xref: /freebsd/sys/kern/vfs_subr.c (revision 6b2c1e49da284f28ec7b52f7c031474087e37104)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/capsicum.h>
54 #include <sys/condvar.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/dirent.h>
58 #include <sys/event.h>
59 #include <sys/eventhandler.h>
60 #include <sys/extattr.h>
61 #include <sys/file.h>
62 #include <sys/fcntl.h>
63 #include <sys/jail.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/ktr.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smp.h>
80 #include <sys/stat.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vnode.h>
85 #include <sys/watchdog.h>
86 
87 #include <machine/stdarg.h>
88 
89 #include <security/mac/mac_framework.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_extern.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_kern.h>
98 #include <vm/uma.h>
99 
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103 
104 static void	delmntque(struct vnode *vp);
105 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 		    int slpflag, int slptimeo);
107 static void	syncer_shutdown(void *arg, int howto);
108 static int	vtryrecycle(struct vnode *vp);
109 static void	v_init_counters(struct vnode *);
110 static void	v_incr_devcount(struct vnode *);
111 static void	v_decr_devcount(struct vnode *);
112 static void	vgonel(struct vnode *);
113 static void	vfs_knllock(void *arg);
114 static void	vfs_knlunlock(void *arg);
115 static void	vfs_knl_assert_locked(void *arg);
116 static void	vfs_knl_assert_unlocked(void *arg);
117 static void	vnlru_return_batches(struct vfsops *mnt_op);
118 static void	destroy_vpollinfo(struct vpollinfo *vi);
119 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
120 		    daddr_t startlbn, daddr_t endlbn);
121 
122 /*
123  * These fences are intended for cases where some synchronization is
124  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
125  * and v_usecount) updates.  Access to v_iflags is generally synchronized
126  * by the interlock, but we have some internal assertions that check vnode
127  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
128  * for now.
129  */
130 #ifdef INVARIANTS
131 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
132 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
133 #else
134 #define	VNODE_REFCOUNT_FENCE_ACQ()
135 #define	VNODE_REFCOUNT_FENCE_REL()
136 #endif
137 
138 /*
139  * Number of vnodes in existence.  Increased whenever getnewvnode()
140  * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
141  */
142 static unsigned long	numvnodes;
143 
144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence");
146 
147 static counter_u64_t vnodes_created;
148 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
149     "Number of vnodes created by getnewvnode");
150 
151 static u_long mnt_free_list_batch = 128;
152 SYSCTL_ULONG(_vfs, OID_AUTO, mnt_free_list_batch, CTLFLAG_RW,
153     &mnt_free_list_batch, 0, "Limit of vnodes held on mnt's free list");
154 
155 /*
156  * Conversion tables for conversion from vnode types to inode formats
157  * and back.
158  */
159 enum vtype iftovt_tab[16] = {
160 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
161 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
162 };
163 int vttoif_tab[10] = {
164 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
165 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
166 };
167 
168 /*
169  * List of vnodes that are ready for recycling.
170  */
171 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
172 
173 /*
174  * "Free" vnode target.  Free vnodes are rarely completely free, but are
175  * just ones that are cheap to recycle.  Usually they are for files which
176  * have been stat'd but not read; these usually have inode and namecache
177  * data attached to them.  This target is the preferred minimum size of a
178  * sub-cache consisting mostly of such files. The system balances the size
179  * of this sub-cache with its complement to try to prevent either from
180  * thrashing while the other is relatively inactive.  The targets express
181  * a preference for the best balance.
182  *
183  * "Above" this target there are 2 further targets (watermarks) related
184  * to recyling of free vnodes.  In the best-operating case, the cache is
185  * exactly full, the free list has size between vlowat and vhiwat above the
186  * free target, and recycling from it and normal use maintains this state.
187  * Sometimes the free list is below vlowat or even empty, but this state
188  * is even better for immediate use provided the cache is not full.
189  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
190  * ones) to reach one of these states.  The watermarks are currently hard-
191  * coded as 4% and 9% of the available space higher.  These and the default
192  * of 25% for wantfreevnodes are too large if the memory size is large.
193  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
194  * whenever vnlru_proc() becomes active.
195  */
196 static u_long wantfreevnodes;
197 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
198     &wantfreevnodes, 0, "Target for minimum number of \"free\" vnodes");
199 static u_long freevnodes;
200 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
201     &freevnodes, 0, "Number of \"free\" vnodes");
202 
203 static counter_u64_t recycles_count;
204 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
205     "Number of vnodes recycled to meet vnode cache targets");
206 
207 /*
208  * Various variables used for debugging the new implementation of
209  * reassignbuf().
210  * XXX these are probably of (very) limited utility now.
211  */
212 static int reassignbufcalls;
213 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW | CTLFLAG_STATS,
214     &reassignbufcalls, 0, "Number of calls to reassignbuf");
215 
216 static counter_u64_t free_owe_inact;
217 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact,
218     "Number of times free vnodes kept on active list due to VFS "
219     "owing inactivation");
220 
221 /* To keep more than one thread at a time from running vfs_getnewfsid */
222 static struct mtx mntid_mtx;
223 
224 /*
225  * Lock for any access to the following:
226  *	vnode_free_list
227  *	numvnodes
228  *	freevnodes
229  */
230 static struct mtx vnode_free_list_mtx;
231 
232 /* Publicly exported FS */
233 struct nfs_public nfs_pub;
234 
235 static uma_zone_t buf_trie_zone;
236 
237 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
238 static uma_zone_t vnode_zone;
239 static uma_zone_t vnodepoll_zone;
240 
241 /*
242  * The workitem queue.
243  *
244  * It is useful to delay writes of file data and filesystem metadata
245  * for tens of seconds so that quickly created and deleted files need
246  * not waste disk bandwidth being created and removed. To realize this,
247  * we append vnodes to a "workitem" queue. When running with a soft
248  * updates implementation, most pending metadata dependencies should
249  * not wait for more than a few seconds. Thus, mounted on block devices
250  * are delayed only about a half the time that file data is delayed.
251  * Similarly, directory updates are more critical, so are only delayed
252  * about a third the time that file data is delayed. Thus, there are
253  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
254  * one each second (driven off the filesystem syncer process). The
255  * syncer_delayno variable indicates the next queue that is to be processed.
256  * Items that need to be processed soon are placed in this queue:
257  *
258  *	syncer_workitem_pending[syncer_delayno]
259  *
260  * A delay of fifteen seconds is done by placing the request fifteen
261  * entries later in the queue:
262  *
263  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
264  *
265  */
266 static int syncer_delayno;
267 static long syncer_mask;
268 LIST_HEAD(synclist, bufobj);
269 static struct synclist *syncer_workitem_pending;
270 /*
271  * The sync_mtx protects:
272  *	bo->bo_synclist
273  *	sync_vnode_count
274  *	syncer_delayno
275  *	syncer_state
276  *	syncer_workitem_pending
277  *	syncer_worklist_len
278  *	rushjob
279  */
280 static struct mtx sync_mtx;
281 static struct cv sync_wakeup;
282 
283 #define SYNCER_MAXDELAY		32
284 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
285 static int syncdelay = 30;		/* max time to delay syncing data */
286 static int filedelay = 30;		/* time to delay syncing files */
287 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
288     "Time to delay syncing files (in seconds)");
289 static int dirdelay = 29;		/* time to delay syncing directories */
290 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
291     "Time to delay syncing directories (in seconds)");
292 static int metadelay = 28;		/* time to delay syncing metadata */
293 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
294     "Time to delay syncing metadata (in seconds)");
295 static int rushjob;		/* number of slots to run ASAP */
296 static int stat_rush_requests;	/* number of times I/O speeded up */
297 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
298     "Number of times I/O speeded up (rush requests)");
299 
300 /*
301  * When shutting down the syncer, run it at four times normal speed.
302  */
303 #define SYNCER_SHUTDOWN_SPEEDUP		4
304 static int sync_vnode_count;
305 static int syncer_worklist_len;
306 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
307     syncer_state;
308 
309 /* Target for maximum number of vnodes. */
310 int desiredvnodes;
311 static int gapvnodes;		/* gap between wanted and desired */
312 static int vhiwat;		/* enough extras after expansion */
313 static int vlowat;		/* minimal extras before expansion */
314 static int vstir;		/* nonzero to stir non-free vnodes */
315 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
316 
317 static int
318 sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS)
319 {
320 	int error, old_desiredvnodes;
321 
322 	old_desiredvnodes = desiredvnodes;
323 	if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0)
324 		return (error);
325 	if (old_desiredvnodes != desiredvnodes) {
326 		wantfreevnodes = desiredvnodes / 4;
327 		/* XXX locking seems to be incomplete. */
328 		vfs_hash_changesize(desiredvnodes);
329 		cache_changesize(desiredvnodes);
330 	}
331 	return (0);
332 }
333 
334 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
335     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0,
336     sysctl_update_desiredvnodes, "I", "Target for maximum number of vnodes");
337 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
338     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
339 static int vnlru_nowhere;
340 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
341     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
342 
343 static int
344 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
345 {
346 	struct vnode *vp;
347 	struct nameidata nd;
348 	char *buf;
349 	unsigned long ndflags;
350 	int error;
351 
352 	if (req->newptr == NULL)
353 		return (EINVAL);
354 	if (req->newlen >= PATH_MAX)
355 		return (E2BIG);
356 
357 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
358 	error = SYSCTL_IN(req, buf, req->newlen);
359 	if (error != 0)
360 		goto out;
361 
362 	buf[req->newlen] = '\0';
363 
364 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | NOCACHE | SAVENAME;
365 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
366 	if ((error = namei(&nd)) != 0)
367 		goto out;
368 	vp = nd.ni_vp;
369 
370 	if ((vp->v_iflag & VI_DOOMED) != 0) {
371 		/*
372 		 * This vnode is being recycled.  Return != 0 to let the caller
373 		 * know that the sysctl had no effect.  Return EAGAIN because a
374 		 * subsequent call will likely succeed (since namei will create
375 		 * a new vnode if necessary)
376 		 */
377 		error = EAGAIN;
378 		goto putvnode;
379 	}
380 
381 	counter_u64_add(recycles_count, 1);
382 	vgone(vp);
383 putvnode:
384 	NDFREE(&nd, 0);
385 out:
386 	free(buf, M_TEMP);
387 	return (error);
388 }
389 
390 static int
391 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
392 {
393 	struct thread *td = curthread;
394 	struct vnode *vp;
395 	struct file *fp;
396 	int error;
397 	int fd;
398 
399 	if (req->newptr == NULL)
400 		return (EBADF);
401 
402         error = sysctl_handle_int(oidp, &fd, 0, req);
403         if (error != 0)
404                 return (error);
405 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
406 	if (error != 0)
407 		return (error);
408 	vp = fp->f_vnode;
409 
410 	error = vn_lock(vp, LK_EXCLUSIVE);
411 	if (error != 0)
412 		goto drop;
413 
414 	counter_u64_add(recycles_count, 1);
415 	vgone(vp);
416 	VOP_UNLOCK(vp, 0);
417 drop:
418 	fdrop(fp, td);
419 	return (error);
420 }
421 
422 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
423     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
424     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
425 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
426     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
427     sysctl_ftry_reclaim_vnode, "I",
428     "Try to reclaim a vnode by its file descriptor");
429 
430 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
431 static int vnsz2log;
432 
433 /*
434  * Support for the bufobj clean & dirty pctrie.
435  */
436 static void *
437 buf_trie_alloc(struct pctrie *ptree)
438 {
439 
440 	return uma_zalloc(buf_trie_zone, M_NOWAIT);
441 }
442 
443 static void
444 buf_trie_free(struct pctrie *ptree, void *node)
445 {
446 
447 	uma_zfree(buf_trie_zone, node);
448 }
449 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
450 
451 /*
452  * Initialize the vnode management data structures.
453  *
454  * Reevaluate the following cap on the number of vnodes after the physical
455  * memory size exceeds 512GB.  In the limit, as the physical memory size
456  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
457  */
458 #ifndef	MAXVNODES_MAX
459 #define	MAXVNODES_MAX	(512 * 1024 * 1024 / 64)	/* 8M */
460 #endif
461 
462 /*
463  * Initialize a vnode as it first enters the zone.
464  */
465 static int
466 vnode_init(void *mem, int size, int flags)
467 {
468 	struct vnode *vp;
469 
470 	vp = mem;
471 	bzero(vp, size);
472 	/*
473 	 * Setup locks.
474 	 */
475 	vp->v_vnlock = &vp->v_lock;
476 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
477 	/*
478 	 * By default, don't allow shared locks unless filesystems opt-in.
479 	 */
480 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
481 	    LK_NOSHARE | LK_IS_VNODE);
482 	/*
483 	 * Initialize bufobj.
484 	 */
485 	bufobj_init(&vp->v_bufobj, vp);
486 	/*
487 	 * Initialize namecache.
488 	 */
489 	LIST_INIT(&vp->v_cache_src);
490 	TAILQ_INIT(&vp->v_cache_dst);
491 	/*
492 	 * Initialize rangelocks.
493 	 */
494 	rangelock_init(&vp->v_rl);
495 	return (0);
496 }
497 
498 /*
499  * Free a vnode when it is cleared from the zone.
500  */
501 static void
502 vnode_fini(void *mem, int size)
503 {
504 	struct vnode *vp;
505 	struct bufobj *bo;
506 
507 	vp = mem;
508 	rangelock_destroy(&vp->v_rl);
509 	lockdestroy(vp->v_vnlock);
510 	mtx_destroy(&vp->v_interlock);
511 	bo = &vp->v_bufobj;
512 	rw_destroy(BO_LOCKPTR(bo));
513 }
514 
515 /*
516  * Provide the size of NFS nclnode and NFS fh for calculation of the
517  * vnode memory consumption.  The size is specified directly to
518  * eliminate dependency on NFS-private header.
519  *
520  * Other filesystems may use bigger or smaller (like UFS and ZFS)
521  * private inode data, but the NFS-based estimation is ample enough.
522  * Still, we care about differences in the size between 64- and 32-bit
523  * platforms.
524  *
525  * Namecache structure size is heuristically
526  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
527  */
528 #ifdef _LP64
529 #define	NFS_NCLNODE_SZ	(528 + 64)
530 #define	NC_SZ		148
531 #else
532 #define	NFS_NCLNODE_SZ	(360 + 32)
533 #define	NC_SZ		92
534 #endif
535 
536 static void
537 vntblinit(void *dummy __unused)
538 {
539 	u_int i;
540 	int physvnodes, virtvnodes;
541 
542 	/*
543 	 * Desiredvnodes is a function of the physical memory size and the
544 	 * kernel's heap size.  Generally speaking, it scales with the
545 	 * physical memory size.  The ratio of desiredvnodes to the physical
546 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
547 	 * Thereafter, the
548 	 * marginal ratio of desiredvnodes to the physical memory size is
549 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
550 	 * size.  The memory required by desiredvnodes vnodes and vm objects
551 	 * must not exceed 1/10th of the kernel's heap size.
552 	 */
553 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
554 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
555 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
556 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
557 	desiredvnodes = min(physvnodes, virtvnodes);
558 	if (desiredvnodes > MAXVNODES_MAX) {
559 		if (bootverbose)
560 			printf("Reducing kern.maxvnodes %d -> %d\n",
561 			    desiredvnodes, MAXVNODES_MAX);
562 		desiredvnodes = MAXVNODES_MAX;
563 	}
564 	wantfreevnodes = desiredvnodes / 4;
565 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
566 	TAILQ_INIT(&vnode_free_list);
567 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
568 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
569 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
570 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
571 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
572 	/*
573 	 * Preallocate enough nodes to support one-per buf so that
574 	 * we can not fail an insert.  reassignbuf() callers can not
575 	 * tolerate the insertion failure.
576 	 */
577 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
578 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
579 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
580 	uma_prealloc(buf_trie_zone, nbuf);
581 
582 	vnodes_created = counter_u64_alloc(M_WAITOK);
583 	recycles_count = counter_u64_alloc(M_WAITOK);
584 	free_owe_inact = counter_u64_alloc(M_WAITOK);
585 
586 	/*
587 	 * Initialize the filesystem syncer.
588 	 */
589 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
590 	    &syncer_mask);
591 	syncer_maxdelay = syncer_mask + 1;
592 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
593 	cv_init(&sync_wakeup, "syncer");
594 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
595 		vnsz2log++;
596 	vnsz2log--;
597 }
598 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
599 
600 
601 /*
602  * Mark a mount point as busy. Used to synchronize access and to delay
603  * unmounting. Eventually, mountlist_mtx is not released on failure.
604  *
605  * vfs_busy() is a custom lock, it can block the caller.
606  * vfs_busy() only sleeps if the unmount is active on the mount point.
607  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
608  * vnode belonging to mp.
609  *
610  * Lookup uses vfs_busy() to traverse mount points.
611  * root fs			var fs
612  * / vnode lock		A	/ vnode lock (/var)		D
613  * /var vnode lock	B	/log vnode lock(/var/log)	E
614  * vfs_busy lock	C	vfs_busy lock			F
615  *
616  * Within each file system, the lock order is C->A->B and F->D->E.
617  *
618  * When traversing across mounts, the system follows that lock order:
619  *
620  *        C->A->B
621  *              |
622  *              +->F->D->E
623  *
624  * The lookup() process for namei("/var") illustrates the process:
625  *  VOP_LOOKUP() obtains B while A is held
626  *  vfs_busy() obtains a shared lock on F while A and B are held
627  *  vput() releases lock on B
628  *  vput() releases lock on A
629  *  VFS_ROOT() obtains lock on D while shared lock on F is held
630  *  vfs_unbusy() releases shared lock on F
631  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
632  *    Attempt to lock A (instead of vp_crossmp) while D is held would
633  *    violate the global order, causing deadlocks.
634  *
635  * dounmount() locks B while F is drained.
636  */
637 int
638 vfs_busy(struct mount *mp, int flags)
639 {
640 
641 	MPASS((flags & ~MBF_MASK) == 0);
642 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
643 
644 	if (vfs_op_thread_enter(mp)) {
645 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
646 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
647 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
648 		vfs_mp_count_add_pcpu(mp, ref, 1);
649 		vfs_mp_count_add_pcpu(mp, lockref, 1);
650 		vfs_op_thread_exit(mp);
651 		if (flags & MBF_MNTLSTLOCK)
652 			mtx_unlock(&mountlist_mtx);
653 		return (0);
654 	}
655 
656 	MNT_ILOCK(mp);
657 	vfs_assert_mount_counters(mp);
658 	MNT_REF(mp);
659 	/*
660 	 * If mount point is currently being unmounted, sleep until the
661 	 * mount point fate is decided.  If thread doing the unmounting fails,
662 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
663 	 * that this mount point has survived the unmount attempt and vfs_busy
664 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
665 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
666 	 * about to be really destroyed.  vfs_busy needs to release its
667 	 * reference on the mount point in this case and return with ENOENT,
668 	 * telling the caller that mount mount it tried to busy is no longer
669 	 * valid.
670 	 */
671 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
672 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
673 			MNT_REL(mp);
674 			MNT_IUNLOCK(mp);
675 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
676 			    __func__);
677 			return (ENOENT);
678 		}
679 		if (flags & MBF_MNTLSTLOCK)
680 			mtx_unlock(&mountlist_mtx);
681 		mp->mnt_kern_flag |= MNTK_MWAIT;
682 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
683 		if (flags & MBF_MNTLSTLOCK)
684 			mtx_lock(&mountlist_mtx);
685 		MNT_ILOCK(mp);
686 	}
687 	if (flags & MBF_MNTLSTLOCK)
688 		mtx_unlock(&mountlist_mtx);
689 	mp->mnt_lockref++;
690 	MNT_IUNLOCK(mp);
691 	return (0);
692 }
693 
694 /*
695  * Free a busy filesystem.
696  */
697 void
698 vfs_unbusy(struct mount *mp)
699 {
700 	int c;
701 
702 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
703 
704 	if (vfs_op_thread_enter(mp)) {
705 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
706 		vfs_mp_count_sub_pcpu(mp, lockref, 1);
707 		vfs_mp_count_sub_pcpu(mp, ref, 1);
708 		vfs_op_thread_exit(mp);
709 		return;
710 	}
711 
712 	MNT_ILOCK(mp);
713 	vfs_assert_mount_counters(mp);
714 	MNT_REL(mp);
715 	c = --mp->mnt_lockref;
716 	if (mp->mnt_vfs_ops == 0) {
717 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
718 		MNT_IUNLOCK(mp);
719 		return;
720 	}
721 	if (c < 0)
722 		vfs_dump_mount_counters(mp);
723 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
724 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
725 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
726 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
727 		wakeup(&mp->mnt_lockref);
728 	}
729 	MNT_IUNLOCK(mp);
730 }
731 
732 /*
733  * Lookup a mount point by filesystem identifier.
734  */
735 struct mount *
736 vfs_getvfs(fsid_t *fsid)
737 {
738 	struct mount *mp;
739 
740 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
741 	mtx_lock(&mountlist_mtx);
742 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
743 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
744 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
745 			vfs_ref(mp);
746 			mtx_unlock(&mountlist_mtx);
747 			return (mp);
748 		}
749 	}
750 	mtx_unlock(&mountlist_mtx);
751 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
752 	return ((struct mount *) 0);
753 }
754 
755 /*
756  * Lookup a mount point by filesystem identifier, busying it before
757  * returning.
758  *
759  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
760  * cache for popular filesystem identifiers.  The cache is lockess, using
761  * the fact that struct mount's are never freed.  In worst case we may
762  * get pointer to unmounted or even different filesystem, so we have to
763  * check what we got, and go slow way if so.
764  */
765 struct mount *
766 vfs_busyfs(fsid_t *fsid)
767 {
768 #define	FSID_CACHE_SIZE	256
769 	typedef struct mount * volatile vmp_t;
770 	static vmp_t cache[FSID_CACHE_SIZE];
771 	struct mount *mp;
772 	int error;
773 	uint32_t hash;
774 
775 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
776 	hash = fsid->val[0] ^ fsid->val[1];
777 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
778 	mp = cache[hash];
779 	if (mp == NULL ||
780 	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
781 	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
782 		goto slow;
783 	if (vfs_busy(mp, 0) != 0) {
784 		cache[hash] = NULL;
785 		goto slow;
786 	}
787 	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
788 	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
789 		return (mp);
790 	else
791 	    vfs_unbusy(mp);
792 
793 slow:
794 	mtx_lock(&mountlist_mtx);
795 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
796 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
797 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
798 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
799 			if (error) {
800 				cache[hash] = NULL;
801 				mtx_unlock(&mountlist_mtx);
802 				return (NULL);
803 			}
804 			cache[hash] = mp;
805 			return (mp);
806 		}
807 	}
808 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
809 	mtx_unlock(&mountlist_mtx);
810 	return ((struct mount *) 0);
811 }
812 
813 /*
814  * Check if a user can access privileged mount options.
815  */
816 int
817 vfs_suser(struct mount *mp, struct thread *td)
818 {
819 	int error;
820 
821 	if (jailed(td->td_ucred)) {
822 		/*
823 		 * If the jail of the calling thread lacks permission for
824 		 * this type of file system, deny immediately.
825 		 */
826 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
827 			return (EPERM);
828 
829 		/*
830 		 * If the file system was mounted outside the jail of the
831 		 * calling thread, deny immediately.
832 		 */
833 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
834 			return (EPERM);
835 	}
836 
837 	/*
838 	 * If file system supports delegated administration, we don't check
839 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
840 	 * by the file system itself.
841 	 * If this is not the user that did original mount, we check for
842 	 * the PRIV_VFS_MOUNT_OWNER privilege.
843 	 */
844 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
845 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
846 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
847 			return (error);
848 	}
849 	return (0);
850 }
851 
852 /*
853  * Get a new unique fsid.  Try to make its val[0] unique, since this value
854  * will be used to create fake device numbers for stat().  Also try (but
855  * not so hard) make its val[0] unique mod 2^16, since some emulators only
856  * support 16-bit device numbers.  We end up with unique val[0]'s for the
857  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
858  *
859  * Keep in mind that several mounts may be running in parallel.  Starting
860  * the search one past where the previous search terminated is both a
861  * micro-optimization and a defense against returning the same fsid to
862  * different mounts.
863  */
864 void
865 vfs_getnewfsid(struct mount *mp)
866 {
867 	static uint16_t mntid_base;
868 	struct mount *nmp;
869 	fsid_t tfsid;
870 	int mtype;
871 
872 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
873 	mtx_lock(&mntid_mtx);
874 	mtype = mp->mnt_vfc->vfc_typenum;
875 	tfsid.val[1] = mtype;
876 	mtype = (mtype & 0xFF) << 24;
877 	for (;;) {
878 		tfsid.val[0] = makedev(255,
879 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
880 		mntid_base++;
881 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
882 			break;
883 		vfs_rel(nmp);
884 	}
885 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
886 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
887 	mtx_unlock(&mntid_mtx);
888 }
889 
890 /*
891  * Knob to control the precision of file timestamps:
892  *
893  *   0 = seconds only; nanoseconds zeroed.
894  *   1 = seconds and nanoseconds, accurate within 1/HZ.
895  *   2 = seconds and nanoseconds, truncated to microseconds.
896  * >=3 = seconds and nanoseconds, maximum precision.
897  */
898 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
899 
900 static int timestamp_precision = TSP_USEC;
901 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
902     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
903     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
904     "3+: sec + ns (max. precision))");
905 
906 /*
907  * Get a current timestamp.
908  */
909 void
910 vfs_timestamp(struct timespec *tsp)
911 {
912 	struct timeval tv;
913 
914 	switch (timestamp_precision) {
915 	case TSP_SEC:
916 		tsp->tv_sec = time_second;
917 		tsp->tv_nsec = 0;
918 		break;
919 	case TSP_HZ:
920 		getnanotime(tsp);
921 		break;
922 	case TSP_USEC:
923 		microtime(&tv);
924 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
925 		break;
926 	case TSP_NSEC:
927 	default:
928 		nanotime(tsp);
929 		break;
930 	}
931 }
932 
933 /*
934  * Set vnode attributes to VNOVAL
935  */
936 void
937 vattr_null(struct vattr *vap)
938 {
939 
940 	vap->va_type = VNON;
941 	vap->va_size = VNOVAL;
942 	vap->va_bytes = VNOVAL;
943 	vap->va_mode = VNOVAL;
944 	vap->va_nlink = VNOVAL;
945 	vap->va_uid = VNOVAL;
946 	vap->va_gid = VNOVAL;
947 	vap->va_fsid = VNOVAL;
948 	vap->va_fileid = VNOVAL;
949 	vap->va_blocksize = VNOVAL;
950 	vap->va_rdev = VNOVAL;
951 	vap->va_atime.tv_sec = VNOVAL;
952 	vap->va_atime.tv_nsec = VNOVAL;
953 	vap->va_mtime.tv_sec = VNOVAL;
954 	vap->va_mtime.tv_nsec = VNOVAL;
955 	vap->va_ctime.tv_sec = VNOVAL;
956 	vap->va_ctime.tv_nsec = VNOVAL;
957 	vap->va_birthtime.tv_sec = VNOVAL;
958 	vap->va_birthtime.tv_nsec = VNOVAL;
959 	vap->va_flags = VNOVAL;
960 	vap->va_gen = VNOVAL;
961 	vap->va_vaflags = 0;
962 }
963 
964 /*
965  * This routine is called when we have too many vnodes.  It attempts
966  * to free <count> vnodes and will potentially free vnodes that still
967  * have VM backing store (VM backing store is typically the cause
968  * of a vnode blowout so we want to do this).  Therefore, this operation
969  * is not considered cheap.
970  *
971  * A number of conditions may prevent a vnode from being reclaimed.
972  * the buffer cache may have references on the vnode, a directory
973  * vnode may still have references due to the namei cache representing
974  * underlying files, or the vnode may be in active use.   It is not
975  * desirable to reuse such vnodes.  These conditions may cause the
976  * number of vnodes to reach some minimum value regardless of what
977  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
978  *
979  * @param mp		 Try to reclaim vnodes from this mountpoint
980  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
981  * 			 entries if this argument is strue
982  * @param trigger	 Only reclaim vnodes with fewer than this many resident
983  *			 pages.
984  * @return		 The number of vnodes that were reclaimed.
985  */
986 static int
987 vlrureclaim(struct mount *mp, bool reclaim_nc_src, int trigger)
988 {
989 	struct vnode *vp;
990 	int count, done, target;
991 
992 	done = 0;
993 	vn_start_write(NULL, &mp, V_WAIT);
994 	MNT_ILOCK(mp);
995 	count = mp->mnt_nvnodelistsize;
996 	target = count * (int64_t)gapvnodes / imax(desiredvnodes, 1);
997 	target = target / 10 + 1;
998 	while (count != 0 && done < target) {
999 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1000 		while (vp != NULL && vp->v_type == VMARKER)
1001 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
1002 		if (vp == NULL)
1003 			break;
1004 		/*
1005 		 * XXX LRU is completely broken for non-free vnodes.  First
1006 		 * by calling here in mountpoint order, then by moving
1007 		 * unselected vnodes to the end here, and most grossly by
1008 		 * removing the vlruvp() function that was supposed to
1009 		 * maintain the order.  (This function was born broken
1010 		 * since syncer problems prevented it doing anything.)  The
1011 		 * order is closer to LRC (C = Created).
1012 		 *
1013 		 * LRU reclaiming of vnodes seems to have last worked in
1014 		 * FreeBSD-3 where LRU wasn't mentioned under any spelling.
1015 		 * Then there was no hold count, and inactive vnodes were
1016 		 * simply put on the free list in LRU order.  The separate
1017 		 * lists also break LRU.  We prefer to reclaim from the
1018 		 * free list for technical reasons.  This tends to thrash
1019 		 * the free list to keep very unrecently used held vnodes.
1020 		 * The problem is mitigated by keeping the free list large.
1021 		 */
1022 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1023 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1024 		--count;
1025 		if (!VI_TRYLOCK(vp))
1026 			goto next_iter;
1027 		/*
1028 		 * If it's been deconstructed already, it's still
1029 		 * referenced, or it exceeds the trigger, skip it.
1030 		 * Also skip free vnodes.  We are trying to make space
1031 		 * to expand the free list, not reduce it.
1032 		 */
1033 		if (vp->v_usecount ||
1034 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1035 		    ((vp->v_iflag & VI_FREE) != 0) ||
1036 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
1037 		    vp->v_object->resident_page_count > trigger)) {
1038 			VI_UNLOCK(vp);
1039 			goto next_iter;
1040 		}
1041 		MNT_IUNLOCK(mp);
1042 		vholdl(vp);
1043 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
1044 			vdrop(vp);
1045 			goto next_iter_mntunlocked;
1046 		}
1047 		VI_LOCK(vp);
1048 		/*
1049 		 * v_usecount may have been bumped after VOP_LOCK() dropped
1050 		 * the vnode interlock and before it was locked again.
1051 		 *
1052 		 * It is not necessary to recheck VI_DOOMED because it can
1053 		 * only be set by another thread that holds both the vnode
1054 		 * lock and vnode interlock.  If another thread has the
1055 		 * vnode lock before we get to VOP_LOCK() and obtains the
1056 		 * vnode interlock after VOP_LOCK() drops the vnode
1057 		 * interlock, the other thread will be unable to drop the
1058 		 * vnode lock before our VOP_LOCK() call fails.
1059 		 */
1060 		if (vp->v_usecount ||
1061 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1062 		    (vp->v_iflag & VI_FREE) != 0 ||
1063 		    (vp->v_object != NULL &&
1064 		    vp->v_object->resident_page_count > trigger)) {
1065 			VOP_UNLOCK(vp, 0);
1066 			vdropl(vp);
1067 			goto next_iter_mntunlocked;
1068 		}
1069 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
1070 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
1071 		counter_u64_add(recycles_count, 1);
1072 		vgonel(vp);
1073 		VOP_UNLOCK(vp, 0);
1074 		vdropl(vp);
1075 		done++;
1076 next_iter_mntunlocked:
1077 		if (!should_yield())
1078 			goto relock_mnt;
1079 		goto yield;
1080 next_iter:
1081 		if (!should_yield())
1082 			continue;
1083 		MNT_IUNLOCK(mp);
1084 yield:
1085 		kern_yield(PRI_USER);
1086 relock_mnt:
1087 		MNT_ILOCK(mp);
1088 	}
1089 	MNT_IUNLOCK(mp);
1090 	vn_finished_write(mp);
1091 	return done;
1092 }
1093 
1094 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1095 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1096     0,
1097     "limit on vnode free requests per call to the vnlru_free routine");
1098 
1099 /*
1100  * Attempt to reduce the free list by the requested amount.
1101  */
1102 static void
1103 vnlru_free_locked(int count, struct vfsops *mnt_op)
1104 {
1105 	struct vnode *vp;
1106 	struct mount *mp;
1107 	bool tried_batches;
1108 
1109 	tried_batches = false;
1110 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1111 	if (count > max_vnlru_free)
1112 		count = max_vnlru_free;
1113 	for (; count > 0; count--) {
1114 		vp = TAILQ_FIRST(&vnode_free_list);
1115 		/*
1116 		 * The list can be modified while the free_list_mtx
1117 		 * has been dropped and vp could be NULL here.
1118 		 */
1119 		if (vp == NULL) {
1120 			if (tried_batches)
1121 				break;
1122 			mtx_unlock(&vnode_free_list_mtx);
1123 			vnlru_return_batches(mnt_op);
1124 			tried_batches = true;
1125 			mtx_lock(&vnode_free_list_mtx);
1126 			continue;
1127 		}
1128 
1129 		VNASSERT(vp->v_op != NULL, vp,
1130 		    ("vnlru_free: vnode already reclaimed."));
1131 		KASSERT((vp->v_iflag & VI_FREE) != 0,
1132 		    ("Removing vnode not on freelist"));
1133 		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1134 		    ("Mangling active vnode"));
1135 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
1136 
1137 		/*
1138 		 * Don't recycle if our vnode is from different type
1139 		 * of mount point.  Note that mp is type-safe, the
1140 		 * check does not reach unmapped address even if
1141 		 * vnode is reclaimed.
1142 		 * Don't recycle if we can't get the interlock without
1143 		 * blocking.
1144 		 */
1145 		if ((mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1146 		    mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) {
1147 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
1148 			continue;
1149 		}
1150 		VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0,
1151 		    vp, ("vp inconsistent on freelist"));
1152 
1153 		/*
1154 		 * The clear of VI_FREE prevents activation of the
1155 		 * vnode.  There is no sense in putting the vnode on
1156 		 * the mount point active list, only to remove it
1157 		 * later during recycling.  Inline the relevant part
1158 		 * of vholdl(), to avoid triggering assertions or
1159 		 * activating.
1160 		 */
1161 		freevnodes--;
1162 		vp->v_iflag &= ~VI_FREE;
1163 		VNODE_REFCOUNT_FENCE_REL();
1164 		refcount_acquire(&vp->v_holdcnt);
1165 
1166 		mtx_unlock(&vnode_free_list_mtx);
1167 		VI_UNLOCK(vp);
1168 		vtryrecycle(vp);
1169 		/*
1170 		 * If the recycled succeeded this vdrop will actually free
1171 		 * the vnode.  If not it will simply place it back on
1172 		 * the free list.
1173 		 */
1174 		vdrop(vp);
1175 		mtx_lock(&vnode_free_list_mtx);
1176 	}
1177 }
1178 
1179 void
1180 vnlru_free(int count, struct vfsops *mnt_op)
1181 {
1182 
1183 	mtx_lock(&vnode_free_list_mtx);
1184 	vnlru_free_locked(count, mnt_op);
1185 	mtx_unlock(&vnode_free_list_mtx);
1186 }
1187 
1188 
1189 /* XXX some names and initialization are bad for limits and watermarks. */
1190 static int
1191 vspace(void)
1192 {
1193 	int space;
1194 
1195 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1196 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1197 	vlowat = vhiwat / 2;
1198 	if (numvnodes > desiredvnodes)
1199 		return (0);
1200 	space = desiredvnodes - numvnodes;
1201 	if (freevnodes > wantfreevnodes)
1202 		space += freevnodes - wantfreevnodes;
1203 	return (space);
1204 }
1205 
1206 static void
1207 vnlru_return_batch_locked(struct mount *mp)
1208 {
1209 	struct vnode *vp;
1210 
1211 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
1212 
1213 	if (mp->mnt_tmpfreevnodelistsize == 0)
1214 		return;
1215 
1216 	TAILQ_FOREACH(vp, &mp->mnt_tmpfreevnodelist, v_actfreelist) {
1217 		VNASSERT((vp->v_mflag & VMP_TMPMNTFREELIST) != 0, vp,
1218 		    ("vnode without VMP_TMPMNTFREELIST on mnt_tmpfreevnodelist"));
1219 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
1220 	}
1221 	mtx_lock(&vnode_free_list_mtx);
1222 	TAILQ_CONCAT(&vnode_free_list, &mp->mnt_tmpfreevnodelist, v_actfreelist);
1223 	freevnodes += mp->mnt_tmpfreevnodelistsize;
1224 	mtx_unlock(&vnode_free_list_mtx);
1225 	mp->mnt_tmpfreevnodelistsize = 0;
1226 }
1227 
1228 static void
1229 vnlru_return_batch(struct mount *mp)
1230 {
1231 
1232 	mtx_lock(&mp->mnt_listmtx);
1233 	vnlru_return_batch_locked(mp);
1234 	mtx_unlock(&mp->mnt_listmtx);
1235 }
1236 
1237 static void
1238 vnlru_return_batches(struct vfsops *mnt_op)
1239 {
1240 	struct mount *mp, *nmp;
1241 	bool need_unbusy;
1242 
1243 	mtx_lock(&mountlist_mtx);
1244 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1245 		need_unbusy = false;
1246 		if (mnt_op != NULL && mp->mnt_op != mnt_op)
1247 			goto next;
1248 		if (mp->mnt_tmpfreevnodelistsize == 0)
1249 			goto next;
1250 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) == 0) {
1251 			vnlru_return_batch(mp);
1252 			need_unbusy = true;
1253 			mtx_lock(&mountlist_mtx);
1254 		}
1255 next:
1256 		nmp = TAILQ_NEXT(mp, mnt_list);
1257 		if (need_unbusy)
1258 			vfs_unbusy(mp);
1259 	}
1260 	mtx_unlock(&mountlist_mtx);
1261 }
1262 
1263 /*
1264  * Attempt to recycle vnodes in a context that is always safe to block.
1265  * Calling vlrurecycle() from the bowels of filesystem code has some
1266  * interesting deadlock problems.
1267  */
1268 static struct proc *vnlruproc;
1269 static int vnlruproc_sig;
1270 
1271 static void
1272 vnlru_proc(void)
1273 {
1274 	struct mount *mp, *nmp;
1275 	unsigned long onumvnodes;
1276 	int done, force, trigger, usevnodes, vsp;
1277 	bool reclaim_nc_src;
1278 
1279 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1280 	    SHUTDOWN_PRI_FIRST);
1281 
1282 	force = 0;
1283 	for (;;) {
1284 		kproc_suspend_check(vnlruproc);
1285 		mtx_lock(&vnode_free_list_mtx);
1286 		/*
1287 		 * If numvnodes is too large (due to desiredvnodes being
1288 		 * adjusted using its sysctl, or emergency growth), first
1289 		 * try to reduce it by discarding from the free list.
1290 		 */
1291 		if (numvnodes > desiredvnodes)
1292 			vnlru_free_locked(numvnodes - desiredvnodes, NULL);
1293 		/*
1294 		 * Sleep if the vnode cache is in a good state.  This is
1295 		 * when it is not over-full and has space for about a 4%
1296 		 * or 9% expansion (by growing its size or inexcessively
1297 		 * reducing its free list).  Otherwise, try to reclaim
1298 		 * space for a 10% expansion.
1299 		 */
1300 		if (vstir && force == 0) {
1301 			force = 1;
1302 			vstir = 0;
1303 		}
1304 		vsp = vspace();
1305 		if (vsp >= vlowat && force == 0) {
1306 			vnlruproc_sig = 0;
1307 			wakeup(&vnlruproc_sig);
1308 			msleep(vnlruproc, &vnode_free_list_mtx,
1309 			    PVFS|PDROP, "vlruwt", hz);
1310 			continue;
1311 		}
1312 		mtx_unlock(&vnode_free_list_mtx);
1313 		done = 0;
1314 		onumvnodes = numvnodes;
1315 		/*
1316 		 * Calculate parameters for recycling.  These are the same
1317 		 * throughout the loop to give some semblance of fairness.
1318 		 * The trigger point is to avoid recycling vnodes with lots
1319 		 * of resident pages.  We aren't trying to free memory; we
1320 		 * are trying to recycle or at least free vnodes.
1321 		 */
1322 		if (numvnodes <= desiredvnodes)
1323 			usevnodes = numvnodes - freevnodes;
1324 		else
1325 			usevnodes = numvnodes;
1326 		if (usevnodes <= 0)
1327 			usevnodes = 1;
1328 		/*
1329 		 * The trigger value is is chosen to give a conservatively
1330 		 * large value to ensure that it alone doesn't prevent
1331 		 * making progress.  The value can easily be so large that
1332 		 * it is effectively infinite in some congested and
1333 		 * misconfigured cases, and this is necessary.  Normally
1334 		 * it is about 8 to 100 (pages), which is quite large.
1335 		 */
1336 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1337 		if (force < 2)
1338 			trigger = vsmalltrigger;
1339 		reclaim_nc_src = force >= 3;
1340 		mtx_lock(&mountlist_mtx);
1341 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1342 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
1343 				nmp = TAILQ_NEXT(mp, mnt_list);
1344 				continue;
1345 			}
1346 			done += vlrureclaim(mp, reclaim_nc_src, trigger);
1347 			mtx_lock(&mountlist_mtx);
1348 			nmp = TAILQ_NEXT(mp, mnt_list);
1349 			vfs_unbusy(mp);
1350 		}
1351 		mtx_unlock(&mountlist_mtx);
1352 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1353 			uma_reclaim(UMA_RECLAIM_DRAIN);
1354 		if (done == 0) {
1355 			if (force == 0 || force == 1) {
1356 				force = 2;
1357 				continue;
1358 			}
1359 			if (force == 2) {
1360 				force = 3;
1361 				continue;
1362 			}
1363 			force = 0;
1364 			vnlru_nowhere++;
1365 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1366 		} else
1367 			kern_yield(PRI_USER);
1368 		/*
1369 		 * After becoming active to expand above low water, keep
1370 		 * active until above high water.
1371 		 */
1372 		vsp = vspace();
1373 		force = vsp < vhiwat;
1374 	}
1375 }
1376 
1377 static struct kproc_desc vnlru_kp = {
1378 	"vnlru",
1379 	vnlru_proc,
1380 	&vnlruproc
1381 };
1382 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1383     &vnlru_kp);
1384 
1385 /*
1386  * Routines having to do with the management of the vnode table.
1387  */
1388 
1389 /*
1390  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1391  * before we actually vgone().  This function must be called with the vnode
1392  * held to prevent the vnode from being returned to the free list midway
1393  * through vgone().
1394  */
1395 static int
1396 vtryrecycle(struct vnode *vp)
1397 {
1398 	struct mount *vnmp;
1399 
1400 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1401 	VNASSERT(vp->v_holdcnt, vp,
1402 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1403 	/*
1404 	 * This vnode may found and locked via some other list, if so we
1405 	 * can't recycle it yet.
1406 	 */
1407 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1408 		CTR2(KTR_VFS,
1409 		    "%s: impossible to recycle, vp %p lock is already held",
1410 		    __func__, vp);
1411 		return (EWOULDBLOCK);
1412 	}
1413 	/*
1414 	 * Don't recycle if its filesystem is being suspended.
1415 	 */
1416 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1417 		VOP_UNLOCK(vp, 0);
1418 		CTR2(KTR_VFS,
1419 		    "%s: impossible to recycle, cannot start the write for %p",
1420 		    __func__, vp);
1421 		return (EBUSY);
1422 	}
1423 	/*
1424 	 * If we got this far, we need to acquire the interlock and see if
1425 	 * anyone picked up this vnode from another list.  If not, we will
1426 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1427 	 * will skip over it.
1428 	 */
1429 	VI_LOCK(vp);
1430 	if (vp->v_usecount) {
1431 		VOP_UNLOCK(vp, 0);
1432 		VI_UNLOCK(vp);
1433 		vn_finished_write(vnmp);
1434 		CTR2(KTR_VFS,
1435 		    "%s: impossible to recycle, %p is already referenced",
1436 		    __func__, vp);
1437 		return (EBUSY);
1438 	}
1439 	if ((vp->v_iflag & VI_DOOMED) == 0) {
1440 		counter_u64_add(recycles_count, 1);
1441 		vgonel(vp);
1442 	}
1443 	VOP_UNLOCK(vp, 0);
1444 	VI_UNLOCK(vp);
1445 	vn_finished_write(vnmp);
1446 	return (0);
1447 }
1448 
1449 static void
1450 vcheckspace(void)
1451 {
1452 	int vsp;
1453 
1454 	vsp = vspace();
1455 	if (vsp < vlowat && vnlruproc_sig == 0) {
1456 		vnlruproc_sig = 1;
1457 		wakeup(vnlruproc);
1458 	}
1459 }
1460 
1461 /*
1462  * Wait if necessary for space for a new vnode.
1463  */
1464 static int
1465 getnewvnode_wait(int suspended)
1466 {
1467 
1468 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1469 	if (numvnodes >= desiredvnodes) {
1470 		if (suspended) {
1471 			/*
1472 			 * The file system is being suspended.  We cannot
1473 			 * risk a deadlock here, so allow allocation of
1474 			 * another vnode even if this would give too many.
1475 			 */
1476 			return (0);
1477 		}
1478 		if (vnlruproc_sig == 0) {
1479 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
1480 			wakeup(vnlruproc);
1481 		}
1482 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
1483 		    "vlruwk", hz);
1484 	}
1485 	/* Post-adjust like the pre-adjust in getnewvnode(). */
1486 	if (numvnodes + 1 > desiredvnodes && freevnodes > 1)
1487 		vnlru_free_locked(1, NULL);
1488 	return (numvnodes >= desiredvnodes ? ENFILE : 0);
1489 }
1490 
1491 /*
1492  * This hack is fragile, and probably not needed any more now that the
1493  * watermark handling works.
1494  */
1495 void
1496 getnewvnode_reserve(u_int count)
1497 {
1498 	struct thread *td;
1499 
1500 	/* Pre-adjust like the pre-adjust in getnewvnode(), with any count. */
1501 	/* XXX no longer so quick, but this part is not racy. */
1502 	mtx_lock(&vnode_free_list_mtx);
1503 	if (numvnodes + count > desiredvnodes && freevnodes > wantfreevnodes)
1504 		vnlru_free_locked(ulmin(numvnodes + count - desiredvnodes,
1505 		    freevnodes - wantfreevnodes), NULL);
1506 	mtx_unlock(&vnode_free_list_mtx);
1507 
1508 	td = curthread;
1509 	/* First try to be quick and racy. */
1510 	if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) {
1511 		td->td_vp_reserv += count;
1512 		vcheckspace();	/* XXX no longer so quick, but more racy */
1513 		return;
1514 	} else
1515 		atomic_subtract_long(&numvnodes, count);
1516 
1517 	mtx_lock(&vnode_free_list_mtx);
1518 	while (count > 0) {
1519 		if (getnewvnode_wait(0) == 0) {
1520 			count--;
1521 			td->td_vp_reserv++;
1522 			atomic_add_long(&numvnodes, 1);
1523 		}
1524 	}
1525 	vcheckspace();
1526 	mtx_unlock(&vnode_free_list_mtx);
1527 }
1528 
1529 /*
1530  * This hack is fragile, especially if desiredvnodes or wantvnodes are
1531  * misconfgured or changed significantly.  Reducing desiredvnodes below
1532  * the reserved amount should cause bizarre behaviour like reducing it
1533  * below the number of active vnodes -- the system will try to reduce
1534  * numvnodes to match, but should fail, so the subtraction below should
1535  * not overflow.
1536  */
1537 void
1538 getnewvnode_drop_reserve(void)
1539 {
1540 	struct thread *td;
1541 
1542 	td = curthread;
1543 	atomic_subtract_long(&numvnodes, td->td_vp_reserv);
1544 	td->td_vp_reserv = 0;
1545 }
1546 
1547 /*
1548  * Return the next vnode from the free list.
1549  */
1550 int
1551 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1552     struct vnode **vpp)
1553 {
1554 	struct vnode *vp;
1555 	struct thread *td;
1556 	struct lock_object *lo;
1557 	static int cyclecount;
1558 	int error __unused;
1559 
1560 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1561 	vp = NULL;
1562 	td = curthread;
1563 	if (td->td_vp_reserv > 0) {
1564 		td->td_vp_reserv -= 1;
1565 		goto alloc;
1566 	}
1567 	mtx_lock(&vnode_free_list_mtx);
1568 	if (numvnodes < desiredvnodes)
1569 		cyclecount = 0;
1570 	else if (cyclecount++ >= freevnodes) {
1571 		cyclecount = 0;
1572 		vstir = 1;
1573 	}
1574 	/*
1575 	 * Grow the vnode cache if it will not be above its target max
1576 	 * after growing.  Otherwise, if the free list is nonempty, try
1577 	 * to reclaim 1 item from it before growing the cache (possibly
1578 	 * above its target max if the reclamation failed or is delayed).
1579 	 * Otherwise, wait for some space.  In all cases, schedule
1580 	 * vnlru_proc() if we are getting short of space.  The watermarks
1581 	 * should be chosen so that we never wait or even reclaim from
1582 	 * the free list to below its target minimum.
1583 	 */
1584 	if (numvnodes + 1 <= desiredvnodes)
1585 		;
1586 	else if (freevnodes > 0)
1587 		vnlru_free_locked(1, NULL);
1588 	else {
1589 		error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1590 		    MNTK_SUSPEND));
1591 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1592 		if (error != 0) {
1593 			mtx_unlock(&vnode_free_list_mtx);
1594 			return (error);
1595 		}
1596 #endif
1597 	}
1598 	vcheckspace();
1599 	atomic_add_long(&numvnodes, 1);
1600 	mtx_unlock(&vnode_free_list_mtx);
1601 alloc:
1602 	counter_u64_add(vnodes_created, 1);
1603 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK);
1604 	/*
1605 	 * Locks are given the generic name "vnode" when created.
1606 	 * Follow the historic practice of using the filesystem
1607 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1608 	 *
1609 	 * Locks live in a witness group keyed on their name. Thus,
1610 	 * when a lock is renamed, it must also move from the witness
1611 	 * group of its old name to the witness group of its new name.
1612 	 *
1613 	 * The change only needs to be made when the vnode moves
1614 	 * from one filesystem type to another. We ensure that each
1615 	 * filesystem use a single static name pointer for its tag so
1616 	 * that we can compare pointers rather than doing a strcmp().
1617 	 */
1618 	lo = &vp->v_vnlock->lock_object;
1619 	if (lo->lo_name != tag) {
1620 		lo->lo_name = tag;
1621 		WITNESS_DESTROY(lo);
1622 		WITNESS_INIT(lo, tag);
1623 	}
1624 	/*
1625 	 * By default, don't allow shared locks unless filesystems opt-in.
1626 	 */
1627 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1628 	/*
1629 	 * Finalize various vnode identity bits.
1630 	 */
1631 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1632 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1633 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1634 	vp->v_type = VNON;
1635 	vp->v_tag = tag;
1636 	vp->v_op = vops;
1637 	v_init_counters(vp);
1638 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1639 #ifdef DIAGNOSTIC
1640 	if (mp == NULL && vops != &dead_vnodeops)
1641 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1642 #endif
1643 #ifdef MAC
1644 	mac_vnode_init(vp);
1645 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1646 		mac_vnode_associate_singlelabel(mp, vp);
1647 #endif
1648 	if (mp != NULL) {
1649 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1650 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1651 			vp->v_vflag |= VV_NOKNOTE;
1652 	}
1653 
1654 	/*
1655 	 * For the filesystems which do not use vfs_hash_insert(),
1656 	 * still initialize v_hash to have vfs_hash_index() useful.
1657 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1658 	 * its own hashing.
1659 	 */
1660 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1661 
1662 	*vpp = vp;
1663 	return (0);
1664 }
1665 
1666 /*
1667  * Delete from old mount point vnode list, if on one.
1668  */
1669 static void
1670 delmntque(struct vnode *vp)
1671 {
1672 	struct mount *mp;
1673 	int active;
1674 
1675 	mp = vp->v_mount;
1676 	if (mp == NULL)
1677 		return;
1678 	MNT_ILOCK(mp);
1679 	VI_LOCK(vp);
1680 	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1681 	    ("Active vnode list size %d > Vnode list size %d",
1682 	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1683 	active = vp->v_iflag & VI_ACTIVE;
1684 	vp->v_iflag &= ~VI_ACTIVE;
1685 	if (active) {
1686 		mtx_lock(&mp->mnt_listmtx);
1687 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1688 		mp->mnt_activevnodelistsize--;
1689 		mtx_unlock(&mp->mnt_listmtx);
1690 	}
1691 	vp->v_mount = NULL;
1692 	VI_UNLOCK(vp);
1693 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1694 		("bad mount point vnode list size"));
1695 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1696 	mp->mnt_nvnodelistsize--;
1697 	MNT_REL(mp);
1698 	MNT_IUNLOCK(mp);
1699 }
1700 
1701 static void
1702 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1703 {
1704 
1705 	vp->v_data = NULL;
1706 	vp->v_op = &dead_vnodeops;
1707 	vgone(vp);
1708 	vput(vp);
1709 }
1710 
1711 /*
1712  * Insert into list of vnodes for the new mount point, if available.
1713  */
1714 int
1715 insmntque1(struct vnode *vp, struct mount *mp,
1716 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1717 {
1718 
1719 	KASSERT(vp->v_mount == NULL,
1720 		("insmntque: vnode already on per mount vnode list"));
1721 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1722 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1723 
1724 	/*
1725 	 * We acquire the vnode interlock early to ensure that the
1726 	 * vnode cannot be recycled by another process releasing a
1727 	 * holdcnt on it before we get it on both the vnode list
1728 	 * and the active vnode list. The mount mutex protects only
1729 	 * manipulation of the vnode list and the vnode freelist
1730 	 * mutex protects only manipulation of the active vnode list.
1731 	 * Hence the need to hold the vnode interlock throughout.
1732 	 */
1733 	MNT_ILOCK(mp);
1734 	VI_LOCK(vp);
1735 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1736 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1737 	    mp->mnt_nvnodelistsize == 0)) &&
1738 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1739 		VI_UNLOCK(vp);
1740 		MNT_IUNLOCK(mp);
1741 		if (dtr != NULL)
1742 			dtr(vp, dtr_arg);
1743 		return (EBUSY);
1744 	}
1745 	vp->v_mount = mp;
1746 	MNT_REF(mp);
1747 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1748 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1749 		("neg mount point vnode list size"));
1750 	mp->mnt_nvnodelistsize++;
1751 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1752 	    ("Activating already active vnode"));
1753 	vp->v_iflag |= VI_ACTIVE;
1754 	mtx_lock(&mp->mnt_listmtx);
1755 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1756 	mp->mnt_activevnodelistsize++;
1757 	mtx_unlock(&mp->mnt_listmtx);
1758 	VI_UNLOCK(vp);
1759 	MNT_IUNLOCK(mp);
1760 	return (0);
1761 }
1762 
1763 int
1764 insmntque(struct vnode *vp, struct mount *mp)
1765 {
1766 
1767 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1768 }
1769 
1770 /*
1771  * Flush out and invalidate all buffers associated with a bufobj
1772  * Called with the underlying object locked.
1773  */
1774 int
1775 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1776 {
1777 	int error;
1778 
1779 	BO_LOCK(bo);
1780 	if (flags & V_SAVE) {
1781 		error = bufobj_wwait(bo, slpflag, slptimeo);
1782 		if (error) {
1783 			BO_UNLOCK(bo);
1784 			return (error);
1785 		}
1786 		if (bo->bo_dirty.bv_cnt > 0) {
1787 			BO_UNLOCK(bo);
1788 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1789 				return (error);
1790 			/*
1791 			 * XXX We could save a lock/unlock if this was only
1792 			 * enabled under INVARIANTS
1793 			 */
1794 			BO_LOCK(bo);
1795 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1796 				panic("vinvalbuf: dirty bufs");
1797 		}
1798 	}
1799 	/*
1800 	 * If you alter this loop please notice that interlock is dropped and
1801 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1802 	 * no race conditions occur from this.
1803 	 */
1804 	do {
1805 		error = flushbuflist(&bo->bo_clean,
1806 		    flags, bo, slpflag, slptimeo);
1807 		if (error == 0 && !(flags & V_CLEANONLY))
1808 			error = flushbuflist(&bo->bo_dirty,
1809 			    flags, bo, slpflag, slptimeo);
1810 		if (error != 0 && error != EAGAIN) {
1811 			BO_UNLOCK(bo);
1812 			return (error);
1813 		}
1814 	} while (error != 0);
1815 
1816 	/*
1817 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1818 	 * have write I/O in-progress but if there is a VM object then the
1819 	 * VM object can also have read-I/O in-progress.
1820 	 */
1821 	do {
1822 		bufobj_wwait(bo, 0, 0);
1823 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
1824 			BO_UNLOCK(bo);
1825 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
1826 			BO_LOCK(bo);
1827 		}
1828 	} while (bo->bo_numoutput > 0);
1829 	BO_UNLOCK(bo);
1830 
1831 	/*
1832 	 * Destroy the copy in the VM cache, too.
1833 	 */
1834 	if (bo->bo_object != NULL &&
1835 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1836 		VM_OBJECT_WLOCK(bo->bo_object);
1837 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1838 		    OBJPR_CLEANONLY : 0);
1839 		VM_OBJECT_WUNLOCK(bo->bo_object);
1840 	}
1841 
1842 #ifdef INVARIANTS
1843 	BO_LOCK(bo);
1844 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
1845 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
1846 	    bo->bo_clean.bv_cnt > 0))
1847 		panic("vinvalbuf: flush failed");
1848 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
1849 	    bo->bo_dirty.bv_cnt > 0)
1850 		panic("vinvalbuf: flush dirty failed");
1851 	BO_UNLOCK(bo);
1852 #endif
1853 	return (0);
1854 }
1855 
1856 /*
1857  * Flush out and invalidate all buffers associated with a vnode.
1858  * Called with the underlying object locked.
1859  */
1860 int
1861 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1862 {
1863 
1864 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1865 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1866 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1867 		return (0);
1868 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1869 }
1870 
1871 /*
1872  * Flush out buffers on the specified list.
1873  *
1874  */
1875 static int
1876 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1877     int slptimeo)
1878 {
1879 	struct buf *bp, *nbp;
1880 	int retval, error;
1881 	daddr_t lblkno;
1882 	b_xflags_t xflags;
1883 
1884 	ASSERT_BO_WLOCKED(bo);
1885 
1886 	retval = 0;
1887 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1888 		/*
1889 		 * If we are flushing both V_NORMAL and V_ALT buffers then
1890 		 * do not skip any buffers. If we are flushing only V_NORMAL
1891 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
1892 		 * flushing only V_ALT buffers then skip buffers not marked
1893 		 * as BX_ALTDATA.
1894 		 */
1895 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
1896 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
1897 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
1898 			continue;
1899 		}
1900 		if (nbp != NULL) {
1901 			lblkno = nbp->b_lblkno;
1902 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
1903 		}
1904 		retval = EAGAIN;
1905 		error = BUF_TIMELOCK(bp,
1906 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
1907 		    "flushbuf", slpflag, slptimeo);
1908 		if (error) {
1909 			BO_LOCK(bo);
1910 			return (error != ENOLCK ? error : EAGAIN);
1911 		}
1912 		KASSERT(bp->b_bufobj == bo,
1913 		    ("bp %p wrong b_bufobj %p should be %p",
1914 		    bp, bp->b_bufobj, bo));
1915 		/*
1916 		 * XXX Since there are no node locks for NFS, I
1917 		 * believe there is a slight chance that a delayed
1918 		 * write will occur while sleeping just above, so
1919 		 * check for it.
1920 		 */
1921 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1922 		    (flags & V_SAVE)) {
1923 			bremfree(bp);
1924 			bp->b_flags |= B_ASYNC;
1925 			bwrite(bp);
1926 			BO_LOCK(bo);
1927 			return (EAGAIN);	/* XXX: why not loop ? */
1928 		}
1929 		bremfree(bp);
1930 		bp->b_flags |= (B_INVAL | B_RELBUF);
1931 		bp->b_flags &= ~B_ASYNC;
1932 		brelse(bp);
1933 		BO_LOCK(bo);
1934 		if (nbp == NULL)
1935 			break;
1936 		nbp = gbincore(bo, lblkno);
1937 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1938 		    != xflags)
1939 			break;			/* nbp invalid */
1940 	}
1941 	return (retval);
1942 }
1943 
1944 int
1945 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
1946 {
1947 	struct buf *bp;
1948 	int error;
1949 	daddr_t lblkno;
1950 
1951 	ASSERT_BO_LOCKED(bo);
1952 
1953 	for (lblkno = startn;;) {
1954 again:
1955 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
1956 		if (bp == NULL || bp->b_lblkno >= endn ||
1957 		    bp->b_lblkno < startn)
1958 			break;
1959 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
1960 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
1961 		if (error != 0) {
1962 			BO_RLOCK(bo);
1963 			if (error == ENOLCK)
1964 				goto again;
1965 			return (error);
1966 		}
1967 		KASSERT(bp->b_bufobj == bo,
1968 		    ("bp %p wrong b_bufobj %p should be %p",
1969 		    bp, bp->b_bufobj, bo));
1970 		lblkno = bp->b_lblkno + 1;
1971 		if ((bp->b_flags & B_MANAGED) == 0)
1972 			bremfree(bp);
1973 		bp->b_flags |= B_RELBUF;
1974 		/*
1975 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
1976 		 * pages backing each buffer in the range are unlikely to be
1977 		 * reused.  Dirty buffers will have the hint applied once
1978 		 * they've been written.
1979 		 */
1980 		if ((bp->b_flags & B_VMIO) != 0)
1981 			bp->b_flags |= B_NOREUSE;
1982 		brelse(bp);
1983 		BO_RLOCK(bo);
1984 	}
1985 	return (0);
1986 }
1987 
1988 /*
1989  * Truncate a file's buffer and pages to a specified length.  This
1990  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1991  * sync activity.
1992  */
1993 int
1994 vtruncbuf(struct vnode *vp, off_t length, int blksize)
1995 {
1996 	struct buf *bp, *nbp;
1997 	struct bufobj *bo;
1998 	daddr_t startlbn;
1999 
2000 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2001 	    vp, blksize, (uintmax_t)length);
2002 
2003 	/*
2004 	 * Round up to the *next* lbn.
2005 	 */
2006 	startlbn = howmany(length, blksize);
2007 
2008 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2009 
2010 	bo = &vp->v_bufobj;
2011 restart_unlocked:
2012 	BO_LOCK(bo);
2013 
2014 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2015 		;
2016 
2017 	if (length > 0) {
2018 restartsync:
2019 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2020 			if (bp->b_lblkno > 0)
2021 				continue;
2022 			/*
2023 			 * Since we hold the vnode lock this should only
2024 			 * fail if we're racing with the buf daemon.
2025 			 */
2026 			if (BUF_LOCK(bp,
2027 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2028 			    BO_LOCKPTR(bo)) == ENOLCK)
2029 				goto restart_unlocked;
2030 
2031 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2032 			    ("buf(%p) on dirty queue without DELWRI", bp));
2033 
2034 			bremfree(bp);
2035 			bawrite(bp);
2036 			BO_LOCK(bo);
2037 			goto restartsync;
2038 		}
2039 	}
2040 
2041 	bufobj_wwait(bo, 0, 0);
2042 	BO_UNLOCK(bo);
2043 	vnode_pager_setsize(vp, length);
2044 
2045 	return (0);
2046 }
2047 
2048 /*
2049  * Invalidate the cached pages of a file's buffer within the range of block
2050  * numbers [startlbn, endlbn).
2051  */
2052 void
2053 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2054     int blksize)
2055 {
2056 	struct bufobj *bo;
2057 	off_t start, end;
2058 
2059 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2060 
2061 	start = blksize * startlbn;
2062 	end = blksize * endlbn;
2063 
2064 	bo = &vp->v_bufobj;
2065 	BO_LOCK(bo);
2066 	MPASS(blksize == bo->bo_bsize);
2067 
2068 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2069 		;
2070 
2071 	BO_UNLOCK(bo);
2072 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2073 }
2074 
2075 static int
2076 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2077     daddr_t startlbn, daddr_t endlbn)
2078 {
2079 	struct buf *bp, *nbp;
2080 	bool anyfreed;
2081 
2082 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2083 	ASSERT_BO_LOCKED(bo);
2084 
2085 	do {
2086 		anyfreed = false;
2087 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2088 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2089 				continue;
2090 			if (BUF_LOCK(bp,
2091 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2092 			    BO_LOCKPTR(bo)) == ENOLCK) {
2093 				BO_LOCK(bo);
2094 				return (EAGAIN);
2095 			}
2096 
2097 			bremfree(bp);
2098 			bp->b_flags |= B_INVAL | B_RELBUF;
2099 			bp->b_flags &= ~B_ASYNC;
2100 			brelse(bp);
2101 			anyfreed = true;
2102 
2103 			BO_LOCK(bo);
2104 			if (nbp != NULL &&
2105 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2106 			    nbp->b_vp != vp ||
2107 			    (nbp->b_flags & B_DELWRI) != 0))
2108 				return (EAGAIN);
2109 		}
2110 
2111 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2112 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2113 				continue;
2114 			if (BUF_LOCK(bp,
2115 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2116 			    BO_LOCKPTR(bo)) == ENOLCK) {
2117 				BO_LOCK(bo);
2118 				return (EAGAIN);
2119 			}
2120 			bremfree(bp);
2121 			bp->b_flags |= B_INVAL | B_RELBUF;
2122 			bp->b_flags &= ~B_ASYNC;
2123 			brelse(bp);
2124 			anyfreed = true;
2125 
2126 			BO_LOCK(bo);
2127 			if (nbp != NULL &&
2128 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2129 			    (nbp->b_vp != vp) ||
2130 			    (nbp->b_flags & B_DELWRI) == 0))
2131 				return (EAGAIN);
2132 		}
2133 	} while (anyfreed);
2134 	return (0);
2135 }
2136 
2137 static void
2138 buf_vlist_remove(struct buf *bp)
2139 {
2140 	struct bufv *bv;
2141 
2142 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2143 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2144 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
2145 	    (BX_VNDIRTY|BX_VNCLEAN),
2146 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
2147 	if (bp->b_xflags & BX_VNDIRTY)
2148 		bv = &bp->b_bufobj->bo_dirty;
2149 	else
2150 		bv = &bp->b_bufobj->bo_clean;
2151 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2152 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2153 	bv->bv_cnt--;
2154 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2155 }
2156 
2157 /*
2158  * Add the buffer to the sorted clean or dirty block list.
2159  *
2160  * NOTE: xflags is passed as a constant, optimizing this inline function!
2161  */
2162 static void
2163 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2164 {
2165 	struct bufv *bv;
2166 	struct buf *n;
2167 	int error;
2168 
2169 	ASSERT_BO_WLOCKED(bo);
2170 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2171 	    ("dead bo %p", bo));
2172 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2173 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2174 	bp->b_xflags |= xflags;
2175 	if (xflags & BX_VNDIRTY)
2176 		bv = &bo->bo_dirty;
2177 	else
2178 		bv = &bo->bo_clean;
2179 
2180 	/*
2181 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2182 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2183 	 * than _ge.
2184 	 */
2185 	if (bv->bv_cnt == 0 ||
2186 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2187 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2188 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2189 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2190 	else
2191 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2192 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2193 	if (error)
2194 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2195 	bv->bv_cnt++;
2196 }
2197 
2198 /*
2199  * Look up a buffer using the buffer tries.
2200  */
2201 struct buf *
2202 gbincore(struct bufobj *bo, daddr_t lblkno)
2203 {
2204 	struct buf *bp;
2205 
2206 	ASSERT_BO_LOCKED(bo);
2207 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2208 	if (bp != NULL)
2209 		return (bp);
2210 	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
2211 }
2212 
2213 /*
2214  * Associate a buffer with a vnode.
2215  */
2216 void
2217 bgetvp(struct vnode *vp, struct buf *bp)
2218 {
2219 	struct bufobj *bo;
2220 
2221 	bo = &vp->v_bufobj;
2222 	ASSERT_BO_WLOCKED(bo);
2223 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2224 
2225 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2226 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2227 	    ("bgetvp: bp already attached! %p", bp));
2228 
2229 	vhold(vp);
2230 	bp->b_vp = vp;
2231 	bp->b_bufobj = bo;
2232 	/*
2233 	 * Insert onto list for new vnode.
2234 	 */
2235 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2236 }
2237 
2238 /*
2239  * Disassociate a buffer from a vnode.
2240  */
2241 void
2242 brelvp(struct buf *bp)
2243 {
2244 	struct bufobj *bo;
2245 	struct vnode *vp;
2246 
2247 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2248 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2249 
2250 	/*
2251 	 * Delete from old vnode list, if on one.
2252 	 */
2253 	vp = bp->b_vp;		/* XXX */
2254 	bo = bp->b_bufobj;
2255 	BO_LOCK(bo);
2256 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2257 		buf_vlist_remove(bp);
2258 	else
2259 		panic("brelvp: Buffer %p not on queue.", bp);
2260 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2261 		bo->bo_flag &= ~BO_ONWORKLST;
2262 		mtx_lock(&sync_mtx);
2263 		LIST_REMOVE(bo, bo_synclist);
2264 		syncer_worklist_len--;
2265 		mtx_unlock(&sync_mtx);
2266 	}
2267 	bp->b_vp = NULL;
2268 	bp->b_bufobj = NULL;
2269 	BO_UNLOCK(bo);
2270 	vdrop(vp);
2271 }
2272 
2273 /*
2274  * Add an item to the syncer work queue.
2275  */
2276 static void
2277 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2278 {
2279 	int slot;
2280 
2281 	ASSERT_BO_WLOCKED(bo);
2282 
2283 	mtx_lock(&sync_mtx);
2284 	if (bo->bo_flag & BO_ONWORKLST)
2285 		LIST_REMOVE(bo, bo_synclist);
2286 	else {
2287 		bo->bo_flag |= BO_ONWORKLST;
2288 		syncer_worklist_len++;
2289 	}
2290 
2291 	if (delay > syncer_maxdelay - 2)
2292 		delay = syncer_maxdelay - 2;
2293 	slot = (syncer_delayno + delay) & syncer_mask;
2294 
2295 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2296 	mtx_unlock(&sync_mtx);
2297 }
2298 
2299 static int
2300 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2301 {
2302 	int error, len;
2303 
2304 	mtx_lock(&sync_mtx);
2305 	len = syncer_worklist_len - sync_vnode_count;
2306 	mtx_unlock(&sync_mtx);
2307 	error = SYSCTL_OUT(req, &len, sizeof(len));
2308 	return (error);
2309 }
2310 
2311 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
2312     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2313 
2314 static struct proc *updateproc;
2315 static void sched_sync(void);
2316 static struct kproc_desc up_kp = {
2317 	"syncer",
2318 	sched_sync,
2319 	&updateproc
2320 };
2321 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2322 
2323 static int
2324 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2325 {
2326 	struct vnode *vp;
2327 	struct mount *mp;
2328 
2329 	*bo = LIST_FIRST(slp);
2330 	if (*bo == NULL)
2331 		return (0);
2332 	vp = bo2vnode(*bo);
2333 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2334 		return (1);
2335 	/*
2336 	 * We use vhold in case the vnode does not
2337 	 * successfully sync.  vhold prevents the vnode from
2338 	 * going away when we unlock the sync_mtx so that
2339 	 * we can acquire the vnode interlock.
2340 	 */
2341 	vholdl(vp);
2342 	mtx_unlock(&sync_mtx);
2343 	VI_UNLOCK(vp);
2344 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2345 		vdrop(vp);
2346 		mtx_lock(&sync_mtx);
2347 		return (*bo == LIST_FIRST(slp));
2348 	}
2349 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2350 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2351 	VOP_UNLOCK(vp, 0);
2352 	vn_finished_write(mp);
2353 	BO_LOCK(*bo);
2354 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2355 		/*
2356 		 * Put us back on the worklist.  The worklist
2357 		 * routine will remove us from our current
2358 		 * position and then add us back in at a later
2359 		 * position.
2360 		 */
2361 		vn_syncer_add_to_worklist(*bo, syncdelay);
2362 	}
2363 	BO_UNLOCK(*bo);
2364 	vdrop(vp);
2365 	mtx_lock(&sync_mtx);
2366 	return (0);
2367 }
2368 
2369 static int first_printf = 1;
2370 
2371 /*
2372  * System filesystem synchronizer daemon.
2373  */
2374 static void
2375 sched_sync(void)
2376 {
2377 	struct synclist *next, *slp;
2378 	struct bufobj *bo;
2379 	long starttime;
2380 	struct thread *td = curthread;
2381 	int last_work_seen;
2382 	int net_worklist_len;
2383 	int syncer_final_iter;
2384 	int error;
2385 
2386 	last_work_seen = 0;
2387 	syncer_final_iter = 0;
2388 	syncer_state = SYNCER_RUNNING;
2389 	starttime = time_uptime;
2390 	td->td_pflags |= TDP_NORUNNINGBUF;
2391 
2392 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2393 	    SHUTDOWN_PRI_LAST);
2394 
2395 	mtx_lock(&sync_mtx);
2396 	for (;;) {
2397 		if (syncer_state == SYNCER_FINAL_DELAY &&
2398 		    syncer_final_iter == 0) {
2399 			mtx_unlock(&sync_mtx);
2400 			kproc_suspend_check(td->td_proc);
2401 			mtx_lock(&sync_mtx);
2402 		}
2403 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2404 		if (syncer_state != SYNCER_RUNNING &&
2405 		    starttime != time_uptime) {
2406 			if (first_printf) {
2407 				printf("\nSyncing disks, vnodes remaining... ");
2408 				first_printf = 0;
2409 			}
2410 			printf("%d ", net_worklist_len);
2411 		}
2412 		starttime = time_uptime;
2413 
2414 		/*
2415 		 * Push files whose dirty time has expired.  Be careful
2416 		 * of interrupt race on slp queue.
2417 		 *
2418 		 * Skip over empty worklist slots when shutting down.
2419 		 */
2420 		do {
2421 			slp = &syncer_workitem_pending[syncer_delayno];
2422 			syncer_delayno += 1;
2423 			if (syncer_delayno == syncer_maxdelay)
2424 				syncer_delayno = 0;
2425 			next = &syncer_workitem_pending[syncer_delayno];
2426 			/*
2427 			 * If the worklist has wrapped since the
2428 			 * it was emptied of all but syncer vnodes,
2429 			 * switch to the FINAL_DELAY state and run
2430 			 * for one more second.
2431 			 */
2432 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2433 			    net_worklist_len == 0 &&
2434 			    last_work_seen == syncer_delayno) {
2435 				syncer_state = SYNCER_FINAL_DELAY;
2436 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2437 			}
2438 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2439 		    syncer_worklist_len > 0);
2440 
2441 		/*
2442 		 * Keep track of the last time there was anything
2443 		 * on the worklist other than syncer vnodes.
2444 		 * Return to the SHUTTING_DOWN state if any
2445 		 * new work appears.
2446 		 */
2447 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2448 			last_work_seen = syncer_delayno;
2449 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2450 			syncer_state = SYNCER_SHUTTING_DOWN;
2451 		while (!LIST_EMPTY(slp)) {
2452 			error = sync_vnode(slp, &bo, td);
2453 			if (error == 1) {
2454 				LIST_REMOVE(bo, bo_synclist);
2455 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2456 				continue;
2457 			}
2458 
2459 			if (first_printf == 0) {
2460 				/*
2461 				 * Drop the sync mutex, because some watchdog
2462 				 * drivers need to sleep while patting
2463 				 */
2464 				mtx_unlock(&sync_mtx);
2465 				wdog_kern_pat(WD_LASTVAL);
2466 				mtx_lock(&sync_mtx);
2467 			}
2468 
2469 		}
2470 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2471 			syncer_final_iter--;
2472 		/*
2473 		 * The variable rushjob allows the kernel to speed up the
2474 		 * processing of the filesystem syncer process. A rushjob
2475 		 * value of N tells the filesystem syncer to process the next
2476 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2477 		 * is used by the soft update code to speed up the filesystem
2478 		 * syncer process when the incore state is getting so far
2479 		 * ahead of the disk that the kernel memory pool is being
2480 		 * threatened with exhaustion.
2481 		 */
2482 		if (rushjob > 0) {
2483 			rushjob -= 1;
2484 			continue;
2485 		}
2486 		/*
2487 		 * Just sleep for a short period of time between
2488 		 * iterations when shutting down to allow some I/O
2489 		 * to happen.
2490 		 *
2491 		 * If it has taken us less than a second to process the
2492 		 * current work, then wait. Otherwise start right over
2493 		 * again. We can still lose time if any single round
2494 		 * takes more than two seconds, but it does not really
2495 		 * matter as we are just trying to generally pace the
2496 		 * filesystem activity.
2497 		 */
2498 		if (syncer_state != SYNCER_RUNNING ||
2499 		    time_uptime == starttime) {
2500 			thread_lock(td);
2501 			sched_prio(td, PPAUSE);
2502 			thread_unlock(td);
2503 		}
2504 		if (syncer_state != SYNCER_RUNNING)
2505 			cv_timedwait(&sync_wakeup, &sync_mtx,
2506 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2507 		else if (time_uptime == starttime)
2508 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2509 	}
2510 }
2511 
2512 /*
2513  * Request the syncer daemon to speed up its work.
2514  * We never push it to speed up more than half of its
2515  * normal turn time, otherwise it could take over the cpu.
2516  */
2517 int
2518 speedup_syncer(void)
2519 {
2520 	int ret = 0;
2521 
2522 	mtx_lock(&sync_mtx);
2523 	if (rushjob < syncdelay / 2) {
2524 		rushjob += 1;
2525 		stat_rush_requests += 1;
2526 		ret = 1;
2527 	}
2528 	mtx_unlock(&sync_mtx);
2529 	cv_broadcast(&sync_wakeup);
2530 	return (ret);
2531 }
2532 
2533 /*
2534  * Tell the syncer to speed up its work and run though its work
2535  * list several times, then tell it to shut down.
2536  */
2537 static void
2538 syncer_shutdown(void *arg, int howto)
2539 {
2540 
2541 	if (howto & RB_NOSYNC)
2542 		return;
2543 	mtx_lock(&sync_mtx);
2544 	syncer_state = SYNCER_SHUTTING_DOWN;
2545 	rushjob = 0;
2546 	mtx_unlock(&sync_mtx);
2547 	cv_broadcast(&sync_wakeup);
2548 	kproc_shutdown(arg, howto);
2549 }
2550 
2551 void
2552 syncer_suspend(void)
2553 {
2554 
2555 	syncer_shutdown(updateproc, 0);
2556 }
2557 
2558 void
2559 syncer_resume(void)
2560 {
2561 
2562 	mtx_lock(&sync_mtx);
2563 	first_printf = 1;
2564 	syncer_state = SYNCER_RUNNING;
2565 	mtx_unlock(&sync_mtx);
2566 	cv_broadcast(&sync_wakeup);
2567 	kproc_resume(updateproc);
2568 }
2569 
2570 /*
2571  * Reassign a buffer from one vnode to another.
2572  * Used to assign file specific control information
2573  * (indirect blocks) to the vnode to which they belong.
2574  */
2575 void
2576 reassignbuf(struct buf *bp)
2577 {
2578 	struct vnode *vp;
2579 	struct bufobj *bo;
2580 	int delay;
2581 #ifdef INVARIANTS
2582 	struct bufv *bv;
2583 #endif
2584 
2585 	vp = bp->b_vp;
2586 	bo = bp->b_bufobj;
2587 	++reassignbufcalls;
2588 
2589 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2590 	    bp, bp->b_vp, bp->b_flags);
2591 	/*
2592 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2593 	 * is not fully linked in.
2594 	 */
2595 	if (bp->b_flags & B_PAGING)
2596 		panic("cannot reassign paging buffer");
2597 
2598 	/*
2599 	 * Delete from old vnode list, if on one.
2600 	 */
2601 	BO_LOCK(bo);
2602 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2603 		buf_vlist_remove(bp);
2604 	else
2605 		panic("reassignbuf: Buffer %p not on queue.", bp);
2606 	/*
2607 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2608 	 * of clean buffers.
2609 	 */
2610 	if (bp->b_flags & B_DELWRI) {
2611 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2612 			switch (vp->v_type) {
2613 			case VDIR:
2614 				delay = dirdelay;
2615 				break;
2616 			case VCHR:
2617 				delay = metadelay;
2618 				break;
2619 			default:
2620 				delay = filedelay;
2621 			}
2622 			vn_syncer_add_to_worklist(bo, delay);
2623 		}
2624 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2625 	} else {
2626 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2627 
2628 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2629 			mtx_lock(&sync_mtx);
2630 			LIST_REMOVE(bo, bo_synclist);
2631 			syncer_worklist_len--;
2632 			mtx_unlock(&sync_mtx);
2633 			bo->bo_flag &= ~BO_ONWORKLST;
2634 		}
2635 	}
2636 #ifdef INVARIANTS
2637 	bv = &bo->bo_clean;
2638 	bp = TAILQ_FIRST(&bv->bv_hd);
2639 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2640 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2641 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2642 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2643 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2644 	bv = &bo->bo_dirty;
2645 	bp = TAILQ_FIRST(&bv->bv_hd);
2646 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2647 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2648 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2649 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2650 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2651 #endif
2652 	BO_UNLOCK(bo);
2653 }
2654 
2655 static void
2656 v_init_counters(struct vnode *vp)
2657 {
2658 
2659 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2660 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2661 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2662 
2663 	refcount_init(&vp->v_holdcnt, 1);
2664 	refcount_init(&vp->v_usecount, 1);
2665 }
2666 
2667 /*
2668  * Increment si_usecount of the associated device, if any.
2669  */
2670 static void
2671 v_incr_devcount(struct vnode *vp)
2672 {
2673 
2674 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2675 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2676 		dev_lock();
2677 		vp->v_rdev->si_usecount++;
2678 		dev_unlock();
2679 	}
2680 }
2681 
2682 /*
2683  * Decrement si_usecount of the associated device, if any.
2684  */
2685 static void
2686 v_decr_devcount(struct vnode *vp)
2687 {
2688 
2689 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2690 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2691 		dev_lock();
2692 		vp->v_rdev->si_usecount--;
2693 		dev_unlock();
2694 	}
2695 }
2696 
2697 /*
2698  * Grab a particular vnode from the free list, increment its
2699  * reference count and lock it.  VI_DOOMED is set if the vnode
2700  * is being destroyed.  Only callers who specify LK_RETRY will
2701  * see doomed vnodes.  If inactive processing was delayed in
2702  * vput try to do it here.
2703  *
2704  * Both holdcnt and usecount can be manipulated using atomics without holding
2705  * any locks except in these cases which require the vnode interlock:
2706  * holdcnt: 1->0 and 0->1
2707  * usecount: 0->1
2708  *
2709  * usecount is permitted to transition 1->0 without the interlock because
2710  * vnode is kept live by holdcnt.
2711  */
2712 static enum vgetstate
2713 _vget_prep(struct vnode *vp, bool interlock)
2714 {
2715 	enum vgetstate vs;
2716 
2717 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2718 		vs = VGET_USECOUNT;
2719 	} else {
2720 		_vhold(vp, interlock);
2721 		vs = VGET_HOLDCNT;
2722 	}
2723 	return (vs);
2724 }
2725 
2726 enum vgetstate
2727 vget_prep(struct vnode *vp)
2728 {
2729 
2730 	return (_vget_prep(vp, false));
2731 }
2732 
2733 int
2734 vget(struct vnode *vp, int flags, struct thread *td)
2735 {
2736 	enum vgetstate vs;
2737 
2738 	MPASS(td == curthread);
2739 
2740 	vs = _vget_prep(vp, (flags & LK_INTERLOCK) != 0);
2741 	return (vget_finish(vp, flags, vs));
2742 }
2743 
2744 int
2745 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2746 {
2747 	int error, oweinact;
2748 
2749 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2750 	    ("%s: invalid lock operation", __func__));
2751 
2752 	if ((flags & LK_INTERLOCK) != 0)
2753 		ASSERT_VI_LOCKED(vp, __func__);
2754 	else
2755 		ASSERT_VI_UNLOCKED(vp, __func__);
2756 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
2757 	if (vs == VGET_USECOUNT) {
2758 		VNASSERT(vp->v_usecount > 0, vp,
2759 		    ("%s: vnode without usecount when VGET_USECOUNT was passed",
2760 		    __func__));
2761 	}
2762 
2763 	if ((error = vn_lock(vp, flags)) != 0) {
2764 		if (vs == VGET_USECOUNT)
2765 			vrele(vp);
2766 		else
2767 			vdrop(vp);
2768 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2769 		    vp);
2770 		return (error);
2771 	}
2772 
2773 	if (vs == VGET_USECOUNT) {
2774 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2775 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2776 		return (0);
2777 	}
2778 
2779 	/*
2780 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
2781 	 * the vnode around. Otherwise someone else lended their hold count and
2782 	 * we have to drop ours.
2783 	 */
2784 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2785 #ifdef INVARIANTS
2786 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1) - 1;
2787 		VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__));
2788 #else
2789 		refcount_release(&vp->v_holdcnt);
2790 #endif
2791 		VNODE_REFCOUNT_FENCE_ACQ();
2792 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2793 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2794 		return (0);
2795 	}
2796 
2797 	/*
2798 	 * We don't guarantee that any particular close will
2799 	 * trigger inactive processing so just make a best effort
2800 	 * here at preventing a reference to a removed file.  If
2801 	 * we don't succeed no harm is done.
2802 	 *
2803 	 * Upgrade our holdcnt to a usecount.
2804 	 */
2805 	VI_LOCK(vp);
2806 	/*
2807 	 * See the previous section. By the time we get here we may find
2808 	 * ourselves in the same spot.
2809 	 */
2810 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2811 #ifdef INVARIANTS
2812 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1) - 1;
2813 		VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__));
2814 #else
2815 		refcount_release(&vp->v_holdcnt);
2816 #endif
2817 		VNODE_REFCOUNT_FENCE_ACQ();
2818 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2819 		    ("%s: vnode with usecount and VI_OWEINACT set",
2820 		    __func__));
2821 		VI_UNLOCK(vp);
2822 		return (0);
2823 	}
2824 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
2825 		oweinact = 0;
2826 	} else {
2827 		oweinact = 1;
2828 		vp->v_iflag &= ~VI_OWEINACT;
2829 		VNODE_REFCOUNT_FENCE_REL();
2830 	}
2831 	v_incr_devcount(vp);
2832 	refcount_acquire(&vp->v_usecount);
2833 	if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2834 	    (flags & LK_NOWAIT) == 0)
2835 		vinactive(vp, curthread);
2836 	VI_UNLOCK(vp);
2837 	return (0);
2838 }
2839 
2840 /*
2841  * Increase the reference (use) and hold count of a vnode.
2842  * This will also remove the vnode from the free list if it is presently free.
2843  */
2844 void
2845 vref(struct vnode *vp)
2846 {
2847 
2848 	ASSERT_VI_UNLOCKED(vp, __func__);
2849 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2850 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2851 		VNODE_REFCOUNT_FENCE_ACQ();
2852 		VNASSERT(vp->v_holdcnt > 0, vp,
2853 		    ("%s: active vnode not held", __func__));
2854 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2855 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2856 		return;
2857 	}
2858 	VI_LOCK(vp);
2859 	vrefl(vp);
2860 	VI_UNLOCK(vp);
2861 }
2862 
2863 void
2864 vrefl(struct vnode *vp)
2865 {
2866 
2867 	ASSERT_VI_LOCKED(vp, __func__);
2868 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2869 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2870 		VNODE_REFCOUNT_FENCE_ACQ();
2871 		VNASSERT(vp->v_holdcnt > 0, vp,
2872 		    ("%s: active vnode not held", __func__));
2873 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2874 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2875 		return;
2876 	}
2877 	vholdl(vp);
2878 	if ((vp->v_iflag & VI_OWEINACT) != 0) {
2879 		vp->v_iflag &= ~VI_OWEINACT;
2880 		VNODE_REFCOUNT_FENCE_REL();
2881 	}
2882 	v_incr_devcount(vp);
2883 	refcount_acquire(&vp->v_usecount);
2884 }
2885 
2886 void
2887 vrefact(struct vnode *vp)
2888 {
2889 
2890 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2891 #ifdef INVARIANTS
2892 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
2893 	VNASSERT(old > 0, vp, ("%s: wrong use count", __func__));
2894 #else
2895 	refcount_acquire(&vp->v_usecount);
2896 #endif
2897 }
2898 
2899 /*
2900  * Return reference count of a vnode.
2901  *
2902  * The results of this call are only guaranteed when some mechanism is used to
2903  * stop other processes from gaining references to the vnode.  This may be the
2904  * case if the caller holds the only reference.  This is also useful when stale
2905  * data is acceptable as race conditions may be accounted for by some other
2906  * means.
2907  */
2908 int
2909 vrefcnt(struct vnode *vp)
2910 {
2911 
2912 	return (vp->v_usecount);
2913 }
2914 
2915 #define	VPUTX_VRELE	1
2916 #define	VPUTX_VPUT	2
2917 #define	VPUTX_VUNREF	3
2918 
2919 /*
2920  * Decrement the use and hold counts for a vnode.
2921  *
2922  * See an explanation near vget() as to why atomic operation is safe.
2923  */
2924 static void
2925 vputx(struct vnode *vp, int func)
2926 {
2927 	int error;
2928 
2929 	KASSERT(vp != NULL, ("vputx: null vp"));
2930 	if (func == VPUTX_VUNREF)
2931 		ASSERT_VOP_LOCKED(vp, "vunref");
2932 	else if (func == VPUTX_VPUT)
2933 		ASSERT_VOP_LOCKED(vp, "vput");
2934 	else
2935 		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2936 	ASSERT_VI_UNLOCKED(vp, __func__);
2937 	VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp,
2938 	    ("%s: wrong ref counts", __func__));
2939 
2940 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2941 
2942 	/*
2943 	 * It is an invariant that all VOP_* calls operate on a held vnode.
2944 	 * We may be only having an implicit hold stemming from our usecount,
2945 	 * which we are about to release. If we unlock the vnode afterwards we
2946 	 * open a time window where someone else dropped the last usecount and
2947 	 * proceeded to free the vnode before our unlock finished. For this
2948 	 * reason we unlock the vnode early. This is a little bit wasteful as
2949 	 * it may be the vnode is exclusively locked and inactive processing is
2950 	 * needed, in which case we are adding work.
2951 	 */
2952 	if (func == VPUTX_VPUT)
2953 		VOP_UNLOCK(vp, 0);
2954 
2955 	/*
2956 	 * We want to hold the vnode until the inactive finishes to
2957 	 * prevent vgone() races.  We drop the use count here and the
2958 	 * hold count below when we're done.
2959 	 *
2960 	 * If we release the last usecount we take ownership of the hold
2961 	 * count which provides liveness of the vnode, in which case we
2962 	 * have to vdrop.
2963 	 */
2964 	if (!refcount_release(&vp->v_usecount))
2965 		return;
2966 	VI_LOCK(vp);
2967 	v_decr_devcount(vp);
2968 	/*
2969 	 * By the time we got here someone else might have transitioned
2970 	 * the count back to > 0.
2971 	 */
2972 	if (vp->v_usecount > 0) {
2973 		vdropl(vp);
2974 		return;
2975 	}
2976 	if (vp->v_iflag & VI_DOINGINACT) {
2977 		vdropl(vp);
2978 		return;
2979 	}
2980 
2981 	error = 0;
2982 
2983 	if (vp->v_usecount != 0) {
2984 		vn_printf(vp, "vputx: usecount not zero for vnode ");
2985 		panic("vputx: usecount not zero");
2986 	}
2987 
2988 	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2989 
2990 	/*
2991 	 * Check if the fs wants to perform inactive processing. Note we
2992 	 * may be only holding the interlock, in which case it is possible
2993 	 * someone else called vgone on the vnode and ->v_data is now NULL.
2994 	 * Since vgone performs inactive on its own there is nothing to do
2995 	 * here but to drop our hold count.
2996 	 */
2997 	if (__predict_false(vp->v_iflag & VI_DOOMED) ||
2998 	    VOP_NEED_INACTIVE(vp) == 0) {
2999 		vdropl(vp);
3000 		return;
3001 	}
3002 
3003 	/*
3004 	 * We must call VOP_INACTIVE with the node locked. Mark
3005 	 * as VI_DOINGINACT to avoid recursion.
3006 	 */
3007 	vp->v_iflag |= VI_OWEINACT;
3008 	switch (func) {
3009 	case VPUTX_VRELE:
3010 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3011 		VI_LOCK(vp);
3012 		break;
3013 	case VPUTX_VPUT:
3014 		error = VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT);
3015 		VI_LOCK(vp);
3016 		break;
3017 	case VPUTX_VUNREF:
3018 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3019 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3020 			VI_LOCK(vp);
3021 		}
3022 		break;
3023 	}
3024 	VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp,
3025 	    ("vnode with usecount and VI_OWEINACT set"));
3026 	if (error == 0) {
3027 		if (vp->v_iflag & VI_OWEINACT)
3028 			vinactive(vp, curthread);
3029 		if (func != VPUTX_VUNREF)
3030 			VOP_UNLOCK(vp, 0);
3031 	}
3032 	vdropl(vp);
3033 }
3034 
3035 /*
3036  * Vnode put/release.
3037  * If count drops to zero, call inactive routine and return to freelist.
3038  */
3039 void
3040 vrele(struct vnode *vp)
3041 {
3042 
3043 	vputx(vp, VPUTX_VRELE);
3044 }
3045 
3046 /*
3047  * Release an already locked vnode.  This give the same effects as
3048  * unlock+vrele(), but takes less time and avoids releasing and
3049  * re-aquiring the lock (as vrele() acquires the lock internally.)
3050  */
3051 void
3052 vput(struct vnode *vp)
3053 {
3054 
3055 	vputx(vp, VPUTX_VPUT);
3056 }
3057 
3058 /*
3059  * Release an exclusively locked vnode. Do not unlock the vnode lock.
3060  */
3061 void
3062 vunref(struct vnode *vp)
3063 {
3064 
3065 	vputx(vp, VPUTX_VUNREF);
3066 }
3067 
3068 /*
3069  * Increase the hold count and activate if this is the first reference.
3070  */
3071 void
3072 _vhold(struct vnode *vp, bool locked)
3073 {
3074 	struct mount *mp;
3075 
3076 	if (locked)
3077 		ASSERT_VI_LOCKED(vp, __func__);
3078 	else
3079 		ASSERT_VI_UNLOCKED(vp, __func__);
3080 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3081 	if (!locked) {
3082 		if (refcount_acquire_if_not_zero(&vp->v_holdcnt)) {
3083 			VNODE_REFCOUNT_FENCE_ACQ();
3084 			VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3085 			    ("_vhold: vnode with holdcnt is free"));
3086 			return;
3087 		}
3088 		VI_LOCK(vp);
3089 	}
3090 	if ((vp->v_iflag & VI_FREE) == 0) {
3091 		refcount_acquire(&vp->v_holdcnt);
3092 		if (!locked)
3093 			VI_UNLOCK(vp);
3094 		return;
3095 	}
3096 	VNASSERT(vp->v_holdcnt == 0, vp,
3097 	    ("%s: wrong hold count", __func__));
3098 	VNASSERT(vp->v_op != NULL, vp,
3099 	    ("%s: vnode already reclaimed.", __func__));
3100 	/*
3101 	 * Remove a vnode from the free list, mark it as in use,
3102 	 * and put it on the active list.
3103 	 */
3104 	VNASSERT(vp->v_mount != NULL, vp,
3105 	    ("_vhold: vnode not on per mount vnode list"));
3106 	mp = vp->v_mount;
3107 	mtx_lock(&mp->mnt_listmtx);
3108 	if ((vp->v_mflag & VMP_TMPMNTFREELIST) != 0) {
3109 		TAILQ_REMOVE(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist);
3110 		mp->mnt_tmpfreevnodelistsize--;
3111 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
3112 	} else {
3113 		mtx_lock(&vnode_free_list_mtx);
3114 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
3115 		freevnodes--;
3116 		mtx_unlock(&vnode_free_list_mtx);
3117 	}
3118 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
3119 	    ("Activating already active vnode"));
3120 	vp->v_iflag &= ~VI_FREE;
3121 	vp->v_iflag |= VI_ACTIVE;
3122 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
3123 	mp->mnt_activevnodelistsize++;
3124 	mtx_unlock(&mp->mnt_listmtx);
3125 	refcount_acquire(&vp->v_holdcnt);
3126 	if (!locked)
3127 		VI_UNLOCK(vp);
3128 }
3129 
3130 void
3131 vholdnz(struct vnode *vp)
3132 {
3133 
3134 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3135 #ifdef INVARIANTS
3136 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3137 	VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__));
3138 #else
3139 	atomic_add_int(&vp->v_holdcnt, 1);
3140 #endif
3141 }
3142 
3143 /*
3144  * Drop the hold count of the vnode.  If this is the last reference to
3145  * the vnode we place it on the free list unless it has been vgone'd
3146  * (marked VI_DOOMED) in which case we will free it.
3147  *
3148  * Because the vnode vm object keeps a hold reference on the vnode if
3149  * there is at least one resident non-cached page, the vnode cannot
3150  * leave the active list without the page cleanup done.
3151  */
3152 void
3153 _vdrop(struct vnode *vp, bool locked)
3154 {
3155 	struct bufobj *bo;
3156 	struct mount *mp;
3157 	int active;
3158 
3159 	if (locked)
3160 		ASSERT_VI_LOCKED(vp, __func__);
3161 	else
3162 		ASSERT_VI_UNLOCKED(vp, __func__);
3163 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3164 	if (__predict_false((int)vp->v_holdcnt <= 0)) {
3165 		vn_printf(vp, "vdrop: holdcnt %d", vp->v_holdcnt);
3166 		panic("vdrop: wrong holdcnt");
3167 	}
3168 	if (!locked) {
3169 		if (refcount_release_if_not_last(&vp->v_holdcnt))
3170 			return;
3171 		VI_LOCK(vp);
3172 	}
3173 	if (refcount_release(&vp->v_holdcnt) == 0) {
3174 		VI_UNLOCK(vp);
3175 		return;
3176 	}
3177 	if ((vp->v_iflag & VI_DOOMED) == 0) {
3178 		/*
3179 		 * Mark a vnode as free: remove it from its active list
3180 		 * and put it up for recycling on the freelist.
3181 		 */
3182 		VNASSERT(vp->v_op != NULL, vp,
3183 		    ("vdropl: vnode already reclaimed."));
3184 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3185 		    ("vnode already free"));
3186 		VNASSERT(vp->v_holdcnt == 0, vp,
3187 		    ("vdropl: freeing when we shouldn't"));
3188 		active = vp->v_iflag & VI_ACTIVE;
3189 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
3190 			vp->v_iflag &= ~VI_ACTIVE;
3191 			mp = vp->v_mount;
3192 			if (mp != NULL) {
3193 				mtx_lock(&mp->mnt_listmtx);
3194 				if (active) {
3195 					TAILQ_REMOVE(&mp->mnt_activevnodelist,
3196 					    vp, v_actfreelist);
3197 					mp->mnt_activevnodelistsize--;
3198 				}
3199 				TAILQ_INSERT_TAIL(&mp->mnt_tmpfreevnodelist,
3200 				    vp, v_actfreelist);
3201 				mp->mnt_tmpfreevnodelistsize++;
3202 				vp->v_iflag |= VI_FREE;
3203 				vp->v_mflag |= VMP_TMPMNTFREELIST;
3204 				VI_UNLOCK(vp);
3205 				if (mp->mnt_tmpfreevnodelistsize >=
3206 				    mnt_free_list_batch)
3207 					vnlru_return_batch_locked(mp);
3208 				mtx_unlock(&mp->mnt_listmtx);
3209 			} else {
3210 				VNASSERT(active == 0, vp,
3211 				    ("vdropl: active vnode not on per mount "
3212 				    "vnode list"));
3213 				mtx_lock(&vnode_free_list_mtx);
3214 				TAILQ_INSERT_TAIL(&vnode_free_list, vp,
3215 				    v_actfreelist);
3216 				freevnodes++;
3217 				vp->v_iflag |= VI_FREE;
3218 				VI_UNLOCK(vp);
3219 				mtx_unlock(&vnode_free_list_mtx);
3220 			}
3221 		} else {
3222 			VI_UNLOCK(vp);
3223 			counter_u64_add(free_owe_inact, 1);
3224 		}
3225 		return;
3226 	}
3227 	/*
3228 	 * The vnode has been marked for destruction, so free it.
3229 	 *
3230 	 * The vnode will be returned to the zone where it will
3231 	 * normally remain until it is needed for another vnode. We
3232 	 * need to cleanup (or verify that the cleanup has already
3233 	 * been done) any residual data left from its current use
3234 	 * so as not to contaminate the freshly allocated vnode.
3235 	 */
3236 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
3237 	atomic_subtract_long(&numvnodes, 1);
3238 	bo = &vp->v_bufobj;
3239 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3240 	    ("cleaned vnode still on the free list."));
3241 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
3242 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
3243 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
3244 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
3245 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
3246 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
3247 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
3248 	    ("clean blk trie not empty"));
3249 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
3250 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
3251 	    ("dirty blk trie not empty"));
3252 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
3253 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
3254 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
3255 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
3256 	    ("Dangling rangelock waiters"));
3257 	VI_UNLOCK(vp);
3258 #ifdef MAC
3259 	mac_vnode_destroy(vp);
3260 #endif
3261 	if (vp->v_pollinfo != NULL) {
3262 		destroy_vpollinfo(vp->v_pollinfo);
3263 		vp->v_pollinfo = NULL;
3264 	}
3265 #ifdef INVARIANTS
3266 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
3267 	vp->v_op = NULL;
3268 #endif
3269 	vp->v_mountedhere = NULL;
3270 	vp->v_unpcb = NULL;
3271 	vp->v_rdev = NULL;
3272 	vp->v_fifoinfo = NULL;
3273 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
3274 	vp->v_iflag = 0;
3275 	vp->v_vflag = 0;
3276 	bo->bo_flag = 0;
3277 	uma_zfree(vnode_zone, vp);
3278 }
3279 
3280 /*
3281  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3282  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3283  * OWEINACT tracks whether a vnode missed a call to inactive due to a
3284  * failed lock upgrade.
3285  */
3286 void
3287 vinactive(struct vnode *vp, struct thread *td)
3288 {
3289 	struct vm_object *obj;
3290 
3291 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3292 	ASSERT_VI_LOCKED(vp, "vinactive");
3293 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3294 	    ("vinactive: recursed on VI_DOINGINACT"));
3295 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3296 	vp->v_iflag |= VI_DOINGINACT;
3297 	vp->v_iflag &= ~VI_OWEINACT;
3298 	VI_UNLOCK(vp);
3299 	/*
3300 	 * Before moving off the active list, we must be sure that any
3301 	 * modified pages are converted into the vnode's dirty
3302 	 * buffers, since these will no longer be checked once the
3303 	 * vnode is on the inactive list.
3304 	 *
3305 	 * The write-out of the dirty pages is asynchronous.  At the
3306 	 * point that VOP_INACTIVE() is called, there could still be
3307 	 * pending I/O and dirty pages in the object.
3308 	 */
3309 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3310 	    vm_object_mightbedirty(obj)) {
3311 		VM_OBJECT_WLOCK(obj);
3312 		vm_object_page_clean(obj, 0, 0, 0);
3313 		VM_OBJECT_WUNLOCK(obj);
3314 	}
3315 	VOP_INACTIVE(vp, td);
3316 	VI_LOCK(vp);
3317 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3318 	    ("vinactive: lost VI_DOINGINACT"));
3319 	vp->v_iflag &= ~VI_DOINGINACT;
3320 }
3321 
3322 /*
3323  * Remove any vnodes in the vnode table belonging to mount point mp.
3324  *
3325  * If FORCECLOSE is not specified, there should not be any active ones,
3326  * return error if any are found (nb: this is a user error, not a
3327  * system error). If FORCECLOSE is specified, detach any active vnodes
3328  * that are found.
3329  *
3330  * If WRITECLOSE is set, only flush out regular file vnodes open for
3331  * writing.
3332  *
3333  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3334  *
3335  * `rootrefs' specifies the base reference count for the root vnode
3336  * of this filesystem. The root vnode is considered busy if its
3337  * v_usecount exceeds this value. On a successful return, vflush(, td)
3338  * will call vrele() on the root vnode exactly rootrefs times.
3339  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3340  * be zero.
3341  */
3342 #ifdef DIAGNOSTIC
3343 static int busyprt = 0;		/* print out busy vnodes */
3344 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3345 #endif
3346 
3347 int
3348 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3349 {
3350 	struct vnode *vp, *mvp, *rootvp = NULL;
3351 	struct vattr vattr;
3352 	int busy = 0, error;
3353 
3354 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3355 	    rootrefs, flags);
3356 	if (rootrefs > 0) {
3357 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3358 		    ("vflush: bad args"));
3359 		/*
3360 		 * Get the filesystem root vnode. We can vput() it
3361 		 * immediately, since with rootrefs > 0, it won't go away.
3362 		 */
3363 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3364 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3365 			    __func__, error);
3366 			return (error);
3367 		}
3368 		vput(rootvp);
3369 	}
3370 loop:
3371 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3372 		vholdl(vp);
3373 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3374 		if (error) {
3375 			vdrop(vp);
3376 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3377 			goto loop;
3378 		}
3379 		/*
3380 		 * Skip over a vnodes marked VV_SYSTEM.
3381 		 */
3382 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3383 			VOP_UNLOCK(vp, 0);
3384 			vdrop(vp);
3385 			continue;
3386 		}
3387 		/*
3388 		 * If WRITECLOSE is set, flush out unlinked but still open
3389 		 * files (even if open only for reading) and regular file
3390 		 * vnodes open for writing.
3391 		 */
3392 		if (flags & WRITECLOSE) {
3393 			if (vp->v_object != NULL) {
3394 				VM_OBJECT_WLOCK(vp->v_object);
3395 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3396 				VM_OBJECT_WUNLOCK(vp->v_object);
3397 			}
3398 			error = VOP_FSYNC(vp, MNT_WAIT, td);
3399 			if (error != 0) {
3400 				VOP_UNLOCK(vp, 0);
3401 				vdrop(vp);
3402 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3403 				return (error);
3404 			}
3405 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3406 			VI_LOCK(vp);
3407 
3408 			if ((vp->v_type == VNON ||
3409 			    (error == 0 && vattr.va_nlink > 0)) &&
3410 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3411 				VOP_UNLOCK(vp, 0);
3412 				vdropl(vp);
3413 				continue;
3414 			}
3415 		} else
3416 			VI_LOCK(vp);
3417 		/*
3418 		 * With v_usecount == 0, all we need to do is clear out the
3419 		 * vnode data structures and we are done.
3420 		 *
3421 		 * If FORCECLOSE is set, forcibly close the vnode.
3422 		 */
3423 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3424 			vgonel(vp);
3425 		} else {
3426 			busy++;
3427 #ifdef DIAGNOSTIC
3428 			if (busyprt)
3429 				vn_printf(vp, "vflush: busy vnode ");
3430 #endif
3431 		}
3432 		VOP_UNLOCK(vp, 0);
3433 		vdropl(vp);
3434 	}
3435 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3436 		/*
3437 		 * If just the root vnode is busy, and if its refcount
3438 		 * is equal to `rootrefs', then go ahead and kill it.
3439 		 */
3440 		VI_LOCK(rootvp);
3441 		KASSERT(busy > 0, ("vflush: not busy"));
3442 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3443 		    ("vflush: usecount %d < rootrefs %d",
3444 		     rootvp->v_usecount, rootrefs));
3445 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3446 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3447 			vgone(rootvp);
3448 			VOP_UNLOCK(rootvp, 0);
3449 			busy = 0;
3450 		} else
3451 			VI_UNLOCK(rootvp);
3452 	}
3453 	if (busy) {
3454 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3455 		    busy);
3456 		return (EBUSY);
3457 	}
3458 	for (; rootrefs > 0; rootrefs--)
3459 		vrele(rootvp);
3460 	return (0);
3461 }
3462 
3463 /*
3464  * Recycle an unused vnode to the front of the free list.
3465  */
3466 int
3467 vrecycle(struct vnode *vp)
3468 {
3469 	int recycled;
3470 
3471 	VI_LOCK(vp);
3472 	recycled = vrecyclel(vp);
3473 	VI_UNLOCK(vp);
3474 	return (recycled);
3475 }
3476 
3477 /*
3478  * vrecycle, with the vp interlock held.
3479  */
3480 int
3481 vrecyclel(struct vnode *vp)
3482 {
3483 	int recycled;
3484 
3485 	ASSERT_VOP_ELOCKED(vp, __func__);
3486 	ASSERT_VI_LOCKED(vp, __func__);
3487 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3488 	recycled = 0;
3489 	if (vp->v_usecount == 0) {
3490 		recycled = 1;
3491 		vgonel(vp);
3492 	}
3493 	return (recycled);
3494 }
3495 
3496 /*
3497  * Eliminate all activity associated with a vnode
3498  * in preparation for reuse.
3499  */
3500 void
3501 vgone(struct vnode *vp)
3502 {
3503 	VI_LOCK(vp);
3504 	vgonel(vp);
3505 	VI_UNLOCK(vp);
3506 }
3507 
3508 static void
3509 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3510     struct vnode *lowervp __unused)
3511 {
3512 }
3513 
3514 /*
3515  * Notify upper mounts about reclaimed or unlinked vnode.
3516  */
3517 void
3518 vfs_notify_upper(struct vnode *vp, int event)
3519 {
3520 	static struct vfsops vgonel_vfsops = {
3521 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3522 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3523 	};
3524 	struct mount *mp, *ump, *mmp;
3525 
3526 	mp = vp->v_mount;
3527 	if (mp == NULL)
3528 		return;
3529 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3530 		return;
3531 
3532 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3533 	mmp->mnt_op = &vgonel_vfsops;
3534 	mmp->mnt_kern_flag |= MNTK_MARKER;
3535 	MNT_ILOCK(mp);
3536 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3537 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3538 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3539 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3540 			continue;
3541 		}
3542 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3543 		MNT_IUNLOCK(mp);
3544 		switch (event) {
3545 		case VFS_NOTIFY_UPPER_RECLAIM:
3546 			VFS_RECLAIM_LOWERVP(ump, vp);
3547 			break;
3548 		case VFS_NOTIFY_UPPER_UNLINK:
3549 			VFS_UNLINK_LOWERVP(ump, vp);
3550 			break;
3551 		default:
3552 			KASSERT(0, ("invalid event %d", event));
3553 			break;
3554 		}
3555 		MNT_ILOCK(mp);
3556 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3557 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3558 	}
3559 	free(mmp, M_TEMP);
3560 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3561 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3562 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3563 		wakeup(&mp->mnt_uppers);
3564 	}
3565 	MNT_IUNLOCK(mp);
3566 }
3567 
3568 /*
3569  * vgone, with the vp interlock held.
3570  */
3571 static void
3572 vgonel(struct vnode *vp)
3573 {
3574 	struct thread *td;
3575 	struct mount *mp;
3576 	vm_object_t object;
3577 	bool active, oweinact;
3578 
3579 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3580 	ASSERT_VI_LOCKED(vp, "vgonel");
3581 	VNASSERT(vp->v_holdcnt, vp,
3582 	    ("vgonel: vp %p has no reference.", vp));
3583 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3584 	td = curthread;
3585 
3586 	/*
3587 	 * Don't vgonel if we're already doomed.
3588 	 */
3589 	if (vp->v_iflag & VI_DOOMED)
3590 		return;
3591 	vp->v_iflag |= VI_DOOMED;
3592 
3593 	/*
3594 	 * Check to see if the vnode is in use.  If so, we have to call
3595 	 * VOP_CLOSE() and VOP_INACTIVE().
3596 	 */
3597 	active = vp->v_usecount > 0;
3598 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3599 	VI_UNLOCK(vp);
3600 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3601 
3602 	/*
3603 	 * If purging an active vnode, it must be closed and
3604 	 * deactivated before being reclaimed.
3605 	 */
3606 	if (active)
3607 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3608 	if (oweinact || active) {
3609 		VI_LOCK(vp);
3610 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
3611 			vinactive(vp, td);
3612 		VI_UNLOCK(vp);
3613 	}
3614 	if (vp->v_type == VSOCK)
3615 		vfs_unp_reclaim(vp);
3616 
3617 	/*
3618 	 * Clean out any buffers associated with the vnode.
3619 	 * If the flush fails, just toss the buffers.
3620 	 */
3621 	mp = NULL;
3622 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3623 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3624 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3625 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3626 			;
3627 	}
3628 
3629 	BO_LOCK(&vp->v_bufobj);
3630 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3631 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3632 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3633 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3634 	    ("vp %p bufobj not invalidated", vp));
3635 
3636 	/*
3637 	 * For VMIO bufobj, BO_DEAD is set later, or in
3638 	 * vm_object_terminate() after the object's page queue is
3639 	 * flushed.
3640 	 */
3641 	object = vp->v_bufobj.bo_object;
3642 	if (object == NULL)
3643 		vp->v_bufobj.bo_flag |= BO_DEAD;
3644 	BO_UNLOCK(&vp->v_bufobj);
3645 
3646 	/*
3647 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
3648 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
3649 	 * should not touch the object borrowed from the lower vnode
3650 	 * (the handle check).
3651 	 */
3652 	if (object != NULL && object->type == OBJT_VNODE &&
3653 	    object->handle == vp)
3654 		vnode_destroy_vobject(vp);
3655 
3656 	/*
3657 	 * Reclaim the vnode.
3658 	 */
3659 	if (VOP_RECLAIM(vp, td))
3660 		panic("vgone: cannot reclaim");
3661 	if (mp != NULL)
3662 		vn_finished_secondary_write(mp);
3663 	VNASSERT(vp->v_object == NULL, vp,
3664 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
3665 	/*
3666 	 * Clear the advisory locks and wake up waiting threads.
3667 	 */
3668 	(void)VOP_ADVLOCKPURGE(vp);
3669 	vp->v_lockf = NULL;
3670 	/*
3671 	 * Delete from old mount point vnode list.
3672 	 */
3673 	delmntque(vp);
3674 	cache_purge(vp);
3675 	/*
3676 	 * Done with purge, reset to the standard lock and invalidate
3677 	 * the vnode.
3678 	 */
3679 	VI_LOCK(vp);
3680 	vp->v_vnlock = &vp->v_lock;
3681 	vp->v_op = &dead_vnodeops;
3682 	vp->v_tag = "none";
3683 	vp->v_type = VBAD;
3684 }
3685 
3686 /*
3687  * Calculate the total number of references to a special device.
3688  */
3689 int
3690 vcount(struct vnode *vp)
3691 {
3692 	int count;
3693 
3694 	dev_lock();
3695 	count = vp->v_rdev->si_usecount;
3696 	dev_unlock();
3697 	return (count);
3698 }
3699 
3700 /*
3701  * Print out a description of a vnode.
3702  */
3703 static char *typename[] =
3704 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3705  "VMARKER"};
3706 
3707 void
3708 vn_printf(struct vnode *vp, const char *fmt, ...)
3709 {
3710 	va_list ap;
3711 	char buf[256], buf2[16];
3712 	u_long flags;
3713 
3714 	va_start(ap, fmt);
3715 	vprintf(fmt, ap);
3716 	va_end(ap);
3717 	printf("%p: ", (void *)vp);
3718 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
3719 	printf("    usecount %d, writecount %d, refcount %d",
3720 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
3721 	switch (vp->v_type) {
3722 	case VDIR:
3723 		printf(" mountedhere %p\n", vp->v_mountedhere);
3724 		break;
3725 	case VCHR:
3726 		printf(" rdev %p\n", vp->v_rdev);
3727 		break;
3728 	case VSOCK:
3729 		printf(" socket %p\n", vp->v_unpcb);
3730 		break;
3731 	case VFIFO:
3732 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
3733 		break;
3734 	default:
3735 		printf("\n");
3736 		break;
3737 	}
3738 	buf[0] = '\0';
3739 	buf[1] = '\0';
3740 	if (vp->v_vflag & VV_ROOT)
3741 		strlcat(buf, "|VV_ROOT", sizeof(buf));
3742 	if (vp->v_vflag & VV_ISTTY)
3743 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
3744 	if (vp->v_vflag & VV_NOSYNC)
3745 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
3746 	if (vp->v_vflag & VV_ETERNALDEV)
3747 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
3748 	if (vp->v_vflag & VV_CACHEDLABEL)
3749 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
3750 	if (vp->v_vflag & VV_COPYONWRITE)
3751 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
3752 	if (vp->v_vflag & VV_SYSTEM)
3753 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
3754 	if (vp->v_vflag & VV_PROCDEP)
3755 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
3756 	if (vp->v_vflag & VV_NOKNOTE)
3757 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
3758 	if (vp->v_vflag & VV_DELETED)
3759 		strlcat(buf, "|VV_DELETED", sizeof(buf));
3760 	if (vp->v_vflag & VV_MD)
3761 		strlcat(buf, "|VV_MD", sizeof(buf));
3762 	if (vp->v_vflag & VV_FORCEINSMQ)
3763 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
3764 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
3765 	    VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
3766 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
3767 	if (flags != 0) {
3768 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
3769 		strlcat(buf, buf2, sizeof(buf));
3770 	}
3771 	if (vp->v_iflag & VI_MOUNT)
3772 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
3773 	if (vp->v_iflag & VI_DOOMED)
3774 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
3775 	if (vp->v_iflag & VI_FREE)
3776 		strlcat(buf, "|VI_FREE", sizeof(buf));
3777 	if (vp->v_iflag & VI_ACTIVE)
3778 		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
3779 	if (vp->v_iflag & VI_DOINGINACT)
3780 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
3781 	if (vp->v_iflag & VI_OWEINACT)
3782 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
3783 	if (vp->v_iflag & VI_TEXT_REF)
3784 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
3785 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOOMED | VI_FREE |
3786 	    VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT | VI_TEXT_REF);
3787 	if (flags != 0) {
3788 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
3789 		strlcat(buf, buf2, sizeof(buf));
3790 	}
3791 	printf("    flags (%s)\n", buf + 1);
3792 	if (mtx_owned(VI_MTX(vp)))
3793 		printf(" VI_LOCKed");
3794 	if (vp->v_object != NULL)
3795 		printf("    v_object %p ref %d pages %d "
3796 		    "cleanbuf %d dirtybuf %d\n",
3797 		    vp->v_object, vp->v_object->ref_count,
3798 		    vp->v_object->resident_page_count,
3799 		    vp->v_bufobj.bo_clean.bv_cnt,
3800 		    vp->v_bufobj.bo_dirty.bv_cnt);
3801 	printf("    ");
3802 	lockmgr_printinfo(vp->v_vnlock);
3803 	if (vp->v_data != NULL)
3804 		VOP_PRINT(vp);
3805 }
3806 
3807 #ifdef DDB
3808 /*
3809  * List all of the locked vnodes in the system.
3810  * Called when debugging the kernel.
3811  */
3812 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
3813 {
3814 	struct mount *mp;
3815 	struct vnode *vp;
3816 
3817 	/*
3818 	 * Note: because this is DDB, we can't obey the locking semantics
3819 	 * for these structures, which means we could catch an inconsistent
3820 	 * state and dereference a nasty pointer.  Not much to be done
3821 	 * about that.
3822 	 */
3823 	db_printf("Locked vnodes\n");
3824 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3825 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3826 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
3827 				vn_printf(vp, "vnode ");
3828 		}
3829 	}
3830 }
3831 
3832 /*
3833  * Show details about the given vnode.
3834  */
3835 DB_SHOW_COMMAND(vnode, db_show_vnode)
3836 {
3837 	struct vnode *vp;
3838 
3839 	if (!have_addr)
3840 		return;
3841 	vp = (struct vnode *)addr;
3842 	vn_printf(vp, "vnode ");
3843 }
3844 
3845 /*
3846  * Show details about the given mount point.
3847  */
3848 DB_SHOW_COMMAND(mount, db_show_mount)
3849 {
3850 	struct mount *mp;
3851 	struct vfsopt *opt;
3852 	struct statfs *sp;
3853 	struct vnode *vp;
3854 	char buf[512];
3855 	uint64_t mflags;
3856 	u_int flags;
3857 
3858 	if (!have_addr) {
3859 		/* No address given, print short info about all mount points. */
3860 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3861 			db_printf("%p %s on %s (%s)\n", mp,
3862 			    mp->mnt_stat.f_mntfromname,
3863 			    mp->mnt_stat.f_mntonname,
3864 			    mp->mnt_stat.f_fstypename);
3865 			if (db_pager_quit)
3866 				break;
3867 		}
3868 		db_printf("\nMore info: show mount <addr>\n");
3869 		return;
3870 	}
3871 
3872 	mp = (struct mount *)addr;
3873 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3874 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3875 
3876 	buf[0] = '\0';
3877 	mflags = mp->mnt_flag;
3878 #define	MNT_FLAG(flag)	do {						\
3879 	if (mflags & (flag)) {						\
3880 		if (buf[0] != '\0')					\
3881 			strlcat(buf, ", ", sizeof(buf));		\
3882 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3883 		mflags &= ~(flag);					\
3884 	}								\
3885 } while (0)
3886 	MNT_FLAG(MNT_RDONLY);
3887 	MNT_FLAG(MNT_SYNCHRONOUS);
3888 	MNT_FLAG(MNT_NOEXEC);
3889 	MNT_FLAG(MNT_NOSUID);
3890 	MNT_FLAG(MNT_NFS4ACLS);
3891 	MNT_FLAG(MNT_UNION);
3892 	MNT_FLAG(MNT_ASYNC);
3893 	MNT_FLAG(MNT_SUIDDIR);
3894 	MNT_FLAG(MNT_SOFTDEP);
3895 	MNT_FLAG(MNT_NOSYMFOLLOW);
3896 	MNT_FLAG(MNT_GJOURNAL);
3897 	MNT_FLAG(MNT_MULTILABEL);
3898 	MNT_FLAG(MNT_ACLS);
3899 	MNT_FLAG(MNT_NOATIME);
3900 	MNT_FLAG(MNT_NOCLUSTERR);
3901 	MNT_FLAG(MNT_NOCLUSTERW);
3902 	MNT_FLAG(MNT_SUJ);
3903 	MNT_FLAG(MNT_EXRDONLY);
3904 	MNT_FLAG(MNT_EXPORTED);
3905 	MNT_FLAG(MNT_DEFEXPORTED);
3906 	MNT_FLAG(MNT_EXPORTANON);
3907 	MNT_FLAG(MNT_EXKERB);
3908 	MNT_FLAG(MNT_EXPUBLIC);
3909 	MNT_FLAG(MNT_LOCAL);
3910 	MNT_FLAG(MNT_QUOTA);
3911 	MNT_FLAG(MNT_ROOTFS);
3912 	MNT_FLAG(MNT_USER);
3913 	MNT_FLAG(MNT_IGNORE);
3914 	MNT_FLAG(MNT_UPDATE);
3915 	MNT_FLAG(MNT_DELEXPORT);
3916 	MNT_FLAG(MNT_RELOAD);
3917 	MNT_FLAG(MNT_FORCE);
3918 	MNT_FLAG(MNT_SNAPSHOT);
3919 	MNT_FLAG(MNT_BYFSID);
3920 #undef MNT_FLAG
3921 	if (mflags != 0) {
3922 		if (buf[0] != '\0')
3923 			strlcat(buf, ", ", sizeof(buf));
3924 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3925 		    "0x%016jx", mflags);
3926 	}
3927 	db_printf("    mnt_flag = %s\n", buf);
3928 
3929 	buf[0] = '\0';
3930 	flags = mp->mnt_kern_flag;
3931 #define	MNT_KERN_FLAG(flag)	do {					\
3932 	if (flags & (flag)) {						\
3933 		if (buf[0] != '\0')					\
3934 			strlcat(buf, ", ", sizeof(buf));		\
3935 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3936 		flags &= ~(flag);					\
3937 	}								\
3938 } while (0)
3939 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3940 	MNT_KERN_FLAG(MNTK_ASYNC);
3941 	MNT_KERN_FLAG(MNTK_SOFTDEP);
3942 	MNT_KERN_FLAG(MNTK_DRAINING);
3943 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3944 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3945 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3946 	MNT_KERN_FLAG(MNTK_NO_IOPF);
3947 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3948 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3949 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
3950 	MNT_KERN_FLAG(MNTK_MARKER);
3951 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
3952 	MNT_KERN_FLAG(MNTK_NOASYNC);
3953 	MNT_KERN_FLAG(MNTK_UNMOUNT);
3954 	MNT_KERN_FLAG(MNTK_MWAIT);
3955 	MNT_KERN_FLAG(MNTK_SUSPEND);
3956 	MNT_KERN_FLAG(MNTK_SUSPEND2);
3957 	MNT_KERN_FLAG(MNTK_SUSPENDED);
3958 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3959 	MNT_KERN_FLAG(MNTK_NOKNOTE);
3960 #undef MNT_KERN_FLAG
3961 	if (flags != 0) {
3962 		if (buf[0] != '\0')
3963 			strlcat(buf, ", ", sizeof(buf));
3964 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3965 		    "0x%08x", flags);
3966 	}
3967 	db_printf("    mnt_kern_flag = %s\n", buf);
3968 
3969 	db_printf("    mnt_opt = ");
3970 	opt = TAILQ_FIRST(mp->mnt_opt);
3971 	if (opt != NULL) {
3972 		db_printf("%s", opt->name);
3973 		opt = TAILQ_NEXT(opt, link);
3974 		while (opt != NULL) {
3975 			db_printf(", %s", opt->name);
3976 			opt = TAILQ_NEXT(opt, link);
3977 		}
3978 	}
3979 	db_printf("\n");
3980 
3981 	sp = &mp->mnt_stat;
3982 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3983 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3984 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3985 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3986 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3987 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3988 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3989 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3990 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3991 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3992 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3993 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3994 
3995 	db_printf("    mnt_cred = { uid=%u ruid=%u",
3996 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3997 	if (jailed(mp->mnt_cred))
3998 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3999 	db_printf(" }\n");
4000 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4001 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4002 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4003 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4004 	db_printf("    mnt_activevnodelistsize = %d\n",
4005 	    mp->mnt_activevnodelistsize);
4006 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4007 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4008 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
4009 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4010 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4011 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4012 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4013 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4014 	db_printf("    mnt_secondary_accwrites = %d\n",
4015 	    mp->mnt_secondary_accwrites);
4016 	db_printf("    mnt_gjprovider = %s\n",
4017 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4018 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4019 
4020 	db_printf("\n\nList of active vnodes\n");
4021 	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
4022 		if (vp->v_type != VMARKER) {
4023 			vn_printf(vp, "vnode ");
4024 			if (db_pager_quit)
4025 				break;
4026 		}
4027 	}
4028 	db_printf("\n\nList of inactive vnodes\n");
4029 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4030 		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
4031 			vn_printf(vp, "vnode ");
4032 			if (db_pager_quit)
4033 				break;
4034 		}
4035 	}
4036 }
4037 #endif	/* DDB */
4038 
4039 /*
4040  * Fill in a struct xvfsconf based on a struct vfsconf.
4041  */
4042 static int
4043 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4044 {
4045 	struct xvfsconf xvfsp;
4046 
4047 	bzero(&xvfsp, sizeof(xvfsp));
4048 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4049 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4050 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4051 	xvfsp.vfc_flags = vfsp->vfc_flags;
4052 	/*
4053 	 * These are unused in userland, we keep them
4054 	 * to not break binary compatibility.
4055 	 */
4056 	xvfsp.vfc_vfsops = NULL;
4057 	xvfsp.vfc_next = NULL;
4058 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4059 }
4060 
4061 #ifdef COMPAT_FREEBSD32
4062 struct xvfsconf32 {
4063 	uint32_t	vfc_vfsops;
4064 	char		vfc_name[MFSNAMELEN];
4065 	int32_t		vfc_typenum;
4066 	int32_t		vfc_refcount;
4067 	int32_t		vfc_flags;
4068 	uint32_t	vfc_next;
4069 };
4070 
4071 static int
4072 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4073 {
4074 	struct xvfsconf32 xvfsp;
4075 
4076 	bzero(&xvfsp, sizeof(xvfsp));
4077 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4078 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4079 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4080 	xvfsp.vfc_flags = vfsp->vfc_flags;
4081 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4082 }
4083 #endif
4084 
4085 /*
4086  * Top level filesystem related information gathering.
4087  */
4088 static int
4089 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4090 {
4091 	struct vfsconf *vfsp;
4092 	int error;
4093 
4094 	error = 0;
4095 	vfsconf_slock();
4096 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4097 #ifdef COMPAT_FREEBSD32
4098 		if (req->flags & SCTL_MASK32)
4099 			error = vfsconf2x32(req, vfsp);
4100 		else
4101 #endif
4102 			error = vfsconf2x(req, vfsp);
4103 		if (error)
4104 			break;
4105 	}
4106 	vfsconf_sunlock();
4107 	return (error);
4108 }
4109 
4110 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4111     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4112     "S,xvfsconf", "List of all configured filesystems");
4113 
4114 #ifndef BURN_BRIDGES
4115 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4116 
4117 static int
4118 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4119 {
4120 	int *name = (int *)arg1 - 1;	/* XXX */
4121 	u_int namelen = arg2 + 1;	/* XXX */
4122 	struct vfsconf *vfsp;
4123 
4124 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4125 	    "please rebuild world\n");
4126 
4127 #if 1 || defined(COMPAT_PRELITE2)
4128 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4129 	if (namelen == 1)
4130 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4131 #endif
4132 
4133 	switch (name[1]) {
4134 	case VFS_MAXTYPENUM:
4135 		if (namelen != 2)
4136 			return (ENOTDIR);
4137 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4138 	case VFS_CONF:
4139 		if (namelen != 3)
4140 			return (ENOTDIR);	/* overloaded */
4141 		vfsconf_slock();
4142 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4143 			if (vfsp->vfc_typenum == name[2])
4144 				break;
4145 		}
4146 		vfsconf_sunlock();
4147 		if (vfsp == NULL)
4148 			return (EOPNOTSUPP);
4149 #ifdef COMPAT_FREEBSD32
4150 		if (req->flags & SCTL_MASK32)
4151 			return (vfsconf2x32(req, vfsp));
4152 		else
4153 #endif
4154 			return (vfsconf2x(req, vfsp));
4155 	}
4156 	return (EOPNOTSUPP);
4157 }
4158 
4159 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4160     CTLFLAG_MPSAFE, vfs_sysctl,
4161     "Generic filesystem");
4162 
4163 #if 1 || defined(COMPAT_PRELITE2)
4164 
4165 static int
4166 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4167 {
4168 	int error;
4169 	struct vfsconf *vfsp;
4170 	struct ovfsconf ovfs;
4171 
4172 	vfsconf_slock();
4173 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4174 		bzero(&ovfs, sizeof(ovfs));
4175 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4176 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4177 		ovfs.vfc_index = vfsp->vfc_typenum;
4178 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4179 		ovfs.vfc_flags = vfsp->vfc_flags;
4180 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4181 		if (error != 0) {
4182 			vfsconf_sunlock();
4183 			return (error);
4184 		}
4185 	}
4186 	vfsconf_sunlock();
4187 	return (0);
4188 }
4189 
4190 #endif /* 1 || COMPAT_PRELITE2 */
4191 #endif /* !BURN_BRIDGES */
4192 
4193 #define KINFO_VNODESLOP		10
4194 #ifdef notyet
4195 /*
4196  * Dump vnode list (via sysctl).
4197  */
4198 /* ARGSUSED */
4199 static int
4200 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4201 {
4202 	struct xvnode *xvn;
4203 	struct mount *mp;
4204 	struct vnode *vp;
4205 	int error, len, n;
4206 
4207 	/*
4208 	 * Stale numvnodes access is not fatal here.
4209 	 */
4210 	req->lock = 0;
4211 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4212 	if (!req->oldptr)
4213 		/* Make an estimate */
4214 		return (SYSCTL_OUT(req, 0, len));
4215 
4216 	error = sysctl_wire_old_buffer(req, 0);
4217 	if (error != 0)
4218 		return (error);
4219 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4220 	n = 0;
4221 	mtx_lock(&mountlist_mtx);
4222 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4223 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4224 			continue;
4225 		MNT_ILOCK(mp);
4226 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4227 			if (n == len)
4228 				break;
4229 			vref(vp);
4230 			xvn[n].xv_size = sizeof *xvn;
4231 			xvn[n].xv_vnode = vp;
4232 			xvn[n].xv_id = 0;	/* XXX compat */
4233 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4234 			XV_COPY(usecount);
4235 			XV_COPY(writecount);
4236 			XV_COPY(holdcnt);
4237 			XV_COPY(mount);
4238 			XV_COPY(numoutput);
4239 			XV_COPY(type);
4240 #undef XV_COPY
4241 			xvn[n].xv_flag = vp->v_vflag;
4242 
4243 			switch (vp->v_type) {
4244 			case VREG:
4245 			case VDIR:
4246 			case VLNK:
4247 				break;
4248 			case VBLK:
4249 			case VCHR:
4250 				if (vp->v_rdev == NULL) {
4251 					vrele(vp);
4252 					continue;
4253 				}
4254 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4255 				break;
4256 			case VSOCK:
4257 				xvn[n].xv_socket = vp->v_socket;
4258 				break;
4259 			case VFIFO:
4260 				xvn[n].xv_fifo = vp->v_fifoinfo;
4261 				break;
4262 			case VNON:
4263 			case VBAD:
4264 			default:
4265 				/* shouldn't happen? */
4266 				vrele(vp);
4267 				continue;
4268 			}
4269 			vrele(vp);
4270 			++n;
4271 		}
4272 		MNT_IUNLOCK(mp);
4273 		mtx_lock(&mountlist_mtx);
4274 		vfs_unbusy(mp);
4275 		if (n == len)
4276 			break;
4277 	}
4278 	mtx_unlock(&mountlist_mtx);
4279 
4280 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4281 	free(xvn, M_TEMP);
4282 	return (error);
4283 }
4284 
4285 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4286     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4287     "");
4288 #endif
4289 
4290 static void
4291 unmount_or_warn(struct mount *mp)
4292 {
4293 	int error;
4294 
4295 	error = dounmount(mp, MNT_FORCE, curthread);
4296 	if (error != 0) {
4297 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4298 		if (error == EBUSY)
4299 			printf("BUSY)\n");
4300 		else
4301 			printf("%d)\n", error);
4302 	}
4303 }
4304 
4305 /*
4306  * Unmount all filesystems. The list is traversed in reverse order
4307  * of mounting to avoid dependencies.
4308  */
4309 void
4310 vfs_unmountall(void)
4311 {
4312 	struct mount *mp, *tmp;
4313 
4314 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4315 
4316 	/*
4317 	 * Since this only runs when rebooting, it is not interlocked.
4318 	 */
4319 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4320 		vfs_ref(mp);
4321 
4322 		/*
4323 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4324 		 * unmount of the latter.
4325 		 */
4326 		if (mp == rootdevmp)
4327 			continue;
4328 
4329 		unmount_or_warn(mp);
4330 	}
4331 
4332 	if (rootdevmp != NULL)
4333 		unmount_or_warn(rootdevmp);
4334 }
4335 
4336 /*
4337  * perform msync on all vnodes under a mount point
4338  * the mount point must be locked.
4339  */
4340 void
4341 vfs_msync(struct mount *mp, int flags)
4342 {
4343 	struct vnode *vp, *mvp;
4344 	struct vm_object *obj;
4345 
4346 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4347 
4348 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4349 		return;
4350 
4351 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
4352 		obj = vp->v_object;
4353 		if (obj != NULL && vm_object_mightbedirty(obj) &&
4354 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
4355 			if (!vget(vp,
4356 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
4357 			    curthread)) {
4358 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
4359 					vput(vp);
4360 					continue;
4361 				}
4362 
4363 				obj = vp->v_object;
4364 				if (obj != NULL) {
4365 					VM_OBJECT_WLOCK(obj);
4366 					vm_object_page_clean(obj, 0, 0,
4367 					    flags == MNT_WAIT ?
4368 					    OBJPC_SYNC : OBJPC_NOSYNC);
4369 					VM_OBJECT_WUNLOCK(obj);
4370 				}
4371 				vput(vp);
4372 			}
4373 		} else
4374 			VI_UNLOCK(vp);
4375 	}
4376 }
4377 
4378 static void
4379 destroy_vpollinfo_free(struct vpollinfo *vi)
4380 {
4381 
4382 	knlist_destroy(&vi->vpi_selinfo.si_note);
4383 	mtx_destroy(&vi->vpi_lock);
4384 	uma_zfree(vnodepoll_zone, vi);
4385 }
4386 
4387 static void
4388 destroy_vpollinfo(struct vpollinfo *vi)
4389 {
4390 
4391 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4392 	seldrain(&vi->vpi_selinfo);
4393 	destroy_vpollinfo_free(vi);
4394 }
4395 
4396 /*
4397  * Initialize per-vnode helper structure to hold poll-related state.
4398  */
4399 void
4400 v_addpollinfo(struct vnode *vp)
4401 {
4402 	struct vpollinfo *vi;
4403 
4404 	if (vp->v_pollinfo != NULL)
4405 		return;
4406 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
4407 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4408 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4409 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
4410 	VI_LOCK(vp);
4411 	if (vp->v_pollinfo != NULL) {
4412 		VI_UNLOCK(vp);
4413 		destroy_vpollinfo_free(vi);
4414 		return;
4415 	}
4416 	vp->v_pollinfo = vi;
4417 	VI_UNLOCK(vp);
4418 }
4419 
4420 /*
4421  * Record a process's interest in events which might happen to
4422  * a vnode.  Because poll uses the historic select-style interface
4423  * internally, this routine serves as both the ``check for any
4424  * pending events'' and the ``record my interest in future events''
4425  * functions.  (These are done together, while the lock is held,
4426  * to avoid race conditions.)
4427  */
4428 int
4429 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4430 {
4431 
4432 	v_addpollinfo(vp);
4433 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4434 	if (vp->v_pollinfo->vpi_revents & events) {
4435 		/*
4436 		 * This leaves events we are not interested
4437 		 * in available for the other process which
4438 		 * which presumably had requested them
4439 		 * (otherwise they would never have been
4440 		 * recorded).
4441 		 */
4442 		events &= vp->v_pollinfo->vpi_revents;
4443 		vp->v_pollinfo->vpi_revents &= ~events;
4444 
4445 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4446 		return (events);
4447 	}
4448 	vp->v_pollinfo->vpi_events |= events;
4449 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4450 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4451 	return (0);
4452 }
4453 
4454 /*
4455  * Routine to create and manage a filesystem syncer vnode.
4456  */
4457 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4458 static int	sync_fsync(struct  vop_fsync_args *);
4459 static int	sync_inactive(struct  vop_inactive_args *);
4460 static int	sync_reclaim(struct  vop_reclaim_args *);
4461 
4462 static struct vop_vector sync_vnodeops = {
4463 	.vop_bypass =	VOP_EOPNOTSUPP,
4464 	.vop_close =	sync_close,		/* close */
4465 	.vop_fsync =	sync_fsync,		/* fsync */
4466 	.vop_inactive =	sync_inactive,	/* inactive */
4467 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4468 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4469 	.vop_lock1 =	vop_stdlock,	/* lock */
4470 	.vop_unlock =	vop_stdunlock,	/* unlock */
4471 	.vop_islocked =	vop_stdislocked,	/* islocked */
4472 };
4473 
4474 /*
4475  * Create a new filesystem syncer vnode for the specified mount point.
4476  */
4477 void
4478 vfs_allocate_syncvnode(struct mount *mp)
4479 {
4480 	struct vnode *vp;
4481 	struct bufobj *bo;
4482 	static long start, incr, next;
4483 	int error;
4484 
4485 	/* Allocate a new vnode */
4486 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4487 	if (error != 0)
4488 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4489 	vp->v_type = VNON;
4490 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4491 	vp->v_vflag |= VV_FORCEINSMQ;
4492 	error = insmntque(vp, mp);
4493 	if (error != 0)
4494 		panic("vfs_allocate_syncvnode: insmntque() failed");
4495 	vp->v_vflag &= ~VV_FORCEINSMQ;
4496 	VOP_UNLOCK(vp, 0);
4497 	/*
4498 	 * Place the vnode onto the syncer worklist. We attempt to
4499 	 * scatter them about on the list so that they will go off
4500 	 * at evenly distributed times even if all the filesystems
4501 	 * are mounted at once.
4502 	 */
4503 	next += incr;
4504 	if (next == 0 || next > syncer_maxdelay) {
4505 		start /= 2;
4506 		incr /= 2;
4507 		if (start == 0) {
4508 			start = syncer_maxdelay / 2;
4509 			incr = syncer_maxdelay;
4510 		}
4511 		next = start;
4512 	}
4513 	bo = &vp->v_bufobj;
4514 	BO_LOCK(bo);
4515 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
4516 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
4517 	mtx_lock(&sync_mtx);
4518 	sync_vnode_count++;
4519 	if (mp->mnt_syncer == NULL) {
4520 		mp->mnt_syncer = vp;
4521 		vp = NULL;
4522 	}
4523 	mtx_unlock(&sync_mtx);
4524 	BO_UNLOCK(bo);
4525 	if (vp != NULL) {
4526 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4527 		vgone(vp);
4528 		vput(vp);
4529 	}
4530 }
4531 
4532 void
4533 vfs_deallocate_syncvnode(struct mount *mp)
4534 {
4535 	struct vnode *vp;
4536 
4537 	mtx_lock(&sync_mtx);
4538 	vp = mp->mnt_syncer;
4539 	if (vp != NULL)
4540 		mp->mnt_syncer = NULL;
4541 	mtx_unlock(&sync_mtx);
4542 	if (vp != NULL)
4543 		vrele(vp);
4544 }
4545 
4546 /*
4547  * Do a lazy sync of the filesystem.
4548  */
4549 static int
4550 sync_fsync(struct vop_fsync_args *ap)
4551 {
4552 	struct vnode *syncvp = ap->a_vp;
4553 	struct mount *mp = syncvp->v_mount;
4554 	int error, save;
4555 	struct bufobj *bo;
4556 
4557 	/*
4558 	 * We only need to do something if this is a lazy evaluation.
4559 	 */
4560 	if (ap->a_waitfor != MNT_LAZY)
4561 		return (0);
4562 
4563 	/*
4564 	 * Move ourselves to the back of the sync list.
4565 	 */
4566 	bo = &syncvp->v_bufobj;
4567 	BO_LOCK(bo);
4568 	vn_syncer_add_to_worklist(bo, syncdelay);
4569 	BO_UNLOCK(bo);
4570 
4571 	/*
4572 	 * Walk the list of vnodes pushing all that are dirty and
4573 	 * not already on the sync list.
4574 	 */
4575 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
4576 		return (0);
4577 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
4578 		vfs_unbusy(mp);
4579 		return (0);
4580 	}
4581 	save = curthread_pflags_set(TDP_SYNCIO);
4582 	/*
4583 	 * The filesystem at hand may be idle with free vnodes stored in the
4584 	 * batch.  Return them instead of letting them stay there indefinitely.
4585 	 */
4586 	vnlru_return_batch(mp);
4587 	vfs_msync(mp, MNT_NOWAIT);
4588 	error = VFS_SYNC(mp, MNT_LAZY);
4589 	curthread_pflags_restore(save);
4590 	vn_finished_write(mp);
4591 	vfs_unbusy(mp);
4592 	return (error);
4593 }
4594 
4595 /*
4596  * The syncer vnode is no referenced.
4597  */
4598 static int
4599 sync_inactive(struct vop_inactive_args *ap)
4600 {
4601 
4602 	vgone(ap->a_vp);
4603 	return (0);
4604 }
4605 
4606 /*
4607  * The syncer vnode is no longer needed and is being decommissioned.
4608  *
4609  * Modifications to the worklist must be protected by sync_mtx.
4610  */
4611 static int
4612 sync_reclaim(struct vop_reclaim_args *ap)
4613 {
4614 	struct vnode *vp = ap->a_vp;
4615 	struct bufobj *bo;
4616 
4617 	bo = &vp->v_bufobj;
4618 	BO_LOCK(bo);
4619 	mtx_lock(&sync_mtx);
4620 	if (vp->v_mount->mnt_syncer == vp)
4621 		vp->v_mount->mnt_syncer = NULL;
4622 	if (bo->bo_flag & BO_ONWORKLST) {
4623 		LIST_REMOVE(bo, bo_synclist);
4624 		syncer_worklist_len--;
4625 		sync_vnode_count--;
4626 		bo->bo_flag &= ~BO_ONWORKLST;
4627 	}
4628 	mtx_unlock(&sync_mtx);
4629 	BO_UNLOCK(bo);
4630 
4631 	return (0);
4632 }
4633 
4634 int
4635 vn_need_pageq_flush(struct vnode *vp)
4636 {
4637 	struct vm_object *obj;
4638 	int need;
4639 
4640 	MPASS(mtx_owned(VI_MTX(vp)));
4641 	need = 0;
4642 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
4643 	    vm_object_mightbedirty(obj))
4644 		need = 1;
4645 	return (need);
4646 }
4647 
4648 /*
4649  * Check if vnode represents a disk device
4650  */
4651 int
4652 vn_isdisk(struct vnode *vp, int *errp)
4653 {
4654 	int error;
4655 
4656 	if (vp->v_type != VCHR) {
4657 		error = ENOTBLK;
4658 		goto out;
4659 	}
4660 	error = 0;
4661 	dev_lock();
4662 	if (vp->v_rdev == NULL)
4663 		error = ENXIO;
4664 	else if (vp->v_rdev->si_devsw == NULL)
4665 		error = ENXIO;
4666 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
4667 		error = ENOTBLK;
4668 	dev_unlock();
4669 out:
4670 	if (errp != NULL)
4671 		*errp = error;
4672 	return (error == 0);
4673 }
4674 
4675 /*
4676  * Common filesystem object access control check routine.  Accepts a
4677  * vnode's type, "mode", uid and gid, requested access mode, credentials,
4678  * and optional call-by-reference privused argument allowing vaccess()
4679  * to indicate to the caller whether privilege was used to satisfy the
4680  * request (obsoleted).  Returns 0 on success, or an errno on failure.
4681  */
4682 int
4683 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
4684     accmode_t accmode, struct ucred *cred, int *privused)
4685 {
4686 	accmode_t dac_granted;
4687 	accmode_t priv_granted;
4688 
4689 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
4690 	    ("invalid bit in accmode"));
4691 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
4692 	    ("VAPPEND without VWRITE"));
4693 
4694 	/*
4695 	 * Look for a normal, non-privileged way to access the file/directory
4696 	 * as requested.  If it exists, go with that.
4697 	 */
4698 
4699 	if (privused != NULL)
4700 		*privused = 0;
4701 
4702 	dac_granted = 0;
4703 
4704 	/* Check the owner. */
4705 	if (cred->cr_uid == file_uid) {
4706 		dac_granted |= VADMIN;
4707 		if (file_mode & S_IXUSR)
4708 			dac_granted |= VEXEC;
4709 		if (file_mode & S_IRUSR)
4710 			dac_granted |= VREAD;
4711 		if (file_mode & S_IWUSR)
4712 			dac_granted |= (VWRITE | VAPPEND);
4713 
4714 		if ((accmode & dac_granted) == accmode)
4715 			return (0);
4716 
4717 		goto privcheck;
4718 	}
4719 
4720 	/* Otherwise, check the groups (first match) */
4721 	if (groupmember(file_gid, cred)) {
4722 		if (file_mode & S_IXGRP)
4723 			dac_granted |= VEXEC;
4724 		if (file_mode & S_IRGRP)
4725 			dac_granted |= VREAD;
4726 		if (file_mode & S_IWGRP)
4727 			dac_granted |= (VWRITE | VAPPEND);
4728 
4729 		if ((accmode & dac_granted) == accmode)
4730 			return (0);
4731 
4732 		goto privcheck;
4733 	}
4734 
4735 	/* Otherwise, check everyone else. */
4736 	if (file_mode & S_IXOTH)
4737 		dac_granted |= VEXEC;
4738 	if (file_mode & S_IROTH)
4739 		dac_granted |= VREAD;
4740 	if (file_mode & S_IWOTH)
4741 		dac_granted |= (VWRITE | VAPPEND);
4742 	if ((accmode & dac_granted) == accmode)
4743 		return (0);
4744 
4745 privcheck:
4746 	/*
4747 	 * Build a privilege mask to determine if the set of privileges
4748 	 * satisfies the requirements when combined with the granted mask
4749 	 * from above.  For each privilege, if the privilege is required,
4750 	 * bitwise or the request type onto the priv_granted mask.
4751 	 */
4752 	priv_granted = 0;
4753 
4754 	if (type == VDIR) {
4755 		/*
4756 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
4757 		 * requests, instead of PRIV_VFS_EXEC.
4758 		 */
4759 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4760 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
4761 			priv_granted |= VEXEC;
4762 	} else {
4763 		/*
4764 		 * Ensure that at least one execute bit is on. Otherwise,
4765 		 * a privileged user will always succeed, and we don't want
4766 		 * this to happen unless the file really is executable.
4767 		 */
4768 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4769 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
4770 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
4771 			priv_granted |= VEXEC;
4772 	}
4773 
4774 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
4775 	    !priv_check_cred(cred, PRIV_VFS_READ))
4776 		priv_granted |= VREAD;
4777 
4778 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
4779 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
4780 		priv_granted |= (VWRITE | VAPPEND);
4781 
4782 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
4783 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
4784 		priv_granted |= VADMIN;
4785 
4786 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
4787 		/* XXX audit: privilege used */
4788 		if (privused != NULL)
4789 			*privused = 1;
4790 		return (0);
4791 	}
4792 
4793 	return ((accmode & VADMIN) ? EPERM : EACCES);
4794 }
4795 
4796 /*
4797  * Credential check based on process requesting service, and per-attribute
4798  * permissions.
4799  */
4800 int
4801 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
4802     struct thread *td, accmode_t accmode)
4803 {
4804 
4805 	/*
4806 	 * Kernel-invoked always succeeds.
4807 	 */
4808 	if (cred == NOCRED)
4809 		return (0);
4810 
4811 	/*
4812 	 * Do not allow privileged processes in jail to directly manipulate
4813 	 * system attributes.
4814 	 */
4815 	switch (attrnamespace) {
4816 	case EXTATTR_NAMESPACE_SYSTEM:
4817 		/* Potentially should be: return (EPERM); */
4818 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
4819 	case EXTATTR_NAMESPACE_USER:
4820 		return (VOP_ACCESS(vp, accmode, cred, td));
4821 	default:
4822 		return (EPERM);
4823 	}
4824 }
4825 
4826 #ifdef DEBUG_VFS_LOCKS
4827 /*
4828  * This only exists to suppress warnings from unlocked specfs accesses.  It is
4829  * no longer ok to have an unlocked VFS.
4830  */
4831 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
4832 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
4833 
4834 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
4835 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
4836     "Drop into debugger on lock violation");
4837 
4838 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
4839 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
4840     0, "Check for interlock across VOPs");
4841 
4842 int vfs_badlock_print = 1;	/* Print lock violations. */
4843 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
4844     0, "Print lock violations");
4845 
4846 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
4847 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
4848     0, "Print vnode details on lock violations");
4849 
4850 #ifdef KDB
4851 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
4852 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
4853     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
4854 #endif
4855 
4856 static void
4857 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
4858 {
4859 
4860 #ifdef KDB
4861 	if (vfs_badlock_backtrace)
4862 		kdb_backtrace();
4863 #endif
4864 	if (vfs_badlock_vnode)
4865 		vn_printf(vp, "vnode ");
4866 	if (vfs_badlock_print)
4867 		printf("%s: %p %s\n", str, (void *)vp, msg);
4868 	if (vfs_badlock_ddb)
4869 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4870 }
4871 
4872 void
4873 assert_vi_locked(struct vnode *vp, const char *str)
4874 {
4875 
4876 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
4877 		vfs_badlock("interlock is not locked but should be", str, vp);
4878 }
4879 
4880 void
4881 assert_vi_unlocked(struct vnode *vp, const char *str)
4882 {
4883 
4884 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
4885 		vfs_badlock("interlock is locked but should not be", str, vp);
4886 }
4887 
4888 void
4889 assert_vop_locked(struct vnode *vp, const char *str)
4890 {
4891 	int locked;
4892 
4893 	if (!IGNORE_LOCK(vp)) {
4894 		locked = VOP_ISLOCKED(vp);
4895 		if (locked == 0 || locked == LK_EXCLOTHER)
4896 			vfs_badlock("is not locked but should be", str, vp);
4897 	}
4898 }
4899 
4900 void
4901 assert_vop_unlocked(struct vnode *vp, const char *str)
4902 {
4903 
4904 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
4905 		vfs_badlock("is locked but should not be", str, vp);
4906 }
4907 
4908 void
4909 assert_vop_elocked(struct vnode *vp, const char *str)
4910 {
4911 
4912 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
4913 		vfs_badlock("is not exclusive locked but should be", str, vp);
4914 }
4915 #endif /* DEBUG_VFS_LOCKS */
4916 
4917 void
4918 vop_rename_fail(struct vop_rename_args *ap)
4919 {
4920 
4921 	if (ap->a_tvp != NULL)
4922 		vput(ap->a_tvp);
4923 	if (ap->a_tdvp == ap->a_tvp)
4924 		vrele(ap->a_tdvp);
4925 	else
4926 		vput(ap->a_tdvp);
4927 	vrele(ap->a_fdvp);
4928 	vrele(ap->a_fvp);
4929 }
4930 
4931 void
4932 vop_rename_pre(void *ap)
4933 {
4934 	struct vop_rename_args *a = ap;
4935 
4936 #ifdef DEBUG_VFS_LOCKS
4937 	if (a->a_tvp)
4938 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4939 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4940 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4941 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4942 
4943 	/* Check the source (from). */
4944 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4945 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4946 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4947 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4948 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4949 
4950 	/* Check the target. */
4951 	if (a->a_tvp)
4952 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4953 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4954 #endif
4955 	if (a->a_tdvp != a->a_fdvp)
4956 		vhold(a->a_fdvp);
4957 	if (a->a_tvp != a->a_fvp)
4958 		vhold(a->a_fvp);
4959 	vhold(a->a_tdvp);
4960 	if (a->a_tvp)
4961 		vhold(a->a_tvp);
4962 }
4963 
4964 #ifdef DEBUG_VFS_LOCKS
4965 void
4966 vop_strategy_pre(void *ap)
4967 {
4968 	struct vop_strategy_args *a;
4969 	struct buf *bp;
4970 
4971 	a = ap;
4972 	bp = a->a_bp;
4973 
4974 	/*
4975 	 * Cluster ops lock their component buffers but not the IO container.
4976 	 */
4977 	if ((bp->b_flags & B_CLUSTER) != 0)
4978 		return;
4979 
4980 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
4981 		if (vfs_badlock_print)
4982 			printf(
4983 			    "VOP_STRATEGY: bp is not locked but should be\n");
4984 		if (vfs_badlock_ddb)
4985 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4986 	}
4987 }
4988 
4989 void
4990 vop_lock_pre(void *ap)
4991 {
4992 	struct vop_lock1_args *a = ap;
4993 
4994 	if ((a->a_flags & LK_INTERLOCK) == 0)
4995 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4996 	else
4997 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4998 }
4999 
5000 void
5001 vop_lock_post(void *ap, int rc)
5002 {
5003 	struct vop_lock1_args *a = ap;
5004 
5005 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5006 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5007 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5008 }
5009 
5010 void
5011 vop_unlock_pre(void *ap)
5012 {
5013 	struct vop_unlock_args *a = ap;
5014 
5015 	if (a->a_flags & LK_INTERLOCK)
5016 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
5017 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5018 }
5019 
5020 void
5021 vop_unlock_post(void *ap, int rc)
5022 {
5023 	struct vop_unlock_args *a = ap;
5024 
5025 	if (a->a_flags & LK_INTERLOCK)
5026 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
5027 }
5028 
5029 void
5030 vop_need_inactive_pre(void *ap)
5031 {
5032 	struct vop_need_inactive_args *a = ap;
5033 
5034 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5035 }
5036 
5037 void
5038 vop_need_inactive_post(void *ap, int rc)
5039 {
5040 	struct vop_need_inactive_args *a = ap;
5041 
5042 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5043 }
5044 #endif
5045 
5046 void
5047 vop_create_post(void *ap, int rc)
5048 {
5049 	struct vop_create_args *a = ap;
5050 
5051 	if (!rc)
5052 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5053 }
5054 
5055 void
5056 vop_deleteextattr_post(void *ap, int rc)
5057 {
5058 	struct vop_deleteextattr_args *a = ap;
5059 
5060 	if (!rc)
5061 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5062 }
5063 
5064 void
5065 vop_link_post(void *ap, int rc)
5066 {
5067 	struct vop_link_args *a = ap;
5068 
5069 	if (!rc) {
5070 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
5071 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
5072 	}
5073 }
5074 
5075 void
5076 vop_mkdir_post(void *ap, int rc)
5077 {
5078 	struct vop_mkdir_args *a = ap;
5079 
5080 	if (!rc)
5081 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5082 }
5083 
5084 void
5085 vop_mknod_post(void *ap, int rc)
5086 {
5087 	struct vop_mknod_args *a = ap;
5088 
5089 	if (!rc)
5090 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5091 }
5092 
5093 void
5094 vop_reclaim_post(void *ap, int rc)
5095 {
5096 	struct vop_reclaim_args *a = ap;
5097 
5098 	if (!rc)
5099 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
5100 }
5101 
5102 void
5103 vop_remove_post(void *ap, int rc)
5104 {
5105 	struct vop_remove_args *a = ap;
5106 
5107 	if (!rc) {
5108 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5109 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5110 	}
5111 }
5112 
5113 void
5114 vop_rename_post(void *ap, int rc)
5115 {
5116 	struct vop_rename_args *a = ap;
5117 	long hint;
5118 
5119 	if (!rc) {
5120 		hint = NOTE_WRITE;
5121 		if (a->a_fdvp == a->a_tdvp) {
5122 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5123 				hint |= NOTE_LINK;
5124 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5125 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5126 		} else {
5127 			hint |= NOTE_EXTEND;
5128 			if (a->a_fvp->v_type == VDIR)
5129 				hint |= NOTE_LINK;
5130 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5131 
5132 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5133 			    a->a_tvp->v_type == VDIR)
5134 				hint &= ~NOTE_LINK;
5135 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5136 		}
5137 
5138 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5139 		if (a->a_tvp)
5140 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5141 	}
5142 	if (a->a_tdvp != a->a_fdvp)
5143 		vdrop(a->a_fdvp);
5144 	if (a->a_tvp != a->a_fvp)
5145 		vdrop(a->a_fvp);
5146 	vdrop(a->a_tdvp);
5147 	if (a->a_tvp)
5148 		vdrop(a->a_tvp);
5149 }
5150 
5151 void
5152 vop_rmdir_post(void *ap, int rc)
5153 {
5154 	struct vop_rmdir_args *a = ap;
5155 
5156 	if (!rc) {
5157 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5158 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5159 	}
5160 }
5161 
5162 void
5163 vop_setattr_post(void *ap, int rc)
5164 {
5165 	struct vop_setattr_args *a = ap;
5166 
5167 	if (!rc)
5168 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5169 }
5170 
5171 void
5172 vop_setextattr_post(void *ap, int rc)
5173 {
5174 	struct vop_setextattr_args *a = ap;
5175 
5176 	if (!rc)
5177 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5178 }
5179 
5180 void
5181 vop_symlink_post(void *ap, int rc)
5182 {
5183 	struct vop_symlink_args *a = ap;
5184 
5185 	if (!rc)
5186 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5187 }
5188 
5189 void
5190 vop_open_post(void *ap, int rc)
5191 {
5192 	struct vop_open_args *a = ap;
5193 
5194 	if (!rc)
5195 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
5196 }
5197 
5198 void
5199 vop_close_post(void *ap, int rc)
5200 {
5201 	struct vop_close_args *a = ap;
5202 
5203 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
5204 	    (a->a_vp->v_iflag & VI_DOOMED) == 0)) {
5205 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
5206 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
5207 	}
5208 }
5209 
5210 void
5211 vop_read_post(void *ap, int rc)
5212 {
5213 	struct vop_read_args *a = ap;
5214 
5215 	if (!rc)
5216 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5217 }
5218 
5219 void
5220 vop_readdir_post(void *ap, int rc)
5221 {
5222 	struct vop_readdir_args *a = ap;
5223 
5224 	if (!rc)
5225 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5226 }
5227 
5228 static struct knlist fs_knlist;
5229 
5230 static void
5231 vfs_event_init(void *arg)
5232 {
5233 	knlist_init_mtx(&fs_knlist, NULL);
5234 }
5235 /* XXX - correct order? */
5236 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
5237 
5238 void
5239 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
5240 {
5241 
5242 	KNOTE_UNLOCKED(&fs_knlist, event);
5243 }
5244 
5245 static int	filt_fsattach(struct knote *kn);
5246 static void	filt_fsdetach(struct knote *kn);
5247 static int	filt_fsevent(struct knote *kn, long hint);
5248 
5249 struct filterops fs_filtops = {
5250 	.f_isfd = 0,
5251 	.f_attach = filt_fsattach,
5252 	.f_detach = filt_fsdetach,
5253 	.f_event = filt_fsevent
5254 };
5255 
5256 static int
5257 filt_fsattach(struct knote *kn)
5258 {
5259 
5260 	kn->kn_flags |= EV_CLEAR;
5261 	knlist_add(&fs_knlist, kn, 0);
5262 	return (0);
5263 }
5264 
5265 static void
5266 filt_fsdetach(struct knote *kn)
5267 {
5268 
5269 	knlist_remove(&fs_knlist, kn, 0);
5270 }
5271 
5272 static int
5273 filt_fsevent(struct knote *kn, long hint)
5274 {
5275 
5276 	kn->kn_fflags |= hint;
5277 	return (kn->kn_fflags != 0);
5278 }
5279 
5280 static int
5281 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
5282 {
5283 	struct vfsidctl vc;
5284 	int error;
5285 	struct mount *mp;
5286 
5287 	error = SYSCTL_IN(req, &vc, sizeof(vc));
5288 	if (error)
5289 		return (error);
5290 	if (vc.vc_vers != VFS_CTL_VERS1)
5291 		return (EINVAL);
5292 	mp = vfs_getvfs(&vc.vc_fsid);
5293 	if (mp == NULL)
5294 		return (ENOENT);
5295 	/* ensure that a specific sysctl goes to the right filesystem. */
5296 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
5297 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
5298 		vfs_rel(mp);
5299 		return (EINVAL);
5300 	}
5301 	VCTLTOREQ(&vc, req);
5302 	error = VFS_SYSCTL(mp, vc.vc_op, req);
5303 	vfs_rel(mp);
5304 	return (error);
5305 }
5306 
5307 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
5308     NULL, 0, sysctl_vfs_ctl, "",
5309     "Sysctl by fsid");
5310 
5311 /*
5312  * Function to initialize a va_filerev field sensibly.
5313  * XXX: Wouldn't a random number make a lot more sense ??
5314  */
5315 u_quad_t
5316 init_va_filerev(void)
5317 {
5318 	struct bintime bt;
5319 
5320 	getbinuptime(&bt);
5321 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
5322 }
5323 
5324 static int	filt_vfsread(struct knote *kn, long hint);
5325 static int	filt_vfswrite(struct knote *kn, long hint);
5326 static int	filt_vfsvnode(struct knote *kn, long hint);
5327 static void	filt_vfsdetach(struct knote *kn);
5328 static struct filterops vfsread_filtops = {
5329 	.f_isfd = 1,
5330 	.f_detach = filt_vfsdetach,
5331 	.f_event = filt_vfsread
5332 };
5333 static struct filterops vfswrite_filtops = {
5334 	.f_isfd = 1,
5335 	.f_detach = filt_vfsdetach,
5336 	.f_event = filt_vfswrite
5337 };
5338 static struct filterops vfsvnode_filtops = {
5339 	.f_isfd = 1,
5340 	.f_detach = filt_vfsdetach,
5341 	.f_event = filt_vfsvnode
5342 };
5343 
5344 static void
5345 vfs_knllock(void *arg)
5346 {
5347 	struct vnode *vp = arg;
5348 
5349 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5350 }
5351 
5352 static void
5353 vfs_knlunlock(void *arg)
5354 {
5355 	struct vnode *vp = arg;
5356 
5357 	VOP_UNLOCK(vp, 0);
5358 }
5359 
5360 static void
5361 vfs_knl_assert_locked(void *arg)
5362 {
5363 #ifdef DEBUG_VFS_LOCKS
5364 	struct vnode *vp = arg;
5365 
5366 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
5367 #endif
5368 }
5369 
5370 static void
5371 vfs_knl_assert_unlocked(void *arg)
5372 {
5373 #ifdef DEBUG_VFS_LOCKS
5374 	struct vnode *vp = arg;
5375 
5376 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
5377 #endif
5378 }
5379 
5380 int
5381 vfs_kqfilter(struct vop_kqfilter_args *ap)
5382 {
5383 	struct vnode *vp = ap->a_vp;
5384 	struct knote *kn = ap->a_kn;
5385 	struct knlist *knl;
5386 
5387 	switch (kn->kn_filter) {
5388 	case EVFILT_READ:
5389 		kn->kn_fop = &vfsread_filtops;
5390 		break;
5391 	case EVFILT_WRITE:
5392 		kn->kn_fop = &vfswrite_filtops;
5393 		break;
5394 	case EVFILT_VNODE:
5395 		kn->kn_fop = &vfsvnode_filtops;
5396 		break;
5397 	default:
5398 		return (EINVAL);
5399 	}
5400 
5401 	kn->kn_hook = (caddr_t)vp;
5402 
5403 	v_addpollinfo(vp);
5404 	if (vp->v_pollinfo == NULL)
5405 		return (ENOMEM);
5406 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
5407 	vhold(vp);
5408 	knlist_add(knl, kn, 0);
5409 
5410 	return (0);
5411 }
5412 
5413 /*
5414  * Detach knote from vnode
5415  */
5416 static void
5417 filt_vfsdetach(struct knote *kn)
5418 {
5419 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5420 
5421 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
5422 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
5423 	vdrop(vp);
5424 }
5425 
5426 /*ARGSUSED*/
5427 static int
5428 filt_vfsread(struct knote *kn, long hint)
5429 {
5430 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5431 	struct vattr va;
5432 	int res;
5433 
5434 	/*
5435 	 * filesystem is gone, so set the EOF flag and schedule
5436 	 * the knote for deletion.
5437 	 */
5438 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5439 		VI_LOCK(vp);
5440 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5441 		VI_UNLOCK(vp);
5442 		return (1);
5443 	}
5444 
5445 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
5446 		return (0);
5447 
5448 	VI_LOCK(vp);
5449 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
5450 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
5451 	VI_UNLOCK(vp);
5452 	return (res);
5453 }
5454 
5455 /*ARGSUSED*/
5456 static int
5457 filt_vfswrite(struct knote *kn, long hint)
5458 {
5459 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5460 
5461 	VI_LOCK(vp);
5462 
5463 	/*
5464 	 * filesystem is gone, so set the EOF flag and schedule
5465 	 * the knote for deletion.
5466 	 */
5467 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
5468 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5469 
5470 	kn->kn_data = 0;
5471 	VI_UNLOCK(vp);
5472 	return (1);
5473 }
5474 
5475 static int
5476 filt_vfsvnode(struct knote *kn, long hint)
5477 {
5478 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5479 	int res;
5480 
5481 	VI_LOCK(vp);
5482 	if (kn->kn_sfflags & hint)
5483 		kn->kn_fflags |= hint;
5484 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5485 		kn->kn_flags |= EV_EOF;
5486 		VI_UNLOCK(vp);
5487 		return (1);
5488 	}
5489 	res = (kn->kn_fflags != 0);
5490 	VI_UNLOCK(vp);
5491 	return (res);
5492 }
5493 
5494 /*
5495  * Returns whether the directory is empty or not.
5496  * If it is empty, the return value is 0; otherwise
5497  * the return value is an error value (which may
5498  * be ENOTEMPTY).
5499  */
5500 int
5501 vfs_emptydir(struct vnode *vp)
5502 {
5503 	struct uio uio;
5504 	struct iovec iov;
5505 	struct dirent *dirent, *dp, *endp;
5506 	int error, eof;
5507 
5508 	error = 0;
5509 	eof = 0;
5510 
5511 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
5512 
5513 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
5514 	iov.iov_base = dirent;
5515 	iov.iov_len = sizeof(struct dirent);
5516 
5517 	uio.uio_iov = &iov;
5518 	uio.uio_iovcnt = 1;
5519 	uio.uio_offset = 0;
5520 	uio.uio_resid = sizeof(struct dirent);
5521 	uio.uio_segflg = UIO_SYSSPACE;
5522 	uio.uio_rw = UIO_READ;
5523 	uio.uio_td = curthread;
5524 
5525 	while (eof == 0 && error == 0) {
5526 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
5527 		    NULL, NULL);
5528 		if (error != 0)
5529 			break;
5530 		endp = (void *)((uint8_t *)dirent +
5531 		    sizeof(struct dirent) - uio.uio_resid);
5532 		for (dp = dirent; dp < endp;
5533 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
5534 			if (dp->d_type == DT_WHT)
5535 				continue;
5536 			if (dp->d_namlen == 0)
5537 				continue;
5538 			if (dp->d_type != DT_DIR &&
5539 			    dp->d_type != DT_UNKNOWN) {
5540 				error = ENOTEMPTY;
5541 				break;
5542 			}
5543 			if (dp->d_namlen > 2) {
5544 				error = ENOTEMPTY;
5545 				break;
5546 			}
5547 			if (dp->d_namlen == 1 &&
5548 			    dp->d_name[0] != '.') {
5549 				error = ENOTEMPTY;
5550 				break;
5551 			}
5552 			if (dp->d_namlen == 2 &&
5553 			    dp->d_name[1] != '.') {
5554 				error = ENOTEMPTY;
5555 				break;
5556 			}
5557 			uio.uio_resid = sizeof(struct dirent);
5558 		}
5559 	}
5560 	free(dirent, M_TEMP);
5561 	return (error);
5562 }
5563 
5564 int
5565 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
5566 {
5567 	int error;
5568 
5569 	if (dp->d_reclen > ap->a_uio->uio_resid)
5570 		return (ENAMETOOLONG);
5571 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
5572 	if (error) {
5573 		if (ap->a_ncookies != NULL) {
5574 			if (ap->a_cookies != NULL)
5575 				free(ap->a_cookies, M_TEMP);
5576 			ap->a_cookies = NULL;
5577 			*ap->a_ncookies = 0;
5578 		}
5579 		return (error);
5580 	}
5581 	if (ap->a_ncookies == NULL)
5582 		return (0);
5583 
5584 	KASSERT(ap->a_cookies,
5585 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
5586 
5587 	*ap->a_cookies = realloc(*ap->a_cookies,
5588 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
5589 	(*ap->a_cookies)[*ap->a_ncookies] = off;
5590 	*ap->a_ncookies += 1;
5591 	return (0);
5592 }
5593 
5594 /*
5595  * Mark for update the access time of the file if the filesystem
5596  * supports VOP_MARKATIME.  This functionality is used by execve and
5597  * mmap, so we want to avoid the I/O implied by directly setting
5598  * va_atime for the sake of efficiency.
5599  */
5600 void
5601 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
5602 {
5603 	struct mount *mp;
5604 
5605 	mp = vp->v_mount;
5606 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
5607 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
5608 		(void)VOP_MARKATIME(vp);
5609 }
5610 
5611 /*
5612  * The purpose of this routine is to remove granularity from accmode_t,
5613  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
5614  * VADMIN and VAPPEND.
5615  *
5616  * If it returns 0, the caller is supposed to continue with the usual
5617  * access checks using 'accmode' as modified by this routine.  If it
5618  * returns nonzero value, the caller is supposed to return that value
5619  * as errno.
5620  *
5621  * Note that after this routine runs, accmode may be zero.
5622  */
5623 int
5624 vfs_unixify_accmode(accmode_t *accmode)
5625 {
5626 	/*
5627 	 * There is no way to specify explicit "deny" rule using
5628 	 * file mode or POSIX.1e ACLs.
5629 	 */
5630 	if (*accmode & VEXPLICIT_DENY) {
5631 		*accmode = 0;
5632 		return (0);
5633 	}
5634 
5635 	/*
5636 	 * None of these can be translated into usual access bits.
5637 	 * Also, the common case for NFSv4 ACLs is to not contain
5638 	 * either of these bits. Caller should check for VWRITE
5639 	 * on the containing directory instead.
5640 	 */
5641 	if (*accmode & (VDELETE_CHILD | VDELETE))
5642 		return (EPERM);
5643 
5644 	if (*accmode & VADMIN_PERMS) {
5645 		*accmode &= ~VADMIN_PERMS;
5646 		*accmode |= VADMIN;
5647 	}
5648 
5649 	/*
5650 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
5651 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
5652 	 */
5653 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
5654 
5655 	return (0);
5656 }
5657 
5658 /*
5659  * Clear out a doomed vnode (if any) and replace it with a new one as long
5660  * as the fs is not being unmounted. Return the root vnode to the caller.
5661  */
5662 static int __noinline
5663 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
5664 {
5665 	struct vnode *vp;
5666 	int error;
5667 
5668 restart:
5669 	if (mp->mnt_rootvnode != NULL) {
5670 		MNT_ILOCK(mp);
5671 		vp = mp->mnt_rootvnode;
5672 		if (vp != NULL) {
5673 			if ((vp->v_iflag & VI_DOOMED) == 0) {
5674 				vrefact(vp);
5675 				MNT_IUNLOCK(mp);
5676 				error = vn_lock(vp, flags);
5677 				if (error == 0) {
5678 					*vpp = vp;
5679 					return (0);
5680 				}
5681 				vrele(vp);
5682 				goto restart;
5683 			}
5684 			/*
5685 			 * Clear the old one.
5686 			 */
5687 			mp->mnt_rootvnode = NULL;
5688 		}
5689 		MNT_IUNLOCK(mp);
5690 		if (vp != NULL) {
5691 			/*
5692 			 * Paired with a fence in vfs_op_thread_exit().
5693 			 */
5694 			atomic_thread_fence_acq();
5695 			vfs_op_barrier_wait(mp);
5696 			vrele(vp);
5697 		}
5698 	}
5699 	error = VFS_CACHEDROOT(mp, flags, vpp);
5700 	if (error != 0)
5701 		return (error);
5702 	if (mp->mnt_vfs_ops == 0) {
5703 		MNT_ILOCK(mp);
5704 		if (mp->mnt_vfs_ops != 0) {
5705 			MNT_IUNLOCK(mp);
5706 			return (0);
5707 		}
5708 		if (mp->mnt_rootvnode == NULL) {
5709 			vrefact(*vpp);
5710 			mp->mnt_rootvnode = *vpp;
5711 		} else {
5712 			if (mp->mnt_rootvnode != *vpp) {
5713 				if ((mp->mnt_rootvnode->v_iflag & VI_DOOMED) == 0) {
5714 					panic("%s: mismatch between vnode returned "
5715 					    " by VFS_CACHEDROOT and the one cached "
5716 					    " (%p != %p)",
5717 					    __func__, *vpp, mp->mnt_rootvnode);
5718 				}
5719 			}
5720 		}
5721 		MNT_IUNLOCK(mp);
5722 	}
5723 	return (0);
5724 }
5725 
5726 int
5727 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
5728 {
5729 	struct vnode *vp;
5730 	int error;
5731 
5732 	if (!vfs_op_thread_enter(mp))
5733 		return (vfs_cache_root_fallback(mp, flags, vpp));
5734 	vp = (struct vnode *)atomic_load_ptr(&mp->mnt_rootvnode);
5735 	if (vp == NULL || (vp->v_iflag & VI_DOOMED)) {
5736 		vfs_op_thread_exit(mp);
5737 		return (vfs_cache_root_fallback(mp, flags, vpp));
5738 	}
5739 	vrefact(vp);
5740 	vfs_op_thread_exit(mp);
5741 	error = vn_lock(vp, flags);
5742 	if (error != 0) {
5743 		vrele(vp);
5744 		return (vfs_cache_root_fallback(mp, flags, vpp));
5745 	}
5746 	*vpp = vp;
5747 	return (0);
5748 }
5749 
5750 struct vnode *
5751 vfs_cache_root_clear(struct mount *mp)
5752 {
5753 	struct vnode *vp;
5754 
5755 	/*
5756 	 * ops > 0 guarantees there is nobody who can see this vnode
5757 	 */
5758 	MPASS(mp->mnt_vfs_ops > 0);
5759 	vp = mp->mnt_rootvnode;
5760 	mp->mnt_rootvnode = NULL;
5761 	return (vp);
5762 }
5763 
5764 void
5765 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
5766 {
5767 
5768 	MPASS(mp->mnt_vfs_ops > 0);
5769 	vrefact(vp);
5770 	mp->mnt_rootvnode = vp;
5771 }
5772 
5773 /*
5774  * These are helper functions for filesystems to traverse all
5775  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
5776  *
5777  * This interface replaces MNT_VNODE_FOREACH.
5778  */
5779 
5780 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
5781 
5782 struct vnode *
5783 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
5784 {
5785 	struct vnode *vp;
5786 
5787 	if (should_yield())
5788 		kern_yield(PRI_USER);
5789 	MNT_ILOCK(mp);
5790 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5791 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
5792 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
5793 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5794 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5795 			continue;
5796 		VI_LOCK(vp);
5797 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5798 			VI_UNLOCK(vp);
5799 			continue;
5800 		}
5801 		break;
5802 	}
5803 	if (vp == NULL) {
5804 		__mnt_vnode_markerfree_all(mvp, mp);
5805 		/* MNT_IUNLOCK(mp); -- done in above function */
5806 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
5807 		return (NULL);
5808 	}
5809 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5810 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5811 	MNT_IUNLOCK(mp);
5812 	return (vp);
5813 }
5814 
5815 struct vnode *
5816 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
5817 {
5818 	struct vnode *vp;
5819 
5820 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5821 	MNT_ILOCK(mp);
5822 	MNT_REF(mp);
5823 	(*mvp)->v_mount = mp;
5824 	(*mvp)->v_type = VMARKER;
5825 
5826 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
5827 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5828 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5829 			continue;
5830 		VI_LOCK(vp);
5831 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5832 			VI_UNLOCK(vp);
5833 			continue;
5834 		}
5835 		break;
5836 	}
5837 	if (vp == NULL) {
5838 		MNT_REL(mp);
5839 		MNT_IUNLOCK(mp);
5840 		free(*mvp, M_VNODE_MARKER);
5841 		*mvp = NULL;
5842 		return (NULL);
5843 	}
5844 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5845 	MNT_IUNLOCK(mp);
5846 	return (vp);
5847 }
5848 
5849 void
5850 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
5851 {
5852 
5853 	if (*mvp == NULL) {
5854 		MNT_IUNLOCK(mp);
5855 		return;
5856 	}
5857 
5858 	mtx_assert(MNT_MTX(mp), MA_OWNED);
5859 
5860 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5861 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5862 	MNT_REL(mp);
5863 	MNT_IUNLOCK(mp);
5864 	free(*mvp, M_VNODE_MARKER);
5865 	*mvp = NULL;
5866 }
5867 
5868 /*
5869  * These are helper functions for filesystems to traverse their
5870  * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
5871  */
5872 static void
5873 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5874 {
5875 
5876 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5877 
5878 	MNT_ILOCK(mp);
5879 	MNT_REL(mp);
5880 	MNT_IUNLOCK(mp);
5881 	free(*mvp, M_VNODE_MARKER);
5882 	*mvp = NULL;
5883 }
5884 
5885 /*
5886  * Relock the mp mount vnode list lock with the vp vnode interlock in the
5887  * conventional lock order during mnt_vnode_next_active iteration.
5888  *
5889  * On entry, the mount vnode list lock is held and the vnode interlock is not.
5890  * The list lock is dropped and reacquired.  On success, both locks are held.
5891  * On failure, the mount vnode list lock is held but the vnode interlock is
5892  * not, and the procedure may have yielded.
5893  */
5894 static bool
5895 mnt_vnode_next_active_relock(struct vnode *mvp, struct mount *mp,
5896     struct vnode *vp)
5897 {
5898 	const struct vnode *tmp;
5899 	bool held, ret;
5900 
5901 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
5902 	    TAILQ_NEXT(mvp, v_actfreelist) != NULL, mvp,
5903 	    ("%s: bad marker", __func__));
5904 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
5905 	    ("%s: inappropriate vnode", __func__));
5906 	ASSERT_VI_UNLOCKED(vp, __func__);
5907 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5908 
5909 	ret = false;
5910 
5911 	TAILQ_REMOVE(&mp->mnt_activevnodelist, mvp, v_actfreelist);
5912 	TAILQ_INSERT_BEFORE(vp, mvp, v_actfreelist);
5913 
5914 	/*
5915 	 * Use a hold to prevent vp from disappearing while the mount vnode
5916 	 * list lock is dropped and reacquired.  Normally a hold would be
5917 	 * acquired with vhold(), but that might try to acquire the vnode
5918 	 * interlock, which would be a LOR with the mount vnode list lock.
5919 	 */
5920 	held = refcount_acquire_if_not_zero(&vp->v_holdcnt);
5921 	mtx_unlock(&mp->mnt_listmtx);
5922 	if (!held)
5923 		goto abort;
5924 	VI_LOCK(vp);
5925 	if (!refcount_release_if_not_last(&vp->v_holdcnt)) {
5926 		vdropl(vp);
5927 		goto abort;
5928 	}
5929 	mtx_lock(&mp->mnt_listmtx);
5930 
5931 	/*
5932 	 * Determine whether the vnode is still the next one after the marker,
5933 	 * excepting any other markers.  If the vnode has not been doomed by
5934 	 * vgone() then the hold should have ensured that it remained on the
5935 	 * active list.  If it has been doomed but is still on the active list,
5936 	 * don't abort, but rather skip over it (avoid spinning on doomed
5937 	 * vnodes).
5938 	 */
5939 	tmp = mvp;
5940 	do {
5941 		tmp = TAILQ_NEXT(tmp, v_actfreelist);
5942 	} while (tmp != NULL && tmp->v_type == VMARKER);
5943 	if (tmp != vp) {
5944 		mtx_unlock(&mp->mnt_listmtx);
5945 		VI_UNLOCK(vp);
5946 		goto abort;
5947 	}
5948 
5949 	ret = true;
5950 	goto out;
5951 abort:
5952 	maybe_yield();
5953 	mtx_lock(&mp->mnt_listmtx);
5954 out:
5955 	if (ret)
5956 		ASSERT_VI_LOCKED(vp, __func__);
5957 	else
5958 		ASSERT_VI_UNLOCKED(vp, __func__);
5959 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5960 	return (ret);
5961 }
5962 
5963 static struct vnode *
5964 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5965 {
5966 	struct vnode *vp, *nvp;
5967 
5968 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5969 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5970 restart:
5971 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
5972 	while (vp != NULL) {
5973 		if (vp->v_type == VMARKER) {
5974 			vp = TAILQ_NEXT(vp, v_actfreelist);
5975 			continue;
5976 		}
5977 		/*
5978 		 * Try-lock because this is the wrong lock order.  If that does
5979 		 * not succeed, drop the mount vnode list lock and try to
5980 		 * reacquire it and the vnode interlock in the right order.
5981 		 */
5982 		if (!VI_TRYLOCK(vp) &&
5983 		    !mnt_vnode_next_active_relock(*mvp, mp, vp))
5984 			goto restart;
5985 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
5986 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
5987 		    ("alien vnode on the active list %p %p", vp, mp));
5988 		if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0)
5989 			break;
5990 		nvp = TAILQ_NEXT(vp, v_actfreelist);
5991 		VI_UNLOCK(vp);
5992 		vp = nvp;
5993 	}
5994 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5995 
5996 	/* Check if we are done */
5997 	if (vp == NULL) {
5998 		mtx_unlock(&mp->mnt_listmtx);
5999 		mnt_vnode_markerfree_active(mvp, mp);
6000 		return (NULL);
6001 	}
6002 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
6003 	mtx_unlock(&mp->mnt_listmtx);
6004 	ASSERT_VI_LOCKED(vp, "active iter");
6005 	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
6006 	return (vp);
6007 }
6008 
6009 struct vnode *
6010 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
6011 {
6012 
6013 	if (should_yield())
6014 		kern_yield(PRI_USER);
6015 	mtx_lock(&mp->mnt_listmtx);
6016 	return (mnt_vnode_next_active(mvp, mp));
6017 }
6018 
6019 struct vnode *
6020 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
6021 {
6022 	struct vnode *vp;
6023 
6024 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
6025 	MNT_ILOCK(mp);
6026 	MNT_REF(mp);
6027 	MNT_IUNLOCK(mp);
6028 	(*mvp)->v_type = VMARKER;
6029 	(*mvp)->v_mount = mp;
6030 
6031 	mtx_lock(&mp->mnt_listmtx);
6032 	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
6033 	if (vp == NULL) {
6034 		mtx_unlock(&mp->mnt_listmtx);
6035 		mnt_vnode_markerfree_active(mvp, mp);
6036 		return (NULL);
6037 	}
6038 	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
6039 	return (mnt_vnode_next_active(mvp, mp));
6040 }
6041 
6042 void
6043 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
6044 {
6045 
6046 	if (*mvp == NULL)
6047 		return;
6048 
6049 	mtx_lock(&mp->mnt_listmtx);
6050 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
6051 	mtx_unlock(&mp->mnt_listmtx);
6052 	mnt_vnode_markerfree_active(mvp, mp);
6053 }
6054