_UNLOCKED(vp, __func__); 7040 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 7041 7042 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist); 7043 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist); 7044 7045 /* 7046 * Note we may be racing against vdrop which transitioned the hold 7047 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine, 7048 * if we are the only user after we get the interlock we will just 7049 * vdrop. 7050 */ 7051 vhold(vp); 7052 mtx_unlock(&mp->mnt_listmtx); 7053 VI_LOCK(vp); 7054 if (VN_IS_DOOMED(vp)) { 7055 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 7056 goto out_lost; 7057 } 7058 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 7059 /* 7060 * There is nothing to do if we are the last user. 7061 */ 7062 if (!refcount_release_if_not_last(&vp->v_holdcnt)) 7063 goto out_lost; 7064 mtx_lock(&mp->mnt_listmtx); 7065 return (true); 7066 out_lost: 7067 vdropl(vp); 7068 maybe_yield(); 7069 mtx_lock(&mp->mnt_listmtx); 7070 return (false); 7071 } 7072 7073 static struct vnode * 7074 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 7075 void *cbarg) 7076 { 7077 struct vnode *vp; 7078 7079 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 7080 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 7081 restart: 7082 vp = TAILQ_NEXT(*mvp, v_lazylist); 7083 while (vp != NULL) { 7084 if (vp->v_type == VMARKER) { 7085 vp = TAILQ_NEXT(vp, v_lazylist); 7086 continue; 7087 } 7088 /* 7089 * See if we want to process the vnode. Note we may encounter a 7090 * long string of vnodes we don't care about and hog the list 7091 * as a result. Check for it and requeue the marker. 7092 */ 7093 VNPASS(!VN_IS_DOOMED(vp), vp); 7094 if (!cb(vp, cbarg)) { 7095 if (!should_yield()) { 7096 vp = TAILQ_NEXT(vp, v_lazylist); 7097 continue; 7098 } 7099 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, 7100 v_lazylist); 7101 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, 7102 v_lazylist); 7103 mtx_unlock(&mp->mnt_listmtx); 7104 kern_yield(PRI_USER); 7105 mtx_lock(&mp->mnt_listmtx); 7106 goto restart; 7107 } 7108 /* 7109 * Try-lock because this is the wrong lock order. 7110 */ 7111 if (!VI_TRYLOCK(vp) && 7112 !mnt_vnode_next_lazy_relock(*mvp, mp, vp)) 7113 goto restart; 7114 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 7115 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 7116 ("alien vnode on the lazy list %p %p", vp, mp)); 7117 VNPASS(vp->v_mount == mp, vp); 7118 VNPASS(!VN_IS_DOOMED(vp), vp); 7119 break; 7120 } 7121 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 7122 7123 /* Check if we are done */ 7124 if (vp == NULL) { 7125 mtx_unlock(&mp->mnt_listmtx); 7126 mnt_vnode_markerfree_lazy(mvp, mp); 7127 return (NULL); 7128 } 7129 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist); 7130 mtx_unlock(&mp->mnt_listmtx); 7131 ASSERT_VI_LOCKED(vp, "lazy iter"); 7132 return (vp); 7133 } 7134 7135 struct vnode * 7136 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 7137 void *cbarg) 7138 { 7139 7140 maybe_yield(); 7141 mtx_lock(&mp->mnt_listmtx); 7142 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 7143 } 7144 7145 struct vnode * 7146 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 7147 void *cbarg) 7148 { 7149 struct vnode *vp; 7150 7151 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist)) 7152 return (NULL); 7153 7154 *mvp = vn_alloc_marker(mp); 7155 MNT_ILOCK(mp); 7156 MNT_REF(mp); 7157 MNT_IUNLOCK(mp); 7158 7159 mtx_lock(&mp->mnt_listmtx); 7160 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist); 7161 if (vp == NULL) { 7162 mtx_unlock(&mp->mnt_listmtx); 7163 mnt_vnode_markerfree_lazy(mvp, mp); 7164 return (NULL); 7165 } 7166 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist); 7167 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 7168 } 7169 7170 void 7171 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 7172 { 7173 7174 if (*mvp == NULL) 7175 return; 7176 7177 mtx_lock(&mp->mnt_listmtx); 7178 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 7179 mtx_unlock(&mp->mnt_listmtx); 7180 mnt_vnode_markerfree_lazy(mvp, mp); 7181 } 7182 7183 int 7184 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp) 7185 { 7186 7187 if ((cnp->cn_flags & NOEXECCHECK) != 0) { 7188 cnp->cn_flags &= ~NOEXECCHECK; 7189 return (0); 7190 } 7191 7192 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread)); 7193 } 7194 7195 /* 7196 * Do not use this variant unless you have means other than the hold count 7197 * to prevent the vnode from getting freed. 7198 */ 7199 void 7200 vn_seqc_write_begin_locked(struct vnode *vp) 7201 { 7202 7203 ASSERT_VI_LOCKED(vp, __func__); 7204 VNPASS(vp->v_holdcnt > 0, vp); 7205 VNPASS(vp->v_seqc_users >= 0, vp); 7206 vp->v_seqc_users++; 7207 if (vp->v_seqc_users == 1) 7208 seqc_sleepable_write_begin(&vp->v_seqc); 7209 } 7210 7211 void 7212 vn_seqc_write_begin(struct vnode *vp) 7213 { 7214 7215 VI_LOCK(vp); 7216 vn_seqc_write_begin_locked(vp); 7217 VI_UNLOCK(vp); 7218 } 7219 7220 void 7221 vn_seqc_write_end_locked(struct vnode *vp) 7222 { 7223 7224 ASSERT_VI_LOCKED(vp, __func__); 7225 VNPASS(vp->v_seqc_users > 0, vp); 7226 vp->v_seqc_users--; 7227 if (vp->v_seqc_users == 0) 7228 seqc_sleepable_write_end(&vp->v_seqc); 7229 } 7230 7231 void 7232 vn_seqc_write_end(struct vnode *vp) 7233 { 7234 7235 VI_LOCK(vp); 7236 vn_seqc_write_end_locked(vp); 7237 VI_UNLOCK(vp); 7238 } 7239 7240 /* 7241 * Special case handling for allocating and freeing vnodes. 7242 * 7243 * The counter remains unchanged on free so that a doomed vnode will 7244 * keep testing as in modify as long as it is accessible with SMR. 7245 */ 7246 static void 7247 vn_seqc_init(struct vnode *vp) 7248 { 7249 7250 vp->v_seqc = 0; 7251 vp->v_seqc_users = 0; 7252 } 7253 7254 static void 7255 vn_seqc_write_end_free(struct vnode *vp) 7256 { 7257 7258 VNPASS(seqc_in_modify(vp->v_seqc), vp); 7259 VNPASS(vp->v_seqc_users == 1, vp); 7260 } 7261 7262 void 7263 vn_irflag_set_locked(struct vnode *vp, short toset) 7264 { 7265 short flags; 7266 7267 ASSERT_VI_LOCKED(vp, __func__); 7268 flags = vn_irflag_read(vp); 7269 VNASSERT((flags & toset) == 0, vp, 7270 ("%s: some of the passed flags already set (have %d, passed %d)\n", 7271 __func__, flags, toset)); 7272 atomic_store_short(&vp->v_irflag, flags | toset); 7273 } 7274 7275 void 7276 vn_irflag_set(struct vnode *vp, short toset) 7277 { 7278 7279 VI_LOCK(vp); 7280 vn_irflag_set_locked(vp, toset); 7281 VI_UNLOCK(vp); 7282 } 7283 7284 void 7285 vn_irflag_set_cond_locked(struct vnode *vp, short toset) 7286 { 7287 short flags; 7288 7289 ASSERT_VI_LOCKED(vp, __func__); 7290 flags = vn_irflag_read(vp); 7291 atomic_store_short(&vp->v_irflag, flags | toset); 7292 } 7293 7294 void 7295 vn_irflag_set_cond(struct vnode *vp, short toset) 7296 { 7297 7298 VI_LOCK(vp); 7299 vn_irflag_set_cond_locked(vp, toset); 7300 VI_UNLOCK(vp); 7301 } 7302 7303 void 7304 vn_irflag_unset_locked(struct vnode *vp, short tounset) 7305 { 7306 short flags; 7307 7308 ASSERT_VI_LOCKED(vp, __func__); 7309 flags = vn_irflag_read(vp); 7310 VNASSERT((flags & tounset) == tounset, vp, 7311 ("%s: some of the passed flags not set (have %d, passed %d)\n", 7312 __func__, flags, tounset)); 7313 atomic_store_short(&vp->v_irflag, flags & ~tounset); 7314 } 7315 7316 void 7317 vn_irflag_unset(struct vnode *vp, short tounset) 7318 { 7319 7320 VI_LOCK(vp); 7321 vn_irflag_unset_locked(vp, tounset); 7322 VI_UNLOCK(vp); 7323 } 7324 7325 int 7326 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred) 7327 { 7328 struct vattr vattr; 7329 int error; 7330 7331 ASSERT_VOP_LOCKED(vp, __func__); 7332 error = VOP_GETATTR(vp, &vattr, cred); 7333 if (__predict_true(error == 0)) { 7334 if (vattr.va_size <= OFF_MAX) 7335 *size = vattr.va_size; 7336 else 7337 error = EFBIG; 7338 } 7339 return (error); 7340 } 7341 7342 int 7343 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred) 7344 { 7345 int error; 7346 7347 VOP_LOCK(vp, LK_SHARED); 7348 error = vn_getsize_locked(vp, size, cred); 7349 VOP_UNLOCK(vp); 7350 return (error); 7351 } 7352 7353 #ifdef INVARIANTS 7354 void 7355 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state) 7356 { 7357 7358 switch (vp->v_state) { 7359 case VSTATE_UNINITIALIZED: 7360 switch (state) { 7361 case VSTATE_CONSTRUCTED: 7362 case VSTATE_DESTROYING: 7363 return; 7364 default: 7365 break; 7366 } 7367 break; 7368 case VSTATE_CONSTRUCTED: 7369 ASSERT_VOP_ELOCKED(vp, __func__); 7370 switch (state) { 7371 case VSTATE_DESTROYING: 7372 return; 7373 default: 7374 break; 7375 } 7376 break; 7377 case VSTATE_DESTROYING: 7378 ASSERT_VOP_ELOCKED(vp, __func__); 7379 switch (state) { 7380 case VSTATE_DEAD: 7381 return; 7382 default: 7383 break; 7384 } 7385 break; 7386 case VSTATE_DEAD: 7387 switch (state) { 7388 case VSTATE_UNINITIALIZED: 7389 return; 7390 default: 7391 break; 7392 } 7393 break; 7394 } 7395 7396 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state); 7397 panic("invalid state transition %d -> %d\n", vp->v_state, state); 7398 } 7399 #endif 7400