xref: /freebsd/sys/kern/vfs_subr.c (revision 63f9a4cb2684a303e3eb2ffed39c03a2e2b28ae0)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_mac.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bio.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/event.h>
53 #include <sys/eventhandler.h>
54 #include <sys/extattr.h>
55 #include <sys/fcntl.h>
56 #include <sys/kdb.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/mac.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/namei.h>
63 #include <sys/reboot.h>
64 #include <sys/sleepqueue.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_extern.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_kern.h>
78 #include <vm/uma.h>
79 
80 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81 
82 static void	delmntque(struct vnode *vp);
83 static void	insmntque(struct vnode *vp, struct mount *mp);
84 static void	vclean(struct vnode *vp, int flags, struct thread *td);
85 static void	vlruvp(struct vnode *vp);
86 static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
87 		    int slpflag, int slptimeo, int *errorp);
88 static void	syncer_shutdown(void *arg, int howto);
89 static int	vtryrecycle(struct vnode *vp);
90 static void	vx_lock(struct vnode *vp);
91 static void	vx_unlock(struct vnode *vp);
92 static void	vgonechrl(struct vnode *vp, struct thread *td);
93 
94 
95 /*
96  * Number of vnodes in existence.  Increased whenever getnewvnode()
97  * allocates a new vnode, never decreased.
98  */
99 static unsigned long	numvnodes;
100 
101 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
102 
103 /*
104  * Conversion tables for conversion from vnode types to inode formats
105  * and back.
106  */
107 enum vtype iftovt_tab[16] = {
108 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
109 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
110 };
111 int vttoif_tab[9] = {
112 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
113 	S_IFSOCK, S_IFIFO, S_IFMT,
114 };
115 
116 /*
117  * List of vnodes that are ready for recycling.
118  */
119 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
120 
121 /*
122  * Minimum number of free vnodes.  If there are fewer than this free vnodes,
123  * getnewvnode() will return a newly allocated vnode.
124  */
125 static u_long wantfreevnodes = 25;
126 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
127 /* Number of vnodes in the free list. */
128 static u_long freevnodes;
129 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
130 
131 /*
132  * Various variables used for debugging the new implementation of
133  * reassignbuf().
134  * XXX these are probably of (very) limited utility now.
135  */
136 static int reassignbufcalls;
137 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
138 static int nameileafonly;
139 SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
140 
141 /*
142  * Cache for the mount type id assigned to NFS.  This is used for
143  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
144  */
145 int	nfs_mount_type = -1;
146 
147 /* To keep more than one thread at a time from running vfs_getnewfsid */
148 static struct mtx mntid_mtx;
149 
150 /*
151  * Lock for any access to the following:
152  *	vnode_free_list
153  *	numvnodes
154  *	freevnodes
155  */
156 static struct mtx vnode_free_list_mtx;
157 
158 /* Publicly exported FS */
159 struct nfs_public nfs_pub;
160 
161 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
162 static uma_zone_t vnode_zone;
163 static uma_zone_t vnodepoll_zone;
164 
165 /* Set to 1 to print out reclaim of active vnodes */
166 int	prtactive;
167 
168 /*
169  * The workitem queue.
170  *
171  * It is useful to delay writes of file data and filesystem metadata
172  * for tens of seconds so that quickly created and deleted files need
173  * not waste disk bandwidth being created and removed. To realize this,
174  * we append vnodes to a "workitem" queue. When running with a soft
175  * updates implementation, most pending metadata dependencies should
176  * not wait for more than a few seconds. Thus, mounted on block devices
177  * are delayed only about a half the time that file data is delayed.
178  * Similarly, directory updates are more critical, so are only delayed
179  * about a third the time that file data is delayed. Thus, there are
180  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
181  * one each second (driven off the filesystem syncer process). The
182  * syncer_delayno variable indicates the next queue that is to be processed.
183  * Items that need to be processed soon are placed in this queue:
184  *
185  *	syncer_workitem_pending[syncer_delayno]
186  *
187  * A delay of fifteen seconds is done by placing the request fifteen
188  * entries later in the queue:
189  *
190  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
191  *
192  */
193 static int syncer_delayno;
194 static long syncer_mask;
195 LIST_HEAD(synclist, bufobj);
196 static struct synclist *syncer_workitem_pending;
197 /*
198  * The sync_mtx protects:
199  *	bo->bo_synclist
200  *	sync_vnode_count
201  *	syncer_delayno
202  *	syncer_state
203  *	syncer_workitem_pending
204  *	syncer_worklist_len
205  *	rushjob
206  */
207 static struct mtx sync_mtx;
208 
209 #define SYNCER_MAXDELAY		32
210 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
211 static int syncdelay = 30;		/* max time to delay syncing data */
212 static int filedelay = 30;		/* time to delay syncing files */
213 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
214 static int dirdelay = 29;		/* time to delay syncing directories */
215 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
216 static int metadelay = 28;		/* time to delay syncing metadata */
217 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
218 static int rushjob;		/* number of slots to run ASAP */
219 static int stat_rush_requests;	/* number of times I/O speeded up */
220 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
221 
222 /*
223  * When shutting down the syncer, run it at four times normal speed.
224  */
225 #define SYNCER_SHUTDOWN_SPEEDUP		4
226 static int sync_vnode_count;
227 static int syncer_worklist_len;
228 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
229     syncer_state;
230 
231 /*
232  * Number of vnodes we want to exist at any one time.  This is mostly used
233  * to size hash tables in vnode-related code.  It is normally not used in
234  * getnewvnode(), as wantfreevnodes is normally nonzero.)
235  *
236  * XXX desiredvnodes is historical cruft and should not exist.
237  */
238 int desiredvnodes;
239 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
240     &desiredvnodes, 0, "Maximum number of vnodes");
241 static int minvnodes;
242 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
243     &minvnodes, 0, "Minimum number of vnodes");
244 static int vnlru_nowhere;
245 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
246     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
247 
248 /* Hook for calling soft updates. */
249 int (*softdep_process_worklist_hook)(struct mount *);
250 
251 /*
252  * Initialize the vnode management data structures.
253  */
254 #ifndef	MAXVNODES_MAX
255 #define	MAXVNODES_MAX	100000
256 #endif
257 static void
258 vntblinit(void *dummy __unused)
259 {
260 
261 	/*
262 	 * Desiredvnodes is a function of the physical memory size and
263 	 * the kernel's heap size.  Specifically, desiredvnodes scales
264 	 * in proportion to the physical memory size until two fifths
265 	 * of the kernel's heap size is consumed by vnodes and vm
266 	 * objects.
267 	 */
268 	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
269 	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
270 	if (desiredvnodes > MAXVNODES_MAX) {
271 		if (bootverbose)
272 			printf("Reducing kern.maxvnodes %d -> %d\n",
273 			    desiredvnodes, MAXVNODES_MAX);
274 		desiredvnodes = MAXVNODES_MAX;
275 	}
276 	minvnodes = desiredvnodes / 4;
277 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
278 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
279 	TAILQ_INIT(&vnode_free_list);
280 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
281 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
282 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
283 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
284 	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
285 	/*
286 	 * Initialize the filesystem syncer.
287 	 */
288 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
289 		&syncer_mask);
290 	syncer_maxdelay = syncer_mask + 1;
291 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
292 }
293 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
294 
295 
296 /*
297  * Mark a mount point as busy. Used to synchronize access and to delay
298  * unmounting. Interlock is not released on failure.
299  */
300 int
301 vfs_busy(mp, flags, interlkp, td)
302 	struct mount *mp;
303 	int flags;
304 	struct mtx *interlkp;
305 	struct thread *td;
306 {
307 	int lkflags;
308 
309 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
310 		if (flags & LK_NOWAIT)
311 			return (ENOENT);
312 		mp->mnt_kern_flag |= MNTK_MWAIT;
313 		/*
314 		 * Since all busy locks are shared except the exclusive
315 		 * lock granted when unmounting, the only place that a
316 		 * wakeup needs to be done is at the release of the
317 		 * exclusive lock at the end of dounmount.
318 		 */
319 		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
320 		return (ENOENT);
321 	}
322 	lkflags = LK_SHARED | LK_NOPAUSE;
323 	if (interlkp)
324 		lkflags |= LK_INTERLOCK;
325 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
326 		panic("vfs_busy: unexpected lock failure");
327 	return (0);
328 }
329 
330 /*
331  * Free a busy filesystem.
332  */
333 void
334 vfs_unbusy(mp, td)
335 	struct mount *mp;
336 	struct thread *td;
337 {
338 
339 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
340 }
341 
342 /*
343  * Lookup a mount point by filesystem identifier.
344  */
345 struct mount *
346 vfs_getvfs(fsid)
347 	fsid_t *fsid;
348 {
349 	register struct mount *mp;
350 
351 	mtx_lock(&mountlist_mtx);
352 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
353 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
354 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
355 			mtx_unlock(&mountlist_mtx);
356 			return (mp);
357 		}
358 	}
359 	mtx_unlock(&mountlist_mtx);
360 	return ((struct mount *) 0);
361 }
362 
363 /*
364  * Check if a user can access priveledged mount options.
365  */
366 int
367 vfs_suser(struct mount *mp, struct thread *td)
368 {
369 	int error;
370 
371 	if ((mp->mnt_flag & MNT_USER) == 0 ||
372 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
373 		if ((error = suser(td)) != 0)
374 			return (error);
375 	}
376 	return (0);
377 }
378 
379 /*
380  * Get a new unique fsid.  Try to make its val[0] unique, since this value
381  * will be used to create fake device numbers for stat().  Also try (but
382  * not so hard) make its val[0] unique mod 2^16, since some emulators only
383  * support 16-bit device numbers.  We end up with unique val[0]'s for the
384  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
385  *
386  * Keep in mind that several mounts may be running in parallel.  Starting
387  * the search one past where the previous search terminated is both a
388  * micro-optimization and a defense against returning the same fsid to
389  * different mounts.
390  */
391 void
392 vfs_getnewfsid(mp)
393 	struct mount *mp;
394 {
395 	static u_int16_t mntid_base;
396 	fsid_t tfsid;
397 	int mtype;
398 
399 	mtx_lock(&mntid_mtx);
400 	mtype = mp->mnt_vfc->vfc_typenum;
401 	tfsid.val[1] = mtype;
402 	mtype = (mtype & 0xFF) << 24;
403 	for (;;) {
404 		tfsid.val[0] = makedev(255,
405 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
406 		mntid_base++;
407 		if (vfs_getvfs(&tfsid) == NULL)
408 			break;
409 	}
410 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
411 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
412 	mtx_unlock(&mntid_mtx);
413 }
414 
415 /*
416  * Knob to control the precision of file timestamps:
417  *
418  *   0 = seconds only; nanoseconds zeroed.
419  *   1 = seconds and nanoseconds, accurate within 1/HZ.
420  *   2 = seconds and nanoseconds, truncated to microseconds.
421  * >=3 = seconds and nanoseconds, maximum precision.
422  */
423 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
424 
425 static int timestamp_precision = TSP_SEC;
426 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
427     &timestamp_precision, 0, "");
428 
429 /*
430  * Get a current timestamp.
431  */
432 void
433 vfs_timestamp(tsp)
434 	struct timespec *tsp;
435 {
436 	struct timeval tv;
437 
438 	switch (timestamp_precision) {
439 	case TSP_SEC:
440 		tsp->tv_sec = time_second;
441 		tsp->tv_nsec = 0;
442 		break;
443 	case TSP_HZ:
444 		getnanotime(tsp);
445 		break;
446 	case TSP_USEC:
447 		microtime(&tv);
448 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
449 		break;
450 	case TSP_NSEC:
451 	default:
452 		nanotime(tsp);
453 		break;
454 	}
455 }
456 
457 /*
458  * Set vnode attributes to VNOVAL
459  */
460 void
461 vattr_null(vap)
462 	register struct vattr *vap;
463 {
464 
465 	vap->va_type = VNON;
466 	vap->va_size = VNOVAL;
467 	vap->va_bytes = VNOVAL;
468 	vap->va_mode = VNOVAL;
469 	vap->va_nlink = VNOVAL;
470 	vap->va_uid = VNOVAL;
471 	vap->va_gid = VNOVAL;
472 	vap->va_fsid = VNOVAL;
473 	vap->va_fileid = VNOVAL;
474 	vap->va_blocksize = VNOVAL;
475 	vap->va_rdev = VNOVAL;
476 	vap->va_atime.tv_sec = VNOVAL;
477 	vap->va_atime.tv_nsec = VNOVAL;
478 	vap->va_mtime.tv_sec = VNOVAL;
479 	vap->va_mtime.tv_nsec = VNOVAL;
480 	vap->va_ctime.tv_sec = VNOVAL;
481 	vap->va_ctime.tv_nsec = VNOVAL;
482 	vap->va_birthtime.tv_sec = VNOVAL;
483 	vap->va_birthtime.tv_nsec = VNOVAL;
484 	vap->va_flags = VNOVAL;
485 	vap->va_gen = VNOVAL;
486 	vap->va_vaflags = 0;
487 }
488 
489 /*
490  * This routine is called when we have too many vnodes.  It attempts
491  * to free <count> vnodes and will potentially free vnodes that still
492  * have VM backing store (VM backing store is typically the cause
493  * of a vnode blowout so we want to do this).  Therefore, this operation
494  * is not considered cheap.
495  *
496  * A number of conditions may prevent a vnode from being reclaimed.
497  * the buffer cache may have references on the vnode, a directory
498  * vnode may still have references due to the namei cache representing
499  * underlying files, or the vnode may be in active use.   It is not
500  * desireable to reuse such vnodes.  These conditions may cause the
501  * number of vnodes to reach some minimum value regardless of what
502  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
503  */
504 static int
505 vlrureclaim(struct mount *mp)
506 {
507 	struct vnode *vp;
508 	int done;
509 	int trigger;
510 	int usevnodes;
511 	int count;
512 
513 	/*
514 	 * Calculate the trigger point, don't allow user
515 	 * screwups to blow us up.   This prevents us from
516 	 * recycling vnodes with lots of resident pages.  We
517 	 * aren't trying to free memory, we are trying to
518 	 * free vnodes.
519 	 */
520 	usevnodes = desiredvnodes;
521 	if (usevnodes <= 0)
522 		usevnodes = 1;
523 	trigger = cnt.v_page_count * 2 / usevnodes;
524 
525 	done = 0;
526 	MNT_ILOCK(mp);
527 	count = mp->mnt_nvnodelistsize / 10 + 1;
528 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
529 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
530 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
531 
532 		if (vp->v_type != VNON &&
533 		    vp->v_type != VBAD &&
534 		    VI_TRYLOCK(vp)) {
535 			if (VMIGHTFREE(vp) &&           /* critical path opt */
536 			    (vp->v_object == NULL ||
537 			    vp->v_object->resident_page_count < trigger)) {
538 				MNT_IUNLOCK(mp);
539 				vgonel(vp, curthread);
540 				done++;
541 				MNT_ILOCK(mp);
542 			} else
543 				VI_UNLOCK(vp);
544 		}
545 		--count;
546 	}
547 	MNT_IUNLOCK(mp);
548 	return done;
549 }
550 
551 /*
552  * Attempt to recycle vnodes in a context that is always safe to block.
553  * Calling vlrurecycle() from the bowels of filesystem code has some
554  * interesting deadlock problems.
555  */
556 static struct proc *vnlruproc;
557 static int vnlruproc_sig;
558 
559 static void
560 vnlru_proc(void)
561 {
562 	struct mount *mp, *nmp;
563 	int done;
564 	struct proc *p = vnlruproc;
565 	struct thread *td = FIRST_THREAD_IN_PROC(p);
566 
567 	mtx_lock(&Giant);
568 
569 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
570 	    SHUTDOWN_PRI_FIRST);
571 
572 	for (;;) {
573 		kthread_suspend_check(p);
574 		mtx_lock(&vnode_free_list_mtx);
575 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
576 			mtx_unlock(&vnode_free_list_mtx);
577 			vnlruproc_sig = 0;
578 			wakeup(&vnlruproc_sig);
579 			tsleep(vnlruproc, PVFS, "vlruwt", hz);
580 			continue;
581 		}
582 		mtx_unlock(&vnode_free_list_mtx);
583 		done = 0;
584 		mtx_lock(&mountlist_mtx);
585 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
586 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
587 				nmp = TAILQ_NEXT(mp, mnt_list);
588 				continue;
589 			}
590 			done += vlrureclaim(mp);
591 			mtx_lock(&mountlist_mtx);
592 			nmp = TAILQ_NEXT(mp, mnt_list);
593 			vfs_unbusy(mp, td);
594 		}
595 		mtx_unlock(&mountlist_mtx);
596 		if (done == 0) {
597 #if 0
598 			/* These messages are temporary debugging aids */
599 			if (vnlru_nowhere < 5)
600 				printf("vnlru process getting nowhere..\n");
601 			else if (vnlru_nowhere == 5)
602 				printf("vnlru process messages stopped.\n");
603 #endif
604 			vnlru_nowhere++;
605 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
606 		}
607 	}
608 }
609 
610 static struct kproc_desc vnlru_kp = {
611 	"vnlru",
612 	vnlru_proc,
613 	&vnlruproc
614 };
615 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
616 
617 
618 /*
619  * Routines having to do with the management of the vnode table.
620  */
621 
622 /*
623  * Check to see if a free vnode can be recycled. If it can,
624  * recycle it and return it with the vnode interlock held.
625  */
626 static int
627 vtryrecycle(struct vnode *vp)
628 {
629 	struct thread *td = curthread;
630 	vm_object_t object;
631 	struct mount *vnmp;
632 	int error;
633 
634 	/* Don't recycle if we can't get the interlock */
635 	if (!VI_TRYLOCK(vp))
636 		return (EWOULDBLOCK);
637 	/*
638 	 * This vnode may found and locked via some other list, if so we
639 	 * can't recycle it yet.
640 	 */
641 	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
642 		return (EWOULDBLOCK);
643 	/*
644 	 * Don't recycle if its filesystem is being suspended.
645 	 */
646 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
647 		VOP_UNLOCK(vp, 0, td);
648 		return (EBUSY);
649 	}
650 
651 	/*
652 	 * Don't recycle if we still have cached pages.
653 	 */
654 	if (VOP_GETVOBJECT(vp, &object) == 0) {
655 		VM_OBJECT_LOCK(object);
656 		if (object->resident_page_count ||
657 		    object->ref_count) {
658 			VM_OBJECT_UNLOCK(object);
659 			error = EBUSY;
660 			goto done;
661 		}
662 		VM_OBJECT_UNLOCK(object);
663 	}
664 	if (LIST_FIRST(&vp->v_cache_src)) {
665 		/*
666 		 * note: nameileafonly sysctl is temporary,
667 		 * for debugging only, and will eventually be
668 		 * removed.
669 		 */
670 		if (nameileafonly > 0) {
671 			/*
672 			 * Do not reuse namei-cached directory
673 			 * vnodes that have cached
674 			 * subdirectories.
675 			 */
676 			if (cache_leaf_test(vp) < 0) {
677 				error = EISDIR;
678 				goto done;
679 			}
680 		} else if (nameileafonly < 0 ||
681 			    vmiodirenable == 0) {
682 			/*
683 			 * Do not reuse namei-cached directory
684 			 * vnodes if nameileafonly is -1 or
685 			 * if VMIO backing for directories is
686 			 * turned off (otherwise we reuse them
687 			 * too quickly).
688 			 */
689 			error = EBUSY;
690 			goto done;
691 		}
692 	}
693 	/*
694 	 * If we got this far, we need to acquire the interlock and see if
695 	 * anyone picked up this vnode from another list.  If not, we will
696 	 * mark it with XLOCK via vgonel() so that anyone who does find it
697 	 * will skip over it.
698 	 */
699 	VI_LOCK(vp);
700 	if (VSHOULDBUSY(vp) && (vp->v_iflag & VI_XLOCK) == 0) {
701 		VI_UNLOCK(vp);
702 		error = EBUSY;
703 		goto done;
704 	}
705 	mtx_lock(&vnode_free_list_mtx);
706 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
707 	vp->v_iflag &= ~VI_FREE;
708 	mtx_unlock(&vnode_free_list_mtx);
709 	vp->v_iflag |= VI_DOOMED;
710 	if ((vp->v_type != VBAD) || (vp->v_data != NULL)) {
711 		VOP_UNLOCK(vp, 0, td);
712 		vgonel(vp, td);
713 		VI_LOCK(vp);
714 	} else
715 		VOP_UNLOCK(vp, 0, td);
716 	vn_finished_write(vnmp);
717 	return (0);
718 done:
719 	VOP_UNLOCK(vp, 0, td);
720 	vn_finished_write(vnmp);
721 	return (error);
722 }
723 
724 /*
725  * Return the next vnode from the free list.
726  */
727 int
728 getnewvnode(tag, mp, vops, vpp)
729 	const char *tag;
730 	struct mount *mp;
731 	struct vop_vector *vops;
732 	struct vnode **vpp;
733 {
734 	struct vnode *vp = NULL;
735 	struct vpollinfo *pollinfo = NULL;
736 	struct bufobj *bo;
737 
738 	mtx_lock(&vnode_free_list_mtx);
739 
740 	/*
741 	 * Try to reuse vnodes if we hit the max.  This situation only
742 	 * occurs in certain large-memory (2G+) situations.  We cannot
743 	 * attempt to directly reclaim vnodes due to nasty recursion
744 	 * problems.
745 	 */
746 	while (numvnodes - freevnodes > desiredvnodes) {
747 		if (vnlruproc_sig == 0) {
748 			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
749 			wakeup(vnlruproc);
750 		}
751 		mtx_unlock(&vnode_free_list_mtx);
752 		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
753 		mtx_lock(&vnode_free_list_mtx);
754 	}
755 
756 	/*
757 	 * Attempt to reuse a vnode already on the free list, allocating
758 	 * a new vnode if we can't find one or if we have not reached a
759 	 * good minimum for good LRU performance.
760 	 */
761 
762 	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
763 		int error;
764 		int count;
765 
766 		for (count = 0; count < freevnodes; count++) {
767 			vp = TAILQ_FIRST(&vnode_free_list);
768 
769 			KASSERT(vp->v_usecount == 0 &&
770 			    (vp->v_iflag & VI_DOINGINACT) == 0,
771 			    ("getnewvnode: free vnode isn't"));
772 
773 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
774 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
775 			mtx_unlock(&vnode_free_list_mtx);
776 			error = vtryrecycle(vp);
777 			mtx_lock(&vnode_free_list_mtx);
778 			if (error == 0)
779 				break;
780 			vp = NULL;
781 		}
782 	}
783 	if (vp) {
784 		freevnodes--;
785 		bo = &vp->v_bufobj;
786 		mtx_unlock(&vnode_free_list_mtx);
787 
788 #ifdef INVARIANTS
789 		{
790 			if (vp->v_data)
791 				printf("cleaned vnode isn't, "
792 				       "address %p, inode %p\n",
793 				       vp, vp->v_data);
794 			if (bo->bo_numoutput)
795 				panic("Clean vnode has pending I/O's");
796 			if (vp->v_writecount != 0)
797 				panic("Non-zero write count");
798 		}
799 #endif
800 		if ((pollinfo = vp->v_pollinfo) != NULL) {
801 			/*
802 			 * To avoid lock order reversals, the call to
803 			 * uma_zfree() must be delayed until the vnode
804 			 * interlock is released.
805 			 */
806 			vp->v_pollinfo = NULL;
807 		}
808 #ifdef MAC
809 		mac_destroy_vnode(vp);
810 #endif
811 		vp->v_iflag = 0;
812 		vp->v_vflag = 0;
813 		vp->v_lastw = 0;
814 		vp->v_lasta = 0;
815 		vp->v_cstart = 0;
816 		vp->v_clen = 0;
817 		vp->v_socket = 0;
818 		lockdestroy(vp->v_vnlock);
819 		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
820 		KASSERT(bo->bo_clean.bv_cnt == 0, ("cleanbufcnt not 0"));
821 		KASSERT(bo->bo_clean.bv_root == NULL, ("cleanblkroot not NULL"));
822 		KASSERT(bo->bo_dirty.bv_cnt == 0, ("dirtybufcnt not 0"));
823 		KASSERT(bo->bo_dirty.bv_root == NULL, ("dirtyblkroot not NULL"));
824 	} else {
825 		numvnodes++;
826 		mtx_unlock(&vnode_free_list_mtx);
827 
828 		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
829 		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
830 		VI_LOCK(vp);
831 		vp->v_dd = vp;
832 		bo = &vp->v_bufobj;
833 		bo->__bo_vnode = vp;
834 		bo->bo_mtx = &vp->v_interlock;
835 		vp->v_vnlock = &vp->v_lock;
836 		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
837 		cache_purge(vp);		/* Sets up v_id. */
838 		LIST_INIT(&vp->v_cache_src);
839 		TAILQ_INIT(&vp->v_cache_dst);
840 	}
841 
842 	TAILQ_INIT(&bo->bo_clean.bv_hd);
843 	TAILQ_INIT(&bo->bo_dirty.bv_hd);
844 	bo->bo_ops = &buf_ops_bio;
845 	bo->bo_private = vp;
846 	vp->v_type = VNON;
847 	vp->v_tag = tag;
848 	vp->v_op = vops;
849 	*vpp = vp;
850 	vp->v_usecount = 1;
851 	vp->v_data = 0;
852 	VI_UNLOCK(vp);
853 	if (pollinfo != NULL) {
854 		knlist_destroy(&pollinfo->vpi_selinfo.si_note);
855 		mtx_destroy(&pollinfo->vpi_lock);
856 		uma_zfree(vnodepoll_zone, pollinfo);
857 	}
858 #ifdef MAC
859 	mac_init_vnode(vp);
860 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
861 		mac_associate_vnode_singlelabel(mp, vp);
862 	else if (mp == NULL)
863 		printf("NULL mp in getnewvnode()\n");
864 #endif
865 	delmntque(vp);
866 	if (mp != NULL) {
867 		insmntque(vp, mp);
868 		bo->bo_bsize = mp->mnt_stat.f_iosize;
869 	}
870 
871 	return (0);
872 }
873 
874 /*
875  * Delete from old mount point vnode list, if on one.
876  */
877 static void
878 delmntque(struct vnode *vp)
879 {
880 	struct mount *mp;
881 
882 	if (vp->v_mount == NULL)
883 		return;
884 	mp = vp->v_mount;
885 	MNT_ILOCK(mp);
886 	vp->v_mount = NULL;
887 	KASSERT(mp->mnt_nvnodelistsize > 0,
888 		("bad mount point vnode list size"));
889 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
890 	mp->mnt_nvnodelistsize--;
891 	MNT_IUNLOCK(mp);
892 }
893 
894 /*
895  * Insert into list of vnodes for the new mount point, if available.
896  */
897 static void
898 insmntque(struct vnode *vp, struct mount *mp)
899 {
900 
901 	vp->v_mount = mp;
902 	KASSERT(mp != NULL, ("Don't call insmntque(foo, NULL)"));
903 	MNT_ILOCK(vp->v_mount);
904 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
905 	mp->mnt_nvnodelistsize++;
906 	MNT_IUNLOCK(vp->v_mount);
907 }
908 
909 /*
910  * Flush out and invalidate all buffers associated with a vnode.
911  * Called with the underlying object locked.
912  */
913 int
914 vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
915 	struct vnode *vp;
916 	int flags;
917 	struct ucred *cred;
918 	struct thread *td;
919 	int slpflag, slptimeo;
920 {
921 	struct buf *blist;
922 	int error;
923 	vm_object_t object;
924 	struct bufobj *bo;
925 
926 	GIANT_REQUIRED;
927 
928 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
929 
930 	bo = &vp->v_bufobj;
931 	BO_LOCK(bo);
932 	if (flags & V_SAVE) {
933 		error = bufobj_wwait(bo, slpflag, slptimeo);
934 		if (error) {
935 			VI_UNLOCK(vp);
936 			return (error);
937 		}
938 		if (bo->bo_dirty.bv_cnt > 0) {
939 			VI_UNLOCK(vp);
940 			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
941 				return (error);
942 			/*
943 			 * XXX We could save a lock/unlock if this was only
944 			 * enabled under INVARIANTS
945 			 */
946 			VI_LOCK(vp);
947 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
948 				panic("vinvalbuf: dirty bufs");
949 		}
950 	}
951 	/*
952 	 * If you alter this loop please notice that interlock is dropped and
953 	 * reacquired in flushbuflist.  Special care is needed to ensure that
954 	 * no race conditions occur from this.
955 	 */
956 	for (error = 0;;) {
957 		blist = TAILQ_FIRST(&vp->v_bufobj.bo_clean.bv_hd);
958 		if (blist != NULL &&
959 		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
960 			if (error)
961 				break;
962 			continue;
963 		}
964 		blist = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
965 		if (blist != NULL &&
966 		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
967 			if (error)
968 				break;
969 			continue;
970 		}
971 		break;
972 	}
973 	if (error) {
974 		VI_UNLOCK(vp);
975 		return (error);
976 	}
977 
978 	/*
979 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
980 	 * have write I/O in-progress but if there is a VM object then the
981 	 * VM object can also have read-I/O in-progress.
982 	 */
983 	do {
984 		bufobj_wwait(bo, 0, 0);
985 		VI_UNLOCK(vp);
986 		if (VOP_GETVOBJECT(vp, &object) == 0) {
987 			VM_OBJECT_LOCK(object);
988 			vm_object_pip_wait(object, "vnvlbx");
989 			VM_OBJECT_UNLOCK(object);
990 		}
991 		VI_LOCK(vp);
992 	} while (bo->bo_numoutput > 0);
993 	VI_UNLOCK(vp);
994 
995 	/*
996 	 * Destroy the copy in the VM cache, too.
997 	 */
998 	if (VOP_GETVOBJECT(vp, &object) == 0) {
999 		VM_OBJECT_LOCK(object);
1000 		vm_object_page_remove(object, 0, 0,
1001 			(flags & V_SAVE) ? TRUE : FALSE);
1002 		VM_OBJECT_UNLOCK(object);
1003 	}
1004 
1005 #ifdef INVARIANTS
1006 	VI_LOCK(vp);
1007 	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1008 	    (vp->v_bufobj.bo_dirty.bv_cnt > 0 ||
1009 	     vp->v_bufobj.bo_clean.bv_cnt > 0))
1010 		panic("vinvalbuf: flush failed");
1011 	VI_UNLOCK(vp);
1012 #endif
1013 	return (0);
1014 }
1015 
1016 /*
1017  * Flush out buffers on the specified list.
1018  *
1019  */
1020 static int
1021 flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
1022 	struct buf *blist;
1023 	int flags;
1024 	struct vnode *vp;
1025 	int slpflag, slptimeo;
1026 	int *errorp;
1027 {
1028 	struct buf *bp, *nbp;
1029 	int found, error;
1030 
1031 	ASSERT_VI_LOCKED(vp, "flushbuflist");
1032 
1033 	for (found = 0, bp = blist; bp; bp = nbp) {
1034 		nbp = TAILQ_NEXT(bp, b_bobufs);
1035 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1036 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1037 			continue;
1038 		}
1039 		found += 1;
1040 		error = BUF_TIMELOCK(bp,
1041 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, VI_MTX(vp),
1042 		    "flushbuf", slpflag, slptimeo);
1043 		if (error) {
1044 			if (error != ENOLCK)
1045 				*errorp = error;
1046 			goto done;
1047 		}
1048 		/*
1049 		 * XXX Since there are no node locks for NFS, I
1050 		 * believe there is a slight chance that a delayed
1051 		 * write will occur while sleeping just above, so
1052 		 * check for it.  Note that vfs_bio_awrite expects
1053 		 * buffers to reside on a queue, while bwrite and
1054 		 * brelse do not.
1055 		 */
1056 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1057 			(flags & V_SAVE)) {
1058 
1059 			if (bp->b_vp == vp) {
1060 				if (bp->b_flags & B_CLUSTEROK) {
1061 					vfs_bio_awrite(bp);
1062 				} else {
1063 					bremfree(bp);
1064 					bp->b_flags |= B_ASYNC;
1065 					bwrite(bp);
1066 				}
1067 			} else {
1068 				bremfree(bp);
1069 				(void) bwrite(bp);
1070 			}
1071 			goto done;
1072 		}
1073 		bremfree(bp);
1074 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1075 		bp->b_flags &= ~B_ASYNC;
1076 		brelse(bp);
1077 		VI_LOCK(vp);
1078 	}
1079 	return (found);
1080 done:
1081 	VI_LOCK(vp);
1082 	return (found);
1083 }
1084 
1085 /*
1086  * Truncate a file's buffer and pages to a specified length.  This
1087  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1088  * sync activity.
1089  */
1090 int
1091 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td, off_t length, int blksize)
1092 {
1093 	struct buf *bp, *nbp;
1094 	int anyfreed;
1095 	int trunclbn;
1096 	struct bufobj *bo;
1097 
1098 	/*
1099 	 * Round up to the *next* lbn.
1100 	 */
1101 	trunclbn = (length + blksize - 1) / blksize;
1102 
1103 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1104 restart:
1105 	VI_LOCK(vp);
1106 	bo = &vp->v_bufobj;
1107 	anyfreed = 1;
1108 	for (;anyfreed;) {
1109 		anyfreed = 0;
1110 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1111 			if (bp->b_lblkno < trunclbn)
1112 				continue;
1113 			if (BUF_LOCK(bp,
1114 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1115 			    VI_MTX(vp)) == ENOLCK)
1116 				goto restart;
1117 
1118 			bremfree(bp);
1119 			bp->b_flags |= (B_INVAL | B_RELBUF);
1120 			bp->b_flags &= ~B_ASYNC;
1121 			brelse(bp);
1122 			anyfreed = 1;
1123 
1124 			if (nbp != NULL &&
1125 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1126 			    (nbp->b_vp != vp) ||
1127 			    (nbp->b_flags & B_DELWRI))) {
1128 				goto restart;
1129 			}
1130 			VI_LOCK(vp);
1131 		}
1132 
1133 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1134 			if (bp->b_lblkno < trunclbn)
1135 				continue;
1136 			if (BUF_LOCK(bp,
1137 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1138 			    VI_MTX(vp)) == ENOLCK)
1139 				goto restart;
1140 			bremfree(bp);
1141 			bp->b_flags |= (B_INVAL | B_RELBUF);
1142 			bp->b_flags &= ~B_ASYNC;
1143 			brelse(bp);
1144 			anyfreed = 1;
1145 			if (nbp != NULL &&
1146 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1147 			    (nbp->b_vp != vp) ||
1148 			    (nbp->b_flags & B_DELWRI) == 0)) {
1149 				goto restart;
1150 			}
1151 			VI_LOCK(vp);
1152 		}
1153 	}
1154 
1155 	if (length > 0) {
1156 restartsync:
1157 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1158 			if (bp->b_lblkno > 0)
1159 				continue;
1160 			/*
1161 			 * Since we hold the vnode lock this should only
1162 			 * fail if we're racing with the buf daemon.
1163 			 */
1164 			if (BUF_LOCK(bp,
1165 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1166 			    VI_MTX(vp)) == ENOLCK) {
1167 				goto restart;
1168 			}
1169 			KASSERT((bp->b_flags & B_DELWRI),
1170 			    ("buf(%p) on dirty queue without DELWRI", bp));
1171 
1172 			bremfree(bp);
1173 			bawrite(bp);
1174 			VI_LOCK(vp);
1175 			goto restartsync;
1176 		}
1177 	}
1178 
1179 	bufobj_wwait(bo, 0, 0);
1180 	VI_UNLOCK(vp);
1181 	vnode_pager_setsize(vp, length);
1182 
1183 	return (0);
1184 }
1185 
1186 /*
1187  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1188  * 		 a vnode.
1189  *
1190  *	NOTE: We have to deal with the special case of a background bitmap
1191  *	buffer, a situation where two buffers will have the same logical
1192  *	block offset.  We want (1) only the foreground buffer to be accessed
1193  *	in a lookup and (2) must differentiate between the foreground and
1194  *	background buffer in the splay tree algorithm because the splay
1195  *	tree cannot normally handle multiple entities with the same 'index'.
1196  *	We accomplish this by adding differentiating flags to the splay tree's
1197  *	numerical domain.
1198  */
1199 static
1200 struct buf *
1201 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1202 {
1203 	struct buf dummy;
1204 	struct buf *lefttreemax, *righttreemin, *y;
1205 
1206 	if (root == NULL)
1207 		return (NULL);
1208 	lefttreemax = righttreemin = &dummy;
1209 	for (;;) {
1210 		if (lblkno < root->b_lblkno ||
1211 		    (lblkno == root->b_lblkno &&
1212 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1213 			if ((y = root->b_left) == NULL)
1214 				break;
1215 			if (lblkno < y->b_lblkno) {
1216 				/* Rotate right. */
1217 				root->b_left = y->b_right;
1218 				y->b_right = root;
1219 				root = y;
1220 				if ((y = root->b_left) == NULL)
1221 					break;
1222 			}
1223 			/* Link into the new root's right tree. */
1224 			righttreemin->b_left = root;
1225 			righttreemin = root;
1226 		} else if (lblkno > root->b_lblkno ||
1227 		    (lblkno == root->b_lblkno &&
1228 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1229 			if ((y = root->b_right) == NULL)
1230 				break;
1231 			if (lblkno > y->b_lblkno) {
1232 				/* Rotate left. */
1233 				root->b_right = y->b_left;
1234 				y->b_left = root;
1235 				root = y;
1236 				if ((y = root->b_right) == NULL)
1237 					break;
1238 			}
1239 			/* Link into the new root's left tree. */
1240 			lefttreemax->b_right = root;
1241 			lefttreemax = root;
1242 		} else {
1243 			break;
1244 		}
1245 		root = y;
1246 	}
1247 	/* Assemble the new root. */
1248 	lefttreemax->b_right = root->b_left;
1249 	righttreemin->b_left = root->b_right;
1250 	root->b_left = dummy.b_right;
1251 	root->b_right = dummy.b_left;
1252 	return (root);
1253 }
1254 
1255 static void
1256 buf_vlist_remove(struct buf *bp)
1257 {
1258 	struct buf *root;
1259 	struct bufv *bv;
1260 
1261 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1262 	ASSERT_BO_LOCKED(bp->b_bufobj);
1263 	if (bp->b_xflags & BX_VNDIRTY)
1264 		bv = &bp->b_bufobj->bo_dirty;
1265 	else
1266 		bv = &bp->b_bufobj->bo_clean;
1267 	if (bp != bv->bv_root) {
1268 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1269 		KASSERT(root == bp, ("splay lookup failed in remove"));
1270 	}
1271 	if (bp->b_left == NULL) {
1272 		root = bp->b_right;
1273 	} else {
1274 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1275 		root->b_right = bp->b_right;
1276 	}
1277 	bv->bv_root = root;
1278 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1279 	bv->bv_cnt--;
1280 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1281 }
1282 
1283 /*
1284  * Add the buffer to the sorted clean or dirty block list using a
1285  * splay tree algorithm.
1286  *
1287  * NOTE: xflags is passed as a constant, optimizing this inline function!
1288  */
1289 static void
1290 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1291 {
1292 	struct buf *root;
1293 	struct bufv *bv;
1294 
1295 	ASSERT_BO_LOCKED(bo);
1296 	bp->b_xflags |= xflags;
1297 	if (xflags & BX_VNDIRTY)
1298 		bv = &bo->bo_dirty;
1299 	else
1300 		bv = &bo->bo_clean;
1301 
1302 	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1303 	if (root == NULL) {
1304 		bp->b_left = NULL;
1305 		bp->b_right = NULL;
1306 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1307 	} else if (bp->b_lblkno < root->b_lblkno ||
1308 	    (bp->b_lblkno == root->b_lblkno &&
1309 	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1310 		bp->b_left = root->b_left;
1311 		bp->b_right = root;
1312 		root->b_left = NULL;
1313 		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1314 	} else {
1315 		bp->b_right = root->b_right;
1316 		bp->b_left = root;
1317 		root->b_right = NULL;
1318 		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1319 	}
1320 	bv->bv_cnt++;
1321 	bv->bv_root = bp;
1322 }
1323 
1324 /*
1325  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1326  * shadow buffers used in background bitmap writes.
1327  *
1328  * This code isn't quite efficient as it could be because we are maintaining
1329  * two sorted lists and do not know which list the block resides in.
1330  *
1331  * During a "make buildworld" the desired buffer is found at one of
1332  * the roots more than 60% of the time.  Thus, checking both roots
1333  * before performing either splay eliminates unnecessary splays on the
1334  * first tree splayed.
1335  */
1336 struct buf *
1337 gbincore(struct bufobj *bo, daddr_t lblkno)
1338 {
1339 	struct buf *bp;
1340 
1341 	GIANT_REQUIRED;
1342 
1343 	ASSERT_BO_LOCKED(bo);
1344 	if ((bp = bo->bo_clean.bv_root) != NULL &&
1345 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1346 		return (bp);
1347 	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1348 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1349 		return (bp);
1350 	if ((bp = bo->bo_clean.bv_root) != NULL) {
1351 		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1352 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1353 			return (bp);
1354 	}
1355 	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1356 		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1357 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1358 			return (bp);
1359 	}
1360 	return (NULL);
1361 }
1362 
1363 /*
1364  * Associate a buffer with a vnode.
1365  */
1366 void
1367 bgetvp(struct vnode *vp, struct buf *bp)
1368 {
1369 
1370 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1371 
1372 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1373 	    ("bgetvp: bp already attached! %p", bp));
1374 
1375 	ASSERT_VI_LOCKED(vp, "bgetvp");
1376 	vholdl(vp);
1377 	bp->b_vp = vp;
1378 	bp->b_bufobj = &vp->v_bufobj;
1379 	/*
1380 	 * Insert onto list for new vnode.
1381 	 */
1382 	buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN);
1383 }
1384 
1385 /*
1386  * Disassociate a buffer from a vnode.
1387  */
1388 void
1389 brelvp(struct buf *bp)
1390 {
1391 	struct bufobj *bo;
1392 	struct vnode *vp;
1393 
1394 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1395 
1396 	/*
1397 	 * Delete from old vnode list, if on one.
1398 	 */
1399 	vp = bp->b_vp;		/* XXX */
1400 	bo = bp->b_bufobj;
1401 	BO_LOCK(bo);
1402 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1403 		buf_vlist_remove(bp);
1404 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1405 		bo->bo_flag &= ~BO_ONWORKLST;
1406 		mtx_lock(&sync_mtx);
1407 		LIST_REMOVE(bo, bo_synclist);
1408  		syncer_worklist_len--;
1409 		mtx_unlock(&sync_mtx);
1410 	}
1411 	vdropl(vp);
1412 	bp->b_vp = NULL;
1413 	bp->b_bufobj = NULL;
1414 	BO_UNLOCK(bo);
1415 }
1416 
1417 /*
1418  * Add an item to the syncer work queue.
1419  */
1420 static void
1421 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1422 {
1423 	int slot;
1424 
1425 	ASSERT_BO_LOCKED(bo);
1426 
1427 	mtx_lock(&sync_mtx);
1428 	if (bo->bo_flag & BO_ONWORKLST)
1429 		LIST_REMOVE(bo, bo_synclist);
1430 	else {
1431 		bo->bo_flag |= BO_ONWORKLST;
1432  		syncer_worklist_len++;
1433 	}
1434 
1435 	if (delay > syncer_maxdelay - 2)
1436 		delay = syncer_maxdelay - 2;
1437 	slot = (syncer_delayno + delay) & syncer_mask;
1438 
1439 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1440 	mtx_unlock(&sync_mtx);
1441 }
1442 
1443 static int
1444 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1445 {
1446 	int error, len;
1447 
1448 	mtx_lock(&sync_mtx);
1449 	len = syncer_worklist_len - sync_vnode_count;
1450 	mtx_unlock(&sync_mtx);
1451 	error = SYSCTL_OUT(req, &len, sizeof(len));
1452 	return (error);
1453 }
1454 
1455 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1456     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1457 
1458 struct  proc *updateproc;
1459 static void sched_sync(void);
1460 static struct kproc_desc up_kp = {
1461 	"syncer",
1462 	sched_sync,
1463 	&updateproc
1464 };
1465 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1466 
1467 static int
1468 sync_vnode(struct bufobj *bo, struct thread *td)
1469 {
1470 	struct vnode *vp;
1471 	struct mount *mp;
1472 
1473 	vp = bo->__bo_vnode; 	/* XXX */
1474 	if (VOP_ISLOCKED(vp, NULL) != 0)
1475 		return (1);
1476 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0)
1477 		return (1);
1478 	if (VI_TRYLOCK(vp) == 0) {
1479 		vn_finished_write(mp);
1480 		return (1);
1481 	}
1482 	/*
1483 	 * We use vhold in case the vnode does not
1484 	 * successfully sync.  vhold prevents the vnode from
1485 	 * going away when we unlock the sync_mtx so that
1486 	 * we can acquire the vnode interlock.
1487 	 */
1488 	vholdl(vp);
1489 	mtx_unlock(&sync_mtx);
1490 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, td);
1491 	(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1492 	VOP_UNLOCK(vp, 0, td);
1493 	vn_finished_write(mp);
1494 	VI_LOCK(vp);
1495 	if ((bo->bo_flag & BO_ONWORKLST) != 0) {
1496 		/*
1497 		 * Put us back on the worklist.  The worklist
1498 		 * routine will remove us from our current
1499 		 * position and then add us back in at a later
1500 		 * position.
1501 		 */
1502 		vn_syncer_add_to_worklist(bo, syncdelay);
1503 	}
1504 	vdropl(vp);
1505 	VI_UNLOCK(vp);
1506 	mtx_lock(&sync_mtx);
1507 	return (0);
1508 }
1509 
1510 /*
1511  * System filesystem synchronizer daemon.
1512  */
1513 static void
1514 sched_sync(void)
1515 {
1516 	struct synclist *next;
1517 	struct synclist *slp;
1518 	struct bufobj *bo;
1519 	long starttime;
1520 	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);
1521 	static int dummychan;
1522 	int last_work_seen;
1523 	int net_worklist_len;
1524 	int syncer_final_iter;
1525 	int first_printf;
1526 	int error;
1527 
1528 	mtx_lock(&Giant);
1529 	last_work_seen = 0;
1530 	syncer_final_iter = 0;
1531 	first_printf = 1;
1532 	syncer_state = SYNCER_RUNNING;
1533 	starttime = time_second;
1534 
1535 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1536 	    SHUTDOWN_PRI_LAST);
1537 
1538 	for (;;) {
1539 		mtx_lock(&sync_mtx);
1540 		if (syncer_state == SYNCER_FINAL_DELAY &&
1541 		    syncer_final_iter == 0) {
1542 			mtx_unlock(&sync_mtx);
1543 			kthread_suspend_check(td->td_proc);
1544 			mtx_lock(&sync_mtx);
1545 		}
1546 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1547 		if (syncer_state != SYNCER_RUNNING &&
1548 		    starttime != time_second) {
1549 			if (first_printf) {
1550 				printf("\nSyncing disks, vnodes remaining...");
1551 				first_printf = 0;
1552 			}
1553 			printf("%d ", net_worklist_len);
1554 		}
1555 		starttime = time_second;
1556 
1557 		/*
1558 		 * Push files whose dirty time has expired.  Be careful
1559 		 * of interrupt race on slp queue.
1560 		 *
1561 		 * Skip over empty worklist slots when shutting down.
1562 		 */
1563 		do {
1564 			slp = &syncer_workitem_pending[syncer_delayno];
1565 			syncer_delayno += 1;
1566 			if (syncer_delayno == syncer_maxdelay)
1567 				syncer_delayno = 0;
1568 			next = &syncer_workitem_pending[syncer_delayno];
1569 			/*
1570 			 * If the worklist has wrapped since the
1571 			 * it was emptied of all but syncer vnodes,
1572 			 * switch to the FINAL_DELAY state and run
1573 			 * for one more second.
1574 			 */
1575 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1576 			    net_worklist_len == 0 &&
1577 			    last_work_seen == syncer_delayno) {
1578 				syncer_state = SYNCER_FINAL_DELAY;
1579 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1580 			}
1581 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1582 		    syncer_worklist_len > 0);
1583 
1584 		/*
1585 		 * Keep track of the last time there was anything
1586 		 * on the worklist other than syncer vnodes.
1587 		 * Return to the SHUTTING_DOWN state if any
1588 		 * new work appears.
1589 		 */
1590 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1591 			last_work_seen = syncer_delayno;
1592 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1593 			syncer_state = SYNCER_SHUTTING_DOWN;
1594 		while ((bo = LIST_FIRST(slp)) != NULL) {
1595 			error = sync_vnode(bo, td);
1596 			if (error == 1) {
1597 				LIST_REMOVE(bo, bo_synclist);
1598 				LIST_INSERT_HEAD(next, bo, bo_synclist);
1599 				continue;
1600 			}
1601 		}
1602 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1603 			syncer_final_iter--;
1604 		mtx_unlock(&sync_mtx);
1605 
1606 		/*
1607 		 * Do soft update processing.
1608 		 */
1609 		if (softdep_process_worklist_hook != NULL)
1610 			(*softdep_process_worklist_hook)(NULL);
1611 
1612 		/*
1613 		 * The variable rushjob allows the kernel to speed up the
1614 		 * processing of the filesystem syncer process. A rushjob
1615 		 * value of N tells the filesystem syncer to process the next
1616 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1617 		 * is used by the soft update code to speed up the filesystem
1618 		 * syncer process when the incore state is getting so far
1619 		 * ahead of the disk that the kernel memory pool is being
1620 		 * threatened with exhaustion.
1621 		 */
1622 		mtx_lock(&sync_mtx);
1623 		if (rushjob > 0) {
1624 			rushjob -= 1;
1625 			mtx_unlock(&sync_mtx);
1626 			continue;
1627 		}
1628 		mtx_unlock(&sync_mtx);
1629 		/*
1630 		 * Just sleep for a short period if time between
1631 		 * iterations when shutting down to allow some I/O
1632 		 * to happen.
1633 		 *
1634 		 * If it has taken us less than a second to process the
1635 		 * current work, then wait. Otherwise start right over
1636 		 * again. We can still lose time if any single round
1637 		 * takes more than two seconds, but it does not really
1638 		 * matter as we are just trying to generally pace the
1639 		 * filesystem activity.
1640 		 */
1641 		if (syncer_state != SYNCER_RUNNING)
1642 			tsleep(&dummychan, PPAUSE, "syncfnl",
1643 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1644 		else if (time_second == starttime)
1645 			tsleep(&lbolt, PPAUSE, "syncer", 0);
1646 	}
1647 }
1648 
1649 /*
1650  * Request the syncer daemon to speed up its work.
1651  * We never push it to speed up more than half of its
1652  * normal turn time, otherwise it could take over the cpu.
1653  */
1654 int
1655 speedup_syncer()
1656 {
1657 	struct thread *td;
1658 	int ret = 0;
1659 
1660 	td = FIRST_THREAD_IN_PROC(updateproc);
1661 	sleepq_remove(td, &lbolt);
1662 	mtx_lock(&sync_mtx);
1663 	if (rushjob < syncdelay / 2) {
1664 		rushjob += 1;
1665 		stat_rush_requests += 1;
1666 		ret = 1;
1667 	}
1668 	mtx_unlock(&sync_mtx);
1669 	return (ret);
1670 }
1671 
1672 /*
1673  * Tell the syncer to speed up its work and run though its work
1674  * list several times, then tell it to shut down.
1675  */
1676 static void
1677 syncer_shutdown(void *arg, int howto)
1678 {
1679 	struct thread *td;
1680 
1681 	if (howto & RB_NOSYNC)
1682 		return;
1683 	td = FIRST_THREAD_IN_PROC(updateproc);
1684 	sleepq_remove(td, &lbolt);
1685 	mtx_lock(&sync_mtx);
1686 	syncer_state = SYNCER_SHUTTING_DOWN;
1687 	rushjob = 0;
1688 	mtx_unlock(&sync_mtx);
1689 	kproc_shutdown(arg, howto);
1690 }
1691 
1692 /*
1693  * Reassign a buffer from one vnode to another.
1694  * Used to assign file specific control information
1695  * (indirect blocks) to the vnode to which they belong.
1696  */
1697 void
1698 reassignbuf(struct buf *bp)
1699 {
1700 	struct vnode *vp;
1701 	struct bufobj *bo;
1702 	int delay;
1703 
1704 	vp = bp->b_vp;
1705 	bo = bp->b_bufobj;
1706 	++reassignbufcalls;
1707 
1708 	/*
1709 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1710 	 * is not fully linked in.
1711 	 */
1712 	if (bp->b_flags & B_PAGING)
1713 		panic("cannot reassign paging buffer");
1714 
1715 	/*
1716 	 * Delete from old vnode list, if on one.
1717 	 */
1718 	VI_LOCK(vp);
1719 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1720 		buf_vlist_remove(bp);
1721 	/*
1722 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1723 	 * of clean buffers.
1724 	 */
1725 	if (bp->b_flags & B_DELWRI) {
1726 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1727 			switch (vp->v_type) {
1728 			case VDIR:
1729 				delay = dirdelay;
1730 				break;
1731 			case VCHR:
1732 				delay = metadelay;
1733 				break;
1734 			default:
1735 				delay = filedelay;
1736 			}
1737 			vn_syncer_add_to_worklist(bo, delay);
1738 		}
1739 		buf_vlist_add(bp, bo, BX_VNDIRTY);
1740 	} else {
1741 		buf_vlist_add(bp, bo, BX_VNCLEAN);
1742 
1743 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1744 			mtx_lock(&sync_mtx);
1745 			LIST_REMOVE(bo, bo_synclist);
1746  			syncer_worklist_len--;
1747 			mtx_unlock(&sync_mtx);
1748 			bo->bo_flag &= ~BO_ONWORKLST;
1749 		}
1750 	}
1751 	VI_UNLOCK(vp);
1752 }
1753 
1754 static void
1755 v_incr_usecount(struct vnode *vp, int delta)
1756 {
1757 
1758 	vp->v_usecount += delta;
1759 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1760 		dev_lock();
1761 		vp->v_rdev->si_usecount += delta;
1762 		dev_unlock();
1763 	}
1764 }
1765 
1766 /*
1767  * Grab a particular vnode from the free list, increment its
1768  * reference count and lock it. The vnode lock bit is set if the
1769  * vnode is being eliminated in vgone. The process is awakened
1770  * when the transition is completed, and an error returned to
1771  * indicate that the vnode is no longer usable (possibly having
1772  * been changed to a new filesystem type).
1773  */
1774 int
1775 vget(vp, flags, td)
1776 	register struct vnode *vp;
1777 	int flags;
1778 	struct thread *td;
1779 {
1780 	int error;
1781 
1782 	/*
1783 	 * If the vnode is in the process of being cleaned out for
1784 	 * another use, we wait for the cleaning to finish and then
1785 	 * return failure. Cleaning is determined by checking that
1786 	 * the VI_XLOCK flag is set.
1787 	 */
1788 	if ((flags & LK_INTERLOCK) == 0)
1789 		VI_LOCK(vp);
1790 	if (vp->v_iflag & VI_XLOCK && vp->v_vxthread != curthread) {
1791 		if ((flags & LK_NOWAIT) == 0) {
1792 			vp->v_iflag |= VI_XWANT;
1793 			msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
1794 			return (ENOENT);
1795 		}
1796 		VI_UNLOCK(vp);
1797 		return (EBUSY);
1798 	}
1799 
1800 	v_incr_usecount(vp, 1);
1801 
1802 	if (VSHOULDBUSY(vp))
1803 		vbusy(vp);
1804 	if (flags & LK_TYPE_MASK) {
1805 		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1806 			/*
1807 			 * must expand vrele here because we do not want
1808 			 * to call VOP_INACTIVE if the reference count
1809 			 * drops back to zero since it was never really
1810 			 * active. We must remove it from the free list
1811 			 * before sleeping so that multiple processes do
1812 			 * not try to recycle it.
1813 			 */
1814 			VI_LOCK(vp);
1815 			v_incr_usecount(vp, -1);
1816 			if (VSHOULDFREE(vp))
1817 				vfree(vp);
1818 			else
1819 				vlruvp(vp);
1820 			VI_UNLOCK(vp);
1821 		}
1822 		return (error);
1823 	}
1824 	VI_UNLOCK(vp);
1825 	return (0);
1826 }
1827 
1828 /*
1829  * Increase the reference count of a vnode.
1830  */
1831 void
1832 vref(struct vnode *vp)
1833 {
1834 
1835 	VI_LOCK(vp);
1836 	v_incr_usecount(vp, 1);
1837 	VI_UNLOCK(vp);
1838 }
1839 
1840 /*
1841  * Return reference count of a vnode.
1842  *
1843  * The results of this call are only guaranteed when some mechanism other
1844  * than the VI lock is used to stop other processes from gaining references
1845  * to the vnode.  This may be the case if the caller holds the only reference.
1846  * This is also useful when stale data is acceptable as race conditions may
1847  * be accounted for by some other means.
1848  */
1849 int
1850 vrefcnt(struct vnode *vp)
1851 {
1852 	int usecnt;
1853 
1854 	VI_LOCK(vp);
1855 	usecnt = vp->v_usecount;
1856 	VI_UNLOCK(vp);
1857 
1858 	return (usecnt);
1859 }
1860 
1861 
1862 /*
1863  * Vnode put/release.
1864  * If count drops to zero, call inactive routine and return to freelist.
1865  */
1866 void
1867 vrele(vp)
1868 	struct vnode *vp;
1869 {
1870 	struct thread *td = curthread;	/* XXX */
1871 
1872 	GIANT_REQUIRED;
1873 
1874 	KASSERT(vp != NULL, ("vrele: null vp"));
1875 
1876 	VI_LOCK(vp);
1877 
1878 	/* Skip this v_writecount check if we're going to panic below. */
1879 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1880 	    ("vrele: missed vn_close"));
1881 
1882 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
1883 	    vp->v_usecount == 1)) {
1884 		v_incr_usecount(vp, -1);
1885 		VI_UNLOCK(vp);
1886 
1887 		return;
1888 	}
1889 
1890 	if (vp->v_usecount == 1) {
1891 		v_incr_usecount(vp, -1);
1892 		/*
1893 		 * We must call VOP_INACTIVE with the node locked. Mark
1894 		 * as VI_DOINGINACT to avoid recursion.
1895 		 */
1896 		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
1897 			VI_LOCK(vp);
1898 			vp->v_iflag |= VI_DOINGINACT;
1899 			VI_UNLOCK(vp);
1900 			VOP_INACTIVE(vp, td);
1901 			VI_LOCK(vp);
1902 			KASSERT(vp->v_iflag & VI_DOINGINACT,
1903 			    ("vrele: lost VI_DOINGINACT"));
1904 			vp->v_iflag &= ~VI_DOINGINACT;
1905 		} else
1906 			VI_LOCK(vp);
1907 		if (VSHOULDFREE(vp))
1908 			vfree(vp);
1909 		else
1910 			vlruvp(vp);
1911 		VI_UNLOCK(vp);
1912 
1913 	} else {
1914 #ifdef DIAGNOSTIC
1915 		vprint("vrele: negative ref count", vp);
1916 #endif
1917 		VI_UNLOCK(vp);
1918 		panic("vrele: negative ref cnt");
1919 	}
1920 }
1921 
1922 /*
1923  * Release an already locked vnode.  This give the same effects as
1924  * unlock+vrele(), but takes less time and avoids releasing and
1925  * re-aquiring the lock (as vrele() aquires the lock internally.)
1926  */
1927 void
1928 vput(vp)
1929 	struct vnode *vp;
1930 {
1931 	struct thread *td = curthread;	/* XXX */
1932 
1933 	GIANT_REQUIRED;
1934 
1935 	KASSERT(vp != NULL, ("vput: null vp"));
1936 	VI_LOCK(vp);
1937 	/* Skip this v_writecount check if we're going to panic below. */
1938 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1939 	    ("vput: missed vn_close"));
1940 
1941 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
1942 	    vp->v_usecount == 1)) {
1943 		v_incr_usecount(vp, -1);
1944 		VOP_UNLOCK(vp, LK_INTERLOCK, td);
1945 		return;
1946 	}
1947 
1948 	if (vp->v_usecount == 1) {
1949 		v_incr_usecount(vp, -1);
1950 		/*
1951 		 * We must call VOP_INACTIVE with the node locked, so
1952 		 * we just need to release the vnode mutex. Mark as
1953 		 * as VI_DOINGINACT to avoid recursion.
1954 		 */
1955 		vp->v_iflag |= VI_DOINGINACT;
1956 		VI_UNLOCK(vp);
1957 		VOP_INACTIVE(vp, td);
1958 		VI_LOCK(vp);
1959 		KASSERT(vp->v_iflag & VI_DOINGINACT,
1960 		    ("vput: lost VI_DOINGINACT"));
1961 		vp->v_iflag &= ~VI_DOINGINACT;
1962 		if (VSHOULDFREE(vp))
1963 			vfree(vp);
1964 		else
1965 			vlruvp(vp);
1966 		VI_UNLOCK(vp);
1967 
1968 	} else {
1969 #ifdef DIAGNOSTIC
1970 		vprint("vput: negative ref count", vp);
1971 #endif
1972 		panic("vput: negative ref cnt");
1973 	}
1974 }
1975 
1976 /*
1977  * Somebody doesn't want the vnode recycled.
1978  */
1979 void
1980 vhold(struct vnode *vp)
1981 {
1982 
1983 	VI_LOCK(vp);
1984 	vholdl(vp);
1985 	VI_UNLOCK(vp);
1986 }
1987 
1988 void
1989 vholdl(struct vnode *vp)
1990 {
1991 
1992 	vp->v_holdcnt++;
1993 	if (VSHOULDBUSY(vp))
1994 		vbusy(vp);
1995 }
1996 
1997 /*
1998  * Note that there is one less who cares about this vnode.  vdrop() is the
1999  * opposite of vhold().
2000  */
2001 void
2002 vdrop(struct vnode *vp)
2003 {
2004 
2005 	VI_LOCK(vp);
2006 	vdropl(vp);
2007 	VI_UNLOCK(vp);
2008 }
2009 
2010 void
2011 vdropl(vp)
2012 	register struct vnode *vp;
2013 {
2014 
2015 	if (vp->v_holdcnt <= 0)
2016 		panic("vdrop: holdcnt");
2017 	vp->v_holdcnt--;
2018 	if (VSHOULDFREE(vp))
2019 		vfree(vp);
2020 	else
2021 		vlruvp(vp);
2022 }
2023 
2024 /*
2025  * Remove any vnodes in the vnode table belonging to mount point mp.
2026  *
2027  * If FORCECLOSE is not specified, there should not be any active ones,
2028  * return error if any are found (nb: this is a user error, not a
2029  * system error). If FORCECLOSE is specified, detach any active vnodes
2030  * that are found.
2031  *
2032  * If WRITECLOSE is set, only flush out regular file vnodes open for
2033  * writing.
2034  *
2035  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2036  *
2037  * `rootrefs' specifies the base reference count for the root vnode
2038  * of this filesystem. The root vnode is considered busy if its
2039  * v_usecount exceeds this value. On a successful return, vflush(, td)
2040  * will call vrele() on the root vnode exactly rootrefs times.
2041  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2042  * be zero.
2043  */
2044 #ifdef DIAGNOSTIC
2045 static int busyprt = 0;		/* print out busy vnodes */
2046 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2047 #endif
2048 
2049 int
2050 vflush(mp, rootrefs, flags, td)
2051 	struct mount *mp;
2052 	int rootrefs;
2053 	int flags;
2054 	struct thread *td;
2055 {
2056 	struct vnode *vp, *nvp, *rootvp = NULL;
2057 	struct vattr vattr;
2058 	int busy = 0, error;
2059 
2060 	if (rootrefs > 0) {
2061 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2062 		    ("vflush: bad args"));
2063 		/*
2064 		 * Get the filesystem root vnode. We can vput() it
2065 		 * immediately, since with rootrefs > 0, it won't go away.
2066 		 */
2067 		if ((error = VFS_ROOT(mp, &rootvp, td)) != 0)
2068 			return (error);
2069 		vput(rootvp);
2070 
2071 	}
2072 	MNT_ILOCK(mp);
2073 loop:
2074 	MNT_VNODE_FOREACH(vp, mp, nvp) {
2075 
2076 		VI_LOCK(vp);
2077 		MNT_IUNLOCK(mp);
2078 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
2079 		if (error) {
2080 			MNT_ILOCK(mp);
2081 			goto loop;
2082 		}
2083 		/*
2084 		 * Skip over a vnodes marked VV_SYSTEM.
2085 		 */
2086 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2087 			VOP_UNLOCK(vp, 0, td);
2088 			MNT_ILOCK(mp);
2089 			continue;
2090 		}
2091 		/*
2092 		 * If WRITECLOSE is set, flush out unlinked but still open
2093 		 * files (even if open only for reading) and regular file
2094 		 * vnodes open for writing.
2095 		 */
2096 		if (flags & WRITECLOSE) {
2097 			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2098 			VI_LOCK(vp);
2099 
2100 			if ((vp->v_type == VNON ||
2101 			    (error == 0 && vattr.va_nlink > 0)) &&
2102 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2103 				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2104 				MNT_ILOCK(mp);
2105 				continue;
2106 			}
2107 		} else
2108 			VI_LOCK(vp);
2109 
2110 		VOP_UNLOCK(vp, 0, td);
2111 
2112 		/*
2113 		 * With v_usecount == 0, all we need to do is clear out the
2114 		 * vnode data structures and we are done.
2115 		 */
2116 		if (vp->v_usecount == 0) {
2117 			vgonel(vp, td);
2118 			MNT_ILOCK(mp);
2119 			continue;
2120 		}
2121 
2122 		/*
2123 		 * If FORCECLOSE is set, forcibly close the vnode. For block
2124 		 * or character devices, revert to an anonymous device. For
2125 		 * all other files, just kill them.
2126 		 */
2127 		if (flags & FORCECLOSE) {
2128 			if (vp->v_type != VCHR)
2129 				vgonel(vp, td);
2130 			else
2131 				vgonechrl(vp, td);
2132 			MNT_ILOCK(mp);
2133 			continue;
2134 		}
2135 #ifdef DIAGNOSTIC
2136 		if (busyprt)
2137 			vprint("vflush: busy vnode", vp);
2138 #endif
2139 		VI_UNLOCK(vp);
2140 		MNT_ILOCK(mp);
2141 		busy++;
2142 	}
2143 	MNT_IUNLOCK(mp);
2144 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2145 		/*
2146 		 * If just the root vnode is busy, and if its refcount
2147 		 * is equal to `rootrefs', then go ahead and kill it.
2148 		 */
2149 		VI_LOCK(rootvp);
2150 		KASSERT(busy > 0, ("vflush: not busy"));
2151 		KASSERT(rootvp->v_usecount >= rootrefs,
2152 		    ("vflush: usecount %d < rootrefs %d",
2153 		     rootvp->v_usecount, rootrefs));
2154 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2155 			vgonel(rootvp, td);
2156 			busy = 0;
2157 		} else
2158 			VI_UNLOCK(rootvp);
2159 	}
2160 	if (busy)
2161 		return (EBUSY);
2162 	for (; rootrefs > 0; rootrefs--)
2163 		vrele(rootvp);
2164 	return (0);
2165 }
2166 
2167 /*
2168  * This moves a now (likely recyclable) vnode to the end of the
2169  * mountlist.  XXX However, it is temporarily disabled until we
2170  * can clean up ffs_sync() and friends, which have loop restart
2171  * conditions which this code causes to operate O(N^2).
2172  */
2173 static void
2174 vlruvp(struct vnode *vp)
2175 {
2176 #if 0
2177 	struct mount *mp;
2178 
2179 	if ((mp = vp->v_mount) != NULL) {
2180 		MNT_ILOCK(mp);
2181 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2182 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2183 		MNT_IUNLOCK(mp);
2184 	}
2185 #endif
2186 }
2187 
2188 static void
2189 vx_lock(struct vnode *vp)
2190 {
2191 
2192 	ASSERT_VI_LOCKED(vp, "vx_lock");
2193 
2194 	/*
2195 	 * Prevent the vnode from being recycled or brought into use while we
2196 	 * clean it out.
2197 	 */
2198 	if (vp->v_iflag & VI_XLOCK)
2199 		panic("vclean: deadlock");
2200 	vp->v_iflag |= VI_XLOCK;
2201 	vp->v_vxthread = curthread;
2202 }
2203 
2204 static void
2205 vx_unlock(struct vnode *vp)
2206 {
2207 	ASSERT_VI_LOCKED(vp, "vx_unlock");
2208 	vp->v_iflag &= ~VI_XLOCK;
2209 	vp->v_vxthread = NULL;
2210 	if (vp->v_iflag & VI_XWANT) {
2211 		vp->v_iflag &= ~VI_XWANT;
2212 		wakeup(vp);
2213 	}
2214 }
2215 
2216 /*
2217  * Disassociate the underlying filesystem from a vnode.
2218  */
2219 static void
2220 vclean(vp, flags, td)
2221 	struct vnode *vp;
2222 	int flags;
2223 	struct thread *td;
2224 {
2225 	int active;
2226 
2227 	ASSERT_VI_LOCKED(vp, "vclean");
2228 	/*
2229 	 * Check to see if the vnode is in use. If so we have to reference it
2230 	 * before we clean it out so that its count cannot fall to zero and
2231 	 * generate a race against ourselves to recycle it.
2232 	 */
2233 	if ((active = vp->v_usecount))
2234 		v_incr_usecount(vp, 1);
2235 
2236 	/*
2237 	 * Even if the count is zero, the VOP_INACTIVE routine may still
2238 	 * have the object locked while it cleans it out. The VOP_LOCK
2239 	 * ensures that the VOP_INACTIVE routine is done with its work.
2240 	 * For active vnodes, it ensures that no other activity can
2241 	 * occur while the underlying object is being cleaned out.
2242 	 */
2243 	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2244 
2245 	/*
2246 	 * Clean out any buffers associated with the vnode.
2247 	 * If the flush fails, just toss the buffers.
2248 	 */
2249 	if (flags & DOCLOSE) {
2250 		struct buf *bp;
2251 		bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd);
2252 		if (bp != NULL)
2253 			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2254 		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2255 			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2256 	}
2257 
2258 	VOP_DESTROYVOBJECT(vp);
2259 
2260 	/*
2261 	 * Any other processes trying to obtain this lock must first
2262 	 * wait for VXLOCK to clear, then call the new lock operation.
2263 	 */
2264 	VOP_UNLOCK(vp, 0, td);
2265 
2266 	/*
2267 	 * If purging an active vnode, it must be closed and
2268 	 * deactivated before being reclaimed. Note that the
2269 	 * VOP_INACTIVE will unlock the vnode.
2270 	 */
2271 	if (active) {
2272 		if (flags & DOCLOSE)
2273 			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2274 		VI_LOCK(vp);
2275 		if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2276 			vp->v_iflag |= VI_DOINGINACT;
2277 			VI_UNLOCK(vp);
2278 			if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2279 				panic("vclean: cannot relock.");
2280 			VOP_INACTIVE(vp, td);
2281 			VI_LOCK(vp);
2282 			KASSERT(vp->v_iflag & VI_DOINGINACT,
2283 			    ("vclean: lost VI_DOINGINACT"));
2284 			vp->v_iflag &= ~VI_DOINGINACT;
2285 		}
2286 		VI_UNLOCK(vp);
2287 	}
2288 	/*
2289 	 * Reclaim the vnode.
2290 	 */
2291 	if (VOP_RECLAIM(vp, td))
2292 		panic("vclean: cannot reclaim");
2293 
2294 	if (active) {
2295 		/*
2296 		 * Inline copy of vrele() since VOP_INACTIVE
2297 		 * has already been called.
2298 		 */
2299 		VI_LOCK(vp);
2300 		v_incr_usecount(vp, -1);
2301 		if (vp->v_usecount <= 0) {
2302 #ifdef INVARIANTS
2303 			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2304 				vprint("vclean: bad ref count", vp);
2305 				panic("vclean: ref cnt");
2306 			}
2307 #endif
2308 			if (VSHOULDFREE(vp))
2309 				vfree(vp);
2310 		}
2311 		VI_UNLOCK(vp);
2312 	}
2313 	/*
2314 	 * Delete from old mount point vnode list.
2315 	 */
2316 	delmntque(vp);
2317 	cache_purge(vp);
2318 	VI_LOCK(vp);
2319 	if (VSHOULDFREE(vp))
2320 		vfree(vp);
2321 
2322 	/*
2323 	 * Done with purge, reset to the standard lock and
2324 	 * notify sleepers of the grim news.
2325 	 */
2326 	vp->v_vnlock = &vp->v_lock;
2327 	vp->v_op = &dead_vnodeops;
2328 	if (vp->v_pollinfo != NULL)
2329 		vn_pollgone(vp);
2330 	vp->v_tag = "none";
2331 }
2332 
2333 /*
2334  * Recycle an unused vnode to the front of the free list.
2335  * Release the passed interlock if the vnode will be recycled.
2336  */
2337 int
2338 vrecycle(vp, inter_lkp, td)
2339 	struct vnode *vp;
2340 	struct mtx *inter_lkp;
2341 	struct thread *td;
2342 {
2343 
2344 	VI_LOCK(vp);
2345 	if (vp->v_usecount == 0) {
2346 		if (inter_lkp) {
2347 			mtx_unlock(inter_lkp);
2348 		}
2349 		vgonel(vp, td);
2350 		return (1);
2351 	}
2352 	VI_UNLOCK(vp);
2353 	return (0);
2354 }
2355 
2356 /*
2357  * Eliminate all activity associated with a vnode
2358  * in preparation for reuse.
2359  */
2360 void
2361 vgone(vp)
2362 	register struct vnode *vp;
2363 {
2364 	struct thread *td = curthread;	/* XXX */
2365 
2366 	VI_LOCK(vp);
2367 	vgonel(vp, td);
2368 }
2369 
2370 /*
2371  * Disassociate a character device from the its underlying filesystem and
2372  * attach it to spec.  This is for use when the chr device is still active
2373  * and the filesystem is going away.
2374  */
2375 static void
2376 vgonechrl(struct vnode *vp, struct thread *td)
2377 {
2378 	ASSERT_VI_LOCKED(vp, "vgonechrl");
2379 	vx_lock(vp);
2380 	/*
2381 	 * This is a custom version of vclean() which does not tearm down
2382 	 * the bufs or vm objects held by this vnode.  This allows filesystems
2383 	 * to continue using devices which were discovered via another
2384 	 * filesystem that has been unmounted.
2385 	 */
2386 	if (vp->v_usecount != 0) {
2387 		v_incr_usecount(vp, 1);
2388 		/*
2389 		 * Ensure that no other activity can occur while the
2390 		 * underlying object is being cleaned out.
2391 		 */
2392 		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2393 		/*
2394 		 * Any other processes trying to obtain this lock must first
2395 		 * wait for VXLOCK to clear, then call the new lock operation.
2396 		 */
2397 		VOP_UNLOCK(vp, 0, td);
2398 		vp->v_vnlock = &vp->v_lock;
2399 		vp->v_tag = "orphanchr";
2400 		vp->v_op = &devfs_specops;
2401 		delmntque(vp);
2402 		cache_purge(vp);
2403 		vrele(vp);
2404 		VI_LOCK(vp);
2405 	} else
2406 		vclean(vp, 0, td);
2407 	vp->v_op = &devfs_specops;
2408 	vx_unlock(vp);
2409 	VI_UNLOCK(vp);
2410 }
2411 
2412 /*
2413  * vgone, with the vp interlock held.
2414  */
2415 void
2416 vgonel(vp, td)
2417 	struct vnode *vp;
2418 	struct thread *td;
2419 {
2420 	/*
2421 	 * If a vgone (or vclean) is already in progress,
2422 	 * wait until it is done and return.
2423 	 */
2424 	ASSERT_VI_LOCKED(vp, "vgonel");
2425 	if (vp->v_iflag & VI_XLOCK) {
2426 		vp->v_iflag |= VI_XWANT;
2427 		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2428 		return;
2429 	}
2430 	vx_lock(vp);
2431 
2432 	/*
2433 	 * Clean out the filesystem specific data.
2434 	 */
2435 	vclean(vp, DOCLOSE, td);
2436 	VI_UNLOCK(vp);
2437 
2438 	/*
2439 	 * If special device, remove it from special device alias list
2440 	 * if it is on one.
2441 	 */
2442 	VI_LOCK(vp);
2443 	if (vp->v_type == VCHR && vp->v_rdev != NULL)
2444 		dev_rel(vp);
2445 
2446 	/*
2447 	 * If it is on the freelist and not already at the head,
2448 	 * move it to the head of the list. The test of the
2449 	 * VDOOMED flag and the reference count of zero is because
2450 	 * it will be removed from the free list by getnewvnode,
2451 	 * but will not have its reference count incremented until
2452 	 * after calling vgone. If the reference count were
2453 	 * incremented first, vgone would (incorrectly) try to
2454 	 * close the previous instance of the underlying object.
2455 	 */
2456 	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2457 		mtx_lock(&vnode_free_list_mtx);
2458 		if (vp->v_iflag & VI_FREE) {
2459 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2460 		} else {
2461 			vp->v_iflag |= VI_FREE;
2462 			freevnodes++;
2463 		}
2464 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2465 		mtx_unlock(&vnode_free_list_mtx);
2466 	}
2467 
2468 	vp->v_type = VBAD;
2469 	vx_unlock(vp);
2470 	VI_UNLOCK(vp);
2471 }
2472 
2473 /*
2474  * Lookup a vnode by device number.
2475  */
2476 int
2477 vfinddev(dev, vpp)
2478 	struct cdev *dev;
2479 	struct vnode **vpp;
2480 {
2481 	struct vnode *vp;
2482 
2483 	dev_lock();
2484 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2485 		*vpp = vp;
2486 		dev_unlock();
2487 		return (1);
2488 	}
2489 	dev_unlock();
2490 	return (0);
2491 }
2492 
2493 /*
2494  * Calculate the total number of references to a special device.
2495  */
2496 int
2497 vcount(vp)
2498 	struct vnode *vp;
2499 {
2500 	int count;
2501 
2502 	dev_lock();
2503 	count = vp->v_rdev->si_usecount;
2504 	dev_unlock();
2505 	return (count);
2506 }
2507 
2508 /*
2509  * Same as above, but using the struct cdev *as argument
2510  */
2511 int
2512 count_dev(dev)
2513 	struct cdev *dev;
2514 {
2515 	int count;
2516 
2517 	dev_lock();
2518 	count = dev->si_usecount;
2519 	dev_unlock();
2520 	return(count);
2521 }
2522 
2523 /*
2524  * Print out a description of a vnode.
2525  */
2526 static char *typename[] =
2527 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2528 
2529 void
2530 vprint(label, vp)
2531 	char *label;
2532 	struct vnode *vp;
2533 {
2534 	char buf[96];
2535 
2536 	if (label != NULL)
2537 		printf("%s: %p: ", label, (void *)vp);
2538 	else
2539 		printf("%p: ", (void *)vp);
2540 	printf("tag %s, type %s\n    ", vp->v_tag, typename[vp->v_type]);
2541 	printf("usecount %d, writecount %d, refcount %d mountedhere %p\n",
2542 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2543 	buf[0] = '\0';
2544 	if (vp->v_vflag & VV_ROOT)
2545 		strcat(buf, "|VV_ROOT");
2546 	if (vp->v_vflag & VV_TEXT)
2547 		strcat(buf, "|VV_TEXT");
2548 	if (vp->v_vflag & VV_SYSTEM)
2549 		strcat(buf, "|VV_SYSTEM");
2550 	if (vp->v_iflag & VI_XLOCK)
2551 		strcat(buf, "|VI_XLOCK");
2552 	if (vp->v_iflag & VI_XWANT)
2553 		strcat(buf, "|VI_XWANT");
2554 	if (vp->v_iflag & VI_DOOMED)
2555 		strcat(buf, "|VI_DOOMED");
2556 	if (vp->v_iflag & VI_FREE)
2557 		strcat(buf, "|VI_FREE");
2558 	if (vp->v_vflag & VV_OBJBUF)
2559 		strcat(buf, "|VV_OBJBUF");
2560 	if (buf[0] != '\0')
2561 		printf("    flags (%s)", &buf[1]);
2562 	if (mtx_owned(VI_MTX(vp)))
2563 		printf(" VI_LOCKed");
2564 	printf("\n    ");
2565 	lockmgr_printinfo(vp->v_vnlock);
2566 	printf("\n");
2567 	if (vp->v_data != NULL)
2568 		VOP_PRINT(vp);
2569 }
2570 
2571 #ifdef DDB
2572 #include <ddb/ddb.h>
2573 /*
2574  * List all of the locked vnodes in the system.
2575  * Called when debugging the kernel.
2576  */
2577 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2578 {
2579 	struct mount *mp, *nmp;
2580 	struct vnode *vp;
2581 
2582 	/*
2583 	 * Note: because this is DDB, we can't obey the locking semantics
2584 	 * for these structures, which means we could catch an inconsistent
2585 	 * state and dereference a nasty pointer.  Not much to be done
2586 	 * about that.
2587 	 */
2588 	printf("Locked vnodes\n");
2589 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2590 		nmp = TAILQ_NEXT(mp, mnt_list);
2591 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2592 			if (VOP_ISLOCKED(vp, NULL))
2593 				vprint(NULL, vp);
2594 		}
2595 		nmp = TAILQ_NEXT(mp, mnt_list);
2596 	}
2597 }
2598 #endif
2599 
2600 /*
2601  * Fill in a struct xvfsconf based on a struct vfsconf.
2602  */
2603 static void
2604 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2605 {
2606 
2607 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2608 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2609 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2610 	xvfsp->vfc_flags = vfsp->vfc_flags;
2611 	/*
2612 	 * These are unused in userland, we keep them
2613 	 * to not break binary compatibility.
2614 	 */
2615 	xvfsp->vfc_vfsops = NULL;
2616 	xvfsp->vfc_next = NULL;
2617 }
2618 
2619 /*
2620  * Top level filesystem related information gathering.
2621  */
2622 static int
2623 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2624 {
2625 	struct vfsconf *vfsp;
2626 	struct xvfsconf xvfsp;
2627 	int error;
2628 
2629 	error = 0;
2630 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2631 		vfsconf2x(vfsp, &xvfsp);
2632 		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2633 		if (error)
2634 			break;
2635 	}
2636 	return (error);
2637 }
2638 
2639 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2640     "S,xvfsconf", "List of all configured filesystems");
2641 
2642 #ifndef BURN_BRIDGES
2643 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2644 
2645 static int
2646 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2647 {
2648 	int *name = (int *)arg1 - 1;	/* XXX */
2649 	u_int namelen = arg2 + 1;	/* XXX */
2650 	struct vfsconf *vfsp;
2651 	struct xvfsconf xvfsp;
2652 
2653 	printf("WARNING: userland calling deprecated sysctl, "
2654 	    "please rebuild world\n");
2655 
2656 #if 1 || defined(COMPAT_PRELITE2)
2657 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2658 	if (namelen == 1)
2659 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2660 #endif
2661 
2662 	switch (name[1]) {
2663 	case VFS_MAXTYPENUM:
2664 		if (namelen != 2)
2665 			return (ENOTDIR);
2666 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2667 	case VFS_CONF:
2668 		if (namelen != 3)
2669 			return (ENOTDIR);	/* overloaded */
2670 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2671 			if (vfsp->vfc_typenum == name[2])
2672 				break;
2673 		if (vfsp == NULL)
2674 			return (EOPNOTSUPP);
2675 		vfsconf2x(vfsp, &xvfsp);
2676 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2677 	}
2678 	return (EOPNOTSUPP);
2679 }
2680 
2681 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
2682 	"Generic filesystem");
2683 
2684 #if 1 || defined(COMPAT_PRELITE2)
2685 
2686 static int
2687 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2688 {
2689 	int error;
2690 	struct vfsconf *vfsp;
2691 	struct ovfsconf ovfs;
2692 
2693 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2694 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2695 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2696 		ovfs.vfc_index = vfsp->vfc_typenum;
2697 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2698 		ovfs.vfc_flags = vfsp->vfc_flags;
2699 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2700 		if (error)
2701 			return error;
2702 	}
2703 	return 0;
2704 }
2705 
2706 #endif /* 1 || COMPAT_PRELITE2 */
2707 #endif /* !BURN_BRIDGES */
2708 
2709 #define KINFO_VNODESLOP		10
2710 #ifdef notyet
2711 /*
2712  * Dump vnode list (via sysctl).
2713  */
2714 /* ARGSUSED */
2715 static int
2716 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2717 {
2718 	struct xvnode *xvn;
2719 	struct thread *td = req->td;
2720 	struct mount *mp;
2721 	struct vnode *vp;
2722 	int error, len, n;
2723 
2724 	/*
2725 	 * Stale numvnodes access is not fatal here.
2726 	 */
2727 	req->lock = 0;
2728 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2729 	if (!req->oldptr)
2730 		/* Make an estimate */
2731 		return (SYSCTL_OUT(req, 0, len));
2732 
2733 	error = sysctl_wire_old_buffer(req, 0);
2734 	if (error != 0)
2735 		return (error);
2736 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2737 	n = 0;
2738 	mtx_lock(&mountlist_mtx);
2739 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2740 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2741 			continue;
2742 		MNT_ILOCK(mp);
2743 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2744 			if (n == len)
2745 				break;
2746 			vref(vp);
2747 			xvn[n].xv_size = sizeof *xvn;
2748 			xvn[n].xv_vnode = vp;
2749 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2750 			XV_COPY(usecount);
2751 			XV_COPY(writecount);
2752 			XV_COPY(holdcnt);
2753 			XV_COPY(id);
2754 			XV_COPY(mount);
2755 			XV_COPY(numoutput);
2756 			XV_COPY(type);
2757 #undef XV_COPY
2758 			xvn[n].xv_flag = vp->v_vflag;
2759 
2760 			switch (vp->v_type) {
2761 			case VREG:
2762 			case VDIR:
2763 			case VLNK:
2764 				break;
2765 			case VBLK:
2766 			case VCHR:
2767 				if (vp->v_rdev == NULL) {
2768 					vrele(vp);
2769 					continue;
2770 				}
2771 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2772 				break;
2773 			case VSOCK:
2774 				xvn[n].xv_socket = vp->v_socket;
2775 				break;
2776 			case VFIFO:
2777 				xvn[n].xv_fifo = vp->v_fifoinfo;
2778 				break;
2779 			case VNON:
2780 			case VBAD:
2781 			default:
2782 				/* shouldn't happen? */
2783 				vrele(vp);
2784 				continue;
2785 			}
2786 			vrele(vp);
2787 			++n;
2788 		}
2789 		MNT_IUNLOCK(mp);
2790 		mtx_lock(&mountlist_mtx);
2791 		vfs_unbusy(mp, td);
2792 		if (n == len)
2793 			break;
2794 	}
2795 	mtx_unlock(&mountlist_mtx);
2796 
2797 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2798 	free(xvn, M_TEMP);
2799 	return (error);
2800 }
2801 
2802 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2803 	0, 0, sysctl_vnode, "S,xvnode", "");
2804 #endif
2805 
2806 /*
2807  * Unmount all filesystems. The list is traversed in reverse order
2808  * of mounting to avoid dependencies.
2809  */
2810 void
2811 vfs_unmountall()
2812 {
2813 	struct mount *mp;
2814 	struct thread *td;
2815 	int error;
2816 
2817 	if (curthread != NULL)
2818 		td = curthread;
2819 	else
2820 		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
2821 	/*
2822 	 * Since this only runs when rebooting, it is not interlocked.
2823 	 */
2824 	while(!TAILQ_EMPTY(&mountlist)) {
2825 		mp = TAILQ_LAST(&mountlist, mntlist);
2826 		error = dounmount(mp, MNT_FORCE, td);
2827 		if (error) {
2828 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2829 			printf("unmount of %s failed (",
2830 			    mp->mnt_stat.f_mntonname);
2831 			if (error == EBUSY)
2832 				printf("BUSY)\n");
2833 			else
2834 				printf("%d)\n", error);
2835 		} else {
2836 			/* The unmount has removed mp from the mountlist */
2837 		}
2838 	}
2839 }
2840 
2841 /*
2842  * perform msync on all vnodes under a mount point
2843  * the mount point must be locked.
2844  */
2845 void
2846 vfs_msync(struct mount *mp, int flags)
2847 {
2848 	struct vnode *vp, *nvp;
2849 	struct vm_object *obj;
2850 	int tries;
2851 
2852 	GIANT_REQUIRED;
2853 
2854 	tries = 5;
2855 	MNT_ILOCK(mp);
2856 loop:
2857 	TAILQ_FOREACH_SAFE(vp, &mp->mnt_nvnodelist, v_nmntvnodes, nvp) {
2858 		if (vp->v_mount != mp) {
2859 			if (--tries > 0)
2860 				goto loop;
2861 			break;
2862 		}
2863 
2864 		VI_LOCK(vp);
2865 		if (vp->v_iflag & VI_XLOCK) {
2866 			VI_UNLOCK(vp);
2867 			continue;
2868 		}
2869 
2870 		if ((vp->v_iflag & VI_OBJDIRTY) &&
2871 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2872 			MNT_IUNLOCK(mp);
2873 			if (!vget(vp,
2874 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
2875 			    curthread)) {
2876 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
2877 					vput(vp);
2878 					MNT_ILOCK(mp);
2879 					continue;
2880 				}
2881 
2882 				if (VOP_GETVOBJECT(vp, &obj) == 0) {
2883 					VM_OBJECT_LOCK(obj);
2884 					vm_object_page_clean(obj, 0, 0,
2885 					    flags == MNT_WAIT ?
2886 					    OBJPC_SYNC : OBJPC_NOSYNC);
2887 					VM_OBJECT_UNLOCK(obj);
2888 				}
2889 				vput(vp);
2890 			}
2891 			MNT_ILOCK(mp);
2892 			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
2893 				if (--tries > 0)
2894 					goto loop;
2895 				break;
2896 			}
2897 		} else
2898 			VI_UNLOCK(vp);
2899 	}
2900 	MNT_IUNLOCK(mp);
2901 }
2902 
2903 /*
2904  * Create the VM object needed for VMIO and mmap support.  This
2905  * is done for all VREG files in the system.  Some filesystems might
2906  * afford the additional metadata buffering capability of the
2907  * VMIO code by making the device node be VMIO mode also.
2908  *
2909  * vp must be locked when vfs_object_create is called.
2910  */
2911 int
2912 vfs_object_create(struct vnode *vp, struct thread *td, struct ucred *cred)
2913 {
2914 
2915 	GIANT_REQUIRED;
2916 	return (VOP_CREATEVOBJECT(vp, cred, td));
2917 }
2918 
2919 /*
2920  * Mark a vnode as free, putting it up for recycling.
2921  */
2922 void
2923 vfree(struct vnode *vp)
2924 {
2925 
2926 	ASSERT_VI_LOCKED(vp, "vfree");
2927 	mtx_lock(&vnode_free_list_mtx);
2928 	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
2929 	if (vp->v_iflag & VI_AGE) {
2930 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2931 	} else {
2932 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2933 	}
2934 	freevnodes++;
2935 	mtx_unlock(&vnode_free_list_mtx);
2936 	vp->v_iflag &= ~VI_AGE;
2937 	vp->v_iflag |= VI_FREE;
2938 }
2939 
2940 /*
2941  * Opposite of vfree() - mark a vnode as in use.
2942  */
2943 void
2944 vbusy(struct vnode *vp)
2945 {
2946 
2947 	ASSERT_VI_LOCKED(vp, "vbusy");
2948 	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
2949 
2950 	mtx_lock(&vnode_free_list_mtx);
2951 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2952 	freevnodes--;
2953 	mtx_unlock(&vnode_free_list_mtx);
2954 
2955 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
2956 }
2957 
2958 /*
2959  * Initalize per-vnode helper structure to hold poll-related state.
2960  */
2961 void
2962 v_addpollinfo(struct vnode *vp)
2963 {
2964 	struct vpollinfo *vi;
2965 
2966 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
2967 	if (vp->v_pollinfo != NULL) {
2968 		uma_zfree(vnodepoll_zone, vi);
2969 		return;
2970 	}
2971 	vp->v_pollinfo = vi;
2972 	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
2973 	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note,
2974 	    &vp->v_pollinfo->vpi_lock);
2975 }
2976 
2977 /*
2978  * Record a process's interest in events which might happen to
2979  * a vnode.  Because poll uses the historic select-style interface
2980  * internally, this routine serves as both the ``check for any
2981  * pending events'' and the ``record my interest in future events''
2982  * functions.  (These are done together, while the lock is held,
2983  * to avoid race conditions.)
2984  */
2985 int
2986 vn_pollrecord(vp, td, events)
2987 	struct vnode *vp;
2988 	struct thread *td;
2989 	short events;
2990 {
2991 
2992 	if (vp->v_pollinfo == NULL)
2993 		v_addpollinfo(vp);
2994 	mtx_lock(&vp->v_pollinfo->vpi_lock);
2995 	if (vp->v_pollinfo->vpi_revents & events) {
2996 		/*
2997 		 * This leaves events we are not interested
2998 		 * in available for the other process which
2999 		 * which presumably had requested them
3000 		 * (otherwise they would never have been
3001 		 * recorded).
3002 		 */
3003 		events &= vp->v_pollinfo->vpi_revents;
3004 		vp->v_pollinfo->vpi_revents &= ~events;
3005 
3006 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3007 		return events;
3008 	}
3009 	vp->v_pollinfo->vpi_events |= events;
3010 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3011 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3012 	return 0;
3013 }
3014 
3015 /*
3016  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3017  * it is possible for us to miss an event due to race conditions, but
3018  * that condition is expected to be rare, so for the moment it is the
3019  * preferred interface.
3020  */
3021 void
3022 vn_pollevent(vp, events)
3023 	struct vnode *vp;
3024 	short events;
3025 {
3026 
3027 	if (vp->v_pollinfo == NULL)
3028 		v_addpollinfo(vp);
3029 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3030 	if (vp->v_pollinfo->vpi_events & events) {
3031 		/*
3032 		 * We clear vpi_events so that we don't
3033 		 * call selwakeup() twice if two events are
3034 		 * posted before the polling process(es) is
3035 		 * awakened.  This also ensures that we take at
3036 		 * most one selwakeup() if the polling process
3037 		 * is no longer interested.  However, it does
3038 		 * mean that only one event can be noticed at
3039 		 * a time.  (Perhaps we should only clear those
3040 		 * event bits which we note?) XXX
3041 		 */
3042 		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3043 		vp->v_pollinfo->vpi_revents |= events;
3044 		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3045 	}
3046 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3047 }
3048 
3049 /*
3050  * Wake up anyone polling on vp because it is being revoked.
3051  * This depends on dead_poll() returning POLLHUP for correct
3052  * behavior.
3053  */
3054 void
3055 vn_pollgone(vp)
3056 	struct vnode *vp;
3057 {
3058 
3059 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3060 	VN_KNOTE_LOCKED(vp, NOTE_REVOKE);
3061 	if (vp->v_pollinfo->vpi_events) {
3062 		vp->v_pollinfo->vpi_events = 0;
3063 		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3064 	}
3065 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3066 }
3067 
3068 
3069 
3070 /*
3071  * Routine to create and manage a filesystem syncer vnode.
3072  */
3073 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3074 static int	sync_fsync(struct  vop_fsync_args *);
3075 static int	sync_inactive(struct  vop_inactive_args *);
3076 static int	sync_reclaim(struct  vop_reclaim_args *);
3077 
3078 static struct vop_vector sync_vnodeops = {
3079 	.vop_bypass =	VOP_EOPNOTSUPP,
3080 	.vop_close =	sync_close,		/* close */
3081 	.vop_fsync =	sync_fsync,		/* fsync */
3082 	.vop_inactive =	sync_inactive,	/* inactive */
3083 	.vop_reclaim =	sync_reclaim,	/* reclaim */
3084 	.vop_lock =	vop_stdlock,	/* lock */
3085 	.vop_unlock =	vop_stdunlock,	/* unlock */
3086 	.vop_islocked =	vop_stdislocked,	/* islocked */
3087 };
3088 
3089 /*
3090  * Create a new filesystem syncer vnode for the specified mount point.
3091  */
3092 int
3093 vfs_allocate_syncvnode(mp)
3094 	struct mount *mp;
3095 {
3096 	struct vnode *vp;
3097 	static long start, incr, next;
3098 	int error;
3099 
3100 	/* Allocate a new vnode */
3101 	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
3102 		mp->mnt_syncer = NULL;
3103 		return (error);
3104 	}
3105 	vp->v_type = VNON;
3106 	/*
3107 	 * Place the vnode onto the syncer worklist. We attempt to
3108 	 * scatter them about on the list so that they will go off
3109 	 * at evenly distributed times even if all the filesystems
3110 	 * are mounted at once.
3111 	 */
3112 	next += incr;
3113 	if (next == 0 || next > syncer_maxdelay) {
3114 		start /= 2;
3115 		incr /= 2;
3116 		if (start == 0) {
3117 			start = syncer_maxdelay / 2;
3118 			incr = syncer_maxdelay;
3119 		}
3120 		next = start;
3121 	}
3122 	VI_LOCK(vp);
3123 	vn_syncer_add_to_worklist(&vp->v_bufobj,
3124 	    syncdelay > 0 ? next % syncdelay : 0);
3125 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3126 	mtx_lock(&sync_mtx);
3127 	sync_vnode_count++;
3128 	mtx_unlock(&sync_mtx);
3129 	VI_UNLOCK(vp);
3130 	mp->mnt_syncer = vp;
3131 	return (0);
3132 }
3133 
3134 /*
3135  * Do a lazy sync of the filesystem.
3136  */
3137 static int
3138 sync_fsync(ap)
3139 	struct vop_fsync_args /* {
3140 		struct vnode *a_vp;
3141 		struct ucred *a_cred;
3142 		int a_waitfor;
3143 		struct thread *a_td;
3144 	} */ *ap;
3145 {
3146 	struct vnode *syncvp = ap->a_vp;
3147 	struct mount *mp = syncvp->v_mount;
3148 	struct thread *td = ap->a_td;
3149 	int error, asyncflag;
3150 	struct bufobj *bo;
3151 
3152 	/*
3153 	 * We only need to do something if this is a lazy evaluation.
3154 	 */
3155 	if (ap->a_waitfor != MNT_LAZY)
3156 		return (0);
3157 
3158 	/*
3159 	 * Move ourselves to the back of the sync list.
3160 	 */
3161 	bo = &syncvp->v_bufobj;
3162 	BO_LOCK(bo);
3163 	vn_syncer_add_to_worklist(bo, syncdelay);
3164 	BO_UNLOCK(bo);
3165 
3166 	/*
3167 	 * Walk the list of vnodes pushing all that are dirty and
3168 	 * not already on the sync list.
3169 	 */
3170 	mtx_lock(&mountlist_mtx);
3171 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3172 		mtx_unlock(&mountlist_mtx);
3173 		return (0);
3174 	}
3175 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3176 		vfs_unbusy(mp, td);
3177 		return (0);
3178 	}
3179 	asyncflag = mp->mnt_flag & MNT_ASYNC;
3180 	mp->mnt_flag &= ~MNT_ASYNC;
3181 	vfs_msync(mp, MNT_NOWAIT);
3182 	error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3183 	if (asyncflag)
3184 		mp->mnt_flag |= MNT_ASYNC;
3185 	vn_finished_write(mp);
3186 	vfs_unbusy(mp, td);
3187 	return (error);
3188 }
3189 
3190 /*
3191  * The syncer vnode is no referenced.
3192  */
3193 static int
3194 sync_inactive(ap)
3195 	struct vop_inactive_args /* {
3196 		struct vnode *a_vp;
3197 		struct thread *a_td;
3198 	} */ *ap;
3199 {
3200 
3201 	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3202 	vgone(ap->a_vp);
3203 	return (0);
3204 }
3205 
3206 /*
3207  * The syncer vnode is no longer needed and is being decommissioned.
3208  *
3209  * Modifications to the worklist must be protected by sync_mtx.
3210  */
3211 static int
3212 sync_reclaim(ap)
3213 	struct vop_reclaim_args /* {
3214 		struct vnode *a_vp;
3215 	} */ *ap;
3216 {
3217 	struct vnode *vp = ap->a_vp;
3218 	struct bufobj *bo;
3219 
3220 	VI_LOCK(vp);
3221 	bo = &vp->v_bufobj;
3222 	vp->v_mount->mnt_syncer = NULL;
3223 	if (bo->bo_flag & BO_ONWORKLST) {
3224 		mtx_lock(&sync_mtx);
3225 		LIST_REMOVE(bo, bo_synclist);
3226  		syncer_worklist_len--;
3227 		sync_vnode_count--;
3228 		mtx_unlock(&sync_mtx);
3229 		bo->bo_flag &= ~BO_ONWORKLST;
3230 	}
3231 	VI_UNLOCK(vp);
3232 
3233 	return (0);
3234 }
3235 
3236 /*
3237  * Check if vnode represents a disk device
3238  */
3239 int
3240 vn_isdisk(vp, errp)
3241 	struct vnode *vp;
3242 	int *errp;
3243 {
3244 	int error;
3245 
3246 	error = 0;
3247 	dev_lock();
3248 	if (vp->v_type != VCHR)
3249 		error = ENOTBLK;
3250 	else if (vp->v_rdev == NULL)
3251 		error = ENXIO;
3252 	else if (vp->v_rdev->si_devsw == NULL)
3253 		error = ENXIO;
3254 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3255 		error = ENOTBLK;
3256 	dev_unlock();
3257 	if (errp != NULL)
3258 		*errp = error;
3259 	return (error == 0);
3260 }
3261 
3262 /*
3263  * Free data allocated by namei(); see namei(9) for details.
3264  */
3265 void
3266 NDFREE(ndp, flags)
3267      struct nameidata *ndp;
3268      const u_int flags;
3269 {
3270 
3271 	if (!(flags & NDF_NO_FREE_PNBUF) &&
3272 	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3273 		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3274 		ndp->ni_cnd.cn_flags &= ~HASBUF;
3275 	}
3276 	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3277 	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3278 	    ndp->ni_dvp != ndp->ni_vp)
3279 		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3280 	if (!(flags & NDF_NO_DVP_RELE) &&
3281 	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3282 		vrele(ndp->ni_dvp);
3283 		ndp->ni_dvp = NULL;
3284 	}
3285 	if (!(flags & NDF_NO_VP_UNLOCK) &&
3286 	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3287 		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3288 	if (!(flags & NDF_NO_VP_RELE) &&
3289 	    ndp->ni_vp) {
3290 		vrele(ndp->ni_vp);
3291 		ndp->ni_vp = NULL;
3292 	}
3293 	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3294 	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3295 		vrele(ndp->ni_startdir);
3296 		ndp->ni_startdir = NULL;
3297 	}
3298 }
3299 
3300 /*
3301  * Common filesystem object access control check routine.  Accepts a
3302  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3303  * and optional call-by-reference privused argument allowing vaccess()
3304  * to indicate to the caller whether privilege was used to satisfy the
3305  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3306  */
3307 int
3308 vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3309 	enum vtype type;
3310 	mode_t file_mode;
3311 	uid_t file_uid;
3312 	gid_t file_gid;
3313 	mode_t acc_mode;
3314 	struct ucred *cred;
3315 	int *privused;
3316 {
3317 	mode_t dac_granted;
3318 #ifdef CAPABILITIES
3319 	mode_t cap_granted;
3320 #endif
3321 
3322 	/*
3323 	 * Look for a normal, non-privileged way to access the file/directory
3324 	 * as requested.  If it exists, go with that.
3325 	 */
3326 
3327 	if (privused != NULL)
3328 		*privused = 0;
3329 
3330 	dac_granted = 0;
3331 
3332 	/* Check the owner. */
3333 	if (cred->cr_uid == file_uid) {
3334 		dac_granted |= VADMIN;
3335 		if (file_mode & S_IXUSR)
3336 			dac_granted |= VEXEC;
3337 		if (file_mode & S_IRUSR)
3338 			dac_granted |= VREAD;
3339 		if (file_mode & S_IWUSR)
3340 			dac_granted |= (VWRITE | VAPPEND);
3341 
3342 		if ((acc_mode & dac_granted) == acc_mode)
3343 			return (0);
3344 
3345 		goto privcheck;
3346 	}
3347 
3348 	/* Otherwise, check the groups (first match) */
3349 	if (groupmember(file_gid, cred)) {
3350 		if (file_mode & S_IXGRP)
3351 			dac_granted |= VEXEC;
3352 		if (file_mode & S_IRGRP)
3353 			dac_granted |= VREAD;
3354 		if (file_mode & S_IWGRP)
3355 			dac_granted |= (VWRITE | VAPPEND);
3356 
3357 		if ((acc_mode & dac_granted) == acc_mode)
3358 			return (0);
3359 
3360 		goto privcheck;
3361 	}
3362 
3363 	/* Otherwise, check everyone else. */
3364 	if (file_mode & S_IXOTH)
3365 		dac_granted |= VEXEC;
3366 	if (file_mode & S_IROTH)
3367 		dac_granted |= VREAD;
3368 	if (file_mode & S_IWOTH)
3369 		dac_granted |= (VWRITE | VAPPEND);
3370 	if ((acc_mode & dac_granted) == acc_mode)
3371 		return (0);
3372 
3373 privcheck:
3374 	if (!suser_cred(cred, SUSER_ALLOWJAIL)) {
3375 		/* XXX audit: privilege used */
3376 		if (privused != NULL)
3377 			*privused = 1;
3378 		return (0);
3379 	}
3380 
3381 #ifdef CAPABILITIES
3382 	/*
3383 	 * Build a capability mask to determine if the set of capabilities
3384 	 * satisfies the requirements when combined with the granted mask
3385 	 * from above.
3386 	 * For each capability, if the capability is required, bitwise
3387 	 * or the request type onto the cap_granted mask.
3388 	 */
3389 	cap_granted = 0;
3390 
3391 	if (type == VDIR) {
3392 		/*
3393 		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3394 		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3395 		 */
3396 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3397 		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3398 			cap_granted |= VEXEC;
3399 	} else {
3400 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3401 		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, SUSER_ALLOWJAIL))
3402 			cap_granted |= VEXEC;
3403 	}
3404 
3405 	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3406 	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3407 		cap_granted |= VREAD;
3408 
3409 	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3410 	    !cap_check(cred, NULL, CAP_DAC_WRITE, SUSER_ALLOWJAIL))
3411 		cap_granted |= (VWRITE | VAPPEND);
3412 
3413 	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3414 	    !cap_check(cred, NULL, CAP_FOWNER, SUSER_ALLOWJAIL))
3415 		cap_granted |= VADMIN;
3416 
3417 	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3418 		/* XXX audit: privilege used */
3419 		if (privused != NULL)
3420 			*privused = 1;
3421 		return (0);
3422 	}
3423 #endif
3424 
3425 	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3426 }
3427 
3428 /*
3429  * Credential check based on process requesting service, and per-attribute
3430  * permissions.
3431  */
3432 int
3433 extattr_check_cred(struct vnode *vp, int attrnamespace,
3434     struct ucred *cred, struct thread *td, int access)
3435 {
3436 
3437 	/*
3438 	 * Kernel-invoked always succeeds.
3439 	 */
3440 	if (cred == NOCRED)
3441 		return (0);
3442 
3443 	/*
3444 	 * Do not allow privileged processes in jail to directly
3445 	 * manipulate system attributes.
3446 	 *
3447 	 * XXX What capability should apply here?
3448 	 * Probably CAP_SYS_SETFFLAG.
3449 	 */
3450 	switch (attrnamespace) {
3451 	case EXTATTR_NAMESPACE_SYSTEM:
3452 		/* Potentially should be: return (EPERM); */
3453 		return (suser_cred(cred, 0));
3454 	case EXTATTR_NAMESPACE_USER:
3455 		return (VOP_ACCESS(vp, access, cred, td));
3456 	default:
3457 		return (EPERM);
3458 	}
3459 }
3460 
3461 #ifdef DEBUG_VFS_LOCKS
3462 /*
3463  * This only exists to supress warnings from unlocked specfs accesses.  It is
3464  * no longer ok to have an unlocked VFS.
3465  */
3466 #define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3467 
3468 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3469 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3470 
3471 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3472 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3473 
3474 int vfs_badlock_print = 1;	/* Print lock violations. */
3475 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3476 
3477 #ifdef KDB
3478 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3479 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3480 #endif
3481 
3482 static void
3483 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3484 {
3485 
3486 #ifdef KDB
3487 	if (vfs_badlock_backtrace)
3488 		kdb_backtrace();
3489 #endif
3490 	if (vfs_badlock_print)
3491 		printf("%s: %p %s\n", str, (void *)vp, msg);
3492 	if (vfs_badlock_ddb)
3493 		kdb_enter("lock violation");
3494 }
3495 
3496 void
3497 assert_vi_locked(struct vnode *vp, const char *str)
3498 {
3499 
3500 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3501 		vfs_badlock("interlock is not locked but should be", str, vp);
3502 }
3503 
3504 void
3505 assert_vi_unlocked(struct vnode *vp, const char *str)
3506 {
3507 
3508 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3509 		vfs_badlock("interlock is locked but should not be", str, vp);
3510 }
3511 
3512 void
3513 assert_vop_locked(struct vnode *vp, const char *str)
3514 {
3515 
3516 	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3517 		vfs_badlock("is not locked but should be", str, vp);
3518 }
3519 
3520 void
3521 assert_vop_unlocked(struct vnode *vp, const char *str)
3522 {
3523 
3524 	if (vp && !IGNORE_LOCK(vp) &&
3525 	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3526 		vfs_badlock("is locked but should not be", str, vp);
3527 }
3528 
3529 #if 0
3530 void
3531 assert_vop_elocked(struct vnode *vp, const char *str)
3532 {
3533 
3534 	if (vp && !IGNORE_LOCK(vp) &&
3535 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3536 		vfs_badlock("is not exclusive locked but should be", str, vp);
3537 }
3538 
3539 void
3540 assert_vop_elocked_other(struct vnode *vp, const char *str)
3541 {
3542 
3543 	if (vp && !IGNORE_LOCK(vp) &&
3544 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3545 		vfs_badlock("is not exclusive locked by another thread",
3546 		    str, vp);
3547 }
3548 
3549 void
3550 assert_vop_slocked(struct vnode *vp, const char *str)
3551 {
3552 
3553 	if (vp && !IGNORE_LOCK(vp) &&
3554 	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3555 		vfs_badlock("is not locked shared but should be", str, vp);
3556 }
3557 #endif /* 0 */
3558 
3559 void
3560 vop_rename_pre(void *ap)
3561 {
3562 	struct vop_rename_args *a = ap;
3563 
3564 	if (a->a_tvp)
3565 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3566 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3567 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3568 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3569 
3570 	/* Check the source (from). */
3571 	if (a->a_tdvp != a->a_fdvp)
3572 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3573 	if (a->a_tvp != a->a_fvp)
3574 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");
3575 
3576 	/* Check the target. */
3577 	if (a->a_tvp)
3578 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3579 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3580 }
3581 
3582 void
3583 vop_strategy_pre(void *ap)
3584 {
3585 	struct vop_strategy_args *a;
3586 	struct buf *bp;
3587 
3588 	a = ap;
3589 	bp = a->a_bp;
3590 
3591 	/*
3592 	 * Cluster ops lock their component buffers but not the IO container.
3593 	 */
3594 	if ((bp->b_flags & B_CLUSTER) != 0)
3595 		return;
3596 
3597 	if (BUF_REFCNT(bp) < 1) {
3598 		if (vfs_badlock_print)
3599 			printf(
3600 			    "VOP_STRATEGY: bp is not locked but should be\n");
3601 		if (vfs_badlock_ddb)
3602 			kdb_enter("lock violation");
3603 	}
3604 }
3605 
3606 void
3607 vop_lookup_pre(void *ap)
3608 {
3609 	struct vop_lookup_args *a;
3610 	struct vnode *dvp;
3611 
3612 	a = ap;
3613 	dvp = a->a_dvp;
3614 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3615 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3616 }
3617 
3618 void
3619 vop_lookup_post(void *ap, int rc)
3620 {
3621 	struct vop_lookup_args *a;
3622 	struct componentname *cnp;
3623 	struct vnode *dvp;
3624 	struct vnode *vp;
3625 	int flags;
3626 
3627 	a = ap;
3628 	dvp = a->a_dvp;
3629 	cnp = a->a_cnp;
3630 	vp = *(a->a_vpp);
3631 	flags = cnp->cn_flags;
3632 
3633 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3634 
3635 	/*
3636 	 * If this is the last path component for this lookup and LOCKPARENT
3637 	 * is set, OR if there is an error the directory has to be locked.
3638 	 */
3639 	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
3640 		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
3641 	else if (rc != 0)
3642 		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
3643 	else if (dvp != vp)
3644 		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
3645 	if (flags & PDIRUNLOCK)
3646 		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
3647 }
3648 
3649 void
3650 vop_lock_pre(void *ap)
3651 {
3652 	struct vop_lock_args *a = ap;
3653 
3654 	if ((a->a_flags & LK_INTERLOCK) == 0)
3655 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3656 	else
3657 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3658 }
3659 
3660 void
3661 vop_lock_post(void *ap, int rc)
3662 {
3663 	struct vop_lock_args *a = ap;
3664 
3665 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3666 	if (rc == 0)
3667 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3668 }
3669 
3670 void
3671 vop_unlock_pre(void *ap)
3672 {
3673 	struct vop_unlock_args *a = ap;
3674 
3675 	if (a->a_flags & LK_INTERLOCK)
3676 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3677 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3678 }
3679 
3680 void
3681 vop_unlock_post(void *ap, int rc)
3682 {
3683 	struct vop_unlock_args *a = ap;
3684 
3685 	if (a->a_flags & LK_INTERLOCK)
3686 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3687 }
3688 #endif /* DEBUG_VFS_LOCKS */
3689 
3690 static struct knlist fs_knlist;
3691 
3692 static void
3693 vfs_event_init(void *arg)
3694 {
3695 	knlist_init(&fs_knlist, NULL);
3696 }
3697 /* XXX - correct order? */
3698 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3699 
3700 void
3701 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3702 {
3703 
3704 	KNOTE_UNLOCKED(&fs_knlist, event);
3705 }
3706 
3707 static int	filt_fsattach(struct knote *kn);
3708 static void	filt_fsdetach(struct knote *kn);
3709 static int	filt_fsevent(struct knote *kn, long hint);
3710 
3711 struct filterops fs_filtops =
3712 	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3713 
3714 static int
3715 filt_fsattach(struct knote *kn)
3716 {
3717 
3718 	kn->kn_flags |= EV_CLEAR;
3719 	knlist_add(&fs_knlist, kn, 0);
3720 	return (0);
3721 }
3722 
3723 static void
3724 filt_fsdetach(struct knote *kn)
3725 {
3726 
3727 	knlist_remove(&fs_knlist, kn, 0);
3728 }
3729 
3730 static int
3731 filt_fsevent(struct knote *kn, long hint)
3732 {
3733 
3734 	kn->kn_fflags |= hint;
3735 	return (kn->kn_fflags != 0);
3736 }
3737 
3738 static int
3739 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
3740 {
3741 	struct vfsidctl vc;
3742 	int error;
3743 	struct mount *mp;
3744 
3745 	error = SYSCTL_IN(req, &vc, sizeof(vc));
3746 	if (error)
3747 		return (error);
3748 	if (vc.vc_vers != VFS_CTL_VERS1)
3749 		return (EINVAL);
3750 	mp = vfs_getvfs(&vc.vc_fsid);
3751 	if (mp == NULL)
3752 		return (ENOENT);
3753 	/* ensure that a specific sysctl goes to the right filesystem. */
3754 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
3755 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
3756 		return (EINVAL);
3757 	}
3758 	VCTLTOREQ(&vc, req);
3759 	return (VFS_SYSCTL(mp, vc.vc_op, req));
3760 }
3761 
3762 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR,
3763         NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid");
3764 
3765 /*
3766  * Function to initialize a va_filerev field sensibly.
3767  * XXX: Wouldn't a random number make a lot more sense ??
3768  */
3769 u_quad_t
3770 init_va_filerev(void)
3771 {
3772 	struct bintime bt;
3773 
3774 	getbinuptime(&bt);
3775 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
3776 }
3777