xref: /freebsd/sys/kern/vfs_subr.c (revision 657729a89dd578d8cfc70d6616f5c65a48a8b33a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/lockf.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/namei.h>
73 #include <sys/pctrie.h>
74 #include <sys/priv.h>
75 #include <sys/reboot.h>
76 #include <sys/refcount.h>
77 #include <sys/rwlock.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smr.h>
81 #include <sys/smp.h>
82 #include <sys/stat.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 #include <sys/watchdog.h>
88 
89 #include <machine/stdarg.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_kern.h>
100 #include <vm/uma.h>
101 
102 #ifdef DDB
103 #include <ddb/ddb.h>
104 #endif
105 
106 static void	delmntque(struct vnode *vp);
107 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 		    int slpflag, int slptimeo);
109 static void	syncer_shutdown(void *arg, int howto);
110 static int	vtryrecycle(struct vnode *vp);
111 static void	v_init_counters(struct vnode *);
112 static void	vn_seqc_init(struct vnode *);
113 static void	vn_seqc_write_end_free(struct vnode *vp);
114 static void	vgonel(struct vnode *);
115 static bool	vhold_recycle_free(struct vnode *);
116 static void	vdropl_recycle(struct vnode *vp);
117 static void	vdrop_recycle(struct vnode *vp);
118 static void	vfs_knllock(void *arg);
119 static void	vfs_knlunlock(void *arg);
120 static void	vfs_knl_assert_lock(void *arg, int what);
121 static void	destroy_vpollinfo(struct vpollinfo *vi);
122 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
123 		    daddr_t startlbn, daddr_t endlbn);
124 static void	vnlru_recalc(void);
125 
126 /*
127  * Number of vnodes in existence.  Increased whenever getnewvnode()
128  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
129  */
130 static u_long __exclusive_cache_line numvnodes;
131 
132 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
133     "Number of vnodes in existence");
134 
135 static counter_u64_t vnodes_created;
136 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
137     "Number of vnodes created by getnewvnode");
138 
139 /*
140  * Conversion tables for conversion from vnode types to inode formats
141  * and back.
142  */
143 enum vtype iftovt_tab[16] = {
144 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
145 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
146 };
147 int vttoif_tab[10] = {
148 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
149 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
150 };
151 
152 /*
153  * List of allocates vnodes in the system.
154  */
155 static TAILQ_HEAD(freelst, vnode) vnode_list;
156 static struct vnode *vnode_list_free_marker;
157 static struct vnode *vnode_list_reclaim_marker;
158 
159 /*
160  * "Free" vnode target.  Free vnodes are rarely completely free, but are
161  * just ones that are cheap to recycle.  Usually they are for files which
162  * have been stat'd but not read; these usually have inode and namecache
163  * data attached to them.  This target is the preferred minimum size of a
164  * sub-cache consisting mostly of such files. The system balances the size
165  * of this sub-cache with its complement to try to prevent either from
166  * thrashing while the other is relatively inactive.  The targets express
167  * a preference for the best balance.
168  *
169  * "Above" this target there are 2 further targets (watermarks) related
170  * to recyling of free vnodes.  In the best-operating case, the cache is
171  * exactly full, the free list has size between vlowat and vhiwat above the
172  * free target, and recycling from it and normal use maintains this state.
173  * Sometimes the free list is below vlowat or even empty, but this state
174  * is even better for immediate use provided the cache is not full.
175  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
176  * ones) to reach one of these states.  The watermarks are currently hard-
177  * coded as 4% and 9% of the available space higher.  These and the default
178  * of 25% for wantfreevnodes are too large if the memory size is large.
179  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
180  * whenever vnlru_proc() becomes active.
181  */
182 static long wantfreevnodes;
183 static long __exclusive_cache_line freevnodes;
184 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
185     &freevnodes, 0, "Number of \"free\" vnodes");
186 static long freevnodes_old;
187 
188 static counter_u64_t recycles_count;
189 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
190     "Number of vnodes recycled to meet vnode cache targets");
191 
192 static counter_u64_t recycles_free_count;
193 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
194     "Number of free vnodes recycled to meet vnode cache targets");
195 
196 static counter_u64_t deferred_inact;
197 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
198     "Number of times inactive processing was deferred");
199 
200 /* To keep more than one thread at a time from running vfs_getnewfsid */
201 static struct mtx mntid_mtx;
202 
203 /*
204  * Lock for any access to the following:
205  *	vnode_list
206  *	numvnodes
207  *	freevnodes
208  */
209 static struct mtx __exclusive_cache_line vnode_list_mtx;
210 
211 /* Publicly exported FS */
212 struct nfs_public nfs_pub;
213 
214 static uma_zone_t buf_trie_zone;
215 static smr_t buf_trie_smr;
216 
217 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
218 static uma_zone_t vnode_zone;
219 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
220 
221 __read_frequently smr_t vfs_smr;
222 
223 /*
224  * The workitem queue.
225  *
226  * It is useful to delay writes of file data and filesystem metadata
227  * for tens of seconds so that quickly created and deleted files need
228  * not waste disk bandwidth being created and removed. To realize this,
229  * we append vnodes to a "workitem" queue. When running with a soft
230  * updates implementation, most pending metadata dependencies should
231  * not wait for more than a few seconds. Thus, mounted on block devices
232  * are delayed only about a half the time that file data is delayed.
233  * Similarly, directory updates are more critical, so are only delayed
234  * about a third the time that file data is delayed. Thus, there are
235  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
236  * one each second (driven off the filesystem syncer process). The
237  * syncer_delayno variable indicates the next queue that is to be processed.
238  * Items that need to be processed soon are placed in this queue:
239  *
240  *	syncer_workitem_pending[syncer_delayno]
241  *
242  * A delay of fifteen seconds is done by placing the request fifteen
243  * entries later in the queue:
244  *
245  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
246  *
247  */
248 static int syncer_delayno;
249 static long syncer_mask;
250 LIST_HEAD(synclist, bufobj);
251 static struct synclist *syncer_workitem_pending;
252 /*
253  * The sync_mtx protects:
254  *	bo->bo_synclist
255  *	sync_vnode_count
256  *	syncer_delayno
257  *	syncer_state
258  *	syncer_workitem_pending
259  *	syncer_worklist_len
260  *	rushjob
261  */
262 static struct mtx sync_mtx;
263 static struct cv sync_wakeup;
264 
265 #define SYNCER_MAXDELAY		32
266 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
267 static int syncdelay = 30;		/* max time to delay syncing data */
268 static int filedelay = 30;		/* time to delay syncing files */
269 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
270     "Time to delay syncing files (in seconds)");
271 static int dirdelay = 29;		/* time to delay syncing directories */
272 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
273     "Time to delay syncing directories (in seconds)");
274 static int metadelay = 28;		/* time to delay syncing metadata */
275 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
276     "Time to delay syncing metadata (in seconds)");
277 static int rushjob;		/* number of slots to run ASAP */
278 static int stat_rush_requests;	/* number of times I/O speeded up */
279 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
280     "Number of times I/O speeded up (rush requests)");
281 
282 #define	VDBATCH_SIZE 8
283 struct vdbatch {
284 	u_int index;
285 	long freevnodes;
286 	struct mtx lock;
287 	struct vnode *tab[VDBATCH_SIZE];
288 };
289 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
290 
291 static void	vdbatch_dequeue(struct vnode *vp);
292 
293 /*
294  * When shutting down the syncer, run it at four times normal speed.
295  */
296 #define SYNCER_SHUTDOWN_SPEEDUP		4
297 static int sync_vnode_count;
298 static int syncer_worklist_len;
299 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
300     syncer_state;
301 
302 /* Target for maximum number of vnodes. */
303 u_long desiredvnodes;
304 static u_long gapvnodes;		/* gap between wanted and desired */
305 static u_long vhiwat;		/* enough extras after expansion */
306 static u_long vlowat;		/* minimal extras before expansion */
307 static u_long vstir;		/* nonzero to stir non-free vnodes */
308 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
309 
310 static u_long vnlru_read_freevnodes(void);
311 
312 /*
313  * Note that no attempt is made to sanitize these parameters.
314  */
315 static int
316 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
317 {
318 	u_long val;
319 	int error;
320 
321 	val = desiredvnodes;
322 	error = sysctl_handle_long(oidp, &val, 0, req);
323 	if (error != 0 || req->newptr == NULL)
324 		return (error);
325 
326 	if (val == desiredvnodes)
327 		return (0);
328 	mtx_lock(&vnode_list_mtx);
329 	desiredvnodes = val;
330 	wantfreevnodes = desiredvnodes / 4;
331 	vnlru_recalc();
332 	mtx_unlock(&vnode_list_mtx);
333 	/*
334 	 * XXX There is no protection against multiple threads changing
335 	 * desiredvnodes at the same time. Locking above only helps vnlru and
336 	 * getnewvnode.
337 	 */
338 	vfs_hash_changesize(desiredvnodes);
339 	cache_changesize(desiredvnodes);
340 	return (0);
341 }
342 
343 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
344     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
345     "LU", "Target for maximum number of vnodes");
346 
347 static int
348 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = wantfreevnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == wantfreevnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	wantfreevnodes = val;
362 	vnlru_recalc();
363 	mtx_unlock(&vnode_list_mtx);
364 	return (0);
365 }
366 
367 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
369     "LU", "Target for minimum number of \"free\" vnodes");
370 
371 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
372     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
373 static int vnlru_nowhere;
374 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW | CTLFLAG_STATS,
375     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
376 
377 static int
378 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
379 {
380 	struct vnode *vp;
381 	struct nameidata nd;
382 	char *buf;
383 	unsigned long ndflags;
384 	int error;
385 
386 	if (req->newptr == NULL)
387 		return (EINVAL);
388 	if (req->newlen >= PATH_MAX)
389 		return (E2BIG);
390 
391 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
392 	error = SYSCTL_IN(req, buf, req->newlen);
393 	if (error != 0)
394 		goto out;
395 
396 	buf[req->newlen] = '\0';
397 
398 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
399 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
400 	if ((error = namei(&nd)) != 0)
401 		goto out;
402 	vp = nd.ni_vp;
403 
404 	if (VN_IS_DOOMED(vp)) {
405 		/*
406 		 * This vnode is being recycled.  Return != 0 to let the caller
407 		 * know that the sysctl had no effect.  Return EAGAIN because a
408 		 * subsequent call will likely succeed (since namei will create
409 		 * a new vnode if necessary)
410 		 */
411 		error = EAGAIN;
412 		goto putvnode;
413 	}
414 
415 	counter_u64_add(recycles_count, 1);
416 	vgone(vp);
417 putvnode:
418 	NDFREE(&nd, 0);
419 out:
420 	free(buf, M_TEMP);
421 	return (error);
422 }
423 
424 static int
425 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
426 {
427 	struct thread *td = curthread;
428 	struct vnode *vp;
429 	struct file *fp;
430 	int error;
431 	int fd;
432 
433 	if (req->newptr == NULL)
434 		return (EBADF);
435 
436         error = sysctl_handle_int(oidp, &fd, 0, req);
437         if (error != 0)
438                 return (error);
439 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
440 	if (error != 0)
441 		return (error);
442 	vp = fp->f_vnode;
443 
444 	error = vn_lock(vp, LK_EXCLUSIVE);
445 	if (error != 0)
446 		goto drop;
447 
448 	counter_u64_add(recycles_count, 1);
449 	vgone(vp);
450 	VOP_UNLOCK(vp);
451 drop:
452 	fdrop(fp, td);
453 	return (error);
454 }
455 
456 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
457     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
458     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
459 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
460     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
461     sysctl_ftry_reclaim_vnode, "I",
462     "Try to reclaim a vnode by its file descriptor");
463 
464 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
465 #define vnsz2log 8
466 #ifndef DEBUG_LOCKS
467 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
468     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
469     "vnsz2log needs to be updated");
470 #endif
471 
472 /*
473  * Support for the bufobj clean & dirty pctrie.
474  */
475 static void *
476 buf_trie_alloc(struct pctrie *ptree)
477 {
478 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
479 }
480 
481 static void
482 buf_trie_free(struct pctrie *ptree, void *node)
483 {
484 	uma_zfree_smr(buf_trie_zone, node);
485 }
486 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
487     buf_trie_smr);
488 
489 /*
490  * Initialize the vnode management data structures.
491  *
492  * Reevaluate the following cap on the number of vnodes after the physical
493  * memory size exceeds 512GB.  In the limit, as the physical memory size
494  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
495  */
496 #ifndef	MAXVNODES_MAX
497 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
498 #endif
499 
500 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
501 
502 static struct vnode *
503 vn_alloc_marker(struct mount *mp)
504 {
505 	struct vnode *vp;
506 
507 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
508 	vp->v_type = VMARKER;
509 	vp->v_mount = mp;
510 
511 	return (vp);
512 }
513 
514 static void
515 vn_free_marker(struct vnode *vp)
516 {
517 
518 	MPASS(vp->v_type == VMARKER);
519 	free(vp, M_VNODE_MARKER);
520 }
521 
522 #ifdef KASAN
523 static int
524 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
525 {
526 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
527 	return (0);
528 }
529 
530 static void
531 vnode_dtor(void *mem, int size, void *arg __unused)
532 {
533 	size_t end1, end2, off1, off2;
534 
535 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
536 	    offsetof(struct vnode, v_dbatchcpu),
537 	    "KASAN marks require updating");
538 
539 	off1 = offsetof(struct vnode, v_vnodelist);
540 	off2 = offsetof(struct vnode, v_dbatchcpu);
541 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
542 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
543 
544 	/*
545 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
546 	 * after the vnode has been freed.  Try to get some KASAN coverage by
547 	 * marking everything except those two fields as invalid.  Because
548 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
549 	 * the same 8-byte aligned word must also be marked valid.
550 	 */
551 
552 	/* Handle the area from the start until v_vnodelist... */
553 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
554 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
555 
556 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
557 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
558 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
559 	if (off2 > off1)
560 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
561 		    off2 - off1, KASAN_UMA_FREED);
562 
563 	/* ... and finally the area from v_dbatchcpu to the end. */
564 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
565 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
566 	    KASAN_UMA_FREED);
567 }
568 #endif /* KASAN */
569 
570 /*
571  * Initialize a vnode as it first enters the zone.
572  */
573 static int
574 vnode_init(void *mem, int size, int flags)
575 {
576 	struct vnode *vp;
577 
578 	vp = mem;
579 	bzero(vp, size);
580 	/*
581 	 * Setup locks.
582 	 */
583 	vp->v_vnlock = &vp->v_lock;
584 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
585 	/*
586 	 * By default, don't allow shared locks unless filesystems opt-in.
587 	 */
588 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
589 	    LK_NOSHARE | LK_IS_VNODE);
590 	/*
591 	 * Initialize bufobj.
592 	 */
593 	bufobj_init(&vp->v_bufobj, vp);
594 	/*
595 	 * Initialize namecache.
596 	 */
597 	cache_vnode_init(vp);
598 	/*
599 	 * Initialize rangelocks.
600 	 */
601 	rangelock_init(&vp->v_rl);
602 
603 	vp->v_dbatchcpu = NOCPU;
604 
605 	/*
606 	 * Check vhold_recycle_free for an explanation.
607 	 */
608 	vp->v_holdcnt = VHOLD_NO_SMR;
609 	vp->v_type = VNON;
610 	mtx_lock(&vnode_list_mtx);
611 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
612 	mtx_unlock(&vnode_list_mtx);
613 	return (0);
614 }
615 
616 /*
617  * Free a vnode when it is cleared from the zone.
618  */
619 static void
620 vnode_fini(void *mem, int size)
621 {
622 	struct vnode *vp;
623 	struct bufobj *bo;
624 
625 	vp = mem;
626 	vdbatch_dequeue(vp);
627 	mtx_lock(&vnode_list_mtx);
628 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
629 	mtx_unlock(&vnode_list_mtx);
630 	rangelock_destroy(&vp->v_rl);
631 	lockdestroy(vp->v_vnlock);
632 	mtx_destroy(&vp->v_interlock);
633 	bo = &vp->v_bufobj;
634 	rw_destroy(BO_LOCKPTR(bo));
635 
636 	kasan_mark(mem, size, size, 0);
637 }
638 
639 /*
640  * Provide the size of NFS nclnode and NFS fh for calculation of the
641  * vnode memory consumption.  The size is specified directly to
642  * eliminate dependency on NFS-private header.
643  *
644  * Other filesystems may use bigger or smaller (like UFS and ZFS)
645  * private inode data, but the NFS-based estimation is ample enough.
646  * Still, we care about differences in the size between 64- and 32-bit
647  * platforms.
648  *
649  * Namecache structure size is heuristically
650  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
651  */
652 #ifdef _LP64
653 #define	NFS_NCLNODE_SZ	(528 + 64)
654 #define	NC_SZ		148
655 #else
656 #define	NFS_NCLNODE_SZ	(360 + 32)
657 #define	NC_SZ		92
658 #endif
659 
660 static void
661 vntblinit(void *dummy __unused)
662 {
663 	struct vdbatch *vd;
664 	uma_ctor ctor;
665 	uma_dtor dtor;
666 	int cpu, physvnodes, virtvnodes;
667 
668 	/*
669 	 * Desiredvnodes is a function of the physical memory size and the
670 	 * kernel's heap size.  Generally speaking, it scales with the
671 	 * physical memory size.  The ratio of desiredvnodes to the physical
672 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
673 	 * Thereafter, the
674 	 * marginal ratio of desiredvnodes to the physical memory size is
675 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
676 	 * size.  The memory required by desiredvnodes vnodes and vm objects
677 	 * must not exceed 1/10th of the kernel's heap size.
678 	 */
679 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
680 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
681 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
682 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
683 	desiredvnodes = min(physvnodes, virtvnodes);
684 	if (desiredvnodes > MAXVNODES_MAX) {
685 		if (bootverbose)
686 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
687 			    desiredvnodes, MAXVNODES_MAX);
688 		desiredvnodes = MAXVNODES_MAX;
689 	}
690 	wantfreevnodes = desiredvnodes / 4;
691 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
692 	TAILQ_INIT(&vnode_list);
693 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
694 	/*
695 	 * The lock is taken to appease WITNESS.
696 	 */
697 	mtx_lock(&vnode_list_mtx);
698 	vnlru_recalc();
699 	mtx_unlock(&vnode_list_mtx);
700 	vnode_list_free_marker = vn_alloc_marker(NULL);
701 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
702 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
703 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
704 
705 #ifdef KASAN
706 	ctor = vnode_ctor;
707 	dtor = vnode_dtor;
708 #else
709 	ctor = NULL;
710 	dtor = NULL;
711 #endif
712 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
713 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
714 	uma_zone_set_smr(vnode_zone, vfs_smr);
715 
716 	/*
717 	 * Preallocate enough nodes to support one-per buf so that
718 	 * we can not fail an insert.  reassignbuf() callers can not
719 	 * tolerate the insertion failure.
720 	 */
721 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
722 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
723 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
724 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
725 	uma_prealloc(buf_trie_zone, nbuf);
726 
727 	vnodes_created = counter_u64_alloc(M_WAITOK);
728 	recycles_count = counter_u64_alloc(M_WAITOK);
729 	recycles_free_count = counter_u64_alloc(M_WAITOK);
730 	deferred_inact = counter_u64_alloc(M_WAITOK);
731 
732 	/*
733 	 * Initialize the filesystem syncer.
734 	 */
735 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
736 	    &syncer_mask);
737 	syncer_maxdelay = syncer_mask + 1;
738 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
739 	cv_init(&sync_wakeup, "syncer");
740 
741 	CPU_FOREACH(cpu) {
742 		vd = DPCPU_ID_PTR((cpu), vd);
743 		bzero(vd, sizeof(*vd));
744 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
745 	}
746 }
747 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
748 
749 /*
750  * Mark a mount point as busy. Used to synchronize access and to delay
751  * unmounting. Eventually, mountlist_mtx is not released on failure.
752  *
753  * vfs_busy() is a custom lock, it can block the caller.
754  * vfs_busy() only sleeps if the unmount is active on the mount point.
755  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
756  * vnode belonging to mp.
757  *
758  * Lookup uses vfs_busy() to traverse mount points.
759  * root fs			var fs
760  * / vnode lock		A	/ vnode lock (/var)		D
761  * /var vnode lock	B	/log vnode lock(/var/log)	E
762  * vfs_busy lock	C	vfs_busy lock			F
763  *
764  * Within each file system, the lock order is C->A->B and F->D->E.
765  *
766  * When traversing across mounts, the system follows that lock order:
767  *
768  *        C->A->B
769  *              |
770  *              +->F->D->E
771  *
772  * The lookup() process for namei("/var") illustrates the process:
773  *  1. VOP_LOOKUP() obtains B while A is held
774  *  2. vfs_busy() obtains a shared lock on F while A and B are held
775  *  3. vput() releases lock on B
776  *  4. vput() releases lock on A
777  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
778  *  6. vfs_unbusy() releases shared lock on F
779  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
780  *     Attempt to lock A (instead of vp_crossmp) while D is held would
781  *     violate the global order, causing deadlocks.
782  *
783  * dounmount() locks B while F is drained.  Note that for stacked
784  * filesystems, D and B in the example above may be the same lock,
785  * which introdues potential lock order reversal deadlock between
786  * dounmount() and step 5 above.  These filesystems may avoid the LOR
787  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
788  * remain held until after step 5.
789  */
790 int
791 vfs_busy(struct mount *mp, int flags)
792 {
793 	struct mount_pcpu *mpcpu;
794 
795 	MPASS((flags & ~MBF_MASK) == 0);
796 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
797 
798 	if (vfs_op_thread_enter(mp, mpcpu)) {
799 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
800 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
801 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
802 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
803 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
804 		vfs_op_thread_exit(mp, mpcpu);
805 		if (flags & MBF_MNTLSTLOCK)
806 			mtx_unlock(&mountlist_mtx);
807 		return (0);
808 	}
809 
810 	MNT_ILOCK(mp);
811 	vfs_assert_mount_counters(mp);
812 	MNT_REF(mp);
813 	/*
814 	 * If mount point is currently being unmounted, sleep until the
815 	 * mount point fate is decided.  If thread doing the unmounting fails,
816 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
817 	 * that this mount point has survived the unmount attempt and vfs_busy
818 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
819 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
820 	 * about to be really destroyed.  vfs_busy needs to release its
821 	 * reference on the mount point in this case and return with ENOENT,
822 	 * telling the caller the mount it tried to busy is no longer valid.
823 	 */
824 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
825 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
826 		    ("%s: non-empty upper mount list with pending unmount",
827 		    __func__));
828 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
829 			MNT_REL(mp);
830 			MNT_IUNLOCK(mp);
831 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
832 			    __func__);
833 			return (ENOENT);
834 		}
835 		if (flags & MBF_MNTLSTLOCK)
836 			mtx_unlock(&mountlist_mtx);
837 		mp->mnt_kern_flag |= MNTK_MWAIT;
838 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
839 		if (flags & MBF_MNTLSTLOCK)
840 			mtx_lock(&mountlist_mtx);
841 		MNT_ILOCK(mp);
842 	}
843 	if (flags & MBF_MNTLSTLOCK)
844 		mtx_unlock(&mountlist_mtx);
845 	mp->mnt_lockref++;
846 	MNT_IUNLOCK(mp);
847 	return (0);
848 }
849 
850 /*
851  * Free a busy filesystem.
852  */
853 void
854 vfs_unbusy(struct mount *mp)
855 {
856 	struct mount_pcpu *mpcpu;
857 	int c;
858 
859 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
860 
861 	if (vfs_op_thread_enter(mp, mpcpu)) {
862 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
863 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
864 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
865 		vfs_op_thread_exit(mp, mpcpu);
866 		return;
867 	}
868 
869 	MNT_ILOCK(mp);
870 	vfs_assert_mount_counters(mp);
871 	MNT_REL(mp);
872 	c = --mp->mnt_lockref;
873 	if (mp->mnt_vfs_ops == 0) {
874 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
875 		MNT_IUNLOCK(mp);
876 		return;
877 	}
878 	if (c < 0)
879 		vfs_dump_mount_counters(mp);
880 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
881 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
882 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
883 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
884 		wakeup(&mp->mnt_lockref);
885 	}
886 	MNT_IUNLOCK(mp);
887 }
888 
889 /*
890  * Lookup a mount point by filesystem identifier.
891  */
892 struct mount *
893 vfs_getvfs(fsid_t *fsid)
894 {
895 	struct mount *mp;
896 
897 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
898 	mtx_lock(&mountlist_mtx);
899 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
900 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
901 			vfs_ref(mp);
902 			mtx_unlock(&mountlist_mtx);
903 			return (mp);
904 		}
905 	}
906 	mtx_unlock(&mountlist_mtx);
907 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
908 	return ((struct mount *) 0);
909 }
910 
911 /*
912  * Lookup a mount point by filesystem identifier, busying it before
913  * returning.
914  *
915  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
916  * cache for popular filesystem identifiers.  The cache is lockess, using
917  * the fact that struct mount's are never freed.  In worst case we may
918  * get pointer to unmounted or even different filesystem, so we have to
919  * check what we got, and go slow way if so.
920  */
921 struct mount *
922 vfs_busyfs(fsid_t *fsid)
923 {
924 #define	FSID_CACHE_SIZE	256
925 	typedef struct mount * volatile vmp_t;
926 	static vmp_t cache[FSID_CACHE_SIZE];
927 	struct mount *mp;
928 	int error;
929 	uint32_t hash;
930 
931 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
932 	hash = fsid->val[0] ^ fsid->val[1];
933 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
934 	mp = cache[hash];
935 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
936 		goto slow;
937 	if (vfs_busy(mp, 0) != 0) {
938 		cache[hash] = NULL;
939 		goto slow;
940 	}
941 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
942 		return (mp);
943 	else
944 	    vfs_unbusy(mp);
945 
946 slow:
947 	mtx_lock(&mountlist_mtx);
948 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
949 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
950 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
951 			if (error) {
952 				cache[hash] = NULL;
953 				mtx_unlock(&mountlist_mtx);
954 				return (NULL);
955 			}
956 			cache[hash] = mp;
957 			return (mp);
958 		}
959 	}
960 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
961 	mtx_unlock(&mountlist_mtx);
962 	return ((struct mount *) 0);
963 }
964 
965 /*
966  * Check if a user can access privileged mount options.
967  */
968 int
969 vfs_suser(struct mount *mp, struct thread *td)
970 {
971 	int error;
972 
973 	if (jailed(td->td_ucred)) {
974 		/*
975 		 * If the jail of the calling thread lacks permission for
976 		 * this type of file system, deny immediately.
977 		 */
978 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
979 			return (EPERM);
980 
981 		/*
982 		 * If the file system was mounted outside the jail of the
983 		 * calling thread, deny immediately.
984 		 */
985 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
986 			return (EPERM);
987 	}
988 
989 	/*
990 	 * If file system supports delegated administration, we don't check
991 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
992 	 * by the file system itself.
993 	 * If this is not the user that did original mount, we check for
994 	 * the PRIV_VFS_MOUNT_OWNER privilege.
995 	 */
996 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
997 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
998 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
999 			return (error);
1000 	}
1001 	return (0);
1002 }
1003 
1004 /*
1005  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1006  * will be used to create fake device numbers for stat().  Also try (but
1007  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1008  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1009  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1010  *
1011  * Keep in mind that several mounts may be running in parallel.  Starting
1012  * the search one past where the previous search terminated is both a
1013  * micro-optimization and a defense against returning the same fsid to
1014  * different mounts.
1015  */
1016 void
1017 vfs_getnewfsid(struct mount *mp)
1018 {
1019 	static uint16_t mntid_base;
1020 	struct mount *nmp;
1021 	fsid_t tfsid;
1022 	int mtype;
1023 
1024 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1025 	mtx_lock(&mntid_mtx);
1026 	mtype = mp->mnt_vfc->vfc_typenum;
1027 	tfsid.val[1] = mtype;
1028 	mtype = (mtype & 0xFF) << 24;
1029 	for (;;) {
1030 		tfsid.val[0] = makedev(255,
1031 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1032 		mntid_base++;
1033 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1034 			break;
1035 		vfs_rel(nmp);
1036 	}
1037 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1038 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1039 	mtx_unlock(&mntid_mtx);
1040 }
1041 
1042 /*
1043  * Knob to control the precision of file timestamps:
1044  *
1045  *   0 = seconds only; nanoseconds zeroed.
1046  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1047  *   2 = seconds and nanoseconds, truncated to microseconds.
1048  * >=3 = seconds and nanoseconds, maximum precision.
1049  */
1050 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1051 
1052 static int timestamp_precision = TSP_USEC;
1053 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1054     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1055     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1056     "3+: sec + ns (max. precision))");
1057 
1058 /*
1059  * Get a current timestamp.
1060  */
1061 void
1062 vfs_timestamp(struct timespec *tsp)
1063 {
1064 	struct timeval tv;
1065 
1066 	switch (timestamp_precision) {
1067 	case TSP_SEC:
1068 		tsp->tv_sec = time_second;
1069 		tsp->tv_nsec = 0;
1070 		break;
1071 	case TSP_HZ:
1072 		getnanotime(tsp);
1073 		break;
1074 	case TSP_USEC:
1075 		microtime(&tv);
1076 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1077 		break;
1078 	case TSP_NSEC:
1079 	default:
1080 		nanotime(tsp);
1081 		break;
1082 	}
1083 }
1084 
1085 /*
1086  * Set vnode attributes to VNOVAL
1087  */
1088 void
1089 vattr_null(struct vattr *vap)
1090 {
1091 
1092 	vap->va_type = VNON;
1093 	vap->va_size = VNOVAL;
1094 	vap->va_bytes = VNOVAL;
1095 	vap->va_mode = VNOVAL;
1096 	vap->va_nlink = VNOVAL;
1097 	vap->va_uid = VNOVAL;
1098 	vap->va_gid = VNOVAL;
1099 	vap->va_fsid = VNOVAL;
1100 	vap->va_fileid = VNOVAL;
1101 	vap->va_blocksize = VNOVAL;
1102 	vap->va_rdev = VNOVAL;
1103 	vap->va_atime.tv_sec = VNOVAL;
1104 	vap->va_atime.tv_nsec = VNOVAL;
1105 	vap->va_mtime.tv_sec = VNOVAL;
1106 	vap->va_mtime.tv_nsec = VNOVAL;
1107 	vap->va_ctime.tv_sec = VNOVAL;
1108 	vap->va_ctime.tv_nsec = VNOVAL;
1109 	vap->va_birthtime.tv_sec = VNOVAL;
1110 	vap->va_birthtime.tv_nsec = VNOVAL;
1111 	vap->va_flags = VNOVAL;
1112 	vap->va_gen = VNOVAL;
1113 	vap->va_vaflags = 0;
1114 }
1115 
1116 /*
1117  * Try to reduce the total number of vnodes.
1118  *
1119  * This routine (and its user) are buggy in at least the following ways:
1120  * - all parameters were picked years ago when RAM sizes were significantly
1121  *   smaller
1122  * - it can pick vnodes based on pages used by the vm object, but filesystems
1123  *   like ZFS don't use it making the pick broken
1124  * - since ZFS has its own aging policy it gets partially combated by this one
1125  * - a dedicated method should be provided for filesystems to let them decide
1126  *   whether the vnode should be recycled
1127  *
1128  * This routine is called when we have too many vnodes.  It attempts
1129  * to free <count> vnodes and will potentially free vnodes that still
1130  * have VM backing store (VM backing store is typically the cause
1131  * of a vnode blowout so we want to do this).  Therefore, this operation
1132  * is not considered cheap.
1133  *
1134  * A number of conditions may prevent a vnode from being reclaimed.
1135  * the buffer cache may have references on the vnode, a directory
1136  * vnode may still have references due to the namei cache representing
1137  * underlying files, or the vnode may be in active use.   It is not
1138  * desirable to reuse such vnodes.  These conditions may cause the
1139  * number of vnodes to reach some minimum value regardless of what
1140  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1141  *
1142  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1143  * 			 entries if this argument is strue
1144  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1145  *			 pages.
1146  * @param target	 How many vnodes to reclaim.
1147  * @return		 The number of vnodes that were reclaimed.
1148  */
1149 static int
1150 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1151 {
1152 	struct vnode *vp, *mvp;
1153 	struct mount *mp;
1154 	struct vm_object *object;
1155 	u_long done;
1156 	bool retried;
1157 
1158 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1159 
1160 	retried = false;
1161 	done = 0;
1162 
1163 	mvp = vnode_list_reclaim_marker;
1164 restart:
1165 	vp = mvp;
1166 	while (done < target) {
1167 		vp = TAILQ_NEXT(vp, v_vnodelist);
1168 		if (__predict_false(vp == NULL))
1169 			break;
1170 
1171 		if (__predict_false(vp->v_type == VMARKER))
1172 			continue;
1173 
1174 		/*
1175 		 * If it's been deconstructed already, it's still
1176 		 * referenced, or it exceeds the trigger, skip it.
1177 		 * Also skip free vnodes.  We are trying to make space
1178 		 * to expand the free list, not reduce it.
1179 		 */
1180 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1181 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1182 			goto next_iter;
1183 
1184 		if (vp->v_type == VBAD || vp->v_type == VNON)
1185 			goto next_iter;
1186 
1187 		object = atomic_load_ptr(&vp->v_object);
1188 		if (object == NULL || object->resident_page_count > trigger) {
1189 			goto next_iter;
1190 		}
1191 
1192 		/*
1193 		 * Handle races against vnode allocation. Filesystems lock the
1194 		 * vnode some time after it gets returned from getnewvnode,
1195 		 * despite type and hold count being manipulated earlier.
1196 		 * Resorting to checking v_mount restores guarantees present
1197 		 * before the global list was reworked to contain all vnodes.
1198 		 */
1199 		if (!VI_TRYLOCK(vp))
1200 			goto next_iter;
1201 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1202 			VI_UNLOCK(vp);
1203 			goto next_iter;
1204 		}
1205 		if (vp->v_mount == NULL) {
1206 			VI_UNLOCK(vp);
1207 			goto next_iter;
1208 		}
1209 		vholdl(vp);
1210 		VI_UNLOCK(vp);
1211 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1212 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1213 		mtx_unlock(&vnode_list_mtx);
1214 
1215 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1216 			vdrop_recycle(vp);
1217 			goto next_iter_unlocked;
1218 		}
1219 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1220 			vdrop_recycle(vp);
1221 			vn_finished_write(mp);
1222 			goto next_iter_unlocked;
1223 		}
1224 
1225 		VI_LOCK(vp);
1226 		if (vp->v_usecount > 0 ||
1227 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1228 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1229 		    vp->v_object->resident_page_count > trigger)) {
1230 			VOP_UNLOCK(vp);
1231 			vdropl_recycle(vp);
1232 			vn_finished_write(mp);
1233 			goto next_iter_unlocked;
1234 		}
1235 		counter_u64_add(recycles_count, 1);
1236 		vgonel(vp);
1237 		VOP_UNLOCK(vp);
1238 		vdropl_recycle(vp);
1239 		vn_finished_write(mp);
1240 		done++;
1241 next_iter_unlocked:
1242 		if (should_yield())
1243 			kern_yield(PRI_USER);
1244 		mtx_lock(&vnode_list_mtx);
1245 		goto restart;
1246 next_iter:
1247 		MPASS(vp->v_type != VMARKER);
1248 		if (!should_yield())
1249 			continue;
1250 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1251 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1252 		mtx_unlock(&vnode_list_mtx);
1253 		kern_yield(PRI_USER);
1254 		mtx_lock(&vnode_list_mtx);
1255 		goto restart;
1256 	}
1257 	if (done == 0 && !retried) {
1258 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1259 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1260 		retried = true;
1261 		goto restart;
1262 	}
1263 	return (done);
1264 }
1265 
1266 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1267 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1268     0,
1269     "limit on vnode free requests per call to the vnlru_free routine");
1270 
1271 /*
1272  * Attempt to reduce the free list by the requested amount.
1273  */
1274 static int
1275 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1276 {
1277 	struct vnode *vp;
1278 	struct mount *mp;
1279 	int ocount;
1280 
1281 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1282 	if (count > max_vnlru_free)
1283 		count = max_vnlru_free;
1284 	ocount = count;
1285 	vp = mvp;
1286 	for (;;) {
1287 		if (count == 0) {
1288 			break;
1289 		}
1290 		vp = TAILQ_NEXT(vp, v_vnodelist);
1291 		if (__predict_false(vp == NULL)) {
1292 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1293 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1294 			break;
1295 		}
1296 		if (__predict_false(vp->v_type == VMARKER))
1297 			continue;
1298 		if (vp->v_holdcnt > 0)
1299 			continue;
1300 		/*
1301 		 * Don't recycle if our vnode is from different type
1302 		 * of mount point.  Note that mp is type-safe, the
1303 		 * check does not reach unmapped address even if
1304 		 * vnode is reclaimed.
1305 		 */
1306 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1307 		    mp->mnt_op != mnt_op) {
1308 			continue;
1309 		}
1310 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1311 			continue;
1312 		}
1313 		if (!vhold_recycle_free(vp))
1314 			continue;
1315 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1316 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1317 		mtx_unlock(&vnode_list_mtx);
1318 		/*
1319 		 * FIXME: ignores the return value, meaning it may be nothing
1320 		 * got recycled but it claims otherwise to the caller.
1321 		 *
1322 		 * Originally the value started being ignored in 2005 with
1323 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1324 		 *
1325 		 * Respecting the value can run into significant stalls if most
1326 		 * vnodes belong to one file system and it has writes
1327 		 * suspended.  In presence of many threads and millions of
1328 		 * vnodes they keep contending on the vnode_list_mtx lock only
1329 		 * to find vnodes they can't recycle.
1330 		 *
1331 		 * The solution would be to pre-check if the vnode is likely to
1332 		 * be recycle-able, but it needs to happen with the
1333 		 * vnode_list_mtx lock held. This runs into a problem where
1334 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1335 		 * writes are frozen) can take locks which LOR against it.
1336 		 *
1337 		 * Check nullfs for one example (null_getwritemount).
1338 		 */
1339 		vtryrecycle(vp);
1340 		count--;
1341 		mtx_lock(&vnode_list_mtx);
1342 		vp = mvp;
1343 	}
1344 	return (ocount - count);
1345 }
1346 
1347 static int
1348 vnlru_free_locked(int count)
1349 {
1350 
1351 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1352 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1353 }
1354 
1355 void
1356 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1357 {
1358 
1359 	MPASS(mnt_op != NULL);
1360 	MPASS(mvp != NULL);
1361 	VNPASS(mvp->v_type == VMARKER, mvp);
1362 	mtx_lock(&vnode_list_mtx);
1363 	vnlru_free_impl(count, mnt_op, mvp);
1364 	mtx_unlock(&vnode_list_mtx);
1365 }
1366 
1367 struct vnode *
1368 vnlru_alloc_marker(void)
1369 {
1370 	struct vnode *mvp;
1371 
1372 	mvp = vn_alloc_marker(NULL);
1373 	mtx_lock(&vnode_list_mtx);
1374 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1375 	mtx_unlock(&vnode_list_mtx);
1376 	return (mvp);
1377 }
1378 
1379 void
1380 vnlru_free_marker(struct vnode *mvp)
1381 {
1382 	mtx_lock(&vnode_list_mtx);
1383 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1384 	mtx_unlock(&vnode_list_mtx);
1385 	vn_free_marker(mvp);
1386 }
1387 
1388 static void
1389 vnlru_recalc(void)
1390 {
1391 
1392 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1393 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1394 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1395 	vlowat = vhiwat / 2;
1396 }
1397 
1398 /*
1399  * Attempt to recycle vnodes in a context that is always safe to block.
1400  * Calling vlrurecycle() from the bowels of filesystem code has some
1401  * interesting deadlock problems.
1402  */
1403 static struct proc *vnlruproc;
1404 static int vnlruproc_sig;
1405 
1406 /*
1407  * The main freevnodes counter is only updated when threads requeue their vnode
1408  * batches. CPUs are conditionally walked to compute a more accurate total.
1409  *
1410  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1411  * at any given moment can still exceed slop, but it should not be by significant
1412  * margin in practice.
1413  */
1414 #define VNLRU_FREEVNODES_SLOP 128
1415 
1416 static __inline void
1417 vfs_freevnodes_inc(void)
1418 {
1419 	struct vdbatch *vd;
1420 
1421 	critical_enter();
1422 	vd = DPCPU_PTR(vd);
1423 	vd->freevnodes++;
1424 	critical_exit();
1425 }
1426 
1427 static __inline void
1428 vfs_freevnodes_dec(void)
1429 {
1430 	struct vdbatch *vd;
1431 
1432 	critical_enter();
1433 	vd = DPCPU_PTR(vd);
1434 	vd->freevnodes--;
1435 	critical_exit();
1436 }
1437 
1438 static u_long
1439 vnlru_read_freevnodes(void)
1440 {
1441 	struct vdbatch *vd;
1442 	long slop;
1443 	int cpu;
1444 
1445 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1446 	if (freevnodes > freevnodes_old)
1447 		slop = freevnodes - freevnodes_old;
1448 	else
1449 		slop = freevnodes_old - freevnodes;
1450 	if (slop < VNLRU_FREEVNODES_SLOP)
1451 		return (freevnodes >= 0 ? freevnodes : 0);
1452 	freevnodes_old = freevnodes;
1453 	CPU_FOREACH(cpu) {
1454 		vd = DPCPU_ID_PTR((cpu), vd);
1455 		freevnodes_old += vd->freevnodes;
1456 	}
1457 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1458 }
1459 
1460 static bool
1461 vnlru_under(u_long rnumvnodes, u_long limit)
1462 {
1463 	u_long rfreevnodes, space;
1464 
1465 	if (__predict_false(rnumvnodes > desiredvnodes))
1466 		return (true);
1467 
1468 	space = desiredvnodes - rnumvnodes;
1469 	if (space < limit) {
1470 		rfreevnodes = vnlru_read_freevnodes();
1471 		if (rfreevnodes > wantfreevnodes)
1472 			space += rfreevnodes - wantfreevnodes;
1473 	}
1474 	return (space < limit);
1475 }
1476 
1477 static bool
1478 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1479 {
1480 	long rfreevnodes, space;
1481 
1482 	if (__predict_false(rnumvnodes > desiredvnodes))
1483 		return (true);
1484 
1485 	space = desiredvnodes - rnumvnodes;
1486 	if (space < limit) {
1487 		rfreevnodes = atomic_load_long(&freevnodes);
1488 		if (rfreevnodes > wantfreevnodes)
1489 			space += rfreevnodes - wantfreevnodes;
1490 	}
1491 	return (space < limit);
1492 }
1493 
1494 static void
1495 vnlru_kick(void)
1496 {
1497 
1498 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1499 	if (vnlruproc_sig == 0) {
1500 		vnlruproc_sig = 1;
1501 		wakeup(vnlruproc);
1502 	}
1503 }
1504 
1505 static void
1506 vnlru_proc(void)
1507 {
1508 	u_long rnumvnodes, rfreevnodes, target;
1509 	unsigned long onumvnodes;
1510 	int done, force, trigger, usevnodes;
1511 	bool reclaim_nc_src, want_reread;
1512 
1513 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1514 	    SHUTDOWN_PRI_FIRST);
1515 
1516 	force = 0;
1517 	want_reread = false;
1518 	for (;;) {
1519 		kproc_suspend_check(vnlruproc);
1520 		mtx_lock(&vnode_list_mtx);
1521 		rnumvnodes = atomic_load_long(&numvnodes);
1522 
1523 		if (want_reread) {
1524 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1525 			want_reread = false;
1526 		}
1527 
1528 		/*
1529 		 * If numvnodes is too large (due to desiredvnodes being
1530 		 * adjusted using its sysctl, or emergency growth), first
1531 		 * try to reduce it by discarding from the free list.
1532 		 */
1533 		if (rnumvnodes > desiredvnodes) {
1534 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1535 			rnumvnodes = atomic_load_long(&numvnodes);
1536 		}
1537 		/*
1538 		 * Sleep if the vnode cache is in a good state.  This is
1539 		 * when it is not over-full and has space for about a 4%
1540 		 * or 9% expansion (by growing its size or inexcessively
1541 		 * reducing its free list).  Otherwise, try to reclaim
1542 		 * space for a 10% expansion.
1543 		 */
1544 		if (vstir && force == 0) {
1545 			force = 1;
1546 			vstir = 0;
1547 		}
1548 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1549 			vnlruproc_sig = 0;
1550 			wakeup(&vnlruproc_sig);
1551 			msleep(vnlruproc, &vnode_list_mtx,
1552 			    PVFS|PDROP, "vlruwt", hz);
1553 			continue;
1554 		}
1555 		rfreevnodes = vnlru_read_freevnodes();
1556 
1557 		onumvnodes = rnumvnodes;
1558 		/*
1559 		 * Calculate parameters for recycling.  These are the same
1560 		 * throughout the loop to give some semblance of fairness.
1561 		 * The trigger point is to avoid recycling vnodes with lots
1562 		 * of resident pages.  We aren't trying to free memory; we
1563 		 * are trying to recycle or at least free vnodes.
1564 		 */
1565 		if (rnumvnodes <= desiredvnodes)
1566 			usevnodes = rnumvnodes - rfreevnodes;
1567 		else
1568 			usevnodes = rnumvnodes;
1569 		if (usevnodes <= 0)
1570 			usevnodes = 1;
1571 		/*
1572 		 * The trigger value is chosen to give a conservatively
1573 		 * large value to ensure that it alone doesn't prevent
1574 		 * making progress.  The value can easily be so large that
1575 		 * it is effectively infinite in some congested and
1576 		 * misconfigured cases, and this is necessary.  Normally
1577 		 * it is about 8 to 100 (pages), which is quite large.
1578 		 */
1579 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1580 		if (force < 2)
1581 			trigger = vsmalltrigger;
1582 		reclaim_nc_src = force >= 3;
1583 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1584 		target = target / 10 + 1;
1585 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1586 		mtx_unlock(&vnode_list_mtx);
1587 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1588 			uma_reclaim(UMA_RECLAIM_DRAIN);
1589 		if (done == 0) {
1590 			if (force == 0 || force == 1) {
1591 				force = 2;
1592 				continue;
1593 			}
1594 			if (force == 2) {
1595 				force = 3;
1596 				continue;
1597 			}
1598 			want_reread = true;
1599 			force = 0;
1600 			vnlru_nowhere++;
1601 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1602 		} else {
1603 			want_reread = true;
1604 			kern_yield(PRI_USER);
1605 		}
1606 	}
1607 }
1608 
1609 static struct kproc_desc vnlru_kp = {
1610 	"vnlru",
1611 	vnlru_proc,
1612 	&vnlruproc
1613 };
1614 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1615     &vnlru_kp);
1616 
1617 /*
1618  * Routines having to do with the management of the vnode table.
1619  */
1620 
1621 /*
1622  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1623  * before we actually vgone().  This function must be called with the vnode
1624  * held to prevent the vnode from being returned to the free list midway
1625  * through vgone().
1626  */
1627 static int
1628 vtryrecycle(struct vnode *vp)
1629 {
1630 	struct mount *vnmp;
1631 
1632 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1633 	VNASSERT(vp->v_holdcnt, vp,
1634 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1635 	/*
1636 	 * This vnode may found and locked via some other list, if so we
1637 	 * can't recycle it yet.
1638 	 */
1639 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1640 		CTR2(KTR_VFS,
1641 		    "%s: impossible to recycle, vp %p lock is already held",
1642 		    __func__, vp);
1643 		vdrop_recycle(vp);
1644 		return (EWOULDBLOCK);
1645 	}
1646 	/*
1647 	 * Don't recycle if its filesystem is being suspended.
1648 	 */
1649 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1650 		VOP_UNLOCK(vp);
1651 		CTR2(KTR_VFS,
1652 		    "%s: impossible to recycle, cannot start the write for %p",
1653 		    __func__, vp);
1654 		vdrop_recycle(vp);
1655 		return (EBUSY);
1656 	}
1657 	/*
1658 	 * If we got this far, we need to acquire the interlock and see if
1659 	 * anyone picked up this vnode from another list.  If not, we will
1660 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1661 	 * will skip over it.
1662 	 */
1663 	VI_LOCK(vp);
1664 	if (vp->v_usecount) {
1665 		VOP_UNLOCK(vp);
1666 		vdropl_recycle(vp);
1667 		vn_finished_write(vnmp);
1668 		CTR2(KTR_VFS,
1669 		    "%s: impossible to recycle, %p is already referenced",
1670 		    __func__, vp);
1671 		return (EBUSY);
1672 	}
1673 	if (!VN_IS_DOOMED(vp)) {
1674 		counter_u64_add(recycles_free_count, 1);
1675 		vgonel(vp);
1676 	}
1677 	VOP_UNLOCK(vp);
1678 	vdropl_recycle(vp);
1679 	vn_finished_write(vnmp);
1680 	return (0);
1681 }
1682 
1683 /*
1684  * Allocate a new vnode.
1685  *
1686  * The operation never returns an error. Returning an error was disabled
1687  * in r145385 (dated 2005) with the following comment:
1688  *
1689  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1690  *
1691  * Given the age of this commit (almost 15 years at the time of writing this
1692  * comment) restoring the ability to fail requires a significant audit of
1693  * all codepaths.
1694  *
1695  * The routine can try to free a vnode or stall for up to 1 second waiting for
1696  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1697  */
1698 static u_long vn_alloc_cyclecount;
1699 
1700 static struct vnode * __noinline
1701 vn_alloc_hard(struct mount *mp)
1702 {
1703 	u_long rnumvnodes, rfreevnodes;
1704 
1705 	mtx_lock(&vnode_list_mtx);
1706 	rnumvnodes = atomic_load_long(&numvnodes);
1707 	if (rnumvnodes + 1 < desiredvnodes) {
1708 		vn_alloc_cyclecount = 0;
1709 		goto alloc;
1710 	}
1711 	rfreevnodes = vnlru_read_freevnodes();
1712 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1713 		vn_alloc_cyclecount = 0;
1714 		vstir = 1;
1715 	}
1716 	/*
1717 	 * Grow the vnode cache if it will not be above its target max
1718 	 * after growing.  Otherwise, if the free list is nonempty, try
1719 	 * to reclaim 1 item from it before growing the cache (possibly
1720 	 * above its target max if the reclamation failed or is delayed).
1721 	 * Otherwise, wait for some space.  In all cases, schedule
1722 	 * vnlru_proc() if we are getting short of space.  The watermarks
1723 	 * should be chosen so that we never wait or even reclaim from
1724 	 * the free list to below its target minimum.
1725 	 */
1726 	if (vnlru_free_locked(1) > 0)
1727 		goto alloc;
1728 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1729 		/*
1730 		 * Wait for space for a new vnode.
1731 		 */
1732 		vnlru_kick();
1733 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1734 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1735 		    vnlru_read_freevnodes() > 1)
1736 			vnlru_free_locked(1);
1737 	}
1738 alloc:
1739 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1740 	if (vnlru_under(rnumvnodes, vlowat))
1741 		vnlru_kick();
1742 	mtx_unlock(&vnode_list_mtx);
1743 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1744 }
1745 
1746 static struct vnode *
1747 vn_alloc(struct mount *mp)
1748 {
1749 	u_long rnumvnodes;
1750 
1751 	if (__predict_false(vn_alloc_cyclecount != 0))
1752 		return (vn_alloc_hard(mp));
1753 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1754 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1755 		atomic_subtract_long(&numvnodes, 1);
1756 		return (vn_alloc_hard(mp));
1757 	}
1758 
1759 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1760 }
1761 
1762 static void
1763 vn_free(struct vnode *vp)
1764 {
1765 
1766 	atomic_subtract_long(&numvnodes, 1);
1767 	uma_zfree_smr(vnode_zone, vp);
1768 }
1769 
1770 /*
1771  * Return the next vnode from the free list.
1772  */
1773 int
1774 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1775     struct vnode **vpp)
1776 {
1777 	struct vnode *vp;
1778 	struct thread *td;
1779 	struct lock_object *lo;
1780 
1781 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1782 
1783 	KASSERT(vops->registered,
1784 	    ("%s: not registered vector op %p\n", __func__, vops));
1785 
1786 	td = curthread;
1787 	if (td->td_vp_reserved != NULL) {
1788 		vp = td->td_vp_reserved;
1789 		td->td_vp_reserved = NULL;
1790 	} else {
1791 		vp = vn_alloc(mp);
1792 	}
1793 	counter_u64_add(vnodes_created, 1);
1794 	/*
1795 	 * Locks are given the generic name "vnode" when created.
1796 	 * Follow the historic practice of using the filesystem
1797 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1798 	 *
1799 	 * Locks live in a witness group keyed on their name. Thus,
1800 	 * when a lock is renamed, it must also move from the witness
1801 	 * group of its old name to the witness group of its new name.
1802 	 *
1803 	 * The change only needs to be made when the vnode moves
1804 	 * from one filesystem type to another. We ensure that each
1805 	 * filesystem use a single static name pointer for its tag so
1806 	 * that we can compare pointers rather than doing a strcmp().
1807 	 */
1808 	lo = &vp->v_vnlock->lock_object;
1809 #ifdef WITNESS
1810 	if (lo->lo_name != tag) {
1811 #endif
1812 		lo->lo_name = tag;
1813 #ifdef WITNESS
1814 		WITNESS_DESTROY(lo);
1815 		WITNESS_INIT(lo, tag);
1816 	}
1817 #endif
1818 	/*
1819 	 * By default, don't allow shared locks unless filesystems opt-in.
1820 	 */
1821 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1822 	/*
1823 	 * Finalize various vnode identity bits.
1824 	 */
1825 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1826 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1827 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1828 	vp->v_type = VNON;
1829 	vp->v_op = vops;
1830 	vp->v_irflag = 0;
1831 	v_init_counters(vp);
1832 	vn_seqc_init(vp);
1833 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1834 #ifdef DIAGNOSTIC
1835 	if (mp == NULL && vops != &dead_vnodeops)
1836 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1837 #endif
1838 #ifdef MAC
1839 	mac_vnode_init(vp);
1840 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1841 		mac_vnode_associate_singlelabel(mp, vp);
1842 #endif
1843 	if (mp != NULL) {
1844 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1845 	}
1846 
1847 	/*
1848 	 * For the filesystems which do not use vfs_hash_insert(),
1849 	 * still initialize v_hash to have vfs_hash_index() useful.
1850 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1851 	 * its own hashing.
1852 	 */
1853 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1854 
1855 	*vpp = vp;
1856 	return (0);
1857 }
1858 
1859 void
1860 getnewvnode_reserve(void)
1861 {
1862 	struct thread *td;
1863 
1864 	td = curthread;
1865 	MPASS(td->td_vp_reserved == NULL);
1866 	td->td_vp_reserved = vn_alloc(NULL);
1867 }
1868 
1869 void
1870 getnewvnode_drop_reserve(void)
1871 {
1872 	struct thread *td;
1873 
1874 	td = curthread;
1875 	if (td->td_vp_reserved != NULL) {
1876 		vn_free(td->td_vp_reserved);
1877 		td->td_vp_reserved = NULL;
1878 	}
1879 }
1880 
1881 static void __noinline
1882 freevnode(struct vnode *vp)
1883 {
1884 	struct bufobj *bo;
1885 
1886 	/*
1887 	 * The vnode has been marked for destruction, so free it.
1888 	 *
1889 	 * The vnode will be returned to the zone where it will
1890 	 * normally remain until it is needed for another vnode. We
1891 	 * need to cleanup (or verify that the cleanup has already
1892 	 * been done) any residual data left from its current use
1893 	 * so as not to contaminate the freshly allocated vnode.
1894 	 */
1895 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1896 	/*
1897 	 * Paired with vgone.
1898 	 */
1899 	vn_seqc_write_end_free(vp);
1900 
1901 	bo = &vp->v_bufobj;
1902 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1903 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1904 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1905 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1906 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1907 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1908 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1909 	    ("clean blk trie not empty"));
1910 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1911 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1912 	    ("dirty blk trie not empty"));
1913 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1914 	    ("Dangling rangelock waiters"));
1915 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1916 	    ("Leaked inactivation"));
1917 	VI_UNLOCK(vp);
1918 	cache_assert_no_entries(vp);
1919 
1920 #ifdef MAC
1921 	mac_vnode_destroy(vp);
1922 #endif
1923 	if (vp->v_pollinfo != NULL) {
1924 		/*
1925 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
1926 		 * here while having another vnode locked when trying to
1927 		 * satisfy a lookup and needing to recycle.
1928 		 */
1929 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
1930 		destroy_vpollinfo(vp->v_pollinfo);
1931 		VOP_UNLOCK(vp);
1932 		vp->v_pollinfo = NULL;
1933 	}
1934 	vp->v_mountedhere = NULL;
1935 	vp->v_unpcb = NULL;
1936 	vp->v_rdev = NULL;
1937 	vp->v_fifoinfo = NULL;
1938 	vp->v_iflag = 0;
1939 	vp->v_vflag = 0;
1940 	bo->bo_flag = 0;
1941 	vn_free(vp);
1942 }
1943 
1944 /*
1945  * Delete from old mount point vnode list, if on one.
1946  */
1947 static void
1948 delmntque(struct vnode *vp)
1949 {
1950 	struct mount *mp;
1951 
1952 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1953 
1954 	mp = vp->v_mount;
1955 	MNT_ILOCK(mp);
1956 	VI_LOCK(vp);
1957 	vp->v_mount = NULL;
1958 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1959 		("bad mount point vnode list size"));
1960 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1961 	mp->mnt_nvnodelistsize--;
1962 	MNT_REL(mp);
1963 	MNT_IUNLOCK(mp);
1964 	/*
1965 	 * The caller expects the interlock to be still held.
1966 	 */
1967 	ASSERT_VI_LOCKED(vp, __func__);
1968 }
1969 
1970 static int
1971 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
1972 {
1973 
1974 	KASSERT(vp->v_mount == NULL,
1975 		("insmntque: vnode already on per mount vnode list"));
1976 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1977 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
1978 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1979 	} else {
1980 		KASSERT(!dtr,
1981 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
1982 		    __func__));
1983 	}
1984 
1985 	/*
1986 	 * We acquire the vnode interlock early to ensure that the
1987 	 * vnode cannot be recycled by another process releasing a
1988 	 * holdcnt on it before we get it on both the vnode list
1989 	 * and the active vnode list. The mount mutex protects only
1990 	 * manipulation of the vnode list and the vnode freelist
1991 	 * mutex protects only manipulation of the active vnode list.
1992 	 * Hence the need to hold the vnode interlock throughout.
1993 	 */
1994 	MNT_ILOCK(mp);
1995 	VI_LOCK(vp);
1996 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1997 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1998 	    mp->mnt_nvnodelistsize == 0)) &&
1999 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2000 		VI_UNLOCK(vp);
2001 		MNT_IUNLOCK(mp);
2002 		if (dtr) {
2003 			vp->v_data = NULL;
2004 			vp->v_op = &dead_vnodeops;
2005 			vgone(vp);
2006 			vput(vp);
2007 		}
2008 		return (EBUSY);
2009 	}
2010 	vp->v_mount = mp;
2011 	MNT_REF(mp);
2012 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2013 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2014 		("neg mount point vnode list size"));
2015 	mp->mnt_nvnodelistsize++;
2016 	VI_UNLOCK(vp);
2017 	MNT_IUNLOCK(mp);
2018 	return (0);
2019 }
2020 
2021 /*
2022  * Insert into list of vnodes for the new mount point, if available.
2023  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2024  * leaves handling of the vnode to the caller.
2025  */
2026 int
2027 insmntque(struct vnode *vp, struct mount *mp)
2028 {
2029 	return (insmntque1_int(vp, mp, true));
2030 }
2031 
2032 int
2033 insmntque1(struct vnode *vp, struct mount *mp)
2034 {
2035 	return (insmntque1_int(vp, mp, false));
2036 }
2037 
2038 /*
2039  * Flush out and invalidate all buffers associated with a bufobj
2040  * Called with the underlying object locked.
2041  */
2042 int
2043 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2044 {
2045 	int error;
2046 
2047 	BO_LOCK(bo);
2048 	if (flags & V_SAVE) {
2049 		error = bufobj_wwait(bo, slpflag, slptimeo);
2050 		if (error) {
2051 			BO_UNLOCK(bo);
2052 			return (error);
2053 		}
2054 		if (bo->bo_dirty.bv_cnt > 0) {
2055 			BO_UNLOCK(bo);
2056 			do {
2057 				error = BO_SYNC(bo, MNT_WAIT);
2058 			} while (error == ERELOOKUP);
2059 			if (error != 0)
2060 				return (error);
2061 			BO_LOCK(bo);
2062 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2063 				BO_UNLOCK(bo);
2064 				return (EBUSY);
2065 			}
2066 		}
2067 	}
2068 	/*
2069 	 * If you alter this loop please notice that interlock is dropped and
2070 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2071 	 * no race conditions occur from this.
2072 	 */
2073 	do {
2074 		error = flushbuflist(&bo->bo_clean,
2075 		    flags, bo, slpflag, slptimeo);
2076 		if (error == 0 && !(flags & V_CLEANONLY))
2077 			error = flushbuflist(&bo->bo_dirty,
2078 			    flags, bo, slpflag, slptimeo);
2079 		if (error != 0 && error != EAGAIN) {
2080 			BO_UNLOCK(bo);
2081 			return (error);
2082 		}
2083 	} while (error != 0);
2084 
2085 	/*
2086 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2087 	 * have write I/O in-progress but if there is a VM object then the
2088 	 * VM object can also have read-I/O in-progress.
2089 	 */
2090 	do {
2091 		bufobj_wwait(bo, 0, 0);
2092 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2093 			BO_UNLOCK(bo);
2094 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2095 			BO_LOCK(bo);
2096 		}
2097 	} while (bo->bo_numoutput > 0);
2098 	BO_UNLOCK(bo);
2099 
2100 	/*
2101 	 * Destroy the copy in the VM cache, too.
2102 	 */
2103 	if (bo->bo_object != NULL &&
2104 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2105 		VM_OBJECT_WLOCK(bo->bo_object);
2106 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2107 		    OBJPR_CLEANONLY : 0);
2108 		VM_OBJECT_WUNLOCK(bo->bo_object);
2109 	}
2110 
2111 #ifdef INVARIANTS
2112 	BO_LOCK(bo);
2113 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2114 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2115 	    bo->bo_clean.bv_cnt > 0))
2116 		panic("vinvalbuf: flush failed");
2117 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2118 	    bo->bo_dirty.bv_cnt > 0)
2119 		panic("vinvalbuf: flush dirty failed");
2120 	BO_UNLOCK(bo);
2121 #endif
2122 	return (0);
2123 }
2124 
2125 /*
2126  * Flush out and invalidate all buffers associated with a vnode.
2127  * Called with the underlying object locked.
2128  */
2129 int
2130 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2131 {
2132 
2133 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2134 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2135 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2136 		return (0);
2137 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2138 }
2139 
2140 /*
2141  * Flush out buffers on the specified list.
2142  *
2143  */
2144 static int
2145 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2146     int slptimeo)
2147 {
2148 	struct buf *bp, *nbp;
2149 	int retval, error;
2150 	daddr_t lblkno;
2151 	b_xflags_t xflags;
2152 
2153 	ASSERT_BO_WLOCKED(bo);
2154 
2155 	retval = 0;
2156 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2157 		/*
2158 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2159 		 * do not skip any buffers. If we are flushing only V_NORMAL
2160 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2161 		 * flushing only V_ALT buffers then skip buffers not marked
2162 		 * as BX_ALTDATA.
2163 		 */
2164 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2165 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2166 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2167 			continue;
2168 		}
2169 		if (nbp != NULL) {
2170 			lblkno = nbp->b_lblkno;
2171 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2172 		}
2173 		retval = EAGAIN;
2174 		error = BUF_TIMELOCK(bp,
2175 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2176 		    "flushbuf", slpflag, slptimeo);
2177 		if (error) {
2178 			BO_LOCK(bo);
2179 			return (error != ENOLCK ? error : EAGAIN);
2180 		}
2181 		KASSERT(bp->b_bufobj == bo,
2182 		    ("bp %p wrong b_bufobj %p should be %p",
2183 		    bp, bp->b_bufobj, bo));
2184 		/*
2185 		 * XXX Since there are no node locks for NFS, I
2186 		 * believe there is a slight chance that a delayed
2187 		 * write will occur while sleeping just above, so
2188 		 * check for it.
2189 		 */
2190 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2191 		    (flags & V_SAVE)) {
2192 			bremfree(bp);
2193 			bp->b_flags |= B_ASYNC;
2194 			bwrite(bp);
2195 			BO_LOCK(bo);
2196 			return (EAGAIN);	/* XXX: why not loop ? */
2197 		}
2198 		bremfree(bp);
2199 		bp->b_flags |= (B_INVAL | B_RELBUF);
2200 		bp->b_flags &= ~B_ASYNC;
2201 		brelse(bp);
2202 		BO_LOCK(bo);
2203 		if (nbp == NULL)
2204 			break;
2205 		nbp = gbincore(bo, lblkno);
2206 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2207 		    != xflags)
2208 			break;			/* nbp invalid */
2209 	}
2210 	return (retval);
2211 }
2212 
2213 int
2214 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2215 {
2216 	struct buf *bp;
2217 	int error;
2218 	daddr_t lblkno;
2219 
2220 	ASSERT_BO_LOCKED(bo);
2221 
2222 	for (lblkno = startn;;) {
2223 again:
2224 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2225 		if (bp == NULL || bp->b_lblkno >= endn ||
2226 		    bp->b_lblkno < startn)
2227 			break;
2228 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2229 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2230 		if (error != 0) {
2231 			BO_RLOCK(bo);
2232 			if (error == ENOLCK)
2233 				goto again;
2234 			return (error);
2235 		}
2236 		KASSERT(bp->b_bufobj == bo,
2237 		    ("bp %p wrong b_bufobj %p should be %p",
2238 		    bp, bp->b_bufobj, bo));
2239 		lblkno = bp->b_lblkno + 1;
2240 		if ((bp->b_flags & B_MANAGED) == 0)
2241 			bremfree(bp);
2242 		bp->b_flags |= B_RELBUF;
2243 		/*
2244 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2245 		 * pages backing each buffer in the range are unlikely to be
2246 		 * reused.  Dirty buffers will have the hint applied once
2247 		 * they've been written.
2248 		 */
2249 		if ((bp->b_flags & B_VMIO) != 0)
2250 			bp->b_flags |= B_NOREUSE;
2251 		brelse(bp);
2252 		BO_RLOCK(bo);
2253 	}
2254 	return (0);
2255 }
2256 
2257 /*
2258  * Truncate a file's buffer and pages to a specified length.  This
2259  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2260  * sync activity.
2261  */
2262 int
2263 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2264 {
2265 	struct buf *bp, *nbp;
2266 	struct bufobj *bo;
2267 	daddr_t startlbn;
2268 
2269 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2270 	    vp, blksize, (uintmax_t)length);
2271 
2272 	/*
2273 	 * Round up to the *next* lbn.
2274 	 */
2275 	startlbn = howmany(length, blksize);
2276 
2277 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2278 
2279 	bo = &vp->v_bufobj;
2280 restart_unlocked:
2281 	BO_LOCK(bo);
2282 
2283 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2284 		;
2285 
2286 	if (length > 0) {
2287 restartsync:
2288 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2289 			if (bp->b_lblkno > 0)
2290 				continue;
2291 			/*
2292 			 * Since we hold the vnode lock this should only
2293 			 * fail if we're racing with the buf daemon.
2294 			 */
2295 			if (BUF_LOCK(bp,
2296 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2297 			    BO_LOCKPTR(bo)) == ENOLCK)
2298 				goto restart_unlocked;
2299 
2300 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2301 			    ("buf(%p) on dirty queue without DELWRI", bp));
2302 
2303 			bremfree(bp);
2304 			bawrite(bp);
2305 			BO_LOCK(bo);
2306 			goto restartsync;
2307 		}
2308 	}
2309 
2310 	bufobj_wwait(bo, 0, 0);
2311 	BO_UNLOCK(bo);
2312 	vnode_pager_setsize(vp, length);
2313 
2314 	return (0);
2315 }
2316 
2317 /*
2318  * Invalidate the cached pages of a file's buffer within the range of block
2319  * numbers [startlbn, endlbn).
2320  */
2321 void
2322 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2323     int blksize)
2324 {
2325 	struct bufobj *bo;
2326 	off_t start, end;
2327 
2328 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2329 
2330 	start = blksize * startlbn;
2331 	end = blksize * endlbn;
2332 
2333 	bo = &vp->v_bufobj;
2334 	BO_LOCK(bo);
2335 	MPASS(blksize == bo->bo_bsize);
2336 
2337 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2338 		;
2339 
2340 	BO_UNLOCK(bo);
2341 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2342 }
2343 
2344 static int
2345 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2346     daddr_t startlbn, daddr_t endlbn)
2347 {
2348 	struct buf *bp, *nbp;
2349 	bool anyfreed;
2350 
2351 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2352 	ASSERT_BO_LOCKED(bo);
2353 
2354 	do {
2355 		anyfreed = false;
2356 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2357 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2358 				continue;
2359 			if (BUF_LOCK(bp,
2360 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2361 			    BO_LOCKPTR(bo)) == ENOLCK) {
2362 				BO_LOCK(bo);
2363 				return (EAGAIN);
2364 			}
2365 
2366 			bremfree(bp);
2367 			bp->b_flags |= B_INVAL | B_RELBUF;
2368 			bp->b_flags &= ~B_ASYNC;
2369 			brelse(bp);
2370 			anyfreed = true;
2371 
2372 			BO_LOCK(bo);
2373 			if (nbp != NULL &&
2374 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2375 			    nbp->b_vp != vp ||
2376 			    (nbp->b_flags & B_DELWRI) != 0))
2377 				return (EAGAIN);
2378 		}
2379 
2380 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2381 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2382 				continue;
2383 			if (BUF_LOCK(bp,
2384 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2385 			    BO_LOCKPTR(bo)) == ENOLCK) {
2386 				BO_LOCK(bo);
2387 				return (EAGAIN);
2388 			}
2389 			bremfree(bp);
2390 			bp->b_flags |= B_INVAL | B_RELBUF;
2391 			bp->b_flags &= ~B_ASYNC;
2392 			brelse(bp);
2393 			anyfreed = true;
2394 
2395 			BO_LOCK(bo);
2396 			if (nbp != NULL &&
2397 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2398 			    (nbp->b_vp != vp) ||
2399 			    (nbp->b_flags & B_DELWRI) == 0))
2400 				return (EAGAIN);
2401 		}
2402 	} while (anyfreed);
2403 	return (0);
2404 }
2405 
2406 static void
2407 buf_vlist_remove(struct buf *bp)
2408 {
2409 	struct bufv *bv;
2410 	b_xflags_t flags;
2411 
2412 	flags = bp->b_xflags;
2413 
2414 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2415 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2416 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2417 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2418 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2419 
2420 	if ((flags & BX_VNDIRTY) != 0)
2421 		bv = &bp->b_bufobj->bo_dirty;
2422 	else
2423 		bv = &bp->b_bufobj->bo_clean;
2424 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2425 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2426 	bv->bv_cnt--;
2427 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2428 }
2429 
2430 /*
2431  * Add the buffer to the sorted clean or dirty block list.
2432  *
2433  * NOTE: xflags is passed as a constant, optimizing this inline function!
2434  */
2435 static void
2436 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2437 {
2438 	struct bufv *bv;
2439 	struct buf *n;
2440 	int error;
2441 
2442 	ASSERT_BO_WLOCKED(bo);
2443 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2444 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2445 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2446 	    ("dead bo %p", bo));
2447 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2448 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2449 	bp->b_xflags |= xflags;
2450 	if (xflags & BX_VNDIRTY)
2451 		bv = &bo->bo_dirty;
2452 	else
2453 		bv = &bo->bo_clean;
2454 
2455 	/*
2456 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2457 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2458 	 * than _ge.
2459 	 */
2460 	if (bv->bv_cnt == 0 ||
2461 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2462 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2463 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2464 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2465 	else
2466 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2467 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2468 	if (error)
2469 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2470 	bv->bv_cnt++;
2471 }
2472 
2473 /*
2474  * Look up a buffer using the buffer tries.
2475  */
2476 struct buf *
2477 gbincore(struct bufobj *bo, daddr_t lblkno)
2478 {
2479 	struct buf *bp;
2480 
2481 	ASSERT_BO_LOCKED(bo);
2482 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2483 	if (bp != NULL)
2484 		return (bp);
2485 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2486 }
2487 
2488 /*
2489  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2490  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2491  * stability of the result.  Like other lockless lookups, the found buf may
2492  * already be invalid by the time this function returns.
2493  */
2494 struct buf *
2495 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2496 {
2497 	struct buf *bp;
2498 
2499 	ASSERT_BO_UNLOCKED(bo);
2500 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2501 	if (bp != NULL)
2502 		return (bp);
2503 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2504 }
2505 
2506 /*
2507  * Associate a buffer with a vnode.
2508  */
2509 void
2510 bgetvp(struct vnode *vp, struct buf *bp)
2511 {
2512 	struct bufobj *bo;
2513 
2514 	bo = &vp->v_bufobj;
2515 	ASSERT_BO_WLOCKED(bo);
2516 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2517 
2518 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2519 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2520 	    ("bgetvp: bp already attached! %p", bp));
2521 
2522 	vhold(vp);
2523 	bp->b_vp = vp;
2524 	bp->b_bufobj = bo;
2525 	/*
2526 	 * Insert onto list for new vnode.
2527 	 */
2528 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2529 }
2530 
2531 /*
2532  * Disassociate a buffer from a vnode.
2533  */
2534 void
2535 brelvp(struct buf *bp)
2536 {
2537 	struct bufobj *bo;
2538 	struct vnode *vp;
2539 
2540 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2541 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2542 
2543 	/*
2544 	 * Delete from old vnode list, if on one.
2545 	 */
2546 	vp = bp->b_vp;		/* XXX */
2547 	bo = bp->b_bufobj;
2548 	BO_LOCK(bo);
2549 	buf_vlist_remove(bp);
2550 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2551 		bo->bo_flag &= ~BO_ONWORKLST;
2552 		mtx_lock(&sync_mtx);
2553 		LIST_REMOVE(bo, bo_synclist);
2554 		syncer_worklist_len--;
2555 		mtx_unlock(&sync_mtx);
2556 	}
2557 	bp->b_vp = NULL;
2558 	bp->b_bufobj = NULL;
2559 	BO_UNLOCK(bo);
2560 	vdrop(vp);
2561 }
2562 
2563 /*
2564  * Add an item to the syncer work queue.
2565  */
2566 static void
2567 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2568 {
2569 	int slot;
2570 
2571 	ASSERT_BO_WLOCKED(bo);
2572 
2573 	mtx_lock(&sync_mtx);
2574 	if (bo->bo_flag & BO_ONWORKLST)
2575 		LIST_REMOVE(bo, bo_synclist);
2576 	else {
2577 		bo->bo_flag |= BO_ONWORKLST;
2578 		syncer_worklist_len++;
2579 	}
2580 
2581 	if (delay > syncer_maxdelay - 2)
2582 		delay = syncer_maxdelay - 2;
2583 	slot = (syncer_delayno + delay) & syncer_mask;
2584 
2585 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2586 	mtx_unlock(&sync_mtx);
2587 }
2588 
2589 static int
2590 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2591 {
2592 	int error, len;
2593 
2594 	mtx_lock(&sync_mtx);
2595 	len = syncer_worklist_len - sync_vnode_count;
2596 	mtx_unlock(&sync_mtx);
2597 	error = SYSCTL_OUT(req, &len, sizeof(len));
2598 	return (error);
2599 }
2600 
2601 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2602     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2603     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2604 
2605 static struct proc *updateproc;
2606 static void sched_sync(void);
2607 static struct kproc_desc up_kp = {
2608 	"syncer",
2609 	sched_sync,
2610 	&updateproc
2611 };
2612 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2613 
2614 static int
2615 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2616 {
2617 	struct vnode *vp;
2618 	struct mount *mp;
2619 
2620 	*bo = LIST_FIRST(slp);
2621 	if (*bo == NULL)
2622 		return (0);
2623 	vp = bo2vnode(*bo);
2624 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2625 		return (1);
2626 	/*
2627 	 * We use vhold in case the vnode does not
2628 	 * successfully sync.  vhold prevents the vnode from
2629 	 * going away when we unlock the sync_mtx so that
2630 	 * we can acquire the vnode interlock.
2631 	 */
2632 	vholdl(vp);
2633 	mtx_unlock(&sync_mtx);
2634 	VI_UNLOCK(vp);
2635 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2636 		vdrop(vp);
2637 		mtx_lock(&sync_mtx);
2638 		return (*bo == LIST_FIRST(slp));
2639 	}
2640 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2641 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2642 	VOP_UNLOCK(vp);
2643 	vn_finished_write(mp);
2644 	BO_LOCK(*bo);
2645 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2646 		/*
2647 		 * Put us back on the worklist.  The worklist
2648 		 * routine will remove us from our current
2649 		 * position and then add us back in at a later
2650 		 * position.
2651 		 */
2652 		vn_syncer_add_to_worklist(*bo, syncdelay);
2653 	}
2654 	BO_UNLOCK(*bo);
2655 	vdrop(vp);
2656 	mtx_lock(&sync_mtx);
2657 	return (0);
2658 }
2659 
2660 static int first_printf = 1;
2661 
2662 /*
2663  * System filesystem synchronizer daemon.
2664  */
2665 static void
2666 sched_sync(void)
2667 {
2668 	struct synclist *next, *slp;
2669 	struct bufobj *bo;
2670 	long starttime;
2671 	struct thread *td = curthread;
2672 	int last_work_seen;
2673 	int net_worklist_len;
2674 	int syncer_final_iter;
2675 	int error;
2676 
2677 	last_work_seen = 0;
2678 	syncer_final_iter = 0;
2679 	syncer_state = SYNCER_RUNNING;
2680 	starttime = time_uptime;
2681 	td->td_pflags |= TDP_NORUNNINGBUF;
2682 
2683 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2684 	    SHUTDOWN_PRI_LAST);
2685 
2686 	mtx_lock(&sync_mtx);
2687 	for (;;) {
2688 		if (syncer_state == SYNCER_FINAL_DELAY &&
2689 		    syncer_final_iter == 0) {
2690 			mtx_unlock(&sync_mtx);
2691 			kproc_suspend_check(td->td_proc);
2692 			mtx_lock(&sync_mtx);
2693 		}
2694 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2695 		if (syncer_state != SYNCER_RUNNING &&
2696 		    starttime != time_uptime) {
2697 			if (first_printf) {
2698 				printf("\nSyncing disks, vnodes remaining... ");
2699 				first_printf = 0;
2700 			}
2701 			printf("%d ", net_worklist_len);
2702 		}
2703 		starttime = time_uptime;
2704 
2705 		/*
2706 		 * Push files whose dirty time has expired.  Be careful
2707 		 * of interrupt race on slp queue.
2708 		 *
2709 		 * Skip over empty worklist slots when shutting down.
2710 		 */
2711 		do {
2712 			slp = &syncer_workitem_pending[syncer_delayno];
2713 			syncer_delayno += 1;
2714 			if (syncer_delayno == syncer_maxdelay)
2715 				syncer_delayno = 0;
2716 			next = &syncer_workitem_pending[syncer_delayno];
2717 			/*
2718 			 * If the worklist has wrapped since the
2719 			 * it was emptied of all but syncer vnodes,
2720 			 * switch to the FINAL_DELAY state and run
2721 			 * for one more second.
2722 			 */
2723 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2724 			    net_worklist_len == 0 &&
2725 			    last_work_seen == syncer_delayno) {
2726 				syncer_state = SYNCER_FINAL_DELAY;
2727 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2728 			}
2729 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2730 		    syncer_worklist_len > 0);
2731 
2732 		/*
2733 		 * Keep track of the last time there was anything
2734 		 * on the worklist other than syncer vnodes.
2735 		 * Return to the SHUTTING_DOWN state if any
2736 		 * new work appears.
2737 		 */
2738 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2739 			last_work_seen = syncer_delayno;
2740 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2741 			syncer_state = SYNCER_SHUTTING_DOWN;
2742 		while (!LIST_EMPTY(slp)) {
2743 			error = sync_vnode(slp, &bo, td);
2744 			if (error == 1) {
2745 				LIST_REMOVE(bo, bo_synclist);
2746 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2747 				continue;
2748 			}
2749 
2750 			if (first_printf == 0) {
2751 				/*
2752 				 * Drop the sync mutex, because some watchdog
2753 				 * drivers need to sleep while patting
2754 				 */
2755 				mtx_unlock(&sync_mtx);
2756 				wdog_kern_pat(WD_LASTVAL);
2757 				mtx_lock(&sync_mtx);
2758 			}
2759 		}
2760 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2761 			syncer_final_iter--;
2762 		/*
2763 		 * The variable rushjob allows the kernel to speed up the
2764 		 * processing of the filesystem syncer process. A rushjob
2765 		 * value of N tells the filesystem syncer to process the next
2766 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2767 		 * is used by the soft update code to speed up the filesystem
2768 		 * syncer process when the incore state is getting so far
2769 		 * ahead of the disk that the kernel memory pool is being
2770 		 * threatened with exhaustion.
2771 		 */
2772 		if (rushjob > 0) {
2773 			rushjob -= 1;
2774 			continue;
2775 		}
2776 		/*
2777 		 * Just sleep for a short period of time between
2778 		 * iterations when shutting down to allow some I/O
2779 		 * to happen.
2780 		 *
2781 		 * If it has taken us less than a second to process the
2782 		 * current work, then wait. Otherwise start right over
2783 		 * again. We can still lose time if any single round
2784 		 * takes more than two seconds, but it does not really
2785 		 * matter as we are just trying to generally pace the
2786 		 * filesystem activity.
2787 		 */
2788 		if (syncer_state != SYNCER_RUNNING ||
2789 		    time_uptime == starttime) {
2790 			thread_lock(td);
2791 			sched_prio(td, PPAUSE);
2792 			thread_unlock(td);
2793 		}
2794 		if (syncer_state != SYNCER_RUNNING)
2795 			cv_timedwait(&sync_wakeup, &sync_mtx,
2796 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2797 		else if (time_uptime == starttime)
2798 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2799 	}
2800 }
2801 
2802 /*
2803  * Request the syncer daemon to speed up its work.
2804  * We never push it to speed up more than half of its
2805  * normal turn time, otherwise it could take over the cpu.
2806  */
2807 int
2808 speedup_syncer(void)
2809 {
2810 	int ret = 0;
2811 
2812 	mtx_lock(&sync_mtx);
2813 	if (rushjob < syncdelay / 2) {
2814 		rushjob += 1;
2815 		stat_rush_requests += 1;
2816 		ret = 1;
2817 	}
2818 	mtx_unlock(&sync_mtx);
2819 	cv_broadcast(&sync_wakeup);
2820 	return (ret);
2821 }
2822 
2823 /*
2824  * Tell the syncer to speed up its work and run though its work
2825  * list several times, then tell it to shut down.
2826  */
2827 static void
2828 syncer_shutdown(void *arg, int howto)
2829 {
2830 
2831 	if (howto & RB_NOSYNC)
2832 		return;
2833 	mtx_lock(&sync_mtx);
2834 	syncer_state = SYNCER_SHUTTING_DOWN;
2835 	rushjob = 0;
2836 	mtx_unlock(&sync_mtx);
2837 	cv_broadcast(&sync_wakeup);
2838 	kproc_shutdown(arg, howto);
2839 }
2840 
2841 void
2842 syncer_suspend(void)
2843 {
2844 
2845 	syncer_shutdown(updateproc, 0);
2846 }
2847 
2848 void
2849 syncer_resume(void)
2850 {
2851 
2852 	mtx_lock(&sync_mtx);
2853 	first_printf = 1;
2854 	syncer_state = SYNCER_RUNNING;
2855 	mtx_unlock(&sync_mtx);
2856 	cv_broadcast(&sync_wakeup);
2857 	kproc_resume(updateproc);
2858 }
2859 
2860 /*
2861  * Move the buffer between the clean and dirty lists of its vnode.
2862  */
2863 void
2864 reassignbuf(struct buf *bp)
2865 {
2866 	struct vnode *vp;
2867 	struct bufobj *bo;
2868 	int delay;
2869 #ifdef INVARIANTS
2870 	struct bufv *bv;
2871 #endif
2872 
2873 	vp = bp->b_vp;
2874 	bo = bp->b_bufobj;
2875 
2876 	KASSERT((bp->b_flags & B_PAGING) == 0,
2877 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2878 
2879 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2880 	    bp, bp->b_vp, bp->b_flags);
2881 
2882 	BO_LOCK(bo);
2883 	buf_vlist_remove(bp);
2884 
2885 	/*
2886 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2887 	 * of clean buffers.
2888 	 */
2889 	if (bp->b_flags & B_DELWRI) {
2890 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2891 			switch (vp->v_type) {
2892 			case VDIR:
2893 				delay = dirdelay;
2894 				break;
2895 			case VCHR:
2896 				delay = metadelay;
2897 				break;
2898 			default:
2899 				delay = filedelay;
2900 			}
2901 			vn_syncer_add_to_worklist(bo, delay);
2902 		}
2903 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2904 	} else {
2905 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2906 
2907 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2908 			mtx_lock(&sync_mtx);
2909 			LIST_REMOVE(bo, bo_synclist);
2910 			syncer_worklist_len--;
2911 			mtx_unlock(&sync_mtx);
2912 			bo->bo_flag &= ~BO_ONWORKLST;
2913 		}
2914 	}
2915 #ifdef INVARIANTS
2916 	bv = &bo->bo_clean;
2917 	bp = TAILQ_FIRST(&bv->bv_hd);
2918 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2919 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2920 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2921 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2922 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2923 	bv = &bo->bo_dirty;
2924 	bp = TAILQ_FIRST(&bv->bv_hd);
2925 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2926 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2927 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2928 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2929 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2930 #endif
2931 	BO_UNLOCK(bo);
2932 }
2933 
2934 static void
2935 v_init_counters(struct vnode *vp)
2936 {
2937 
2938 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2939 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2940 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2941 
2942 	refcount_init(&vp->v_holdcnt, 1);
2943 	refcount_init(&vp->v_usecount, 1);
2944 }
2945 
2946 /*
2947  * Grab a particular vnode from the free list, increment its
2948  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2949  * is being destroyed.  Only callers who specify LK_RETRY will
2950  * see doomed vnodes.  If inactive processing was delayed in
2951  * vput try to do it here.
2952  *
2953  * usecount is manipulated using atomics without holding any locks.
2954  *
2955  * holdcnt can be manipulated using atomics without holding any locks,
2956  * except when transitioning 1<->0, in which case the interlock is held.
2957  *
2958  * Consumers which don't guarantee liveness of the vnode can use SMR to
2959  * try to get a reference. Note this operation can fail since the vnode
2960  * may be awaiting getting freed by the time they get to it.
2961  */
2962 enum vgetstate
2963 vget_prep_smr(struct vnode *vp)
2964 {
2965 	enum vgetstate vs;
2966 
2967 	VFS_SMR_ASSERT_ENTERED();
2968 
2969 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2970 		vs = VGET_USECOUNT;
2971 	} else {
2972 		if (vhold_smr(vp))
2973 			vs = VGET_HOLDCNT;
2974 		else
2975 			vs = VGET_NONE;
2976 	}
2977 	return (vs);
2978 }
2979 
2980 enum vgetstate
2981 vget_prep(struct vnode *vp)
2982 {
2983 	enum vgetstate vs;
2984 
2985 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2986 		vs = VGET_USECOUNT;
2987 	} else {
2988 		vhold(vp);
2989 		vs = VGET_HOLDCNT;
2990 	}
2991 	return (vs);
2992 }
2993 
2994 void
2995 vget_abort(struct vnode *vp, enum vgetstate vs)
2996 {
2997 
2998 	switch (vs) {
2999 	case VGET_USECOUNT:
3000 		vrele(vp);
3001 		break;
3002 	case VGET_HOLDCNT:
3003 		vdrop(vp);
3004 		break;
3005 	default:
3006 		__assert_unreachable();
3007 	}
3008 }
3009 
3010 int
3011 vget(struct vnode *vp, int flags)
3012 {
3013 	enum vgetstate vs;
3014 
3015 	vs = vget_prep(vp);
3016 	return (vget_finish(vp, flags, vs));
3017 }
3018 
3019 int
3020 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3021 {
3022 	int error;
3023 
3024 	if ((flags & LK_INTERLOCK) != 0)
3025 		ASSERT_VI_LOCKED(vp, __func__);
3026 	else
3027 		ASSERT_VI_UNLOCKED(vp, __func__);
3028 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3029 	VNPASS(vp->v_holdcnt > 0, vp);
3030 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3031 
3032 	error = vn_lock(vp, flags);
3033 	if (__predict_false(error != 0)) {
3034 		vget_abort(vp, vs);
3035 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3036 		    vp);
3037 		return (error);
3038 	}
3039 
3040 	vget_finish_ref(vp, vs);
3041 	return (0);
3042 }
3043 
3044 void
3045 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3046 {
3047 	int old;
3048 
3049 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3050 	VNPASS(vp->v_holdcnt > 0, vp);
3051 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3052 
3053 	if (vs == VGET_USECOUNT)
3054 		return;
3055 
3056 	/*
3057 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3058 	 * the vnode around. Otherwise someone else lended their hold count and
3059 	 * we have to drop ours.
3060 	 */
3061 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3062 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3063 	if (old != 0) {
3064 #ifdef INVARIANTS
3065 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3066 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3067 #else
3068 		refcount_release(&vp->v_holdcnt);
3069 #endif
3070 	}
3071 }
3072 
3073 void
3074 vref(struct vnode *vp)
3075 {
3076 	enum vgetstate vs;
3077 
3078 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3079 	vs = vget_prep(vp);
3080 	vget_finish_ref(vp, vs);
3081 }
3082 
3083 void
3084 vrefact(struct vnode *vp)
3085 {
3086 
3087 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3088 #ifdef INVARIANTS
3089 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3090 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3091 #else
3092 	refcount_acquire(&vp->v_usecount);
3093 #endif
3094 }
3095 
3096 void
3097 vlazy(struct vnode *vp)
3098 {
3099 	struct mount *mp;
3100 
3101 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3102 
3103 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3104 		return;
3105 	/*
3106 	 * We may get here for inactive routines after the vnode got doomed.
3107 	 */
3108 	if (VN_IS_DOOMED(vp))
3109 		return;
3110 	mp = vp->v_mount;
3111 	mtx_lock(&mp->mnt_listmtx);
3112 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3113 		vp->v_mflag |= VMP_LAZYLIST;
3114 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3115 		mp->mnt_lazyvnodelistsize++;
3116 	}
3117 	mtx_unlock(&mp->mnt_listmtx);
3118 }
3119 
3120 static void
3121 vunlazy(struct vnode *vp)
3122 {
3123 	struct mount *mp;
3124 
3125 	ASSERT_VI_LOCKED(vp, __func__);
3126 	VNPASS(!VN_IS_DOOMED(vp), vp);
3127 
3128 	mp = vp->v_mount;
3129 	mtx_lock(&mp->mnt_listmtx);
3130 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3131 	/*
3132 	 * Don't remove the vnode from the lazy list if another thread
3133 	 * has increased the hold count. It may have re-enqueued the
3134 	 * vnode to the lazy list and is now responsible for its
3135 	 * removal.
3136 	 */
3137 	if (vp->v_holdcnt == 0) {
3138 		vp->v_mflag &= ~VMP_LAZYLIST;
3139 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3140 		mp->mnt_lazyvnodelistsize--;
3141 	}
3142 	mtx_unlock(&mp->mnt_listmtx);
3143 }
3144 
3145 /*
3146  * This routine is only meant to be called from vgonel prior to dooming
3147  * the vnode.
3148  */
3149 static void
3150 vunlazy_gone(struct vnode *vp)
3151 {
3152 	struct mount *mp;
3153 
3154 	ASSERT_VOP_ELOCKED(vp, __func__);
3155 	ASSERT_VI_LOCKED(vp, __func__);
3156 	VNPASS(!VN_IS_DOOMED(vp), vp);
3157 
3158 	if (vp->v_mflag & VMP_LAZYLIST) {
3159 		mp = vp->v_mount;
3160 		mtx_lock(&mp->mnt_listmtx);
3161 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3162 		vp->v_mflag &= ~VMP_LAZYLIST;
3163 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3164 		mp->mnt_lazyvnodelistsize--;
3165 		mtx_unlock(&mp->mnt_listmtx);
3166 	}
3167 }
3168 
3169 static void
3170 vdefer_inactive(struct vnode *vp)
3171 {
3172 
3173 	ASSERT_VI_LOCKED(vp, __func__);
3174 	VNASSERT(vp->v_holdcnt > 0, vp,
3175 	    ("%s: vnode without hold count", __func__));
3176 	if (VN_IS_DOOMED(vp)) {
3177 		vdropl(vp);
3178 		return;
3179 	}
3180 	if (vp->v_iflag & VI_DEFINACT) {
3181 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3182 		vdropl(vp);
3183 		return;
3184 	}
3185 	if (vp->v_usecount > 0) {
3186 		vp->v_iflag &= ~VI_OWEINACT;
3187 		vdropl(vp);
3188 		return;
3189 	}
3190 	vlazy(vp);
3191 	vp->v_iflag |= VI_DEFINACT;
3192 	VI_UNLOCK(vp);
3193 	counter_u64_add(deferred_inact, 1);
3194 }
3195 
3196 static void
3197 vdefer_inactive_unlocked(struct vnode *vp)
3198 {
3199 
3200 	VI_LOCK(vp);
3201 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3202 		vdropl(vp);
3203 		return;
3204 	}
3205 	vdefer_inactive(vp);
3206 }
3207 
3208 enum vput_op { VRELE, VPUT, VUNREF };
3209 
3210 /*
3211  * Handle ->v_usecount transitioning to 0.
3212  *
3213  * By releasing the last usecount we take ownership of the hold count which
3214  * provides liveness of the vnode, meaning we have to vdrop.
3215  *
3216  * For all vnodes we may need to perform inactive processing. It requires an
3217  * exclusive lock on the vnode, while it is legal to call here with only a
3218  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3219  * inactive processing gets deferred to the syncer.
3220  *
3221  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3222  * on the lock being held all the way until VOP_INACTIVE. This in particular
3223  * happens with UFS which adds half-constructed vnodes to the hash, where they
3224  * can be found by other code.
3225  */
3226 static void
3227 vput_final(struct vnode *vp, enum vput_op func)
3228 {
3229 	int error;
3230 	bool want_unlock;
3231 
3232 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3233 	VNPASS(vp->v_holdcnt > 0, vp);
3234 
3235 	VI_LOCK(vp);
3236 
3237 	/*
3238 	 * By the time we got here someone else might have transitioned
3239 	 * the count back to > 0.
3240 	 */
3241 	if (vp->v_usecount > 0)
3242 		goto out;
3243 
3244 	/*
3245 	 * If the vnode is doomed vgone already performed inactive processing
3246 	 * (if needed).
3247 	 */
3248 	if (VN_IS_DOOMED(vp))
3249 		goto out;
3250 
3251 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3252 		goto out;
3253 
3254 	if (vp->v_iflag & VI_DOINGINACT)
3255 		goto out;
3256 
3257 	/*
3258 	 * Locking operations here will drop the interlock and possibly the
3259 	 * vnode lock, opening a window where the vnode can get doomed all the
3260 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3261 	 * perform inactive.
3262 	 */
3263 	vp->v_iflag |= VI_OWEINACT;
3264 	want_unlock = false;
3265 	error = 0;
3266 	switch (func) {
3267 	case VRELE:
3268 		switch (VOP_ISLOCKED(vp)) {
3269 		case LK_EXCLUSIVE:
3270 			break;
3271 		case LK_EXCLOTHER:
3272 		case 0:
3273 			want_unlock = true;
3274 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3275 			VI_LOCK(vp);
3276 			break;
3277 		default:
3278 			/*
3279 			 * The lock has at least one sharer, but we have no way
3280 			 * to conclude whether this is us. Play it safe and
3281 			 * defer processing.
3282 			 */
3283 			error = EAGAIN;
3284 			break;
3285 		}
3286 		break;
3287 	case VPUT:
3288 		want_unlock = true;
3289 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3290 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3291 			    LK_NOWAIT);
3292 			VI_LOCK(vp);
3293 		}
3294 		break;
3295 	case VUNREF:
3296 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3297 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3298 			VI_LOCK(vp);
3299 		}
3300 		break;
3301 	}
3302 	if (error == 0) {
3303 		if (func == VUNREF) {
3304 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3305 			    ("recursive vunref"));
3306 			vp->v_vflag |= VV_UNREF;
3307 		}
3308 		for (;;) {
3309 			error = vinactive(vp);
3310 			if (want_unlock)
3311 				VOP_UNLOCK(vp);
3312 			if (error != ERELOOKUP || !want_unlock)
3313 				break;
3314 			VOP_LOCK(vp, LK_EXCLUSIVE);
3315 		}
3316 		if (func == VUNREF)
3317 			vp->v_vflag &= ~VV_UNREF;
3318 		vdropl(vp);
3319 	} else {
3320 		vdefer_inactive(vp);
3321 	}
3322 	return;
3323 out:
3324 	if (func == VPUT)
3325 		VOP_UNLOCK(vp);
3326 	vdropl(vp);
3327 }
3328 
3329 /*
3330  * Decrement ->v_usecount for a vnode.
3331  *
3332  * Releasing the last use count requires additional processing, see vput_final
3333  * above for details.
3334  *
3335  * Comment above each variant denotes lock state on entry and exit.
3336  */
3337 
3338 /*
3339  * in: any
3340  * out: same as passed in
3341  */
3342 void
3343 vrele(struct vnode *vp)
3344 {
3345 
3346 	ASSERT_VI_UNLOCKED(vp, __func__);
3347 	if (!refcount_release(&vp->v_usecount))
3348 		return;
3349 	vput_final(vp, VRELE);
3350 }
3351 
3352 /*
3353  * in: locked
3354  * out: unlocked
3355  */
3356 void
3357 vput(struct vnode *vp)
3358 {
3359 
3360 	ASSERT_VOP_LOCKED(vp, __func__);
3361 	ASSERT_VI_UNLOCKED(vp, __func__);
3362 	if (!refcount_release(&vp->v_usecount)) {
3363 		VOP_UNLOCK(vp);
3364 		return;
3365 	}
3366 	vput_final(vp, VPUT);
3367 }
3368 
3369 /*
3370  * in: locked
3371  * out: locked
3372  */
3373 void
3374 vunref(struct vnode *vp)
3375 {
3376 
3377 	ASSERT_VOP_LOCKED(vp, __func__);
3378 	ASSERT_VI_UNLOCKED(vp, __func__);
3379 	if (!refcount_release(&vp->v_usecount))
3380 		return;
3381 	vput_final(vp, VUNREF);
3382 }
3383 
3384 void
3385 vhold(struct vnode *vp)
3386 {
3387 	int old;
3388 
3389 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3390 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3391 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3392 	    ("%s: wrong hold count %d", __func__, old));
3393 	if (old == 0)
3394 		vfs_freevnodes_dec();
3395 }
3396 
3397 void
3398 vholdnz(struct vnode *vp)
3399 {
3400 
3401 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3402 #ifdef INVARIANTS
3403 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3404 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3405 	    ("%s: wrong hold count %d", __func__, old));
3406 #else
3407 	atomic_add_int(&vp->v_holdcnt, 1);
3408 #endif
3409 }
3410 
3411 /*
3412  * Grab a hold count unless the vnode is freed.
3413  *
3414  * Only use this routine if vfs smr is the only protection you have against
3415  * freeing the vnode.
3416  *
3417  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3418  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3419  * the thread which managed to set the flag.
3420  *
3421  * It may be tempting to replace the loop with:
3422  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3423  * if (count & VHOLD_NO_SMR) {
3424  *     backpedal and error out;
3425  * }
3426  *
3427  * However, while this is more performant, it hinders debugging by eliminating
3428  * the previously mentioned invariant.
3429  */
3430 bool
3431 vhold_smr(struct vnode *vp)
3432 {
3433 	int count;
3434 
3435 	VFS_SMR_ASSERT_ENTERED();
3436 
3437 	count = atomic_load_int(&vp->v_holdcnt);
3438 	for (;;) {
3439 		if (count & VHOLD_NO_SMR) {
3440 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3441 			    ("non-zero hold count with flags %d\n", count));
3442 			return (false);
3443 		}
3444 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3445 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3446 			if (count == 0)
3447 				vfs_freevnodes_dec();
3448 			return (true);
3449 		}
3450 	}
3451 }
3452 
3453 /*
3454  * Hold a free vnode for recycling.
3455  *
3456  * Note: vnode_init references this comment.
3457  *
3458  * Attempts to recycle only need the global vnode list lock and have no use for
3459  * SMR.
3460  *
3461  * However, vnodes get inserted into the global list before they get fully
3462  * initialized and stay there until UMA decides to free the memory. This in
3463  * particular means the target can be found before it becomes usable and after
3464  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3465  * VHOLD_NO_SMR.
3466  *
3467  * Note: the vnode may gain more references after we transition the count 0->1.
3468  */
3469 static bool
3470 vhold_recycle_free(struct vnode *vp)
3471 {
3472 	int count;
3473 
3474 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3475 
3476 	count = atomic_load_int(&vp->v_holdcnt);
3477 	for (;;) {
3478 		if (count & VHOLD_NO_SMR) {
3479 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3480 			    ("non-zero hold count with flags %d\n", count));
3481 			return (false);
3482 		}
3483 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3484 		if (count > 0) {
3485 			return (false);
3486 		}
3487 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3488 			vfs_freevnodes_dec();
3489 			return (true);
3490 		}
3491 	}
3492 }
3493 
3494 static void __noinline
3495 vdbatch_process(struct vdbatch *vd)
3496 {
3497 	struct vnode *vp;
3498 	int i;
3499 
3500 	mtx_assert(&vd->lock, MA_OWNED);
3501 	MPASS(curthread->td_pinned > 0);
3502 	MPASS(vd->index == VDBATCH_SIZE);
3503 
3504 	mtx_lock(&vnode_list_mtx);
3505 	critical_enter();
3506 	freevnodes += vd->freevnodes;
3507 	for (i = 0; i < VDBATCH_SIZE; i++) {
3508 		vp = vd->tab[i];
3509 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3510 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3511 		MPASS(vp->v_dbatchcpu != NOCPU);
3512 		vp->v_dbatchcpu = NOCPU;
3513 	}
3514 	mtx_unlock(&vnode_list_mtx);
3515 	vd->freevnodes = 0;
3516 	bzero(vd->tab, sizeof(vd->tab));
3517 	vd->index = 0;
3518 	critical_exit();
3519 }
3520 
3521 static void
3522 vdbatch_enqueue(struct vnode *vp)
3523 {
3524 	struct vdbatch *vd;
3525 
3526 	ASSERT_VI_LOCKED(vp, __func__);
3527 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3528 	    ("%s: deferring requeue of a doomed vnode", __func__));
3529 
3530 	if (vp->v_dbatchcpu != NOCPU) {
3531 		VI_UNLOCK(vp);
3532 		return;
3533 	}
3534 
3535 	sched_pin();
3536 	vd = DPCPU_PTR(vd);
3537 	mtx_lock(&vd->lock);
3538 	MPASS(vd->index < VDBATCH_SIZE);
3539 	MPASS(vd->tab[vd->index] == NULL);
3540 	/*
3541 	 * A hack: we depend on being pinned so that we know what to put in
3542 	 * ->v_dbatchcpu.
3543 	 */
3544 	vp->v_dbatchcpu = curcpu;
3545 	vd->tab[vd->index] = vp;
3546 	vd->index++;
3547 	VI_UNLOCK(vp);
3548 	if (vd->index == VDBATCH_SIZE)
3549 		vdbatch_process(vd);
3550 	mtx_unlock(&vd->lock);
3551 	sched_unpin();
3552 }
3553 
3554 /*
3555  * This routine must only be called for vnodes which are about to be
3556  * deallocated. Supporting dequeue for arbitrary vndoes would require
3557  * validating that the locked batch matches.
3558  */
3559 static void
3560 vdbatch_dequeue(struct vnode *vp)
3561 {
3562 	struct vdbatch *vd;
3563 	int i;
3564 	short cpu;
3565 
3566 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3567 	    ("%s: called for a used vnode\n", __func__));
3568 
3569 	cpu = vp->v_dbatchcpu;
3570 	if (cpu == NOCPU)
3571 		return;
3572 
3573 	vd = DPCPU_ID_PTR(cpu, vd);
3574 	mtx_lock(&vd->lock);
3575 	for (i = 0; i < vd->index; i++) {
3576 		if (vd->tab[i] != vp)
3577 			continue;
3578 		vp->v_dbatchcpu = NOCPU;
3579 		vd->index--;
3580 		vd->tab[i] = vd->tab[vd->index];
3581 		vd->tab[vd->index] = NULL;
3582 		break;
3583 	}
3584 	mtx_unlock(&vd->lock);
3585 	/*
3586 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3587 	 */
3588 	MPASS(vp->v_dbatchcpu == NOCPU);
3589 }
3590 
3591 /*
3592  * Drop the hold count of the vnode.  If this is the last reference to
3593  * the vnode we place it on the free list unless it has been vgone'd
3594  * (marked VIRF_DOOMED) in which case we will free it.
3595  *
3596  * Because the vnode vm object keeps a hold reference on the vnode if
3597  * there is at least one resident non-cached page, the vnode cannot
3598  * leave the active list without the page cleanup done.
3599  */
3600 static void __noinline
3601 vdropl_final(struct vnode *vp)
3602 {
3603 
3604 	ASSERT_VI_LOCKED(vp, __func__);
3605 	VNPASS(VN_IS_DOOMED(vp), vp);
3606 	/*
3607 	 * Set the VHOLD_NO_SMR flag.
3608 	 *
3609 	 * We may be racing against vhold_smr. If they win we can just pretend
3610 	 * we never got this far, they will vdrop later.
3611 	 */
3612 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3613 		vfs_freevnodes_inc();
3614 		VI_UNLOCK(vp);
3615 		/*
3616 		 * We lost the aforementioned race. Any subsequent access is
3617 		 * invalid as they might have managed to vdropl on their own.
3618 		 */
3619 		return;
3620 	}
3621 	/*
3622 	 * Don't bump freevnodes as this one is going away.
3623 	 */
3624 	freevnode(vp);
3625 }
3626 
3627 void
3628 vdrop(struct vnode *vp)
3629 {
3630 
3631 	ASSERT_VI_UNLOCKED(vp, __func__);
3632 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3633 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3634 		return;
3635 	VI_LOCK(vp);
3636 	vdropl(vp);
3637 }
3638 
3639 static void __always_inline
3640 vdropl_impl(struct vnode *vp, bool enqueue)
3641 {
3642 
3643 	ASSERT_VI_LOCKED(vp, __func__);
3644 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3645 	if (!refcount_release(&vp->v_holdcnt)) {
3646 		VI_UNLOCK(vp);
3647 		return;
3648 	}
3649 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3650 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3651 	if (VN_IS_DOOMED(vp)) {
3652 		vdropl_final(vp);
3653 		return;
3654 	}
3655 
3656 	vfs_freevnodes_inc();
3657 	if (vp->v_mflag & VMP_LAZYLIST) {
3658 		vunlazy(vp);
3659 	}
3660 
3661 	if (!enqueue) {
3662 		VI_UNLOCK(vp);
3663 		return;
3664 	}
3665 
3666 	/*
3667 	 * Also unlocks the interlock. We can't assert on it as we
3668 	 * released our hold and by now the vnode might have been
3669 	 * freed.
3670 	 */
3671 	vdbatch_enqueue(vp);
3672 }
3673 
3674 void
3675 vdropl(struct vnode *vp)
3676 {
3677 
3678 	vdropl_impl(vp, true);
3679 }
3680 
3681 /*
3682  * vdrop a vnode when recycling
3683  *
3684  * This is a special case routine only to be used when recycling, differs from
3685  * regular vdrop by not requeieing the vnode on LRU.
3686  *
3687  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3688  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3689  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3690  * loop which can last for as long as writes are frozen.
3691  */
3692 static void
3693 vdropl_recycle(struct vnode *vp)
3694 {
3695 
3696 	vdropl_impl(vp, false);
3697 }
3698 
3699 static void
3700 vdrop_recycle(struct vnode *vp)
3701 {
3702 
3703 	VI_LOCK(vp);
3704 	vdropl_recycle(vp);
3705 }
3706 
3707 /*
3708  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3709  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3710  */
3711 static int
3712 vinactivef(struct vnode *vp)
3713 {
3714 	struct vm_object *obj;
3715 	int error;
3716 
3717 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3718 	ASSERT_VI_LOCKED(vp, "vinactive");
3719 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3720 	    ("vinactive: recursed on VI_DOINGINACT"));
3721 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3722 	vp->v_iflag |= VI_DOINGINACT;
3723 	vp->v_iflag &= ~VI_OWEINACT;
3724 	VI_UNLOCK(vp);
3725 	/*
3726 	 * Before moving off the active list, we must be sure that any
3727 	 * modified pages are converted into the vnode's dirty
3728 	 * buffers, since these will no longer be checked once the
3729 	 * vnode is on the inactive list.
3730 	 *
3731 	 * The write-out of the dirty pages is asynchronous.  At the
3732 	 * point that VOP_INACTIVE() is called, there could still be
3733 	 * pending I/O and dirty pages in the object.
3734 	 */
3735 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3736 	    vm_object_mightbedirty(obj)) {
3737 		VM_OBJECT_WLOCK(obj);
3738 		vm_object_page_clean(obj, 0, 0, 0);
3739 		VM_OBJECT_WUNLOCK(obj);
3740 	}
3741 	error = VOP_INACTIVE(vp);
3742 	VI_LOCK(vp);
3743 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3744 	    ("vinactive: lost VI_DOINGINACT"));
3745 	vp->v_iflag &= ~VI_DOINGINACT;
3746 	return (error);
3747 }
3748 
3749 int
3750 vinactive(struct vnode *vp)
3751 {
3752 
3753 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3754 	ASSERT_VI_LOCKED(vp, "vinactive");
3755 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3756 
3757 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3758 		return (0);
3759 	if (vp->v_iflag & VI_DOINGINACT)
3760 		return (0);
3761 	if (vp->v_usecount > 0) {
3762 		vp->v_iflag &= ~VI_OWEINACT;
3763 		return (0);
3764 	}
3765 	return (vinactivef(vp));
3766 }
3767 
3768 /*
3769  * Remove any vnodes in the vnode table belonging to mount point mp.
3770  *
3771  * If FORCECLOSE is not specified, there should not be any active ones,
3772  * return error if any are found (nb: this is a user error, not a
3773  * system error). If FORCECLOSE is specified, detach any active vnodes
3774  * that are found.
3775  *
3776  * If WRITECLOSE is set, only flush out regular file vnodes open for
3777  * writing.
3778  *
3779  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3780  *
3781  * `rootrefs' specifies the base reference count for the root vnode
3782  * of this filesystem. The root vnode is considered busy if its
3783  * v_usecount exceeds this value. On a successful return, vflush(, td)
3784  * will call vrele() on the root vnode exactly rootrefs times.
3785  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3786  * be zero.
3787  */
3788 #ifdef DIAGNOSTIC
3789 static int busyprt = 0;		/* print out busy vnodes */
3790 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3791 #endif
3792 
3793 int
3794 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3795 {
3796 	struct vnode *vp, *mvp, *rootvp = NULL;
3797 	struct vattr vattr;
3798 	int busy = 0, error;
3799 
3800 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3801 	    rootrefs, flags);
3802 	if (rootrefs > 0) {
3803 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3804 		    ("vflush: bad args"));
3805 		/*
3806 		 * Get the filesystem root vnode. We can vput() it
3807 		 * immediately, since with rootrefs > 0, it won't go away.
3808 		 */
3809 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3810 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3811 			    __func__, error);
3812 			return (error);
3813 		}
3814 		vput(rootvp);
3815 	}
3816 loop:
3817 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3818 		vholdl(vp);
3819 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3820 		if (error) {
3821 			vdrop(vp);
3822 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3823 			goto loop;
3824 		}
3825 		/*
3826 		 * Skip over a vnodes marked VV_SYSTEM.
3827 		 */
3828 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3829 			VOP_UNLOCK(vp);
3830 			vdrop(vp);
3831 			continue;
3832 		}
3833 		/*
3834 		 * If WRITECLOSE is set, flush out unlinked but still open
3835 		 * files (even if open only for reading) and regular file
3836 		 * vnodes open for writing.
3837 		 */
3838 		if (flags & WRITECLOSE) {
3839 			if (vp->v_object != NULL) {
3840 				VM_OBJECT_WLOCK(vp->v_object);
3841 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3842 				VM_OBJECT_WUNLOCK(vp->v_object);
3843 			}
3844 			do {
3845 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3846 			} while (error == ERELOOKUP);
3847 			if (error != 0) {
3848 				VOP_UNLOCK(vp);
3849 				vdrop(vp);
3850 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3851 				return (error);
3852 			}
3853 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3854 			VI_LOCK(vp);
3855 
3856 			if ((vp->v_type == VNON ||
3857 			    (error == 0 && vattr.va_nlink > 0)) &&
3858 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3859 				VOP_UNLOCK(vp);
3860 				vdropl(vp);
3861 				continue;
3862 			}
3863 		} else
3864 			VI_LOCK(vp);
3865 		/*
3866 		 * With v_usecount == 0, all we need to do is clear out the
3867 		 * vnode data structures and we are done.
3868 		 *
3869 		 * If FORCECLOSE is set, forcibly close the vnode.
3870 		 */
3871 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3872 			vgonel(vp);
3873 		} else {
3874 			busy++;
3875 #ifdef DIAGNOSTIC
3876 			if (busyprt)
3877 				vn_printf(vp, "vflush: busy vnode ");
3878 #endif
3879 		}
3880 		VOP_UNLOCK(vp);
3881 		vdropl(vp);
3882 	}
3883 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3884 		/*
3885 		 * If just the root vnode is busy, and if its refcount
3886 		 * is equal to `rootrefs', then go ahead and kill it.
3887 		 */
3888 		VI_LOCK(rootvp);
3889 		KASSERT(busy > 0, ("vflush: not busy"));
3890 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3891 		    ("vflush: usecount %d < rootrefs %d",
3892 		     rootvp->v_usecount, rootrefs));
3893 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3894 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3895 			vgone(rootvp);
3896 			VOP_UNLOCK(rootvp);
3897 			busy = 0;
3898 		} else
3899 			VI_UNLOCK(rootvp);
3900 	}
3901 	if (busy) {
3902 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3903 		    busy);
3904 		return (EBUSY);
3905 	}
3906 	for (; rootrefs > 0; rootrefs--)
3907 		vrele(rootvp);
3908 	return (0);
3909 }
3910 
3911 /*
3912  * Recycle an unused vnode to the front of the free list.
3913  */
3914 int
3915 vrecycle(struct vnode *vp)
3916 {
3917 	int recycled;
3918 
3919 	VI_LOCK(vp);
3920 	recycled = vrecyclel(vp);
3921 	VI_UNLOCK(vp);
3922 	return (recycled);
3923 }
3924 
3925 /*
3926  * vrecycle, with the vp interlock held.
3927  */
3928 int
3929 vrecyclel(struct vnode *vp)
3930 {
3931 	int recycled;
3932 
3933 	ASSERT_VOP_ELOCKED(vp, __func__);
3934 	ASSERT_VI_LOCKED(vp, __func__);
3935 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3936 	recycled = 0;
3937 	if (vp->v_usecount == 0) {
3938 		recycled = 1;
3939 		vgonel(vp);
3940 	}
3941 	return (recycled);
3942 }
3943 
3944 /*
3945  * Eliminate all activity associated with a vnode
3946  * in preparation for reuse.
3947  */
3948 void
3949 vgone(struct vnode *vp)
3950 {
3951 	VI_LOCK(vp);
3952 	vgonel(vp);
3953 	VI_UNLOCK(vp);
3954 }
3955 
3956 /*
3957  * Notify upper mounts about reclaimed or unlinked vnode.
3958  */
3959 void
3960 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
3961 {
3962 	struct mount *mp;
3963 	struct mount_upper_node *ump;
3964 
3965 	mp = atomic_load_ptr(&vp->v_mount);
3966 	if (mp == NULL)
3967 		return;
3968 	if (TAILQ_EMPTY(&mp->mnt_notify))
3969 		return;
3970 
3971 	MNT_ILOCK(mp);
3972 	mp->mnt_upper_pending++;
3973 	KASSERT(mp->mnt_upper_pending > 0,
3974 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3975 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3976 		MNT_IUNLOCK(mp);
3977 		switch (event) {
3978 		case VFS_NOTIFY_UPPER_RECLAIM:
3979 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
3980 			break;
3981 		case VFS_NOTIFY_UPPER_UNLINK:
3982 			VFS_UNLINK_LOWERVP(ump->mp, vp);
3983 			break;
3984 		}
3985 		MNT_ILOCK(mp);
3986 	}
3987 	mp->mnt_upper_pending--;
3988 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
3989 	    mp->mnt_upper_pending == 0) {
3990 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
3991 		wakeup(&mp->mnt_uppers);
3992 	}
3993 	MNT_IUNLOCK(mp);
3994 }
3995 
3996 /*
3997  * vgone, with the vp interlock held.
3998  */
3999 static void
4000 vgonel(struct vnode *vp)
4001 {
4002 	struct thread *td;
4003 	struct mount *mp;
4004 	vm_object_t object;
4005 	bool active, doinginact, oweinact;
4006 
4007 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4008 	ASSERT_VI_LOCKED(vp, "vgonel");
4009 	VNASSERT(vp->v_holdcnt, vp,
4010 	    ("vgonel: vp %p has no reference.", vp));
4011 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4012 	td = curthread;
4013 
4014 	/*
4015 	 * Don't vgonel if we're already doomed.
4016 	 */
4017 	if (VN_IS_DOOMED(vp))
4018 		return;
4019 	/*
4020 	 * Paired with freevnode.
4021 	 */
4022 	vn_seqc_write_begin_locked(vp);
4023 	vunlazy_gone(vp);
4024 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4025 
4026 	/*
4027 	 * Check to see if the vnode is in use.  If so, we have to
4028 	 * call VOP_CLOSE() and VOP_INACTIVE().
4029 	 *
4030 	 * It could be that VOP_INACTIVE() requested reclamation, in
4031 	 * which case we should avoid recursion, so check
4032 	 * VI_DOINGINACT.  This is not precise but good enough.
4033 	 */
4034 	active = vp->v_usecount > 0;
4035 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4036 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4037 
4038 	/*
4039 	 * If we need to do inactive VI_OWEINACT will be set.
4040 	 */
4041 	if (vp->v_iflag & VI_DEFINACT) {
4042 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4043 		vp->v_iflag &= ~VI_DEFINACT;
4044 		vdropl(vp);
4045 	} else {
4046 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4047 		VI_UNLOCK(vp);
4048 	}
4049 	cache_purge_vgone(vp);
4050 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4051 
4052 	/*
4053 	 * If purging an active vnode, it must be closed and
4054 	 * deactivated before being reclaimed.
4055 	 */
4056 	if (active)
4057 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4058 	if (!doinginact) {
4059 		do {
4060 			if (oweinact || active) {
4061 				VI_LOCK(vp);
4062 				vinactivef(vp);
4063 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4064 				VI_UNLOCK(vp);
4065 			}
4066 		} while (oweinact);
4067 	}
4068 	if (vp->v_type == VSOCK)
4069 		vfs_unp_reclaim(vp);
4070 
4071 	/*
4072 	 * Clean out any buffers associated with the vnode.
4073 	 * If the flush fails, just toss the buffers.
4074 	 */
4075 	mp = NULL;
4076 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4077 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4078 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4079 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4080 			;
4081 	}
4082 
4083 	BO_LOCK(&vp->v_bufobj);
4084 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4085 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4086 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4087 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4088 	    ("vp %p bufobj not invalidated", vp));
4089 
4090 	/*
4091 	 * For VMIO bufobj, BO_DEAD is set later, or in
4092 	 * vm_object_terminate() after the object's page queue is
4093 	 * flushed.
4094 	 */
4095 	object = vp->v_bufobj.bo_object;
4096 	if (object == NULL)
4097 		vp->v_bufobj.bo_flag |= BO_DEAD;
4098 	BO_UNLOCK(&vp->v_bufobj);
4099 
4100 	/*
4101 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4102 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4103 	 * should not touch the object borrowed from the lower vnode
4104 	 * (the handle check).
4105 	 */
4106 	if (object != NULL && object->type == OBJT_VNODE &&
4107 	    object->handle == vp)
4108 		vnode_destroy_vobject(vp);
4109 
4110 	/*
4111 	 * Reclaim the vnode.
4112 	 */
4113 	if (VOP_RECLAIM(vp))
4114 		panic("vgone: cannot reclaim");
4115 	if (mp != NULL)
4116 		vn_finished_secondary_write(mp);
4117 	VNASSERT(vp->v_object == NULL, vp,
4118 	    ("vop_reclaim left v_object vp=%p", vp));
4119 	/*
4120 	 * Clear the advisory locks and wake up waiting threads.
4121 	 */
4122 	if (vp->v_lockf != NULL) {
4123 		(void)VOP_ADVLOCKPURGE(vp);
4124 		vp->v_lockf = NULL;
4125 	}
4126 	/*
4127 	 * Delete from old mount point vnode list.
4128 	 */
4129 	if (vp->v_mount == NULL) {
4130 		VI_LOCK(vp);
4131 	} else {
4132 		delmntque(vp);
4133 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4134 	}
4135 	/*
4136 	 * Done with purge, reset to the standard lock and invalidate
4137 	 * the vnode.
4138 	 */
4139 	vp->v_vnlock = &vp->v_lock;
4140 	vp->v_op = &dead_vnodeops;
4141 	vp->v_type = VBAD;
4142 }
4143 
4144 /*
4145  * Print out a description of a vnode.
4146  */
4147 static const char * const typename[] =
4148 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4149  "VMARKER"};
4150 
4151 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4152     "new hold count flag not added to vn_printf");
4153 
4154 void
4155 vn_printf(struct vnode *vp, const char *fmt, ...)
4156 {
4157 	va_list ap;
4158 	char buf[256], buf2[16];
4159 	u_long flags;
4160 	u_int holdcnt;
4161 	short irflag;
4162 
4163 	va_start(ap, fmt);
4164 	vprintf(fmt, ap);
4165 	va_end(ap);
4166 	printf("%p: ", (void *)vp);
4167 	printf("type %s\n", typename[vp->v_type]);
4168 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4169 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4170 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4171 	    vp->v_seqc_users);
4172 	switch (vp->v_type) {
4173 	case VDIR:
4174 		printf(" mountedhere %p\n", vp->v_mountedhere);
4175 		break;
4176 	case VCHR:
4177 		printf(" rdev %p\n", vp->v_rdev);
4178 		break;
4179 	case VSOCK:
4180 		printf(" socket %p\n", vp->v_unpcb);
4181 		break;
4182 	case VFIFO:
4183 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4184 		break;
4185 	default:
4186 		printf("\n");
4187 		break;
4188 	}
4189 	buf[0] = '\0';
4190 	buf[1] = '\0';
4191 	if (holdcnt & VHOLD_NO_SMR)
4192 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4193 	printf("    hold count flags (%s)\n", buf + 1);
4194 
4195 	buf[0] = '\0';
4196 	buf[1] = '\0';
4197 	irflag = vn_irflag_read(vp);
4198 	if (irflag & VIRF_DOOMED)
4199 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4200 	if (irflag & VIRF_PGREAD)
4201 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4202 	if (irflag & VIRF_MOUNTPOINT)
4203 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4204 	if (irflag & VIRF_TEXT_REF)
4205 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4206 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4207 	if (flags != 0) {
4208 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4209 		strlcat(buf, buf2, sizeof(buf));
4210 	}
4211 	if (vp->v_vflag & VV_ROOT)
4212 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4213 	if (vp->v_vflag & VV_ISTTY)
4214 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4215 	if (vp->v_vflag & VV_NOSYNC)
4216 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4217 	if (vp->v_vflag & VV_ETERNALDEV)
4218 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4219 	if (vp->v_vflag & VV_CACHEDLABEL)
4220 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4221 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4222 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4223 	if (vp->v_vflag & VV_COPYONWRITE)
4224 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4225 	if (vp->v_vflag & VV_SYSTEM)
4226 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4227 	if (vp->v_vflag & VV_PROCDEP)
4228 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4229 	if (vp->v_vflag & VV_DELETED)
4230 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4231 	if (vp->v_vflag & VV_MD)
4232 		strlcat(buf, "|VV_MD", sizeof(buf));
4233 	if (vp->v_vflag & VV_FORCEINSMQ)
4234 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4235 	if (vp->v_vflag & VV_READLINK)
4236 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4237 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4238 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4239 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4240 	if (flags != 0) {
4241 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4242 		strlcat(buf, buf2, sizeof(buf));
4243 	}
4244 	if (vp->v_iflag & VI_MOUNT)
4245 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4246 	if (vp->v_iflag & VI_DOINGINACT)
4247 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4248 	if (vp->v_iflag & VI_OWEINACT)
4249 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4250 	if (vp->v_iflag & VI_DEFINACT)
4251 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4252 	if (vp->v_iflag & VI_FOPENING)
4253 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4254 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4255 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4256 	if (flags != 0) {
4257 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4258 		strlcat(buf, buf2, sizeof(buf));
4259 	}
4260 	if (vp->v_mflag & VMP_LAZYLIST)
4261 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4262 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4263 	if (flags != 0) {
4264 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4265 		strlcat(buf, buf2, sizeof(buf));
4266 	}
4267 	printf("    flags (%s)", buf + 1);
4268 	if (mtx_owned(VI_MTX(vp)))
4269 		printf(" VI_LOCKed");
4270 	printf("\n");
4271 	if (vp->v_object != NULL)
4272 		printf("    v_object %p ref %d pages %d "
4273 		    "cleanbuf %d dirtybuf %d\n",
4274 		    vp->v_object, vp->v_object->ref_count,
4275 		    vp->v_object->resident_page_count,
4276 		    vp->v_bufobj.bo_clean.bv_cnt,
4277 		    vp->v_bufobj.bo_dirty.bv_cnt);
4278 	printf("    ");
4279 	lockmgr_printinfo(vp->v_vnlock);
4280 	if (vp->v_data != NULL)
4281 		VOP_PRINT(vp);
4282 }
4283 
4284 #ifdef DDB
4285 /*
4286  * List all of the locked vnodes in the system.
4287  * Called when debugging the kernel.
4288  */
4289 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4290 {
4291 	struct mount *mp;
4292 	struct vnode *vp;
4293 
4294 	/*
4295 	 * Note: because this is DDB, we can't obey the locking semantics
4296 	 * for these structures, which means we could catch an inconsistent
4297 	 * state and dereference a nasty pointer.  Not much to be done
4298 	 * about that.
4299 	 */
4300 	db_printf("Locked vnodes\n");
4301 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4302 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4303 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4304 				vn_printf(vp, "vnode ");
4305 		}
4306 	}
4307 }
4308 
4309 /*
4310  * Show details about the given vnode.
4311  */
4312 DB_SHOW_COMMAND(vnode, db_show_vnode)
4313 {
4314 	struct vnode *vp;
4315 
4316 	if (!have_addr)
4317 		return;
4318 	vp = (struct vnode *)addr;
4319 	vn_printf(vp, "vnode ");
4320 }
4321 
4322 /*
4323  * Show details about the given mount point.
4324  */
4325 DB_SHOW_COMMAND(mount, db_show_mount)
4326 {
4327 	struct mount *mp;
4328 	struct vfsopt *opt;
4329 	struct statfs *sp;
4330 	struct vnode *vp;
4331 	char buf[512];
4332 	uint64_t mflags;
4333 	u_int flags;
4334 
4335 	if (!have_addr) {
4336 		/* No address given, print short info about all mount points. */
4337 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4338 			db_printf("%p %s on %s (%s)\n", mp,
4339 			    mp->mnt_stat.f_mntfromname,
4340 			    mp->mnt_stat.f_mntonname,
4341 			    mp->mnt_stat.f_fstypename);
4342 			if (db_pager_quit)
4343 				break;
4344 		}
4345 		db_printf("\nMore info: show mount <addr>\n");
4346 		return;
4347 	}
4348 
4349 	mp = (struct mount *)addr;
4350 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4351 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4352 
4353 	buf[0] = '\0';
4354 	mflags = mp->mnt_flag;
4355 #define	MNT_FLAG(flag)	do {						\
4356 	if (mflags & (flag)) {						\
4357 		if (buf[0] != '\0')					\
4358 			strlcat(buf, ", ", sizeof(buf));		\
4359 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4360 		mflags &= ~(flag);					\
4361 	}								\
4362 } while (0)
4363 	MNT_FLAG(MNT_RDONLY);
4364 	MNT_FLAG(MNT_SYNCHRONOUS);
4365 	MNT_FLAG(MNT_NOEXEC);
4366 	MNT_FLAG(MNT_NOSUID);
4367 	MNT_FLAG(MNT_NFS4ACLS);
4368 	MNT_FLAG(MNT_UNION);
4369 	MNT_FLAG(MNT_ASYNC);
4370 	MNT_FLAG(MNT_SUIDDIR);
4371 	MNT_FLAG(MNT_SOFTDEP);
4372 	MNT_FLAG(MNT_NOSYMFOLLOW);
4373 	MNT_FLAG(MNT_GJOURNAL);
4374 	MNT_FLAG(MNT_MULTILABEL);
4375 	MNT_FLAG(MNT_ACLS);
4376 	MNT_FLAG(MNT_NOATIME);
4377 	MNT_FLAG(MNT_NOCLUSTERR);
4378 	MNT_FLAG(MNT_NOCLUSTERW);
4379 	MNT_FLAG(MNT_SUJ);
4380 	MNT_FLAG(MNT_EXRDONLY);
4381 	MNT_FLAG(MNT_EXPORTED);
4382 	MNT_FLAG(MNT_DEFEXPORTED);
4383 	MNT_FLAG(MNT_EXPORTANON);
4384 	MNT_FLAG(MNT_EXKERB);
4385 	MNT_FLAG(MNT_EXPUBLIC);
4386 	MNT_FLAG(MNT_LOCAL);
4387 	MNT_FLAG(MNT_QUOTA);
4388 	MNT_FLAG(MNT_ROOTFS);
4389 	MNT_FLAG(MNT_USER);
4390 	MNT_FLAG(MNT_IGNORE);
4391 	MNT_FLAG(MNT_UPDATE);
4392 	MNT_FLAG(MNT_DELEXPORT);
4393 	MNT_FLAG(MNT_RELOAD);
4394 	MNT_FLAG(MNT_FORCE);
4395 	MNT_FLAG(MNT_SNAPSHOT);
4396 	MNT_FLAG(MNT_BYFSID);
4397 #undef MNT_FLAG
4398 	if (mflags != 0) {
4399 		if (buf[0] != '\0')
4400 			strlcat(buf, ", ", sizeof(buf));
4401 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4402 		    "0x%016jx", mflags);
4403 	}
4404 	db_printf("    mnt_flag = %s\n", buf);
4405 
4406 	buf[0] = '\0';
4407 	flags = mp->mnt_kern_flag;
4408 #define	MNT_KERN_FLAG(flag)	do {					\
4409 	if (flags & (flag)) {						\
4410 		if (buf[0] != '\0')					\
4411 			strlcat(buf, ", ", sizeof(buf));		\
4412 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4413 		flags &= ~(flag);					\
4414 	}								\
4415 } while (0)
4416 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4417 	MNT_KERN_FLAG(MNTK_ASYNC);
4418 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4419 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4420 	MNT_KERN_FLAG(MNTK_DRAINING);
4421 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4422 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4423 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4424 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4425 	MNT_KERN_FLAG(MNTK_RECURSE);
4426 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4427 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4428 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4429 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4430 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4431 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4432 	MNT_KERN_FLAG(MNTK_NOASYNC);
4433 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4434 	MNT_KERN_FLAG(MNTK_MWAIT);
4435 	MNT_KERN_FLAG(MNTK_SUSPEND);
4436 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4437 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4438 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4439 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4440 #undef MNT_KERN_FLAG
4441 	if (flags != 0) {
4442 		if (buf[0] != '\0')
4443 			strlcat(buf, ", ", sizeof(buf));
4444 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4445 		    "0x%08x", flags);
4446 	}
4447 	db_printf("    mnt_kern_flag = %s\n", buf);
4448 
4449 	db_printf("    mnt_opt = ");
4450 	opt = TAILQ_FIRST(mp->mnt_opt);
4451 	if (opt != NULL) {
4452 		db_printf("%s", opt->name);
4453 		opt = TAILQ_NEXT(opt, link);
4454 		while (opt != NULL) {
4455 			db_printf(", %s", opt->name);
4456 			opt = TAILQ_NEXT(opt, link);
4457 		}
4458 	}
4459 	db_printf("\n");
4460 
4461 	sp = &mp->mnt_stat;
4462 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4463 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4464 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4465 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4466 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4467 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4468 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4469 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4470 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4471 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4472 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4473 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4474 
4475 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4476 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4477 	if (jailed(mp->mnt_cred))
4478 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4479 	db_printf(" }\n");
4480 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4481 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4482 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4483 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4484 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4485 	    mp->mnt_lazyvnodelistsize);
4486 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4487 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4488 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4489 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4490 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4491 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4492 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4493 	db_printf("    mnt_secondary_accwrites = %d\n",
4494 	    mp->mnt_secondary_accwrites);
4495 	db_printf("    mnt_gjprovider = %s\n",
4496 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4497 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4498 
4499 	db_printf("\n\nList of active vnodes\n");
4500 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4501 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4502 			vn_printf(vp, "vnode ");
4503 			if (db_pager_quit)
4504 				break;
4505 		}
4506 	}
4507 	db_printf("\n\nList of inactive vnodes\n");
4508 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4509 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4510 			vn_printf(vp, "vnode ");
4511 			if (db_pager_quit)
4512 				break;
4513 		}
4514 	}
4515 }
4516 #endif	/* DDB */
4517 
4518 /*
4519  * Fill in a struct xvfsconf based on a struct vfsconf.
4520  */
4521 static int
4522 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4523 {
4524 	struct xvfsconf xvfsp;
4525 
4526 	bzero(&xvfsp, sizeof(xvfsp));
4527 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4528 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4529 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4530 	xvfsp.vfc_flags = vfsp->vfc_flags;
4531 	/*
4532 	 * These are unused in userland, we keep them
4533 	 * to not break binary compatibility.
4534 	 */
4535 	xvfsp.vfc_vfsops = NULL;
4536 	xvfsp.vfc_next = NULL;
4537 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4538 }
4539 
4540 #ifdef COMPAT_FREEBSD32
4541 struct xvfsconf32 {
4542 	uint32_t	vfc_vfsops;
4543 	char		vfc_name[MFSNAMELEN];
4544 	int32_t		vfc_typenum;
4545 	int32_t		vfc_refcount;
4546 	int32_t		vfc_flags;
4547 	uint32_t	vfc_next;
4548 };
4549 
4550 static int
4551 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4552 {
4553 	struct xvfsconf32 xvfsp;
4554 
4555 	bzero(&xvfsp, sizeof(xvfsp));
4556 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4557 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4558 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4559 	xvfsp.vfc_flags = vfsp->vfc_flags;
4560 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4561 }
4562 #endif
4563 
4564 /*
4565  * Top level filesystem related information gathering.
4566  */
4567 static int
4568 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4569 {
4570 	struct vfsconf *vfsp;
4571 	int error;
4572 
4573 	error = 0;
4574 	vfsconf_slock();
4575 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4576 #ifdef COMPAT_FREEBSD32
4577 		if (req->flags & SCTL_MASK32)
4578 			error = vfsconf2x32(req, vfsp);
4579 		else
4580 #endif
4581 			error = vfsconf2x(req, vfsp);
4582 		if (error)
4583 			break;
4584 	}
4585 	vfsconf_sunlock();
4586 	return (error);
4587 }
4588 
4589 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4590     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4591     "S,xvfsconf", "List of all configured filesystems");
4592 
4593 #ifndef BURN_BRIDGES
4594 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4595 
4596 static int
4597 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4598 {
4599 	int *name = (int *)arg1 - 1;	/* XXX */
4600 	u_int namelen = arg2 + 1;	/* XXX */
4601 	struct vfsconf *vfsp;
4602 
4603 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4604 	    "please rebuild world\n");
4605 
4606 #if 1 || defined(COMPAT_PRELITE2)
4607 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4608 	if (namelen == 1)
4609 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4610 #endif
4611 
4612 	switch (name[1]) {
4613 	case VFS_MAXTYPENUM:
4614 		if (namelen != 2)
4615 			return (ENOTDIR);
4616 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4617 	case VFS_CONF:
4618 		if (namelen != 3)
4619 			return (ENOTDIR);	/* overloaded */
4620 		vfsconf_slock();
4621 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4622 			if (vfsp->vfc_typenum == name[2])
4623 				break;
4624 		}
4625 		vfsconf_sunlock();
4626 		if (vfsp == NULL)
4627 			return (EOPNOTSUPP);
4628 #ifdef COMPAT_FREEBSD32
4629 		if (req->flags & SCTL_MASK32)
4630 			return (vfsconf2x32(req, vfsp));
4631 		else
4632 #endif
4633 			return (vfsconf2x(req, vfsp));
4634 	}
4635 	return (EOPNOTSUPP);
4636 }
4637 
4638 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4639     CTLFLAG_MPSAFE, vfs_sysctl,
4640     "Generic filesystem");
4641 
4642 #if 1 || defined(COMPAT_PRELITE2)
4643 
4644 static int
4645 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4646 {
4647 	int error;
4648 	struct vfsconf *vfsp;
4649 	struct ovfsconf ovfs;
4650 
4651 	vfsconf_slock();
4652 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4653 		bzero(&ovfs, sizeof(ovfs));
4654 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4655 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4656 		ovfs.vfc_index = vfsp->vfc_typenum;
4657 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4658 		ovfs.vfc_flags = vfsp->vfc_flags;
4659 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4660 		if (error != 0) {
4661 			vfsconf_sunlock();
4662 			return (error);
4663 		}
4664 	}
4665 	vfsconf_sunlock();
4666 	return (0);
4667 }
4668 
4669 #endif /* 1 || COMPAT_PRELITE2 */
4670 #endif /* !BURN_BRIDGES */
4671 
4672 #define KINFO_VNODESLOP		10
4673 #ifdef notyet
4674 /*
4675  * Dump vnode list (via sysctl).
4676  */
4677 /* ARGSUSED */
4678 static int
4679 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4680 {
4681 	struct xvnode *xvn;
4682 	struct mount *mp;
4683 	struct vnode *vp;
4684 	int error, len, n;
4685 
4686 	/*
4687 	 * Stale numvnodes access is not fatal here.
4688 	 */
4689 	req->lock = 0;
4690 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4691 	if (!req->oldptr)
4692 		/* Make an estimate */
4693 		return (SYSCTL_OUT(req, 0, len));
4694 
4695 	error = sysctl_wire_old_buffer(req, 0);
4696 	if (error != 0)
4697 		return (error);
4698 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4699 	n = 0;
4700 	mtx_lock(&mountlist_mtx);
4701 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4702 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4703 			continue;
4704 		MNT_ILOCK(mp);
4705 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4706 			if (n == len)
4707 				break;
4708 			vref(vp);
4709 			xvn[n].xv_size = sizeof *xvn;
4710 			xvn[n].xv_vnode = vp;
4711 			xvn[n].xv_id = 0;	/* XXX compat */
4712 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4713 			XV_COPY(usecount);
4714 			XV_COPY(writecount);
4715 			XV_COPY(holdcnt);
4716 			XV_COPY(mount);
4717 			XV_COPY(numoutput);
4718 			XV_COPY(type);
4719 #undef XV_COPY
4720 			xvn[n].xv_flag = vp->v_vflag;
4721 
4722 			switch (vp->v_type) {
4723 			case VREG:
4724 			case VDIR:
4725 			case VLNK:
4726 				break;
4727 			case VBLK:
4728 			case VCHR:
4729 				if (vp->v_rdev == NULL) {
4730 					vrele(vp);
4731 					continue;
4732 				}
4733 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4734 				break;
4735 			case VSOCK:
4736 				xvn[n].xv_socket = vp->v_socket;
4737 				break;
4738 			case VFIFO:
4739 				xvn[n].xv_fifo = vp->v_fifoinfo;
4740 				break;
4741 			case VNON:
4742 			case VBAD:
4743 			default:
4744 				/* shouldn't happen? */
4745 				vrele(vp);
4746 				continue;
4747 			}
4748 			vrele(vp);
4749 			++n;
4750 		}
4751 		MNT_IUNLOCK(mp);
4752 		mtx_lock(&mountlist_mtx);
4753 		vfs_unbusy(mp);
4754 		if (n == len)
4755 			break;
4756 	}
4757 	mtx_unlock(&mountlist_mtx);
4758 
4759 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4760 	free(xvn, M_TEMP);
4761 	return (error);
4762 }
4763 
4764 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4765     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4766     "");
4767 #endif
4768 
4769 static void
4770 unmount_or_warn(struct mount *mp)
4771 {
4772 	int error;
4773 
4774 	error = dounmount(mp, MNT_FORCE, curthread);
4775 	if (error != 0) {
4776 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4777 		if (error == EBUSY)
4778 			printf("BUSY)\n");
4779 		else
4780 			printf("%d)\n", error);
4781 	}
4782 }
4783 
4784 /*
4785  * Unmount all filesystems. The list is traversed in reverse order
4786  * of mounting to avoid dependencies.
4787  */
4788 void
4789 vfs_unmountall(void)
4790 {
4791 	struct mount *mp, *tmp;
4792 
4793 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4794 
4795 	/*
4796 	 * Since this only runs when rebooting, it is not interlocked.
4797 	 */
4798 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4799 		vfs_ref(mp);
4800 
4801 		/*
4802 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4803 		 * unmount of the latter.
4804 		 */
4805 		if (mp == rootdevmp)
4806 			continue;
4807 
4808 		unmount_or_warn(mp);
4809 	}
4810 
4811 	if (rootdevmp != NULL)
4812 		unmount_or_warn(rootdevmp);
4813 }
4814 
4815 static void
4816 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4817 {
4818 
4819 	ASSERT_VI_LOCKED(vp, __func__);
4820 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4821 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4822 		vdropl(vp);
4823 		return;
4824 	}
4825 	if (vn_lock(vp, lkflags) == 0) {
4826 		VI_LOCK(vp);
4827 		vinactive(vp);
4828 		VOP_UNLOCK(vp);
4829 		vdropl(vp);
4830 		return;
4831 	}
4832 	vdefer_inactive_unlocked(vp);
4833 }
4834 
4835 static int
4836 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4837 {
4838 
4839 	return (vp->v_iflag & VI_DEFINACT);
4840 }
4841 
4842 static void __noinline
4843 vfs_periodic_inactive(struct mount *mp, int flags)
4844 {
4845 	struct vnode *vp, *mvp;
4846 	int lkflags;
4847 
4848 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4849 	if (flags != MNT_WAIT)
4850 		lkflags |= LK_NOWAIT;
4851 
4852 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4853 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4854 			VI_UNLOCK(vp);
4855 			continue;
4856 		}
4857 		vp->v_iflag &= ~VI_DEFINACT;
4858 		vfs_deferred_inactive(vp, lkflags);
4859 	}
4860 }
4861 
4862 static inline bool
4863 vfs_want_msync(struct vnode *vp)
4864 {
4865 	struct vm_object *obj;
4866 
4867 	/*
4868 	 * This test may be performed without any locks held.
4869 	 * We rely on vm_object's type stability.
4870 	 */
4871 	if (vp->v_vflag & VV_NOSYNC)
4872 		return (false);
4873 	obj = vp->v_object;
4874 	return (obj != NULL && vm_object_mightbedirty(obj));
4875 }
4876 
4877 static int
4878 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4879 {
4880 
4881 	if (vp->v_vflag & VV_NOSYNC)
4882 		return (false);
4883 	if (vp->v_iflag & VI_DEFINACT)
4884 		return (true);
4885 	return (vfs_want_msync(vp));
4886 }
4887 
4888 static void __noinline
4889 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4890 {
4891 	struct vnode *vp, *mvp;
4892 	struct vm_object *obj;
4893 	int lkflags, objflags;
4894 	bool seen_defer;
4895 
4896 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4897 	if (flags != MNT_WAIT) {
4898 		lkflags |= LK_NOWAIT;
4899 		objflags = OBJPC_NOSYNC;
4900 	} else {
4901 		objflags = OBJPC_SYNC;
4902 	}
4903 
4904 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4905 		seen_defer = false;
4906 		if (vp->v_iflag & VI_DEFINACT) {
4907 			vp->v_iflag &= ~VI_DEFINACT;
4908 			seen_defer = true;
4909 		}
4910 		if (!vfs_want_msync(vp)) {
4911 			if (seen_defer)
4912 				vfs_deferred_inactive(vp, lkflags);
4913 			else
4914 				VI_UNLOCK(vp);
4915 			continue;
4916 		}
4917 		if (vget(vp, lkflags) == 0) {
4918 			obj = vp->v_object;
4919 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4920 				VM_OBJECT_WLOCK(obj);
4921 				vm_object_page_clean(obj, 0, 0, objflags);
4922 				VM_OBJECT_WUNLOCK(obj);
4923 			}
4924 			vput(vp);
4925 			if (seen_defer)
4926 				vdrop(vp);
4927 		} else {
4928 			if (seen_defer)
4929 				vdefer_inactive_unlocked(vp);
4930 		}
4931 	}
4932 }
4933 
4934 void
4935 vfs_periodic(struct mount *mp, int flags)
4936 {
4937 
4938 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4939 
4940 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4941 		vfs_periodic_inactive(mp, flags);
4942 	else
4943 		vfs_periodic_msync_inactive(mp, flags);
4944 }
4945 
4946 static void
4947 destroy_vpollinfo_free(struct vpollinfo *vi)
4948 {
4949 
4950 	knlist_destroy(&vi->vpi_selinfo.si_note);
4951 	mtx_destroy(&vi->vpi_lock);
4952 	free(vi, M_VNODEPOLL);
4953 }
4954 
4955 static void
4956 destroy_vpollinfo(struct vpollinfo *vi)
4957 {
4958 
4959 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4960 	seldrain(&vi->vpi_selinfo);
4961 	destroy_vpollinfo_free(vi);
4962 }
4963 
4964 /*
4965  * Initialize per-vnode helper structure to hold poll-related state.
4966  */
4967 void
4968 v_addpollinfo(struct vnode *vp)
4969 {
4970 	struct vpollinfo *vi;
4971 
4972 	if (vp->v_pollinfo != NULL)
4973 		return;
4974 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4975 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4976 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4977 	    vfs_knlunlock, vfs_knl_assert_lock);
4978 	VI_LOCK(vp);
4979 	if (vp->v_pollinfo != NULL) {
4980 		VI_UNLOCK(vp);
4981 		destroy_vpollinfo_free(vi);
4982 		return;
4983 	}
4984 	vp->v_pollinfo = vi;
4985 	VI_UNLOCK(vp);
4986 }
4987 
4988 /*
4989  * Record a process's interest in events which might happen to
4990  * a vnode.  Because poll uses the historic select-style interface
4991  * internally, this routine serves as both the ``check for any
4992  * pending events'' and the ``record my interest in future events''
4993  * functions.  (These are done together, while the lock is held,
4994  * to avoid race conditions.)
4995  */
4996 int
4997 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4998 {
4999 
5000 	v_addpollinfo(vp);
5001 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5002 	if (vp->v_pollinfo->vpi_revents & events) {
5003 		/*
5004 		 * This leaves events we are not interested
5005 		 * in available for the other process which
5006 		 * which presumably had requested them
5007 		 * (otherwise they would never have been
5008 		 * recorded).
5009 		 */
5010 		events &= vp->v_pollinfo->vpi_revents;
5011 		vp->v_pollinfo->vpi_revents &= ~events;
5012 
5013 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5014 		return (events);
5015 	}
5016 	vp->v_pollinfo->vpi_events |= events;
5017 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5018 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5019 	return (0);
5020 }
5021 
5022 /*
5023  * Routine to create and manage a filesystem syncer vnode.
5024  */
5025 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5026 static int	sync_fsync(struct  vop_fsync_args *);
5027 static int	sync_inactive(struct  vop_inactive_args *);
5028 static int	sync_reclaim(struct  vop_reclaim_args *);
5029 
5030 static struct vop_vector sync_vnodeops = {
5031 	.vop_bypass =	VOP_EOPNOTSUPP,
5032 	.vop_close =	sync_close,		/* close */
5033 	.vop_fsync =	sync_fsync,		/* fsync */
5034 	.vop_inactive =	sync_inactive,	/* inactive */
5035 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
5036 	.vop_reclaim =	sync_reclaim,	/* reclaim */
5037 	.vop_lock1 =	vop_stdlock,	/* lock */
5038 	.vop_unlock =	vop_stdunlock,	/* unlock */
5039 	.vop_islocked =	vop_stdislocked,	/* islocked */
5040 };
5041 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5042 
5043 /*
5044  * Create a new filesystem syncer vnode for the specified mount point.
5045  */
5046 void
5047 vfs_allocate_syncvnode(struct mount *mp)
5048 {
5049 	struct vnode *vp;
5050 	struct bufobj *bo;
5051 	static long start, incr, next;
5052 	int error;
5053 
5054 	/* Allocate a new vnode */
5055 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5056 	if (error != 0)
5057 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5058 	vp->v_type = VNON;
5059 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5060 	vp->v_vflag |= VV_FORCEINSMQ;
5061 	error = insmntque1(vp, mp);
5062 	if (error != 0)
5063 		panic("vfs_allocate_syncvnode: insmntque() failed");
5064 	vp->v_vflag &= ~VV_FORCEINSMQ;
5065 	VOP_UNLOCK(vp);
5066 	/*
5067 	 * Place the vnode onto the syncer worklist. We attempt to
5068 	 * scatter them about on the list so that they will go off
5069 	 * at evenly distributed times even if all the filesystems
5070 	 * are mounted at once.
5071 	 */
5072 	next += incr;
5073 	if (next == 0 || next > syncer_maxdelay) {
5074 		start /= 2;
5075 		incr /= 2;
5076 		if (start == 0) {
5077 			start = syncer_maxdelay / 2;
5078 			incr = syncer_maxdelay;
5079 		}
5080 		next = start;
5081 	}
5082 	bo = &vp->v_bufobj;
5083 	BO_LOCK(bo);
5084 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5085 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5086 	mtx_lock(&sync_mtx);
5087 	sync_vnode_count++;
5088 	if (mp->mnt_syncer == NULL) {
5089 		mp->mnt_syncer = vp;
5090 		vp = NULL;
5091 	}
5092 	mtx_unlock(&sync_mtx);
5093 	BO_UNLOCK(bo);
5094 	if (vp != NULL) {
5095 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5096 		vgone(vp);
5097 		vput(vp);
5098 	}
5099 }
5100 
5101 void
5102 vfs_deallocate_syncvnode(struct mount *mp)
5103 {
5104 	struct vnode *vp;
5105 
5106 	mtx_lock(&sync_mtx);
5107 	vp = mp->mnt_syncer;
5108 	if (vp != NULL)
5109 		mp->mnt_syncer = NULL;
5110 	mtx_unlock(&sync_mtx);
5111 	if (vp != NULL)
5112 		vrele(vp);
5113 }
5114 
5115 /*
5116  * Do a lazy sync of the filesystem.
5117  */
5118 static int
5119 sync_fsync(struct vop_fsync_args *ap)
5120 {
5121 	struct vnode *syncvp = ap->a_vp;
5122 	struct mount *mp = syncvp->v_mount;
5123 	int error, save;
5124 	struct bufobj *bo;
5125 
5126 	/*
5127 	 * We only need to do something if this is a lazy evaluation.
5128 	 */
5129 	if (ap->a_waitfor != MNT_LAZY)
5130 		return (0);
5131 
5132 	/*
5133 	 * Move ourselves to the back of the sync list.
5134 	 */
5135 	bo = &syncvp->v_bufobj;
5136 	BO_LOCK(bo);
5137 	vn_syncer_add_to_worklist(bo, syncdelay);
5138 	BO_UNLOCK(bo);
5139 
5140 	/*
5141 	 * Walk the list of vnodes pushing all that are dirty and
5142 	 * not already on the sync list.
5143 	 */
5144 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5145 		return (0);
5146 	VOP_UNLOCK(syncvp);
5147 	save = curthread_pflags_set(TDP_SYNCIO);
5148 	/*
5149 	 * The filesystem at hand may be idle with free vnodes stored in the
5150 	 * batch.  Return them instead of letting them stay there indefinitely.
5151 	 */
5152 	vfs_periodic(mp, MNT_NOWAIT);
5153 	error = VFS_SYNC(mp, MNT_LAZY);
5154 	curthread_pflags_restore(save);
5155 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5156 	vfs_unbusy(mp);
5157 	return (error);
5158 }
5159 
5160 /*
5161  * The syncer vnode is no referenced.
5162  */
5163 static int
5164 sync_inactive(struct vop_inactive_args *ap)
5165 {
5166 
5167 	vgone(ap->a_vp);
5168 	return (0);
5169 }
5170 
5171 /*
5172  * The syncer vnode is no longer needed and is being decommissioned.
5173  *
5174  * Modifications to the worklist must be protected by sync_mtx.
5175  */
5176 static int
5177 sync_reclaim(struct vop_reclaim_args *ap)
5178 {
5179 	struct vnode *vp = ap->a_vp;
5180 	struct bufobj *bo;
5181 
5182 	bo = &vp->v_bufobj;
5183 	BO_LOCK(bo);
5184 	mtx_lock(&sync_mtx);
5185 	if (vp->v_mount->mnt_syncer == vp)
5186 		vp->v_mount->mnt_syncer = NULL;
5187 	if (bo->bo_flag & BO_ONWORKLST) {
5188 		LIST_REMOVE(bo, bo_synclist);
5189 		syncer_worklist_len--;
5190 		sync_vnode_count--;
5191 		bo->bo_flag &= ~BO_ONWORKLST;
5192 	}
5193 	mtx_unlock(&sync_mtx);
5194 	BO_UNLOCK(bo);
5195 
5196 	return (0);
5197 }
5198 
5199 int
5200 vn_need_pageq_flush(struct vnode *vp)
5201 {
5202 	struct vm_object *obj;
5203 
5204 	obj = vp->v_object;
5205 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5206 	    vm_object_mightbedirty(obj));
5207 }
5208 
5209 /*
5210  * Check if vnode represents a disk device
5211  */
5212 bool
5213 vn_isdisk_error(struct vnode *vp, int *errp)
5214 {
5215 	int error;
5216 
5217 	if (vp->v_type != VCHR) {
5218 		error = ENOTBLK;
5219 		goto out;
5220 	}
5221 	error = 0;
5222 	dev_lock();
5223 	if (vp->v_rdev == NULL)
5224 		error = ENXIO;
5225 	else if (vp->v_rdev->si_devsw == NULL)
5226 		error = ENXIO;
5227 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5228 		error = ENOTBLK;
5229 	dev_unlock();
5230 out:
5231 	*errp = error;
5232 	return (error == 0);
5233 }
5234 
5235 bool
5236 vn_isdisk(struct vnode *vp)
5237 {
5238 	int error;
5239 
5240 	return (vn_isdisk_error(vp, &error));
5241 }
5242 
5243 /*
5244  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5245  * the comment above cache_fplookup for details.
5246  */
5247 int
5248 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5249 {
5250 	int error;
5251 
5252 	VFS_SMR_ASSERT_ENTERED();
5253 
5254 	/* Check the owner. */
5255 	if (cred->cr_uid == file_uid) {
5256 		if (file_mode & S_IXUSR)
5257 			return (0);
5258 		goto out_error;
5259 	}
5260 
5261 	/* Otherwise, check the groups (first match) */
5262 	if (groupmember(file_gid, cred)) {
5263 		if (file_mode & S_IXGRP)
5264 			return (0);
5265 		goto out_error;
5266 	}
5267 
5268 	/* Otherwise, check everyone else. */
5269 	if (file_mode & S_IXOTH)
5270 		return (0);
5271 out_error:
5272 	/*
5273 	 * Permission check failed, but it is possible denial will get overwritten
5274 	 * (e.g., when root is traversing through a 700 directory owned by someone
5275 	 * else).
5276 	 *
5277 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5278 	 * modules overriding this result. It's quite unclear what semantics
5279 	 * are allowed for them to operate, thus for safety we don't call them
5280 	 * from within the SMR section. This also means if any such modules
5281 	 * are present, we have to let the regular lookup decide.
5282 	 */
5283 	error = priv_check_cred_vfs_lookup_nomac(cred);
5284 	switch (error) {
5285 	case 0:
5286 		return (0);
5287 	case EAGAIN:
5288 		/*
5289 		 * MAC modules present.
5290 		 */
5291 		return (EAGAIN);
5292 	case EPERM:
5293 		return (EACCES);
5294 	default:
5295 		return (error);
5296 	}
5297 }
5298 
5299 /*
5300  * Common filesystem object access control check routine.  Accepts a
5301  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5302  * Returns 0 on success, or an errno on failure.
5303  */
5304 int
5305 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5306     accmode_t accmode, struct ucred *cred)
5307 {
5308 	accmode_t dac_granted;
5309 	accmode_t priv_granted;
5310 
5311 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5312 	    ("invalid bit in accmode"));
5313 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5314 	    ("VAPPEND without VWRITE"));
5315 
5316 	/*
5317 	 * Look for a normal, non-privileged way to access the file/directory
5318 	 * as requested.  If it exists, go with that.
5319 	 */
5320 
5321 	dac_granted = 0;
5322 
5323 	/* Check the owner. */
5324 	if (cred->cr_uid == file_uid) {
5325 		dac_granted |= VADMIN;
5326 		if (file_mode & S_IXUSR)
5327 			dac_granted |= VEXEC;
5328 		if (file_mode & S_IRUSR)
5329 			dac_granted |= VREAD;
5330 		if (file_mode & S_IWUSR)
5331 			dac_granted |= (VWRITE | VAPPEND);
5332 
5333 		if ((accmode & dac_granted) == accmode)
5334 			return (0);
5335 
5336 		goto privcheck;
5337 	}
5338 
5339 	/* Otherwise, check the groups (first match) */
5340 	if (groupmember(file_gid, cred)) {
5341 		if (file_mode & S_IXGRP)
5342 			dac_granted |= VEXEC;
5343 		if (file_mode & S_IRGRP)
5344 			dac_granted |= VREAD;
5345 		if (file_mode & S_IWGRP)
5346 			dac_granted |= (VWRITE | VAPPEND);
5347 
5348 		if ((accmode & dac_granted) == accmode)
5349 			return (0);
5350 
5351 		goto privcheck;
5352 	}
5353 
5354 	/* Otherwise, check everyone else. */
5355 	if (file_mode & S_IXOTH)
5356 		dac_granted |= VEXEC;
5357 	if (file_mode & S_IROTH)
5358 		dac_granted |= VREAD;
5359 	if (file_mode & S_IWOTH)
5360 		dac_granted |= (VWRITE | VAPPEND);
5361 	if ((accmode & dac_granted) == accmode)
5362 		return (0);
5363 
5364 privcheck:
5365 	/*
5366 	 * Build a privilege mask to determine if the set of privileges
5367 	 * satisfies the requirements when combined with the granted mask
5368 	 * from above.  For each privilege, if the privilege is required,
5369 	 * bitwise or the request type onto the priv_granted mask.
5370 	 */
5371 	priv_granted = 0;
5372 
5373 	if (type == VDIR) {
5374 		/*
5375 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5376 		 * requests, instead of PRIV_VFS_EXEC.
5377 		 */
5378 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5379 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5380 			priv_granted |= VEXEC;
5381 	} else {
5382 		/*
5383 		 * Ensure that at least one execute bit is on. Otherwise,
5384 		 * a privileged user will always succeed, and we don't want
5385 		 * this to happen unless the file really is executable.
5386 		 */
5387 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5388 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5389 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5390 			priv_granted |= VEXEC;
5391 	}
5392 
5393 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5394 	    !priv_check_cred(cred, PRIV_VFS_READ))
5395 		priv_granted |= VREAD;
5396 
5397 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5398 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5399 		priv_granted |= (VWRITE | VAPPEND);
5400 
5401 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5402 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5403 		priv_granted |= VADMIN;
5404 
5405 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5406 		return (0);
5407 	}
5408 
5409 	return ((accmode & VADMIN) ? EPERM : EACCES);
5410 }
5411 
5412 /*
5413  * Credential check based on process requesting service, and per-attribute
5414  * permissions.
5415  */
5416 int
5417 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5418     struct thread *td, accmode_t accmode)
5419 {
5420 
5421 	/*
5422 	 * Kernel-invoked always succeeds.
5423 	 */
5424 	if (cred == NOCRED)
5425 		return (0);
5426 
5427 	/*
5428 	 * Do not allow privileged processes in jail to directly manipulate
5429 	 * system attributes.
5430 	 */
5431 	switch (attrnamespace) {
5432 	case EXTATTR_NAMESPACE_SYSTEM:
5433 		/* Potentially should be: return (EPERM); */
5434 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5435 	case EXTATTR_NAMESPACE_USER:
5436 		return (VOP_ACCESS(vp, accmode, cred, td));
5437 	default:
5438 		return (EPERM);
5439 	}
5440 }
5441 
5442 #ifdef DEBUG_VFS_LOCKS
5443 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5444 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5445     "Drop into debugger on lock violation");
5446 
5447 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5448 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5449     0, "Check for interlock across VOPs");
5450 
5451 int vfs_badlock_print = 1;	/* Print lock violations. */
5452 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5453     0, "Print lock violations");
5454 
5455 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5456 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5457     0, "Print vnode details on lock violations");
5458 
5459 #ifdef KDB
5460 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5461 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5462     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5463 #endif
5464 
5465 static void
5466 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5467 {
5468 
5469 #ifdef KDB
5470 	if (vfs_badlock_backtrace)
5471 		kdb_backtrace();
5472 #endif
5473 	if (vfs_badlock_vnode)
5474 		vn_printf(vp, "vnode ");
5475 	if (vfs_badlock_print)
5476 		printf("%s: %p %s\n", str, (void *)vp, msg);
5477 	if (vfs_badlock_ddb)
5478 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5479 }
5480 
5481 void
5482 assert_vi_locked(struct vnode *vp, const char *str)
5483 {
5484 
5485 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5486 		vfs_badlock("interlock is not locked but should be", str, vp);
5487 }
5488 
5489 void
5490 assert_vi_unlocked(struct vnode *vp, const char *str)
5491 {
5492 
5493 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5494 		vfs_badlock("interlock is locked but should not be", str, vp);
5495 }
5496 
5497 void
5498 assert_vop_locked(struct vnode *vp, const char *str)
5499 {
5500 	int locked;
5501 
5502 	if (KERNEL_PANICKED() || vp == NULL)
5503 		return;
5504 
5505 	locked = VOP_ISLOCKED(vp);
5506 	if (locked == 0 || locked == LK_EXCLOTHER)
5507 		vfs_badlock("is not locked but should be", str, vp);
5508 }
5509 
5510 void
5511 assert_vop_unlocked(struct vnode *vp, const char *str)
5512 {
5513 	if (KERNEL_PANICKED() || vp == NULL)
5514 		return;
5515 
5516 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5517 		vfs_badlock("is locked but should not be", str, vp);
5518 }
5519 
5520 void
5521 assert_vop_elocked(struct vnode *vp, const char *str)
5522 {
5523 	if (KERNEL_PANICKED() || vp == NULL)
5524 		return;
5525 
5526 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5527 		vfs_badlock("is not exclusive locked but should be", str, vp);
5528 }
5529 #endif /* DEBUG_VFS_LOCKS */
5530 
5531 void
5532 vop_rename_fail(struct vop_rename_args *ap)
5533 {
5534 
5535 	if (ap->a_tvp != NULL)
5536 		vput(ap->a_tvp);
5537 	if (ap->a_tdvp == ap->a_tvp)
5538 		vrele(ap->a_tdvp);
5539 	else
5540 		vput(ap->a_tdvp);
5541 	vrele(ap->a_fdvp);
5542 	vrele(ap->a_fvp);
5543 }
5544 
5545 void
5546 vop_rename_pre(void *ap)
5547 {
5548 	struct vop_rename_args *a = ap;
5549 
5550 #ifdef DEBUG_VFS_LOCKS
5551 	if (a->a_tvp)
5552 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5553 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5554 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5555 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5556 
5557 	/* Check the source (from). */
5558 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5559 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5560 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5561 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5562 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5563 
5564 	/* Check the target. */
5565 	if (a->a_tvp)
5566 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5567 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5568 #endif
5569 	/*
5570 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5571 	 * in vop_rename_post but that's not going to work out since some
5572 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5573 	 *
5574 	 * For now filesystems are expected to do the relevant calls after they
5575 	 * decide what vnodes to operate on.
5576 	 */
5577 	if (a->a_tdvp != a->a_fdvp)
5578 		vhold(a->a_fdvp);
5579 	if (a->a_tvp != a->a_fvp)
5580 		vhold(a->a_fvp);
5581 	vhold(a->a_tdvp);
5582 	if (a->a_tvp)
5583 		vhold(a->a_tvp);
5584 }
5585 
5586 #ifdef DEBUG_VFS_LOCKS
5587 void
5588 vop_fplookup_vexec_debugpre(void *ap __unused)
5589 {
5590 
5591 	VFS_SMR_ASSERT_ENTERED();
5592 }
5593 
5594 void
5595 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5596 {
5597 
5598 	VFS_SMR_ASSERT_ENTERED();
5599 }
5600 
5601 void
5602 vop_fplookup_symlink_debugpre(void *ap __unused)
5603 {
5604 
5605 	VFS_SMR_ASSERT_ENTERED();
5606 }
5607 
5608 void
5609 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5610 {
5611 
5612 	VFS_SMR_ASSERT_ENTERED();
5613 }
5614 
5615 static void
5616 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5617 {
5618 	if (vp->v_type == VCHR)
5619 		;
5620 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5621 		ASSERT_VOP_LOCKED(vp, name);
5622 	else
5623 		ASSERT_VOP_ELOCKED(vp, name);
5624 }
5625 
5626 void
5627 vop_fsync_debugpre(void *a)
5628 {
5629 	struct vop_fsync_args *ap;
5630 
5631 	ap = a;
5632 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5633 }
5634 
5635 void
5636 vop_fsync_debugpost(void *a, int rc __unused)
5637 {
5638 	struct vop_fsync_args *ap;
5639 
5640 	ap = a;
5641 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5642 }
5643 
5644 void
5645 vop_fdatasync_debugpre(void *a)
5646 {
5647 	struct vop_fdatasync_args *ap;
5648 
5649 	ap = a;
5650 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5651 }
5652 
5653 void
5654 vop_fdatasync_debugpost(void *a, int rc __unused)
5655 {
5656 	struct vop_fdatasync_args *ap;
5657 
5658 	ap = a;
5659 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5660 }
5661 
5662 void
5663 vop_strategy_debugpre(void *ap)
5664 {
5665 	struct vop_strategy_args *a;
5666 	struct buf *bp;
5667 
5668 	a = ap;
5669 	bp = a->a_bp;
5670 
5671 	/*
5672 	 * Cluster ops lock their component buffers but not the IO container.
5673 	 */
5674 	if ((bp->b_flags & B_CLUSTER) != 0)
5675 		return;
5676 
5677 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5678 		if (vfs_badlock_print)
5679 			printf(
5680 			    "VOP_STRATEGY: bp is not locked but should be\n");
5681 		if (vfs_badlock_ddb)
5682 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5683 	}
5684 }
5685 
5686 void
5687 vop_lock_debugpre(void *ap)
5688 {
5689 	struct vop_lock1_args *a = ap;
5690 
5691 	if ((a->a_flags & LK_INTERLOCK) == 0)
5692 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5693 	else
5694 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5695 }
5696 
5697 void
5698 vop_lock_debugpost(void *ap, int rc)
5699 {
5700 	struct vop_lock1_args *a = ap;
5701 
5702 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5703 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5704 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5705 }
5706 
5707 void
5708 vop_unlock_debugpre(void *ap)
5709 {
5710 	struct vop_unlock_args *a = ap;
5711 
5712 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5713 }
5714 
5715 void
5716 vop_need_inactive_debugpre(void *ap)
5717 {
5718 	struct vop_need_inactive_args *a = ap;
5719 
5720 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5721 }
5722 
5723 void
5724 vop_need_inactive_debugpost(void *ap, int rc)
5725 {
5726 	struct vop_need_inactive_args *a = ap;
5727 
5728 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5729 }
5730 #endif
5731 
5732 void
5733 vop_create_pre(void *ap)
5734 {
5735 	struct vop_create_args *a;
5736 	struct vnode *dvp;
5737 
5738 	a = ap;
5739 	dvp = a->a_dvp;
5740 	vn_seqc_write_begin(dvp);
5741 }
5742 
5743 void
5744 vop_create_post(void *ap, int rc)
5745 {
5746 	struct vop_create_args *a;
5747 	struct vnode *dvp;
5748 
5749 	a = ap;
5750 	dvp = a->a_dvp;
5751 	vn_seqc_write_end(dvp);
5752 	if (!rc)
5753 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5754 }
5755 
5756 void
5757 vop_whiteout_pre(void *ap)
5758 {
5759 	struct vop_whiteout_args *a;
5760 	struct vnode *dvp;
5761 
5762 	a = ap;
5763 	dvp = a->a_dvp;
5764 	vn_seqc_write_begin(dvp);
5765 }
5766 
5767 void
5768 vop_whiteout_post(void *ap, int rc)
5769 {
5770 	struct vop_whiteout_args *a;
5771 	struct vnode *dvp;
5772 
5773 	a = ap;
5774 	dvp = a->a_dvp;
5775 	vn_seqc_write_end(dvp);
5776 }
5777 
5778 void
5779 vop_deleteextattr_pre(void *ap)
5780 {
5781 	struct vop_deleteextattr_args *a;
5782 	struct vnode *vp;
5783 
5784 	a = ap;
5785 	vp = a->a_vp;
5786 	vn_seqc_write_begin(vp);
5787 }
5788 
5789 void
5790 vop_deleteextattr_post(void *ap, int rc)
5791 {
5792 	struct vop_deleteextattr_args *a;
5793 	struct vnode *vp;
5794 
5795 	a = ap;
5796 	vp = a->a_vp;
5797 	vn_seqc_write_end(vp);
5798 	if (!rc)
5799 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5800 }
5801 
5802 void
5803 vop_link_pre(void *ap)
5804 {
5805 	struct vop_link_args *a;
5806 	struct vnode *vp, *tdvp;
5807 
5808 	a = ap;
5809 	vp = a->a_vp;
5810 	tdvp = a->a_tdvp;
5811 	vn_seqc_write_begin(vp);
5812 	vn_seqc_write_begin(tdvp);
5813 }
5814 
5815 void
5816 vop_link_post(void *ap, int rc)
5817 {
5818 	struct vop_link_args *a;
5819 	struct vnode *vp, *tdvp;
5820 
5821 	a = ap;
5822 	vp = a->a_vp;
5823 	tdvp = a->a_tdvp;
5824 	vn_seqc_write_end(vp);
5825 	vn_seqc_write_end(tdvp);
5826 	if (!rc) {
5827 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5828 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5829 	}
5830 }
5831 
5832 void
5833 vop_mkdir_pre(void *ap)
5834 {
5835 	struct vop_mkdir_args *a;
5836 	struct vnode *dvp;
5837 
5838 	a = ap;
5839 	dvp = a->a_dvp;
5840 	vn_seqc_write_begin(dvp);
5841 }
5842 
5843 void
5844 vop_mkdir_post(void *ap, int rc)
5845 {
5846 	struct vop_mkdir_args *a;
5847 	struct vnode *dvp;
5848 
5849 	a = ap;
5850 	dvp = a->a_dvp;
5851 	vn_seqc_write_end(dvp);
5852 	if (!rc)
5853 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5854 }
5855 
5856 #ifdef DEBUG_VFS_LOCKS
5857 void
5858 vop_mkdir_debugpost(void *ap, int rc)
5859 {
5860 	struct vop_mkdir_args *a;
5861 
5862 	a = ap;
5863 	if (!rc)
5864 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5865 }
5866 #endif
5867 
5868 void
5869 vop_mknod_pre(void *ap)
5870 {
5871 	struct vop_mknod_args *a;
5872 	struct vnode *dvp;
5873 
5874 	a = ap;
5875 	dvp = a->a_dvp;
5876 	vn_seqc_write_begin(dvp);
5877 }
5878 
5879 void
5880 vop_mknod_post(void *ap, int rc)
5881 {
5882 	struct vop_mknod_args *a;
5883 	struct vnode *dvp;
5884 
5885 	a = ap;
5886 	dvp = a->a_dvp;
5887 	vn_seqc_write_end(dvp);
5888 	if (!rc)
5889 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5890 }
5891 
5892 void
5893 vop_reclaim_post(void *ap, int rc)
5894 {
5895 	struct vop_reclaim_args *a;
5896 	struct vnode *vp;
5897 
5898 	a = ap;
5899 	vp = a->a_vp;
5900 	ASSERT_VOP_IN_SEQC(vp);
5901 	if (!rc)
5902 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5903 }
5904 
5905 void
5906 vop_remove_pre(void *ap)
5907 {
5908 	struct vop_remove_args *a;
5909 	struct vnode *dvp, *vp;
5910 
5911 	a = ap;
5912 	dvp = a->a_dvp;
5913 	vp = a->a_vp;
5914 	vn_seqc_write_begin(dvp);
5915 	vn_seqc_write_begin(vp);
5916 }
5917 
5918 void
5919 vop_remove_post(void *ap, int rc)
5920 {
5921 	struct vop_remove_args *a;
5922 	struct vnode *dvp, *vp;
5923 
5924 	a = ap;
5925 	dvp = a->a_dvp;
5926 	vp = a->a_vp;
5927 	vn_seqc_write_end(dvp);
5928 	vn_seqc_write_end(vp);
5929 	if (!rc) {
5930 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5931 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5932 	}
5933 }
5934 
5935 void
5936 vop_rename_post(void *ap, int rc)
5937 {
5938 	struct vop_rename_args *a = ap;
5939 	long hint;
5940 
5941 	if (!rc) {
5942 		hint = NOTE_WRITE;
5943 		if (a->a_fdvp == a->a_tdvp) {
5944 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5945 				hint |= NOTE_LINK;
5946 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5947 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5948 		} else {
5949 			hint |= NOTE_EXTEND;
5950 			if (a->a_fvp->v_type == VDIR)
5951 				hint |= NOTE_LINK;
5952 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5953 
5954 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5955 			    a->a_tvp->v_type == VDIR)
5956 				hint &= ~NOTE_LINK;
5957 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5958 		}
5959 
5960 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5961 		if (a->a_tvp)
5962 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5963 	}
5964 	if (a->a_tdvp != a->a_fdvp)
5965 		vdrop(a->a_fdvp);
5966 	if (a->a_tvp != a->a_fvp)
5967 		vdrop(a->a_fvp);
5968 	vdrop(a->a_tdvp);
5969 	if (a->a_tvp)
5970 		vdrop(a->a_tvp);
5971 }
5972 
5973 void
5974 vop_rmdir_pre(void *ap)
5975 {
5976 	struct vop_rmdir_args *a;
5977 	struct vnode *dvp, *vp;
5978 
5979 	a = ap;
5980 	dvp = a->a_dvp;
5981 	vp = a->a_vp;
5982 	vn_seqc_write_begin(dvp);
5983 	vn_seqc_write_begin(vp);
5984 }
5985 
5986 void
5987 vop_rmdir_post(void *ap, int rc)
5988 {
5989 	struct vop_rmdir_args *a;
5990 	struct vnode *dvp, *vp;
5991 
5992 	a = ap;
5993 	dvp = a->a_dvp;
5994 	vp = a->a_vp;
5995 	vn_seqc_write_end(dvp);
5996 	vn_seqc_write_end(vp);
5997 	if (!rc) {
5998 		vp->v_vflag |= VV_UNLINKED;
5999 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6000 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6001 	}
6002 }
6003 
6004 void
6005 vop_setattr_pre(void *ap)
6006 {
6007 	struct vop_setattr_args *a;
6008 	struct vnode *vp;
6009 
6010 	a = ap;
6011 	vp = a->a_vp;
6012 	vn_seqc_write_begin(vp);
6013 }
6014 
6015 void
6016 vop_setattr_post(void *ap, int rc)
6017 {
6018 	struct vop_setattr_args *a;
6019 	struct vnode *vp;
6020 
6021 	a = ap;
6022 	vp = a->a_vp;
6023 	vn_seqc_write_end(vp);
6024 	if (!rc)
6025 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6026 }
6027 
6028 void
6029 vop_setacl_pre(void *ap)
6030 {
6031 	struct vop_setacl_args *a;
6032 	struct vnode *vp;
6033 
6034 	a = ap;
6035 	vp = a->a_vp;
6036 	vn_seqc_write_begin(vp);
6037 }
6038 
6039 void
6040 vop_setacl_post(void *ap, int rc __unused)
6041 {
6042 	struct vop_setacl_args *a;
6043 	struct vnode *vp;
6044 
6045 	a = ap;
6046 	vp = a->a_vp;
6047 	vn_seqc_write_end(vp);
6048 }
6049 
6050 void
6051 vop_setextattr_pre(void *ap)
6052 {
6053 	struct vop_setextattr_args *a;
6054 	struct vnode *vp;
6055 
6056 	a = ap;
6057 	vp = a->a_vp;
6058 	vn_seqc_write_begin(vp);
6059 }
6060 
6061 void
6062 vop_setextattr_post(void *ap, int rc)
6063 {
6064 	struct vop_setextattr_args *a;
6065 	struct vnode *vp;
6066 
6067 	a = ap;
6068 	vp = a->a_vp;
6069 	vn_seqc_write_end(vp);
6070 	if (!rc)
6071 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6072 }
6073 
6074 void
6075 vop_symlink_pre(void *ap)
6076 {
6077 	struct vop_symlink_args *a;
6078 	struct vnode *dvp;
6079 
6080 	a = ap;
6081 	dvp = a->a_dvp;
6082 	vn_seqc_write_begin(dvp);
6083 }
6084 
6085 void
6086 vop_symlink_post(void *ap, int rc)
6087 {
6088 	struct vop_symlink_args *a;
6089 	struct vnode *dvp;
6090 
6091 	a = ap;
6092 	dvp = a->a_dvp;
6093 	vn_seqc_write_end(dvp);
6094 	if (!rc)
6095 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6096 }
6097 
6098 void
6099 vop_open_post(void *ap, int rc)
6100 {
6101 	struct vop_open_args *a = ap;
6102 
6103 	if (!rc)
6104 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6105 }
6106 
6107 void
6108 vop_close_post(void *ap, int rc)
6109 {
6110 	struct vop_close_args *a = ap;
6111 
6112 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6113 	    !VN_IS_DOOMED(a->a_vp))) {
6114 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6115 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6116 	}
6117 }
6118 
6119 void
6120 vop_read_post(void *ap, int rc)
6121 {
6122 	struct vop_read_args *a = ap;
6123 
6124 	if (!rc)
6125 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6126 }
6127 
6128 void
6129 vop_read_pgcache_post(void *ap, int rc)
6130 {
6131 	struct vop_read_pgcache_args *a = ap;
6132 
6133 	if (!rc)
6134 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6135 }
6136 
6137 void
6138 vop_readdir_post(void *ap, int rc)
6139 {
6140 	struct vop_readdir_args *a = ap;
6141 
6142 	if (!rc)
6143 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6144 }
6145 
6146 static struct knlist fs_knlist;
6147 
6148 static void
6149 vfs_event_init(void *arg)
6150 {
6151 	knlist_init_mtx(&fs_knlist, NULL);
6152 }
6153 /* XXX - correct order? */
6154 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6155 
6156 void
6157 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6158 {
6159 
6160 	KNOTE_UNLOCKED(&fs_knlist, event);
6161 }
6162 
6163 static int	filt_fsattach(struct knote *kn);
6164 static void	filt_fsdetach(struct knote *kn);
6165 static int	filt_fsevent(struct knote *kn, long hint);
6166 
6167 struct filterops fs_filtops = {
6168 	.f_isfd = 0,
6169 	.f_attach = filt_fsattach,
6170 	.f_detach = filt_fsdetach,
6171 	.f_event = filt_fsevent
6172 };
6173 
6174 static int
6175 filt_fsattach(struct knote *kn)
6176 {
6177 
6178 	kn->kn_flags |= EV_CLEAR;
6179 	knlist_add(&fs_knlist, kn, 0);
6180 	return (0);
6181 }
6182 
6183 static void
6184 filt_fsdetach(struct knote *kn)
6185 {
6186 
6187 	knlist_remove(&fs_knlist, kn, 0);
6188 }
6189 
6190 static int
6191 filt_fsevent(struct knote *kn, long hint)
6192 {
6193 
6194 	kn->kn_fflags |= kn->kn_sfflags & hint;
6195 
6196 	return (kn->kn_fflags != 0);
6197 }
6198 
6199 static int
6200 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6201 {
6202 	struct vfsidctl vc;
6203 	int error;
6204 	struct mount *mp;
6205 
6206 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6207 	if (error)
6208 		return (error);
6209 	if (vc.vc_vers != VFS_CTL_VERS1)
6210 		return (EINVAL);
6211 	mp = vfs_getvfs(&vc.vc_fsid);
6212 	if (mp == NULL)
6213 		return (ENOENT);
6214 	/* ensure that a specific sysctl goes to the right filesystem. */
6215 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6216 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6217 		vfs_rel(mp);
6218 		return (EINVAL);
6219 	}
6220 	VCTLTOREQ(&vc, req);
6221 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6222 	vfs_rel(mp);
6223 	return (error);
6224 }
6225 
6226 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6227     NULL, 0, sysctl_vfs_ctl, "",
6228     "Sysctl by fsid");
6229 
6230 /*
6231  * Function to initialize a va_filerev field sensibly.
6232  * XXX: Wouldn't a random number make a lot more sense ??
6233  */
6234 u_quad_t
6235 init_va_filerev(void)
6236 {
6237 	struct bintime bt;
6238 
6239 	getbinuptime(&bt);
6240 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6241 }
6242 
6243 static int	filt_vfsread(struct knote *kn, long hint);
6244 static int	filt_vfswrite(struct knote *kn, long hint);
6245 static int	filt_vfsvnode(struct knote *kn, long hint);
6246 static void	filt_vfsdetach(struct knote *kn);
6247 static struct filterops vfsread_filtops = {
6248 	.f_isfd = 1,
6249 	.f_detach = filt_vfsdetach,
6250 	.f_event = filt_vfsread
6251 };
6252 static struct filterops vfswrite_filtops = {
6253 	.f_isfd = 1,
6254 	.f_detach = filt_vfsdetach,
6255 	.f_event = filt_vfswrite
6256 };
6257 static struct filterops vfsvnode_filtops = {
6258 	.f_isfd = 1,
6259 	.f_detach = filt_vfsdetach,
6260 	.f_event = filt_vfsvnode
6261 };
6262 
6263 static void
6264 vfs_knllock(void *arg)
6265 {
6266 	struct vnode *vp = arg;
6267 
6268 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6269 }
6270 
6271 static void
6272 vfs_knlunlock(void *arg)
6273 {
6274 	struct vnode *vp = arg;
6275 
6276 	VOP_UNLOCK(vp);
6277 }
6278 
6279 static void
6280 vfs_knl_assert_lock(void *arg, int what)
6281 {
6282 #ifdef DEBUG_VFS_LOCKS
6283 	struct vnode *vp = arg;
6284 
6285 	if (what == LA_LOCKED)
6286 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6287 	else
6288 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6289 #endif
6290 }
6291 
6292 int
6293 vfs_kqfilter(struct vop_kqfilter_args *ap)
6294 {
6295 	struct vnode *vp = ap->a_vp;
6296 	struct knote *kn = ap->a_kn;
6297 	struct knlist *knl;
6298 
6299 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6300 	    kn->kn_filter != EVFILT_WRITE),
6301 	    ("READ/WRITE filter on a FIFO leaked through"));
6302 	switch (kn->kn_filter) {
6303 	case EVFILT_READ:
6304 		kn->kn_fop = &vfsread_filtops;
6305 		break;
6306 	case EVFILT_WRITE:
6307 		kn->kn_fop = &vfswrite_filtops;
6308 		break;
6309 	case EVFILT_VNODE:
6310 		kn->kn_fop = &vfsvnode_filtops;
6311 		break;
6312 	default:
6313 		return (EINVAL);
6314 	}
6315 
6316 	kn->kn_hook = (caddr_t)vp;
6317 
6318 	v_addpollinfo(vp);
6319 	if (vp->v_pollinfo == NULL)
6320 		return (ENOMEM);
6321 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6322 	vhold(vp);
6323 	knlist_add(knl, kn, 0);
6324 
6325 	return (0);
6326 }
6327 
6328 /*
6329  * Detach knote from vnode
6330  */
6331 static void
6332 filt_vfsdetach(struct knote *kn)
6333 {
6334 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6335 
6336 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6337 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6338 	vdrop(vp);
6339 }
6340 
6341 /*ARGSUSED*/
6342 static int
6343 filt_vfsread(struct knote *kn, long hint)
6344 {
6345 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6346 	struct vattr va;
6347 	int res;
6348 
6349 	/*
6350 	 * filesystem is gone, so set the EOF flag and schedule
6351 	 * the knote for deletion.
6352 	 */
6353 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6354 		VI_LOCK(vp);
6355 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6356 		VI_UNLOCK(vp);
6357 		return (1);
6358 	}
6359 
6360 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6361 		return (0);
6362 
6363 	VI_LOCK(vp);
6364 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6365 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6366 	VI_UNLOCK(vp);
6367 	return (res);
6368 }
6369 
6370 /*ARGSUSED*/
6371 static int
6372 filt_vfswrite(struct knote *kn, long hint)
6373 {
6374 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6375 
6376 	VI_LOCK(vp);
6377 
6378 	/*
6379 	 * filesystem is gone, so set the EOF flag and schedule
6380 	 * the knote for deletion.
6381 	 */
6382 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6383 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6384 
6385 	kn->kn_data = 0;
6386 	VI_UNLOCK(vp);
6387 	return (1);
6388 }
6389 
6390 static int
6391 filt_vfsvnode(struct knote *kn, long hint)
6392 {
6393 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6394 	int res;
6395 
6396 	VI_LOCK(vp);
6397 	if (kn->kn_sfflags & hint)
6398 		kn->kn_fflags |= hint;
6399 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6400 		kn->kn_flags |= EV_EOF;
6401 		VI_UNLOCK(vp);
6402 		return (1);
6403 	}
6404 	res = (kn->kn_fflags != 0);
6405 	VI_UNLOCK(vp);
6406 	return (res);
6407 }
6408 
6409 /*
6410  * Returns whether the directory is empty or not.
6411  * If it is empty, the return value is 0; otherwise
6412  * the return value is an error value (which may
6413  * be ENOTEMPTY).
6414  */
6415 int
6416 vfs_emptydir(struct vnode *vp)
6417 {
6418 	struct uio uio;
6419 	struct iovec iov;
6420 	struct dirent *dirent, *dp, *endp;
6421 	int error, eof;
6422 
6423 	error = 0;
6424 	eof = 0;
6425 
6426 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6427 	VNASSERT(vp->v_type == VDIR, vp, ("vp is not a directory"));
6428 
6429 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6430 	iov.iov_base = dirent;
6431 	iov.iov_len = sizeof(struct dirent);
6432 
6433 	uio.uio_iov = &iov;
6434 	uio.uio_iovcnt = 1;
6435 	uio.uio_offset = 0;
6436 	uio.uio_resid = sizeof(struct dirent);
6437 	uio.uio_segflg = UIO_SYSSPACE;
6438 	uio.uio_rw = UIO_READ;
6439 	uio.uio_td = curthread;
6440 
6441 	while (eof == 0 && error == 0) {
6442 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6443 		    NULL, NULL);
6444 		if (error != 0)
6445 			break;
6446 		endp = (void *)((uint8_t *)dirent +
6447 		    sizeof(struct dirent) - uio.uio_resid);
6448 		for (dp = dirent; dp < endp;
6449 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6450 			if (dp->d_type == DT_WHT)
6451 				continue;
6452 			if (dp->d_namlen == 0)
6453 				continue;
6454 			if (dp->d_type != DT_DIR &&
6455 			    dp->d_type != DT_UNKNOWN) {
6456 				error = ENOTEMPTY;
6457 				break;
6458 			}
6459 			if (dp->d_namlen > 2) {
6460 				error = ENOTEMPTY;
6461 				break;
6462 			}
6463 			if (dp->d_namlen == 1 &&
6464 			    dp->d_name[0] != '.') {
6465 				error = ENOTEMPTY;
6466 				break;
6467 			}
6468 			if (dp->d_namlen == 2 &&
6469 			    dp->d_name[1] != '.') {
6470 				error = ENOTEMPTY;
6471 				break;
6472 			}
6473 			uio.uio_resid = sizeof(struct dirent);
6474 		}
6475 	}
6476 	free(dirent, M_TEMP);
6477 	return (error);
6478 }
6479 
6480 int
6481 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6482 {
6483 	int error;
6484 
6485 	if (dp->d_reclen > ap->a_uio->uio_resid)
6486 		return (ENAMETOOLONG);
6487 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6488 	if (error) {
6489 		if (ap->a_ncookies != NULL) {
6490 			if (ap->a_cookies != NULL)
6491 				free(ap->a_cookies, M_TEMP);
6492 			ap->a_cookies = NULL;
6493 			*ap->a_ncookies = 0;
6494 		}
6495 		return (error);
6496 	}
6497 	if (ap->a_ncookies == NULL)
6498 		return (0);
6499 
6500 	KASSERT(ap->a_cookies,
6501 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6502 
6503 	*ap->a_cookies = realloc(*ap->a_cookies,
6504 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6505 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6506 	*ap->a_ncookies += 1;
6507 	return (0);
6508 }
6509 
6510 /*
6511  * The purpose of this routine is to remove granularity from accmode_t,
6512  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6513  * VADMIN and VAPPEND.
6514  *
6515  * If it returns 0, the caller is supposed to continue with the usual
6516  * access checks using 'accmode' as modified by this routine.  If it
6517  * returns nonzero value, the caller is supposed to return that value
6518  * as errno.
6519  *
6520  * Note that after this routine runs, accmode may be zero.
6521  */
6522 int
6523 vfs_unixify_accmode(accmode_t *accmode)
6524 {
6525 	/*
6526 	 * There is no way to specify explicit "deny" rule using
6527 	 * file mode or POSIX.1e ACLs.
6528 	 */
6529 	if (*accmode & VEXPLICIT_DENY) {
6530 		*accmode = 0;
6531 		return (0);
6532 	}
6533 
6534 	/*
6535 	 * None of these can be translated into usual access bits.
6536 	 * Also, the common case for NFSv4 ACLs is to not contain
6537 	 * either of these bits. Caller should check for VWRITE
6538 	 * on the containing directory instead.
6539 	 */
6540 	if (*accmode & (VDELETE_CHILD | VDELETE))
6541 		return (EPERM);
6542 
6543 	if (*accmode & VADMIN_PERMS) {
6544 		*accmode &= ~VADMIN_PERMS;
6545 		*accmode |= VADMIN;
6546 	}
6547 
6548 	/*
6549 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6550 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6551 	 */
6552 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6553 
6554 	return (0);
6555 }
6556 
6557 /*
6558  * Clear out a doomed vnode (if any) and replace it with a new one as long
6559  * as the fs is not being unmounted. Return the root vnode to the caller.
6560  */
6561 static int __noinline
6562 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6563 {
6564 	struct vnode *vp;
6565 	int error;
6566 
6567 restart:
6568 	if (mp->mnt_rootvnode != NULL) {
6569 		MNT_ILOCK(mp);
6570 		vp = mp->mnt_rootvnode;
6571 		if (vp != NULL) {
6572 			if (!VN_IS_DOOMED(vp)) {
6573 				vrefact(vp);
6574 				MNT_IUNLOCK(mp);
6575 				error = vn_lock(vp, flags);
6576 				if (error == 0) {
6577 					*vpp = vp;
6578 					return (0);
6579 				}
6580 				vrele(vp);
6581 				goto restart;
6582 			}
6583 			/*
6584 			 * Clear the old one.
6585 			 */
6586 			mp->mnt_rootvnode = NULL;
6587 		}
6588 		MNT_IUNLOCK(mp);
6589 		if (vp != NULL) {
6590 			vfs_op_barrier_wait(mp);
6591 			vrele(vp);
6592 		}
6593 	}
6594 	error = VFS_CACHEDROOT(mp, flags, vpp);
6595 	if (error != 0)
6596 		return (error);
6597 	if (mp->mnt_vfs_ops == 0) {
6598 		MNT_ILOCK(mp);
6599 		if (mp->mnt_vfs_ops != 0) {
6600 			MNT_IUNLOCK(mp);
6601 			return (0);
6602 		}
6603 		if (mp->mnt_rootvnode == NULL) {
6604 			vrefact(*vpp);
6605 			mp->mnt_rootvnode = *vpp;
6606 		} else {
6607 			if (mp->mnt_rootvnode != *vpp) {
6608 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6609 					panic("%s: mismatch between vnode returned "
6610 					    " by VFS_CACHEDROOT and the one cached "
6611 					    " (%p != %p)",
6612 					    __func__, *vpp, mp->mnt_rootvnode);
6613 				}
6614 			}
6615 		}
6616 		MNT_IUNLOCK(mp);
6617 	}
6618 	return (0);
6619 }
6620 
6621 int
6622 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6623 {
6624 	struct mount_pcpu *mpcpu;
6625 	struct vnode *vp;
6626 	int error;
6627 
6628 	if (!vfs_op_thread_enter(mp, mpcpu))
6629 		return (vfs_cache_root_fallback(mp, flags, vpp));
6630 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6631 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6632 		vfs_op_thread_exit(mp, mpcpu);
6633 		return (vfs_cache_root_fallback(mp, flags, vpp));
6634 	}
6635 	vrefact(vp);
6636 	vfs_op_thread_exit(mp, mpcpu);
6637 	error = vn_lock(vp, flags);
6638 	if (error != 0) {
6639 		vrele(vp);
6640 		return (vfs_cache_root_fallback(mp, flags, vpp));
6641 	}
6642 	*vpp = vp;
6643 	return (0);
6644 }
6645 
6646 struct vnode *
6647 vfs_cache_root_clear(struct mount *mp)
6648 {
6649 	struct vnode *vp;
6650 
6651 	/*
6652 	 * ops > 0 guarantees there is nobody who can see this vnode
6653 	 */
6654 	MPASS(mp->mnt_vfs_ops > 0);
6655 	vp = mp->mnt_rootvnode;
6656 	if (vp != NULL)
6657 		vn_seqc_write_begin(vp);
6658 	mp->mnt_rootvnode = NULL;
6659 	return (vp);
6660 }
6661 
6662 void
6663 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6664 {
6665 
6666 	MPASS(mp->mnt_vfs_ops > 0);
6667 	vrefact(vp);
6668 	mp->mnt_rootvnode = vp;
6669 }
6670 
6671 /*
6672  * These are helper functions for filesystems to traverse all
6673  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6674  *
6675  * This interface replaces MNT_VNODE_FOREACH.
6676  */
6677 
6678 struct vnode *
6679 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6680 {
6681 	struct vnode *vp;
6682 
6683 	if (should_yield())
6684 		kern_yield(PRI_USER);
6685 	MNT_ILOCK(mp);
6686 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6687 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6688 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6689 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6690 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6691 			continue;
6692 		VI_LOCK(vp);
6693 		if (VN_IS_DOOMED(vp)) {
6694 			VI_UNLOCK(vp);
6695 			continue;
6696 		}
6697 		break;
6698 	}
6699 	if (vp == NULL) {
6700 		__mnt_vnode_markerfree_all(mvp, mp);
6701 		/* MNT_IUNLOCK(mp); -- done in above function */
6702 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6703 		return (NULL);
6704 	}
6705 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6706 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6707 	MNT_IUNLOCK(mp);
6708 	return (vp);
6709 }
6710 
6711 struct vnode *
6712 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6713 {
6714 	struct vnode *vp;
6715 
6716 	*mvp = vn_alloc_marker(mp);
6717 	MNT_ILOCK(mp);
6718 	MNT_REF(mp);
6719 
6720 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6721 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6722 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6723 			continue;
6724 		VI_LOCK(vp);
6725 		if (VN_IS_DOOMED(vp)) {
6726 			VI_UNLOCK(vp);
6727 			continue;
6728 		}
6729 		break;
6730 	}
6731 	if (vp == NULL) {
6732 		MNT_REL(mp);
6733 		MNT_IUNLOCK(mp);
6734 		vn_free_marker(*mvp);
6735 		*mvp = NULL;
6736 		return (NULL);
6737 	}
6738 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6739 	MNT_IUNLOCK(mp);
6740 	return (vp);
6741 }
6742 
6743 void
6744 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6745 {
6746 
6747 	if (*mvp == NULL) {
6748 		MNT_IUNLOCK(mp);
6749 		return;
6750 	}
6751 
6752 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6753 
6754 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6755 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6756 	MNT_REL(mp);
6757 	MNT_IUNLOCK(mp);
6758 	vn_free_marker(*mvp);
6759 	*mvp = NULL;
6760 }
6761 
6762 /*
6763  * These are helper functions for filesystems to traverse their
6764  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6765  */
6766 static void
6767 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6768 {
6769 
6770 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6771 
6772 	MNT_ILOCK(mp);
6773 	MNT_REL(mp);
6774 	MNT_IUNLOCK(mp);
6775 	vn_free_marker(*mvp);
6776 	*mvp = NULL;
6777 }
6778 
6779 /*
6780  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6781  * conventional lock order during mnt_vnode_next_lazy iteration.
6782  *
6783  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6784  * The list lock is dropped and reacquired.  On success, both locks are held.
6785  * On failure, the mount vnode list lock is held but the vnode interlock is
6786  * not, and the procedure may have yielded.
6787  */
6788 static bool
6789 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6790     struct vnode *vp)
6791 {
6792 
6793 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6794 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6795 	    ("%s: bad marker", __func__));
6796 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6797 	    ("%s: inappropriate vnode", __func__));
6798 	ASSERT_VI_UNLOCKED(vp, __func__);
6799 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6800 
6801 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6802 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6803 
6804 	/*
6805 	 * Note we may be racing against vdrop which transitioned the hold
6806 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6807 	 * if we are the only user after we get the interlock we will just
6808 	 * vdrop.
6809 	 */
6810 	vhold(vp);
6811 	mtx_unlock(&mp->mnt_listmtx);
6812 	VI_LOCK(vp);
6813 	if (VN_IS_DOOMED(vp)) {
6814 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6815 		goto out_lost;
6816 	}
6817 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6818 	/*
6819 	 * There is nothing to do if we are the last user.
6820 	 */
6821 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6822 		goto out_lost;
6823 	mtx_lock(&mp->mnt_listmtx);
6824 	return (true);
6825 out_lost:
6826 	vdropl(vp);
6827 	maybe_yield();
6828 	mtx_lock(&mp->mnt_listmtx);
6829 	return (false);
6830 }
6831 
6832 static struct vnode *
6833 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6834     void *cbarg)
6835 {
6836 	struct vnode *vp;
6837 
6838 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6839 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6840 restart:
6841 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6842 	while (vp != NULL) {
6843 		if (vp->v_type == VMARKER) {
6844 			vp = TAILQ_NEXT(vp, v_lazylist);
6845 			continue;
6846 		}
6847 		/*
6848 		 * See if we want to process the vnode. Note we may encounter a
6849 		 * long string of vnodes we don't care about and hog the list
6850 		 * as a result. Check for it and requeue the marker.
6851 		 */
6852 		VNPASS(!VN_IS_DOOMED(vp), vp);
6853 		if (!cb(vp, cbarg)) {
6854 			if (!should_yield()) {
6855 				vp = TAILQ_NEXT(vp, v_lazylist);
6856 				continue;
6857 			}
6858 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6859 			    v_lazylist);
6860 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6861 			    v_lazylist);
6862 			mtx_unlock(&mp->mnt_listmtx);
6863 			kern_yield(PRI_USER);
6864 			mtx_lock(&mp->mnt_listmtx);
6865 			goto restart;
6866 		}
6867 		/*
6868 		 * Try-lock because this is the wrong lock order.
6869 		 */
6870 		if (!VI_TRYLOCK(vp) &&
6871 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6872 			goto restart;
6873 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6874 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6875 		    ("alien vnode on the lazy list %p %p", vp, mp));
6876 		VNPASS(vp->v_mount == mp, vp);
6877 		VNPASS(!VN_IS_DOOMED(vp), vp);
6878 		break;
6879 	}
6880 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6881 
6882 	/* Check if we are done */
6883 	if (vp == NULL) {
6884 		mtx_unlock(&mp->mnt_listmtx);
6885 		mnt_vnode_markerfree_lazy(mvp, mp);
6886 		return (NULL);
6887 	}
6888 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6889 	mtx_unlock(&mp->mnt_listmtx);
6890 	ASSERT_VI_LOCKED(vp, "lazy iter");
6891 	return (vp);
6892 }
6893 
6894 struct vnode *
6895 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6896     void *cbarg)
6897 {
6898 
6899 	if (should_yield())
6900 		kern_yield(PRI_USER);
6901 	mtx_lock(&mp->mnt_listmtx);
6902 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6903 }
6904 
6905 struct vnode *
6906 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6907     void *cbarg)
6908 {
6909 	struct vnode *vp;
6910 
6911 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6912 		return (NULL);
6913 
6914 	*mvp = vn_alloc_marker(mp);
6915 	MNT_ILOCK(mp);
6916 	MNT_REF(mp);
6917 	MNT_IUNLOCK(mp);
6918 
6919 	mtx_lock(&mp->mnt_listmtx);
6920 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6921 	if (vp == NULL) {
6922 		mtx_unlock(&mp->mnt_listmtx);
6923 		mnt_vnode_markerfree_lazy(mvp, mp);
6924 		return (NULL);
6925 	}
6926 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6927 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6928 }
6929 
6930 void
6931 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6932 {
6933 
6934 	if (*mvp == NULL)
6935 		return;
6936 
6937 	mtx_lock(&mp->mnt_listmtx);
6938 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6939 	mtx_unlock(&mp->mnt_listmtx);
6940 	mnt_vnode_markerfree_lazy(mvp, mp);
6941 }
6942 
6943 int
6944 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6945 {
6946 
6947 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6948 		cnp->cn_flags &= ~NOEXECCHECK;
6949 		return (0);
6950 	}
6951 
6952 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6953 }
6954 
6955 /*
6956  * Do not use this variant unless you have means other than the hold count
6957  * to prevent the vnode from getting freed.
6958  */
6959 void
6960 vn_seqc_write_begin_locked(struct vnode *vp)
6961 {
6962 
6963 	ASSERT_VI_LOCKED(vp, __func__);
6964 	VNPASS(vp->v_holdcnt > 0, vp);
6965 	VNPASS(vp->v_seqc_users >= 0, vp);
6966 	vp->v_seqc_users++;
6967 	if (vp->v_seqc_users == 1)
6968 		seqc_sleepable_write_begin(&vp->v_seqc);
6969 }
6970 
6971 void
6972 vn_seqc_write_begin(struct vnode *vp)
6973 {
6974 
6975 	VI_LOCK(vp);
6976 	vn_seqc_write_begin_locked(vp);
6977 	VI_UNLOCK(vp);
6978 }
6979 
6980 void
6981 vn_seqc_write_end_locked(struct vnode *vp)
6982 {
6983 
6984 	ASSERT_VI_LOCKED(vp, __func__);
6985 	VNPASS(vp->v_seqc_users > 0, vp);
6986 	vp->v_seqc_users--;
6987 	if (vp->v_seqc_users == 0)
6988 		seqc_sleepable_write_end(&vp->v_seqc);
6989 }
6990 
6991 void
6992 vn_seqc_write_end(struct vnode *vp)
6993 {
6994 
6995 	VI_LOCK(vp);
6996 	vn_seqc_write_end_locked(vp);
6997 	VI_UNLOCK(vp);
6998 }
6999 
7000 /*
7001  * Special case handling for allocating and freeing vnodes.
7002  *
7003  * The counter remains unchanged on free so that a doomed vnode will
7004  * keep testing as in modify as long as it is accessible with SMR.
7005  */
7006 static void
7007 vn_seqc_init(struct vnode *vp)
7008 {
7009 
7010 	vp->v_seqc = 0;
7011 	vp->v_seqc_users = 0;
7012 }
7013 
7014 static void
7015 vn_seqc_write_end_free(struct vnode *vp)
7016 {
7017 
7018 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7019 	VNPASS(vp->v_seqc_users == 1, vp);
7020 }
7021 
7022 void
7023 vn_irflag_set_locked(struct vnode *vp, short toset)
7024 {
7025 	short flags;
7026 
7027 	ASSERT_VI_LOCKED(vp, __func__);
7028 	flags = vn_irflag_read(vp);
7029 	VNASSERT((flags & toset) == 0, vp,
7030 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7031 	    __func__, flags, toset));
7032 	atomic_store_short(&vp->v_irflag, flags | toset);
7033 }
7034 
7035 void
7036 vn_irflag_set(struct vnode *vp, short toset)
7037 {
7038 
7039 	VI_LOCK(vp);
7040 	vn_irflag_set_locked(vp, toset);
7041 	VI_UNLOCK(vp);
7042 }
7043 
7044 void
7045 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7046 {
7047 	short flags;
7048 
7049 	ASSERT_VI_LOCKED(vp, __func__);
7050 	flags = vn_irflag_read(vp);
7051 	atomic_store_short(&vp->v_irflag, flags | toset);
7052 }
7053 
7054 void
7055 vn_irflag_set_cond(struct vnode *vp, short toset)
7056 {
7057 
7058 	VI_LOCK(vp);
7059 	vn_irflag_set_cond_locked(vp, toset);
7060 	VI_UNLOCK(vp);
7061 }
7062 
7063 void
7064 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7065 {
7066 	short flags;
7067 
7068 	ASSERT_VI_LOCKED(vp, __func__);
7069 	flags = vn_irflag_read(vp);
7070 	VNASSERT((flags & tounset) == tounset, vp,
7071 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7072 	    __func__, flags, tounset));
7073 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7074 }
7075 
7076 void
7077 vn_irflag_unset(struct vnode *vp, short tounset)
7078 {
7079 
7080 	VI_LOCK(vp);
7081 	vn_irflag_unset_locked(vp, tounset);
7082 	VI_UNLOCK(vp);
7083 }
7084