xref: /freebsd/sys/kern/vfs_subr.c (revision 681ce946f33e75c590e97c53076e86dff1fe8f4a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/lockf.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/namei.h>
73 #include <sys/pctrie.h>
74 #include <sys/priv.h>
75 #include <sys/reboot.h>
76 #include <sys/refcount.h>
77 #include <sys/rwlock.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smr.h>
81 #include <sys/smp.h>
82 #include <sys/stat.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 #include <sys/watchdog.h>
88 
89 #include <machine/stdarg.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_kern.h>
100 #include <vm/uma.h>
101 
102 #ifdef DDB
103 #include <ddb/ddb.h>
104 #endif
105 
106 static void	delmntque(struct vnode *vp);
107 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 		    int slpflag, int slptimeo);
109 static void	syncer_shutdown(void *arg, int howto);
110 static int	vtryrecycle(struct vnode *vp);
111 static void	v_init_counters(struct vnode *);
112 static void	vn_seqc_init(struct vnode *);
113 static void	vn_seqc_write_end_free(struct vnode *vp);
114 static void	vgonel(struct vnode *);
115 static bool	vhold_recycle_free(struct vnode *);
116 static void	vfs_knllock(void *arg);
117 static void	vfs_knlunlock(void *arg);
118 static void	vfs_knl_assert_lock(void *arg, int what);
119 static void	destroy_vpollinfo(struct vpollinfo *vi);
120 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 		    daddr_t startlbn, daddr_t endlbn);
122 static void	vnlru_recalc(void);
123 
124 /*
125  * Number of vnodes in existence.  Increased whenever getnewvnode()
126  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
127  */
128 static u_long __exclusive_cache_line numvnodes;
129 
130 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
131     "Number of vnodes in existence");
132 
133 static counter_u64_t vnodes_created;
134 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
135     "Number of vnodes created by getnewvnode");
136 
137 /*
138  * Conversion tables for conversion from vnode types to inode formats
139  * and back.
140  */
141 enum vtype iftovt_tab[16] = {
142 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
143 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
144 };
145 int vttoif_tab[10] = {
146 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
147 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
148 };
149 
150 /*
151  * List of allocates vnodes in the system.
152  */
153 static TAILQ_HEAD(freelst, vnode) vnode_list;
154 static struct vnode *vnode_list_free_marker;
155 static struct vnode *vnode_list_reclaim_marker;
156 
157 /*
158  * "Free" vnode target.  Free vnodes are rarely completely free, but are
159  * just ones that are cheap to recycle.  Usually they are for files which
160  * have been stat'd but not read; these usually have inode and namecache
161  * data attached to them.  This target is the preferred minimum size of a
162  * sub-cache consisting mostly of such files. The system balances the size
163  * of this sub-cache with its complement to try to prevent either from
164  * thrashing while the other is relatively inactive.  The targets express
165  * a preference for the best balance.
166  *
167  * "Above" this target there are 2 further targets (watermarks) related
168  * to recyling of free vnodes.  In the best-operating case, the cache is
169  * exactly full, the free list has size between vlowat and vhiwat above the
170  * free target, and recycling from it and normal use maintains this state.
171  * Sometimes the free list is below vlowat or even empty, but this state
172  * is even better for immediate use provided the cache is not full.
173  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
174  * ones) to reach one of these states.  The watermarks are currently hard-
175  * coded as 4% and 9% of the available space higher.  These and the default
176  * of 25% for wantfreevnodes are too large if the memory size is large.
177  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
178  * whenever vnlru_proc() becomes active.
179  */
180 static long wantfreevnodes;
181 static long __exclusive_cache_line freevnodes;
182 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
183     &freevnodes, 0, "Number of \"free\" vnodes");
184 static long freevnodes_old;
185 
186 static counter_u64_t recycles_count;
187 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
188     "Number of vnodes recycled to meet vnode cache targets");
189 
190 static counter_u64_t recycles_free_count;
191 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
192     "Number of free vnodes recycled to meet vnode cache targets");
193 
194 static counter_u64_t deferred_inact;
195 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
196     "Number of times inactive processing was deferred");
197 
198 /* To keep more than one thread at a time from running vfs_getnewfsid */
199 static struct mtx mntid_mtx;
200 
201 /*
202  * Lock for any access to the following:
203  *	vnode_list
204  *	numvnodes
205  *	freevnodes
206  */
207 static struct mtx __exclusive_cache_line vnode_list_mtx;
208 
209 /* Publicly exported FS */
210 struct nfs_public nfs_pub;
211 
212 static uma_zone_t buf_trie_zone;
213 static smr_t buf_trie_smr;
214 
215 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
216 static uma_zone_t vnode_zone;
217 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
218 
219 __read_frequently smr_t vfs_smr;
220 
221 /*
222  * The workitem queue.
223  *
224  * It is useful to delay writes of file data and filesystem metadata
225  * for tens of seconds so that quickly created and deleted files need
226  * not waste disk bandwidth being created and removed. To realize this,
227  * we append vnodes to a "workitem" queue. When running with a soft
228  * updates implementation, most pending metadata dependencies should
229  * not wait for more than a few seconds. Thus, mounted on block devices
230  * are delayed only about a half the time that file data is delayed.
231  * Similarly, directory updates are more critical, so are only delayed
232  * about a third the time that file data is delayed. Thus, there are
233  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
234  * one each second (driven off the filesystem syncer process). The
235  * syncer_delayno variable indicates the next queue that is to be processed.
236  * Items that need to be processed soon are placed in this queue:
237  *
238  *	syncer_workitem_pending[syncer_delayno]
239  *
240  * A delay of fifteen seconds is done by placing the request fifteen
241  * entries later in the queue:
242  *
243  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
244  *
245  */
246 static int syncer_delayno;
247 static long syncer_mask;
248 LIST_HEAD(synclist, bufobj);
249 static struct synclist *syncer_workitem_pending;
250 /*
251  * The sync_mtx protects:
252  *	bo->bo_synclist
253  *	sync_vnode_count
254  *	syncer_delayno
255  *	syncer_state
256  *	syncer_workitem_pending
257  *	syncer_worklist_len
258  *	rushjob
259  */
260 static struct mtx sync_mtx;
261 static struct cv sync_wakeup;
262 
263 #define SYNCER_MAXDELAY		32
264 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
265 static int syncdelay = 30;		/* max time to delay syncing data */
266 static int filedelay = 30;		/* time to delay syncing files */
267 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
268     "Time to delay syncing files (in seconds)");
269 static int dirdelay = 29;		/* time to delay syncing directories */
270 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
271     "Time to delay syncing directories (in seconds)");
272 static int metadelay = 28;		/* time to delay syncing metadata */
273 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
274     "Time to delay syncing metadata (in seconds)");
275 static int rushjob;		/* number of slots to run ASAP */
276 static int stat_rush_requests;	/* number of times I/O speeded up */
277 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
278     "Number of times I/O speeded up (rush requests)");
279 
280 #define	VDBATCH_SIZE 8
281 struct vdbatch {
282 	u_int index;
283 	long freevnodes;
284 	struct mtx lock;
285 	struct vnode *tab[VDBATCH_SIZE];
286 };
287 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
288 
289 static void	vdbatch_dequeue(struct vnode *vp);
290 
291 /*
292  * When shutting down the syncer, run it at four times normal speed.
293  */
294 #define SYNCER_SHUTDOWN_SPEEDUP		4
295 static int sync_vnode_count;
296 static int syncer_worklist_len;
297 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
298     syncer_state;
299 
300 /* Target for maximum number of vnodes. */
301 u_long desiredvnodes;
302 static u_long gapvnodes;		/* gap between wanted and desired */
303 static u_long vhiwat;		/* enough extras after expansion */
304 static u_long vlowat;		/* minimal extras before expansion */
305 static u_long vstir;		/* nonzero to stir non-free vnodes */
306 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
307 
308 static u_long vnlru_read_freevnodes(void);
309 
310 /*
311  * Note that no attempt is made to sanitize these parameters.
312  */
313 static int
314 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
315 {
316 	u_long val;
317 	int error;
318 
319 	val = desiredvnodes;
320 	error = sysctl_handle_long(oidp, &val, 0, req);
321 	if (error != 0 || req->newptr == NULL)
322 		return (error);
323 
324 	if (val == desiredvnodes)
325 		return (0);
326 	mtx_lock(&vnode_list_mtx);
327 	desiredvnodes = val;
328 	wantfreevnodes = desiredvnodes / 4;
329 	vnlru_recalc();
330 	mtx_unlock(&vnode_list_mtx);
331 	/*
332 	 * XXX There is no protection against multiple threads changing
333 	 * desiredvnodes at the same time. Locking above only helps vnlru and
334 	 * getnewvnode.
335 	 */
336 	vfs_hash_changesize(desiredvnodes);
337 	cache_changesize(desiredvnodes);
338 	return (0);
339 }
340 
341 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
342     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
343     "LU", "Target for maximum number of vnodes");
344 
345 static int
346 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
347 {
348 	u_long val;
349 	int error;
350 
351 	val = wantfreevnodes;
352 	error = sysctl_handle_long(oidp, &val, 0, req);
353 	if (error != 0 || req->newptr == NULL)
354 		return (error);
355 
356 	if (val == wantfreevnodes)
357 		return (0);
358 	mtx_lock(&vnode_list_mtx);
359 	wantfreevnodes = val;
360 	vnlru_recalc();
361 	mtx_unlock(&vnode_list_mtx);
362 	return (0);
363 }
364 
365 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
366     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
367     "LU", "Target for minimum number of \"free\" vnodes");
368 
369 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
370     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
371 static int vnlru_nowhere;
372 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
373     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
374 
375 static int
376 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
377 {
378 	struct vnode *vp;
379 	struct nameidata nd;
380 	char *buf;
381 	unsigned long ndflags;
382 	int error;
383 
384 	if (req->newptr == NULL)
385 		return (EINVAL);
386 	if (req->newlen >= PATH_MAX)
387 		return (E2BIG);
388 
389 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
390 	error = SYSCTL_IN(req, buf, req->newlen);
391 	if (error != 0)
392 		goto out;
393 
394 	buf[req->newlen] = '\0';
395 
396 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
397 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
398 	if ((error = namei(&nd)) != 0)
399 		goto out;
400 	vp = nd.ni_vp;
401 
402 	if (VN_IS_DOOMED(vp)) {
403 		/*
404 		 * This vnode is being recycled.  Return != 0 to let the caller
405 		 * know that the sysctl had no effect.  Return EAGAIN because a
406 		 * subsequent call will likely succeed (since namei will create
407 		 * a new vnode if necessary)
408 		 */
409 		error = EAGAIN;
410 		goto putvnode;
411 	}
412 
413 	counter_u64_add(recycles_count, 1);
414 	vgone(vp);
415 putvnode:
416 	NDFREE(&nd, 0);
417 out:
418 	free(buf, M_TEMP);
419 	return (error);
420 }
421 
422 static int
423 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
424 {
425 	struct thread *td = curthread;
426 	struct vnode *vp;
427 	struct file *fp;
428 	int error;
429 	int fd;
430 
431 	if (req->newptr == NULL)
432 		return (EBADF);
433 
434         error = sysctl_handle_int(oidp, &fd, 0, req);
435         if (error != 0)
436                 return (error);
437 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
438 	if (error != 0)
439 		return (error);
440 	vp = fp->f_vnode;
441 
442 	error = vn_lock(vp, LK_EXCLUSIVE);
443 	if (error != 0)
444 		goto drop;
445 
446 	counter_u64_add(recycles_count, 1);
447 	vgone(vp);
448 	VOP_UNLOCK(vp);
449 drop:
450 	fdrop(fp, td);
451 	return (error);
452 }
453 
454 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
455     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
456     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
457 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
458     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
459     sysctl_ftry_reclaim_vnode, "I",
460     "Try to reclaim a vnode by its file descriptor");
461 
462 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
463 static int vnsz2log;
464 
465 /*
466  * Support for the bufobj clean & dirty pctrie.
467  */
468 static void *
469 buf_trie_alloc(struct pctrie *ptree)
470 {
471 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
472 }
473 
474 static void
475 buf_trie_free(struct pctrie *ptree, void *node)
476 {
477 	uma_zfree_smr(buf_trie_zone, node);
478 }
479 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
480     buf_trie_smr);
481 
482 /*
483  * Initialize the vnode management data structures.
484  *
485  * Reevaluate the following cap on the number of vnodes after the physical
486  * memory size exceeds 512GB.  In the limit, as the physical memory size
487  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
488  */
489 #ifndef	MAXVNODES_MAX
490 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
491 #endif
492 
493 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
494 
495 static struct vnode *
496 vn_alloc_marker(struct mount *mp)
497 {
498 	struct vnode *vp;
499 
500 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
501 	vp->v_type = VMARKER;
502 	vp->v_mount = mp;
503 
504 	return (vp);
505 }
506 
507 static void
508 vn_free_marker(struct vnode *vp)
509 {
510 
511 	MPASS(vp->v_type == VMARKER);
512 	free(vp, M_VNODE_MARKER);
513 }
514 
515 #ifdef KASAN
516 static int
517 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
518 {
519 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
520 	return (0);
521 }
522 
523 static void
524 vnode_dtor(void *mem, int size, void *arg __unused)
525 {
526 	size_t end1, end2, off1, off2;
527 
528 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
529 	    offsetof(struct vnode, v_dbatchcpu),
530 	    "KASAN marks require updating");
531 
532 	off1 = offsetof(struct vnode, v_vnodelist);
533 	off2 = offsetof(struct vnode, v_dbatchcpu);
534 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
535 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
536 
537 	/*
538 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
539 	 * after the vnode has been freed.  Try to get some KASAN coverage by
540 	 * marking everything except those two fields as invalid.  Because
541 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
542 	 * the same 8-byte aligned word must also be marked valid.
543 	 */
544 
545 	/* Handle the area from the start until v_vnodelist... */
546 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
547 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
548 
549 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
550 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
551 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
552 	if (off2 > off1)
553 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
554 		    off2 - off1, KASAN_UMA_FREED);
555 
556 	/* ... and finally the area from v_dbatchcpu to the end. */
557 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
558 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
559 	    KASAN_UMA_FREED);
560 }
561 #endif /* KASAN */
562 
563 /*
564  * Initialize a vnode as it first enters the zone.
565  */
566 static int
567 vnode_init(void *mem, int size, int flags)
568 {
569 	struct vnode *vp;
570 
571 	vp = mem;
572 	bzero(vp, size);
573 	/*
574 	 * Setup locks.
575 	 */
576 	vp->v_vnlock = &vp->v_lock;
577 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
578 	/*
579 	 * By default, don't allow shared locks unless filesystems opt-in.
580 	 */
581 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
582 	    LK_NOSHARE | LK_IS_VNODE);
583 	/*
584 	 * Initialize bufobj.
585 	 */
586 	bufobj_init(&vp->v_bufobj, vp);
587 	/*
588 	 * Initialize namecache.
589 	 */
590 	cache_vnode_init(vp);
591 	/*
592 	 * Initialize rangelocks.
593 	 */
594 	rangelock_init(&vp->v_rl);
595 
596 	vp->v_dbatchcpu = NOCPU;
597 
598 	/*
599 	 * Check vhold_recycle_free for an explanation.
600 	 */
601 	vp->v_holdcnt = VHOLD_NO_SMR;
602 	vp->v_type = VNON;
603 	mtx_lock(&vnode_list_mtx);
604 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
605 	mtx_unlock(&vnode_list_mtx);
606 	return (0);
607 }
608 
609 /*
610  * Free a vnode when it is cleared from the zone.
611  */
612 static void
613 vnode_fini(void *mem, int size)
614 {
615 	struct vnode *vp;
616 	struct bufobj *bo;
617 
618 	vp = mem;
619 	vdbatch_dequeue(vp);
620 	mtx_lock(&vnode_list_mtx);
621 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
622 	mtx_unlock(&vnode_list_mtx);
623 	rangelock_destroy(&vp->v_rl);
624 	lockdestroy(vp->v_vnlock);
625 	mtx_destroy(&vp->v_interlock);
626 	bo = &vp->v_bufobj;
627 	rw_destroy(BO_LOCKPTR(bo));
628 
629 	kasan_mark(mem, size, size, 0);
630 }
631 
632 /*
633  * Provide the size of NFS nclnode and NFS fh for calculation of the
634  * vnode memory consumption.  The size is specified directly to
635  * eliminate dependency on NFS-private header.
636  *
637  * Other filesystems may use bigger or smaller (like UFS and ZFS)
638  * private inode data, but the NFS-based estimation is ample enough.
639  * Still, we care about differences in the size between 64- and 32-bit
640  * platforms.
641  *
642  * Namecache structure size is heuristically
643  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
644  */
645 #ifdef _LP64
646 #define	NFS_NCLNODE_SZ	(528 + 64)
647 #define	NC_SZ		148
648 #else
649 #define	NFS_NCLNODE_SZ	(360 + 32)
650 #define	NC_SZ		92
651 #endif
652 
653 static void
654 vntblinit(void *dummy __unused)
655 {
656 	struct vdbatch *vd;
657 	uma_ctor ctor;
658 	uma_dtor dtor;
659 	int cpu, physvnodes, virtvnodes;
660 	u_int i;
661 
662 	/*
663 	 * Desiredvnodes is a function of the physical memory size and the
664 	 * kernel's heap size.  Generally speaking, it scales with the
665 	 * physical memory size.  The ratio of desiredvnodes to the physical
666 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
667 	 * Thereafter, the
668 	 * marginal ratio of desiredvnodes to the physical memory size is
669 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
670 	 * size.  The memory required by desiredvnodes vnodes and vm objects
671 	 * must not exceed 1/10th of the kernel's heap size.
672 	 */
673 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
674 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
675 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
676 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
677 	desiredvnodes = min(physvnodes, virtvnodes);
678 	if (desiredvnodes > MAXVNODES_MAX) {
679 		if (bootverbose)
680 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
681 			    desiredvnodes, MAXVNODES_MAX);
682 		desiredvnodes = MAXVNODES_MAX;
683 	}
684 	wantfreevnodes = desiredvnodes / 4;
685 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
686 	TAILQ_INIT(&vnode_list);
687 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
688 	/*
689 	 * The lock is taken to appease WITNESS.
690 	 */
691 	mtx_lock(&vnode_list_mtx);
692 	vnlru_recalc();
693 	mtx_unlock(&vnode_list_mtx);
694 	vnode_list_free_marker = vn_alloc_marker(NULL);
695 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
696 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
697 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
698 
699 #ifdef KASAN
700 	ctor = vnode_ctor;
701 	dtor = vnode_dtor;
702 #else
703 	ctor = NULL;
704 	dtor = NULL;
705 #endif
706 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
707 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
708 	uma_zone_set_smr(vnode_zone, vfs_smr);
709 
710 	/*
711 	 * Preallocate enough nodes to support one-per buf so that
712 	 * we can not fail an insert.  reassignbuf() callers can not
713 	 * tolerate the insertion failure.
714 	 */
715 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
716 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
717 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
718 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
719 	uma_prealloc(buf_trie_zone, nbuf);
720 
721 	vnodes_created = counter_u64_alloc(M_WAITOK);
722 	recycles_count = counter_u64_alloc(M_WAITOK);
723 	recycles_free_count = counter_u64_alloc(M_WAITOK);
724 	deferred_inact = counter_u64_alloc(M_WAITOK);
725 
726 	/*
727 	 * Initialize the filesystem syncer.
728 	 */
729 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
730 	    &syncer_mask);
731 	syncer_maxdelay = syncer_mask + 1;
732 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
733 	cv_init(&sync_wakeup, "syncer");
734 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
735 		vnsz2log++;
736 	vnsz2log--;
737 
738 	CPU_FOREACH(cpu) {
739 		vd = DPCPU_ID_PTR((cpu), vd);
740 		bzero(vd, sizeof(*vd));
741 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
742 	}
743 }
744 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
745 
746 /*
747  * Mark a mount point as busy. Used to synchronize access and to delay
748  * unmounting. Eventually, mountlist_mtx is not released on failure.
749  *
750  * vfs_busy() is a custom lock, it can block the caller.
751  * vfs_busy() only sleeps if the unmount is active on the mount point.
752  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
753  * vnode belonging to mp.
754  *
755  * Lookup uses vfs_busy() to traverse mount points.
756  * root fs			var fs
757  * / vnode lock		A	/ vnode lock (/var)		D
758  * /var vnode lock	B	/log vnode lock(/var/log)	E
759  * vfs_busy lock	C	vfs_busy lock			F
760  *
761  * Within each file system, the lock order is C->A->B and F->D->E.
762  *
763  * When traversing across mounts, the system follows that lock order:
764  *
765  *        C->A->B
766  *              |
767  *              +->F->D->E
768  *
769  * The lookup() process for namei("/var") illustrates the process:
770  *  VOP_LOOKUP() obtains B while A is held
771  *  vfs_busy() obtains a shared lock on F while A and B are held
772  *  vput() releases lock on B
773  *  vput() releases lock on A
774  *  VFS_ROOT() obtains lock on D while shared lock on F is held
775  *  vfs_unbusy() releases shared lock on F
776  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
777  *    Attempt to lock A (instead of vp_crossmp) while D is held would
778  *    violate the global order, causing deadlocks.
779  *
780  * dounmount() locks B while F is drained.
781  */
782 int
783 vfs_busy(struct mount *mp, int flags)
784 {
785 	struct mount_pcpu *mpcpu;
786 
787 	MPASS((flags & ~MBF_MASK) == 0);
788 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
789 
790 	if (vfs_op_thread_enter(mp, mpcpu)) {
791 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
792 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
793 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
794 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
795 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
796 		vfs_op_thread_exit(mp, mpcpu);
797 		if (flags & MBF_MNTLSTLOCK)
798 			mtx_unlock(&mountlist_mtx);
799 		return (0);
800 	}
801 
802 	MNT_ILOCK(mp);
803 	vfs_assert_mount_counters(mp);
804 	MNT_REF(mp);
805 	/*
806 	 * If mount point is currently being unmounted, sleep until the
807 	 * mount point fate is decided.  If thread doing the unmounting fails,
808 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
809 	 * that this mount point has survived the unmount attempt and vfs_busy
810 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
811 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
812 	 * about to be really destroyed.  vfs_busy needs to release its
813 	 * reference on the mount point in this case and return with ENOENT,
814 	 * telling the caller that mount mount it tried to busy is no longer
815 	 * valid.
816 	 */
817 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
818 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
819 		    ("%s: non-empty upper mount list with pending unmount",
820 		    __func__));
821 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
822 			MNT_REL(mp);
823 			MNT_IUNLOCK(mp);
824 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
825 			    __func__);
826 			return (ENOENT);
827 		}
828 		if (flags & MBF_MNTLSTLOCK)
829 			mtx_unlock(&mountlist_mtx);
830 		mp->mnt_kern_flag |= MNTK_MWAIT;
831 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
832 		if (flags & MBF_MNTLSTLOCK)
833 			mtx_lock(&mountlist_mtx);
834 		MNT_ILOCK(mp);
835 	}
836 	if (flags & MBF_MNTLSTLOCK)
837 		mtx_unlock(&mountlist_mtx);
838 	mp->mnt_lockref++;
839 	MNT_IUNLOCK(mp);
840 	return (0);
841 }
842 
843 /*
844  * Free a busy filesystem.
845  */
846 void
847 vfs_unbusy(struct mount *mp)
848 {
849 	struct mount_pcpu *mpcpu;
850 	int c;
851 
852 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
853 
854 	if (vfs_op_thread_enter(mp, mpcpu)) {
855 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
856 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
857 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
858 		vfs_op_thread_exit(mp, mpcpu);
859 		return;
860 	}
861 
862 	MNT_ILOCK(mp);
863 	vfs_assert_mount_counters(mp);
864 	MNT_REL(mp);
865 	c = --mp->mnt_lockref;
866 	if (mp->mnt_vfs_ops == 0) {
867 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
868 		MNT_IUNLOCK(mp);
869 		return;
870 	}
871 	if (c < 0)
872 		vfs_dump_mount_counters(mp);
873 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
874 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
875 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
876 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
877 		wakeup(&mp->mnt_lockref);
878 	}
879 	MNT_IUNLOCK(mp);
880 }
881 
882 /*
883  * Lookup a mount point by filesystem identifier.
884  */
885 struct mount *
886 vfs_getvfs(fsid_t *fsid)
887 {
888 	struct mount *mp;
889 
890 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
891 	mtx_lock(&mountlist_mtx);
892 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
893 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
894 			vfs_ref(mp);
895 			mtx_unlock(&mountlist_mtx);
896 			return (mp);
897 		}
898 	}
899 	mtx_unlock(&mountlist_mtx);
900 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
901 	return ((struct mount *) 0);
902 }
903 
904 /*
905  * Lookup a mount point by filesystem identifier, busying it before
906  * returning.
907  *
908  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
909  * cache for popular filesystem identifiers.  The cache is lockess, using
910  * the fact that struct mount's are never freed.  In worst case we may
911  * get pointer to unmounted or even different filesystem, so we have to
912  * check what we got, and go slow way if so.
913  */
914 struct mount *
915 vfs_busyfs(fsid_t *fsid)
916 {
917 #define	FSID_CACHE_SIZE	256
918 	typedef struct mount * volatile vmp_t;
919 	static vmp_t cache[FSID_CACHE_SIZE];
920 	struct mount *mp;
921 	int error;
922 	uint32_t hash;
923 
924 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
925 	hash = fsid->val[0] ^ fsid->val[1];
926 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
927 	mp = cache[hash];
928 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
929 		goto slow;
930 	if (vfs_busy(mp, 0) != 0) {
931 		cache[hash] = NULL;
932 		goto slow;
933 	}
934 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
935 		return (mp);
936 	else
937 	    vfs_unbusy(mp);
938 
939 slow:
940 	mtx_lock(&mountlist_mtx);
941 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
942 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
943 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
944 			if (error) {
945 				cache[hash] = NULL;
946 				mtx_unlock(&mountlist_mtx);
947 				return (NULL);
948 			}
949 			cache[hash] = mp;
950 			return (mp);
951 		}
952 	}
953 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
954 	mtx_unlock(&mountlist_mtx);
955 	return ((struct mount *) 0);
956 }
957 
958 /*
959  * Check if a user can access privileged mount options.
960  */
961 int
962 vfs_suser(struct mount *mp, struct thread *td)
963 {
964 	int error;
965 
966 	if (jailed(td->td_ucred)) {
967 		/*
968 		 * If the jail of the calling thread lacks permission for
969 		 * this type of file system, deny immediately.
970 		 */
971 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
972 			return (EPERM);
973 
974 		/*
975 		 * If the file system was mounted outside the jail of the
976 		 * calling thread, deny immediately.
977 		 */
978 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
979 			return (EPERM);
980 	}
981 
982 	/*
983 	 * If file system supports delegated administration, we don't check
984 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
985 	 * by the file system itself.
986 	 * If this is not the user that did original mount, we check for
987 	 * the PRIV_VFS_MOUNT_OWNER privilege.
988 	 */
989 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
990 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
991 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
992 			return (error);
993 	}
994 	return (0);
995 }
996 
997 /*
998  * Get a new unique fsid.  Try to make its val[0] unique, since this value
999  * will be used to create fake device numbers for stat().  Also try (but
1000  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1001  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1002  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1003  *
1004  * Keep in mind that several mounts may be running in parallel.  Starting
1005  * the search one past where the previous search terminated is both a
1006  * micro-optimization and a defense against returning the same fsid to
1007  * different mounts.
1008  */
1009 void
1010 vfs_getnewfsid(struct mount *mp)
1011 {
1012 	static uint16_t mntid_base;
1013 	struct mount *nmp;
1014 	fsid_t tfsid;
1015 	int mtype;
1016 
1017 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1018 	mtx_lock(&mntid_mtx);
1019 	mtype = mp->mnt_vfc->vfc_typenum;
1020 	tfsid.val[1] = mtype;
1021 	mtype = (mtype & 0xFF) << 24;
1022 	for (;;) {
1023 		tfsid.val[0] = makedev(255,
1024 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1025 		mntid_base++;
1026 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1027 			break;
1028 		vfs_rel(nmp);
1029 	}
1030 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1031 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1032 	mtx_unlock(&mntid_mtx);
1033 }
1034 
1035 /*
1036  * Knob to control the precision of file timestamps:
1037  *
1038  *   0 = seconds only; nanoseconds zeroed.
1039  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1040  *   2 = seconds and nanoseconds, truncated to microseconds.
1041  * >=3 = seconds and nanoseconds, maximum precision.
1042  */
1043 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1044 
1045 static int timestamp_precision = TSP_USEC;
1046 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1047     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1048     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1049     "3+: sec + ns (max. precision))");
1050 
1051 /*
1052  * Get a current timestamp.
1053  */
1054 void
1055 vfs_timestamp(struct timespec *tsp)
1056 {
1057 	struct timeval tv;
1058 
1059 	switch (timestamp_precision) {
1060 	case TSP_SEC:
1061 		tsp->tv_sec = time_second;
1062 		tsp->tv_nsec = 0;
1063 		break;
1064 	case TSP_HZ:
1065 		getnanotime(tsp);
1066 		break;
1067 	case TSP_USEC:
1068 		microtime(&tv);
1069 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1070 		break;
1071 	case TSP_NSEC:
1072 	default:
1073 		nanotime(tsp);
1074 		break;
1075 	}
1076 }
1077 
1078 /*
1079  * Set vnode attributes to VNOVAL
1080  */
1081 void
1082 vattr_null(struct vattr *vap)
1083 {
1084 
1085 	vap->va_type = VNON;
1086 	vap->va_size = VNOVAL;
1087 	vap->va_bytes = VNOVAL;
1088 	vap->va_mode = VNOVAL;
1089 	vap->va_nlink = VNOVAL;
1090 	vap->va_uid = VNOVAL;
1091 	vap->va_gid = VNOVAL;
1092 	vap->va_fsid = VNOVAL;
1093 	vap->va_fileid = VNOVAL;
1094 	vap->va_blocksize = VNOVAL;
1095 	vap->va_rdev = VNOVAL;
1096 	vap->va_atime.tv_sec = VNOVAL;
1097 	vap->va_atime.tv_nsec = VNOVAL;
1098 	vap->va_mtime.tv_sec = VNOVAL;
1099 	vap->va_mtime.tv_nsec = VNOVAL;
1100 	vap->va_ctime.tv_sec = VNOVAL;
1101 	vap->va_ctime.tv_nsec = VNOVAL;
1102 	vap->va_birthtime.tv_sec = VNOVAL;
1103 	vap->va_birthtime.tv_nsec = VNOVAL;
1104 	vap->va_flags = VNOVAL;
1105 	vap->va_gen = VNOVAL;
1106 	vap->va_vaflags = 0;
1107 }
1108 
1109 /*
1110  * Try to reduce the total number of vnodes.
1111  *
1112  * This routine (and its user) are buggy in at least the following ways:
1113  * - all parameters were picked years ago when RAM sizes were significantly
1114  *   smaller
1115  * - it can pick vnodes based on pages used by the vm object, but filesystems
1116  *   like ZFS don't use it making the pick broken
1117  * - since ZFS has its own aging policy it gets partially combated by this one
1118  * - a dedicated method should be provided for filesystems to let them decide
1119  *   whether the vnode should be recycled
1120  *
1121  * This routine is called when we have too many vnodes.  It attempts
1122  * to free <count> vnodes and will potentially free vnodes that still
1123  * have VM backing store (VM backing store is typically the cause
1124  * of a vnode blowout so we want to do this).  Therefore, this operation
1125  * is not considered cheap.
1126  *
1127  * A number of conditions may prevent a vnode from being reclaimed.
1128  * the buffer cache may have references on the vnode, a directory
1129  * vnode may still have references due to the namei cache representing
1130  * underlying files, or the vnode may be in active use.   It is not
1131  * desirable to reuse such vnodes.  These conditions may cause the
1132  * number of vnodes to reach some minimum value regardless of what
1133  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1134  *
1135  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1136  * 			 entries if this argument is strue
1137  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1138  *			 pages.
1139  * @param target	 How many vnodes to reclaim.
1140  * @return		 The number of vnodes that were reclaimed.
1141  */
1142 static int
1143 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1144 {
1145 	struct vnode *vp, *mvp;
1146 	struct mount *mp;
1147 	struct vm_object *object;
1148 	u_long done;
1149 	bool retried;
1150 
1151 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1152 
1153 	retried = false;
1154 	done = 0;
1155 
1156 	mvp = vnode_list_reclaim_marker;
1157 restart:
1158 	vp = mvp;
1159 	while (done < target) {
1160 		vp = TAILQ_NEXT(vp, v_vnodelist);
1161 		if (__predict_false(vp == NULL))
1162 			break;
1163 
1164 		if (__predict_false(vp->v_type == VMARKER))
1165 			continue;
1166 
1167 		/*
1168 		 * If it's been deconstructed already, it's still
1169 		 * referenced, or it exceeds the trigger, skip it.
1170 		 * Also skip free vnodes.  We are trying to make space
1171 		 * to expand the free list, not reduce it.
1172 		 */
1173 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1174 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1175 			goto next_iter;
1176 
1177 		if (vp->v_type == VBAD || vp->v_type == VNON)
1178 			goto next_iter;
1179 
1180 		object = atomic_load_ptr(&vp->v_object);
1181 		if (object == NULL || object->resident_page_count > trigger) {
1182 			goto next_iter;
1183 		}
1184 
1185 		/*
1186 		 * Handle races against vnode allocation. Filesystems lock the
1187 		 * vnode some time after it gets returned from getnewvnode,
1188 		 * despite type and hold count being manipulated earlier.
1189 		 * Resorting to checking v_mount restores guarantees present
1190 		 * before the global list was reworked to contain all vnodes.
1191 		 */
1192 		if (!VI_TRYLOCK(vp))
1193 			goto next_iter;
1194 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1195 			VI_UNLOCK(vp);
1196 			goto next_iter;
1197 		}
1198 		if (vp->v_mount == NULL) {
1199 			VI_UNLOCK(vp);
1200 			goto next_iter;
1201 		}
1202 		vholdl(vp);
1203 		VI_UNLOCK(vp);
1204 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1205 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1206 		mtx_unlock(&vnode_list_mtx);
1207 
1208 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1209 			vdrop(vp);
1210 			goto next_iter_unlocked;
1211 		}
1212 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1213 			vdrop(vp);
1214 			vn_finished_write(mp);
1215 			goto next_iter_unlocked;
1216 		}
1217 
1218 		VI_LOCK(vp);
1219 		if (vp->v_usecount > 0 ||
1220 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1221 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1222 		    vp->v_object->resident_page_count > trigger)) {
1223 			VOP_UNLOCK(vp);
1224 			vdropl(vp);
1225 			vn_finished_write(mp);
1226 			goto next_iter_unlocked;
1227 		}
1228 		counter_u64_add(recycles_count, 1);
1229 		vgonel(vp);
1230 		VOP_UNLOCK(vp);
1231 		vdropl(vp);
1232 		vn_finished_write(mp);
1233 		done++;
1234 next_iter_unlocked:
1235 		if (should_yield())
1236 			kern_yield(PRI_USER);
1237 		mtx_lock(&vnode_list_mtx);
1238 		goto restart;
1239 next_iter:
1240 		MPASS(vp->v_type != VMARKER);
1241 		if (!should_yield())
1242 			continue;
1243 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1244 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1245 		mtx_unlock(&vnode_list_mtx);
1246 		kern_yield(PRI_USER);
1247 		mtx_lock(&vnode_list_mtx);
1248 		goto restart;
1249 	}
1250 	if (done == 0 && !retried) {
1251 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1252 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1253 		retried = true;
1254 		goto restart;
1255 	}
1256 	return (done);
1257 }
1258 
1259 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1260 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1261     0,
1262     "limit on vnode free requests per call to the vnlru_free routine");
1263 
1264 /*
1265  * Attempt to reduce the free list by the requested amount.
1266  */
1267 static int
1268 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1269 {
1270 	struct vnode *vp;
1271 	struct mount *mp;
1272 	int ocount;
1273 
1274 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1275 	if (count > max_vnlru_free)
1276 		count = max_vnlru_free;
1277 	ocount = count;
1278 	vp = mvp;
1279 	for (;;) {
1280 		if (count == 0) {
1281 			break;
1282 		}
1283 		vp = TAILQ_NEXT(vp, v_vnodelist);
1284 		if (__predict_false(vp == NULL)) {
1285 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1286 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1287 			break;
1288 		}
1289 		if (__predict_false(vp->v_type == VMARKER))
1290 			continue;
1291 		if (vp->v_holdcnt > 0)
1292 			continue;
1293 		/*
1294 		 * Don't recycle if our vnode is from different type
1295 		 * of mount point.  Note that mp is type-safe, the
1296 		 * check does not reach unmapped address even if
1297 		 * vnode is reclaimed.
1298 		 */
1299 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1300 		    mp->mnt_op != mnt_op) {
1301 			continue;
1302 		}
1303 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1304 			continue;
1305 		}
1306 		if (!vhold_recycle_free(vp))
1307 			continue;
1308 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1309 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1310 		mtx_unlock(&vnode_list_mtx);
1311 		if (vtryrecycle(vp) == 0)
1312 			count--;
1313 		mtx_lock(&vnode_list_mtx);
1314 		vp = mvp;
1315 	}
1316 	return (ocount - count);
1317 }
1318 
1319 static int
1320 vnlru_free_locked(int count)
1321 {
1322 
1323 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1324 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1325 }
1326 
1327 void
1328 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1329 {
1330 
1331 	MPASS(mnt_op != NULL);
1332 	MPASS(mvp != NULL);
1333 	VNPASS(mvp->v_type == VMARKER, mvp);
1334 	mtx_lock(&vnode_list_mtx);
1335 	vnlru_free_impl(count, mnt_op, mvp);
1336 	mtx_unlock(&vnode_list_mtx);
1337 }
1338 
1339 struct vnode *
1340 vnlru_alloc_marker(void)
1341 {
1342 	struct vnode *mvp;
1343 
1344 	mvp = vn_alloc_marker(NULL);
1345 	mtx_lock(&vnode_list_mtx);
1346 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1347 	mtx_unlock(&vnode_list_mtx);
1348 	return (mvp);
1349 }
1350 
1351 void
1352 vnlru_free_marker(struct vnode *mvp)
1353 {
1354 	mtx_lock(&vnode_list_mtx);
1355 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1356 	mtx_unlock(&vnode_list_mtx);
1357 	vn_free_marker(mvp);
1358 }
1359 
1360 static void
1361 vnlru_recalc(void)
1362 {
1363 
1364 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1365 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1366 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1367 	vlowat = vhiwat / 2;
1368 }
1369 
1370 /*
1371  * Attempt to recycle vnodes in a context that is always safe to block.
1372  * Calling vlrurecycle() from the bowels of filesystem code has some
1373  * interesting deadlock problems.
1374  */
1375 static struct proc *vnlruproc;
1376 static int vnlruproc_sig;
1377 
1378 /*
1379  * The main freevnodes counter is only updated when threads requeue their vnode
1380  * batches. CPUs are conditionally walked to compute a more accurate total.
1381  *
1382  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1383  * at any given moment can still exceed slop, but it should not be by significant
1384  * margin in practice.
1385  */
1386 #define VNLRU_FREEVNODES_SLOP 128
1387 
1388 static __inline void
1389 vfs_freevnodes_inc(void)
1390 {
1391 	struct vdbatch *vd;
1392 
1393 	critical_enter();
1394 	vd = DPCPU_PTR(vd);
1395 	vd->freevnodes++;
1396 	critical_exit();
1397 }
1398 
1399 static __inline void
1400 vfs_freevnodes_dec(void)
1401 {
1402 	struct vdbatch *vd;
1403 
1404 	critical_enter();
1405 	vd = DPCPU_PTR(vd);
1406 	vd->freevnodes--;
1407 	critical_exit();
1408 }
1409 
1410 static u_long
1411 vnlru_read_freevnodes(void)
1412 {
1413 	struct vdbatch *vd;
1414 	long slop;
1415 	int cpu;
1416 
1417 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1418 	if (freevnodes > freevnodes_old)
1419 		slop = freevnodes - freevnodes_old;
1420 	else
1421 		slop = freevnodes_old - freevnodes;
1422 	if (slop < VNLRU_FREEVNODES_SLOP)
1423 		return (freevnodes >= 0 ? freevnodes : 0);
1424 	freevnodes_old = freevnodes;
1425 	CPU_FOREACH(cpu) {
1426 		vd = DPCPU_ID_PTR((cpu), vd);
1427 		freevnodes_old += vd->freevnodes;
1428 	}
1429 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1430 }
1431 
1432 static bool
1433 vnlru_under(u_long rnumvnodes, u_long limit)
1434 {
1435 	u_long rfreevnodes, space;
1436 
1437 	if (__predict_false(rnumvnodes > desiredvnodes))
1438 		return (true);
1439 
1440 	space = desiredvnodes - rnumvnodes;
1441 	if (space < limit) {
1442 		rfreevnodes = vnlru_read_freevnodes();
1443 		if (rfreevnodes > wantfreevnodes)
1444 			space += rfreevnodes - wantfreevnodes;
1445 	}
1446 	return (space < limit);
1447 }
1448 
1449 static bool
1450 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1451 {
1452 	long rfreevnodes, space;
1453 
1454 	if (__predict_false(rnumvnodes > desiredvnodes))
1455 		return (true);
1456 
1457 	space = desiredvnodes - rnumvnodes;
1458 	if (space < limit) {
1459 		rfreevnodes = atomic_load_long(&freevnodes);
1460 		if (rfreevnodes > wantfreevnodes)
1461 			space += rfreevnodes - wantfreevnodes;
1462 	}
1463 	return (space < limit);
1464 }
1465 
1466 static void
1467 vnlru_kick(void)
1468 {
1469 
1470 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1471 	if (vnlruproc_sig == 0) {
1472 		vnlruproc_sig = 1;
1473 		wakeup(vnlruproc);
1474 	}
1475 }
1476 
1477 static void
1478 vnlru_proc(void)
1479 {
1480 	u_long rnumvnodes, rfreevnodes, target;
1481 	unsigned long onumvnodes;
1482 	int done, force, trigger, usevnodes;
1483 	bool reclaim_nc_src, want_reread;
1484 
1485 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1486 	    SHUTDOWN_PRI_FIRST);
1487 
1488 	force = 0;
1489 	want_reread = false;
1490 	for (;;) {
1491 		kproc_suspend_check(vnlruproc);
1492 		mtx_lock(&vnode_list_mtx);
1493 		rnumvnodes = atomic_load_long(&numvnodes);
1494 
1495 		if (want_reread) {
1496 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1497 			want_reread = false;
1498 		}
1499 
1500 		/*
1501 		 * If numvnodes is too large (due to desiredvnodes being
1502 		 * adjusted using its sysctl, or emergency growth), first
1503 		 * try to reduce it by discarding from the free list.
1504 		 */
1505 		if (rnumvnodes > desiredvnodes) {
1506 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1507 			rnumvnodes = atomic_load_long(&numvnodes);
1508 		}
1509 		/*
1510 		 * Sleep if the vnode cache is in a good state.  This is
1511 		 * when it is not over-full and has space for about a 4%
1512 		 * or 9% expansion (by growing its size or inexcessively
1513 		 * reducing its free list).  Otherwise, try to reclaim
1514 		 * space for a 10% expansion.
1515 		 */
1516 		if (vstir && force == 0) {
1517 			force = 1;
1518 			vstir = 0;
1519 		}
1520 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1521 			vnlruproc_sig = 0;
1522 			wakeup(&vnlruproc_sig);
1523 			msleep(vnlruproc, &vnode_list_mtx,
1524 			    PVFS|PDROP, "vlruwt", hz);
1525 			continue;
1526 		}
1527 		rfreevnodes = vnlru_read_freevnodes();
1528 
1529 		onumvnodes = rnumvnodes;
1530 		/*
1531 		 * Calculate parameters for recycling.  These are the same
1532 		 * throughout the loop to give some semblance of fairness.
1533 		 * The trigger point is to avoid recycling vnodes with lots
1534 		 * of resident pages.  We aren't trying to free memory; we
1535 		 * are trying to recycle or at least free vnodes.
1536 		 */
1537 		if (rnumvnodes <= desiredvnodes)
1538 			usevnodes = rnumvnodes - rfreevnodes;
1539 		else
1540 			usevnodes = rnumvnodes;
1541 		if (usevnodes <= 0)
1542 			usevnodes = 1;
1543 		/*
1544 		 * The trigger value is is chosen to give a conservatively
1545 		 * large value to ensure that it alone doesn't prevent
1546 		 * making progress.  The value can easily be so large that
1547 		 * it is effectively infinite in some congested and
1548 		 * misconfigured cases, and this is necessary.  Normally
1549 		 * it is about 8 to 100 (pages), which is quite large.
1550 		 */
1551 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1552 		if (force < 2)
1553 			trigger = vsmalltrigger;
1554 		reclaim_nc_src = force >= 3;
1555 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1556 		target = target / 10 + 1;
1557 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1558 		mtx_unlock(&vnode_list_mtx);
1559 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1560 			uma_reclaim(UMA_RECLAIM_DRAIN);
1561 		if (done == 0) {
1562 			if (force == 0 || force == 1) {
1563 				force = 2;
1564 				continue;
1565 			}
1566 			if (force == 2) {
1567 				force = 3;
1568 				continue;
1569 			}
1570 			want_reread = true;
1571 			force = 0;
1572 			vnlru_nowhere++;
1573 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1574 		} else {
1575 			want_reread = true;
1576 			kern_yield(PRI_USER);
1577 		}
1578 	}
1579 }
1580 
1581 static struct kproc_desc vnlru_kp = {
1582 	"vnlru",
1583 	vnlru_proc,
1584 	&vnlruproc
1585 };
1586 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1587     &vnlru_kp);
1588 
1589 /*
1590  * Routines having to do with the management of the vnode table.
1591  */
1592 
1593 /*
1594  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1595  * before we actually vgone().  This function must be called with the vnode
1596  * held to prevent the vnode from being returned to the free list midway
1597  * through vgone().
1598  */
1599 static int
1600 vtryrecycle(struct vnode *vp)
1601 {
1602 	struct mount *vnmp;
1603 
1604 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1605 	VNASSERT(vp->v_holdcnt, vp,
1606 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1607 	/*
1608 	 * This vnode may found and locked via some other list, if so we
1609 	 * can't recycle it yet.
1610 	 */
1611 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1612 		CTR2(KTR_VFS,
1613 		    "%s: impossible to recycle, vp %p lock is already held",
1614 		    __func__, vp);
1615 		vdrop(vp);
1616 		return (EWOULDBLOCK);
1617 	}
1618 	/*
1619 	 * Don't recycle if its filesystem is being suspended.
1620 	 */
1621 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1622 		VOP_UNLOCK(vp);
1623 		CTR2(KTR_VFS,
1624 		    "%s: impossible to recycle, cannot start the write for %p",
1625 		    __func__, vp);
1626 		vdrop(vp);
1627 		return (EBUSY);
1628 	}
1629 	/*
1630 	 * If we got this far, we need to acquire the interlock and see if
1631 	 * anyone picked up this vnode from another list.  If not, we will
1632 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1633 	 * will skip over it.
1634 	 */
1635 	VI_LOCK(vp);
1636 	if (vp->v_usecount) {
1637 		VOP_UNLOCK(vp);
1638 		vdropl(vp);
1639 		vn_finished_write(vnmp);
1640 		CTR2(KTR_VFS,
1641 		    "%s: impossible to recycle, %p is already referenced",
1642 		    __func__, vp);
1643 		return (EBUSY);
1644 	}
1645 	if (!VN_IS_DOOMED(vp)) {
1646 		counter_u64_add(recycles_free_count, 1);
1647 		vgonel(vp);
1648 	}
1649 	VOP_UNLOCK(vp);
1650 	vdropl(vp);
1651 	vn_finished_write(vnmp);
1652 	return (0);
1653 }
1654 
1655 /*
1656  * Allocate a new vnode.
1657  *
1658  * The operation never returns an error. Returning an error was disabled
1659  * in r145385 (dated 2005) with the following comment:
1660  *
1661  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1662  *
1663  * Given the age of this commit (almost 15 years at the time of writing this
1664  * comment) restoring the ability to fail requires a significant audit of
1665  * all codepaths.
1666  *
1667  * The routine can try to free a vnode or stall for up to 1 second waiting for
1668  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1669  */
1670 static u_long vn_alloc_cyclecount;
1671 
1672 static struct vnode * __noinline
1673 vn_alloc_hard(struct mount *mp)
1674 {
1675 	u_long rnumvnodes, rfreevnodes;
1676 
1677 	mtx_lock(&vnode_list_mtx);
1678 	rnumvnodes = atomic_load_long(&numvnodes);
1679 	if (rnumvnodes + 1 < desiredvnodes) {
1680 		vn_alloc_cyclecount = 0;
1681 		goto alloc;
1682 	}
1683 	rfreevnodes = vnlru_read_freevnodes();
1684 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1685 		vn_alloc_cyclecount = 0;
1686 		vstir = 1;
1687 	}
1688 	/*
1689 	 * Grow the vnode cache if it will not be above its target max
1690 	 * after growing.  Otherwise, if the free list is nonempty, try
1691 	 * to reclaim 1 item from it before growing the cache (possibly
1692 	 * above its target max if the reclamation failed or is delayed).
1693 	 * Otherwise, wait for some space.  In all cases, schedule
1694 	 * vnlru_proc() if we are getting short of space.  The watermarks
1695 	 * should be chosen so that we never wait or even reclaim from
1696 	 * the free list to below its target minimum.
1697 	 */
1698 	if (vnlru_free_locked(1) > 0)
1699 		goto alloc;
1700 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1701 		/*
1702 		 * Wait for space for a new vnode.
1703 		 */
1704 		vnlru_kick();
1705 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1706 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1707 		    vnlru_read_freevnodes() > 1)
1708 			vnlru_free_locked(1);
1709 	}
1710 alloc:
1711 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1712 	if (vnlru_under(rnumvnodes, vlowat))
1713 		vnlru_kick();
1714 	mtx_unlock(&vnode_list_mtx);
1715 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1716 }
1717 
1718 static struct vnode *
1719 vn_alloc(struct mount *mp)
1720 {
1721 	u_long rnumvnodes;
1722 
1723 	if (__predict_false(vn_alloc_cyclecount != 0))
1724 		return (vn_alloc_hard(mp));
1725 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1726 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1727 		atomic_subtract_long(&numvnodes, 1);
1728 		return (vn_alloc_hard(mp));
1729 	}
1730 
1731 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1732 }
1733 
1734 static void
1735 vn_free(struct vnode *vp)
1736 {
1737 
1738 	atomic_subtract_long(&numvnodes, 1);
1739 	uma_zfree_smr(vnode_zone, vp);
1740 }
1741 
1742 /*
1743  * Return the next vnode from the free list.
1744  */
1745 int
1746 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1747     struct vnode **vpp)
1748 {
1749 	struct vnode *vp;
1750 	struct thread *td;
1751 	struct lock_object *lo;
1752 
1753 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1754 
1755 	KASSERT(vops->registered,
1756 	    ("%s: not registered vector op %p\n", __func__, vops));
1757 
1758 	td = curthread;
1759 	if (td->td_vp_reserved != NULL) {
1760 		vp = td->td_vp_reserved;
1761 		td->td_vp_reserved = NULL;
1762 	} else {
1763 		vp = vn_alloc(mp);
1764 	}
1765 	counter_u64_add(vnodes_created, 1);
1766 	/*
1767 	 * Locks are given the generic name "vnode" when created.
1768 	 * Follow the historic practice of using the filesystem
1769 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1770 	 *
1771 	 * Locks live in a witness group keyed on their name. Thus,
1772 	 * when a lock is renamed, it must also move from the witness
1773 	 * group of its old name to the witness group of its new name.
1774 	 *
1775 	 * The change only needs to be made when the vnode moves
1776 	 * from one filesystem type to another. We ensure that each
1777 	 * filesystem use a single static name pointer for its tag so
1778 	 * that we can compare pointers rather than doing a strcmp().
1779 	 */
1780 	lo = &vp->v_vnlock->lock_object;
1781 #ifdef WITNESS
1782 	if (lo->lo_name != tag) {
1783 #endif
1784 		lo->lo_name = tag;
1785 #ifdef WITNESS
1786 		WITNESS_DESTROY(lo);
1787 		WITNESS_INIT(lo, tag);
1788 	}
1789 #endif
1790 	/*
1791 	 * By default, don't allow shared locks unless filesystems opt-in.
1792 	 */
1793 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1794 	/*
1795 	 * Finalize various vnode identity bits.
1796 	 */
1797 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1798 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1799 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1800 	vp->v_type = VNON;
1801 	vp->v_op = vops;
1802 	vp->v_irflag = 0;
1803 	v_init_counters(vp);
1804 	vn_seqc_init(vp);
1805 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1806 #ifdef DIAGNOSTIC
1807 	if (mp == NULL && vops != &dead_vnodeops)
1808 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1809 #endif
1810 #ifdef MAC
1811 	mac_vnode_init(vp);
1812 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1813 		mac_vnode_associate_singlelabel(mp, vp);
1814 #endif
1815 	if (mp != NULL) {
1816 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1817 	}
1818 
1819 	/*
1820 	 * For the filesystems which do not use vfs_hash_insert(),
1821 	 * still initialize v_hash to have vfs_hash_index() useful.
1822 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1823 	 * its own hashing.
1824 	 */
1825 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1826 
1827 	*vpp = vp;
1828 	return (0);
1829 }
1830 
1831 void
1832 getnewvnode_reserve(void)
1833 {
1834 	struct thread *td;
1835 
1836 	td = curthread;
1837 	MPASS(td->td_vp_reserved == NULL);
1838 	td->td_vp_reserved = vn_alloc(NULL);
1839 }
1840 
1841 void
1842 getnewvnode_drop_reserve(void)
1843 {
1844 	struct thread *td;
1845 
1846 	td = curthread;
1847 	if (td->td_vp_reserved != NULL) {
1848 		vn_free(td->td_vp_reserved);
1849 		td->td_vp_reserved = NULL;
1850 	}
1851 }
1852 
1853 static void __noinline
1854 freevnode(struct vnode *vp)
1855 {
1856 	struct bufobj *bo;
1857 
1858 	/*
1859 	 * The vnode has been marked for destruction, so free it.
1860 	 *
1861 	 * The vnode will be returned to the zone where it will
1862 	 * normally remain until it is needed for another vnode. We
1863 	 * need to cleanup (or verify that the cleanup has already
1864 	 * been done) any residual data left from its current use
1865 	 * so as not to contaminate the freshly allocated vnode.
1866 	 */
1867 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1868 	/*
1869 	 * Paired with vgone.
1870 	 */
1871 	vn_seqc_write_end_free(vp);
1872 
1873 	bo = &vp->v_bufobj;
1874 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1875 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1876 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1877 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1878 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1879 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1880 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1881 	    ("clean blk trie not empty"));
1882 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1883 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1884 	    ("dirty blk trie not empty"));
1885 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1886 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1887 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1888 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1889 	    ("Dangling rangelock waiters"));
1890 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1891 	    ("Leaked inactivation"));
1892 	VI_UNLOCK(vp);
1893 #ifdef MAC
1894 	mac_vnode_destroy(vp);
1895 #endif
1896 	if (vp->v_pollinfo != NULL) {
1897 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1898 		destroy_vpollinfo(vp->v_pollinfo);
1899 		VOP_UNLOCK(vp);
1900 		vp->v_pollinfo = NULL;
1901 	}
1902 	vp->v_mountedhere = NULL;
1903 	vp->v_unpcb = NULL;
1904 	vp->v_rdev = NULL;
1905 	vp->v_fifoinfo = NULL;
1906 	vp->v_iflag = 0;
1907 	vp->v_vflag = 0;
1908 	bo->bo_flag = 0;
1909 	vn_free(vp);
1910 }
1911 
1912 /*
1913  * Delete from old mount point vnode list, if on one.
1914  */
1915 static void
1916 delmntque(struct vnode *vp)
1917 {
1918 	struct mount *mp;
1919 
1920 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1921 
1922 	mp = vp->v_mount;
1923 	if (mp == NULL)
1924 		return;
1925 	MNT_ILOCK(mp);
1926 	VI_LOCK(vp);
1927 	vp->v_mount = NULL;
1928 	VI_UNLOCK(vp);
1929 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1930 		("bad mount point vnode list size"));
1931 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1932 	mp->mnt_nvnodelistsize--;
1933 	MNT_REL(mp);
1934 	MNT_IUNLOCK(mp);
1935 }
1936 
1937 static void
1938 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1939 {
1940 
1941 	vp->v_data = NULL;
1942 	vp->v_op = &dead_vnodeops;
1943 	vgone(vp);
1944 	vput(vp);
1945 }
1946 
1947 /*
1948  * Insert into list of vnodes for the new mount point, if available.
1949  */
1950 int
1951 insmntque1(struct vnode *vp, struct mount *mp,
1952 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1953 {
1954 
1955 	KASSERT(vp->v_mount == NULL,
1956 		("insmntque: vnode already on per mount vnode list"));
1957 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1958 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1959 
1960 	/*
1961 	 * We acquire the vnode interlock early to ensure that the
1962 	 * vnode cannot be recycled by another process releasing a
1963 	 * holdcnt on it before we get it on both the vnode list
1964 	 * and the active vnode list. The mount mutex protects only
1965 	 * manipulation of the vnode list and the vnode freelist
1966 	 * mutex protects only manipulation of the active vnode list.
1967 	 * Hence the need to hold the vnode interlock throughout.
1968 	 */
1969 	MNT_ILOCK(mp);
1970 	VI_LOCK(vp);
1971 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1972 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1973 	    mp->mnt_nvnodelistsize == 0)) &&
1974 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1975 		VI_UNLOCK(vp);
1976 		MNT_IUNLOCK(mp);
1977 		if (dtr != NULL)
1978 			dtr(vp, dtr_arg);
1979 		return (EBUSY);
1980 	}
1981 	vp->v_mount = mp;
1982 	MNT_REF(mp);
1983 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1984 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1985 		("neg mount point vnode list size"));
1986 	mp->mnt_nvnodelistsize++;
1987 	VI_UNLOCK(vp);
1988 	MNT_IUNLOCK(mp);
1989 	return (0);
1990 }
1991 
1992 int
1993 insmntque(struct vnode *vp, struct mount *mp)
1994 {
1995 
1996 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1997 }
1998 
1999 /*
2000  * Flush out and invalidate all buffers associated with a bufobj
2001  * Called with the underlying object locked.
2002  */
2003 int
2004 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2005 {
2006 	int error;
2007 
2008 	BO_LOCK(bo);
2009 	if (flags & V_SAVE) {
2010 		error = bufobj_wwait(bo, slpflag, slptimeo);
2011 		if (error) {
2012 			BO_UNLOCK(bo);
2013 			return (error);
2014 		}
2015 		if (bo->bo_dirty.bv_cnt > 0) {
2016 			BO_UNLOCK(bo);
2017 			do {
2018 				error = BO_SYNC(bo, MNT_WAIT);
2019 			} while (error == ERELOOKUP);
2020 			if (error != 0)
2021 				return (error);
2022 			BO_LOCK(bo);
2023 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2024 				BO_UNLOCK(bo);
2025 				return (EBUSY);
2026 			}
2027 		}
2028 	}
2029 	/*
2030 	 * If you alter this loop please notice that interlock is dropped and
2031 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2032 	 * no race conditions occur from this.
2033 	 */
2034 	do {
2035 		error = flushbuflist(&bo->bo_clean,
2036 		    flags, bo, slpflag, slptimeo);
2037 		if (error == 0 && !(flags & V_CLEANONLY))
2038 			error = flushbuflist(&bo->bo_dirty,
2039 			    flags, bo, slpflag, slptimeo);
2040 		if (error != 0 && error != EAGAIN) {
2041 			BO_UNLOCK(bo);
2042 			return (error);
2043 		}
2044 	} while (error != 0);
2045 
2046 	/*
2047 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2048 	 * have write I/O in-progress but if there is a VM object then the
2049 	 * VM object can also have read-I/O in-progress.
2050 	 */
2051 	do {
2052 		bufobj_wwait(bo, 0, 0);
2053 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2054 			BO_UNLOCK(bo);
2055 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2056 			BO_LOCK(bo);
2057 		}
2058 	} while (bo->bo_numoutput > 0);
2059 	BO_UNLOCK(bo);
2060 
2061 	/*
2062 	 * Destroy the copy in the VM cache, too.
2063 	 */
2064 	if (bo->bo_object != NULL &&
2065 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2066 		VM_OBJECT_WLOCK(bo->bo_object);
2067 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2068 		    OBJPR_CLEANONLY : 0);
2069 		VM_OBJECT_WUNLOCK(bo->bo_object);
2070 	}
2071 
2072 #ifdef INVARIANTS
2073 	BO_LOCK(bo);
2074 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2075 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2076 	    bo->bo_clean.bv_cnt > 0))
2077 		panic("vinvalbuf: flush failed");
2078 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2079 	    bo->bo_dirty.bv_cnt > 0)
2080 		panic("vinvalbuf: flush dirty failed");
2081 	BO_UNLOCK(bo);
2082 #endif
2083 	return (0);
2084 }
2085 
2086 /*
2087  * Flush out and invalidate all buffers associated with a vnode.
2088  * Called with the underlying object locked.
2089  */
2090 int
2091 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2092 {
2093 
2094 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2095 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2096 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2097 		return (0);
2098 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2099 }
2100 
2101 /*
2102  * Flush out buffers on the specified list.
2103  *
2104  */
2105 static int
2106 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2107     int slptimeo)
2108 {
2109 	struct buf *bp, *nbp;
2110 	int retval, error;
2111 	daddr_t lblkno;
2112 	b_xflags_t xflags;
2113 
2114 	ASSERT_BO_WLOCKED(bo);
2115 
2116 	retval = 0;
2117 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2118 		/*
2119 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2120 		 * do not skip any buffers. If we are flushing only V_NORMAL
2121 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2122 		 * flushing only V_ALT buffers then skip buffers not marked
2123 		 * as BX_ALTDATA.
2124 		 */
2125 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2126 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2127 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2128 			continue;
2129 		}
2130 		if (nbp != NULL) {
2131 			lblkno = nbp->b_lblkno;
2132 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2133 		}
2134 		retval = EAGAIN;
2135 		error = BUF_TIMELOCK(bp,
2136 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2137 		    "flushbuf", slpflag, slptimeo);
2138 		if (error) {
2139 			BO_LOCK(bo);
2140 			return (error != ENOLCK ? error : EAGAIN);
2141 		}
2142 		KASSERT(bp->b_bufobj == bo,
2143 		    ("bp %p wrong b_bufobj %p should be %p",
2144 		    bp, bp->b_bufobj, bo));
2145 		/*
2146 		 * XXX Since there are no node locks for NFS, I
2147 		 * believe there is a slight chance that a delayed
2148 		 * write will occur while sleeping just above, so
2149 		 * check for it.
2150 		 */
2151 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2152 		    (flags & V_SAVE)) {
2153 			bremfree(bp);
2154 			bp->b_flags |= B_ASYNC;
2155 			bwrite(bp);
2156 			BO_LOCK(bo);
2157 			return (EAGAIN);	/* XXX: why not loop ? */
2158 		}
2159 		bremfree(bp);
2160 		bp->b_flags |= (B_INVAL | B_RELBUF);
2161 		bp->b_flags &= ~B_ASYNC;
2162 		brelse(bp);
2163 		BO_LOCK(bo);
2164 		if (nbp == NULL)
2165 			break;
2166 		nbp = gbincore(bo, lblkno);
2167 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2168 		    != xflags)
2169 			break;			/* nbp invalid */
2170 	}
2171 	return (retval);
2172 }
2173 
2174 int
2175 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2176 {
2177 	struct buf *bp;
2178 	int error;
2179 	daddr_t lblkno;
2180 
2181 	ASSERT_BO_LOCKED(bo);
2182 
2183 	for (lblkno = startn;;) {
2184 again:
2185 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2186 		if (bp == NULL || bp->b_lblkno >= endn ||
2187 		    bp->b_lblkno < startn)
2188 			break;
2189 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2190 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2191 		if (error != 0) {
2192 			BO_RLOCK(bo);
2193 			if (error == ENOLCK)
2194 				goto again;
2195 			return (error);
2196 		}
2197 		KASSERT(bp->b_bufobj == bo,
2198 		    ("bp %p wrong b_bufobj %p should be %p",
2199 		    bp, bp->b_bufobj, bo));
2200 		lblkno = bp->b_lblkno + 1;
2201 		if ((bp->b_flags & B_MANAGED) == 0)
2202 			bremfree(bp);
2203 		bp->b_flags |= B_RELBUF;
2204 		/*
2205 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2206 		 * pages backing each buffer in the range are unlikely to be
2207 		 * reused.  Dirty buffers will have the hint applied once
2208 		 * they've been written.
2209 		 */
2210 		if ((bp->b_flags & B_VMIO) != 0)
2211 			bp->b_flags |= B_NOREUSE;
2212 		brelse(bp);
2213 		BO_RLOCK(bo);
2214 	}
2215 	return (0);
2216 }
2217 
2218 /*
2219  * Truncate a file's buffer and pages to a specified length.  This
2220  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2221  * sync activity.
2222  */
2223 int
2224 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2225 {
2226 	struct buf *bp, *nbp;
2227 	struct bufobj *bo;
2228 	daddr_t startlbn;
2229 
2230 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2231 	    vp, blksize, (uintmax_t)length);
2232 
2233 	/*
2234 	 * Round up to the *next* lbn.
2235 	 */
2236 	startlbn = howmany(length, blksize);
2237 
2238 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2239 
2240 	bo = &vp->v_bufobj;
2241 restart_unlocked:
2242 	BO_LOCK(bo);
2243 
2244 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2245 		;
2246 
2247 	if (length > 0) {
2248 restartsync:
2249 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2250 			if (bp->b_lblkno > 0)
2251 				continue;
2252 			/*
2253 			 * Since we hold the vnode lock this should only
2254 			 * fail if we're racing with the buf daemon.
2255 			 */
2256 			if (BUF_LOCK(bp,
2257 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2258 			    BO_LOCKPTR(bo)) == ENOLCK)
2259 				goto restart_unlocked;
2260 
2261 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2262 			    ("buf(%p) on dirty queue without DELWRI", bp));
2263 
2264 			bremfree(bp);
2265 			bawrite(bp);
2266 			BO_LOCK(bo);
2267 			goto restartsync;
2268 		}
2269 	}
2270 
2271 	bufobj_wwait(bo, 0, 0);
2272 	BO_UNLOCK(bo);
2273 	vnode_pager_setsize(vp, length);
2274 
2275 	return (0);
2276 }
2277 
2278 /*
2279  * Invalidate the cached pages of a file's buffer within the range of block
2280  * numbers [startlbn, endlbn).
2281  */
2282 void
2283 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2284     int blksize)
2285 {
2286 	struct bufobj *bo;
2287 	off_t start, end;
2288 
2289 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2290 
2291 	start = blksize * startlbn;
2292 	end = blksize * endlbn;
2293 
2294 	bo = &vp->v_bufobj;
2295 	BO_LOCK(bo);
2296 	MPASS(blksize == bo->bo_bsize);
2297 
2298 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2299 		;
2300 
2301 	BO_UNLOCK(bo);
2302 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2303 }
2304 
2305 static int
2306 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2307     daddr_t startlbn, daddr_t endlbn)
2308 {
2309 	struct buf *bp, *nbp;
2310 	bool anyfreed;
2311 
2312 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2313 	ASSERT_BO_LOCKED(bo);
2314 
2315 	do {
2316 		anyfreed = false;
2317 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2318 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2319 				continue;
2320 			if (BUF_LOCK(bp,
2321 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2322 			    BO_LOCKPTR(bo)) == ENOLCK) {
2323 				BO_LOCK(bo);
2324 				return (EAGAIN);
2325 			}
2326 
2327 			bremfree(bp);
2328 			bp->b_flags |= B_INVAL | B_RELBUF;
2329 			bp->b_flags &= ~B_ASYNC;
2330 			brelse(bp);
2331 			anyfreed = true;
2332 
2333 			BO_LOCK(bo);
2334 			if (nbp != NULL &&
2335 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2336 			    nbp->b_vp != vp ||
2337 			    (nbp->b_flags & B_DELWRI) != 0))
2338 				return (EAGAIN);
2339 		}
2340 
2341 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2342 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2343 				continue;
2344 			if (BUF_LOCK(bp,
2345 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2346 			    BO_LOCKPTR(bo)) == ENOLCK) {
2347 				BO_LOCK(bo);
2348 				return (EAGAIN);
2349 			}
2350 			bremfree(bp);
2351 			bp->b_flags |= B_INVAL | B_RELBUF;
2352 			bp->b_flags &= ~B_ASYNC;
2353 			brelse(bp);
2354 			anyfreed = true;
2355 
2356 			BO_LOCK(bo);
2357 			if (nbp != NULL &&
2358 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2359 			    (nbp->b_vp != vp) ||
2360 			    (nbp->b_flags & B_DELWRI) == 0))
2361 				return (EAGAIN);
2362 		}
2363 	} while (anyfreed);
2364 	return (0);
2365 }
2366 
2367 static void
2368 buf_vlist_remove(struct buf *bp)
2369 {
2370 	struct bufv *bv;
2371 	b_xflags_t flags;
2372 
2373 	flags = bp->b_xflags;
2374 
2375 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2376 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2377 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2378 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2379 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2380 
2381 	if ((flags & BX_VNDIRTY) != 0)
2382 		bv = &bp->b_bufobj->bo_dirty;
2383 	else
2384 		bv = &bp->b_bufobj->bo_clean;
2385 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2386 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2387 	bv->bv_cnt--;
2388 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2389 }
2390 
2391 /*
2392  * Add the buffer to the sorted clean or dirty block list.
2393  *
2394  * NOTE: xflags is passed as a constant, optimizing this inline function!
2395  */
2396 static void
2397 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2398 {
2399 	struct bufv *bv;
2400 	struct buf *n;
2401 	int error;
2402 
2403 	ASSERT_BO_WLOCKED(bo);
2404 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2405 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2406 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2407 	    ("dead bo %p", bo));
2408 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2409 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2410 	bp->b_xflags |= xflags;
2411 	if (xflags & BX_VNDIRTY)
2412 		bv = &bo->bo_dirty;
2413 	else
2414 		bv = &bo->bo_clean;
2415 
2416 	/*
2417 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2418 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2419 	 * than _ge.
2420 	 */
2421 	if (bv->bv_cnt == 0 ||
2422 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2423 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2424 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2425 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2426 	else
2427 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2428 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2429 	if (error)
2430 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2431 	bv->bv_cnt++;
2432 }
2433 
2434 /*
2435  * Look up a buffer using the buffer tries.
2436  */
2437 struct buf *
2438 gbincore(struct bufobj *bo, daddr_t lblkno)
2439 {
2440 	struct buf *bp;
2441 
2442 	ASSERT_BO_LOCKED(bo);
2443 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2444 	if (bp != NULL)
2445 		return (bp);
2446 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2447 }
2448 
2449 /*
2450  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2451  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2452  * stability of the result.  Like other lockless lookups, the found buf may
2453  * already be invalid by the time this function returns.
2454  */
2455 struct buf *
2456 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2457 {
2458 	struct buf *bp;
2459 
2460 	ASSERT_BO_UNLOCKED(bo);
2461 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2462 	if (bp != NULL)
2463 		return (bp);
2464 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2465 }
2466 
2467 /*
2468  * Associate a buffer with a vnode.
2469  */
2470 void
2471 bgetvp(struct vnode *vp, struct buf *bp)
2472 {
2473 	struct bufobj *bo;
2474 
2475 	bo = &vp->v_bufobj;
2476 	ASSERT_BO_WLOCKED(bo);
2477 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2478 
2479 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2480 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2481 	    ("bgetvp: bp already attached! %p", bp));
2482 
2483 	vhold(vp);
2484 	bp->b_vp = vp;
2485 	bp->b_bufobj = bo;
2486 	/*
2487 	 * Insert onto list for new vnode.
2488 	 */
2489 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2490 }
2491 
2492 /*
2493  * Disassociate a buffer from a vnode.
2494  */
2495 void
2496 brelvp(struct buf *bp)
2497 {
2498 	struct bufobj *bo;
2499 	struct vnode *vp;
2500 
2501 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2502 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2503 
2504 	/*
2505 	 * Delete from old vnode list, if on one.
2506 	 */
2507 	vp = bp->b_vp;		/* XXX */
2508 	bo = bp->b_bufobj;
2509 	BO_LOCK(bo);
2510 	buf_vlist_remove(bp);
2511 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2512 		bo->bo_flag &= ~BO_ONWORKLST;
2513 		mtx_lock(&sync_mtx);
2514 		LIST_REMOVE(bo, bo_synclist);
2515 		syncer_worklist_len--;
2516 		mtx_unlock(&sync_mtx);
2517 	}
2518 	bp->b_vp = NULL;
2519 	bp->b_bufobj = NULL;
2520 	BO_UNLOCK(bo);
2521 	vdrop(vp);
2522 }
2523 
2524 /*
2525  * Add an item to the syncer work queue.
2526  */
2527 static void
2528 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2529 {
2530 	int slot;
2531 
2532 	ASSERT_BO_WLOCKED(bo);
2533 
2534 	mtx_lock(&sync_mtx);
2535 	if (bo->bo_flag & BO_ONWORKLST)
2536 		LIST_REMOVE(bo, bo_synclist);
2537 	else {
2538 		bo->bo_flag |= BO_ONWORKLST;
2539 		syncer_worklist_len++;
2540 	}
2541 
2542 	if (delay > syncer_maxdelay - 2)
2543 		delay = syncer_maxdelay - 2;
2544 	slot = (syncer_delayno + delay) & syncer_mask;
2545 
2546 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2547 	mtx_unlock(&sync_mtx);
2548 }
2549 
2550 static int
2551 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2552 {
2553 	int error, len;
2554 
2555 	mtx_lock(&sync_mtx);
2556 	len = syncer_worklist_len - sync_vnode_count;
2557 	mtx_unlock(&sync_mtx);
2558 	error = SYSCTL_OUT(req, &len, sizeof(len));
2559 	return (error);
2560 }
2561 
2562 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2563     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2564     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2565 
2566 static struct proc *updateproc;
2567 static void sched_sync(void);
2568 static struct kproc_desc up_kp = {
2569 	"syncer",
2570 	sched_sync,
2571 	&updateproc
2572 };
2573 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2574 
2575 static int
2576 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2577 {
2578 	struct vnode *vp;
2579 	struct mount *mp;
2580 
2581 	*bo = LIST_FIRST(slp);
2582 	if (*bo == NULL)
2583 		return (0);
2584 	vp = bo2vnode(*bo);
2585 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2586 		return (1);
2587 	/*
2588 	 * We use vhold in case the vnode does not
2589 	 * successfully sync.  vhold prevents the vnode from
2590 	 * going away when we unlock the sync_mtx so that
2591 	 * we can acquire the vnode interlock.
2592 	 */
2593 	vholdl(vp);
2594 	mtx_unlock(&sync_mtx);
2595 	VI_UNLOCK(vp);
2596 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2597 		vdrop(vp);
2598 		mtx_lock(&sync_mtx);
2599 		return (*bo == LIST_FIRST(slp));
2600 	}
2601 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2602 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2603 	VOP_UNLOCK(vp);
2604 	vn_finished_write(mp);
2605 	BO_LOCK(*bo);
2606 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2607 		/*
2608 		 * Put us back on the worklist.  The worklist
2609 		 * routine will remove us from our current
2610 		 * position and then add us back in at a later
2611 		 * position.
2612 		 */
2613 		vn_syncer_add_to_worklist(*bo, syncdelay);
2614 	}
2615 	BO_UNLOCK(*bo);
2616 	vdrop(vp);
2617 	mtx_lock(&sync_mtx);
2618 	return (0);
2619 }
2620 
2621 static int first_printf = 1;
2622 
2623 /*
2624  * System filesystem synchronizer daemon.
2625  */
2626 static void
2627 sched_sync(void)
2628 {
2629 	struct synclist *next, *slp;
2630 	struct bufobj *bo;
2631 	long starttime;
2632 	struct thread *td = curthread;
2633 	int last_work_seen;
2634 	int net_worklist_len;
2635 	int syncer_final_iter;
2636 	int error;
2637 
2638 	last_work_seen = 0;
2639 	syncer_final_iter = 0;
2640 	syncer_state = SYNCER_RUNNING;
2641 	starttime = time_uptime;
2642 	td->td_pflags |= TDP_NORUNNINGBUF;
2643 
2644 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2645 	    SHUTDOWN_PRI_LAST);
2646 
2647 	mtx_lock(&sync_mtx);
2648 	for (;;) {
2649 		if (syncer_state == SYNCER_FINAL_DELAY &&
2650 		    syncer_final_iter == 0) {
2651 			mtx_unlock(&sync_mtx);
2652 			kproc_suspend_check(td->td_proc);
2653 			mtx_lock(&sync_mtx);
2654 		}
2655 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2656 		if (syncer_state != SYNCER_RUNNING &&
2657 		    starttime != time_uptime) {
2658 			if (first_printf) {
2659 				printf("\nSyncing disks, vnodes remaining... ");
2660 				first_printf = 0;
2661 			}
2662 			printf("%d ", net_worklist_len);
2663 		}
2664 		starttime = time_uptime;
2665 
2666 		/*
2667 		 * Push files whose dirty time has expired.  Be careful
2668 		 * of interrupt race on slp queue.
2669 		 *
2670 		 * Skip over empty worklist slots when shutting down.
2671 		 */
2672 		do {
2673 			slp = &syncer_workitem_pending[syncer_delayno];
2674 			syncer_delayno += 1;
2675 			if (syncer_delayno == syncer_maxdelay)
2676 				syncer_delayno = 0;
2677 			next = &syncer_workitem_pending[syncer_delayno];
2678 			/*
2679 			 * If the worklist has wrapped since the
2680 			 * it was emptied of all but syncer vnodes,
2681 			 * switch to the FINAL_DELAY state and run
2682 			 * for one more second.
2683 			 */
2684 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2685 			    net_worklist_len == 0 &&
2686 			    last_work_seen == syncer_delayno) {
2687 				syncer_state = SYNCER_FINAL_DELAY;
2688 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2689 			}
2690 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2691 		    syncer_worklist_len > 0);
2692 
2693 		/*
2694 		 * Keep track of the last time there was anything
2695 		 * on the worklist other than syncer vnodes.
2696 		 * Return to the SHUTTING_DOWN state if any
2697 		 * new work appears.
2698 		 */
2699 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2700 			last_work_seen = syncer_delayno;
2701 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2702 			syncer_state = SYNCER_SHUTTING_DOWN;
2703 		while (!LIST_EMPTY(slp)) {
2704 			error = sync_vnode(slp, &bo, td);
2705 			if (error == 1) {
2706 				LIST_REMOVE(bo, bo_synclist);
2707 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2708 				continue;
2709 			}
2710 
2711 			if (first_printf == 0) {
2712 				/*
2713 				 * Drop the sync mutex, because some watchdog
2714 				 * drivers need to sleep while patting
2715 				 */
2716 				mtx_unlock(&sync_mtx);
2717 				wdog_kern_pat(WD_LASTVAL);
2718 				mtx_lock(&sync_mtx);
2719 			}
2720 		}
2721 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2722 			syncer_final_iter--;
2723 		/*
2724 		 * The variable rushjob allows the kernel to speed up the
2725 		 * processing of the filesystem syncer process. A rushjob
2726 		 * value of N tells the filesystem syncer to process the next
2727 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2728 		 * is used by the soft update code to speed up the filesystem
2729 		 * syncer process when the incore state is getting so far
2730 		 * ahead of the disk that the kernel memory pool is being
2731 		 * threatened with exhaustion.
2732 		 */
2733 		if (rushjob > 0) {
2734 			rushjob -= 1;
2735 			continue;
2736 		}
2737 		/*
2738 		 * Just sleep for a short period of time between
2739 		 * iterations when shutting down to allow some I/O
2740 		 * to happen.
2741 		 *
2742 		 * If it has taken us less than a second to process the
2743 		 * current work, then wait. Otherwise start right over
2744 		 * again. We can still lose time if any single round
2745 		 * takes more than two seconds, but it does not really
2746 		 * matter as we are just trying to generally pace the
2747 		 * filesystem activity.
2748 		 */
2749 		if (syncer_state != SYNCER_RUNNING ||
2750 		    time_uptime == starttime) {
2751 			thread_lock(td);
2752 			sched_prio(td, PPAUSE);
2753 			thread_unlock(td);
2754 		}
2755 		if (syncer_state != SYNCER_RUNNING)
2756 			cv_timedwait(&sync_wakeup, &sync_mtx,
2757 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2758 		else if (time_uptime == starttime)
2759 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2760 	}
2761 }
2762 
2763 /*
2764  * Request the syncer daemon to speed up its work.
2765  * We never push it to speed up more than half of its
2766  * normal turn time, otherwise it could take over the cpu.
2767  */
2768 int
2769 speedup_syncer(void)
2770 {
2771 	int ret = 0;
2772 
2773 	mtx_lock(&sync_mtx);
2774 	if (rushjob < syncdelay / 2) {
2775 		rushjob += 1;
2776 		stat_rush_requests += 1;
2777 		ret = 1;
2778 	}
2779 	mtx_unlock(&sync_mtx);
2780 	cv_broadcast(&sync_wakeup);
2781 	return (ret);
2782 }
2783 
2784 /*
2785  * Tell the syncer to speed up its work and run though its work
2786  * list several times, then tell it to shut down.
2787  */
2788 static void
2789 syncer_shutdown(void *arg, int howto)
2790 {
2791 
2792 	if (howto & RB_NOSYNC)
2793 		return;
2794 	mtx_lock(&sync_mtx);
2795 	syncer_state = SYNCER_SHUTTING_DOWN;
2796 	rushjob = 0;
2797 	mtx_unlock(&sync_mtx);
2798 	cv_broadcast(&sync_wakeup);
2799 	kproc_shutdown(arg, howto);
2800 }
2801 
2802 void
2803 syncer_suspend(void)
2804 {
2805 
2806 	syncer_shutdown(updateproc, 0);
2807 }
2808 
2809 void
2810 syncer_resume(void)
2811 {
2812 
2813 	mtx_lock(&sync_mtx);
2814 	first_printf = 1;
2815 	syncer_state = SYNCER_RUNNING;
2816 	mtx_unlock(&sync_mtx);
2817 	cv_broadcast(&sync_wakeup);
2818 	kproc_resume(updateproc);
2819 }
2820 
2821 /*
2822  * Move the buffer between the clean and dirty lists of its vnode.
2823  */
2824 void
2825 reassignbuf(struct buf *bp)
2826 {
2827 	struct vnode *vp;
2828 	struct bufobj *bo;
2829 	int delay;
2830 #ifdef INVARIANTS
2831 	struct bufv *bv;
2832 #endif
2833 
2834 	vp = bp->b_vp;
2835 	bo = bp->b_bufobj;
2836 
2837 	KASSERT((bp->b_flags & B_PAGING) == 0,
2838 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2839 
2840 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2841 	    bp, bp->b_vp, bp->b_flags);
2842 
2843 	BO_LOCK(bo);
2844 	buf_vlist_remove(bp);
2845 
2846 	/*
2847 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2848 	 * of clean buffers.
2849 	 */
2850 	if (bp->b_flags & B_DELWRI) {
2851 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2852 			switch (vp->v_type) {
2853 			case VDIR:
2854 				delay = dirdelay;
2855 				break;
2856 			case VCHR:
2857 				delay = metadelay;
2858 				break;
2859 			default:
2860 				delay = filedelay;
2861 			}
2862 			vn_syncer_add_to_worklist(bo, delay);
2863 		}
2864 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2865 	} else {
2866 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2867 
2868 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2869 			mtx_lock(&sync_mtx);
2870 			LIST_REMOVE(bo, bo_synclist);
2871 			syncer_worklist_len--;
2872 			mtx_unlock(&sync_mtx);
2873 			bo->bo_flag &= ~BO_ONWORKLST;
2874 		}
2875 	}
2876 #ifdef INVARIANTS
2877 	bv = &bo->bo_clean;
2878 	bp = TAILQ_FIRST(&bv->bv_hd);
2879 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2880 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2881 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2882 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2883 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2884 	bv = &bo->bo_dirty;
2885 	bp = TAILQ_FIRST(&bv->bv_hd);
2886 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2887 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2888 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2889 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2890 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2891 #endif
2892 	BO_UNLOCK(bo);
2893 }
2894 
2895 static void
2896 v_init_counters(struct vnode *vp)
2897 {
2898 
2899 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2900 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2901 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2902 
2903 	refcount_init(&vp->v_holdcnt, 1);
2904 	refcount_init(&vp->v_usecount, 1);
2905 }
2906 
2907 /*
2908  * Grab a particular vnode from the free list, increment its
2909  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2910  * is being destroyed.  Only callers who specify LK_RETRY will
2911  * see doomed vnodes.  If inactive processing was delayed in
2912  * vput try to do it here.
2913  *
2914  * usecount is manipulated using atomics without holding any locks.
2915  *
2916  * holdcnt can be manipulated using atomics without holding any locks,
2917  * except when transitioning 1<->0, in which case the interlock is held.
2918  *
2919  * Consumers which don't guarantee liveness of the vnode can use SMR to
2920  * try to get a reference. Note this operation can fail since the vnode
2921  * may be awaiting getting freed by the time they get to it.
2922  */
2923 enum vgetstate
2924 vget_prep_smr(struct vnode *vp)
2925 {
2926 	enum vgetstate vs;
2927 
2928 	VFS_SMR_ASSERT_ENTERED();
2929 
2930 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2931 		vs = VGET_USECOUNT;
2932 	} else {
2933 		if (vhold_smr(vp))
2934 			vs = VGET_HOLDCNT;
2935 		else
2936 			vs = VGET_NONE;
2937 	}
2938 	return (vs);
2939 }
2940 
2941 enum vgetstate
2942 vget_prep(struct vnode *vp)
2943 {
2944 	enum vgetstate vs;
2945 
2946 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2947 		vs = VGET_USECOUNT;
2948 	} else {
2949 		vhold(vp);
2950 		vs = VGET_HOLDCNT;
2951 	}
2952 	return (vs);
2953 }
2954 
2955 void
2956 vget_abort(struct vnode *vp, enum vgetstate vs)
2957 {
2958 
2959 	switch (vs) {
2960 	case VGET_USECOUNT:
2961 		vrele(vp);
2962 		break;
2963 	case VGET_HOLDCNT:
2964 		vdrop(vp);
2965 		break;
2966 	default:
2967 		__assert_unreachable();
2968 	}
2969 }
2970 
2971 int
2972 vget(struct vnode *vp, int flags)
2973 {
2974 	enum vgetstate vs;
2975 
2976 	vs = vget_prep(vp);
2977 	return (vget_finish(vp, flags, vs));
2978 }
2979 
2980 int
2981 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2982 {
2983 	int error;
2984 
2985 	if ((flags & LK_INTERLOCK) != 0)
2986 		ASSERT_VI_LOCKED(vp, __func__);
2987 	else
2988 		ASSERT_VI_UNLOCKED(vp, __func__);
2989 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
2990 	VNPASS(vp->v_holdcnt > 0, vp);
2991 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
2992 
2993 	error = vn_lock(vp, flags);
2994 	if (__predict_false(error != 0)) {
2995 		vget_abort(vp, vs);
2996 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2997 		    vp);
2998 		return (error);
2999 	}
3000 
3001 	vget_finish_ref(vp, vs);
3002 	return (0);
3003 }
3004 
3005 void
3006 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3007 {
3008 	int old;
3009 
3010 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3011 	VNPASS(vp->v_holdcnt > 0, vp);
3012 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3013 
3014 	if (vs == VGET_USECOUNT)
3015 		return;
3016 
3017 	/*
3018 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3019 	 * the vnode around. Otherwise someone else lended their hold count and
3020 	 * we have to drop ours.
3021 	 */
3022 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3023 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3024 	if (old != 0) {
3025 #ifdef INVARIANTS
3026 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3027 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3028 #else
3029 		refcount_release(&vp->v_holdcnt);
3030 #endif
3031 	}
3032 }
3033 
3034 void
3035 vref(struct vnode *vp)
3036 {
3037 	enum vgetstate vs;
3038 
3039 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3040 	vs = vget_prep(vp);
3041 	vget_finish_ref(vp, vs);
3042 }
3043 
3044 void
3045 vrefact(struct vnode *vp)
3046 {
3047 
3048 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3049 #ifdef INVARIANTS
3050 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3051 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3052 #else
3053 	refcount_acquire(&vp->v_usecount);
3054 #endif
3055 }
3056 
3057 void
3058 vlazy(struct vnode *vp)
3059 {
3060 	struct mount *mp;
3061 
3062 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3063 
3064 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3065 		return;
3066 	/*
3067 	 * We may get here for inactive routines after the vnode got doomed.
3068 	 */
3069 	if (VN_IS_DOOMED(vp))
3070 		return;
3071 	mp = vp->v_mount;
3072 	mtx_lock(&mp->mnt_listmtx);
3073 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3074 		vp->v_mflag |= VMP_LAZYLIST;
3075 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3076 		mp->mnt_lazyvnodelistsize++;
3077 	}
3078 	mtx_unlock(&mp->mnt_listmtx);
3079 }
3080 
3081 static void
3082 vunlazy(struct vnode *vp)
3083 {
3084 	struct mount *mp;
3085 
3086 	ASSERT_VI_LOCKED(vp, __func__);
3087 	VNPASS(!VN_IS_DOOMED(vp), vp);
3088 
3089 	mp = vp->v_mount;
3090 	mtx_lock(&mp->mnt_listmtx);
3091 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3092 	/*
3093 	 * Don't remove the vnode from the lazy list if another thread
3094 	 * has increased the hold count. It may have re-enqueued the
3095 	 * vnode to the lazy list and is now responsible for its
3096 	 * removal.
3097 	 */
3098 	if (vp->v_holdcnt == 0) {
3099 		vp->v_mflag &= ~VMP_LAZYLIST;
3100 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3101 		mp->mnt_lazyvnodelistsize--;
3102 	}
3103 	mtx_unlock(&mp->mnt_listmtx);
3104 }
3105 
3106 /*
3107  * This routine is only meant to be called from vgonel prior to dooming
3108  * the vnode.
3109  */
3110 static void
3111 vunlazy_gone(struct vnode *vp)
3112 {
3113 	struct mount *mp;
3114 
3115 	ASSERT_VOP_ELOCKED(vp, __func__);
3116 	ASSERT_VI_LOCKED(vp, __func__);
3117 	VNPASS(!VN_IS_DOOMED(vp), vp);
3118 
3119 	if (vp->v_mflag & VMP_LAZYLIST) {
3120 		mp = vp->v_mount;
3121 		mtx_lock(&mp->mnt_listmtx);
3122 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3123 		vp->v_mflag &= ~VMP_LAZYLIST;
3124 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3125 		mp->mnt_lazyvnodelistsize--;
3126 		mtx_unlock(&mp->mnt_listmtx);
3127 	}
3128 }
3129 
3130 static void
3131 vdefer_inactive(struct vnode *vp)
3132 {
3133 
3134 	ASSERT_VI_LOCKED(vp, __func__);
3135 	VNASSERT(vp->v_holdcnt > 0, vp,
3136 	    ("%s: vnode without hold count", __func__));
3137 	if (VN_IS_DOOMED(vp)) {
3138 		vdropl(vp);
3139 		return;
3140 	}
3141 	if (vp->v_iflag & VI_DEFINACT) {
3142 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3143 		vdropl(vp);
3144 		return;
3145 	}
3146 	if (vp->v_usecount > 0) {
3147 		vp->v_iflag &= ~VI_OWEINACT;
3148 		vdropl(vp);
3149 		return;
3150 	}
3151 	vlazy(vp);
3152 	vp->v_iflag |= VI_DEFINACT;
3153 	VI_UNLOCK(vp);
3154 	counter_u64_add(deferred_inact, 1);
3155 }
3156 
3157 static void
3158 vdefer_inactive_unlocked(struct vnode *vp)
3159 {
3160 
3161 	VI_LOCK(vp);
3162 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3163 		vdropl(vp);
3164 		return;
3165 	}
3166 	vdefer_inactive(vp);
3167 }
3168 
3169 enum vput_op { VRELE, VPUT, VUNREF };
3170 
3171 /*
3172  * Handle ->v_usecount transitioning to 0.
3173  *
3174  * By releasing the last usecount we take ownership of the hold count which
3175  * provides liveness of the vnode, meaning we have to vdrop.
3176  *
3177  * For all vnodes we may need to perform inactive processing. It requires an
3178  * exclusive lock on the vnode, while it is legal to call here with only a
3179  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3180  * inactive processing gets deferred to the syncer.
3181  *
3182  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3183  * on the lock being held all the way until VOP_INACTIVE. This in particular
3184  * happens with UFS which adds half-constructed vnodes to the hash, where they
3185  * can be found by other code.
3186  */
3187 static void
3188 vput_final(struct vnode *vp, enum vput_op func)
3189 {
3190 	int error;
3191 	bool want_unlock;
3192 
3193 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3194 	VNPASS(vp->v_holdcnt > 0, vp);
3195 
3196 	VI_LOCK(vp);
3197 
3198 	/*
3199 	 * By the time we got here someone else might have transitioned
3200 	 * the count back to > 0.
3201 	 */
3202 	if (vp->v_usecount > 0)
3203 		goto out;
3204 
3205 	/*
3206 	 * If the vnode is doomed vgone already performed inactive processing
3207 	 * (if needed).
3208 	 */
3209 	if (VN_IS_DOOMED(vp))
3210 		goto out;
3211 
3212 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3213 		goto out;
3214 
3215 	if (vp->v_iflag & VI_DOINGINACT)
3216 		goto out;
3217 
3218 	/*
3219 	 * Locking operations here will drop the interlock and possibly the
3220 	 * vnode lock, opening a window where the vnode can get doomed all the
3221 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3222 	 * perform inactive.
3223 	 */
3224 	vp->v_iflag |= VI_OWEINACT;
3225 	want_unlock = false;
3226 	error = 0;
3227 	switch (func) {
3228 	case VRELE:
3229 		switch (VOP_ISLOCKED(vp)) {
3230 		case LK_EXCLUSIVE:
3231 			break;
3232 		case LK_EXCLOTHER:
3233 		case 0:
3234 			want_unlock = true;
3235 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3236 			VI_LOCK(vp);
3237 			break;
3238 		default:
3239 			/*
3240 			 * The lock has at least one sharer, but we have no way
3241 			 * to conclude whether this is us. Play it safe and
3242 			 * defer processing.
3243 			 */
3244 			error = EAGAIN;
3245 			break;
3246 		}
3247 		break;
3248 	case VPUT:
3249 		want_unlock = true;
3250 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3251 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3252 			    LK_NOWAIT);
3253 			VI_LOCK(vp);
3254 		}
3255 		break;
3256 	case VUNREF:
3257 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3258 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3259 			VI_LOCK(vp);
3260 		}
3261 		break;
3262 	}
3263 	if (error == 0) {
3264 		if (func == VUNREF) {
3265 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3266 			    ("recursive vunref"));
3267 			vp->v_vflag |= VV_UNREF;
3268 		}
3269 		for (;;) {
3270 			error = vinactive(vp);
3271 			if (want_unlock)
3272 				VOP_UNLOCK(vp);
3273 			if (error != ERELOOKUP || !want_unlock)
3274 				break;
3275 			VOP_LOCK(vp, LK_EXCLUSIVE);
3276 		}
3277 		if (func == VUNREF)
3278 			vp->v_vflag &= ~VV_UNREF;
3279 		vdropl(vp);
3280 	} else {
3281 		vdefer_inactive(vp);
3282 	}
3283 	return;
3284 out:
3285 	if (func == VPUT)
3286 		VOP_UNLOCK(vp);
3287 	vdropl(vp);
3288 }
3289 
3290 /*
3291  * Decrement ->v_usecount for a vnode.
3292  *
3293  * Releasing the last use count requires additional processing, see vput_final
3294  * above for details.
3295  *
3296  * Comment above each variant denotes lock state on entry and exit.
3297  */
3298 
3299 /*
3300  * in: any
3301  * out: same as passed in
3302  */
3303 void
3304 vrele(struct vnode *vp)
3305 {
3306 
3307 	ASSERT_VI_UNLOCKED(vp, __func__);
3308 	if (!refcount_release(&vp->v_usecount))
3309 		return;
3310 	vput_final(vp, VRELE);
3311 }
3312 
3313 /*
3314  * in: locked
3315  * out: unlocked
3316  */
3317 void
3318 vput(struct vnode *vp)
3319 {
3320 
3321 	ASSERT_VOP_LOCKED(vp, __func__);
3322 	ASSERT_VI_UNLOCKED(vp, __func__);
3323 	if (!refcount_release(&vp->v_usecount)) {
3324 		VOP_UNLOCK(vp);
3325 		return;
3326 	}
3327 	vput_final(vp, VPUT);
3328 }
3329 
3330 /*
3331  * in: locked
3332  * out: locked
3333  */
3334 void
3335 vunref(struct vnode *vp)
3336 {
3337 
3338 	ASSERT_VOP_LOCKED(vp, __func__);
3339 	ASSERT_VI_UNLOCKED(vp, __func__);
3340 	if (!refcount_release(&vp->v_usecount))
3341 		return;
3342 	vput_final(vp, VUNREF);
3343 }
3344 
3345 void
3346 vhold(struct vnode *vp)
3347 {
3348 	int old;
3349 
3350 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3351 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3352 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3353 	    ("%s: wrong hold count %d", __func__, old));
3354 	if (old == 0)
3355 		vfs_freevnodes_dec();
3356 }
3357 
3358 void
3359 vholdnz(struct vnode *vp)
3360 {
3361 
3362 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3363 #ifdef INVARIANTS
3364 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3365 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3366 	    ("%s: wrong hold count %d", __func__, old));
3367 #else
3368 	atomic_add_int(&vp->v_holdcnt, 1);
3369 #endif
3370 }
3371 
3372 /*
3373  * Grab a hold count unless the vnode is freed.
3374  *
3375  * Only use this routine if vfs smr is the only protection you have against
3376  * freeing the vnode.
3377  *
3378  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3379  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3380  * the thread which managed to set the flag.
3381  *
3382  * It may be tempting to replace the loop with:
3383  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3384  * if (count & VHOLD_NO_SMR) {
3385  *     backpedal and error out;
3386  * }
3387  *
3388  * However, while this is more performant, it hinders debugging by eliminating
3389  * the previously mentioned invariant.
3390  */
3391 bool
3392 vhold_smr(struct vnode *vp)
3393 {
3394 	int count;
3395 
3396 	VFS_SMR_ASSERT_ENTERED();
3397 
3398 	count = atomic_load_int(&vp->v_holdcnt);
3399 	for (;;) {
3400 		if (count & VHOLD_NO_SMR) {
3401 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3402 			    ("non-zero hold count with flags %d\n", count));
3403 			return (false);
3404 		}
3405 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3406 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3407 			if (count == 0)
3408 				vfs_freevnodes_dec();
3409 			return (true);
3410 		}
3411 	}
3412 }
3413 
3414 /*
3415  * Hold a free vnode for recycling.
3416  *
3417  * Note: vnode_init references this comment.
3418  *
3419  * Attempts to recycle only need the global vnode list lock and have no use for
3420  * SMR.
3421  *
3422  * However, vnodes get inserted into the global list before they get fully
3423  * initialized and stay there until UMA decides to free the memory. This in
3424  * particular means the target can be found before it becomes usable and after
3425  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3426  * VHOLD_NO_SMR.
3427  *
3428  * Note: the vnode may gain more references after we transition the count 0->1.
3429  */
3430 static bool
3431 vhold_recycle_free(struct vnode *vp)
3432 {
3433 	int count;
3434 
3435 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3436 
3437 	count = atomic_load_int(&vp->v_holdcnt);
3438 	for (;;) {
3439 		if (count & VHOLD_NO_SMR) {
3440 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3441 			    ("non-zero hold count with flags %d\n", count));
3442 			return (false);
3443 		}
3444 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3445 		if (count > 0) {
3446 			return (false);
3447 		}
3448 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3449 			vfs_freevnodes_dec();
3450 			return (true);
3451 		}
3452 	}
3453 }
3454 
3455 static void __noinline
3456 vdbatch_process(struct vdbatch *vd)
3457 {
3458 	struct vnode *vp;
3459 	int i;
3460 
3461 	mtx_assert(&vd->lock, MA_OWNED);
3462 	MPASS(curthread->td_pinned > 0);
3463 	MPASS(vd->index == VDBATCH_SIZE);
3464 
3465 	mtx_lock(&vnode_list_mtx);
3466 	critical_enter();
3467 	freevnodes += vd->freevnodes;
3468 	for (i = 0; i < VDBATCH_SIZE; i++) {
3469 		vp = vd->tab[i];
3470 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3471 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3472 		MPASS(vp->v_dbatchcpu != NOCPU);
3473 		vp->v_dbatchcpu = NOCPU;
3474 	}
3475 	mtx_unlock(&vnode_list_mtx);
3476 	vd->freevnodes = 0;
3477 	bzero(vd->tab, sizeof(vd->tab));
3478 	vd->index = 0;
3479 	critical_exit();
3480 }
3481 
3482 static void
3483 vdbatch_enqueue(struct vnode *vp)
3484 {
3485 	struct vdbatch *vd;
3486 
3487 	ASSERT_VI_LOCKED(vp, __func__);
3488 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3489 	    ("%s: deferring requeue of a doomed vnode", __func__));
3490 
3491 	if (vp->v_dbatchcpu != NOCPU) {
3492 		VI_UNLOCK(vp);
3493 		return;
3494 	}
3495 
3496 	sched_pin();
3497 	vd = DPCPU_PTR(vd);
3498 	mtx_lock(&vd->lock);
3499 	MPASS(vd->index < VDBATCH_SIZE);
3500 	MPASS(vd->tab[vd->index] == NULL);
3501 	/*
3502 	 * A hack: we depend on being pinned so that we know what to put in
3503 	 * ->v_dbatchcpu.
3504 	 */
3505 	vp->v_dbatchcpu = curcpu;
3506 	vd->tab[vd->index] = vp;
3507 	vd->index++;
3508 	VI_UNLOCK(vp);
3509 	if (vd->index == VDBATCH_SIZE)
3510 		vdbatch_process(vd);
3511 	mtx_unlock(&vd->lock);
3512 	sched_unpin();
3513 }
3514 
3515 /*
3516  * This routine must only be called for vnodes which are about to be
3517  * deallocated. Supporting dequeue for arbitrary vndoes would require
3518  * validating that the locked batch matches.
3519  */
3520 static void
3521 vdbatch_dequeue(struct vnode *vp)
3522 {
3523 	struct vdbatch *vd;
3524 	int i;
3525 	short cpu;
3526 
3527 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3528 	    ("%s: called for a used vnode\n", __func__));
3529 
3530 	cpu = vp->v_dbatchcpu;
3531 	if (cpu == NOCPU)
3532 		return;
3533 
3534 	vd = DPCPU_ID_PTR(cpu, vd);
3535 	mtx_lock(&vd->lock);
3536 	for (i = 0; i < vd->index; i++) {
3537 		if (vd->tab[i] != vp)
3538 			continue;
3539 		vp->v_dbatchcpu = NOCPU;
3540 		vd->index--;
3541 		vd->tab[i] = vd->tab[vd->index];
3542 		vd->tab[vd->index] = NULL;
3543 		break;
3544 	}
3545 	mtx_unlock(&vd->lock);
3546 	/*
3547 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3548 	 */
3549 	MPASS(vp->v_dbatchcpu == NOCPU);
3550 }
3551 
3552 /*
3553  * Drop the hold count of the vnode.  If this is the last reference to
3554  * the vnode we place it on the free list unless it has been vgone'd
3555  * (marked VIRF_DOOMED) in which case we will free it.
3556  *
3557  * Because the vnode vm object keeps a hold reference on the vnode if
3558  * there is at least one resident non-cached page, the vnode cannot
3559  * leave the active list without the page cleanup done.
3560  */
3561 static void __noinline
3562 vdropl_final(struct vnode *vp)
3563 {
3564 
3565 	ASSERT_VI_LOCKED(vp, __func__);
3566 	VNPASS(VN_IS_DOOMED(vp), vp);
3567 	/*
3568 	 * Set the VHOLD_NO_SMR flag.
3569 	 *
3570 	 * We may be racing against vhold_smr. If they win we can just pretend
3571 	 * we never got this far, they will vdrop later.
3572 	 */
3573 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3574 		vfs_freevnodes_inc();
3575 		VI_UNLOCK(vp);
3576 		/*
3577 		 * We lost the aforementioned race. Any subsequent access is
3578 		 * invalid as they might have managed to vdropl on their own.
3579 		 */
3580 		return;
3581 	}
3582 	/*
3583 	 * Don't bump freevnodes as this one is going away.
3584 	 */
3585 	freevnode(vp);
3586 }
3587 
3588 void
3589 vdrop(struct vnode *vp)
3590 {
3591 
3592 	ASSERT_VI_UNLOCKED(vp, __func__);
3593 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3594 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3595 		return;
3596 	VI_LOCK(vp);
3597 	vdropl(vp);
3598 }
3599 
3600 void
3601 vdropl(struct vnode *vp)
3602 {
3603 
3604 	ASSERT_VI_LOCKED(vp, __func__);
3605 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3606 	if (!refcount_release(&vp->v_holdcnt)) {
3607 		VI_UNLOCK(vp);
3608 		return;
3609 	}
3610 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3611 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3612 	if (VN_IS_DOOMED(vp)) {
3613 		vdropl_final(vp);
3614 		return;
3615 	}
3616 
3617 	vfs_freevnodes_inc();
3618 	if (vp->v_mflag & VMP_LAZYLIST) {
3619 		vunlazy(vp);
3620 	}
3621 	/*
3622 	 * Also unlocks the interlock. We can't assert on it as we
3623 	 * released our hold and by now the vnode might have been
3624 	 * freed.
3625 	 */
3626 	vdbatch_enqueue(vp);
3627 }
3628 
3629 /*
3630  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3631  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3632  */
3633 static int
3634 vinactivef(struct vnode *vp)
3635 {
3636 	struct vm_object *obj;
3637 	int error;
3638 
3639 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3640 	ASSERT_VI_LOCKED(vp, "vinactive");
3641 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3642 	    ("vinactive: recursed on VI_DOINGINACT"));
3643 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3644 	vp->v_iflag |= VI_DOINGINACT;
3645 	vp->v_iflag &= ~VI_OWEINACT;
3646 	VI_UNLOCK(vp);
3647 	/*
3648 	 * Before moving off the active list, we must be sure that any
3649 	 * modified pages are converted into the vnode's dirty
3650 	 * buffers, since these will no longer be checked once the
3651 	 * vnode is on the inactive list.
3652 	 *
3653 	 * The write-out of the dirty pages is asynchronous.  At the
3654 	 * point that VOP_INACTIVE() is called, there could still be
3655 	 * pending I/O and dirty pages in the object.
3656 	 */
3657 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3658 	    vm_object_mightbedirty(obj)) {
3659 		VM_OBJECT_WLOCK(obj);
3660 		vm_object_page_clean(obj, 0, 0, 0);
3661 		VM_OBJECT_WUNLOCK(obj);
3662 	}
3663 	error = VOP_INACTIVE(vp);
3664 	VI_LOCK(vp);
3665 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3666 	    ("vinactive: lost VI_DOINGINACT"));
3667 	vp->v_iflag &= ~VI_DOINGINACT;
3668 	return (error);
3669 }
3670 
3671 int
3672 vinactive(struct vnode *vp)
3673 {
3674 
3675 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3676 	ASSERT_VI_LOCKED(vp, "vinactive");
3677 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3678 
3679 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3680 		return (0);
3681 	if (vp->v_iflag & VI_DOINGINACT)
3682 		return (0);
3683 	if (vp->v_usecount > 0) {
3684 		vp->v_iflag &= ~VI_OWEINACT;
3685 		return (0);
3686 	}
3687 	return (vinactivef(vp));
3688 }
3689 
3690 /*
3691  * Remove any vnodes in the vnode table belonging to mount point mp.
3692  *
3693  * If FORCECLOSE is not specified, there should not be any active ones,
3694  * return error if any are found (nb: this is a user error, not a
3695  * system error). If FORCECLOSE is specified, detach any active vnodes
3696  * that are found.
3697  *
3698  * If WRITECLOSE is set, only flush out regular file vnodes open for
3699  * writing.
3700  *
3701  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3702  *
3703  * `rootrefs' specifies the base reference count for the root vnode
3704  * of this filesystem. The root vnode is considered busy if its
3705  * v_usecount exceeds this value. On a successful return, vflush(, td)
3706  * will call vrele() on the root vnode exactly rootrefs times.
3707  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3708  * be zero.
3709  */
3710 #ifdef DIAGNOSTIC
3711 static int busyprt = 0;		/* print out busy vnodes */
3712 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3713 #endif
3714 
3715 int
3716 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3717 {
3718 	struct vnode *vp, *mvp, *rootvp = NULL;
3719 	struct vattr vattr;
3720 	int busy = 0, error;
3721 
3722 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3723 	    rootrefs, flags);
3724 	if (rootrefs > 0) {
3725 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3726 		    ("vflush: bad args"));
3727 		/*
3728 		 * Get the filesystem root vnode. We can vput() it
3729 		 * immediately, since with rootrefs > 0, it won't go away.
3730 		 */
3731 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3732 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3733 			    __func__, error);
3734 			return (error);
3735 		}
3736 		vput(rootvp);
3737 	}
3738 loop:
3739 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3740 		vholdl(vp);
3741 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3742 		if (error) {
3743 			vdrop(vp);
3744 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3745 			goto loop;
3746 		}
3747 		/*
3748 		 * Skip over a vnodes marked VV_SYSTEM.
3749 		 */
3750 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3751 			VOP_UNLOCK(vp);
3752 			vdrop(vp);
3753 			continue;
3754 		}
3755 		/*
3756 		 * If WRITECLOSE is set, flush out unlinked but still open
3757 		 * files (even if open only for reading) and regular file
3758 		 * vnodes open for writing.
3759 		 */
3760 		if (flags & WRITECLOSE) {
3761 			if (vp->v_object != NULL) {
3762 				VM_OBJECT_WLOCK(vp->v_object);
3763 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3764 				VM_OBJECT_WUNLOCK(vp->v_object);
3765 			}
3766 			do {
3767 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3768 			} while (error == ERELOOKUP);
3769 			if (error != 0) {
3770 				VOP_UNLOCK(vp);
3771 				vdrop(vp);
3772 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3773 				return (error);
3774 			}
3775 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3776 			VI_LOCK(vp);
3777 
3778 			if ((vp->v_type == VNON ||
3779 			    (error == 0 && vattr.va_nlink > 0)) &&
3780 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3781 				VOP_UNLOCK(vp);
3782 				vdropl(vp);
3783 				continue;
3784 			}
3785 		} else
3786 			VI_LOCK(vp);
3787 		/*
3788 		 * With v_usecount == 0, all we need to do is clear out the
3789 		 * vnode data structures and we are done.
3790 		 *
3791 		 * If FORCECLOSE is set, forcibly close the vnode.
3792 		 */
3793 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3794 			vgonel(vp);
3795 		} else {
3796 			busy++;
3797 #ifdef DIAGNOSTIC
3798 			if (busyprt)
3799 				vn_printf(vp, "vflush: busy vnode ");
3800 #endif
3801 		}
3802 		VOP_UNLOCK(vp);
3803 		vdropl(vp);
3804 	}
3805 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3806 		/*
3807 		 * If just the root vnode is busy, and if its refcount
3808 		 * is equal to `rootrefs', then go ahead and kill it.
3809 		 */
3810 		VI_LOCK(rootvp);
3811 		KASSERT(busy > 0, ("vflush: not busy"));
3812 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3813 		    ("vflush: usecount %d < rootrefs %d",
3814 		     rootvp->v_usecount, rootrefs));
3815 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3816 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3817 			vgone(rootvp);
3818 			VOP_UNLOCK(rootvp);
3819 			busy = 0;
3820 		} else
3821 			VI_UNLOCK(rootvp);
3822 	}
3823 	if (busy) {
3824 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3825 		    busy);
3826 		return (EBUSY);
3827 	}
3828 	for (; rootrefs > 0; rootrefs--)
3829 		vrele(rootvp);
3830 	return (0);
3831 }
3832 
3833 /*
3834  * Recycle an unused vnode to the front of the free list.
3835  */
3836 int
3837 vrecycle(struct vnode *vp)
3838 {
3839 	int recycled;
3840 
3841 	VI_LOCK(vp);
3842 	recycled = vrecyclel(vp);
3843 	VI_UNLOCK(vp);
3844 	return (recycled);
3845 }
3846 
3847 /*
3848  * vrecycle, with the vp interlock held.
3849  */
3850 int
3851 vrecyclel(struct vnode *vp)
3852 {
3853 	int recycled;
3854 
3855 	ASSERT_VOP_ELOCKED(vp, __func__);
3856 	ASSERT_VI_LOCKED(vp, __func__);
3857 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3858 	recycled = 0;
3859 	if (vp->v_usecount == 0) {
3860 		recycled = 1;
3861 		vgonel(vp);
3862 	}
3863 	return (recycled);
3864 }
3865 
3866 /*
3867  * Eliminate all activity associated with a vnode
3868  * in preparation for reuse.
3869  */
3870 void
3871 vgone(struct vnode *vp)
3872 {
3873 	VI_LOCK(vp);
3874 	vgonel(vp);
3875 	VI_UNLOCK(vp);
3876 }
3877 
3878 /*
3879  * Notify upper mounts about reclaimed or unlinked vnode.
3880  */
3881 void
3882 vfs_notify_upper(struct vnode *vp, int event)
3883 {
3884 	struct mount *mp;
3885 	struct mount_upper_node *ump;
3886 
3887 	mp = atomic_load_ptr(&vp->v_mount);
3888 	if (mp == NULL)
3889 		return;
3890 	if (TAILQ_EMPTY(&mp->mnt_notify))
3891 		return;
3892 
3893 	MNT_ILOCK(mp);
3894 	mp->mnt_upper_pending++;
3895 	KASSERT(mp->mnt_upper_pending > 0,
3896 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3897 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3898 		MNT_IUNLOCK(mp);
3899 		switch (event) {
3900 		case VFS_NOTIFY_UPPER_RECLAIM:
3901 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
3902 			break;
3903 		case VFS_NOTIFY_UPPER_UNLINK:
3904 			VFS_UNLINK_LOWERVP(ump->mp, vp);
3905 			break;
3906 		default:
3907 			KASSERT(0, ("invalid event %d", event));
3908 			break;
3909 		}
3910 		MNT_ILOCK(mp);
3911 	}
3912 	mp->mnt_upper_pending--;
3913 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
3914 	    mp->mnt_upper_pending == 0) {
3915 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
3916 		wakeup(&mp->mnt_uppers);
3917 	}
3918 	MNT_IUNLOCK(mp);
3919 }
3920 
3921 /*
3922  * vgone, with the vp interlock held.
3923  */
3924 static void
3925 vgonel(struct vnode *vp)
3926 {
3927 	struct thread *td;
3928 	struct mount *mp;
3929 	vm_object_t object;
3930 	bool active, doinginact, oweinact;
3931 
3932 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3933 	ASSERT_VI_LOCKED(vp, "vgonel");
3934 	VNASSERT(vp->v_holdcnt, vp,
3935 	    ("vgonel: vp %p has no reference.", vp));
3936 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3937 	td = curthread;
3938 
3939 	/*
3940 	 * Don't vgonel if we're already doomed.
3941 	 */
3942 	if (VN_IS_DOOMED(vp))
3943 		return;
3944 	/*
3945 	 * Paired with freevnode.
3946 	 */
3947 	vn_seqc_write_begin_locked(vp);
3948 	vunlazy_gone(vp);
3949 	vn_irflag_set_locked(vp, VIRF_DOOMED);
3950 
3951 	/*
3952 	 * Check to see if the vnode is in use.  If so, we have to
3953 	 * call VOP_CLOSE() and VOP_INACTIVE().
3954 	 *
3955 	 * It could be that VOP_INACTIVE() requested reclamation, in
3956 	 * which case we should avoid recursion, so check
3957 	 * VI_DOINGINACT.  This is not precise but good enough.
3958 	 */
3959 	active = vp->v_usecount > 0;
3960 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3961 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
3962 
3963 	/*
3964 	 * If we need to do inactive VI_OWEINACT will be set.
3965 	 */
3966 	if (vp->v_iflag & VI_DEFINACT) {
3967 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3968 		vp->v_iflag &= ~VI_DEFINACT;
3969 		vdropl(vp);
3970 	} else {
3971 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
3972 		VI_UNLOCK(vp);
3973 	}
3974 	cache_purge_vgone(vp);
3975 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3976 
3977 	/*
3978 	 * If purging an active vnode, it must be closed and
3979 	 * deactivated before being reclaimed.
3980 	 */
3981 	if (active)
3982 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3983 	if (!doinginact) {
3984 		do {
3985 			if (oweinact || active) {
3986 				VI_LOCK(vp);
3987 				vinactivef(vp);
3988 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3989 				VI_UNLOCK(vp);
3990 			}
3991 		} while (oweinact);
3992 	}
3993 	if (vp->v_type == VSOCK)
3994 		vfs_unp_reclaim(vp);
3995 
3996 	/*
3997 	 * Clean out any buffers associated with the vnode.
3998 	 * If the flush fails, just toss the buffers.
3999 	 */
4000 	mp = NULL;
4001 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4002 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4003 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4004 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4005 			;
4006 	}
4007 
4008 	BO_LOCK(&vp->v_bufobj);
4009 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4010 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4011 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4012 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4013 	    ("vp %p bufobj not invalidated", vp));
4014 
4015 	/*
4016 	 * For VMIO bufobj, BO_DEAD is set later, or in
4017 	 * vm_object_terminate() after the object's page queue is
4018 	 * flushed.
4019 	 */
4020 	object = vp->v_bufobj.bo_object;
4021 	if (object == NULL)
4022 		vp->v_bufobj.bo_flag |= BO_DEAD;
4023 	BO_UNLOCK(&vp->v_bufobj);
4024 
4025 	/*
4026 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4027 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4028 	 * should not touch the object borrowed from the lower vnode
4029 	 * (the handle check).
4030 	 */
4031 	if (object != NULL && object->type == OBJT_VNODE &&
4032 	    object->handle == vp)
4033 		vnode_destroy_vobject(vp);
4034 
4035 	/*
4036 	 * Reclaim the vnode.
4037 	 */
4038 	if (VOP_RECLAIM(vp))
4039 		panic("vgone: cannot reclaim");
4040 	if (mp != NULL)
4041 		vn_finished_secondary_write(mp);
4042 	VNASSERT(vp->v_object == NULL, vp,
4043 	    ("vop_reclaim left v_object vp=%p", vp));
4044 	/*
4045 	 * Clear the advisory locks and wake up waiting threads.
4046 	 */
4047 	(void)VOP_ADVLOCKPURGE(vp);
4048 	vp->v_lockf = NULL;
4049 	/*
4050 	 * Delete from old mount point vnode list.
4051 	 */
4052 	delmntque(vp);
4053 	/*
4054 	 * Done with purge, reset to the standard lock and invalidate
4055 	 * the vnode.
4056 	 */
4057 	VI_LOCK(vp);
4058 	vp->v_vnlock = &vp->v_lock;
4059 	vp->v_op = &dead_vnodeops;
4060 	vp->v_type = VBAD;
4061 }
4062 
4063 /*
4064  * Print out a description of a vnode.
4065  */
4066 static const char * const typename[] =
4067 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4068  "VMARKER"};
4069 
4070 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4071     "new hold count flag not added to vn_printf");
4072 
4073 void
4074 vn_printf(struct vnode *vp, const char *fmt, ...)
4075 {
4076 	va_list ap;
4077 	char buf[256], buf2[16];
4078 	u_long flags;
4079 	u_int holdcnt;
4080 	short irflag;
4081 
4082 	va_start(ap, fmt);
4083 	vprintf(fmt, ap);
4084 	va_end(ap);
4085 	printf("%p: ", (void *)vp);
4086 	printf("type %s\n", typename[vp->v_type]);
4087 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4088 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4089 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4090 	    vp->v_seqc_users);
4091 	switch (vp->v_type) {
4092 	case VDIR:
4093 		printf(" mountedhere %p\n", vp->v_mountedhere);
4094 		break;
4095 	case VCHR:
4096 		printf(" rdev %p\n", vp->v_rdev);
4097 		break;
4098 	case VSOCK:
4099 		printf(" socket %p\n", vp->v_unpcb);
4100 		break;
4101 	case VFIFO:
4102 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4103 		break;
4104 	default:
4105 		printf("\n");
4106 		break;
4107 	}
4108 	buf[0] = '\0';
4109 	buf[1] = '\0';
4110 	if (holdcnt & VHOLD_NO_SMR)
4111 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4112 	printf("    hold count flags (%s)\n", buf + 1);
4113 
4114 	buf[0] = '\0';
4115 	buf[1] = '\0';
4116 	irflag = vn_irflag_read(vp);
4117 	if (irflag & VIRF_DOOMED)
4118 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4119 	if (irflag & VIRF_PGREAD)
4120 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4121 	if (irflag & VIRF_MOUNTPOINT)
4122 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4123 	if (irflag & VIRF_TEXT_REF)
4124 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4125 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4126 	if (flags != 0) {
4127 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4128 		strlcat(buf, buf2, sizeof(buf));
4129 	}
4130 	if (vp->v_vflag & VV_ROOT)
4131 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4132 	if (vp->v_vflag & VV_ISTTY)
4133 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4134 	if (vp->v_vflag & VV_NOSYNC)
4135 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4136 	if (vp->v_vflag & VV_ETERNALDEV)
4137 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4138 	if (vp->v_vflag & VV_CACHEDLABEL)
4139 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4140 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4141 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4142 	if (vp->v_vflag & VV_COPYONWRITE)
4143 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4144 	if (vp->v_vflag & VV_SYSTEM)
4145 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4146 	if (vp->v_vflag & VV_PROCDEP)
4147 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4148 	if (vp->v_vflag & VV_DELETED)
4149 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4150 	if (vp->v_vflag & VV_MD)
4151 		strlcat(buf, "|VV_MD", sizeof(buf));
4152 	if (vp->v_vflag & VV_FORCEINSMQ)
4153 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4154 	if (vp->v_vflag & VV_READLINK)
4155 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4156 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4157 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4158 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4159 	if (flags != 0) {
4160 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4161 		strlcat(buf, buf2, sizeof(buf));
4162 	}
4163 	if (vp->v_iflag & VI_MOUNT)
4164 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4165 	if (vp->v_iflag & VI_DOINGINACT)
4166 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4167 	if (vp->v_iflag & VI_OWEINACT)
4168 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4169 	if (vp->v_iflag & VI_DEFINACT)
4170 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4171 	if (vp->v_iflag & VI_FOPENING)
4172 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4173 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4174 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4175 	if (flags != 0) {
4176 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4177 		strlcat(buf, buf2, sizeof(buf));
4178 	}
4179 	if (vp->v_mflag & VMP_LAZYLIST)
4180 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4181 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4182 	if (flags != 0) {
4183 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4184 		strlcat(buf, buf2, sizeof(buf));
4185 	}
4186 	printf("    flags (%s)", buf + 1);
4187 	if (mtx_owned(VI_MTX(vp)))
4188 		printf(" VI_LOCKed");
4189 	printf("\n");
4190 	if (vp->v_object != NULL)
4191 		printf("    v_object %p ref %d pages %d "
4192 		    "cleanbuf %d dirtybuf %d\n",
4193 		    vp->v_object, vp->v_object->ref_count,
4194 		    vp->v_object->resident_page_count,
4195 		    vp->v_bufobj.bo_clean.bv_cnt,
4196 		    vp->v_bufobj.bo_dirty.bv_cnt);
4197 	printf("    ");
4198 	lockmgr_printinfo(vp->v_vnlock);
4199 	if (vp->v_data != NULL)
4200 		VOP_PRINT(vp);
4201 }
4202 
4203 #ifdef DDB
4204 /*
4205  * List all of the locked vnodes in the system.
4206  * Called when debugging the kernel.
4207  */
4208 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
4209 {
4210 	struct mount *mp;
4211 	struct vnode *vp;
4212 
4213 	/*
4214 	 * Note: because this is DDB, we can't obey the locking semantics
4215 	 * for these structures, which means we could catch an inconsistent
4216 	 * state and dereference a nasty pointer.  Not much to be done
4217 	 * about that.
4218 	 */
4219 	db_printf("Locked vnodes\n");
4220 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4221 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4222 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4223 				vn_printf(vp, "vnode ");
4224 		}
4225 	}
4226 }
4227 
4228 /*
4229  * Show details about the given vnode.
4230  */
4231 DB_SHOW_COMMAND(vnode, db_show_vnode)
4232 {
4233 	struct vnode *vp;
4234 
4235 	if (!have_addr)
4236 		return;
4237 	vp = (struct vnode *)addr;
4238 	vn_printf(vp, "vnode ");
4239 }
4240 
4241 /*
4242  * Show details about the given mount point.
4243  */
4244 DB_SHOW_COMMAND(mount, db_show_mount)
4245 {
4246 	struct mount *mp;
4247 	struct vfsopt *opt;
4248 	struct statfs *sp;
4249 	struct vnode *vp;
4250 	char buf[512];
4251 	uint64_t mflags;
4252 	u_int flags;
4253 
4254 	if (!have_addr) {
4255 		/* No address given, print short info about all mount points. */
4256 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4257 			db_printf("%p %s on %s (%s)\n", mp,
4258 			    mp->mnt_stat.f_mntfromname,
4259 			    mp->mnt_stat.f_mntonname,
4260 			    mp->mnt_stat.f_fstypename);
4261 			if (db_pager_quit)
4262 				break;
4263 		}
4264 		db_printf("\nMore info: show mount <addr>\n");
4265 		return;
4266 	}
4267 
4268 	mp = (struct mount *)addr;
4269 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4270 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4271 
4272 	buf[0] = '\0';
4273 	mflags = mp->mnt_flag;
4274 #define	MNT_FLAG(flag)	do {						\
4275 	if (mflags & (flag)) {						\
4276 		if (buf[0] != '\0')					\
4277 			strlcat(buf, ", ", sizeof(buf));		\
4278 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4279 		mflags &= ~(flag);					\
4280 	}								\
4281 } while (0)
4282 	MNT_FLAG(MNT_RDONLY);
4283 	MNT_FLAG(MNT_SYNCHRONOUS);
4284 	MNT_FLAG(MNT_NOEXEC);
4285 	MNT_FLAG(MNT_NOSUID);
4286 	MNT_FLAG(MNT_NFS4ACLS);
4287 	MNT_FLAG(MNT_UNION);
4288 	MNT_FLAG(MNT_ASYNC);
4289 	MNT_FLAG(MNT_SUIDDIR);
4290 	MNT_FLAG(MNT_SOFTDEP);
4291 	MNT_FLAG(MNT_NOSYMFOLLOW);
4292 	MNT_FLAG(MNT_GJOURNAL);
4293 	MNT_FLAG(MNT_MULTILABEL);
4294 	MNT_FLAG(MNT_ACLS);
4295 	MNT_FLAG(MNT_NOATIME);
4296 	MNT_FLAG(MNT_NOCLUSTERR);
4297 	MNT_FLAG(MNT_NOCLUSTERW);
4298 	MNT_FLAG(MNT_SUJ);
4299 	MNT_FLAG(MNT_EXRDONLY);
4300 	MNT_FLAG(MNT_EXPORTED);
4301 	MNT_FLAG(MNT_DEFEXPORTED);
4302 	MNT_FLAG(MNT_EXPORTANON);
4303 	MNT_FLAG(MNT_EXKERB);
4304 	MNT_FLAG(MNT_EXPUBLIC);
4305 	MNT_FLAG(MNT_LOCAL);
4306 	MNT_FLAG(MNT_QUOTA);
4307 	MNT_FLAG(MNT_ROOTFS);
4308 	MNT_FLAG(MNT_USER);
4309 	MNT_FLAG(MNT_IGNORE);
4310 	MNT_FLAG(MNT_UPDATE);
4311 	MNT_FLAG(MNT_DELEXPORT);
4312 	MNT_FLAG(MNT_RELOAD);
4313 	MNT_FLAG(MNT_FORCE);
4314 	MNT_FLAG(MNT_SNAPSHOT);
4315 	MNT_FLAG(MNT_BYFSID);
4316 #undef MNT_FLAG
4317 	if (mflags != 0) {
4318 		if (buf[0] != '\0')
4319 			strlcat(buf, ", ", sizeof(buf));
4320 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4321 		    "0x%016jx", mflags);
4322 	}
4323 	db_printf("    mnt_flag = %s\n", buf);
4324 
4325 	buf[0] = '\0';
4326 	flags = mp->mnt_kern_flag;
4327 #define	MNT_KERN_FLAG(flag)	do {					\
4328 	if (flags & (flag)) {						\
4329 		if (buf[0] != '\0')					\
4330 			strlcat(buf, ", ", sizeof(buf));		\
4331 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4332 		flags &= ~(flag);					\
4333 	}								\
4334 } while (0)
4335 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4336 	MNT_KERN_FLAG(MNTK_ASYNC);
4337 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4338 	MNT_KERN_FLAG(MNTK_DRAINING);
4339 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4340 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4341 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4342 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4343 	MNT_KERN_FLAG(MNTK_RECURSE);
4344 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4345 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4346 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4347 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4348 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4349 	MNT_KERN_FLAG(MNTK_NOASYNC);
4350 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4351 	MNT_KERN_FLAG(MNTK_MWAIT);
4352 	MNT_KERN_FLAG(MNTK_SUSPEND);
4353 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4354 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4355 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4356 #undef MNT_KERN_FLAG
4357 	if (flags != 0) {
4358 		if (buf[0] != '\0')
4359 			strlcat(buf, ", ", sizeof(buf));
4360 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4361 		    "0x%08x", flags);
4362 	}
4363 	db_printf("    mnt_kern_flag = %s\n", buf);
4364 
4365 	db_printf("    mnt_opt = ");
4366 	opt = TAILQ_FIRST(mp->mnt_opt);
4367 	if (opt != NULL) {
4368 		db_printf("%s", opt->name);
4369 		opt = TAILQ_NEXT(opt, link);
4370 		while (opt != NULL) {
4371 			db_printf(", %s", opt->name);
4372 			opt = TAILQ_NEXT(opt, link);
4373 		}
4374 	}
4375 	db_printf("\n");
4376 
4377 	sp = &mp->mnt_stat;
4378 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4379 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4380 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4381 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4382 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4383 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4384 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4385 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4386 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4387 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4388 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4389 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4390 
4391 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4392 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4393 	if (jailed(mp->mnt_cred))
4394 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4395 	db_printf(" }\n");
4396 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4397 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4398 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4399 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4400 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4401 	    mp->mnt_lazyvnodelistsize);
4402 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4403 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4404 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4405 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4406 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4407 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4408 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4409 	db_printf("    mnt_secondary_accwrites = %d\n",
4410 	    mp->mnt_secondary_accwrites);
4411 	db_printf("    mnt_gjprovider = %s\n",
4412 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4413 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4414 
4415 	db_printf("\n\nList of active vnodes\n");
4416 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4417 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4418 			vn_printf(vp, "vnode ");
4419 			if (db_pager_quit)
4420 				break;
4421 		}
4422 	}
4423 	db_printf("\n\nList of inactive vnodes\n");
4424 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4425 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4426 			vn_printf(vp, "vnode ");
4427 			if (db_pager_quit)
4428 				break;
4429 		}
4430 	}
4431 }
4432 #endif	/* DDB */
4433 
4434 /*
4435  * Fill in a struct xvfsconf based on a struct vfsconf.
4436  */
4437 static int
4438 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4439 {
4440 	struct xvfsconf xvfsp;
4441 
4442 	bzero(&xvfsp, sizeof(xvfsp));
4443 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4444 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4445 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4446 	xvfsp.vfc_flags = vfsp->vfc_flags;
4447 	/*
4448 	 * These are unused in userland, we keep them
4449 	 * to not break binary compatibility.
4450 	 */
4451 	xvfsp.vfc_vfsops = NULL;
4452 	xvfsp.vfc_next = NULL;
4453 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4454 }
4455 
4456 #ifdef COMPAT_FREEBSD32
4457 struct xvfsconf32 {
4458 	uint32_t	vfc_vfsops;
4459 	char		vfc_name[MFSNAMELEN];
4460 	int32_t		vfc_typenum;
4461 	int32_t		vfc_refcount;
4462 	int32_t		vfc_flags;
4463 	uint32_t	vfc_next;
4464 };
4465 
4466 static int
4467 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4468 {
4469 	struct xvfsconf32 xvfsp;
4470 
4471 	bzero(&xvfsp, sizeof(xvfsp));
4472 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4473 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4474 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4475 	xvfsp.vfc_flags = vfsp->vfc_flags;
4476 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4477 }
4478 #endif
4479 
4480 /*
4481  * Top level filesystem related information gathering.
4482  */
4483 static int
4484 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4485 {
4486 	struct vfsconf *vfsp;
4487 	int error;
4488 
4489 	error = 0;
4490 	vfsconf_slock();
4491 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4492 #ifdef COMPAT_FREEBSD32
4493 		if (req->flags & SCTL_MASK32)
4494 			error = vfsconf2x32(req, vfsp);
4495 		else
4496 #endif
4497 			error = vfsconf2x(req, vfsp);
4498 		if (error)
4499 			break;
4500 	}
4501 	vfsconf_sunlock();
4502 	return (error);
4503 }
4504 
4505 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4506     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4507     "S,xvfsconf", "List of all configured filesystems");
4508 
4509 #ifndef BURN_BRIDGES
4510 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4511 
4512 static int
4513 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4514 {
4515 	int *name = (int *)arg1 - 1;	/* XXX */
4516 	u_int namelen = arg2 + 1;	/* XXX */
4517 	struct vfsconf *vfsp;
4518 
4519 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4520 	    "please rebuild world\n");
4521 
4522 #if 1 || defined(COMPAT_PRELITE2)
4523 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4524 	if (namelen == 1)
4525 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4526 #endif
4527 
4528 	switch (name[1]) {
4529 	case VFS_MAXTYPENUM:
4530 		if (namelen != 2)
4531 			return (ENOTDIR);
4532 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4533 	case VFS_CONF:
4534 		if (namelen != 3)
4535 			return (ENOTDIR);	/* overloaded */
4536 		vfsconf_slock();
4537 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4538 			if (vfsp->vfc_typenum == name[2])
4539 				break;
4540 		}
4541 		vfsconf_sunlock();
4542 		if (vfsp == NULL)
4543 			return (EOPNOTSUPP);
4544 #ifdef COMPAT_FREEBSD32
4545 		if (req->flags & SCTL_MASK32)
4546 			return (vfsconf2x32(req, vfsp));
4547 		else
4548 #endif
4549 			return (vfsconf2x(req, vfsp));
4550 	}
4551 	return (EOPNOTSUPP);
4552 }
4553 
4554 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4555     CTLFLAG_MPSAFE, vfs_sysctl,
4556     "Generic filesystem");
4557 
4558 #if 1 || defined(COMPAT_PRELITE2)
4559 
4560 static int
4561 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4562 {
4563 	int error;
4564 	struct vfsconf *vfsp;
4565 	struct ovfsconf ovfs;
4566 
4567 	vfsconf_slock();
4568 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4569 		bzero(&ovfs, sizeof(ovfs));
4570 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4571 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4572 		ovfs.vfc_index = vfsp->vfc_typenum;
4573 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4574 		ovfs.vfc_flags = vfsp->vfc_flags;
4575 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4576 		if (error != 0) {
4577 			vfsconf_sunlock();
4578 			return (error);
4579 		}
4580 	}
4581 	vfsconf_sunlock();
4582 	return (0);
4583 }
4584 
4585 #endif /* 1 || COMPAT_PRELITE2 */
4586 #endif /* !BURN_BRIDGES */
4587 
4588 #define KINFO_VNODESLOP		10
4589 #ifdef notyet
4590 /*
4591  * Dump vnode list (via sysctl).
4592  */
4593 /* ARGSUSED */
4594 static int
4595 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4596 {
4597 	struct xvnode *xvn;
4598 	struct mount *mp;
4599 	struct vnode *vp;
4600 	int error, len, n;
4601 
4602 	/*
4603 	 * Stale numvnodes access is not fatal here.
4604 	 */
4605 	req->lock = 0;
4606 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4607 	if (!req->oldptr)
4608 		/* Make an estimate */
4609 		return (SYSCTL_OUT(req, 0, len));
4610 
4611 	error = sysctl_wire_old_buffer(req, 0);
4612 	if (error != 0)
4613 		return (error);
4614 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4615 	n = 0;
4616 	mtx_lock(&mountlist_mtx);
4617 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4618 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4619 			continue;
4620 		MNT_ILOCK(mp);
4621 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4622 			if (n == len)
4623 				break;
4624 			vref(vp);
4625 			xvn[n].xv_size = sizeof *xvn;
4626 			xvn[n].xv_vnode = vp;
4627 			xvn[n].xv_id = 0;	/* XXX compat */
4628 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4629 			XV_COPY(usecount);
4630 			XV_COPY(writecount);
4631 			XV_COPY(holdcnt);
4632 			XV_COPY(mount);
4633 			XV_COPY(numoutput);
4634 			XV_COPY(type);
4635 #undef XV_COPY
4636 			xvn[n].xv_flag = vp->v_vflag;
4637 
4638 			switch (vp->v_type) {
4639 			case VREG:
4640 			case VDIR:
4641 			case VLNK:
4642 				break;
4643 			case VBLK:
4644 			case VCHR:
4645 				if (vp->v_rdev == NULL) {
4646 					vrele(vp);
4647 					continue;
4648 				}
4649 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4650 				break;
4651 			case VSOCK:
4652 				xvn[n].xv_socket = vp->v_socket;
4653 				break;
4654 			case VFIFO:
4655 				xvn[n].xv_fifo = vp->v_fifoinfo;
4656 				break;
4657 			case VNON:
4658 			case VBAD:
4659 			default:
4660 				/* shouldn't happen? */
4661 				vrele(vp);
4662 				continue;
4663 			}
4664 			vrele(vp);
4665 			++n;
4666 		}
4667 		MNT_IUNLOCK(mp);
4668 		mtx_lock(&mountlist_mtx);
4669 		vfs_unbusy(mp);
4670 		if (n == len)
4671 			break;
4672 	}
4673 	mtx_unlock(&mountlist_mtx);
4674 
4675 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4676 	free(xvn, M_TEMP);
4677 	return (error);
4678 }
4679 
4680 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4681     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4682     "");
4683 #endif
4684 
4685 static void
4686 unmount_or_warn(struct mount *mp)
4687 {
4688 	int error;
4689 
4690 	error = dounmount(mp, MNT_FORCE, curthread);
4691 	if (error != 0) {
4692 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4693 		if (error == EBUSY)
4694 			printf("BUSY)\n");
4695 		else
4696 			printf("%d)\n", error);
4697 	}
4698 }
4699 
4700 /*
4701  * Unmount all filesystems. The list is traversed in reverse order
4702  * of mounting to avoid dependencies.
4703  */
4704 void
4705 vfs_unmountall(void)
4706 {
4707 	struct mount *mp, *tmp;
4708 
4709 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4710 
4711 	/*
4712 	 * Since this only runs when rebooting, it is not interlocked.
4713 	 */
4714 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4715 		vfs_ref(mp);
4716 
4717 		/*
4718 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4719 		 * unmount of the latter.
4720 		 */
4721 		if (mp == rootdevmp)
4722 			continue;
4723 
4724 		unmount_or_warn(mp);
4725 	}
4726 
4727 	if (rootdevmp != NULL)
4728 		unmount_or_warn(rootdevmp);
4729 }
4730 
4731 static void
4732 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4733 {
4734 
4735 	ASSERT_VI_LOCKED(vp, __func__);
4736 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4737 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4738 		vdropl(vp);
4739 		return;
4740 	}
4741 	if (vn_lock(vp, lkflags) == 0) {
4742 		VI_LOCK(vp);
4743 		vinactive(vp);
4744 		VOP_UNLOCK(vp);
4745 		vdropl(vp);
4746 		return;
4747 	}
4748 	vdefer_inactive_unlocked(vp);
4749 }
4750 
4751 static int
4752 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4753 {
4754 
4755 	return (vp->v_iflag & VI_DEFINACT);
4756 }
4757 
4758 static void __noinline
4759 vfs_periodic_inactive(struct mount *mp, int flags)
4760 {
4761 	struct vnode *vp, *mvp;
4762 	int lkflags;
4763 
4764 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4765 	if (flags != MNT_WAIT)
4766 		lkflags |= LK_NOWAIT;
4767 
4768 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4769 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4770 			VI_UNLOCK(vp);
4771 			continue;
4772 		}
4773 		vp->v_iflag &= ~VI_DEFINACT;
4774 		vfs_deferred_inactive(vp, lkflags);
4775 	}
4776 }
4777 
4778 static inline bool
4779 vfs_want_msync(struct vnode *vp)
4780 {
4781 	struct vm_object *obj;
4782 
4783 	/*
4784 	 * This test may be performed without any locks held.
4785 	 * We rely on vm_object's type stability.
4786 	 */
4787 	if (vp->v_vflag & VV_NOSYNC)
4788 		return (false);
4789 	obj = vp->v_object;
4790 	return (obj != NULL && vm_object_mightbedirty(obj));
4791 }
4792 
4793 static int
4794 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4795 {
4796 
4797 	if (vp->v_vflag & VV_NOSYNC)
4798 		return (false);
4799 	if (vp->v_iflag & VI_DEFINACT)
4800 		return (true);
4801 	return (vfs_want_msync(vp));
4802 }
4803 
4804 static void __noinline
4805 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4806 {
4807 	struct vnode *vp, *mvp;
4808 	struct vm_object *obj;
4809 	int lkflags, objflags;
4810 	bool seen_defer;
4811 
4812 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4813 	if (flags != MNT_WAIT) {
4814 		lkflags |= LK_NOWAIT;
4815 		objflags = OBJPC_NOSYNC;
4816 	} else {
4817 		objflags = OBJPC_SYNC;
4818 	}
4819 
4820 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4821 		seen_defer = false;
4822 		if (vp->v_iflag & VI_DEFINACT) {
4823 			vp->v_iflag &= ~VI_DEFINACT;
4824 			seen_defer = true;
4825 		}
4826 		if (!vfs_want_msync(vp)) {
4827 			if (seen_defer)
4828 				vfs_deferred_inactive(vp, lkflags);
4829 			else
4830 				VI_UNLOCK(vp);
4831 			continue;
4832 		}
4833 		if (vget(vp, lkflags) == 0) {
4834 			obj = vp->v_object;
4835 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4836 				VM_OBJECT_WLOCK(obj);
4837 				vm_object_page_clean(obj, 0, 0, objflags);
4838 				VM_OBJECT_WUNLOCK(obj);
4839 			}
4840 			vput(vp);
4841 			if (seen_defer)
4842 				vdrop(vp);
4843 		} else {
4844 			if (seen_defer)
4845 				vdefer_inactive_unlocked(vp);
4846 		}
4847 	}
4848 }
4849 
4850 void
4851 vfs_periodic(struct mount *mp, int flags)
4852 {
4853 
4854 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4855 
4856 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4857 		vfs_periodic_inactive(mp, flags);
4858 	else
4859 		vfs_periodic_msync_inactive(mp, flags);
4860 }
4861 
4862 static void
4863 destroy_vpollinfo_free(struct vpollinfo *vi)
4864 {
4865 
4866 	knlist_destroy(&vi->vpi_selinfo.si_note);
4867 	mtx_destroy(&vi->vpi_lock);
4868 	free(vi, M_VNODEPOLL);
4869 }
4870 
4871 static void
4872 destroy_vpollinfo(struct vpollinfo *vi)
4873 {
4874 
4875 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4876 	seldrain(&vi->vpi_selinfo);
4877 	destroy_vpollinfo_free(vi);
4878 }
4879 
4880 /*
4881  * Initialize per-vnode helper structure to hold poll-related state.
4882  */
4883 void
4884 v_addpollinfo(struct vnode *vp)
4885 {
4886 	struct vpollinfo *vi;
4887 
4888 	if (vp->v_pollinfo != NULL)
4889 		return;
4890 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4891 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4892 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4893 	    vfs_knlunlock, vfs_knl_assert_lock);
4894 	VI_LOCK(vp);
4895 	if (vp->v_pollinfo != NULL) {
4896 		VI_UNLOCK(vp);
4897 		destroy_vpollinfo_free(vi);
4898 		return;
4899 	}
4900 	vp->v_pollinfo = vi;
4901 	VI_UNLOCK(vp);
4902 }
4903 
4904 /*
4905  * Record a process's interest in events which might happen to
4906  * a vnode.  Because poll uses the historic select-style interface
4907  * internally, this routine serves as both the ``check for any
4908  * pending events'' and the ``record my interest in future events''
4909  * functions.  (These are done together, while the lock is held,
4910  * to avoid race conditions.)
4911  */
4912 int
4913 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4914 {
4915 
4916 	v_addpollinfo(vp);
4917 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4918 	if (vp->v_pollinfo->vpi_revents & events) {
4919 		/*
4920 		 * This leaves events we are not interested
4921 		 * in available for the other process which
4922 		 * which presumably had requested them
4923 		 * (otherwise they would never have been
4924 		 * recorded).
4925 		 */
4926 		events &= vp->v_pollinfo->vpi_revents;
4927 		vp->v_pollinfo->vpi_revents &= ~events;
4928 
4929 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4930 		return (events);
4931 	}
4932 	vp->v_pollinfo->vpi_events |= events;
4933 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4934 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4935 	return (0);
4936 }
4937 
4938 /*
4939  * Routine to create and manage a filesystem syncer vnode.
4940  */
4941 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4942 static int	sync_fsync(struct  vop_fsync_args *);
4943 static int	sync_inactive(struct  vop_inactive_args *);
4944 static int	sync_reclaim(struct  vop_reclaim_args *);
4945 
4946 static struct vop_vector sync_vnodeops = {
4947 	.vop_bypass =	VOP_EOPNOTSUPP,
4948 	.vop_close =	sync_close,		/* close */
4949 	.vop_fsync =	sync_fsync,		/* fsync */
4950 	.vop_inactive =	sync_inactive,	/* inactive */
4951 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4952 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4953 	.vop_lock1 =	vop_stdlock,	/* lock */
4954 	.vop_unlock =	vop_stdunlock,	/* unlock */
4955 	.vop_islocked =	vop_stdislocked,	/* islocked */
4956 };
4957 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4958 
4959 /*
4960  * Create a new filesystem syncer vnode for the specified mount point.
4961  */
4962 void
4963 vfs_allocate_syncvnode(struct mount *mp)
4964 {
4965 	struct vnode *vp;
4966 	struct bufobj *bo;
4967 	static long start, incr, next;
4968 	int error;
4969 
4970 	/* Allocate a new vnode */
4971 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4972 	if (error != 0)
4973 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4974 	vp->v_type = VNON;
4975 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4976 	vp->v_vflag |= VV_FORCEINSMQ;
4977 	error = insmntque(vp, mp);
4978 	if (error != 0)
4979 		panic("vfs_allocate_syncvnode: insmntque() failed");
4980 	vp->v_vflag &= ~VV_FORCEINSMQ;
4981 	VOP_UNLOCK(vp);
4982 	/*
4983 	 * Place the vnode onto the syncer worklist. We attempt to
4984 	 * scatter them about on the list so that they will go off
4985 	 * at evenly distributed times even if all the filesystems
4986 	 * are mounted at once.
4987 	 */
4988 	next += incr;
4989 	if (next == 0 || next > syncer_maxdelay) {
4990 		start /= 2;
4991 		incr /= 2;
4992 		if (start == 0) {
4993 			start = syncer_maxdelay / 2;
4994 			incr = syncer_maxdelay;
4995 		}
4996 		next = start;
4997 	}
4998 	bo = &vp->v_bufobj;
4999 	BO_LOCK(bo);
5000 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5001 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5002 	mtx_lock(&sync_mtx);
5003 	sync_vnode_count++;
5004 	if (mp->mnt_syncer == NULL) {
5005 		mp->mnt_syncer = vp;
5006 		vp = NULL;
5007 	}
5008 	mtx_unlock(&sync_mtx);
5009 	BO_UNLOCK(bo);
5010 	if (vp != NULL) {
5011 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5012 		vgone(vp);
5013 		vput(vp);
5014 	}
5015 }
5016 
5017 void
5018 vfs_deallocate_syncvnode(struct mount *mp)
5019 {
5020 	struct vnode *vp;
5021 
5022 	mtx_lock(&sync_mtx);
5023 	vp = mp->mnt_syncer;
5024 	if (vp != NULL)
5025 		mp->mnt_syncer = NULL;
5026 	mtx_unlock(&sync_mtx);
5027 	if (vp != NULL)
5028 		vrele(vp);
5029 }
5030 
5031 /*
5032  * Do a lazy sync of the filesystem.
5033  */
5034 static int
5035 sync_fsync(struct vop_fsync_args *ap)
5036 {
5037 	struct vnode *syncvp = ap->a_vp;
5038 	struct mount *mp = syncvp->v_mount;
5039 	int error, save;
5040 	struct bufobj *bo;
5041 
5042 	/*
5043 	 * We only need to do something if this is a lazy evaluation.
5044 	 */
5045 	if (ap->a_waitfor != MNT_LAZY)
5046 		return (0);
5047 
5048 	/*
5049 	 * Move ourselves to the back of the sync list.
5050 	 */
5051 	bo = &syncvp->v_bufobj;
5052 	BO_LOCK(bo);
5053 	vn_syncer_add_to_worklist(bo, syncdelay);
5054 	BO_UNLOCK(bo);
5055 
5056 	/*
5057 	 * Walk the list of vnodes pushing all that are dirty and
5058 	 * not already on the sync list.
5059 	 */
5060 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5061 		return (0);
5062 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
5063 		vfs_unbusy(mp);
5064 		return (0);
5065 	}
5066 	save = curthread_pflags_set(TDP_SYNCIO);
5067 	/*
5068 	 * The filesystem at hand may be idle with free vnodes stored in the
5069 	 * batch.  Return them instead of letting them stay there indefinitely.
5070 	 */
5071 	vfs_periodic(mp, MNT_NOWAIT);
5072 	error = VFS_SYNC(mp, MNT_LAZY);
5073 	curthread_pflags_restore(save);
5074 	vn_finished_write(mp);
5075 	vfs_unbusy(mp);
5076 	return (error);
5077 }
5078 
5079 /*
5080  * The syncer vnode is no referenced.
5081  */
5082 static int
5083 sync_inactive(struct vop_inactive_args *ap)
5084 {
5085 
5086 	vgone(ap->a_vp);
5087 	return (0);
5088 }
5089 
5090 /*
5091  * The syncer vnode is no longer needed and is being decommissioned.
5092  *
5093  * Modifications to the worklist must be protected by sync_mtx.
5094  */
5095 static int
5096 sync_reclaim(struct vop_reclaim_args *ap)
5097 {
5098 	struct vnode *vp = ap->a_vp;
5099 	struct bufobj *bo;
5100 
5101 	bo = &vp->v_bufobj;
5102 	BO_LOCK(bo);
5103 	mtx_lock(&sync_mtx);
5104 	if (vp->v_mount->mnt_syncer == vp)
5105 		vp->v_mount->mnt_syncer = NULL;
5106 	if (bo->bo_flag & BO_ONWORKLST) {
5107 		LIST_REMOVE(bo, bo_synclist);
5108 		syncer_worklist_len--;
5109 		sync_vnode_count--;
5110 		bo->bo_flag &= ~BO_ONWORKLST;
5111 	}
5112 	mtx_unlock(&sync_mtx);
5113 	BO_UNLOCK(bo);
5114 
5115 	return (0);
5116 }
5117 
5118 int
5119 vn_need_pageq_flush(struct vnode *vp)
5120 {
5121 	struct vm_object *obj;
5122 
5123 	obj = vp->v_object;
5124 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5125 	    vm_object_mightbedirty(obj));
5126 }
5127 
5128 /*
5129  * Check if vnode represents a disk device
5130  */
5131 bool
5132 vn_isdisk_error(struct vnode *vp, int *errp)
5133 {
5134 	int error;
5135 
5136 	if (vp->v_type != VCHR) {
5137 		error = ENOTBLK;
5138 		goto out;
5139 	}
5140 	error = 0;
5141 	dev_lock();
5142 	if (vp->v_rdev == NULL)
5143 		error = ENXIO;
5144 	else if (vp->v_rdev->si_devsw == NULL)
5145 		error = ENXIO;
5146 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5147 		error = ENOTBLK;
5148 	dev_unlock();
5149 out:
5150 	*errp = error;
5151 	return (error == 0);
5152 }
5153 
5154 bool
5155 vn_isdisk(struct vnode *vp)
5156 {
5157 	int error;
5158 
5159 	return (vn_isdisk_error(vp, &error));
5160 }
5161 
5162 /*
5163  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5164  * the comment above cache_fplookup for details.
5165  */
5166 int
5167 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5168 {
5169 	int error;
5170 
5171 	VFS_SMR_ASSERT_ENTERED();
5172 
5173 	/* Check the owner. */
5174 	if (cred->cr_uid == file_uid) {
5175 		if (file_mode & S_IXUSR)
5176 			return (0);
5177 		goto out_error;
5178 	}
5179 
5180 	/* Otherwise, check the groups (first match) */
5181 	if (groupmember(file_gid, cred)) {
5182 		if (file_mode & S_IXGRP)
5183 			return (0);
5184 		goto out_error;
5185 	}
5186 
5187 	/* Otherwise, check everyone else. */
5188 	if (file_mode & S_IXOTH)
5189 		return (0);
5190 out_error:
5191 	/*
5192 	 * Permission check failed, but it is possible denial will get overwritten
5193 	 * (e.g., when root is traversing through a 700 directory owned by someone
5194 	 * else).
5195 	 *
5196 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5197 	 * modules overriding this result. It's quite unclear what semantics
5198 	 * are allowed for them to operate, thus for safety we don't call them
5199 	 * from within the SMR section. This also means if any such modules
5200 	 * are present, we have to let the regular lookup decide.
5201 	 */
5202 	error = priv_check_cred_vfs_lookup_nomac(cred);
5203 	switch (error) {
5204 	case 0:
5205 		return (0);
5206 	case EAGAIN:
5207 		/*
5208 		 * MAC modules present.
5209 		 */
5210 		return (EAGAIN);
5211 	case EPERM:
5212 		return (EACCES);
5213 	default:
5214 		return (error);
5215 	}
5216 }
5217 
5218 /*
5219  * Common filesystem object access control check routine.  Accepts a
5220  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5221  * Returns 0 on success, or an errno on failure.
5222  */
5223 int
5224 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5225     accmode_t accmode, struct ucred *cred)
5226 {
5227 	accmode_t dac_granted;
5228 	accmode_t priv_granted;
5229 
5230 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5231 	    ("invalid bit in accmode"));
5232 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5233 	    ("VAPPEND without VWRITE"));
5234 
5235 	/*
5236 	 * Look for a normal, non-privileged way to access the file/directory
5237 	 * as requested.  If it exists, go with that.
5238 	 */
5239 
5240 	dac_granted = 0;
5241 
5242 	/* Check the owner. */
5243 	if (cred->cr_uid == file_uid) {
5244 		dac_granted |= VADMIN;
5245 		if (file_mode & S_IXUSR)
5246 			dac_granted |= VEXEC;
5247 		if (file_mode & S_IRUSR)
5248 			dac_granted |= VREAD;
5249 		if (file_mode & S_IWUSR)
5250 			dac_granted |= (VWRITE | VAPPEND);
5251 
5252 		if ((accmode & dac_granted) == accmode)
5253 			return (0);
5254 
5255 		goto privcheck;
5256 	}
5257 
5258 	/* Otherwise, check the groups (first match) */
5259 	if (groupmember(file_gid, cred)) {
5260 		if (file_mode & S_IXGRP)
5261 			dac_granted |= VEXEC;
5262 		if (file_mode & S_IRGRP)
5263 			dac_granted |= VREAD;
5264 		if (file_mode & S_IWGRP)
5265 			dac_granted |= (VWRITE | VAPPEND);
5266 
5267 		if ((accmode & dac_granted) == accmode)
5268 			return (0);
5269 
5270 		goto privcheck;
5271 	}
5272 
5273 	/* Otherwise, check everyone else. */
5274 	if (file_mode & S_IXOTH)
5275 		dac_granted |= VEXEC;
5276 	if (file_mode & S_IROTH)
5277 		dac_granted |= VREAD;
5278 	if (file_mode & S_IWOTH)
5279 		dac_granted |= (VWRITE | VAPPEND);
5280 	if ((accmode & dac_granted) == accmode)
5281 		return (0);
5282 
5283 privcheck:
5284 	/*
5285 	 * Build a privilege mask to determine if the set of privileges
5286 	 * satisfies the requirements when combined with the granted mask
5287 	 * from above.  For each privilege, if the privilege is required,
5288 	 * bitwise or the request type onto the priv_granted mask.
5289 	 */
5290 	priv_granted = 0;
5291 
5292 	if (type == VDIR) {
5293 		/*
5294 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5295 		 * requests, instead of PRIV_VFS_EXEC.
5296 		 */
5297 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5298 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5299 			priv_granted |= VEXEC;
5300 	} else {
5301 		/*
5302 		 * Ensure that at least one execute bit is on. Otherwise,
5303 		 * a privileged user will always succeed, and we don't want
5304 		 * this to happen unless the file really is executable.
5305 		 */
5306 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5307 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5308 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5309 			priv_granted |= VEXEC;
5310 	}
5311 
5312 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5313 	    !priv_check_cred(cred, PRIV_VFS_READ))
5314 		priv_granted |= VREAD;
5315 
5316 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5317 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5318 		priv_granted |= (VWRITE | VAPPEND);
5319 
5320 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5321 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5322 		priv_granted |= VADMIN;
5323 
5324 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5325 		return (0);
5326 	}
5327 
5328 	return ((accmode & VADMIN) ? EPERM : EACCES);
5329 }
5330 
5331 /*
5332  * Credential check based on process requesting service, and per-attribute
5333  * permissions.
5334  */
5335 int
5336 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5337     struct thread *td, accmode_t accmode)
5338 {
5339 
5340 	/*
5341 	 * Kernel-invoked always succeeds.
5342 	 */
5343 	if (cred == NOCRED)
5344 		return (0);
5345 
5346 	/*
5347 	 * Do not allow privileged processes in jail to directly manipulate
5348 	 * system attributes.
5349 	 */
5350 	switch (attrnamespace) {
5351 	case EXTATTR_NAMESPACE_SYSTEM:
5352 		/* Potentially should be: return (EPERM); */
5353 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5354 	case EXTATTR_NAMESPACE_USER:
5355 		return (VOP_ACCESS(vp, accmode, cred, td));
5356 	default:
5357 		return (EPERM);
5358 	}
5359 }
5360 
5361 #ifdef DEBUG_VFS_LOCKS
5362 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5363 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5364     "Drop into debugger on lock violation");
5365 
5366 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5367 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5368     0, "Check for interlock across VOPs");
5369 
5370 int vfs_badlock_print = 1;	/* Print lock violations. */
5371 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5372     0, "Print lock violations");
5373 
5374 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5375 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5376     0, "Print vnode details on lock violations");
5377 
5378 #ifdef KDB
5379 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5380 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5381     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5382 #endif
5383 
5384 static void
5385 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5386 {
5387 
5388 #ifdef KDB
5389 	if (vfs_badlock_backtrace)
5390 		kdb_backtrace();
5391 #endif
5392 	if (vfs_badlock_vnode)
5393 		vn_printf(vp, "vnode ");
5394 	if (vfs_badlock_print)
5395 		printf("%s: %p %s\n", str, (void *)vp, msg);
5396 	if (vfs_badlock_ddb)
5397 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5398 }
5399 
5400 void
5401 assert_vi_locked(struct vnode *vp, const char *str)
5402 {
5403 
5404 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5405 		vfs_badlock("interlock is not locked but should be", str, vp);
5406 }
5407 
5408 void
5409 assert_vi_unlocked(struct vnode *vp, const char *str)
5410 {
5411 
5412 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5413 		vfs_badlock("interlock is locked but should not be", str, vp);
5414 }
5415 
5416 void
5417 assert_vop_locked(struct vnode *vp, const char *str)
5418 {
5419 	int locked;
5420 
5421 	if (KERNEL_PANICKED() || vp == NULL)
5422 		return;
5423 
5424 	locked = VOP_ISLOCKED(vp);
5425 	if (locked == 0 || locked == LK_EXCLOTHER)
5426 		vfs_badlock("is not locked but should be", str, vp);
5427 }
5428 
5429 void
5430 assert_vop_unlocked(struct vnode *vp, const char *str)
5431 {
5432 	if (KERNEL_PANICKED() || vp == NULL)
5433 		return;
5434 
5435 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5436 		vfs_badlock("is locked but should not be", str, vp);
5437 }
5438 
5439 void
5440 assert_vop_elocked(struct vnode *vp, const char *str)
5441 {
5442 	if (KERNEL_PANICKED() || vp == NULL)
5443 		return;
5444 
5445 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5446 		vfs_badlock("is not exclusive locked but should be", str, vp);
5447 }
5448 #endif /* DEBUG_VFS_LOCKS */
5449 
5450 void
5451 vop_rename_fail(struct vop_rename_args *ap)
5452 {
5453 
5454 	if (ap->a_tvp != NULL)
5455 		vput(ap->a_tvp);
5456 	if (ap->a_tdvp == ap->a_tvp)
5457 		vrele(ap->a_tdvp);
5458 	else
5459 		vput(ap->a_tdvp);
5460 	vrele(ap->a_fdvp);
5461 	vrele(ap->a_fvp);
5462 }
5463 
5464 void
5465 vop_rename_pre(void *ap)
5466 {
5467 	struct vop_rename_args *a = ap;
5468 
5469 #ifdef DEBUG_VFS_LOCKS
5470 	if (a->a_tvp)
5471 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5472 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5473 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5474 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5475 
5476 	/* Check the source (from). */
5477 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5478 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5479 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5480 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5481 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5482 
5483 	/* Check the target. */
5484 	if (a->a_tvp)
5485 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5486 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5487 #endif
5488 	/*
5489 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5490 	 * in vop_rename_post but that's not going to work out since some
5491 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5492 	 *
5493 	 * For now filesystems are expected to do the relevant calls after they
5494 	 * decide what vnodes to operate on.
5495 	 */
5496 	if (a->a_tdvp != a->a_fdvp)
5497 		vhold(a->a_fdvp);
5498 	if (a->a_tvp != a->a_fvp)
5499 		vhold(a->a_fvp);
5500 	vhold(a->a_tdvp);
5501 	if (a->a_tvp)
5502 		vhold(a->a_tvp);
5503 }
5504 
5505 #ifdef DEBUG_VFS_LOCKS
5506 void
5507 vop_fplookup_vexec_debugpre(void *ap __unused)
5508 {
5509 
5510 	VFS_SMR_ASSERT_ENTERED();
5511 }
5512 
5513 void
5514 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5515 {
5516 
5517 	VFS_SMR_ASSERT_ENTERED();
5518 }
5519 
5520 void
5521 vop_fplookup_symlink_debugpre(void *ap __unused)
5522 {
5523 
5524 	VFS_SMR_ASSERT_ENTERED();
5525 }
5526 
5527 void
5528 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5529 {
5530 
5531 	VFS_SMR_ASSERT_ENTERED();
5532 }
5533 
5534 static void
5535 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5536 {
5537 	if (vp->v_type == VCHR)
5538 		;
5539 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5540 		ASSERT_VOP_LOCKED(vp, name);
5541 	else
5542 		ASSERT_VOP_ELOCKED(vp, name);
5543 }
5544 
5545 void
5546 vop_fsync_debugpre(void *a)
5547 {
5548 	struct vop_fsync_args *ap;
5549 
5550 	ap = a;
5551 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5552 }
5553 
5554 void
5555 vop_fsync_debugpost(void *a, int rc __unused)
5556 {
5557 	struct vop_fsync_args *ap;
5558 
5559 	ap = a;
5560 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5561 }
5562 
5563 void
5564 vop_fdatasync_debugpre(void *a)
5565 {
5566 	struct vop_fdatasync_args *ap;
5567 
5568 	ap = a;
5569 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5570 }
5571 
5572 void
5573 vop_fdatasync_debugpost(void *a, int rc __unused)
5574 {
5575 	struct vop_fdatasync_args *ap;
5576 
5577 	ap = a;
5578 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5579 }
5580 
5581 void
5582 vop_strategy_debugpre(void *ap)
5583 {
5584 	struct vop_strategy_args *a;
5585 	struct buf *bp;
5586 
5587 	a = ap;
5588 	bp = a->a_bp;
5589 
5590 	/*
5591 	 * Cluster ops lock their component buffers but not the IO container.
5592 	 */
5593 	if ((bp->b_flags & B_CLUSTER) != 0)
5594 		return;
5595 
5596 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5597 		if (vfs_badlock_print)
5598 			printf(
5599 			    "VOP_STRATEGY: bp is not locked but should be\n");
5600 		if (vfs_badlock_ddb)
5601 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5602 	}
5603 }
5604 
5605 void
5606 vop_lock_debugpre(void *ap)
5607 {
5608 	struct vop_lock1_args *a = ap;
5609 
5610 	if ((a->a_flags & LK_INTERLOCK) == 0)
5611 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5612 	else
5613 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5614 }
5615 
5616 void
5617 vop_lock_debugpost(void *ap, int rc)
5618 {
5619 	struct vop_lock1_args *a = ap;
5620 
5621 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5622 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5623 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5624 }
5625 
5626 void
5627 vop_unlock_debugpre(void *ap)
5628 {
5629 	struct vop_unlock_args *a = ap;
5630 
5631 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5632 }
5633 
5634 void
5635 vop_need_inactive_debugpre(void *ap)
5636 {
5637 	struct vop_need_inactive_args *a = ap;
5638 
5639 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5640 }
5641 
5642 void
5643 vop_need_inactive_debugpost(void *ap, int rc)
5644 {
5645 	struct vop_need_inactive_args *a = ap;
5646 
5647 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5648 }
5649 #endif
5650 
5651 void
5652 vop_create_pre(void *ap)
5653 {
5654 	struct vop_create_args *a;
5655 	struct vnode *dvp;
5656 
5657 	a = ap;
5658 	dvp = a->a_dvp;
5659 	vn_seqc_write_begin(dvp);
5660 }
5661 
5662 void
5663 vop_create_post(void *ap, int rc)
5664 {
5665 	struct vop_create_args *a;
5666 	struct vnode *dvp;
5667 
5668 	a = ap;
5669 	dvp = a->a_dvp;
5670 	vn_seqc_write_end(dvp);
5671 	if (!rc)
5672 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5673 }
5674 
5675 void
5676 vop_whiteout_pre(void *ap)
5677 {
5678 	struct vop_whiteout_args *a;
5679 	struct vnode *dvp;
5680 
5681 	a = ap;
5682 	dvp = a->a_dvp;
5683 	vn_seqc_write_begin(dvp);
5684 }
5685 
5686 void
5687 vop_whiteout_post(void *ap, int rc)
5688 {
5689 	struct vop_whiteout_args *a;
5690 	struct vnode *dvp;
5691 
5692 	a = ap;
5693 	dvp = a->a_dvp;
5694 	vn_seqc_write_end(dvp);
5695 }
5696 
5697 void
5698 vop_deleteextattr_pre(void *ap)
5699 {
5700 	struct vop_deleteextattr_args *a;
5701 	struct vnode *vp;
5702 
5703 	a = ap;
5704 	vp = a->a_vp;
5705 	vn_seqc_write_begin(vp);
5706 }
5707 
5708 void
5709 vop_deleteextattr_post(void *ap, int rc)
5710 {
5711 	struct vop_deleteextattr_args *a;
5712 	struct vnode *vp;
5713 
5714 	a = ap;
5715 	vp = a->a_vp;
5716 	vn_seqc_write_end(vp);
5717 	if (!rc)
5718 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5719 }
5720 
5721 void
5722 vop_link_pre(void *ap)
5723 {
5724 	struct vop_link_args *a;
5725 	struct vnode *vp, *tdvp;
5726 
5727 	a = ap;
5728 	vp = a->a_vp;
5729 	tdvp = a->a_tdvp;
5730 	vn_seqc_write_begin(vp);
5731 	vn_seqc_write_begin(tdvp);
5732 }
5733 
5734 void
5735 vop_link_post(void *ap, int rc)
5736 {
5737 	struct vop_link_args *a;
5738 	struct vnode *vp, *tdvp;
5739 
5740 	a = ap;
5741 	vp = a->a_vp;
5742 	tdvp = a->a_tdvp;
5743 	vn_seqc_write_end(vp);
5744 	vn_seqc_write_end(tdvp);
5745 	if (!rc) {
5746 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5747 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5748 	}
5749 }
5750 
5751 void
5752 vop_mkdir_pre(void *ap)
5753 {
5754 	struct vop_mkdir_args *a;
5755 	struct vnode *dvp;
5756 
5757 	a = ap;
5758 	dvp = a->a_dvp;
5759 	vn_seqc_write_begin(dvp);
5760 }
5761 
5762 void
5763 vop_mkdir_post(void *ap, int rc)
5764 {
5765 	struct vop_mkdir_args *a;
5766 	struct vnode *dvp;
5767 
5768 	a = ap;
5769 	dvp = a->a_dvp;
5770 	vn_seqc_write_end(dvp);
5771 	if (!rc)
5772 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5773 }
5774 
5775 #ifdef DEBUG_VFS_LOCKS
5776 void
5777 vop_mkdir_debugpost(void *ap, int rc)
5778 {
5779 	struct vop_mkdir_args *a;
5780 
5781 	a = ap;
5782 	if (!rc)
5783 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5784 }
5785 #endif
5786 
5787 void
5788 vop_mknod_pre(void *ap)
5789 {
5790 	struct vop_mknod_args *a;
5791 	struct vnode *dvp;
5792 
5793 	a = ap;
5794 	dvp = a->a_dvp;
5795 	vn_seqc_write_begin(dvp);
5796 }
5797 
5798 void
5799 vop_mknod_post(void *ap, int rc)
5800 {
5801 	struct vop_mknod_args *a;
5802 	struct vnode *dvp;
5803 
5804 	a = ap;
5805 	dvp = a->a_dvp;
5806 	vn_seqc_write_end(dvp);
5807 	if (!rc)
5808 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5809 }
5810 
5811 void
5812 vop_reclaim_post(void *ap, int rc)
5813 {
5814 	struct vop_reclaim_args *a;
5815 	struct vnode *vp;
5816 
5817 	a = ap;
5818 	vp = a->a_vp;
5819 	ASSERT_VOP_IN_SEQC(vp);
5820 	if (!rc)
5821 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5822 }
5823 
5824 void
5825 vop_remove_pre(void *ap)
5826 {
5827 	struct vop_remove_args *a;
5828 	struct vnode *dvp, *vp;
5829 
5830 	a = ap;
5831 	dvp = a->a_dvp;
5832 	vp = a->a_vp;
5833 	vn_seqc_write_begin(dvp);
5834 	vn_seqc_write_begin(vp);
5835 }
5836 
5837 void
5838 vop_remove_post(void *ap, int rc)
5839 {
5840 	struct vop_remove_args *a;
5841 	struct vnode *dvp, *vp;
5842 
5843 	a = ap;
5844 	dvp = a->a_dvp;
5845 	vp = a->a_vp;
5846 	vn_seqc_write_end(dvp);
5847 	vn_seqc_write_end(vp);
5848 	if (!rc) {
5849 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5850 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5851 	}
5852 }
5853 
5854 void
5855 vop_rename_post(void *ap, int rc)
5856 {
5857 	struct vop_rename_args *a = ap;
5858 	long hint;
5859 
5860 	if (!rc) {
5861 		hint = NOTE_WRITE;
5862 		if (a->a_fdvp == a->a_tdvp) {
5863 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5864 				hint |= NOTE_LINK;
5865 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5866 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5867 		} else {
5868 			hint |= NOTE_EXTEND;
5869 			if (a->a_fvp->v_type == VDIR)
5870 				hint |= NOTE_LINK;
5871 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5872 
5873 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5874 			    a->a_tvp->v_type == VDIR)
5875 				hint &= ~NOTE_LINK;
5876 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5877 		}
5878 
5879 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5880 		if (a->a_tvp)
5881 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5882 	}
5883 	if (a->a_tdvp != a->a_fdvp)
5884 		vdrop(a->a_fdvp);
5885 	if (a->a_tvp != a->a_fvp)
5886 		vdrop(a->a_fvp);
5887 	vdrop(a->a_tdvp);
5888 	if (a->a_tvp)
5889 		vdrop(a->a_tvp);
5890 }
5891 
5892 void
5893 vop_rmdir_pre(void *ap)
5894 {
5895 	struct vop_rmdir_args *a;
5896 	struct vnode *dvp, *vp;
5897 
5898 	a = ap;
5899 	dvp = a->a_dvp;
5900 	vp = a->a_vp;
5901 	vn_seqc_write_begin(dvp);
5902 	vn_seqc_write_begin(vp);
5903 }
5904 
5905 void
5906 vop_rmdir_post(void *ap, int rc)
5907 {
5908 	struct vop_rmdir_args *a;
5909 	struct vnode *dvp, *vp;
5910 
5911 	a = ap;
5912 	dvp = a->a_dvp;
5913 	vp = a->a_vp;
5914 	vn_seqc_write_end(dvp);
5915 	vn_seqc_write_end(vp);
5916 	if (!rc) {
5917 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5918 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5919 	}
5920 }
5921 
5922 void
5923 vop_setattr_pre(void *ap)
5924 {
5925 	struct vop_setattr_args *a;
5926 	struct vnode *vp;
5927 
5928 	a = ap;
5929 	vp = a->a_vp;
5930 	vn_seqc_write_begin(vp);
5931 }
5932 
5933 void
5934 vop_setattr_post(void *ap, int rc)
5935 {
5936 	struct vop_setattr_args *a;
5937 	struct vnode *vp;
5938 
5939 	a = ap;
5940 	vp = a->a_vp;
5941 	vn_seqc_write_end(vp);
5942 	if (!rc)
5943 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5944 }
5945 
5946 void
5947 vop_setacl_pre(void *ap)
5948 {
5949 	struct vop_setacl_args *a;
5950 	struct vnode *vp;
5951 
5952 	a = ap;
5953 	vp = a->a_vp;
5954 	vn_seqc_write_begin(vp);
5955 }
5956 
5957 void
5958 vop_setacl_post(void *ap, int rc __unused)
5959 {
5960 	struct vop_setacl_args *a;
5961 	struct vnode *vp;
5962 
5963 	a = ap;
5964 	vp = a->a_vp;
5965 	vn_seqc_write_end(vp);
5966 }
5967 
5968 void
5969 vop_setextattr_pre(void *ap)
5970 {
5971 	struct vop_setextattr_args *a;
5972 	struct vnode *vp;
5973 
5974 	a = ap;
5975 	vp = a->a_vp;
5976 	vn_seqc_write_begin(vp);
5977 }
5978 
5979 void
5980 vop_setextattr_post(void *ap, int rc)
5981 {
5982 	struct vop_setextattr_args *a;
5983 	struct vnode *vp;
5984 
5985 	a = ap;
5986 	vp = a->a_vp;
5987 	vn_seqc_write_end(vp);
5988 	if (!rc)
5989 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5990 }
5991 
5992 void
5993 vop_symlink_pre(void *ap)
5994 {
5995 	struct vop_symlink_args *a;
5996 	struct vnode *dvp;
5997 
5998 	a = ap;
5999 	dvp = a->a_dvp;
6000 	vn_seqc_write_begin(dvp);
6001 }
6002 
6003 void
6004 vop_symlink_post(void *ap, int rc)
6005 {
6006 	struct vop_symlink_args *a;
6007 	struct vnode *dvp;
6008 
6009 	a = ap;
6010 	dvp = a->a_dvp;
6011 	vn_seqc_write_end(dvp);
6012 	if (!rc)
6013 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6014 }
6015 
6016 void
6017 vop_open_post(void *ap, int rc)
6018 {
6019 	struct vop_open_args *a = ap;
6020 
6021 	if (!rc)
6022 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6023 }
6024 
6025 void
6026 vop_close_post(void *ap, int rc)
6027 {
6028 	struct vop_close_args *a = ap;
6029 
6030 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6031 	    !VN_IS_DOOMED(a->a_vp))) {
6032 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6033 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6034 	}
6035 }
6036 
6037 void
6038 vop_read_post(void *ap, int rc)
6039 {
6040 	struct vop_read_args *a = ap;
6041 
6042 	if (!rc)
6043 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6044 }
6045 
6046 void
6047 vop_read_pgcache_post(void *ap, int rc)
6048 {
6049 	struct vop_read_pgcache_args *a = ap;
6050 
6051 	if (!rc)
6052 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6053 }
6054 
6055 void
6056 vop_readdir_post(void *ap, int rc)
6057 {
6058 	struct vop_readdir_args *a = ap;
6059 
6060 	if (!rc)
6061 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6062 }
6063 
6064 static struct knlist fs_knlist;
6065 
6066 static void
6067 vfs_event_init(void *arg)
6068 {
6069 	knlist_init_mtx(&fs_knlist, NULL);
6070 }
6071 /* XXX - correct order? */
6072 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6073 
6074 void
6075 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6076 {
6077 
6078 	KNOTE_UNLOCKED(&fs_knlist, event);
6079 }
6080 
6081 static int	filt_fsattach(struct knote *kn);
6082 static void	filt_fsdetach(struct knote *kn);
6083 static int	filt_fsevent(struct knote *kn, long hint);
6084 
6085 struct filterops fs_filtops = {
6086 	.f_isfd = 0,
6087 	.f_attach = filt_fsattach,
6088 	.f_detach = filt_fsdetach,
6089 	.f_event = filt_fsevent
6090 };
6091 
6092 static int
6093 filt_fsattach(struct knote *kn)
6094 {
6095 
6096 	kn->kn_flags |= EV_CLEAR;
6097 	knlist_add(&fs_knlist, kn, 0);
6098 	return (0);
6099 }
6100 
6101 static void
6102 filt_fsdetach(struct knote *kn)
6103 {
6104 
6105 	knlist_remove(&fs_knlist, kn, 0);
6106 }
6107 
6108 static int
6109 filt_fsevent(struct knote *kn, long hint)
6110 {
6111 
6112 	kn->kn_fflags |= kn->kn_sfflags & hint;
6113 
6114 	return (kn->kn_fflags != 0);
6115 }
6116 
6117 static int
6118 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6119 {
6120 	struct vfsidctl vc;
6121 	int error;
6122 	struct mount *mp;
6123 
6124 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6125 	if (error)
6126 		return (error);
6127 	if (vc.vc_vers != VFS_CTL_VERS1)
6128 		return (EINVAL);
6129 	mp = vfs_getvfs(&vc.vc_fsid);
6130 	if (mp == NULL)
6131 		return (ENOENT);
6132 	/* ensure that a specific sysctl goes to the right filesystem. */
6133 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6134 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6135 		vfs_rel(mp);
6136 		return (EINVAL);
6137 	}
6138 	VCTLTOREQ(&vc, req);
6139 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6140 	vfs_rel(mp);
6141 	return (error);
6142 }
6143 
6144 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6145     NULL, 0, sysctl_vfs_ctl, "",
6146     "Sysctl by fsid");
6147 
6148 /*
6149  * Function to initialize a va_filerev field sensibly.
6150  * XXX: Wouldn't a random number make a lot more sense ??
6151  */
6152 u_quad_t
6153 init_va_filerev(void)
6154 {
6155 	struct bintime bt;
6156 
6157 	getbinuptime(&bt);
6158 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6159 }
6160 
6161 static int	filt_vfsread(struct knote *kn, long hint);
6162 static int	filt_vfswrite(struct knote *kn, long hint);
6163 static int	filt_vfsvnode(struct knote *kn, long hint);
6164 static void	filt_vfsdetach(struct knote *kn);
6165 static struct filterops vfsread_filtops = {
6166 	.f_isfd = 1,
6167 	.f_detach = filt_vfsdetach,
6168 	.f_event = filt_vfsread
6169 };
6170 static struct filterops vfswrite_filtops = {
6171 	.f_isfd = 1,
6172 	.f_detach = filt_vfsdetach,
6173 	.f_event = filt_vfswrite
6174 };
6175 static struct filterops vfsvnode_filtops = {
6176 	.f_isfd = 1,
6177 	.f_detach = filt_vfsdetach,
6178 	.f_event = filt_vfsvnode
6179 };
6180 
6181 static void
6182 vfs_knllock(void *arg)
6183 {
6184 	struct vnode *vp = arg;
6185 
6186 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6187 }
6188 
6189 static void
6190 vfs_knlunlock(void *arg)
6191 {
6192 	struct vnode *vp = arg;
6193 
6194 	VOP_UNLOCK(vp);
6195 }
6196 
6197 static void
6198 vfs_knl_assert_lock(void *arg, int what)
6199 {
6200 #ifdef DEBUG_VFS_LOCKS
6201 	struct vnode *vp = arg;
6202 
6203 	if (what == LA_LOCKED)
6204 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6205 	else
6206 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6207 #endif
6208 }
6209 
6210 int
6211 vfs_kqfilter(struct vop_kqfilter_args *ap)
6212 {
6213 	struct vnode *vp = ap->a_vp;
6214 	struct knote *kn = ap->a_kn;
6215 	struct knlist *knl;
6216 
6217 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6218 	    kn->kn_filter != EVFILT_WRITE),
6219 	    ("READ/WRITE filter on a FIFO leaked through"));
6220 	switch (kn->kn_filter) {
6221 	case EVFILT_READ:
6222 		kn->kn_fop = &vfsread_filtops;
6223 		break;
6224 	case EVFILT_WRITE:
6225 		kn->kn_fop = &vfswrite_filtops;
6226 		break;
6227 	case EVFILT_VNODE:
6228 		kn->kn_fop = &vfsvnode_filtops;
6229 		break;
6230 	default:
6231 		return (EINVAL);
6232 	}
6233 
6234 	kn->kn_hook = (caddr_t)vp;
6235 
6236 	v_addpollinfo(vp);
6237 	if (vp->v_pollinfo == NULL)
6238 		return (ENOMEM);
6239 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6240 	vhold(vp);
6241 	knlist_add(knl, kn, 0);
6242 
6243 	return (0);
6244 }
6245 
6246 /*
6247  * Detach knote from vnode
6248  */
6249 static void
6250 filt_vfsdetach(struct knote *kn)
6251 {
6252 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6253 
6254 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6255 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6256 	vdrop(vp);
6257 }
6258 
6259 /*ARGSUSED*/
6260 static int
6261 filt_vfsread(struct knote *kn, long hint)
6262 {
6263 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6264 	struct vattr va;
6265 	int res;
6266 
6267 	/*
6268 	 * filesystem is gone, so set the EOF flag and schedule
6269 	 * the knote for deletion.
6270 	 */
6271 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6272 		VI_LOCK(vp);
6273 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6274 		VI_UNLOCK(vp);
6275 		return (1);
6276 	}
6277 
6278 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6279 		return (0);
6280 
6281 	VI_LOCK(vp);
6282 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6283 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6284 	VI_UNLOCK(vp);
6285 	return (res);
6286 }
6287 
6288 /*ARGSUSED*/
6289 static int
6290 filt_vfswrite(struct knote *kn, long hint)
6291 {
6292 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6293 
6294 	VI_LOCK(vp);
6295 
6296 	/*
6297 	 * filesystem is gone, so set the EOF flag and schedule
6298 	 * the knote for deletion.
6299 	 */
6300 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6301 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6302 
6303 	kn->kn_data = 0;
6304 	VI_UNLOCK(vp);
6305 	return (1);
6306 }
6307 
6308 static int
6309 filt_vfsvnode(struct knote *kn, long hint)
6310 {
6311 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6312 	int res;
6313 
6314 	VI_LOCK(vp);
6315 	if (kn->kn_sfflags & hint)
6316 		kn->kn_fflags |= hint;
6317 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6318 		kn->kn_flags |= EV_EOF;
6319 		VI_UNLOCK(vp);
6320 		return (1);
6321 	}
6322 	res = (kn->kn_fflags != 0);
6323 	VI_UNLOCK(vp);
6324 	return (res);
6325 }
6326 
6327 /*
6328  * Returns whether the directory is empty or not.
6329  * If it is empty, the return value is 0; otherwise
6330  * the return value is an error value (which may
6331  * be ENOTEMPTY).
6332  */
6333 int
6334 vfs_emptydir(struct vnode *vp)
6335 {
6336 	struct uio uio;
6337 	struct iovec iov;
6338 	struct dirent *dirent, *dp, *endp;
6339 	int error, eof;
6340 
6341 	error = 0;
6342 	eof = 0;
6343 
6344 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6345 	VNASSERT(vp->v_type == VDIR, vp, ("vp is not a directory"));
6346 
6347 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6348 	iov.iov_base = dirent;
6349 	iov.iov_len = sizeof(struct dirent);
6350 
6351 	uio.uio_iov = &iov;
6352 	uio.uio_iovcnt = 1;
6353 	uio.uio_offset = 0;
6354 	uio.uio_resid = sizeof(struct dirent);
6355 	uio.uio_segflg = UIO_SYSSPACE;
6356 	uio.uio_rw = UIO_READ;
6357 	uio.uio_td = curthread;
6358 
6359 	while (eof == 0 && error == 0) {
6360 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6361 		    NULL, NULL);
6362 		if (error != 0)
6363 			break;
6364 		endp = (void *)((uint8_t *)dirent +
6365 		    sizeof(struct dirent) - uio.uio_resid);
6366 		for (dp = dirent; dp < endp;
6367 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6368 			if (dp->d_type == DT_WHT)
6369 				continue;
6370 			if (dp->d_namlen == 0)
6371 				continue;
6372 			if (dp->d_type != DT_DIR &&
6373 			    dp->d_type != DT_UNKNOWN) {
6374 				error = ENOTEMPTY;
6375 				break;
6376 			}
6377 			if (dp->d_namlen > 2) {
6378 				error = ENOTEMPTY;
6379 				break;
6380 			}
6381 			if (dp->d_namlen == 1 &&
6382 			    dp->d_name[0] != '.') {
6383 				error = ENOTEMPTY;
6384 				break;
6385 			}
6386 			if (dp->d_namlen == 2 &&
6387 			    dp->d_name[1] != '.') {
6388 				error = ENOTEMPTY;
6389 				break;
6390 			}
6391 			uio.uio_resid = sizeof(struct dirent);
6392 		}
6393 	}
6394 	free(dirent, M_TEMP);
6395 	return (error);
6396 }
6397 
6398 int
6399 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6400 {
6401 	int error;
6402 
6403 	if (dp->d_reclen > ap->a_uio->uio_resid)
6404 		return (ENAMETOOLONG);
6405 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6406 	if (error) {
6407 		if (ap->a_ncookies != NULL) {
6408 			if (ap->a_cookies != NULL)
6409 				free(ap->a_cookies, M_TEMP);
6410 			ap->a_cookies = NULL;
6411 			*ap->a_ncookies = 0;
6412 		}
6413 		return (error);
6414 	}
6415 	if (ap->a_ncookies == NULL)
6416 		return (0);
6417 
6418 	KASSERT(ap->a_cookies,
6419 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6420 
6421 	*ap->a_cookies = realloc(*ap->a_cookies,
6422 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6423 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6424 	*ap->a_ncookies += 1;
6425 	return (0);
6426 }
6427 
6428 /*
6429  * The purpose of this routine is to remove granularity from accmode_t,
6430  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6431  * VADMIN and VAPPEND.
6432  *
6433  * If it returns 0, the caller is supposed to continue with the usual
6434  * access checks using 'accmode' as modified by this routine.  If it
6435  * returns nonzero value, the caller is supposed to return that value
6436  * as errno.
6437  *
6438  * Note that after this routine runs, accmode may be zero.
6439  */
6440 int
6441 vfs_unixify_accmode(accmode_t *accmode)
6442 {
6443 	/*
6444 	 * There is no way to specify explicit "deny" rule using
6445 	 * file mode or POSIX.1e ACLs.
6446 	 */
6447 	if (*accmode & VEXPLICIT_DENY) {
6448 		*accmode = 0;
6449 		return (0);
6450 	}
6451 
6452 	/*
6453 	 * None of these can be translated into usual access bits.
6454 	 * Also, the common case for NFSv4 ACLs is to not contain
6455 	 * either of these bits. Caller should check for VWRITE
6456 	 * on the containing directory instead.
6457 	 */
6458 	if (*accmode & (VDELETE_CHILD | VDELETE))
6459 		return (EPERM);
6460 
6461 	if (*accmode & VADMIN_PERMS) {
6462 		*accmode &= ~VADMIN_PERMS;
6463 		*accmode |= VADMIN;
6464 	}
6465 
6466 	/*
6467 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6468 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6469 	 */
6470 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6471 
6472 	return (0);
6473 }
6474 
6475 /*
6476  * Clear out a doomed vnode (if any) and replace it with a new one as long
6477  * as the fs is not being unmounted. Return the root vnode to the caller.
6478  */
6479 static int __noinline
6480 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6481 {
6482 	struct vnode *vp;
6483 	int error;
6484 
6485 restart:
6486 	if (mp->mnt_rootvnode != NULL) {
6487 		MNT_ILOCK(mp);
6488 		vp = mp->mnt_rootvnode;
6489 		if (vp != NULL) {
6490 			if (!VN_IS_DOOMED(vp)) {
6491 				vrefact(vp);
6492 				MNT_IUNLOCK(mp);
6493 				error = vn_lock(vp, flags);
6494 				if (error == 0) {
6495 					*vpp = vp;
6496 					return (0);
6497 				}
6498 				vrele(vp);
6499 				goto restart;
6500 			}
6501 			/*
6502 			 * Clear the old one.
6503 			 */
6504 			mp->mnt_rootvnode = NULL;
6505 		}
6506 		MNT_IUNLOCK(mp);
6507 		if (vp != NULL) {
6508 			vfs_op_barrier_wait(mp);
6509 			vrele(vp);
6510 		}
6511 	}
6512 	error = VFS_CACHEDROOT(mp, flags, vpp);
6513 	if (error != 0)
6514 		return (error);
6515 	if (mp->mnt_vfs_ops == 0) {
6516 		MNT_ILOCK(mp);
6517 		if (mp->mnt_vfs_ops != 0) {
6518 			MNT_IUNLOCK(mp);
6519 			return (0);
6520 		}
6521 		if (mp->mnt_rootvnode == NULL) {
6522 			vrefact(*vpp);
6523 			mp->mnt_rootvnode = *vpp;
6524 		} else {
6525 			if (mp->mnt_rootvnode != *vpp) {
6526 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6527 					panic("%s: mismatch between vnode returned "
6528 					    " by VFS_CACHEDROOT and the one cached "
6529 					    " (%p != %p)",
6530 					    __func__, *vpp, mp->mnt_rootvnode);
6531 				}
6532 			}
6533 		}
6534 		MNT_IUNLOCK(mp);
6535 	}
6536 	return (0);
6537 }
6538 
6539 int
6540 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6541 {
6542 	struct mount_pcpu *mpcpu;
6543 	struct vnode *vp;
6544 	int error;
6545 
6546 	if (!vfs_op_thread_enter(mp, mpcpu))
6547 		return (vfs_cache_root_fallback(mp, flags, vpp));
6548 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6549 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6550 		vfs_op_thread_exit(mp, mpcpu);
6551 		return (vfs_cache_root_fallback(mp, flags, vpp));
6552 	}
6553 	vrefact(vp);
6554 	vfs_op_thread_exit(mp, mpcpu);
6555 	error = vn_lock(vp, flags);
6556 	if (error != 0) {
6557 		vrele(vp);
6558 		return (vfs_cache_root_fallback(mp, flags, vpp));
6559 	}
6560 	*vpp = vp;
6561 	return (0);
6562 }
6563 
6564 struct vnode *
6565 vfs_cache_root_clear(struct mount *mp)
6566 {
6567 	struct vnode *vp;
6568 
6569 	/*
6570 	 * ops > 0 guarantees there is nobody who can see this vnode
6571 	 */
6572 	MPASS(mp->mnt_vfs_ops > 0);
6573 	vp = mp->mnt_rootvnode;
6574 	if (vp != NULL)
6575 		vn_seqc_write_begin(vp);
6576 	mp->mnt_rootvnode = NULL;
6577 	return (vp);
6578 }
6579 
6580 void
6581 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6582 {
6583 
6584 	MPASS(mp->mnt_vfs_ops > 0);
6585 	vrefact(vp);
6586 	mp->mnt_rootvnode = vp;
6587 }
6588 
6589 /*
6590  * These are helper functions for filesystems to traverse all
6591  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6592  *
6593  * This interface replaces MNT_VNODE_FOREACH.
6594  */
6595 
6596 struct vnode *
6597 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6598 {
6599 	struct vnode *vp;
6600 
6601 	if (should_yield())
6602 		kern_yield(PRI_USER);
6603 	MNT_ILOCK(mp);
6604 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6605 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6606 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6607 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6608 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6609 			continue;
6610 		VI_LOCK(vp);
6611 		if (VN_IS_DOOMED(vp)) {
6612 			VI_UNLOCK(vp);
6613 			continue;
6614 		}
6615 		break;
6616 	}
6617 	if (vp == NULL) {
6618 		__mnt_vnode_markerfree_all(mvp, mp);
6619 		/* MNT_IUNLOCK(mp); -- done in above function */
6620 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6621 		return (NULL);
6622 	}
6623 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6624 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6625 	MNT_IUNLOCK(mp);
6626 	return (vp);
6627 }
6628 
6629 struct vnode *
6630 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6631 {
6632 	struct vnode *vp;
6633 
6634 	*mvp = vn_alloc_marker(mp);
6635 	MNT_ILOCK(mp);
6636 	MNT_REF(mp);
6637 
6638 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6639 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6640 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6641 			continue;
6642 		VI_LOCK(vp);
6643 		if (VN_IS_DOOMED(vp)) {
6644 			VI_UNLOCK(vp);
6645 			continue;
6646 		}
6647 		break;
6648 	}
6649 	if (vp == NULL) {
6650 		MNT_REL(mp);
6651 		MNT_IUNLOCK(mp);
6652 		vn_free_marker(*mvp);
6653 		*mvp = NULL;
6654 		return (NULL);
6655 	}
6656 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6657 	MNT_IUNLOCK(mp);
6658 	return (vp);
6659 }
6660 
6661 void
6662 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6663 {
6664 
6665 	if (*mvp == NULL) {
6666 		MNT_IUNLOCK(mp);
6667 		return;
6668 	}
6669 
6670 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6671 
6672 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6673 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6674 	MNT_REL(mp);
6675 	MNT_IUNLOCK(mp);
6676 	vn_free_marker(*mvp);
6677 	*mvp = NULL;
6678 }
6679 
6680 /*
6681  * These are helper functions for filesystems to traverse their
6682  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6683  */
6684 static void
6685 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6686 {
6687 
6688 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6689 
6690 	MNT_ILOCK(mp);
6691 	MNT_REL(mp);
6692 	MNT_IUNLOCK(mp);
6693 	vn_free_marker(*mvp);
6694 	*mvp = NULL;
6695 }
6696 
6697 /*
6698  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6699  * conventional lock order during mnt_vnode_next_lazy iteration.
6700  *
6701  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6702  * The list lock is dropped and reacquired.  On success, both locks are held.
6703  * On failure, the mount vnode list lock is held but the vnode interlock is
6704  * not, and the procedure may have yielded.
6705  */
6706 static bool
6707 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6708     struct vnode *vp)
6709 {
6710 
6711 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6712 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6713 	    ("%s: bad marker", __func__));
6714 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6715 	    ("%s: inappropriate vnode", __func__));
6716 	ASSERT_VI_UNLOCKED(vp, __func__);
6717 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6718 
6719 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6720 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6721 
6722 	/*
6723 	 * Note we may be racing against vdrop which transitioned the hold
6724 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6725 	 * if we are the only user after we get the interlock we will just
6726 	 * vdrop.
6727 	 */
6728 	vhold(vp);
6729 	mtx_unlock(&mp->mnt_listmtx);
6730 	VI_LOCK(vp);
6731 	if (VN_IS_DOOMED(vp)) {
6732 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6733 		goto out_lost;
6734 	}
6735 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6736 	/*
6737 	 * There is nothing to do if we are the last user.
6738 	 */
6739 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6740 		goto out_lost;
6741 	mtx_lock(&mp->mnt_listmtx);
6742 	return (true);
6743 out_lost:
6744 	vdropl(vp);
6745 	maybe_yield();
6746 	mtx_lock(&mp->mnt_listmtx);
6747 	return (false);
6748 }
6749 
6750 static struct vnode *
6751 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6752     void *cbarg)
6753 {
6754 	struct vnode *vp;
6755 
6756 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6757 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6758 restart:
6759 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6760 	while (vp != NULL) {
6761 		if (vp->v_type == VMARKER) {
6762 			vp = TAILQ_NEXT(vp, v_lazylist);
6763 			continue;
6764 		}
6765 		/*
6766 		 * See if we want to process the vnode. Note we may encounter a
6767 		 * long string of vnodes we don't care about and hog the list
6768 		 * as a result. Check for it and requeue the marker.
6769 		 */
6770 		VNPASS(!VN_IS_DOOMED(vp), vp);
6771 		if (!cb(vp, cbarg)) {
6772 			if (!should_yield()) {
6773 				vp = TAILQ_NEXT(vp, v_lazylist);
6774 				continue;
6775 			}
6776 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6777 			    v_lazylist);
6778 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6779 			    v_lazylist);
6780 			mtx_unlock(&mp->mnt_listmtx);
6781 			kern_yield(PRI_USER);
6782 			mtx_lock(&mp->mnt_listmtx);
6783 			goto restart;
6784 		}
6785 		/*
6786 		 * Try-lock because this is the wrong lock order.
6787 		 */
6788 		if (!VI_TRYLOCK(vp) &&
6789 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6790 			goto restart;
6791 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6792 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6793 		    ("alien vnode on the lazy list %p %p", vp, mp));
6794 		VNPASS(vp->v_mount == mp, vp);
6795 		VNPASS(!VN_IS_DOOMED(vp), vp);
6796 		break;
6797 	}
6798 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6799 
6800 	/* Check if we are done */
6801 	if (vp == NULL) {
6802 		mtx_unlock(&mp->mnt_listmtx);
6803 		mnt_vnode_markerfree_lazy(mvp, mp);
6804 		return (NULL);
6805 	}
6806 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6807 	mtx_unlock(&mp->mnt_listmtx);
6808 	ASSERT_VI_LOCKED(vp, "lazy iter");
6809 	return (vp);
6810 }
6811 
6812 struct vnode *
6813 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6814     void *cbarg)
6815 {
6816 
6817 	if (should_yield())
6818 		kern_yield(PRI_USER);
6819 	mtx_lock(&mp->mnt_listmtx);
6820 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6821 }
6822 
6823 struct vnode *
6824 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6825     void *cbarg)
6826 {
6827 	struct vnode *vp;
6828 
6829 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6830 		return (NULL);
6831 
6832 	*mvp = vn_alloc_marker(mp);
6833 	MNT_ILOCK(mp);
6834 	MNT_REF(mp);
6835 	MNT_IUNLOCK(mp);
6836 
6837 	mtx_lock(&mp->mnt_listmtx);
6838 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6839 	if (vp == NULL) {
6840 		mtx_unlock(&mp->mnt_listmtx);
6841 		mnt_vnode_markerfree_lazy(mvp, mp);
6842 		return (NULL);
6843 	}
6844 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6845 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6846 }
6847 
6848 void
6849 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6850 {
6851 
6852 	if (*mvp == NULL)
6853 		return;
6854 
6855 	mtx_lock(&mp->mnt_listmtx);
6856 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6857 	mtx_unlock(&mp->mnt_listmtx);
6858 	mnt_vnode_markerfree_lazy(mvp, mp);
6859 }
6860 
6861 int
6862 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6863 {
6864 
6865 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6866 		cnp->cn_flags &= ~NOEXECCHECK;
6867 		return (0);
6868 	}
6869 
6870 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6871 }
6872 
6873 /*
6874  * Do not use this variant unless you have means other than the hold count
6875  * to prevent the vnode from getting freed.
6876  */
6877 void
6878 vn_seqc_write_begin_locked(struct vnode *vp)
6879 {
6880 
6881 	ASSERT_VI_LOCKED(vp, __func__);
6882 	VNPASS(vp->v_holdcnt > 0, vp);
6883 	VNPASS(vp->v_seqc_users >= 0, vp);
6884 	vp->v_seqc_users++;
6885 	if (vp->v_seqc_users == 1)
6886 		seqc_sleepable_write_begin(&vp->v_seqc);
6887 }
6888 
6889 void
6890 vn_seqc_write_begin(struct vnode *vp)
6891 {
6892 
6893 	VI_LOCK(vp);
6894 	vn_seqc_write_begin_locked(vp);
6895 	VI_UNLOCK(vp);
6896 }
6897 
6898 void
6899 vn_seqc_write_end_locked(struct vnode *vp)
6900 {
6901 
6902 	ASSERT_VI_LOCKED(vp, __func__);
6903 	VNPASS(vp->v_seqc_users > 0, vp);
6904 	vp->v_seqc_users--;
6905 	if (vp->v_seqc_users == 0)
6906 		seqc_sleepable_write_end(&vp->v_seqc);
6907 }
6908 
6909 void
6910 vn_seqc_write_end(struct vnode *vp)
6911 {
6912 
6913 	VI_LOCK(vp);
6914 	vn_seqc_write_end_locked(vp);
6915 	VI_UNLOCK(vp);
6916 }
6917 
6918 /*
6919  * Special case handling for allocating and freeing vnodes.
6920  *
6921  * The counter remains unchanged on free so that a doomed vnode will
6922  * keep testing as in modify as long as it is accessible with SMR.
6923  */
6924 static void
6925 vn_seqc_init(struct vnode *vp)
6926 {
6927 
6928 	vp->v_seqc = 0;
6929 	vp->v_seqc_users = 0;
6930 }
6931 
6932 static void
6933 vn_seqc_write_end_free(struct vnode *vp)
6934 {
6935 
6936 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
6937 	VNPASS(vp->v_seqc_users == 1, vp);
6938 }
6939 
6940 void
6941 vn_irflag_set_locked(struct vnode *vp, short toset)
6942 {
6943 	short flags;
6944 
6945 	ASSERT_VI_LOCKED(vp, __func__);
6946 	flags = vn_irflag_read(vp);
6947 	VNASSERT((flags & toset) == 0, vp,
6948 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
6949 	    __func__, flags, toset));
6950 	atomic_store_short(&vp->v_irflag, flags | toset);
6951 }
6952 
6953 void
6954 vn_irflag_set(struct vnode *vp, short toset)
6955 {
6956 
6957 	VI_LOCK(vp);
6958 	vn_irflag_set_locked(vp, toset);
6959 	VI_UNLOCK(vp);
6960 }
6961 
6962 void
6963 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
6964 {
6965 	short flags;
6966 
6967 	ASSERT_VI_LOCKED(vp, __func__);
6968 	flags = vn_irflag_read(vp);
6969 	atomic_store_short(&vp->v_irflag, flags | toset);
6970 }
6971 
6972 void
6973 vn_irflag_set_cond(struct vnode *vp, short toset)
6974 {
6975 
6976 	VI_LOCK(vp);
6977 	vn_irflag_set_cond_locked(vp, toset);
6978 	VI_UNLOCK(vp);
6979 }
6980 
6981 void
6982 vn_irflag_unset_locked(struct vnode *vp, short tounset)
6983 {
6984 	short flags;
6985 
6986 	ASSERT_VI_LOCKED(vp, __func__);
6987 	flags = vn_irflag_read(vp);
6988 	VNASSERT((flags & tounset) == tounset, vp,
6989 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
6990 	    __func__, flags, tounset));
6991 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
6992 }
6993 
6994 void
6995 vn_irflag_unset(struct vnode *vp, short tounset)
6996 {
6997 
6998 	VI_LOCK(vp);
6999 	vn_irflag_unset_locked(vp, tounset);
7000 	VI_UNLOCK(vp);
7001 }
7002