xref: /freebsd/sys/kern/vfs_subr.c (revision 580d00f42fdd94ce43583cc45fe3f1d9fdff47d4)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 #include "opt_ddb.h"
45 #include "opt_watchdog.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/asan.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/capsicum.h>
53 #include <sys/condvar.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/dirent.h>
57 #include <sys/event.h>
58 #include <sys/eventhandler.h>
59 #include <sys/extattr.h>
60 #include <sys/file.h>
61 #include <sys/fcntl.h>
62 #include <sys/jail.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/limits.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smr.h>
80 #include <sys/smp.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <machine/stdarg.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_kern.h>
99 #include <vm/uma.h>
100 
101 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
102 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
103 #endif
104 
105 #ifdef DDB
106 #include <ddb/ddb.h>
107 #endif
108 
109 static void	delmntque(struct vnode *vp);
110 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
111 		    int slpflag, int slptimeo);
112 static void	syncer_shutdown(void *arg, int howto);
113 static int	vtryrecycle(struct vnode *vp);
114 static void	v_init_counters(struct vnode *);
115 static void	vn_seqc_init(struct vnode *);
116 static void	vn_seqc_write_end_free(struct vnode *vp);
117 static void	vgonel(struct vnode *);
118 static bool	vhold_recycle_free(struct vnode *);
119 static void	vdropl_recycle(struct vnode *vp);
120 static void	vdrop_recycle(struct vnode *vp);
121 static void	vfs_knllock(void *arg);
122 static void	vfs_knlunlock(void *arg);
123 static void	vfs_knl_assert_lock(void *arg, int what);
124 static void	destroy_vpollinfo(struct vpollinfo *vi);
125 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
126 		    daddr_t startlbn, daddr_t endlbn);
127 static void	vnlru_recalc(void);
128 
129 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
130     "vnode configuration and statistics");
131 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
132     "vnode configuration");
133 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
134     "vnode statistics");
135 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
136     "vnode recycling");
137 
138 /*
139  * Number of vnodes in existence.  Increased whenever getnewvnode()
140  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
141  */
142 static u_long __exclusive_cache_line numvnodes;
143 
144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence (legacy)");
146 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
147     "Number of vnodes in existence");
148 
149 static counter_u64_t vnodes_created;
150 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
151     "Number of vnodes created by getnewvnode (legacy)");
152 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
153     "Number of vnodes created by getnewvnode");
154 
155 /*
156  * Conversion tables for conversion from vnode types to inode formats
157  * and back.
158  */
159 __enum_uint8(vtype) iftovt_tab[16] = {
160 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
161 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
162 };
163 int vttoif_tab[10] = {
164 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
165 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
166 };
167 
168 /*
169  * List of allocates vnodes in the system.
170  */
171 static TAILQ_HEAD(freelst, vnode) vnode_list;
172 static struct vnode *vnode_list_free_marker;
173 static struct vnode *vnode_list_reclaim_marker;
174 
175 /*
176  * "Free" vnode target.  Free vnodes are rarely completely free, but are
177  * just ones that are cheap to recycle.  Usually they are for files which
178  * have been stat'd but not read; these usually have inode and namecache
179  * data attached to them.  This target is the preferred minimum size of a
180  * sub-cache consisting mostly of such files. The system balances the size
181  * of this sub-cache with its complement to try to prevent either from
182  * thrashing while the other is relatively inactive.  The targets express
183  * a preference for the best balance.
184  *
185  * "Above" this target there are 2 further targets (watermarks) related
186  * to recyling of free vnodes.  In the best-operating case, the cache is
187  * exactly full, the free list has size between vlowat and vhiwat above the
188  * free target, and recycling from it and normal use maintains this state.
189  * Sometimes the free list is below vlowat or even empty, but this state
190  * is even better for immediate use provided the cache is not full.
191  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
192  * ones) to reach one of these states.  The watermarks are currently hard-
193  * coded as 4% and 9% of the available space higher.  These and the default
194  * of 25% for wantfreevnodes are too large if the memory size is large.
195  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
196  * whenever vnlru_proc() becomes active.
197  */
198 static long wantfreevnodes;
199 static long __exclusive_cache_line freevnodes;
200 static long freevnodes_old;
201 
202 static counter_u64_t recycles_count;
203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
204     "Number of vnodes recycled to meet vnode cache targets (legacy)");
205 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static counter_u64_t recycles_free_count;
209 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
210     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
211 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
212     "Number of free vnodes recycled to meet vnode cache targets");
213 
214 static counter_u64_t vnode_skipped_requeues;
215 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
216     "Number of times LRU requeue was skipped due to lock contention");
217 
218 static u_long deferred_inact;
219 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
220     &deferred_inact, 0, "Number of times inactive processing was deferred");
221 
222 /* To keep more than one thread at a time from running vfs_getnewfsid */
223 static struct mtx mntid_mtx;
224 
225 /*
226  * Lock for any access to the following:
227  *	vnode_list
228  *	numvnodes
229  *	freevnodes
230  */
231 static struct mtx __exclusive_cache_line vnode_list_mtx;
232 
233 /* Publicly exported FS */
234 struct nfs_public nfs_pub;
235 
236 static uma_zone_t buf_trie_zone;
237 static smr_t buf_trie_smr;
238 
239 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
240 static uma_zone_t vnode_zone;
241 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
242 
243 __read_frequently smr_t vfs_smr;
244 
245 /*
246  * The workitem queue.
247  *
248  * It is useful to delay writes of file data and filesystem metadata
249  * for tens of seconds so that quickly created and deleted files need
250  * not waste disk bandwidth being created and removed. To realize this,
251  * we append vnodes to a "workitem" queue. When running with a soft
252  * updates implementation, most pending metadata dependencies should
253  * not wait for more than a few seconds. Thus, mounted on block devices
254  * are delayed only about a half the time that file data is delayed.
255  * Similarly, directory updates are more critical, so are only delayed
256  * about a third the time that file data is delayed. Thus, there are
257  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
258  * one each second (driven off the filesystem syncer process). The
259  * syncer_delayno variable indicates the next queue that is to be processed.
260  * Items that need to be processed soon are placed in this queue:
261  *
262  *	syncer_workitem_pending[syncer_delayno]
263  *
264  * A delay of fifteen seconds is done by placing the request fifteen
265  * entries later in the queue:
266  *
267  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
268  *
269  */
270 static int syncer_delayno;
271 static long syncer_mask;
272 LIST_HEAD(synclist, bufobj);
273 static struct synclist *syncer_workitem_pending;
274 /*
275  * The sync_mtx protects:
276  *	bo->bo_synclist
277  *	sync_vnode_count
278  *	syncer_delayno
279  *	syncer_state
280  *	syncer_workitem_pending
281  *	syncer_worklist_len
282  *	rushjob
283  */
284 static struct mtx sync_mtx;
285 static struct cv sync_wakeup;
286 
287 #define SYNCER_MAXDELAY		32
288 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
289 static int syncdelay = 30;		/* max time to delay syncing data */
290 static int filedelay = 30;		/* time to delay syncing files */
291 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
292     "Time to delay syncing files (in seconds)");
293 static int dirdelay = 29;		/* time to delay syncing directories */
294 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
295     "Time to delay syncing directories (in seconds)");
296 static int metadelay = 28;		/* time to delay syncing metadata */
297 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
298     "Time to delay syncing metadata (in seconds)");
299 static int rushjob;		/* number of slots to run ASAP */
300 static int stat_rush_requests;	/* number of times I/O speeded up */
301 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
302     "Number of times I/O speeded up (rush requests)");
303 
304 #define	VDBATCH_SIZE 8
305 struct vdbatch {
306 	u_int index;
307 	struct mtx lock;
308 	struct vnode *tab[VDBATCH_SIZE];
309 };
310 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
311 
312 static void	vdbatch_dequeue(struct vnode *vp);
313 
314 /*
315  * When shutting down the syncer, run it at four times normal speed.
316  */
317 #define SYNCER_SHUTDOWN_SPEEDUP		4
318 static int sync_vnode_count;
319 static int syncer_worklist_len;
320 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
321     syncer_state;
322 
323 /* Target for maximum number of vnodes. */
324 u_long desiredvnodes;
325 static u_long gapvnodes;		/* gap between wanted and desired */
326 static u_long vhiwat;		/* enough extras after expansion */
327 static u_long vlowat;		/* minimal extras before expansion */
328 static bool vstir;		/* nonzero to stir non-free vnodes */
329 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
330 
331 static u_long vnlru_read_freevnodes(void);
332 
333 /*
334  * Note that no attempt is made to sanitize these parameters.
335  */
336 static int
337 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
338 {
339 	u_long val;
340 	int error;
341 
342 	val = desiredvnodes;
343 	error = sysctl_handle_long(oidp, &val, 0, req);
344 	if (error != 0 || req->newptr == NULL)
345 		return (error);
346 
347 	if (val == desiredvnodes)
348 		return (0);
349 	mtx_lock(&vnode_list_mtx);
350 	desiredvnodes = val;
351 	wantfreevnodes = desiredvnodes / 4;
352 	vnlru_recalc();
353 	mtx_unlock(&vnode_list_mtx);
354 	/*
355 	 * XXX There is no protection against multiple threads changing
356 	 * desiredvnodes at the same time. Locking above only helps vnlru and
357 	 * getnewvnode.
358 	 */
359 	vfs_hash_changesize(desiredvnodes);
360 	cache_changesize(desiredvnodes);
361 	return (0);
362 }
363 
364 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
365     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
366     "LU", "Target for maximum number of vnodes (legacy)");
367 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
369     "LU", "Target for maximum number of vnodes");
370 
371 static int
372 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
373 {
374 	u_long rfreevnodes;
375 
376 	rfreevnodes = vnlru_read_freevnodes();
377 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
378 }
379 
380 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
381     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
382     "LU", "Number of \"free\" vnodes (legacy)");
383 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
384     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
385     "LU", "Number of \"free\" vnodes");
386 
387 static int
388 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
389 {
390 	u_long val;
391 	int error;
392 
393 	val = wantfreevnodes;
394 	error = sysctl_handle_long(oidp, &val, 0, req);
395 	if (error != 0 || req->newptr == NULL)
396 		return (error);
397 
398 	if (val == wantfreevnodes)
399 		return (0);
400 	mtx_lock(&vnode_list_mtx);
401 	wantfreevnodes = val;
402 	vnlru_recalc();
403 	mtx_unlock(&vnode_list_mtx);
404 	return (0);
405 }
406 
407 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
408     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
409     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
410 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
411     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
412     "LU", "Target for minimum number of \"free\" vnodes");
413 
414 static int vnlru_nowhere;
415 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
416     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
417 
418 static int
419 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
420 {
421 	struct vnode *vp;
422 	struct nameidata nd;
423 	char *buf;
424 	unsigned long ndflags;
425 	int error;
426 
427 	if (req->newptr == NULL)
428 		return (EINVAL);
429 	if (req->newlen >= PATH_MAX)
430 		return (E2BIG);
431 
432 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
433 	error = SYSCTL_IN(req, buf, req->newlen);
434 	if (error != 0)
435 		goto out;
436 
437 	buf[req->newlen] = '\0';
438 
439 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
440 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
441 	if ((error = namei(&nd)) != 0)
442 		goto out;
443 	vp = nd.ni_vp;
444 
445 	if (VN_IS_DOOMED(vp)) {
446 		/*
447 		 * This vnode is being recycled.  Return != 0 to let the caller
448 		 * know that the sysctl had no effect.  Return EAGAIN because a
449 		 * subsequent call will likely succeed (since namei will create
450 		 * a new vnode if necessary)
451 		 */
452 		error = EAGAIN;
453 		goto putvnode;
454 	}
455 
456 	counter_u64_add(recycles_count, 1);
457 	vgone(vp);
458 putvnode:
459 	vput(vp);
460 	NDFREE_PNBUF(&nd);
461 out:
462 	free(buf, M_TEMP);
463 	return (error);
464 }
465 
466 static int
467 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
468 {
469 	struct thread *td = curthread;
470 	struct vnode *vp;
471 	struct file *fp;
472 	int error;
473 	int fd;
474 
475 	if (req->newptr == NULL)
476 		return (EBADF);
477 
478         error = sysctl_handle_int(oidp, &fd, 0, req);
479         if (error != 0)
480                 return (error);
481 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
482 	if (error != 0)
483 		return (error);
484 	vp = fp->f_vnode;
485 
486 	error = vn_lock(vp, LK_EXCLUSIVE);
487 	if (error != 0)
488 		goto drop;
489 
490 	counter_u64_add(recycles_count, 1);
491 	vgone(vp);
492 	VOP_UNLOCK(vp);
493 drop:
494 	fdrop(fp, td);
495 	return (error);
496 }
497 
498 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
499     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
500     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
501 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
502     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
503     sysctl_ftry_reclaim_vnode, "I",
504     "Try to reclaim a vnode by its file descriptor");
505 
506 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
507 #define vnsz2log 8
508 #ifndef DEBUG_LOCKS
509 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
510     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
511     "vnsz2log needs to be updated");
512 #endif
513 
514 /*
515  * Support for the bufobj clean & dirty pctrie.
516  */
517 static void *
518 buf_trie_alloc(struct pctrie *ptree)
519 {
520 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
521 }
522 
523 static void
524 buf_trie_free(struct pctrie *ptree, void *node)
525 {
526 	uma_zfree_smr(buf_trie_zone, node);
527 }
528 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
529     buf_trie_smr);
530 
531 /*
532  * Initialize the vnode management data structures.
533  *
534  * Reevaluate the following cap on the number of vnodes after the physical
535  * memory size exceeds 512GB.  In the limit, as the physical memory size
536  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
537  */
538 #ifndef	MAXVNODES_MAX
539 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
540 #endif
541 
542 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
543 
544 static struct vnode *
545 vn_alloc_marker(struct mount *mp)
546 {
547 	struct vnode *vp;
548 
549 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
550 	vp->v_type = VMARKER;
551 	vp->v_mount = mp;
552 
553 	return (vp);
554 }
555 
556 static void
557 vn_free_marker(struct vnode *vp)
558 {
559 
560 	MPASS(vp->v_type == VMARKER);
561 	free(vp, M_VNODE_MARKER);
562 }
563 
564 #ifdef KASAN
565 static int
566 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
567 {
568 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
569 	return (0);
570 }
571 
572 static void
573 vnode_dtor(void *mem, int size, void *arg __unused)
574 {
575 	size_t end1, end2, off1, off2;
576 
577 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
578 	    offsetof(struct vnode, v_dbatchcpu),
579 	    "KASAN marks require updating");
580 
581 	off1 = offsetof(struct vnode, v_vnodelist);
582 	off2 = offsetof(struct vnode, v_dbatchcpu);
583 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
584 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
585 
586 	/*
587 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
588 	 * after the vnode has been freed.  Try to get some KASAN coverage by
589 	 * marking everything except those two fields as invalid.  Because
590 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
591 	 * the same 8-byte aligned word must also be marked valid.
592 	 */
593 
594 	/* Handle the area from the start until v_vnodelist... */
595 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
596 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
597 
598 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
599 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
600 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
601 	if (off2 > off1)
602 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
603 		    off2 - off1, KASAN_UMA_FREED);
604 
605 	/* ... and finally the area from v_dbatchcpu to the end. */
606 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
607 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
608 	    KASAN_UMA_FREED);
609 }
610 #endif /* KASAN */
611 
612 /*
613  * Initialize a vnode as it first enters the zone.
614  */
615 static int
616 vnode_init(void *mem, int size, int flags)
617 {
618 	struct vnode *vp;
619 
620 	vp = mem;
621 	bzero(vp, size);
622 	/*
623 	 * Setup locks.
624 	 */
625 	vp->v_vnlock = &vp->v_lock;
626 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
627 	/*
628 	 * By default, don't allow shared locks unless filesystems opt-in.
629 	 */
630 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
631 	    LK_NOSHARE | LK_IS_VNODE);
632 	/*
633 	 * Initialize bufobj.
634 	 */
635 	bufobj_init(&vp->v_bufobj, vp);
636 	/*
637 	 * Initialize namecache.
638 	 */
639 	cache_vnode_init(vp);
640 	/*
641 	 * Initialize rangelocks.
642 	 */
643 	rangelock_init(&vp->v_rl);
644 
645 	vp->v_dbatchcpu = NOCPU;
646 
647 	vp->v_state = VSTATE_DEAD;
648 
649 	/*
650 	 * Check vhold_recycle_free for an explanation.
651 	 */
652 	vp->v_holdcnt = VHOLD_NO_SMR;
653 	vp->v_type = VNON;
654 	mtx_lock(&vnode_list_mtx);
655 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
656 	mtx_unlock(&vnode_list_mtx);
657 	return (0);
658 }
659 
660 /*
661  * Free a vnode when it is cleared from the zone.
662  */
663 static void
664 vnode_fini(void *mem, int size)
665 {
666 	struct vnode *vp;
667 	struct bufobj *bo;
668 
669 	vp = mem;
670 	vdbatch_dequeue(vp);
671 	mtx_lock(&vnode_list_mtx);
672 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
673 	mtx_unlock(&vnode_list_mtx);
674 	rangelock_destroy(&vp->v_rl);
675 	lockdestroy(vp->v_vnlock);
676 	mtx_destroy(&vp->v_interlock);
677 	bo = &vp->v_bufobj;
678 	rw_destroy(BO_LOCKPTR(bo));
679 
680 	kasan_mark(mem, size, size, 0);
681 }
682 
683 /*
684  * Provide the size of NFS nclnode and NFS fh for calculation of the
685  * vnode memory consumption.  The size is specified directly to
686  * eliminate dependency on NFS-private header.
687  *
688  * Other filesystems may use bigger or smaller (like UFS and ZFS)
689  * private inode data, but the NFS-based estimation is ample enough.
690  * Still, we care about differences in the size between 64- and 32-bit
691  * platforms.
692  *
693  * Namecache structure size is heuristically
694  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
695  */
696 #ifdef _LP64
697 #define	NFS_NCLNODE_SZ	(528 + 64)
698 #define	NC_SZ		148
699 #else
700 #define	NFS_NCLNODE_SZ	(360 + 32)
701 #define	NC_SZ		92
702 #endif
703 
704 static void
705 vntblinit(void *dummy __unused)
706 {
707 	struct vdbatch *vd;
708 	uma_ctor ctor;
709 	uma_dtor dtor;
710 	int cpu, physvnodes, virtvnodes;
711 
712 	/*
713 	 * Desiredvnodes is a function of the physical memory size and the
714 	 * kernel's heap size.  Generally speaking, it scales with the
715 	 * physical memory size.  The ratio of desiredvnodes to the physical
716 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
717 	 * Thereafter, the
718 	 * marginal ratio of desiredvnodes to the physical memory size is
719 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
720 	 * size.  The memory required by desiredvnodes vnodes and vm objects
721 	 * must not exceed 1/10th of the kernel's heap size.
722 	 */
723 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
724 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
725 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
726 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
727 	desiredvnodes = min(physvnodes, virtvnodes);
728 	if (desiredvnodes > MAXVNODES_MAX) {
729 		if (bootverbose)
730 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
731 			    desiredvnodes, MAXVNODES_MAX);
732 		desiredvnodes = MAXVNODES_MAX;
733 	}
734 	wantfreevnodes = desiredvnodes / 4;
735 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
736 	TAILQ_INIT(&vnode_list);
737 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
738 	/*
739 	 * The lock is taken to appease WITNESS.
740 	 */
741 	mtx_lock(&vnode_list_mtx);
742 	vnlru_recalc();
743 	mtx_unlock(&vnode_list_mtx);
744 	vnode_list_free_marker = vn_alloc_marker(NULL);
745 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
746 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
747 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
748 
749 #ifdef KASAN
750 	ctor = vnode_ctor;
751 	dtor = vnode_dtor;
752 #else
753 	ctor = NULL;
754 	dtor = NULL;
755 #endif
756 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
757 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
758 	uma_zone_set_smr(vnode_zone, vfs_smr);
759 
760 	/*
761 	 * Preallocate enough nodes to support one-per buf so that
762 	 * we can not fail an insert.  reassignbuf() callers can not
763 	 * tolerate the insertion failure.
764 	 */
765 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
766 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
767 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
768 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
769 	uma_prealloc(buf_trie_zone, nbuf);
770 
771 	vnodes_created = counter_u64_alloc(M_WAITOK);
772 	recycles_count = counter_u64_alloc(M_WAITOK);
773 	recycles_free_count = counter_u64_alloc(M_WAITOK);
774 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
775 
776 	/*
777 	 * Initialize the filesystem syncer.
778 	 */
779 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
780 	    &syncer_mask);
781 	syncer_maxdelay = syncer_mask + 1;
782 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
783 	cv_init(&sync_wakeup, "syncer");
784 
785 	CPU_FOREACH(cpu) {
786 		vd = DPCPU_ID_PTR((cpu), vd);
787 		bzero(vd, sizeof(*vd));
788 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
789 	}
790 }
791 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
792 
793 /*
794  * Mark a mount point as busy. Used to synchronize access and to delay
795  * unmounting. Eventually, mountlist_mtx is not released on failure.
796  *
797  * vfs_busy() is a custom lock, it can block the caller.
798  * vfs_busy() only sleeps if the unmount is active on the mount point.
799  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
800  * vnode belonging to mp.
801  *
802  * Lookup uses vfs_busy() to traverse mount points.
803  * root fs			var fs
804  * / vnode lock		A	/ vnode lock (/var)		D
805  * /var vnode lock	B	/log vnode lock(/var/log)	E
806  * vfs_busy lock	C	vfs_busy lock			F
807  *
808  * Within each file system, the lock order is C->A->B and F->D->E.
809  *
810  * When traversing across mounts, the system follows that lock order:
811  *
812  *        C->A->B
813  *              |
814  *              +->F->D->E
815  *
816  * The lookup() process for namei("/var") illustrates the process:
817  *  1. VOP_LOOKUP() obtains B while A is held
818  *  2. vfs_busy() obtains a shared lock on F while A and B are held
819  *  3. vput() releases lock on B
820  *  4. vput() releases lock on A
821  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
822  *  6. vfs_unbusy() releases shared lock on F
823  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
824  *     Attempt to lock A (instead of vp_crossmp) while D is held would
825  *     violate the global order, causing deadlocks.
826  *
827  * dounmount() locks B while F is drained.  Note that for stacked
828  * filesystems, D and B in the example above may be the same lock,
829  * which introdues potential lock order reversal deadlock between
830  * dounmount() and step 5 above.  These filesystems may avoid the LOR
831  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
832  * remain held until after step 5.
833  */
834 int
835 vfs_busy(struct mount *mp, int flags)
836 {
837 	struct mount_pcpu *mpcpu;
838 
839 	MPASS((flags & ~MBF_MASK) == 0);
840 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
841 
842 	if (vfs_op_thread_enter(mp, mpcpu)) {
843 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
844 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
845 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
846 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
847 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
848 		vfs_op_thread_exit(mp, mpcpu);
849 		if (flags & MBF_MNTLSTLOCK)
850 			mtx_unlock(&mountlist_mtx);
851 		return (0);
852 	}
853 
854 	MNT_ILOCK(mp);
855 	vfs_assert_mount_counters(mp);
856 	MNT_REF(mp);
857 	/*
858 	 * If mount point is currently being unmounted, sleep until the
859 	 * mount point fate is decided.  If thread doing the unmounting fails,
860 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
861 	 * that this mount point has survived the unmount attempt and vfs_busy
862 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
863 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
864 	 * about to be really destroyed.  vfs_busy needs to release its
865 	 * reference on the mount point in this case and return with ENOENT,
866 	 * telling the caller the mount it tried to busy is no longer valid.
867 	 */
868 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
869 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
870 		    ("%s: non-empty upper mount list with pending unmount",
871 		    __func__));
872 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
873 			MNT_REL(mp);
874 			MNT_IUNLOCK(mp);
875 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
876 			    __func__);
877 			return (ENOENT);
878 		}
879 		if (flags & MBF_MNTLSTLOCK)
880 			mtx_unlock(&mountlist_mtx);
881 		mp->mnt_kern_flag |= MNTK_MWAIT;
882 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
883 		if (flags & MBF_MNTLSTLOCK)
884 			mtx_lock(&mountlist_mtx);
885 		MNT_ILOCK(mp);
886 	}
887 	if (flags & MBF_MNTLSTLOCK)
888 		mtx_unlock(&mountlist_mtx);
889 	mp->mnt_lockref++;
890 	MNT_IUNLOCK(mp);
891 	return (0);
892 }
893 
894 /*
895  * Free a busy filesystem.
896  */
897 void
898 vfs_unbusy(struct mount *mp)
899 {
900 	struct mount_pcpu *mpcpu;
901 	int c;
902 
903 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
904 
905 	if (vfs_op_thread_enter(mp, mpcpu)) {
906 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
907 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
908 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
909 		vfs_op_thread_exit(mp, mpcpu);
910 		return;
911 	}
912 
913 	MNT_ILOCK(mp);
914 	vfs_assert_mount_counters(mp);
915 	MNT_REL(mp);
916 	c = --mp->mnt_lockref;
917 	if (mp->mnt_vfs_ops == 0) {
918 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
919 		MNT_IUNLOCK(mp);
920 		return;
921 	}
922 	if (c < 0)
923 		vfs_dump_mount_counters(mp);
924 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
925 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
926 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
927 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
928 		wakeup(&mp->mnt_lockref);
929 	}
930 	MNT_IUNLOCK(mp);
931 }
932 
933 /*
934  * Lookup a mount point by filesystem identifier.
935  */
936 struct mount *
937 vfs_getvfs(fsid_t *fsid)
938 {
939 	struct mount *mp;
940 
941 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
942 	mtx_lock(&mountlist_mtx);
943 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
944 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
945 			vfs_ref(mp);
946 			mtx_unlock(&mountlist_mtx);
947 			return (mp);
948 		}
949 	}
950 	mtx_unlock(&mountlist_mtx);
951 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
952 	return ((struct mount *) 0);
953 }
954 
955 /*
956  * Lookup a mount point by filesystem identifier, busying it before
957  * returning.
958  *
959  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
960  * cache for popular filesystem identifiers.  The cache is lockess, using
961  * the fact that struct mount's are never freed.  In worst case we may
962  * get pointer to unmounted or even different filesystem, so we have to
963  * check what we got, and go slow way if so.
964  */
965 struct mount *
966 vfs_busyfs(fsid_t *fsid)
967 {
968 #define	FSID_CACHE_SIZE	256
969 	typedef struct mount * volatile vmp_t;
970 	static vmp_t cache[FSID_CACHE_SIZE];
971 	struct mount *mp;
972 	int error;
973 	uint32_t hash;
974 
975 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
976 	hash = fsid->val[0] ^ fsid->val[1];
977 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
978 	mp = cache[hash];
979 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
980 		goto slow;
981 	if (vfs_busy(mp, 0) != 0) {
982 		cache[hash] = NULL;
983 		goto slow;
984 	}
985 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
986 		return (mp);
987 	else
988 	    vfs_unbusy(mp);
989 
990 slow:
991 	mtx_lock(&mountlist_mtx);
992 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
993 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
994 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
995 			if (error) {
996 				cache[hash] = NULL;
997 				mtx_unlock(&mountlist_mtx);
998 				return (NULL);
999 			}
1000 			cache[hash] = mp;
1001 			return (mp);
1002 		}
1003 	}
1004 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1005 	mtx_unlock(&mountlist_mtx);
1006 	return ((struct mount *) 0);
1007 }
1008 
1009 /*
1010  * Check if a user can access privileged mount options.
1011  */
1012 int
1013 vfs_suser(struct mount *mp, struct thread *td)
1014 {
1015 	int error;
1016 
1017 	if (jailed(td->td_ucred)) {
1018 		/*
1019 		 * If the jail of the calling thread lacks permission for
1020 		 * this type of file system, deny immediately.
1021 		 */
1022 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1023 			return (EPERM);
1024 
1025 		/*
1026 		 * If the file system was mounted outside the jail of the
1027 		 * calling thread, deny immediately.
1028 		 */
1029 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1030 			return (EPERM);
1031 	}
1032 
1033 	/*
1034 	 * If file system supports delegated administration, we don't check
1035 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1036 	 * by the file system itself.
1037 	 * If this is not the user that did original mount, we check for
1038 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1039 	 */
1040 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1041 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1042 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1043 			return (error);
1044 	}
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1050  * will be used to create fake device numbers for stat().  Also try (but
1051  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1052  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1053  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1054  *
1055  * Keep in mind that several mounts may be running in parallel.  Starting
1056  * the search one past where the previous search terminated is both a
1057  * micro-optimization and a defense against returning the same fsid to
1058  * different mounts.
1059  */
1060 void
1061 vfs_getnewfsid(struct mount *mp)
1062 {
1063 	static uint16_t mntid_base;
1064 	struct mount *nmp;
1065 	fsid_t tfsid;
1066 	int mtype;
1067 
1068 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1069 	mtx_lock(&mntid_mtx);
1070 	mtype = mp->mnt_vfc->vfc_typenum;
1071 	tfsid.val[1] = mtype;
1072 	mtype = (mtype & 0xFF) << 24;
1073 	for (;;) {
1074 		tfsid.val[0] = makedev(255,
1075 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1076 		mntid_base++;
1077 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1078 			break;
1079 		vfs_rel(nmp);
1080 	}
1081 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1082 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1083 	mtx_unlock(&mntid_mtx);
1084 }
1085 
1086 /*
1087  * Knob to control the precision of file timestamps:
1088  *
1089  *   0 = seconds only; nanoseconds zeroed.
1090  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1091  *   2 = seconds and nanoseconds, truncated to microseconds.
1092  * >=3 = seconds and nanoseconds, maximum precision.
1093  */
1094 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1095 
1096 static int timestamp_precision = TSP_USEC;
1097 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1098     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1099     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1100     "3+: sec + ns (max. precision))");
1101 
1102 /*
1103  * Get a current timestamp.
1104  */
1105 void
1106 vfs_timestamp(struct timespec *tsp)
1107 {
1108 	struct timeval tv;
1109 
1110 	switch (timestamp_precision) {
1111 	case TSP_SEC:
1112 		tsp->tv_sec = time_second;
1113 		tsp->tv_nsec = 0;
1114 		break;
1115 	case TSP_HZ:
1116 		getnanotime(tsp);
1117 		break;
1118 	case TSP_USEC:
1119 		microtime(&tv);
1120 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1121 		break;
1122 	case TSP_NSEC:
1123 	default:
1124 		nanotime(tsp);
1125 		break;
1126 	}
1127 }
1128 
1129 /*
1130  * Set vnode attributes to VNOVAL
1131  */
1132 void
1133 vattr_null(struct vattr *vap)
1134 {
1135 
1136 	vap->va_type = VNON;
1137 	vap->va_size = VNOVAL;
1138 	vap->va_bytes = VNOVAL;
1139 	vap->va_mode = VNOVAL;
1140 	vap->va_nlink = VNOVAL;
1141 	vap->va_uid = VNOVAL;
1142 	vap->va_gid = VNOVAL;
1143 	vap->va_fsid = VNOVAL;
1144 	vap->va_fileid = VNOVAL;
1145 	vap->va_blocksize = VNOVAL;
1146 	vap->va_rdev = VNOVAL;
1147 	vap->va_atime.tv_sec = VNOVAL;
1148 	vap->va_atime.tv_nsec = VNOVAL;
1149 	vap->va_mtime.tv_sec = VNOVAL;
1150 	vap->va_mtime.tv_nsec = VNOVAL;
1151 	vap->va_ctime.tv_sec = VNOVAL;
1152 	vap->va_ctime.tv_nsec = VNOVAL;
1153 	vap->va_birthtime.tv_sec = VNOVAL;
1154 	vap->va_birthtime.tv_nsec = VNOVAL;
1155 	vap->va_flags = VNOVAL;
1156 	vap->va_gen = VNOVAL;
1157 	vap->va_vaflags = 0;
1158 }
1159 
1160 /*
1161  * Try to reduce the total number of vnodes.
1162  *
1163  * This routine (and its user) are buggy in at least the following ways:
1164  * - all parameters were picked years ago when RAM sizes were significantly
1165  *   smaller
1166  * - it can pick vnodes based on pages used by the vm object, but filesystems
1167  *   like ZFS don't use it making the pick broken
1168  * - since ZFS has its own aging policy it gets partially combated by this one
1169  * - a dedicated method should be provided for filesystems to let them decide
1170  *   whether the vnode should be recycled
1171  *
1172  * This routine is called when we have too many vnodes.  It attempts
1173  * to free <count> vnodes and will potentially free vnodes that still
1174  * have VM backing store (VM backing store is typically the cause
1175  * of a vnode blowout so we want to do this).  Therefore, this operation
1176  * is not considered cheap.
1177  *
1178  * A number of conditions may prevent a vnode from being reclaimed.
1179  * the buffer cache may have references on the vnode, a directory
1180  * vnode may still have references due to the namei cache representing
1181  * underlying files, or the vnode may be in active use.   It is not
1182  * desirable to reuse such vnodes.  These conditions may cause the
1183  * number of vnodes to reach some minimum value regardless of what
1184  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1185  *
1186  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1187  * 			 entries if this argument is strue
1188  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1189  *			 pages.
1190  * @param target	 How many vnodes to reclaim.
1191  * @return		 The number of vnodes that were reclaimed.
1192  */
1193 static int
1194 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1195 {
1196 	struct vnode *vp, *mvp;
1197 	struct mount *mp;
1198 	struct vm_object *object;
1199 	u_long done;
1200 	bool retried;
1201 
1202 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1203 
1204 	retried = false;
1205 	done = 0;
1206 
1207 	mvp = vnode_list_reclaim_marker;
1208 restart:
1209 	vp = mvp;
1210 	while (done < target) {
1211 		vp = TAILQ_NEXT(vp, v_vnodelist);
1212 		if (__predict_false(vp == NULL))
1213 			break;
1214 
1215 		if (__predict_false(vp->v_type == VMARKER))
1216 			continue;
1217 
1218 		/*
1219 		 * If it's been deconstructed already, it's still
1220 		 * referenced, or it exceeds the trigger, skip it.
1221 		 * Also skip free vnodes.  We are trying to make space
1222 		 * to expand the free list, not reduce it.
1223 		 */
1224 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1225 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1226 			goto next_iter;
1227 
1228 		if (vp->v_type == VBAD || vp->v_type == VNON)
1229 			goto next_iter;
1230 
1231 		object = atomic_load_ptr(&vp->v_object);
1232 		if (object == NULL || object->resident_page_count > trigger) {
1233 			goto next_iter;
1234 		}
1235 
1236 		/*
1237 		 * Handle races against vnode allocation. Filesystems lock the
1238 		 * vnode some time after it gets returned from getnewvnode,
1239 		 * despite type and hold count being manipulated earlier.
1240 		 * Resorting to checking v_mount restores guarantees present
1241 		 * before the global list was reworked to contain all vnodes.
1242 		 */
1243 		if (!VI_TRYLOCK(vp))
1244 			goto next_iter;
1245 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1246 			VI_UNLOCK(vp);
1247 			goto next_iter;
1248 		}
1249 		if (vp->v_mount == NULL) {
1250 			VI_UNLOCK(vp);
1251 			goto next_iter;
1252 		}
1253 		vholdl(vp);
1254 		VI_UNLOCK(vp);
1255 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1256 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1257 		mtx_unlock(&vnode_list_mtx);
1258 
1259 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1260 			vdrop_recycle(vp);
1261 			goto next_iter_unlocked;
1262 		}
1263 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1264 			vdrop_recycle(vp);
1265 			vn_finished_write(mp);
1266 			goto next_iter_unlocked;
1267 		}
1268 
1269 		VI_LOCK(vp);
1270 		if (vp->v_usecount > 0 ||
1271 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1272 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1273 		    vp->v_object->resident_page_count > trigger)) {
1274 			VOP_UNLOCK(vp);
1275 			vdropl_recycle(vp);
1276 			vn_finished_write(mp);
1277 			goto next_iter_unlocked;
1278 		}
1279 		counter_u64_add(recycles_count, 1);
1280 		vgonel(vp);
1281 		VOP_UNLOCK(vp);
1282 		vdropl_recycle(vp);
1283 		vn_finished_write(mp);
1284 		done++;
1285 next_iter_unlocked:
1286 		maybe_yield();
1287 		mtx_lock(&vnode_list_mtx);
1288 		goto restart;
1289 next_iter:
1290 		MPASS(vp->v_type != VMARKER);
1291 		if (!should_yield())
1292 			continue;
1293 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1294 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1295 		mtx_unlock(&vnode_list_mtx);
1296 		kern_yield(PRI_USER);
1297 		mtx_lock(&vnode_list_mtx);
1298 		goto restart;
1299 	}
1300 	if (done == 0 && !retried) {
1301 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1303 		retried = true;
1304 		goto restart;
1305 	}
1306 	return (done);
1307 }
1308 
1309 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1310 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1311     0,
1312     "limit on vnode free requests per call to the vnlru_free routine");
1313 
1314 /*
1315  * Attempt to reduce the free list by the requested amount.
1316  */
1317 static int
1318 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1319 {
1320 	struct vnode *vp;
1321 	struct mount *mp;
1322 	int ocount;
1323 	bool retried;
1324 
1325 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1326 	if (count > max_vnlru_free)
1327 		count = max_vnlru_free;
1328 	if (count == 0) {
1329 		mtx_unlock(&vnode_list_mtx);
1330 		return (0);
1331 	}
1332 	ocount = count;
1333 	retried = false;
1334 	vp = mvp;
1335 	for (;;) {
1336 		vp = TAILQ_NEXT(vp, v_vnodelist);
1337 		if (__predict_false(vp == NULL)) {
1338 			/*
1339 			 * The free vnode marker can be past eligible vnodes:
1340 			 * 1. if vdbatch_process trylock failed
1341 			 * 2. if vtryrecycle failed
1342 			 *
1343 			 * If so, start the scan from scratch.
1344 			 */
1345 			if (!retried && vnlru_read_freevnodes() > 0) {
1346 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1347 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1348 				vp = mvp;
1349 				retried = true;
1350 				continue;
1351 			}
1352 
1353 			/*
1354 			 * Give up
1355 			 */
1356 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1357 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1358 			mtx_unlock(&vnode_list_mtx);
1359 			break;
1360 		}
1361 		if (__predict_false(vp->v_type == VMARKER))
1362 			continue;
1363 		if (vp->v_holdcnt > 0)
1364 			continue;
1365 		/*
1366 		 * Don't recycle if our vnode is from different type
1367 		 * of mount point.  Note that mp is type-safe, the
1368 		 * check does not reach unmapped address even if
1369 		 * vnode is reclaimed.
1370 		 */
1371 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1372 		    mp->mnt_op != mnt_op) {
1373 			continue;
1374 		}
1375 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1376 			continue;
1377 		}
1378 		if (!vhold_recycle_free(vp))
1379 			continue;
1380 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1381 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1382 		mtx_unlock(&vnode_list_mtx);
1383 		/*
1384 		 * FIXME: ignores the return value, meaning it may be nothing
1385 		 * got recycled but it claims otherwise to the caller.
1386 		 *
1387 		 * Originally the value started being ignored in 2005 with
1388 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1389 		 *
1390 		 * Respecting the value can run into significant stalls if most
1391 		 * vnodes belong to one file system and it has writes
1392 		 * suspended.  In presence of many threads and millions of
1393 		 * vnodes they keep contending on the vnode_list_mtx lock only
1394 		 * to find vnodes they can't recycle.
1395 		 *
1396 		 * The solution would be to pre-check if the vnode is likely to
1397 		 * be recycle-able, but it needs to happen with the
1398 		 * vnode_list_mtx lock held. This runs into a problem where
1399 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1400 		 * writes are frozen) can take locks which LOR against it.
1401 		 *
1402 		 * Check nullfs for one example (null_getwritemount).
1403 		 */
1404 		vtryrecycle(vp);
1405 		count--;
1406 		if (count == 0) {
1407 			break;
1408 		}
1409 		mtx_lock(&vnode_list_mtx);
1410 		vp = mvp;
1411 	}
1412 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1413 	return (ocount - count);
1414 }
1415 
1416 /*
1417  * XXX: returns without vnode_list_mtx locked!
1418  */
1419 static int
1420 vnlru_free_locked(int count)
1421 {
1422 	int ret;
1423 
1424 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1425 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker);
1426 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1427 	return (ret);
1428 }
1429 
1430 void
1431 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1432 {
1433 
1434 	MPASS(mnt_op != NULL);
1435 	MPASS(mvp != NULL);
1436 	VNPASS(mvp->v_type == VMARKER, mvp);
1437 	mtx_lock(&vnode_list_mtx);
1438 	vnlru_free_impl(count, mnt_op, mvp);
1439 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1440 }
1441 
1442 struct vnode *
1443 vnlru_alloc_marker(void)
1444 {
1445 	struct vnode *mvp;
1446 
1447 	mvp = vn_alloc_marker(NULL);
1448 	mtx_lock(&vnode_list_mtx);
1449 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1450 	mtx_unlock(&vnode_list_mtx);
1451 	return (mvp);
1452 }
1453 
1454 void
1455 vnlru_free_marker(struct vnode *mvp)
1456 {
1457 	mtx_lock(&vnode_list_mtx);
1458 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1459 	mtx_unlock(&vnode_list_mtx);
1460 	vn_free_marker(mvp);
1461 }
1462 
1463 static void
1464 vnlru_recalc(void)
1465 {
1466 
1467 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1468 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1469 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1470 	vlowat = vhiwat / 2;
1471 }
1472 
1473 /*
1474  * Attempt to recycle vnodes in a context that is always safe to block.
1475  * Calling vlrurecycle() from the bowels of filesystem code has some
1476  * interesting deadlock problems.
1477  */
1478 static struct proc *vnlruproc;
1479 static int vnlruproc_sig;
1480 static u_long vnlruproc_kicks;
1481 
1482 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1483     "Number of times vnlru got woken up due to vnode shortage");
1484 
1485 /*
1486  * The main freevnodes counter is only updated when a counter local to CPU
1487  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1488  * walked to compute a more accurate total.
1489  *
1490  * Note: the actual value at any given moment can still exceed slop, but it
1491  * should not be by significant margin in practice.
1492  */
1493 #define VNLRU_FREEVNODES_SLOP 126
1494 
1495 static void __noinline
1496 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1497 {
1498 
1499 	atomic_add_long(&freevnodes, *lfreevnodes);
1500 	*lfreevnodes = 0;
1501 	critical_exit();
1502 }
1503 
1504 static __inline void
1505 vfs_freevnodes_inc(void)
1506 {
1507 	int8_t *lfreevnodes;
1508 
1509 	critical_enter();
1510 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1511 	(*lfreevnodes)++;
1512 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1513 		vfs_freevnodes_rollup(lfreevnodes);
1514 	else
1515 		critical_exit();
1516 }
1517 
1518 static __inline void
1519 vfs_freevnodes_dec(void)
1520 {
1521 	int8_t *lfreevnodes;
1522 
1523 	critical_enter();
1524 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1525 	(*lfreevnodes)--;
1526 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1527 		vfs_freevnodes_rollup(lfreevnodes);
1528 	else
1529 		critical_exit();
1530 }
1531 
1532 static u_long
1533 vnlru_read_freevnodes(void)
1534 {
1535 	long slop, rfreevnodes, rfreevnodes_old;
1536 	int cpu;
1537 
1538 	rfreevnodes = atomic_load_long(&freevnodes);
1539 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1540 
1541 	if (rfreevnodes > rfreevnodes_old)
1542 		slop = rfreevnodes - rfreevnodes_old;
1543 	else
1544 		slop = rfreevnodes_old - rfreevnodes;
1545 	if (slop < VNLRU_FREEVNODES_SLOP)
1546 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1547 	CPU_FOREACH(cpu) {
1548 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1549 	}
1550 	atomic_store_long(&freevnodes_old, rfreevnodes);
1551 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1552 }
1553 
1554 static bool
1555 vnlru_under(u_long rnumvnodes, u_long limit)
1556 {
1557 	u_long rfreevnodes, space;
1558 
1559 	if (__predict_false(rnumvnodes > desiredvnodes))
1560 		return (true);
1561 
1562 	space = desiredvnodes - rnumvnodes;
1563 	if (space < limit) {
1564 		rfreevnodes = vnlru_read_freevnodes();
1565 		if (rfreevnodes > wantfreevnodes)
1566 			space += rfreevnodes - wantfreevnodes;
1567 	}
1568 	return (space < limit);
1569 }
1570 
1571 static void
1572 vnlru_kick_locked(void)
1573 {
1574 
1575 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1576 	if (vnlruproc_sig == 0) {
1577 		vnlruproc_sig = 1;
1578 		vnlruproc_kicks++;
1579 		wakeup(vnlruproc);
1580 	}
1581 }
1582 
1583 static void
1584 vnlru_kick_cond(void)
1585 {
1586 
1587 	if (vnlruproc_sig)
1588 		return;
1589 	mtx_lock(&vnode_list_mtx);
1590 	vnlru_kick_locked();
1591 	mtx_unlock(&vnode_list_mtx);
1592 }
1593 
1594 static void
1595 vnlru_proc(void)
1596 {
1597 	u_long rnumvnodes, rfreevnodes, target;
1598 	unsigned long onumvnodes;
1599 	int done, force, trigger, usevnodes;
1600 	bool reclaim_nc_src, want_reread;
1601 
1602 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1603 	    SHUTDOWN_PRI_FIRST);
1604 
1605 	force = 0;
1606 	want_reread = false;
1607 	for (;;) {
1608 		kproc_suspend_check(vnlruproc);
1609 		mtx_lock(&vnode_list_mtx);
1610 		rnumvnodes = atomic_load_long(&numvnodes);
1611 
1612 		if (want_reread) {
1613 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1614 			want_reread = false;
1615 		}
1616 
1617 		/*
1618 		 * If numvnodes is too large (due to desiredvnodes being
1619 		 * adjusted using its sysctl, or emergency growth), first
1620 		 * try to reduce it by discarding from the free list.
1621 		 */
1622 		if (rnumvnodes > desiredvnodes) {
1623 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1624 			mtx_lock(&vnode_list_mtx);
1625 			rnumvnodes = atomic_load_long(&numvnodes);
1626 		}
1627 		/*
1628 		 * Sleep if the vnode cache is in a good state.  This is
1629 		 * when it is not over-full and has space for about a 4%
1630 		 * or 9% expansion (by growing its size or inexcessively
1631 		 * reducing its free list).  Otherwise, try to reclaim
1632 		 * space for a 10% expansion.
1633 		 */
1634 		if (vstir && force == 0) {
1635 			force = 1;
1636 			vstir = false;
1637 		}
1638 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1639 			vnlruproc_sig = 0;
1640 			wakeup(&vnlruproc_sig);
1641 			msleep(vnlruproc, &vnode_list_mtx,
1642 			    PVFS|PDROP, "vlruwt", hz);
1643 			continue;
1644 		}
1645 		rfreevnodes = vnlru_read_freevnodes();
1646 
1647 		onumvnodes = rnumvnodes;
1648 		/*
1649 		 * Calculate parameters for recycling.  These are the same
1650 		 * throughout the loop to give some semblance of fairness.
1651 		 * The trigger point is to avoid recycling vnodes with lots
1652 		 * of resident pages.  We aren't trying to free memory; we
1653 		 * are trying to recycle or at least free vnodes.
1654 		 */
1655 		if (rnumvnodes <= desiredvnodes)
1656 			usevnodes = rnumvnodes - rfreevnodes;
1657 		else
1658 			usevnodes = rnumvnodes;
1659 		if (usevnodes <= 0)
1660 			usevnodes = 1;
1661 		/*
1662 		 * The trigger value is chosen to give a conservatively
1663 		 * large value to ensure that it alone doesn't prevent
1664 		 * making progress.  The value can easily be so large that
1665 		 * it is effectively infinite in some congested and
1666 		 * misconfigured cases, and this is necessary.  Normally
1667 		 * it is about 8 to 100 (pages), which is quite large.
1668 		 */
1669 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1670 		if (force < 2)
1671 			trigger = vsmalltrigger;
1672 		reclaim_nc_src = force >= 3;
1673 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1674 		target = target / 10 + 1;
1675 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1676 		mtx_unlock(&vnode_list_mtx);
1677 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1678 			uma_reclaim(UMA_RECLAIM_DRAIN);
1679 		if (done == 0) {
1680 			if (force == 0 || force == 1) {
1681 				force = 2;
1682 				continue;
1683 			}
1684 			if (force == 2) {
1685 				force = 3;
1686 				continue;
1687 			}
1688 			want_reread = true;
1689 			force = 0;
1690 			vnlru_nowhere++;
1691 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1692 		} else {
1693 			want_reread = true;
1694 			kern_yield(PRI_USER);
1695 		}
1696 	}
1697 }
1698 
1699 static struct kproc_desc vnlru_kp = {
1700 	"vnlru",
1701 	vnlru_proc,
1702 	&vnlruproc
1703 };
1704 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1705     &vnlru_kp);
1706 
1707 /*
1708  * Routines having to do with the management of the vnode table.
1709  */
1710 
1711 /*
1712  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1713  * before we actually vgone().  This function must be called with the vnode
1714  * held to prevent the vnode from being returned to the free list midway
1715  * through vgone().
1716  */
1717 static int
1718 vtryrecycle(struct vnode *vp)
1719 {
1720 	struct mount *vnmp;
1721 
1722 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1723 	VNPASS(vp->v_holdcnt > 0, vp);
1724 	/*
1725 	 * This vnode may found and locked via some other list, if so we
1726 	 * can't recycle it yet.
1727 	 */
1728 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1729 		CTR2(KTR_VFS,
1730 		    "%s: impossible to recycle, vp %p lock is already held",
1731 		    __func__, vp);
1732 		vdrop_recycle(vp);
1733 		return (EWOULDBLOCK);
1734 	}
1735 	/*
1736 	 * Don't recycle if its filesystem is being suspended.
1737 	 */
1738 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1739 		VOP_UNLOCK(vp);
1740 		CTR2(KTR_VFS,
1741 		    "%s: impossible to recycle, cannot start the write for %p",
1742 		    __func__, vp);
1743 		vdrop_recycle(vp);
1744 		return (EBUSY);
1745 	}
1746 	/*
1747 	 * If we got this far, we need to acquire the interlock and see if
1748 	 * anyone picked up this vnode from another list.  If not, we will
1749 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1750 	 * will skip over it.
1751 	 */
1752 	VI_LOCK(vp);
1753 	if (vp->v_usecount) {
1754 		VOP_UNLOCK(vp);
1755 		vdropl_recycle(vp);
1756 		vn_finished_write(vnmp);
1757 		CTR2(KTR_VFS,
1758 		    "%s: impossible to recycle, %p is already referenced",
1759 		    __func__, vp);
1760 		return (EBUSY);
1761 	}
1762 	if (!VN_IS_DOOMED(vp)) {
1763 		counter_u64_add(recycles_free_count, 1);
1764 		vgonel(vp);
1765 	}
1766 	VOP_UNLOCK(vp);
1767 	vdropl_recycle(vp);
1768 	vn_finished_write(vnmp);
1769 	return (0);
1770 }
1771 
1772 /*
1773  * Allocate a new vnode.
1774  *
1775  * The operation never returns an error. Returning an error was disabled
1776  * in r145385 (dated 2005) with the following comment:
1777  *
1778  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1779  *
1780  * Given the age of this commit (almost 15 years at the time of writing this
1781  * comment) restoring the ability to fail requires a significant audit of
1782  * all codepaths.
1783  *
1784  * The routine can try to free a vnode or stall for up to 1 second waiting for
1785  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1786  */
1787 static u_long vn_alloc_cyclecount;
1788 static u_long vn_alloc_sleeps;
1789 
1790 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1791     "Number of times vnode allocation blocked waiting on vnlru");
1792 
1793 static struct vnode * __noinline
1794 vn_alloc_hard(struct mount *mp)
1795 {
1796 	u_long rnumvnodes, rfreevnodes;
1797 
1798 	mtx_lock(&vnode_list_mtx);
1799 	rnumvnodes = atomic_load_long(&numvnodes);
1800 	if (rnumvnodes + 1 < desiredvnodes) {
1801 		vn_alloc_cyclecount = 0;
1802 		mtx_unlock(&vnode_list_mtx);
1803 		goto alloc;
1804 	}
1805 	rfreevnodes = vnlru_read_freevnodes();
1806 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1807 		vn_alloc_cyclecount = 0;
1808 		vstir = true;
1809 	}
1810 	/*
1811 	 * Grow the vnode cache if it will not be above its target max
1812 	 * after growing.  Otherwise, if the free list is nonempty, try
1813 	 * to reclaim 1 item from it before growing the cache (possibly
1814 	 * above its target max if the reclamation failed or is delayed).
1815 	 * Otherwise, wait for some space.  In all cases, schedule
1816 	 * vnlru_proc() if we are getting short of space.  The watermarks
1817 	 * should be chosen so that we never wait or even reclaim from
1818 	 * the free list to below its target minimum.
1819 	 */
1820 	if (vnlru_free_locked(1) > 0)
1821 		goto alloc;
1822 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1823 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1824 		/*
1825 		 * Wait for space for a new vnode.
1826 		 */
1827 		mtx_lock(&vnode_list_mtx);
1828 		vnlru_kick_locked();
1829 		vn_alloc_sleeps++;
1830 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1831 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1832 		    vnlru_read_freevnodes() > 1)
1833 			vnlru_free_locked(1);
1834 		else
1835 			mtx_unlock(&vnode_list_mtx);
1836 	}
1837 alloc:
1838 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1839 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1840 	if (vnlru_under(rnumvnodes, vlowat))
1841 		vnlru_kick_cond();
1842 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1843 }
1844 
1845 static struct vnode *
1846 vn_alloc(struct mount *mp)
1847 {
1848 	u_long rnumvnodes;
1849 
1850 	if (__predict_false(vn_alloc_cyclecount != 0))
1851 		return (vn_alloc_hard(mp));
1852 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1853 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
1854 		atomic_subtract_long(&numvnodes, 1);
1855 		return (vn_alloc_hard(mp));
1856 	}
1857 
1858 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1859 }
1860 
1861 static void
1862 vn_free(struct vnode *vp)
1863 {
1864 
1865 	atomic_subtract_long(&numvnodes, 1);
1866 	uma_zfree_smr(vnode_zone, vp);
1867 }
1868 
1869 /*
1870  * Return the next vnode from the free list.
1871  */
1872 int
1873 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1874     struct vnode **vpp)
1875 {
1876 	struct vnode *vp;
1877 	struct thread *td;
1878 	struct lock_object *lo;
1879 
1880 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1881 
1882 	KASSERT(vops->registered,
1883 	    ("%s: not registered vector op %p\n", __func__, vops));
1884 	cache_validate_vop_vector(mp, vops);
1885 
1886 	td = curthread;
1887 	if (td->td_vp_reserved != NULL) {
1888 		vp = td->td_vp_reserved;
1889 		td->td_vp_reserved = NULL;
1890 	} else {
1891 		vp = vn_alloc(mp);
1892 	}
1893 	counter_u64_add(vnodes_created, 1);
1894 
1895 	vn_set_state(vp, VSTATE_UNINITIALIZED);
1896 
1897 	/*
1898 	 * Locks are given the generic name "vnode" when created.
1899 	 * Follow the historic practice of using the filesystem
1900 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1901 	 *
1902 	 * Locks live in a witness group keyed on their name. Thus,
1903 	 * when a lock is renamed, it must also move from the witness
1904 	 * group of its old name to the witness group of its new name.
1905 	 *
1906 	 * The change only needs to be made when the vnode moves
1907 	 * from one filesystem type to another. We ensure that each
1908 	 * filesystem use a single static name pointer for its tag so
1909 	 * that we can compare pointers rather than doing a strcmp().
1910 	 */
1911 	lo = &vp->v_vnlock->lock_object;
1912 #ifdef WITNESS
1913 	if (lo->lo_name != tag) {
1914 #endif
1915 		lo->lo_name = tag;
1916 #ifdef WITNESS
1917 		WITNESS_DESTROY(lo);
1918 		WITNESS_INIT(lo, tag);
1919 	}
1920 #endif
1921 	/*
1922 	 * By default, don't allow shared locks unless filesystems opt-in.
1923 	 */
1924 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1925 	/*
1926 	 * Finalize various vnode identity bits.
1927 	 */
1928 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1929 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1930 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1931 	vp->v_type = VNON;
1932 	vp->v_op = vops;
1933 	vp->v_irflag = 0;
1934 	v_init_counters(vp);
1935 	vn_seqc_init(vp);
1936 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1937 #ifdef DIAGNOSTIC
1938 	if (mp == NULL && vops != &dead_vnodeops)
1939 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1940 #endif
1941 #ifdef MAC
1942 	mac_vnode_init(vp);
1943 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1944 		mac_vnode_associate_singlelabel(mp, vp);
1945 #endif
1946 	if (mp != NULL) {
1947 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1948 	}
1949 
1950 	/*
1951 	 * For the filesystems which do not use vfs_hash_insert(),
1952 	 * still initialize v_hash to have vfs_hash_index() useful.
1953 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1954 	 * its own hashing.
1955 	 */
1956 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1957 
1958 	*vpp = vp;
1959 	return (0);
1960 }
1961 
1962 void
1963 getnewvnode_reserve(void)
1964 {
1965 	struct thread *td;
1966 
1967 	td = curthread;
1968 	MPASS(td->td_vp_reserved == NULL);
1969 	td->td_vp_reserved = vn_alloc(NULL);
1970 }
1971 
1972 void
1973 getnewvnode_drop_reserve(void)
1974 {
1975 	struct thread *td;
1976 
1977 	td = curthread;
1978 	if (td->td_vp_reserved != NULL) {
1979 		vn_free(td->td_vp_reserved);
1980 		td->td_vp_reserved = NULL;
1981 	}
1982 }
1983 
1984 static void __noinline
1985 freevnode(struct vnode *vp)
1986 {
1987 	struct bufobj *bo;
1988 
1989 	/*
1990 	 * The vnode has been marked for destruction, so free it.
1991 	 *
1992 	 * The vnode will be returned to the zone where it will
1993 	 * normally remain until it is needed for another vnode. We
1994 	 * need to cleanup (or verify that the cleanup has already
1995 	 * been done) any residual data left from its current use
1996 	 * so as not to contaminate the freshly allocated vnode.
1997 	 */
1998 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1999 	/*
2000 	 * Paired with vgone.
2001 	 */
2002 	vn_seqc_write_end_free(vp);
2003 
2004 	bo = &vp->v_bufobj;
2005 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2006 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2007 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2008 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2009 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2010 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2011 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2012 	    ("clean blk trie not empty"));
2013 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2014 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2015 	    ("dirty blk trie not empty"));
2016 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2017 	    ("Dangling rangelock waiters"));
2018 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2019 	    ("Leaked inactivation"));
2020 	VI_UNLOCK(vp);
2021 	cache_assert_no_entries(vp);
2022 
2023 #ifdef MAC
2024 	mac_vnode_destroy(vp);
2025 #endif
2026 	if (vp->v_pollinfo != NULL) {
2027 		/*
2028 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2029 		 * here while having another vnode locked when trying to
2030 		 * satisfy a lookup and needing to recycle.
2031 		 */
2032 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2033 		destroy_vpollinfo(vp->v_pollinfo);
2034 		VOP_UNLOCK(vp);
2035 		vp->v_pollinfo = NULL;
2036 	}
2037 	vp->v_mountedhere = NULL;
2038 	vp->v_unpcb = NULL;
2039 	vp->v_rdev = NULL;
2040 	vp->v_fifoinfo = NULL;
2041 	vp->v_iflag = 0;
2042 	vp->v_vflag = 0;
2043 	bo->bo_flag = 0;
2044 	vn_free(vp);
2045 }
2046 
2047 /*
2048  * Delete from old mount point vnode list, if on one.
2049  */
2050 static void
2051 delmntque(struct vnode *vp)
2052 {
2053 	struct mount *mp;
2054 
2055 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2056 
2057 	mp = vp->v_mount;
2058 	MNT_ILOCK(mp);
2059 	VI_LOCK(vp);
2060 	vp->v_mount = NULL;
2061 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2062 		("bad mount point vnode list size"));
2063 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2064 	mp->mnt_nvnodelistsize--;
2065 	MNT_REL(mp);
2066 	MNT_IUNLOCK(mp);
2067 	/*
2068 	 * The caller expects the interlock to be still held.
2069 	 */
2070 	ASSERT_VI_LOCKED(vp, __func__);
2071 }
2072 
2073 static int
2074 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2075 {
2076 
2077 	KASSERT(vp->v_mount == NULL,
2078 		("insmntque: vnode already on per mount vnode list"));
2079 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2080 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2081 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2082 	} else {
2083 		KASSERT(!dtr,
2084 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2085 		    __func__));
2086 	}
2087 
2088 	/*
2089 	 * We acquire the vnode interlock early to ensure that the
2090 	 * vnode cannot be recycled by another process releasing a
2091 	 * holdcnt on it before we get it on both the vnode list
2092 	 * and the active vnode list. The mount mutex protects only
2093 	 * manipulation of the vnode list and the vnode freelist
2094 	 * mutex protects only manipulation of the active vnode list.
2095 	 * Hence the need to hold the vnode interlock throughout.
2096 	 */
2097 	MNT_ILOCK(mp);
2098 	VI_LOCK(vp);
2099 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2100 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2101 	    mp->mnt_nvnodelistsize == 0)) &&
2102 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2103 		VI_UNLOCK(vp);
2104 		MNT_IUNLOCK(mp);
2105 		if (dtr) {
2106 			vp->v_data = NULL;
2107 			vp->v_op = &dead_vnodeops;
2108 			vgone(vp);
2109 			vput(vp);
2110 		}
2111 		return (EBUSY);
2112 	}
2113 	vp->v_mount = mp;
2114 	MNT_REF(mp);
2115 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2116 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2117 		("neg mount point vnode list size"));
2118 	mp->mnt_nvnodelistsize++;
2119 	VI_UNLOCK(vp);
2120 	MNT_IUNLOCK(mp);
2121 	return (0);
2122 }
2123 
2124 /*
2125  * Insert into list of vnodes for the new mount point, if available.
2126  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2127  * leaves handling of the vnode to the caller.
2128  */
2129 int
2130 insmntque(struct vnode *vp, struct mount *mp)
2131 {
2132 	return (insmntque1_int(vp, mp, true));
2133 }
2134 
2135 int
2136 insmntque1(struct vnode *vp, struct mount *mp)
2137 {
2138 	return (insmntque1_int(vp, mp, false));
2139 }
2140 
2141 /*
2142  * Flush out and invalidate all buffers associated with a bufobj
2143  * Called with the underlying object locked.
2144  */
2145 int
2146 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2147 {
2148 	int error;
2149 
2150 	BO_LOCK(bo);
2151 	if (flags & V_SAVE) {
2152 		error = bufobj_wwait(bo, slpflag, slptimeo);
2153 		if (error) {
2154 			BO_UNLOCK(bo);
2155 			return (error);
2156 		}
2157 		if (bo->bo_dirty.bv_cnt > 0) {
2158 			BO_UNLOCK(bo);
2159 			do {
2160 				error = BO_SYNC(bo, MNT_WAIT);
2161 			} while (error == ERELOOKUP);
2162 			if (error != 0)
2163 				return (error);
2164 			BO_LOCK(bo);
2165 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2166 				BO_UNLOCK(bo);
2167 				return (EBUSY);
2168 			}
2169 		}
2170 	}
2171 	/*
2172 	 * If you alter this loop please notice that interlock is dropped and
2173 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2174 	 * no race conditions occur from this.
2175 	 */
2176 	do {
2177 		error = flushbuflist(&bo->bo_clean,
2178 		    flags, bo, slpflag, slptimeo);
2179 		if (error == 0 && !(flags & V_CLEANONLY))
2180 			error = flushbuflist(&bo->bo_dirty,
2181 			    flags, bo, slpflag, slptimeo);
2182 		if (error != 0 && error != EAGAIN) {
2183 			BO_UNLOCK(bo);
2184 			return (error);
2185 		}
2186 	} while (error != 0);
2187 
2188 	/*
2189 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2190 	 * have write I/O in-progress but if there is a VM object then the
2191 	 * VM object can also have read-I/O in-progress.
2192 	 */
2193 	do {
2194 		bufobj_wwait(bo, 0, 0);
2195 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2196 			BO_UNLOCK(bo);
2197 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2198 			BO_LOCK(bo);
2199 		}
2200 	} while (bo->bo_numoutput > 0);
2201 	BO_UNLOCK(bo);
2202 
2203 	/*
2204 	 * Destroy the copy in the VM cache, too.
2205 	 */
2206 	if (bo->bo_object != NULL &&
2207 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2208 		VM_OBJECT_WLOCK(bo->bo_object);
2209 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2210 		    OBJPR_CLEANONLY : 0);
2211 		VM_OBJECT_WUNLOCK(bo->bo_object);
2212 	}
2213 
2214 #ifdef INVARIANTS
2215 	BO_LOCK(bo);
2216 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2217 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2218 	    bo->bo_clean.bv_cnt > 0))
2219 		panic("vinvalbuf: flush failed");
2220 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2221 	    bo->bo_dirty.bv_cnt > 0)
2222 		panic("vinvalbuf: flush dirty failed");
2223 	BO_UNLOCK(bo);
2224 #endif
2225 	return (0);
2226 }
2227 
2228 /*
2229  * Flush out and invalidate all buffers associated with a vnode.
2230  * Called with the underlying object locked.
2231  */
2232 int
2233 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2234 {
2235 
2236 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2237 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2238 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2239 		return (0);
2240 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2241 }
2242 
2243 /*
2244  * Flush out buffers on the specified list.
2245  *
2246  */
2247 static int
2248 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2249     int slptimeo)
2250 {
2251 	struct buf *bp, *nbp;
2252 	int retval, error;
2253 	daddr_t lblkno;
2254 	b_xflags_t xflags;
2255 
2256 	ASSERT_BO_WLOCKED(bo);
2257 
2258 	retval = 0;
2259 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2260 		/*
2261 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2262 		 * do not skip any buffers. If we are flushing only V_NORMAL
2263 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2264 		 * flushing only V_ALT buffers then skip buffers not marked
2265 		 * as BX_ALTDATA.
2266 		 */
2267 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2268 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2269 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2270 			continue;
2271 		}
2272 		if (nbp != NULL) {
2273 			lblkno = nbp->b_lblkno;
2274 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2275 		}
2276 		retval = EAGAIN;
2277 		error = BUF_TIMELOCK(bp,
2278 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2279 		    "flushbuf", slpflag, slptimeo);
2280 		if (error) {
2281 			BO_LOCK(bo);
2282 			return (error != ENOLCK ? error : EAGAIN);
2283 		}
2284 		KASSERT(bp->b_bufobj == bo,
2285 		    ("bp %p wrong b_bufobj %p should be %p",
2286 		    bp, bp->b_bufobj, bo));
2287 		/*
2288 		 * XXX Since there are no node locks for NFS, I
2289 		 * believe there is a slight chance that a delayed
2290 		 * write will occur while sleeping just above, so
2291 		 * check for it.
2292 		 */
2293 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2294 		    (flags & V_SAVE)) {
2295 			bremfree(bp);
2296 			bp->b_flags |= B_ASYNC;
2297 			bwrite(bp);
2298 			BO_LOCK(bo);
2299 			return (EAGAIN);	/* XXX: why not loop ? */
2300 		}
2301 		bremfree(bp);
2302 		bp->b_flags |= (B_INVAL | B_RELBUF);
2303 		bp->b_flags &= ~B_ASYNC;
2304 		brelse(bp);
2305 		BO_LOCK(bo);
2306 		if (nbp == NULL)
2307 			break;
2308 		nbp = gbincore(bo, lblkno);
2309 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2310 		    != xflags)
2311 			break;			/* nbp invalid */
2312 	}
2313 	return (retval);
2314 }
2315 
2316 int
2317 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2318 {
2319 	struct buf *bp;
2320 	int error;
2321 	daddr_t lblkno;
2322 
2323 	ASSERT_BO_LOCKED(bo);
2324 
2325 	for (lblkno = startn;;) {
2326 again:
2327 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2328 		if (bp == NULL || bp->b_lblkno >= endn ||
2329 		    bp->b_lblkno < startn)
2330 			break;
2331 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2332 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2333 		if (error != 0) {
2334 			BO_RLOCK(bo);
2335 			if (error == ENOLCK)
2336 				goto again;
2337 			return (error);
2338 		}
2339 		KASSERT(bp->b_bufobj == bo,
2340 		    ("bp %p wrong b_bufobj %p should be %p",
2341 		    bp, bp->b_bufobj, bo));
2342 		lblkno = bp->b_lblkno + 1;
2343 		if ((bp->b_flags & B_MANAGED) == 0)
2344 			bremfree(bp);
2345 		bp->b_flags |= B_RELBUF;
2346 		/*
2347 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2348 		 * pages backing each buffer in the range are unlikely to be
2349 		 * reused.  Dirty buffers will have the hint applied once
2350 		 * they've been written.
2351 		 */
2352 		if ((bp->b_flags & B_VMIO) != 0)
2353 			bp->b_flags |= B_NOREUSE;
2354 		brelse(bp);
2355 		BO_RLOCK(bo);
2356 	}
2357 	return (0);
2358 }
2359 
2360 /*
2361  * Truncate a file's buffer and pages to a specified length.  This
2362  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2363  * sync activity.
2364  */
2365 int
2366 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2367 {
2368 	struct buf *bp, *nbp;
2369 	struct bufobj *bo;
2370 	daddr_t startlbn;
2371 
2372 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2373 	    vp, blksize, (uintmax_t)length);
2374 
2375 	/*
2376 	 * Round up to the *next* lbn.
2377 	 */
2378 	startlbn = howmany(length, blksize);
2379 
2380 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2381 
2382 	bo = &vp->v_bufobj;
2383 restart_unlocked:
2384 	BO_LOCK(bo);
2385 
2386 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2387 		;
2388 
2389 	if (length > 0) {
2390 restartsync:
2391 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2392 			if (bp->b_lblkno > 0)
2393 				continue;
2394 			/*
2395 			 * Since we hold the vnode lock this should only
2396 			 * fail if we're racing with the buf daemon.
2397 			 */
2398 			if (BUF_LOCK(bp,
2399 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2400 			    BO_LOCKPTR(bo)) == ENOLCK)
2401 				goto restart_unlocked;
2402 
2403 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2404 			    ("buf(%p) on dirty queue without DELWRI", bp));
2405 
2406 			bremfree(bp);
2407 			bawrite(bp);
2408 			BO_LOCK(bo);
2409 			goto restartsync;
2410 		}
2411 	}
2412 
2413 	bufobj_wwait(bo, 0, 0);
2414 	BO_UNLOCK(bo);
2415 	vnode_pager_setsize(vp, length);
2416 
2417 	return (0);
2418 }
2419 
2420 /*
2421  * Invalidate the cached pages of a file's buffer within the range of block
2422  * numbers [startlbn, endlbn).
2423  */
2424 void
2425 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2426     int blksize)
2427 {
2428 	struct bufobj *bo;
2429 	off_t start, end;
2430 
2431 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2432 
2433 	start = blksize * startlbn;
2434 	end = blksize * endlbn;
2435 
2436 	bo = &vp->v_bufobj;
2437 	BO_LOCK(bo);
2438 	MPASS(blksize == bo->bo_bsize);
2439 
2440 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2441 		;
2442 
2443 	BO_UNLOCK(bo);
2444 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2445 }
2446 
2447 static int
2448 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2449     daddr_t startlbn, daddr_t endlbn)
2450 {
2451 	struct buf *bp, *nbp;
2452 	bool anyfreed;
2453 
2454 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2455 	ASSERT_BO_LOCKED(bo);
2456 
2457 	do {
2458 		anyfreed = false;
2459 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2460 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2461 				continue;
2462 			if (BUF_LOCK(bp,
2463 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2464 			    BO_LOCKPTR(bo)) == ENOLCK) {
2465 				BO_LOCK(bo);
2466 				return (EAGAIN);
2467 			}
2468 
2469 			bremfree(bp);
2470 			bp->b_flags |= B_INVAL | B_RELBUF;
2471 			bp->b_flags &= ~B_ASYNC;
2472 			brelse(bp);
2473 			anyfreed = true;
2474 
2475 			BO_LOCK(bo);
2476 			if (nbp != NULL &&
2477 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2478 			    nbp->b_vp != vp ||
2479 			    (nbp->b_flags & B_DELWRI) != 0))
2480 				return (EAGAIN);
2481 		}
2482 
2483 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2484 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2485 				continue;
2486 			if (BUF_LOCK(bp,
2487 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2488 			    BO_LOCKPTR(bo)) == ENOLCK) {
2489 				BO_LOCK(bo);
2490 				return (EAGAIN);
2491 			}
2492 			bremfree(bp);
2493 			bp->b_flags |= B_INVAL | B_RELBUF;
2494 			bp->b_flags &= ~B_ASYNC;
2495 			brelse(bp);
2496 			anyfreed = true;
2497 
2498 			BO_LOCK(bo);
2499 			if (nbp != NULL &&
2500 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2501 			    (nbp->b_vp != vp) ||
2502 			    (nbp->b_flags & B_DELWRI) == 0))
2503 				return (EAGAIN);
2504 		}
2505 	} while (anyfreed);
2506 	return (0);
2507 }
2508 
2509 static void
2510 buf_vlist_remove(struct buf *bp)
2511 {
2512 	struct bufv *bv;
2513 	b_xflags_t flags;
2514 
2515 	flags = bp->b_xflags;
2516 
2517 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2518 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2519 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2520 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2521 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2522 
2523 	if ((flags & BX_VNDIRTY) != 0)
2524 		bv = &bp->b_bufobj->bo_dirty;
2525 	else
2526 		bv = &bp->b_bufobj->bo_clean;
2527 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2528 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2529 	bv->bv_cnt--;
2530 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2531 }
2532 
2533 /*
2534  * Add the buffer to the sorted clean or dirty block list.
2535  *
2536  * NOTE: xflags is passed as a constant, optimizing this inline function!
2537  */
2538 static void
2539 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2540 {
2541 	struct bufv *bv;
2542 	struct buf *n;
2543 	int error;
2544 
2545 	ASSERT_BO_WLOCKED(bo);
2546 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2547 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2548 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2549 	    ("dead bo %p", bo));
2550 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2551 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2552 	bp->b_xflags |= xflags;
2553 	if (xflags & BX_VNDIRTY)
2554 		bv = &bo->bo_dirty;
2555 	else
2556 		bv = &bo->bo_clean;
2557 
2558 	/*
2559 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2560 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2561 	 * than _ge.
2562 	 */
2563 	if (bv->bv_cnt == 0 ||
2564 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2565 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2566 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2567 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2568 	else
2569 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2570 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2571 	if (error)
2572 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2573 	bv->bv_cnt++;
2574 }
2575 
2576 /*
2577  * Look up a buffer using the buffer tries.
2578  */
2579 struct buf *
2580 gbincore(struct bufobj *bo, daddr_t lblkno)
2581 {
2582 	struct buf *bp;
2583 
2584 	ASSERT_BO_LOCKED(bo);
2585 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2586 	if (bp != NULL)
2587 		return (bp);
2588 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2589 }
2590 
2591 /*
2592  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2593  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2594  * stability of the result.  Like other lockless lookups, the found buf may
2595  * already be invalid by the time this function returns.
2596  */
2597 struct buf *
2598 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2599 {
2600 	struct buf *bp;
2601 
2602 	ASSERT_BO_UNLOCKED(bo);
2603 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2604 	if (bp != NULL)
2605 		return (bp);
2606 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2607 }
2608 
2609 /*
2610  * Associate a buffer with a vnode.
2611  */
2612 void
2613 bgetvp(struct vnode *vp, struct buf *bp)
2614 {
2615 	struct bufobj *bo;
2616 
2617 	bo = &vp->v_bufobj;
2618 	ASSERT_BO_WLOCKED(bo);
2619 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2620 
2621 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2622 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2623 	    ("bgetvp: bp already attached! %p", bp));
2624 
2625 	vhold(vp);
2626 	bp->b_vp = vp;
2627 	bp->b_bufobj = bo;
2628 	/*
2629 	 * Insert onto list for new vnode.
2630 	 */
2631 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2632 }
2633 
2634 /*
2635  * Disassociate a buffer from a vnode.
2636  */
2637 void
2638 brelvp(struct buf *bp)
2639 {
2640 	struct bufobj *bo;
2641 	struct vnode *vp;
2642 
2643 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2644 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2645 
2646 	/*
2647 	 * Delete from old vnode list, if on one.
2648 	 */
2649 	vp = bp->b_vp;		/* XXX */
2650 	bo = bp->b_bufobj;
2651 	BO_LOCK(bo);
2652 	buf_vlist_remove(bp);
2653 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2654 		bo->bo_flag &= ~BO_ONWORKLST;
2655 		mtx_lock(&sync_mtx);
2656 		LIST_REMOVE(bo, bo_synclist);
2657 		syncer_worklist_len--;
2658 		mtx_unlock(&sync_mtx);
2659 	}
2660 	bp->b_vp = NULL;
2661 	bp->b_bufobj = NULL;
2662 	BO_UNLOCK(bo);
2663 	vdrop(vp);
2664 }
2665 
2666 /*
2667  * Add an item to the syncer work queue.
2668  */
2669 static void
2670 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2671 {
2672 	int slot;
2673 
2674 	ASSERT_BO_WLOCKED(bo);
2675 
2676 	mtx_lock(&sync_mtx);
2677 	if (bo->bo_flag & BO_ONWORKLST)
2678 		LIST_REMOVE(bo, bo_synclist);
2679 	else {
2680 		bo->bo_flag |= BO_ONWORKLST;
2681 		syncer_worklist_len++;
2682 	}
2683 
2684 	if (delay > syncer_maxdelay - 2)
2685 		delay = syncer_maxdelay - 2;
2686 	slot = (syncer_delayno + delay) & syncer_mask;
2687 
2688 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2689 	mtx_unlock(&sync_mtx);
2690 }
2691 
2692 static int
2693 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2694 {
2695 	int error, len;
2696 
2697 	mtx_lock(&sync_mtx);
2698 	len = syncer_worklist_len - sync_vnode_count;
2699 	mtx_unlock(&sync_mtx);
2700 	error = SYSCTL_OUT(req, &len, sizeof(len));
2701 	return (error);
2702 }
2703 
2704 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2705     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2706     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2707 
2708 static struct proc *updateproc;
2709 static void sched_sync(void);
2710 static struct kproc_desc up_kp = {
2711 	"syncer",
2712 	sched_sync,
2713 	&updateproc
2714 };
2715 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2716 
2717 static int
2718 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2719 {
2720 	struct vnode *vp;
2721 	struct mount *mp;
2722 
2723 	*bo = LIST_FIRST(slp);
2724 	if (*bo == NULL)
2725 		return (0);
2726 	vp = bo2vnode(*bo);
2727 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2728 		return (1);
2729 	/*
2730 	 * We use vhold in case the vnode does not
2731 	 * successfully sync.  vhold prevents the vnode from
2732 	 * going away when we unlock the sync_mtx so that
2733 	 * we can acquire the vnode interlock.
2734 	 */
2735 	vholdl(vp);
2736 	mtx_unlock(&sync_mtx);
2737 	VI_UNLOCK(vp);
2738 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2739 		vdrop(vp);
2740 		mtx_lock(&sync_mtx);
2741 		return (*bo == LIST_FIRST(slp));
2742 	}
2743 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2744 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2745 	    ("suspended mp syncing vp %p", vp));
2746 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2747 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2748 	VOP_UNLOCK(vp);
2749 	vn_finished_write(mp);
2750 	BO_LOCK(*bo);
2751 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2752 		/*
2753 		 * Put us back on the worklist.  The worklist
2754 		 * routine will remove us from our current
2755 		 * position and then add us back in at a later
2756 		 * position.
2757 		 */
2758 		vn_syncer_add_to_worklist(*bo, syncdelay);
2759 	}
2760 	BO_UNLOCK(*bo);
2761 	vdrop(vp);
2762 	mtx_lock(&sync_mtx);
2763 	return (0);
2764 }
2765 
2766 static int first_printf = 1;
2767 
2768 /*
2769  * System filesystem synchronizer daemon.
2770  */
2771 static void
2772 sched_sync(void)
2773 {
2774 	struct synclist *next, *slp;
2775 	struct bufobj *bo;
2776 	long starttime;
2777 	struct thread *td = curthread;
2778 	int last_work_seen;
2779 	int net_worklist_len;
2780 	int syncer_final_iter;
2781 	int error;
2782 
2783 	last_work_seen = 0;
2784 	syncer_final_iter = 0;
2785 	syncer_state = SYNCER_RUNNING;
2786 	starttime = time_uptime;
2787 	td->td_pflags |= TDP_NORUNNINGBUF;
2788 
2789 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2790 	    SHUTDOWN_PRI_LAST);
2791 
2792 	mtx_lock(&sync_mtx);
2793 	for (;;) {
2794 		if (syncer_state == SYNCER_FINAL_DELAY &&
2795 		    syncer_final_iter == 0) {
2796 			mtx_unlock(&sync_mtx);
2797 			kproc_suspend_check(td->td_proc);
2798 			mtx_lock(&sync_mtx);
2799 		}
2800 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2801 		if (syncer_state != SYNCER_RUNNING &&
2802 		    starttime != time_uptime) {
2803 			if (first_printf) {
2804 				printf("\nSyncing disks, vnodes remaining... ");
2805 				first_printf = 0;
2806 			}
2807 			printf("%d ", net_worklist_len);
2808 		}
2809 		starttime = time_uptime;
2810 
2811 		/*
2812 		 * Push files whose dirty time has expired.  Be careful
2813 		 * of interrupt race on slp queue.
2814 		 *
2815 		 * Skip over empty worklist slots when shutting down.
2816 		 */
2817 		do {
2818 			slp = &syncer_workitem_pending[syncer_delayno];
2819 			syncer_delayno += 1;
2820 			if (syncer_delayno == syncer_maxdelay)
2821 				syncer_delayno = 0;
2822 			next = &syncer_workitem_pending[syncer_delayno];
2823 			/*
2824 			 * If the worklist has wrapped since the
2825 			 * it was emptied of all but syncer vnodes,
2826 			 * switch to the FINAL_DELAY state and run
2827 			 * for one more second.
2828 			 */
2829 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2830 			    net_worklist_len == 0 &&
2831 			    last_work_seen == syncer_delayno) {
2832 				syncer_state = SYNCER_FINAL_DELAY;
2833 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2834 			}
2835 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2836 		    syncer_worklist_len > 0);
2837 
2838 		/*
2839 		 * Keep track of the last time there was anything
2840 		 * on the worklist other than syncer vnodes.
2841 		 * Return to the SHUTTING_DOWN state if any
2842 		 * new work appears.
2843 		 */
2844 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2845 			last_work_seen = syncer_delayno;
2846 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2847 			syncer_state = SYNCER_SHUTTING_DOWN;
2848 		while (!LIST_EMPTY(slp)) {
2849 			error = sync_vnode(slp, &bo, td);
2850 			if (error == 1) {
2851 				LIST_REMOVE(bo, bo_synclist);
2852 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2853 				continue;
2854 			}
2855 
2856 			if (first_printf == 0) {
2857 				/*
2858 				 * Drop the sync mutex, because some watchdog
2859 				 * drivers need to sleep while patting
2860 				 */
2861 				mtx_unlock(&sync_mtx);
2862 				wdog_kern_pat(WD_LASTVAL);
2863 				mtx_lock(&sync_mtx);
2864 			}
2865 		}
2866 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2867 			syncer_final_iter--;
2868 		/*
2869 		 * The variable rushjob allows the kernel to speed up the
2870 		 * processing of the filesystem syncer process. A rushjob
2871 		 * value of N tells the filesystem syncer to process the next
2872 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2873 		 * is used by the soft update code to speed up the filesystem
2874 		 * syncer process when the incore state is getting so far
2875 		 * ahead of the disk that the kernel memory pool is being
2876 		 * threatened with exhaustion.
2877 		 */
2878 		if (rushjob > 0) {
2879 			rushjob -= 1;
2880 			continue;
2881 		}
2882 		/*
2883 		 * Just sleep for a short period of time between
2884 		 * iterations when shutting down to allow some I/O
2885 		 * to happen.
2886 		 *
2887 		 * If it has taken us less than a second to process the
2888 		 * current work, then wait. Otherwise start right over
2889 		 * again. We can still lose time if any single round
2890 		 * takes more than two seconds, but it does not really
2891 		 * matter as we are just trying to generally pace the
2892 		 * filesystem activity.
2893 		 */
2894 		if (syncer_state != SYNCER_RUNNING ||
2895 		    time_uptime == starttime) {
2896 			thread_lock(td);
2897 			sched_prio(td, PPAUSE);
2898 			thread_unlock(td);
2899 		}
2900 		if (syncer_state != SYNCER_RUNNING)
2901 			cv_timedwait(&sync_wakeup, &sync_mtx,
2902 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2903 		else if (time_uptime == starttime)
2904 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2905 	}
2906 }
2907 
2908 /*
2909  * Request the syncer daemon to speed up its work.
2910  * We never push it to speed up more than half of its
2911  * normal turn time, otherwise it could take over the cpu.
2912  */
2913 int
2914 speedup_syncer(void)
2915 {
2916 	int ret = 0;
2917 
2918 	mtx_lock(&sync_mtx);
2919 	if (rushjob < syncdelay / 2) {
2920 		rushjob += 1;
2921 		stat_rush_requests += 1;
2922 		ret = 1;
2923 	}
2924 	mtx_unlock(&sync_mtx);
2925 	cv_broadcast(&sync_wakeup);
2926 	return (ret);
2927 }
2928 
2929 /*
2930  * Tell the syncer to speed up its work and run though its work
2931  * list several times, then tell it to shut down.
2932  */
2933 static void
2934 syncer_shutdown(void *arg, int howto)
2935 {
2936 
2937 	if (howto & RB_NOSYNC)
2938 		return;
2939 	mtx_lock(&sync_mtx);
2940 	syncer_state = SYNCER_SHUTTING_DOWN;
2941 	rushjob = 0;
2942 	mtx_unlock(&sync_mtx);
2943 	cv_broadcast(&sync_wakeup);
2944 	kproc_shutdown(arg, howto);
2945 }
2946 
2947 void
2948 syncer_suspend(void)
2949 {
2950 
2951 	syncer_shutdown(updateproc, 0);
2952 }
2953 
2954 void
2955 syncer_resume(void)
2956 {
2957 
2958 	mtx_lock(&sync_mtx);
2959 	first_printf = 1;
2960 	syncer_state = SYNCER_RUNNING;
2961 	mtx_unlock(&sync_mtx);
2962 	cv_broadcast(&sync_wakeup);
2963 	kproc_resume(updateproc);
2964 }
2965 
2966 /*
2967  * Move the buffer between the clean and dirty lists of its vnode.
2968  */
2969 void
2970 reassignbuf(struct buf *bp)
2971 {
2972 	struct vnode *vp;
2973 	struct bufobj *bo;
2974 	int delay;
2975 #ifdef INVARIANTS
2976 	struct bufv *bv;
2977 #endif
2978 
2979 	vp = bp->b_vp;
2980 	bo = bp->b_bufobj;
2981 
2982 	KASSERT((bp->b_flags & B_PAGING) == 0,
2983 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2984 
2985 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2986 	    bp, bp->b_vp, bp->b_flags);
2987 
2988 	BO_LOCK(bo);
2989 	buf_vlist_remove(bp);
2990 
2991 	/*
2992 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2993 	 * of clean buffers.
2994 	 */
2995 	if (bp->b_flags & B_DELWRI) {
2996 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2997 			switch (vp->v_type) {
2998 			case VDIR:
2999 				delay = dirdelay;
3000 				break;
3001 			case VCHR:
3002 				delay = metadelay;
3003 				break;
3004 			default:
3005 				delay = filedelay;
3006 			}
3007 			vn_syncer_add_to_worklist(bo, delay);
3008 		}
3009 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3010 	} else {
3011 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3012 
3013 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3014 			mtx_lock(&sync_mtx);
3015 			LIST_REMOVE(bo, bo_synclist);
3016 			syncer_worklist_len--;
3017 			mtx_unlock(&sync_mtx);
3018 			bo->bo_flag &= ~BO_ONWORKLST;
3019 		}
3020 	}
3021 #ifdef INVARIANTS
3022 	bv = &bo->bo_clean;
3023 	bp = TAILQ_FIRST(&bv->bv_hd);
3024 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3025 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3026 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3027 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3028 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3029 	bv = &bo->bo_dirty;
3030 	bp = TAILQ_FIRST(&bv->bv_hd);
3031 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3032 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3033 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3034 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3035 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3036 #endif
3037 	BO_UNLOCK(bo);
3038 }
3039 
3040 static void
3041 v_init_counters(struct vnode *vp)
3042 {
3043 
3044 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3045 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3046 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3047 
3048 	refcount_init(&vp->v_holdcnt, 1);
3049 	refcount_init(&vp->v_usecount, 1);
3050 }
3051 
3052 /*
3053  * Grab a particular vnode from the free list, increment its
3054  * reference count and lock it.  VIRF_DOOMED is set if the vnode
3055  * is being destroyed.  Only callers who specify LK_RETRY will
3056  * see doomed vnodes.  If inactive processing was delayed in
3057  * vput try to do it here.
3058  *
3059  * usecount is manipulated using atomics without holding any locks.
3060  *
3061  * holdcnt can be manipulated using atomics without holding any locks,
3062  * except when transitioning 1<->0, in which case the interlock is held.
3063  *
3064  * Consumers which don't guarantee liveness of the vnode can use SMR to
3065  * try to get a reference. Note this operation can fail since the vnode
3066  * may be awaiting getting freed by the time they get to it.
3067  */
3068 enum vgetstate
3069 vget_prep_smr(struct vnode *vp)
3070 {
3071 	enum vgetstate vs;
3072 
3073 	VFS_SMR_ASSERT_ENTERED();
3074 
3075 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3076 		vs = VGET_USECOUNT;
3077 	} else {
3078 		if (vhold_smr(vp))
3079 			vs = VGET_HOLDCNT;
3080 		else
3081 			vs = VGET_NONE;
3082 	}
3083 	return (vs);
3084 }
3085 
3086 enum vgetstate
3087 vget_prep(struct vnode *vp)
3088 {
3089 	enum vgetstate vs;
3090 
3091 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3092 		vs = VGET_USECOUNT;
3093 	} else {
3094 		vhold(vp);
3095 		vs = VGET_HOLDCNT;
3096 	}
3097 	return (vs);
3098 }
3099 
3100 void
3101 vget_abort(struct vnode *vp, enum vgetstate vs)
3102 {
3103 
3104 	switch (vs) {
3105 	case VGET_USECOUNT:
3106 		vrele(vp);
3107 		break;
3108 	case VGET_HOLDCNT:
3109 		vdrop(vp);
3110 		break;
3111 	default:
3112 		__assert_unreachable();
3113 	}
3114 }
3115 
3116 int
3117 vget(struct vnode *vp, int flags)
3118 {
3119 	enum vgetstate vs;
3120 
3121 	vs = vget_prep(vp);
3122 	return (vget_finish(vp, flags, vs));
3123 }
3124 
3125 int
3126 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3127 {
3128 	int error;
3129 
3130 	if ((flags & LK_INTERLOCK) != 0)
3131 		ASSERT_VI_LOCKED(vp, __func__);
3132 	else
3133 		ASSERT_VI_UNLOCKED(vp, __func__);
3134 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3135 	VNPASS(vp->v_holdcnt > 0, vp);
3136 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3137 
3138 	error = vn_lock(vp, flags);
3139 	if (__predict_false(error != 0)) {
3140 		vget_abort(vp, vs);
3141 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3142 		    vp);
3143 		return (error);
3144 	}
3145 
3146 	vget_finish_ref(vp, vs);
3147 	return (0);
3148 }
3149 
3150 void
3151 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3152 {
3153 	int old;
3154 
3155 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3156 	VNPASS(vp->v_holdcnt > 0, vp);
3157 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3158 
3159 	if (vs == VGET_USECOUNT)
3160 		return;
3161 
3162 	/*
3163 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3164 	 * the vnode around. Otherwise someone else lended their hold count and
3165 	 * we have to drop ours.
3166 	 */
3167 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3168 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3169 	if (old != 0) {
3170 #ifdef INVARIANTS
3171 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3172 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3173 #else
3174 		refcount_release(&vp->v_holdcnt);
3175 #endif
3176 	}
3177 }
3178 
3179 void
3180 vref(struct vnode *vp)
3181 {
3182 	enum vgetstate vs;
3183 
3184 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3185 	vs = vget_prep(vp);
3186 	vget_finish_ref(vp, vs);
3187 }
3188 
3189 void
3190 vrefact(struct vnode *vp)
3191 {
3192 
3193 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3194 #ifdef INVARIANTS
3195 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3196 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3197 #else
3198 	refcount_acquire(&vp->v_usecount);
3199 #endif
3200 }
3201 
3202 void
3203 vlazy(struct vnode *vp)
3204 {
3205 	struct mount *mp;
3206 
3207 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3208 
3209 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3210 		return;
3211 	/*
3212 	 * We may get here for inactive routines after the vnode got doomed.
3213 	 */
3214 	if (VN_IS_DOOMED(vp))
3215 		return;
3216 	mp = vp->v_mount;
3217 	mtx_lock(&mp->mnt_listmtx);
3218 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3219 		vp->v_mflag |= VMP_LAZYLIST;
3220 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3221 		mp->mnt_lazyvnodelistsize++;
3222 	}
3223 	mtx_unlock(&mp->mnt_listmtx);
3224 }
3225 
3226 static void
3227 vunlazy(struct vnode *vp)
3228 {
3229 	struct mount *mp;
3230 
3231 	ASSERT_VI_LOCKED(vp, __func__);
3232 	VNPASS(!VN_IS_DOOMED(vp), vp);
3233 
3234 	mp = vp->v_mount;
3235 	mtx_lock(&mp->mnt_listmtx);
3236 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3237 	/*
3238 	 * Don't remove the vnode from the lazy list if another thread
3239 	 * has increased the hold count. It may have re-enqueued the
3240 	 * vnode to the lazy list and is now responsible for its
3241 	 * removal.
3242 	 */
3243 	if (vp->v_holdcnt == 0) {
3244 		vp->v_mflag &= ~VMP_LAZYLIST;
3245 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3246 		mp->mnt_lazyvnodelistsize--;
3247 	}
3248 	mtx_unlock(&mp->mnt_listmtx);
3249 }
3250 
3251 /*
3252  * This routine is only meant to be called from vgonel prior to dooming
3253  * the vnode.
3254  */
3255 static void
3256 vunlazy_gone(struct vnode *vp)
3257 {
3258 	struct mount *mp;
3259 
3260 	ASSERT_VOP_ELOCKED(vp, __func__);
3261 	ASSERT_VI_LOCKED(vp, __func__);
3262 	VNPASS(!VN_IS_DOOMED(vp), vp);
3263 
3264 	if (vp->v_mflag & VMP_LAZYLIST) {
3265 		mp = vp->v_mount;
3266 		mtx_lock(&mp->mnt_listmtx);
3267 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3268 		vp->v_mflag &= ~VMP_LAZYLIST;
3269 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3270 		mp->mnt_lazyvnodelistsize--;
3271 		mtx_unlock(&mp->mnt_listmtx);
3272 	}
3273 }
3274 
3275 static void
3276 vdefer_inactive(struct vnode *vp)
3277 {
3278 
3279 	ASSERT_VI_LOCKED(vp, __func__);
3280 	VNPASS(vp->v_holdcnt > 0, vp);
3281 	if (VN_IS_DOOMED(vp)) {
3282 		vdropl(vp);
3283 		return;
3284 	}
3285 	if (vp->v_iflag & VI_DEFINACT) {
3286 		VNPASS(vp->v_holdcnt > 1, vp);
3287 		vdropl(vp);
3288 		return;
3289 	}
3290 	if (vp->v_usecount > 0) {
3291 		vp->v_iflag &= ~VI_OWEINACT;
3292 		vdropl(vp);
3293 		return;
3294 	}
3295 	vlazy(vp);
3296 	vp->v_iflag |= VI_DEFINACT;
3297 	VI_UNLOCK(vp);
3298 	atomic_add_long(&deferred_inact, 1);
3299 }
3300 
3301 static void
3302 vdefer_inactive_unlocked(struct vnode *vp)
3303 {
3304 
3305 	VI_LOCK(vp);
3306 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3307 		vdropl(vp);
3308 		return;
3309 	}
3310 	vdefer_inactive(vp);
3311 }
3312 
3313 enum vput_op { VRELE, VPUT, VUNREF };
3314 
3315 /*
3316  * Handle ->v_usecount transitioning to 0.
3317  *
3318  * By releasing the last usecount we take ownership of the hold count which
3319  * provides liveness of the vnode, meaning we have to vdrop.
3320  *
3321  * For all vnodes we may need to perform inactive processing. It requires an
3322  * exclusive lock on the vnode, while it is legal to call here with only a
3323  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3324  * inactive processing gets deferred to the syncer.
3325  *
3326  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3327  * on the lock being held all the way until VOP_INACTIVE. This in particular
3328  * happens with UFS which adds half-constructed vnodes to the hash, where they
3329  * can be found by other code.
3330  */
3331 static void
3332 vput_final(struct vnode *vp, enum vput_op func)
3333 {
3334 	int error;
3335 	bool want_unlock;
3336 
3337 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3338 	VNPASS(vp->v_holdcnt > 0, vp);
3339 
3340 	VI_LOCK(vp);
3341 
3342 	/*
3343 	 * By the time we got here someone else might have transitioned
3344 	 * the count back to > 0.
3345 	 */
3346 	if (vp->v_usecount > 0)
3347 		goto out;
3348 
3349 	/*
3350 	 * If the vnode is doomed vgone already performed inactive processing
3351 	 * (if needed).
3352 	 */
3353 	if (VN_IS_DOOMED(vp))
3354 		goto out;
3355 
3356 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3357 		goto out;
3358 
3359 	if (vp->v_iflag & VI_DOINGINACT)
3360 		goto out;
3361 
3362 	/*
3363 	 * Locking operations here will drop the interlock and possibly the
3364 	 * vnode lock, opening a window where the vnode can get doomed all the
3365 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3366 	 * perform inactive.
3367 	 */
3368 	vp->v_iflag |= VI_OWEINACT;
3369 	want_unlock = false;
3370 	error = 0;
3371 	switch (func) {
3372 	case VRELE:
3373 		switch (VOP_ISLOCKED(vp)) {
3374 		case LK_EXCLUSIVE:
3375 			break;
3376 		case LK_EXCLOTHER:
3377 		case 0:
3378 			want_unlock = true;
3379 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3380 			VI_LOCK(vp);
3381 			break;
3382 		default:
3383 			/*
3384 			 * The lock has at least one sharer, but we have no way
3385 			 * to conclude whether this is us. Play it safe and
3386 			 * defer processing.
3387 			 */
3388 			error = EAGAIN;
3389 			break;
3390 		}
3391 		break;
3392 	case VPUT:
3393 		want_unlock = true;
3394 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3395 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3396 			    LK_NOWAIT);
3397 			VI_LOCK(vp);
3398 		}
3399 		break;
3400 	case VUNREF:
3401 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3402 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3403 			VI_LOCK(vp);
3404 		}
3405 		break;
3406 	}
3407 	if (error == 0) {
3408 		if (func == VUNREF) {
3409 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3410 			    ("recursive vunref"));
3411 			vp->v_vflag |= VV_UNREF;
3412 		}
3413 		for (;;) {
3414 			error = vinactive(vp);
3415 			if (want_unlock)
3416 				VOP_UNLOCK(vp);
3417 			if (error != ERELOOKUP || !want_unlock)
3418 				break;
3419 			VOP_LOCK(vp, LK_EXCLUSIVE);
3420 		}
3421 		if (func == VUNREF)
3422 			vp->v_vflag &= ~VV_UNREF;
3423 		vdropl(vp);
3424 	} else {
3425 		vdefer_inactive(vp);
3426 	}
3427 	return;
3428 out:
3429 	if (func == VPUT)
3430 		VOP_UNLOCK(vp);
3431 	vdropl(vp);
3432 }
3433 
3434 /*
3435  * Decrement ->v_usecount for a vnode.
3436  *
3437  * Releasing the last use count requires additional processing, see vput_final
3438  * above for details.
3439  *
3440  * Comment above each variant denotes lock state on entry and exit.
3441  */
3442 
3443 /*
3444  * in: any
3445  * out: same as passed in
3446  */
3447 void
3448 vrele(struct vnode *vp)
3449 {
3450 
3451 	ASSERT_VI_UNLOCKED(vp, __func__);
3452 	if (!refcount_release(&vp->v_usecount))
3453 		return;
3454 	vput_final(vp, VRELE);
3455 }
3456 
3457 /*
3458  * in: locked
3459  * out: unlocked
3460  */
3461 void
3462 vput(struct vnode *vp)
3463 {
3464 
3465 	ASSERT_VOP_LOCKED(vp, __func__);
3466 	ASSERT_VI_UNLOCKED(vp, __func__);
3467 	if (!refcount_release(&vp->v_usecount)) {
3468 		VOP_UNLOCK(vp);
3469 		return;
3470 	}
3471 	vput_final(vp, VPUT);
3472 }
3473 
3474 /*
3475  * in: locked
3476  * out: locked
3477  */
3478 void
3479 vunref(struct vnode *vp)
3480 {
3481 
3482 	ASSERT_VOP_LOCKED(vp, __func__);
3483 	ASSERT_VI_UNLOCKED(vp, __func__);
3484 	if (!refcount_release(&vp->v_usecount))
3485 		return;
3486 	vput_final(vp, VUNREF);
3487 }
3488 
3489 void
3490 vhold(struct vnode *vp)
3491 {
3492 	int old;
3493 
3494 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3495 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3496 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3497 	    ("%s: wrong hold count %d", __func__, old));
3498 	if (old == 0)
3499 		vfs_freevnodes_dec();
3500 }
3501 
3502 void
3503 vholdnz(struct vnode *vp)
3504 {
3505 
3506 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3507 #ifdef INVARIANTS
3508 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3509 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3510 	    ("%s: wrong hold count %d", __func__, old));
3511 #else
3512 	atomic_add_int(&vp->v_holdcnt, 1);
3513 #endif
3514 }
3515 
3516 /*
3517  * Grab a hold count unless the vnode is freed.
3518  *
3519  * Only use this routine if vfs smr is the only protection you have against
3520  * freeing the vnode.
3521  *
3522  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3523  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3524  * the thread which managed to set the flag.
3525  *
3526  * It may be tempting to replace the loop with:
3527  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3528  * if (count & VHOLD_NO_SMR) {
3529  *     backpedal and error out;
3530  * }
3531  *
3532  * However, while this is more performant, it hinders debugging by eliminating
3533  * the previously mentioned invariant.
3534  */
3535 bool
3536 vhold_smr(struct vnode *vp)
3537 {
3538 	int count;
3539 
3540 	VFS_SMR_ASSERT_ENTERED();
3541 
3542 	count = atomic_load_int(&vp->v_holdcnt);
3543 	for (;;) {
3544 		if (count & VHOLD_NO_SMR) {
3545 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3546 			    ("non-zero hold count with flags %d\n", count));
3547 			return (false);
3548 		}
3549 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3550 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3551 			if (count == 0)
3552 				vfs_freevnodes_dec();
3553 			return (true);
3554 		}
3555 	}
3556 }
3557 
3558 /*
3559  * Hold a free vnode for recycling.
3560  *
3561  * Note: vnode_init references this comment.
3562  *
3563  * Attempts to recycle only need the global vnode list lock and have no use for
3564  * SMR.
3565  *
3566  * However, vnodes get inserted into the global list before they get fully
3567  * initialized and stay there until UMA decides to free the memory. This in
3568  * particular means the target can be found before it becomes usable and after
3569  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3570  * VHOLD_NO_SMR.
3571  *
3572  * Note: the vnode may gain more references after we transition the count 0->1.
3573  */
3574 static bool
3575 vhold_recycle_free(struct vnode *vp)
3576 {
3577 	int count;
3578 
3579 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3580 
3581 	count = atomic_load_int(&vp->v_holdcnt);
3582 	for (;;) {
3583 		if (count & VHOLD_NO_SMR) {
3584 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3585 			    ("non-zero hold count with flags %d\n", count));
3586 			return (false);
3587 		}
3588 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3589 		if (count > 0) {
3590 			return (false);
3591 		}
3592 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3593 			vfs_freevnodes_dec();
3594 			return (true);
3595 		}
3596 	}
3597 }
3598 
3599 static void __noinline
3600 vdbatch_process(struct vdbatch *vd)
3601 {
3602 	struct vnode *vp;
3603 	int i;
3604 
3605 	mtx_assert(&vd->lock, MA_OWNED);
3606 	MPASS(curthread->td_pinned > 0);
3607 	MPASS(vd->index == VDBATCH_SIZE);
3608 
3609 	/*
3610 	 * Attempt to requeue the passed batch, but give up easily.
3611 	 *
3612 	 * Despite batching the mechanism is prone to transient *significant*
3613 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3614 	 * if multiple CPUs get here (one real-world example is highly parallel
3615 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3616 	 * quasi-LRU (read: not that great even if fully honoured) just dodge
3617 	 * the problem. Parties which don't like it are welcome to implement
3618 	 * something better.
3619 	 */
3620 	critical_enter();
3621 	if (mtx_trylock(&vnode_list_mtx)) {
3622 		for (i = 0; i < VDBATCH_SIZE; i++) {
3623 			vp = vd->tab[i];
3624 			vd->tab[i] = NULL;
3625 			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3626 			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3627 			MPASS(vp->v_dbatchcpu != NOCPU);
3628 			vp->v_dbatchcpu = NOCPU;
3629 		}
3630 		mtx_unlock(&vnode_list_mtx);
3631 	} else {
3632 		counter_u64_add(vnode_skipped_requeues, 1);
3633 
3634 		for (i = 0; i < VDBATCH_SIZE; i++) {
3635 			vp = vd->tab[i];
3636 			vd->tab[i] = NULL;
3637 			MPASS(vp->v_dbatchcpu != NOCPU);
3638 			vp->v_dbatchcpu = NOCPU;
3639 		}
3640 	}
3641 	vd->index = 0;
3642 	critical_exit();
3643 }
3644 
3645 static void
3646 vdbatch_enqueue(struct vnode *vp)
3647 {
3648 	struct vdbatch *vd;
3649 
3650 	ASSERT_VI_LOCKED(vp, __func__);
3651 	VNPASS(!VN_IS_DOOMED(vp), vp);
3652 
3653 	if (vp->v_dbatchcpu != NOCPU) {
3654 		VI_UNLOCK(vp);
3655 		return;
3656 	}
3657 
3658 	sched_pin();
3659 	vd = DPCPU_PTR(vd);
3660 	mtx_lock(&vd->lock);
3661 	MPASS(vd->index < VDBATCH_SIZE);
3662 	MPASS(vd->tab[vd->index] == NULL);
3663 	/*
3664 	 * A hack: we depend on being pinned so that we know what to put in
3665 	 * ->v_dbatchcpu.
3666 	 */
3667 	vp->v_dbatchcpu = curcpu;
3668 	vd->tab[vd->index] = vp;
3669 	vd->index++;
3670 	VI_UNLOCK(vp);
3671 	if (vd->index == VDBATCH_SIZE)
3672 		vdbatch_process(vd);
3673 	mtx_unlock(&vd->lock);
3674 	sched_unpin();
3675 }
3676 
3677 /*
3678  * This routine must only be called for vnodes which are about to be
3679  * deallocated. Supporting dequeue for arbitrary vndoes would require
3680  * validating that the locked batch matches.
3681  */
3682 static void
3683 vdbatch_dequeue(struct vnode *vp)
3684 {
3685 	struct vdbatch *vd;
3686 	int i;
3687 	short cpu;
3688 
3689 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3690 
3691 	cpu = vp->v_dbatchcpu;
3692 	if (cpu == NOCPU)
3693 		return;
3694 
3695 	vd = DPCPU_ID_PTR(cpu, vd);
3696 	mtx_lock(&vd->lock);
3697 	for (i = 0; i < vd->index; i++) {
3698 		if (vd->tab[i] != vp)
3699 			continue;
3700 		vp->v_dbatchcpu = NOCPU;
3701 		vd->index--;
3702 		vd->tab[i] = vd->tab[vd->index];
3703 		vd->tab[vd->index] = NULL;
3704 		break;
3705 	}
3706 	mtx_unlock(&vd->lock);
3707 	/*
3708 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3709 	 */
3710 	MPASS(vp->v_dbatchcpu == NOCPU);
3711 }
3712 
3713 /*
3714  * Drop the hold count of the vnode.  If this is the last reference to
3715  * the vnode we place it on the free list unless it has been vgone'd
3716  * (marked VIRF_DOOMED) in which case we will free it.
3717  *
3718  * Because the vnode vm object keeps a hold reference on the vnode if
3719  * there is at least one resident non-cached page, the vnode cannot
3720  * leave the active list without the page cleanup done.
3721  */
3722 static void __noinline
3723 vdropl_final(struct vnode *vp)
3724 {
3725 
3726 	ASSERT_VI_LOCKED(vp, __func__);
3727 	VNPASS(VN_IS_DOOMED(vp), vp);
3728 	/*
3729 	 * Set the VHOLD_NO_SMR flag.
3730 	 *
3731 	 * We may be racing against vhold_smr. If they win we can just pretend
3732 	 * we never got this far, they will vdrop later.
3733 	 */
3734 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3735 		vfs_freevnodes_inc();
3736 		VI_UNLOCK(vp);
3737 		/*
3738 		 * We lost the aforementioned race. Any subsequent access is
3739 		 * invalid as they might have managed to vdropl on their own.
3740 		 */
3741 		return;
3742 	}
3743 	/*
3744 	 * Don't bump freevnodes as this one is going away.
3745 	 */
3746 	freevnode(vp);
3747 }
3748 
3749 void
3750 vdrop(struct vnode *vp)
3751 {
3752 
3753 	ASSERT_VI_UNLOCKED(vp, __func__);
3754 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3755 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3756 		return;
3757 	VI_LOCK(vp);
3758 	vdropl(vp);
3759 }
3760 
3761 static void __always_inline
3762 vdropl_impl(struct vnode *vp, bool enqueue)
3763 {
3764 
3765 	ASSERT_VI_LOCKED(vp, __func__);
3766 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3767 	if (!refcount_release(&vp->v_holdcnt)) {
3768 		VI_UNLOCK(vp);
3769 		return;
3770 	}
3771 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3772 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3773 	if (VN_IS_DOOMED(vp)) {
3774 		vdropl_final(vp);
3775 		return;
3776 	}
3777 
3778 	vfs_freevnodes_inc();
3779 	if (vp->v_mflag & VMP_LAZYLIST) {
3780 		vunlazy(vp);
3781 	}
3782 
3783 	if (!enqueue) {
3784 		VI_UNLOCK(vp);
3785 		return;
3786 	}
3787 
3788 	/*
3789 	 * Also unlocks the interlock. We can't assert on it as we
3790 	 * released our hold and by now the vnode might have been
3791 	 * freed.
3792 	 */
3793 	vdbatch_enqueue(vp);
3794 }
3795 
3796 void
3797 vdropl(struct vnode *vp)
3798 {
3799 
3800 	vdropl_impl(vp, true);
3801 }
3802 
3803 /*
3804  * vdrop a vnode when recycling
3805  *
3806  * This is a special case routine only to be used when recycling, differs from
3807  * regular vdrop by not requeieing the vnode on LRU.
3808  *
3809  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3810  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3811  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3812  * loop which can last for as long as writes are frozen.
3813  */
3814 static void
3815 vdropl_recycle(struct vnode *vp)
3816 {
3817 
3818 	vdropl_impl(vp, false);
3819 }
3820 
3821 static void
3822 vdrop_recycle(struct vnode *vp)
3823 {
3824 
3825 	VI_LOCK(vp);
3826 	vdropl_recycle(vp);
3827 }
3828 
3829 /*
3830  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3831  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3832  */
3833 static int
3834 vinactivef(struct vnode *vp)
3835 {
3836 	struct vm_object *obj;
3837 	int error;
3838 
3839 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3840 	ASSERT_VI_LOCKED(vp, "vinactive");
3841 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
3842 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3843 	vp->v_iflag |= VI_DOINGINACT;
3844 	vp->v_iflag &= ~VI_OWEINACT;
3845 	VI_UNLOCK(vp);
3846 	/*
3847 	 * Before moving off the active list, we must be sure that any
3848 	 * modified pages are converted into the vnode's dirty
3849 	 * buffers, since these will no longer be checked once the
3850 	 * vnode is on the inactive list.
3851 	 *
3852 	 * The write-out of the dirty pages is asynchronous.  At the
3853 	 * point that VOP_INACTIVE() is called, there could still be
3854 	 * pending I/O and dirty pages in the object.
3855 	 */
3856 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3857 	    vm_object_mightbedirty(obj)) {
3858 		VM_OBJECT_WLOCK(obj);
3859 		vm_object_page_clean(obj, 0, 0, 0);
3860 		VM_OBJECT_WUNLOCK(obj);
3861 	}
3862 	error = VOP_INACTIVE(vp);
3863 	VI_LOCK(vp);
3864 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
3865 	vp->v_iflag &= ~VI_DOINGINACT;
3866 	return (error);
3867 }
3868 
3869 int
3870 vinactive(struct vnode *vp)
3871 {
3872 
3873 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3874 	ASSERT_VI_LOCKED(vp, "vinactive");
3875 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3876 
3877 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3878 		return (0);
3879 	if (vp->v_iflag & VI_DOINGINACT)
3880 		return (0);
3881 	if (vp->v_usecount > 0) {
3882 		vp->v_iflag &= ~VI_OWEINACT;
3883 		return (0);
3884 	}
3885 	return (vinactivef(vp));
3886 }
3887 
3888 /*
3889  * Remove any vnodes in the vnode table belonging to mount point mp.
3890  *
3891  * If FORCECLOSE is not specified, there should not be any active ones,
3892  * return error if any are found (nb: this is a user error, not a
3893  * system error). If FORCECLOSE is specified, detach any active vnodes
3894  * that are found.
3895  *
3896  * If WRITECLOSE is set, only flush out regular file vnodes open for
3897  * writing.
3898  *
3899  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3900  *
3901  * `rootrefs' specifies the base reference count for the root vnode
3902  * of this filesystem. The root vnode is considered busy if its
3903  * v_usecount exceeds this value. On a successful return, vflush(, td)
3904  * will call vrele() on the root vnode exactly rootrefs times.
3905  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3906  * be zero.
3907  */
3908 #ifdef DIAGNOSTIC
3909 static int busyprt = 0;		/* print out busy vnodes */
3910 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3911 #endif
3912 
3913 int
3914 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3915 {
3916 	struct vnode *vp, *mvp, *rootvp = NULL;
3917 	struct vattr vattr;
3918 	int busy = 0, error;
3919 
3920 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3921 	    rootrefs, flags);
3922 	if (rootrefs > 0) {
3923 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3924 		    ("vflush: bad args"));
3925 		/*
3926 		 * Get the filesystem root vnode. We can vput() it
3927 		 * immediately, since with rootrefs > 0, it won't go away.
3928 		 */
3929 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3930 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3931 			    __func__, error);
3932 			return (error);
3933 		}
3934 		vput(rootvp);
3935 	}
3936 loop:
3937 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3938 		vholdl(vp);
3939 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3940 		if (error) {
3941 			vdrop(vp);
3942 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3943 			goto loop;
3944 		}
3945 		/*
3946 		 * Skip over a vnodes marked VV_SYSTEM.
3947 		 */
3948 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3949 			VOP_UNLOCK(vp);
3950 			vdrop(vp);
3951 			continue;
3952 		}
3953 		/*
3954 		 * If WRITECLOSE is set, flush out unlinked but still open
3955 		 * files (even if open only for reading) and regular file
3956 		 * vnodes open for writing.
3957 		 */
3958 		if (flags & WRITECLOSE) {
3959 			if (vp->v_object != NULL) {
3960 				VM_OBJECT_WLOCK(vp->v_object);
3961 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3962 				VM_OBJECT_WUNLOCK(vp->v_object);
3963 			}
3964 			do {
3965 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3966 			} while (error == ERELOOKUP);
3967 			if (error != 0) {
3968 				VOP_UNLOCK(vp);
3969 				vdrop(vp);
3970 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3971 				return (error);
3972 			}
3973 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3974 			VI_LOCK(vp);
3975 
3976 			if ((vp->v_type == VNON ||
3977 			    (error == 0 && vattr.va_nlink > 0)) &&
3978 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3979 				VOP_UNLOCK(vp);
3980 				vdropl(vp);
3981 				continue;
3982 			}
3983 		} else
3984 			VI_LOCK(vp);
3985 		/*
3986 		 * With v_usecount == 0, all we need to do is clear out the
3987 		 * vnode data structures and we are done.
3988 		 *
3989 		 * If FORCECLOSE is set, forcibly close the vnode.
3990 		 */
3991 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3992 			vgonel(vp);
3993 		} else {
3994 			busy++;
3995 #ifdef DIAGNOSTIC
3996 			if (busyprt)
3997 				vn_printf(vp, "vflush: busy vnode ");
3998 #endif
3999 		}
4000 		VOP_UNLOCK(vp);
4001 		vdropl(vp);
4002 	}
4003 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4004 		/*
4005 		 * If just the root vnode is busy, and if its refcount
4006 		 * is equal to `rootrefs', then go ahead and kill it.
4007 		 */
4008 		VI_LOCK(rootvp);
4009 		KASSERT(busy > 0, ("vflush: not busy"));
4010 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4011 		    ("vflush: usecount %d < rootrefs %d",
4012 		     rootvp->v_usecount, rootrefs));
4013 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4014 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4015 			vgone(rootvp);
4016 			VOP_UNLOCK(rootvp);
4017 			busy = 0;
4018 		} else
4019 			VI_UNLOCK(rootvp);
4020 	}
4021 	if (busy) {
4022 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4023 		    busy);
4024 		return (EBUSY);
4025 	}
4026 	for (; rootrefs > 0; rootrefs--)
4027 		vrele(rootvp);
4028 	return (0);
4029 }
4030 
4031 /*
4032  * Recycle an unused vnode to the front of the free list.
4033  */
4034 int
4035 vrecycle(struct vnode *vp)
4036 {
4037 	int recycled;
4038 
4039 	VI_LOCK(vp);
4040 	recycled = vrecyclel(vp);
4041 	VI_UNLOCK(vp);
4042 	return (recycled);
4043 }
4044 
4045 /*
4046  * vrecycle, with the vp interlock held.
4047  */
4048 int
4049 vrecyclel(struct vnode *vp)
4050 {
4051 	int recycled;
4052 
4053 	ASSERT_VOP_ELOCKED(vp, __func__);
4054 	ASSERT_VI_LOCKED(vp, __func__);
4055 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4056 	recycled = 0;
4057 	if (vp->v_usecount == 0) {
4058 		recycled = 1;
4059 		vgonel(vp);
4060 	}
4061 	return (recycled);
4062 }
4063 
4064 /*
4065  * Eliminate all activity associated with a vnode
4066  * in preparation for reuse.
4067  */
4068 void
4069 vgone(struct vnode *vp)
4070 {
4071 	VI_LOCK(vp);
4072 	vgonel(vp);
4073 	VI_UNLOCK(vp);
4074 }
4075 
4076 /*
4077  * Notify upper mounts about reclaimed or unlinked vnode.
4078  */
4079 void
4080 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4081 {
4082 	struct mount *mp;
4083 	struct mount_upper_node *ump;
4084 
4085 	mp = atomic_load_ptr(&vp->v_mount);
4086 	if (mp == NULL)
4087 		return;
4088 	if (TAILQ_EMPTY(&mp->mnt_notify))
4089 		return;
4090 
4091 	MNT_ILOCK(mp);
4092 	mp->mnt_upper_pending++;
4093 	KASSERT(mp->mnt_upper_pending > 0,
4094 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4095 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4096 		MNT_IUNLOCK(mp);
4097 		switch (event) {
4098 		case VFS_NOTIFY_UPPER_RECLAIM:
4099 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4100 			break;
4101 		case VFS_NOTIFY_UPPER_UNLINK:
4102 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4103 			break;
4104 		}
4105 		MNT_ILOCK(mp);
4106 	}
4107 	mp->mnt_upper_pending--;
4108 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4109 	    mp->mnt_upper_pending == 0) {
4110 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4111 		wakeup(&mp->mnt_uppers);
4112 	}
4113 	MNT_IUNLOCK(mp);
4114 }
4115 
4116 /*
4117  * vgone, with the vp interlock held.
4118  */
4119 static void
4120 vgonel(struct vnode *vp)
4121 {
4122 	struct thread *td;
4123 	struct mount *mp;
4124 	vm_object_t object;
4125 	bool active, doinginact, oweinact;
4126 
4127 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4128 	ASSERT_VI_LOCKED(vp, "vgonel");
4129 	VNASSERT(vp->v_holdcnt, vp,
4130 	    ("vgonel: vp %p has no reference.", vp));
4131 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4132 	td = curthread;
4133 
4134 	/*
4135 	 * Don't vgonel if we're already doomed.
4136 	 */
4137 	if (VN_IS_DOOMED(vp)) {
4138 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4139 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4140 		return;
4141 	}
4142 	/*
4143 	 * Paired with freevnode.
4144 	 */
4145 	vn_seqc_write_begin_locked(vp);
4146 	vunlazy_gone(vp);
4147 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4148 	vn_set_state(vp, VSTATE_DESTROYING);
4149 
4150 	/*
4151 	 * Check to see if the vnode is in use.  If so, we have to
4152 	 * call VOP_CLOSE() and VOP_INACTIVE().
4153 	 *
4154 	 * It could be that VOP_INACTIVE() requested reclamation, in
4155 	 * which case we should avoid recursion, so check
4156 	 * VI_DOINGINACT.  This is not precise but good enough.
4157 	 */
4158 	active = vp->v_usecount > 0;
4159 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4160 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4161 
4162 	/*
4163 	 * If we need to do inactive VI_OWEINACT will be set.
4164 	 */
4165 	if (vp->v_iflag & VI_DEFINACT) {
4166 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4167 		vp->v_iflag &= ~VI_DEFINACT;
4168 		vdropl(vp);
4169 	} else {
4170 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4171 		VI_UNLOCK(vp);
4172 	}
4173 	cache_purge_vgone(vp);
4174 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4175 
4176 	/*
4177 	 * If purging an active vnode, it must be closed and
4178 	 * deactivated before being reclaimed.
4179 	 */
4180 	if (active)
4181 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4182 	if (!doinginact) {
4183 		do {
4184 			if (oweinact || active) {
4185 				VI_LOCK(vp);
4186 				vinactivef(vp);
4187 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4188 				VI_UNLOCK(vp);
4189 			}
4190 		} while (oweinact);
4191 	}
4192 	if (vp->v_type == VSOCK)
4193 		vfs_unp_reclaim(vp);
4194 
4195 	/*
4196 	 * Clean out any buffers associated with the vnode.
4197 	 * If the flush fails, just toss the buffers.
4198 	 */
4199 	mp = NULL;
4200 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4201 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4202 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4203 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4204 			;
4205 	}
4206 
4207 	BO_LOCK(&vp->v_bufobj);
4208 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4209 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4210 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4211 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4212 	    ("vp %p bufobj not invalidated", vp));
4213 
4214 	/*
4215 	 * For VMIO bufobj, BO_DEAD is set later, or in
4216 	 * vm_object_terminate() after the object's page queue is
4217 	 * flushed.
4218 	 */
4219 	object = vp->v_bufobj.bo_object;
4220 	if (object == NULL)
4221 		vp->v_bufobj.bo_flag |= BO_DEAD;
4222 	BO_UNLOCK(&vp->v_bufobj);
4223 
4224 	/*
4225 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4226 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4227 	 * should not touch the object borrowed from the lower vnode
4228 	 * (the handle check).
4229 	 */
4230 	if (object != NULL && object->type == OBJT_VNODE &&
4231 	    object->handle == vp)
4232 		vnode_destroy_vobject(vp);
4233 
4234 	/*
4235 	 * Reclaim the vnode.
4236 	 */
4237 	if (VOP_RECLAIM(vp))
4238 		panic("vgone: cannot reclaim");
4239 	if (mp != NULL)
4240 		vn_finished_secondary_write(mp);
4241 	VNASSERT(vp->v_object == NULL, vp,
4242 	    ("vop_reclaim left v_object vp=%p", vp));
4243 	/*
4244 	 * Clear the advisory locks and wake up waiting threads.
4245 	 */
4246 	if (vp->v_lockf != NULL) {
4247 		(void)VOP_ADVLOCKPURGE(vp);
4248 		vp->v_lockf = NULL;
4249 	}
4250 	/*
4251 	 * Delete from old mount point vnode list.
4252 	 */
4253 	if (vp->v_mount == NULL) {
4254 		VI_LOCK(vp);
4255 	} else {
4256 		delmntque(vp);
4257 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4258 	}
4259 	/*
4260 	 * Done with purge, reset to the standard lock and invalidate
4261 	 * the vnode.
4262 	 */
4263 	vp->v_vnlock = &vp->v_lock;
4264 	vp->v_op = &dead_vnodeops;
4265 	vp->v_type = VBAD;
4266 	vn_set_state(vp, VSTATE_DEAD);
4267 }
4268 
4269 /*
4270  * Print out a description of a vnode.
4271  */
4272 static const char *const vtypename[] = {
4273 	[VNON] = "VNON",
4274 	[VREG] = "VREG",
4275 	[VDIR] = "VDIR",
4276 	[VBLK] = "VBLK",
4277 	[VCHR] = "VCHR",
4278 	[VLNK] = "VLNK",
4279 	[VSOCK] = "VSOCK",
4280 	[VFIFO] = "VFIFO",
4281 	[VBAD] = "VBAD",
4282 	[VMARKER] = "VMARKER",
4283 };
4284 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4285     "vnode type name not added to vtypename");
4286 
4287 static const char *const vstatename[] = {
4288 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4289 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4290 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4291 	[VSTATE_DEAD] = "VSTATE_DEAD",
4292 };
4293 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4294     "vnode state name not added to vstatename");
4295 
4296 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4297     "new hold count flag not added to vn_printf");
4298 
4299 void
4300 vn_printf(struct vnode *vp, const char *fmt, ...)
4301 {
4302 	va_list ap;
4303 	char buf[256], buf2[16];
4304 	u_long flags;
4305 	u_int holdcnt;
4306 	short irflag;
4307 
4308 	va_start(ap, fmt);
4309 	vprintf(fmt, ap);
4310 	va_end(ap);
4311 	printf("%p: ", (void *)vp);
4312 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4313 	    vstatename[vp->v_state], vp->v_op);
4314 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4315 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4316 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4317 	    vp->v_seqc_users);
4318 	switch (vp->v_type) {
4319 	case VDIR:
4320 		printf(" mountedhere %p\n", vp->v_mountedhere);
4321 		break;
4322 	case VCHR:
4323 		printf(" rdev %p\n", vp->v_rdev);
4324 		break;
4325 	case VSOCK:
4326 		printf(" socket %p\n", vp->v_unpcb);
4327 		break;
4328 	case VFIFO:
4329 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4330 		break;
4331 	default:
4332 		printf("\n");
4333 		break;
4334 	}
4335 	buf[0] = '\0';
4336 	buf[1] = '\0';
4337 	if (holdcnt & VHOLD_NO_SMR)
4338 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4339 	printf("    hold count flags (%s)\n", buf + 1);
4340 
4341 	buf[0] = '\0';
4342 	buf[1] = '\0';
4343 	irflag = vn_irflag_read(vp);
4344 	if (irflag & VIRF_DOOMED)
4345 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4346 	if (irflag & VIRF_PGREAD)
4347 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4348 	if (irflag & VIRF_MOUNTPOINT)
4349 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4350 	if (irflag & VIRF_TEXT_REF)
4351 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4352 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4353 	if (flags != 0) {
4354 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4355 		strlcat(buf, buf2, sizeof(buf));
4356 	}
4357 	if (vp->v_vflag & VV_ROOT)
4358 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4359 	if (vp->v_vflag & VV_ISTTY)
4360 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4361 	if (vp->v_vflag & VV_NOSYNC)
4362 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4363 	if (vp->v_vflag & VV_ETERNALDEV)
4364 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4365 	if (vp->v_vflag & VV_CACHEDLABEL)
4366 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4367 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4368 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4369 	if (vp->v_vflag & VV_COPYONWRITE)
4370 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4371 	if (vp->v_vflag & VV_SYSTEM)
4372 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4373 	if (vp->v_vflag & VV_PROCDEP)
4374 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4375 	if (vp->v_vflag & VV_DELETED)
4376 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4377 	if (vp->v_vflag & VV_MD)
4378 		strlcat(buf, "|VV_MD", sizeof(buf));
4379 	if (vp->v_vflag & VV_FORCEINSMQ)
4380 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4381 	if (vp->v_vflag & VV_READLINK)
4382 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4383 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4384 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4385 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4386 	if (flags != 0) {
4387 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4388 		strlcat(buf, buf2, sizeof(buf));
4389 	}
4390 	if (vp->v_iflag & VI_MOUNT)
4391 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4392 	if (vp->v_iflag & VI_DOINGINACT)
4393 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4394 	if (vp->v_iflag & VI_OWEINACT)
4395 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4396 	if (vp->v_iflag & VI_DEFINACT)
4397 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4398 	if (vp->v_iflag & VI_FOPENING)
4399 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4400 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4401 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4402 	if (flags != 0) {
4403 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4404 		strlcat(buf, buf2, sizeof(buf));
4405 	}
4406 	if (vp->v_mflag & VMP_LAZYLIST)
4407 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4408 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4409 	if (flags != 0) {
4410 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4411 		strlcat(buf, buf2, sizeof(buf));
4412 	}
4413 	printf("    flags (%s)", buf + 1);
4414 	if (mtx_owned(VI_MTX(vp)))
4415 		printf(" VI_LOCKed");
4416 	printf("\n");
4417 	if (vp->v_object != NULL)
4418 		printf("    v_object %p ref %d pages %d "
4419 		    "cleanbuf %d dirtybuf %d\n",
4420 		    vp->v_object, vp->v_object->ref_count,
4421 		    vp->v_object->resident_page_count,
4422 		    vp->v_bufobj.bo_clean.bv_cnt,
4423 		    vp->v_bufobj.bo_dirty.bv_cnt);
4424 	printf("    ");
4425 	lockmgr_printinfo(vp->v_vnlock);
4426 	if (vp->v_data != NULL)
4427 		VOP_PRINT(vp);
4428 }
4429 
4430 #ifdef DDB
4431 /*
4432  * List all of the locked vnodes in the system.
4433  * Called when debugging the kernel.
4434  */
4435 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4436 {
4437 	struct mount *mp;
4438 	struct vnode *vp;
4439 
4440 	/*
4441 	 * Note: because this is DDB, we can't obey the locking semantics
4442 	 * for these structures, which means we could catch an inconsistent
4443 	 * state and dereference a nasty pointer.  Not much to be done
4444 	 * about that.
4445 	 */
4446 	db_printf("Locked vnodes\n");
4447 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4448 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4449 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4450 				vn_printf(vp, "vnode ");
4451 		}
4452 	}
4453 }
4454 
4455 /*
4456  * Show details about the given vnode.
4457  */
4458 DB_SHOW_COMMAND(vnode, db_show_vnode)
4459 {
4460 	struct vnode *vp;
4461 
4462 	if (!have_addr)
4463 		return;
4464 	vp = (struct vnode *)addr;
4465 	vn_printf(vp, "vnode ");
4466 }
4467 
4468 /*
4469  * Show details about the given mount point.
4470  */
4471 DB_SHOW_COMMAND(mount, db_show_mount)
4472 {
4473 	struct mount *mp;
4474 	struct vfsopt *opt;
4475 	struct statfs *sp;
4476 	struct vnode *vp;
4477 	char buf[512];
4478 	uint64_t mflags;
4479 	u_int flags;
4480 
4481 	if (!have_addr) {
4482 		/* No address given, print short info about all mount points. */
4483 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4484 			db_printf("%p %s on %s (%s)\n", mp,
4485 			    mp->mnt_stat.f_mntfromname,
4486 			    mp->mnt_stat.f_mntonname,
4487 			    mp->mnt_stat.f_fstypename);
4488 			if (db_pager_quit)
4489 				break;
4490 		}
4491 		db_printf("\nMore info: show mount <addr>\n");
4492 		return;
4493 	}
4494 
4495 	mp = (struct mount *)addr;
4496 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4497 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4498 
4499 	buf[0] = '\0';
4500 	mflags = mp->mnt_flag;
4501 #define	MNT_FLAG(flag)	do {						\
4502 	if (mflags & (flag)) {						\
4503 		if (buf[0] != '\0')					\
4504 			strlcat(buf, ", ", sizeof(buf));		\
4505 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4506 		mflags &= ~(flag);					\
4507 	}								\
4508 } while (0)
4509 	MNT_FLAG(MNT_RDONLY);
4510 	MNT_FLAG(MNT_SYNCHRONOUS);
4511 	MNT_FLAG(MNT_NOEXEC);
4512 	MNT_FLAG(MNT_NOSUID);
4513 	MNT_FLAG(MNT_NFS4ACLS);
4514 	MNT_FLAG(MNT_UNION);
4515 	MNT_FLAG(MNT_ASYNC);
4516 	MNT_FLAG(MNT_SUIDDIR);
4517 	MNT_FLAG(MNT_SOFTDEP);
4518 	MNT_FLAG(MNT_NOSYMFOLLOW);
4519 	MNT_FLAG(MNT_GJOURNAL);
4520 	MNT_FLAG(MNT_MULTILABEL);
4521 	MNT_FLAG(MNT_ACLS);
4522 	MNT_FLAG(MNT_NOATIME);
4523 	MNT_FLAG(MNT_NOCLUSTERR);
4524 	MNT_FLAG(MNT_NOCLUSTERW);
4525 	MNT_FLAG(MNT_SUJ);
4526 	MNT_FLAG(MNT_EXRDONLY);
4527 	MNT_FLAG(MNT_EXPORTED);
4528 	MNT_FLAG(MNT_DEFEXPORTED);
4529 	MNT_FLAG(MNT_EXPORTANON);
4530 	MNT_FLAG(MNT_EXKERB);
4531 	MNT_FLAG(MNT_EXPUBLIC);
4532 	MNT_FLAG(MNT_LOCAL);
4533 	MNT_FLAG(MNT_QUOTA);
4534 	MNT_FLAG(MNT_ROOTFS);
4535 	MNT_FLAG(MNT_USER);
4536 	MNT_FLAG(MNT_IGNORE);
4537 	MNT_FLAG(MNT_UPDATE);
4538 	MNT_FLAG(MNT_DELEXPORT);
4539 	MNT_FLAG(MNT_RELOAD);
4540 	MNT_FLAG(MNT_FORCE);
4541 	MNT_FLAG(MNT_SNAPSHOT);
4542 	MNT_FLAG(MNT_BYFSID);
4543 #undef MNT_FLAG
4544 	if (mflags != 0) {
4545 		if (buf[0] != '\0')
4546 			strlcat(buf, ", ", sizeof(buf));
4547 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4548 		    "0x%016jx", mflags);
4549 	}
4550 	db_printf("    mnt_flag = %s\n", buf);
4551 
4552 	buf[0] = '\0';
4553 	flags = mp->mnt_kern_flag;
4554 #define	MNT_KERN_FLAG(flag)	do {					\
4555 	if (flags & (flag)) {						\
4556 		if (buf[0] != '\0')					\
4557 			strlcat(buf, ", ", sizeof(buf));		\
4558 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4559 		flags &= ~(flag);					\
4560 	}								\
4561 } while (0)
4562 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4563 	MNT_KERN_FLAG(MNTK_ASYNC);
4564 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4565 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4566 	MNT_KERN_FLAG(MNTK_DRAINING);
4567 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4568 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4569 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4570 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4571 	MNT_KERN_FLAG(MNTK_RECURSE);
4572 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4573 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4574 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4575 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4576 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4577 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4578 	MNT_KERN_FLAG(MNTK_NOASYNC);
4579 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4580 	MNT_KERN_FLAG(MNTK_MWAIT);
4581 	MNT_KERN_FLAG(MNTK_SUSPEND);
4582 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4583 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4584 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4585 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4586 #undef MNT_KERN_FLAG
4587 	if (flags != 0) {
4588 		if (buf[0] != '\0')
4589 			strlcat(buf, ", ", sizeof(buf));
4590 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4591 		    "0x%08x", flags);
4592 	}
4593 	db_printf("    mnt_kern_flag = %s\n", buf);
4594 
4595 	db_printf("    mnt_opt = ");
4596 	opt = TAILQ_FIRST(mp->mnt_opt);
4597 	if (opt != NULL) {
4598 		db_printf("%s", opt->name);
4599 		opt = TAILQ_NEXT(opt, link);
4600 		while (opt != NULL) {
4601 			db_printf(", %s", opt->name);
4602 			opt = TAILQ_NEXT(opt, link);
4603 		}
4604 	}
4605 	db_printf("\n");
4606 
4607 	sp = &mp->mnt_stat;
4608 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4609 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4610 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4611 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4612 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4613 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4614 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4615 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4616 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4617 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4618 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4619 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4620 
4621 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4622 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4623 	if (jailed(mp->mnt_cred))
4624 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4625 	db_printf(" }\n");
4626 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4627 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4628 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4629 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4630 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4631 	    mp->mnt_lazyvnodelistsize);
4632 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4633 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4634 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4635 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4636 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4637 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4638 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4639 	db_printf("    mnt_secondary_accwrites = %d\n",
4640 	    mp->mnt_secondary_accwrites);
4641 	db_printf("    mnt_gjprovider = %s\n",
4642 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4643 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4644 
4645 	db_printf("\n\nList of active vnodes\n");
4646 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4647 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4648 			vn_printf(vp, "vnode ");
4649 			if (db_pager_quit)
4650 				break;
4651 		}
4652 	}
4653 	db_printf("\n\nList of inactive vnodes\n");
4654 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4655 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4656 			vn_printf(vp, "vnode ");
4657 			if (db_pager_quit)
4658 				break;
4659 		}
4660 	}
4661 }
4662 #endif	/* DDB */
4663 
4664 /*
4665  * Fill in a struct xvfsconf based on a struct vfsconf.
4666  */
4667 static int
4668 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4669 {
4670 	struct xvfsconf xvfsp;
4671 
4672 	bzero(&xvfsp, sizeof(xvfsp));
4673 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4674 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4675 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4676 	xvfsp.vfc_flags = vfsp->vfc_flags;
4677 	/*
4678 	 * These are unused in userland, we keep them
4679 	 * to not break binary compatibility.
4680 	 */
4681 	xvfsp.vfc_vfsops = NULL;
4682 	xvfsp.vfc_next = NULL;
4683 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4684 }
4685 
4686 #ifdef COMPAT_FREEBSD32
4687 struct xvfsconf32 {
4688 	uint32_t	vfc_vfsops;
4689 	char		vfc_name[MFSNAMELEN];
4690 	int32_t		vfc_typenum;
4691 	int32_t		vfc_refcount;
4692 	int32_t		vfc_flags;
4693 	uint32_t	vfc_next;
4694 };
4695 
4696 static int
4697 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4698 {
4699 	struct xvfsconf32 xvfsp;
4700 
4701 	bzero(&xvfsp, sizeof(xvfsp));
4702 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4703 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4704 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4705 	xvfsp.vfc_flags = vfsp->vfc_flags;
4706 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4707 }
4708 #endif
4709 
4710 /*
4711  * Top level filesystem related information gathering.
4712  */
4713 static int
4714 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4715 {
4716 	struct vfsconf *vfsp;
4717 	int error;
4718 
4719 	error = 0;
4720 	vfsconf_slock();
4721 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4722 #ifdef COMPAT_FREEBSD32
4723 		if (req->flags & SCTL_MASK32)
4724 			error = vfsconf2x32(req, vfsp);
4725 		else
4726 #endif
4727 			error = vfsconf2x(req, vfsp);
4728 		if (error)
4729 			break;
4730 	}
4731 	vfsconf_sunlock();
4732 	return (error);
4733 }
4734 
4735 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4736     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4737     "S,xvfsconf", "List of all configured filesystems");
4738 
4739 #ifndef BURN_BRIDGES
4740 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4741 
4742 static int
4743 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4744 {
4745 	int *name = (int *)arg1 - 1;	/* XXX */
4746 	u_int namelen = arg2 + 1;	/* XXX */
4747 	struct vfsconf *vfsp;
4748 
4749 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4750 	    "please rebuild world\n");
4751 
4752 #if 1 || defined(COMPAT_PRELITE2)
4753 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4754 	if (namelen == 1)
4755 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4756 #endif
4757 
4758 	switch (name[1]) {
4759 	case VFS_MAXTYPENUM:
4760 		if (namelen != 2)
4761 			return (ENOTDIR);
4762 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4763 	case VFS_CONF:
4764 		if (namelen != 3)
4765 			return (ENOTDIR);	/* overloaded */
4766 		vfsconf_slock();
4767 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4768 			if (vfsp->vfc_typenum == name[2])
4769 				break;
4770 		}
4771 		vfsconf_sunlock();
4772 		if (vfsp == NULL)
4773 			return (EOPNOTSUPP);
4774 #ifdef COMPAT_FREEBSD32
4775 		if (req->flags & SCTL_MASK32)
4776 			return (vfsconf2x32(req, vfsp));
4777 		else
4778 #endif
4779 			return (vfsconf2x(req, vfsp));
4780 	}
4781 	return (EOPNOTSUPP);
4782 }
4783 
4784 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4785     CTLFLAG_MPSAFE, vfs_sysctl,
4786     "Generic filesystem");
4787 
4788 #if 1 || defined(COMPAT_PRELITE2)
4789 
4790 static int
4791 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4792 {
4793 	int error;
4794 	struct vfsconf *vfsp;
4795 	struct ovfsconf ovfs;
4796 
4797 	vfsconf_slock();
4798 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4799 		bzero(&ovfs, sizeof(ovfs));
4800 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4801 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4802 		ovfs.vfc_index = vfsp->vfc_typenum;
4803 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4804 		ovfs.vfc_flags = vfsp->vfc_flags;
4805 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4806 		if (error != 0) {
4807 			vfsconf_sunlock();
4808 			return (error);
4809 		}
4810 	}
4811 	vfsconf_sunlock();
4812 	return (0);
4813 }
4814 
4815 #endif /* 1 || COMPAT_PRELITE2 */
4816 #endif /* !BURN_BRIDGES */
4817 
4818 static void
4819 unmount_or_warn(struct mount *mp)
4820 {
4821 	int error;
4822 
4823 	error = dounmount(mp, MNT_FORCE, curthread);
4824 	if (error != 0) {
4825 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4826 		if (error == EBUSY)
4827 			printf("BUSY)\n");
4828 		else
4829 			printf("%d)\n", error);
4830 	}
4831 }
4832 
4833 /*
4834  * Unmount all filesystems. The list is traversed in reverse order
4835  * of mounting to avoid dependencies.
4836  */
4837 void
4838 vfs_unmountall(void)
4839 {
4840 	struct mount *mp, *tmp;
4841 
4842 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4843 
4844 	/*
4845 	 * Since this only runs when rebooting, it is not interlocked.
4846 	 */
4847 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4848 		vfs_ref(mp);
4849 
4850 		/*
4851 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4852 		 * unmount of the latter.
4853 		 */
4854 		if (mp == rootdevmp)
4855 			continue;
4856 
4857 		unmount_or_warn(mp);
4858 	}
4859 
4860 	if (rootdevmp != NULL)
4861 		unmount_or_warn(rootdevmp);
4862 }
4863 
4864 static void
4865 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4866 {
4867 
4868 	ASSERT_VI_LOCKED(vp, __func__);
4869 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4870 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4871 		vdropl(vp);
4872 		return;
4873 	}
4874 	if (vn_lock(vp, lkflags) == 0) {
4875 		VI_LOCK(vp);
4876 		vinactive(vp);
4877 		VOP_UNLOCK(vp);
4878 		vdropl(vp);
4879 		return;
4880 	}
4881 	vdefer_inactive_unlocked(vp);
4882 }
4883 
4884 static int
4885 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4886 {
4887 
4888 	return (vp->v_iflag & VI_DEFINACT);
4889 }
4890 
4891 static void __noinline
4892 vfs_periodic_inactive(struct mount *mp, int flags)
4893 {
4894 	struct vnode *vp, *mvp;
4895 	int lkflags;
4896 
4897 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4898 	if (flags != MNT_WAIT)
4899 		lkflags |= LK_NOWAIT;
4900 
4901 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4902 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4903 			VI_UNLOCK(vp);
4904 			continue;
4905 		}
4906 		vp->v_iflag &= ~VI_DEFINACT;
4907 		vfs_deferred_inactive(vp, lkflags);
4908 	}
4909 }
4910 
4911 static inline bool
4912 vfs_want_msync(struct vnode *vp)
4913 {
4914 	struct vm_object *obj;
4915 
4916 	/*
4917 	 * This test may be performed without any locks held.
4918 	 * We rely on vm_object's type stability.
4919 	 */
4920 	if (vp->v_vflag & VV_NOSYNC)
4921 		return (false);
4922 	obj = vp->v_object;
4923 	return (obj != NULL && vm_object_mightbedirty(obj));
4924 }
4925 
4926 static int
4927 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4928 {
4929 
4930 	if (vp->v_vflag & VV_NOSYNC)
4931 		return (false);
4932 	if (vp->v_iflag & VI_DEFINACT)
4933 		return (true);
4934 	return (vfs_want_msync(vp));
4935 }
4936 
4937 static void __noinline
4938 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4939 {
4940 	struct vnode *vp, *mvp;
4941 	struct vm_object *obj;
4942 	int lkflags, objflags;
4943 	bool seen_defer;
4944 
4945 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4946 	if (flags != MNT_WAIT) {
4947 		lkflags |= LK_NOWAIT;
4948 		objflags = OBJPC_NOSYNC;
4949 	} else {
4950 		objflags = OBJPC_SYNC;
4951 	}
4952 
4953 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4954 		seen_defer = false;
4955 		if (vp->v_iflag & VI_DEFINACT) {
4956 			vp->v_iflag &= ~VI_DEFINACT;
4957 			seen_defer = true;
4958 		}
4959 		if (!vfs_want_msync(vp)) {
4960 			if (seen_defer)
4961 				vfs_deferred_inactive(vp, lkflags);
4962 			else
4963 				VI_UNLOCK(vp);
4964 			continue;
4965 		}
4966 		if (vget(vp, lkflags) == 0) {
4967 			obj = vp->v_object;
4968 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4969 				VM_OBJECT_WLOCK(obj);
4970 				vm_object_page_clean(obj, 0, 0, objflags);
4971 				VM_OBJECT_WUNLOCK(obj);
4972 			}
4973 			vput(vp);
4974 			if (seen_defer)
4975 				vdrop(vp);
4976 		} else {
4977 			if (seen_defer)
4978 				vdefer_inactive_unlocked(vp);
4979 		}
4980 	}
4981 }
4982 
4983 void
4984 vfs_periodic(struct mount *mp, int flags)
4985 {
4986 
4987 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4988 
4989 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4990 		vfs_periodic_inactive(mp, flags);
4991 	else
4992 		vfs_periodic_msync_inactive(mp, flags);
4993 }
4994 
4995 static void
4996 destroy_vpollinfo_free(struct vpollinfo *vi)
4997 {
4998 
4999 	knlist_destroy(&vi->vpi_selinfo.si_note);
5000 	mtx_destroy(&vi->vpi_lock);
5001 	free(vi, M_VNODEPOLL);
5002 }
5003 
5004 static void
5005 destroy_vpollinfo(struct vpollinfo *vi)
5006 {
5007 
5008 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5009 	seldrain(&vi->vpi_selinfo);
5010 	destroy_vpollinfo_free(vi);
5011 }
5012 
5013 /*
5014  * Initialize per-vnode helper structure to hold poll-related state.
5015  */
5016 void
5017 v_addpollinfo(struct vnode *vp)
5018 {
5019 	struct vpollinfo *vi;
5020 
5021 	if (vp->v_pollinfo != NULL)
5022 		return;
5023 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5024 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5025 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5026 	    vfs_knlunlock, vfs_knl_assert_lock);
5027 	VI_LOCK(vp);
5028 	if (vp->v_pollinfo != NULL) {
5029 		VI_UNLOCK(vp);
5030 		destroy_vpollinfo_free(vi);
5031 		return;
5032 	}
5033 	vp->v_pollinfo = vi;
5034 	VI_UNLOCK(vp);
5035 }
5036 
5037 /*
5038  * Record a process's interest in events which might happen to
5039  * a vnode.  Because poll uses the historic select-style interface
5040  * internally, this routine serves as both the ``check for any
5041  * pending events'' and the ``record my interest in future events''
5042  * functions.  (These are done together, while the lock is held,
5043  * to avoid race conditions.)
5044  */
5045 int
5046 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5047 {
5048 
5049 	v_addpollinfo(vp);
5050 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5051 	if (vp->v_pollinfo->vpi_revents & events) {
5052 		/*
5053 		 * This leaves events we are not interested
5054 		 * in available for the other process which
5055 		 * which presumably had requested them
5056 		 * (otherwise they would never have been
5057 		 * recorded).
5058 		 */
5059 		events &= vp->v_pollinfo->vpi_revents;
5060 		vp->v_pollinfo->vpi_revents &= ~events;
5061 
5062 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5063 		return (events);
5064 	}
5065 	vp->v_pollinfo->vpi_events |= events;
5066 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5067 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5068 	return (0);
5069 }
5070 
5071 /*
5072  * Routine to create and manage a filesystem syncer vnode.
5073  */
5074 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5075 static int	sync_fsync(struct  vop_fsync_args *);
5076 static int	sync_inactive(struct  vop_inactive_args *);
5077 static int	sync_reclaim(struct  vop_reclaim_args *);
5078 
5079 static struct vop_vector sync_vnodeops = {
5080 	.vop_bypass =	VOP_EOPNOTSUPP,
5081 	.vop_close =	sync_close,
5082 	.vop_fsync =	sync_fsync,
5083 	.vop_getwritemount = vop_stdgetwritemount,
5084 	.vop_inactive =	sync_inactive,
5085 	.vop_need_inactive = vop_stdneed_inactive,
5086 	.vop_reclaim =	sync_reclaim,
5087 	.vop_lock1 =	vop_stdlock,
5088 	.vop_unlock =	vop_stdunlock,
5089 	.vop_islocked =	vop_stdislocked,
5090 	.vop_fplookup_vexec = VOP_EAGAIN,
5091 	.vop_fplookup_symlink = VOP_EAGAIN,
5092 };
5093 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5094 
5095 /*
5096  * Create a new filesystem syncer vnode for the specified mount point.
5097  */
5098 void
5099 vfs_allocate_syncvnode(struct mount *mp)
5100 {
5101 	struct vnode *vp;
5102 	struct bufobj *bo;
5103 	static long start, incr, next;
5104 	int error;
5105 
5106 	/* Allocate a new vnode */
5107 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5108 	if (error != 0)
5109 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5110 	vp->v_type = VNON;
5111 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5112 	vp->v_vflag |= VV_FORCEINSMQ;
5113 	error = insmntque1(vp, mp);
5114 	if (error != 0)
5115 		panic("vfs_allocate_syncvnode: insmntque() failed");
5116 	vp->v_vflag &= ~VV_FORCEINSMQ;
5117 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5118 	VOP_UNLOCK(vp);
5119 	/*
5120 	 * Place the vnode onto the syncer worklist. We attempt to
5121 	 * scatter them about on the list so that they will go off
5122 	 * at evenly distributed times even if all the filesystems
5123 	 * are mounted at once.
5124 	 */
5125 	next += incr;
5126 	if (next == 0 || next > syncer_maxdelay) {
5127 		start /= 2;
5128 		incr /= 2;
5129 		if (start == 0) {
5130 			start = syncer_maxdelay / 2;
5131 			incr = syncer_maxdelay;
5132 		}
5133 		next = start;
5134 	}
5135 	bo = &vp->v_bufobj;
5136 	BO_LOCK(bo);
5137 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5138 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5139 	mtx_lock(&sync_mtx);
5140 	sync_vnode_count++;
5141 	if (mp->mnt_syncer == NULL) {
5142 		mp->mnt_syncer = vp;
5143 		vp = NULL;
5144 	}
5145 	mtx_unlock(&sync_mtx);
5146 	BO_UNLOCK(bo);
5147 	if (vp != NULL) {
5148 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5149 		vgone(vp);
5150 		vput(vp);
5151 	}
5152 }
5153 
5154 void
5155 vfs_deallocate_syncvnode(struct mount *mp)
5156 {
5157 	struct vnode *vp;
5158 
5159 	mtx_lock(&sync_mtx);
5160 	vp = mp->mnt_syncer;
5161 	if (vp != NULL)
5162 		mp->mnt_syncer = NULL;
5163 	mtx_unlock(&sync_mtx);
5164 	if (vp != NULL)
5165 		vrele(vp);
5166 }
5167 
5168 /*
5169  * Do a lazy sync of the filesystem.
5170  */
5171 static int
5172 sync_fsync(struct vop_fsync_args *ap)
5173 {
5174 	struct vnode *syncvp = ap->a_vp;
5175 	struct mount *mp = syncvp->v_mount;
5176 	int error, save;
5177 	struct bufobj *bo;
5178 
5179 	/*
5180 	 * We only need to do something if this is a lazy evaluation.
5181 	 */
5182 	if (ap->a_waitfor != MNT_LAZY)
5183 		return (0);
5184 
5185 	/*
5186 	 * Move ourselves to the back of the sync list.
5187 	 */
5188 	bo = &syncvp->v_bufobj;
5189 	BO_LOCK(bo);
5190 	vn_syncer_add_to_worklist(bo, syncdelay);
5191 	BO_UNLOCK(bo);
5192 
5193 	/*
5194 	 * Walk the list of vnodes pushing all that are dirty and
5195 	 * not already on the sync list.
5196 	 */
5197 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5198 		return (0);
5199 	VOP_UNLOCK(syncvp);
5200 	save = curthread_pflags_set(TDP_SYNCIO);
5201 	/*
5202 	 * The filesystem at hand may be idle with free vnodes stored in the
5203 	 * batch.  Return them instead of letting them stay there indefinitely.
5204 	 */
5205 	vfs_periodic(mp, MNT_NOWAIT);
5206 	error = VFS_SYNC(mp, MNT_LAZY);
5207 	curthread_pflags_restore(save);
5208 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5209 	vfs_unbusy(mp);
5210 	return (error);
5211 }
5212 
5213 /*
5214  * The syncer vnode is no referenced.
5215  */
5216 static int
5217 sync_inactive(struct vop_inactive_args *ap)
5218 {
5219 
5220 	vgone(ap->a_vp);
5221 	return (0);
5222 }
5223 
5224 /*
5225  * The syncer vnode is no longer needed and is being decommissioned.
5226  *
5227  * Modifications to the worklist must be protected by sync_mtx.
5228  */
5229 static int
5230 sync_reclaim(struct vop_reclaim_args *ap)
5231 {
5232 	struct vnode *vp = ap->a_vp;
5233 	struct bufobj *bo;
5234 
5235 	bo = &vp->v_bufobj;
5236 	BO_LOCK(bo);
5237 	mtx_lock(&sync_mtx);
5238 	if (vp->v_mount->mnt_syncer == vp)
5239 		vp->v_mount->mnt_syncer = NULL;
5240 	if (bo->bo_flag & BO_ONWORKLST) {
5241 		LIST_REMOVE(bo, bo_synclist);
5242 		syncer_worklist_len--;
5243 		sync_vnode_count--;
5244 		bo->bo_flag &= ~BO_ONWORKLST;
5245 	}
5246 	mtx_unlock(&sync_mtx);
5247 	BO_UNLOCK(bo);
5248 
5249 	return (0);
5250 }
5251 
5252 int
5253 vn_need_pageq_flush(struct vnode *vp)
5254 {
5255 	struct vm_object *obj;
5256 
5257 	obj = vp->v_object;
5258 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5259 	    vm_object_mightbedirty(obj));
5260 }
5261 
5262 /*
5263  * Check if vnode represents a disk device
5264  */
5265 bool
5266 vn_isdisk_error(struct vnode *vp, int *errp)
5267 {
5268 	int error;
5269 
5270 	if (vp->v_type != VCHR) {
5271 		error = ENOTBLK;
5272 		goto out;
5273 	}
5274 	error = 0;
5275 	dev_lock();
5276 	if (vp->v_rdev == NULL)
5277 		error = ENXIO;
5278 	else if (vp->v_rdev->si_devsw == NULL)
5279 		error = ENXIO;
5280 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5281 		error = ENOTBLK;
5282 	dev_unlock();
5283 out:
5284 	*errp = error;
5285 	return (error == 0);
5286 }
5287 
5288 bool
5289 vn_isdisk(struct vnode *vp)
5290 {
5291 	int error;
5292 
5293 	return (vn_isdisk_error(vp, &error));
5294 }
5295 
5296 /*
5297  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5298  * the comment above cache_fplookup for details.
5299  */
5300 int
5301 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5302 {
5303 	int error;
5304 
5305 	VFS_SMR_ASSERT_ENTERED();
5306 
5307 	/* Check the owner. */
5308 	if (cred->cr_uid == file_uid) {
5309 		if (file_mode & S_IXUSR)
5310 			return (0);
5311 		goto out_error;
5312 	}
5313 
5314 	/* Otherwise, check the groups (first match) */
5315 	if (groupmember(file_gid, cred)) {
5316 		if (file_mode & S_IXGRP)
5317 			return (0);
5318 		goto out_error;
5319 	}
5320 
5321 	/* Otherwise, check everyone else. */
5322 	if (file_mode & S_IXOTH)
5323 		return (0);
5324 out_error:
5325 	/*
5326 	 * Permission check failed, but it is possible denial will get overwritten
5327 	 * (e.g., when root is traversing through a 700 directory owned by someone
5328 	 * else).
5329 	 *
5330 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5331 	 * modules overriding this result. It's quite unclear what semantics
5332 	 * are allowed for them to operate, thus for safety we don't call them
5333 	 * from within the SMR section. This also means if any such modules
5334 	 * are present, we have to let the regular lookup decide.
5335 	 */
5336 	error = priv_check_cred_vfs_lookup_nomac(cred);
5337 	switch (error) {
5338 	case 0:
5339 		return (0);
5340 	case EAGAIN:
5341 		/*
5342 		 * MAC modules present.
5343 		 */
5344 		return (EAGAIN);
5345 	case EPERM:
5346 		return (EACCES);
5347 	default:
5348 		return (error);
5349 	}
5350 }
5351 
5352 /*
5353  * Common filesystem object access control check routine.  Accepts a
5354  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5355  * Returns 0 on success, or an errno on failure.
5356  */
5357 int
5358 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5359     accmode_t accmode, struct ucred *cred)
5360 {
5361 	accmode_t dac_granted;
5362 	accmode_t priv_granted;
5363 
5364 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5365 	    ("invalid bit in accmode"));
5366 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5367 	    ("VAPPEND without VWRITE"));
5368 
5369 	/*
5370 	 * Look for a normal, non-privileged way to access the file/directory
5371 	 * as requested.  If it exists, go with that.
5372 	 */
5373 
5374 	dac_granted = 0;
5375 
5376 	/* Check the owner. */
5377 	if (cred->cr_uid == file_uid) {
5378 		dac_granted |= VADMIN;
5379 		if (file_mode & S_IXUSR)
5380 			dac_granted |= VEXEC;
5381 		if (file_mode & S_IRUSR)
5382 			dac_granted |= VREAD;
5383 		if (file_mode & S_IWUSR)
5384 			dac_granted |= (VWRITE | VAPPEND);
5385 
5386 		if ((accmode & dac_granted) == accmode)
5387 			return (0);
5388 
5389 		goto privcheck;
5390 	}
5391 
5392 	/* Otherwise, check the groups (first match) */
5393 	if (groupmember(file_gid, cred)) {
5394 		if (file_mode & S_IXGRP)
5395 			dac_granted |= VEXEC;
5396 		if (file_mode & S_IRGRP)
5397 			dac_granted |= VREAD;
5398 		if (file_mode & S_IWGRP)
5399 			dac_granted |= (VWRITE | VAPPEND);
5400 
5401 		if ((accmode & dac_granted) == accmode)
5402 			return (0);
5403 
5404 		goto privcheck;
5405 	}
5406 
5407 	/* Otherwise, check everyone else. */
5408 	if (file_mode & S_IXOTH)
5409 		dac_granted |= VEXEC;
5410 	if (file_mode & S_IROTH)
5411 		dac_granted |= VREAD;
5412 	if (file_mode & S_IWOTH)
5413 		dac_granted |= (VWRITE | VAPPEND);
5414 	if ((accmode & dac_granted) == accmode)
5415 		return (0);
5416 
5417 privcheck:
5418 	/*
5419 	 * Build a privilege mask to determine if the set of privileges
5420 	 * satisfies the requirements when combined with the granted mask
5421 	 * from above.  For each privilege, if the privilege is required,
5422 	 * bitwise or the request type onto the priv_granted mask.
5423 	 */
5424 	priv_granted = 0;
5425 
5426 	if (type == VDIR) {
5427 		/*
5428 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5429 		 * requests, instead of PRIV_VFS_EXEC.
5430 		 */
5431 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5432 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5433 			priv_granted |= VEXEC;
5434 	} else {
5435 		/*
5436 		 * Ensure that at least one execute bit is on. Otherwise,
5437 		 * a privileged user will always succeed, and we don't want
5438 		 * this to happen unless the file really is executable.
5439 		 */
5440 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5441 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5442 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5443 			priv_granted |= VEXEC;
5444 	}
5445 
5446 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5447 	    !priv_check_cred(cred, PRIV_VFS_READ))
5448 		priv_granted |= VREAD;
5449 
5450 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5451 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5452 		priv_granted |= (VWRITE | VAPPEND);
5453 
5454 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5455 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5456 		priv_granted |= VADMIN;
5457 
5458 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5459 		return (0);
5460 	}
5461 
5462 	return ((accmode & VADMIN) ? EPERM : EACCES);
5463 }
5464 
5465 /*
5466  * Credential check based on process requesting service, and per-attribute
5467  * permissions.
5468  */
5469 int
5470 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5471     struct thread *td, accmode_t accmode)
5472 {
5473 
5474 	/*
5475 	 * Kernel-invoked always succeeds.
5476 	 */
5477 	if (cred == NOCRED)
5478 		return (0);
5479 
5480 	/*
5481 	 * Do not allow privileged processes in jail to directly manipulate
5482 	 * system attributes.
5483 	 */
5484 	switch (attrnamespace) {
5485 	case EXTATTR_NAMESPACE_SYSTEM:
5486 		/* Potentially should be: return (EPERM); */
5487 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5488 	case EXTATTR_NAMESPACE_USER:
5489 		return (VOP_ACCESS(vp, accmode, cred, td));
5490 	default:
5491 		return (EPERM);
5492 	}
5493 }
5494 
5495 #ifdef DEBUG_VFS_LOCKS
5496 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5497 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5498     "Drop into debugger on lock violation");
5499 
5500 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5501 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5502     0, "Check for interlock across VOPs");
5503 
5504 int vfs_badlock_print = 1;	/* Print lock violations. */
5505 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5506     0, "Print lock violations");
5507 
5508 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5509 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5510     0, "Print vnode details on lock violations");
5511 
5512 #ifdef KDB
5513 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5514 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5515     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5516 #endif
5517 
5518 static void
5519 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5520 {
5521 
5522 #ifdef KDB
5523 	if (vfs_badlock_backtrace)
5524 		kdb_backtrace();
5525 #endif
5526 	if (vfs_badlock_vnode)
5527 		vn_printf(vp, "vnode ");
5528 	if (vfs_badlock_print)
5529 		printf("%s: %p %s\n", str, (void *)vp, msg);
5530 	if (vfs_badlock_ddb)
5531 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5532 }
5533 
5534 void
5535 assert_vi_locked(struct vnode *vp, const char *str)
5536 {
5537 
5538 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5539 		vfs_badlock("interlock is not locked but should be", str, vp);
5540 }
5541 
5542 void
5543 assert_vi_unlocked(struct vnode *vp, const char *str)
5544 {
5545 
5546 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5547 		vfs_badlock("interlock is locked but should not be", str, vp);
5548 }
5549 
5550 void
5551 assert_vop_locked(struct vnode *vp, const char *str)
5552 {
5553 	if (KERNEL_PANICKED() || vp == NULL)
5554 		return;
5555 
5556 #ifdef WITNESS
5557 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5558 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5559 #else
5560 	int locked = VOP_ISLOCKED(vp);
5561 	if (locked == 0 || locked == LK_EXCLOTHER)
5562 #endif
5563 		vfs_badlock("is not locked but should be", str, vp);
5564 }
5565 
5566 void
5567 assert_vop_unlocked(struct vnode *vp, const char *str)
5568 {
5569 	if (KERNEL_PANICKED() || vp == NULL)
5570 		return;
5571 
5572 #ifdef WITNESS
5573 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5574 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5575 #else
5576 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5577 #endif
5578 		vfs_badlock("is locked but should not be", str, vp);
5579 }
5580 
5581 void
5582 assert_vop_elocked(struct vnode *vp, const char *str)
5583 {
5584 	if (KERNEL_PANICKED() || vp == NULL)
5585 		return;
5586 
5587 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5588 		vfs_badlock("is not exclusive locked but should be", str, vp);
5589 }
5590 #endif /* DEBUG_VFS_LOCKS */
5591 
5592 void
5593 vop_rename_fail(struct vop_rename_args *ap)
5594 {
5595 
5596 	if (ap->a_tvp != NULL)
5597 		vput(ap->a_tvp);
5598 	if (ap->a_tdvp == ap->a_tvp)
5599 		vrele(ap->a_tdvp);
5600 	else
5601 		vput(ap->a_tdvp);
5602 	vrele(ap->a_fdvp);
5603 	vrele(ap->a_fvp);
5604 }
5605 
5606 void
5607 vop_rename_pre(void *ap)
5608 {
5609 	struct vop_rename_args *a = ap;
5610 
5611 #ifdef DEBUG_VFS_LOCKS
5612 	if (a->a_tvp)
5613 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5614 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5615 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5616 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5617 
5618 	/* Check the source (from). */
5619 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5620 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5621 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5622 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5623 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5624 
5625 	/* Check the target. */
5626 	if (a->a_tvp)
5627 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5628 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5629 #endif
5630 	/*
5631 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5632 	 * in vop_rename_post but that's not going to work out since some
5633 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5634 	 *
5635 	 * For now filesystems are expected to do the relevant calls after they
5636 	 * decide what vnodes to operate on.
5637 	 */
5638 	if (a->a_tdvp != a->a_fdvp)
5639 		vhold(a->a_fdvp);
5640 	if (a->a_tvp != a->a_fvp)
5641 		vhold(a->a_fvp);
5642 	vhold(a->a_tdvp);
5643 	if (a->a_tvp)
5644 		vhold(a->a_tvp);
5645 }
5646 
5647 #ifdef DEBUG_VFS_LOCKS
5648 void
5649 vop_fplookup_vexec_debugpre(void *ap __unused)
5650 {
5651 
5652 	VFS_SMR_ASSERT_ENTERED();
5653 }
5654 
5655 void
5656 vop_fplookup_vexec_debugpost(void *ap, int rc)
5657 {
5658 	struct vop_fplookup_vexec_args *a;
5659 	struct vnode *vp;
5660 
5661 	a = ap;
5662 	vp = a->a_vp;
5663 
5664 	VFS_SMR_ASSERT_ENTERED();
5665 	if (rc == EOPNOTSUPP)
5666 		VNPASS(VN_IS_DOOMED(vp), vp);
5667 }
5668 
5669 void
5670 vop_fplookup_symlink_debugpre(void *ap __unused)
5671 {
5672 
5673 	VFS_SMR_ASSERT_ENTERED();
5674 }
5675 
5676 void
5677 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5678 {
5679 
5680 	VFS_SMR_ASSERT_ENTERED();
5681 }
5682 
5683 static void
5684 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5685 {
5686 	if (vp->v_type == VCHR)
5687 		;
5688 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5689 		ASSERT_VOP_LOCKED(vp, name);
5690 	else
5691 		ASSERT_VOP_ELOCKED(vp, name);
5692 }
5693 
5694 void
5695 vop_fsync_debugpre(void *a)
5696 {
5697 	struct vop_fsync_args *ap;
5698 
5699 	ap = a;
5700 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5701 }
5702 
5703 void
5704 vop_fsync_debugpost(void *a, int rc __unused)
5705 {
5706 	struct vop_fsync_args *ap;
5707 
5708 	ap = a;
5709 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5710 }
5711 
5712 void
5713 vop_fdatasync_debugpre(void *a)
5714 {
5715 	struct vop_fdatasync_args *ap;
5716 
5717 	ap = a;
5718 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5719 }
5720 
5721 void
5722 vop_fdatasync_debugpost(void *a, int rc __unused)
5723 {
5724 	struct vop_fdatasync_args *ap;
5725 
5726 	ap = a;
5727 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5728 }
5729 
5730 void
5731 vop_strategy_debugpre(void *ap)
5732 {
5733 	struct vop_strategy_args *a;
5734 	struct buf *bp;
5735 
5736 	a = ap;
5737 	bp = a->a_bp;
5738 
5739 	/*
5740 	 * Cluster ops lock their component buffers but not the IO container.
5741 	 */
5742 	if ((bp->b_flags & B_CLUSTER) != 0)
5743 		return;
5744 
5745 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5746 		if (vfs_badlock_print)
5747 			printf(
5748 			    "VOP_STRATEGY: bp is not locked but should be\n");
5749 		if (vfs_badlock_ddb)
5750 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5751 	}
5752 }
5753 
5754 void
5755 vop_lock_debugpre(void *ap)
5756 {
5757 	struct vop_lock1_args *a = ap;
5758 
5759 	if ((a->a_flags & LK_INTERLOCK) == 0)
5760 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5761 	else
5762 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5763 }
5764 
5765 void
5766 vop_lock_debugpost(void *ap, int rc)
5767 {
5768 	struct vop_lock1_args *a = ap;
5769 
5770 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5771 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5772 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5773 }
5774 
5775 void
5776 vop_unlock_debugpre(void *ap)
5777 {
5778 	struct vop_unlock_args *a = ap;
5779 	struct vnode *vp = a->a_vp;
5780 
5781 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5782 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5783 }
5784 
5785 void
5786 vop_need_inactive_debugpre(void *ap)
5787 {
5788 	struct vop_need_inactive_args *a = ap;
5789 
5790 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5791 }
5792 
5793 void
5794 vop_need_inactive_debugpost(void *ap, int rc)
5795 {
5796 	struct vop_need_inactive_args *a = ap;
5797 
5798 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5799 }
5800 #endif
5801 
5802 void
5803 vop_create_pre(void *ap)
5804 {
5805 	struct vop_create_args *a;
5806 	struct vnode *dvp;
5807 
5808 	a = ap;
5809 	dvp = a->a_dvp;
5810 	vn_seqc_write_begin(dvp);
5811 }
5812 
5813 void
5814 vop_create_post(void *ap, int rc)
5815 {
5816 	struct vop_create_args *a;
5817 	struct vnode *dvp;
5818 
5819 	a = ap;
5820 	dvp = a->a_dvp;
5821 	vn_seqc_write_end(dvp);
5822 	if (!rc)
5823 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5824 }
5825 
5826 void
5827 vop_whiteout_pre(void *ap)
5828 {
5829 	struct vop_whiteout_args *a;
5830 	struct vnode *dvp;
5831 
5832 	a = ap;
5833 	dvp = a->a_dvp;
5834 	vn_seqc_write_begin(dvp);
5835 }
5836 
5837 void
5838 vop_whiteout_post(void *ap, int rc)
5839 {
5840 	struct vop_whiteout_args *a;
5841 	struct vnode *dvp;
5842 
5843 	a = ap;
5844 	dvp = a->a_dvp;
5845 	vn_seqc_write_end(dvp);
5846 }
5847 
5848 void
5849 vop_deleteextattr_pre(void *ap)
5850 {
5851 	struct vop_deleteextattr_args *a;
5852 	struct vnode *vp;
5853 
5854 	a = ap;
5855 	vp = a->a_vp;
5856 	vn_seqc_write_begin(vp);
5857 }
5858 
5859 void
5860 vop_deleteextattr_post(void *ap, int rc)
5861 {
5862 	struct vop_deleteextattr_args *a;
5863 	struct vnode *vp;
5864 
5865 	a = ap;
5866 	vp = a->a_vp;
5867 	vn_seqc_write_end(vp);
5868 	if (!rc)
5869 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5870 }
5871 
5872 void
5873 vop_link_pre(void *ap)
5874 {
5875 	struct vop_link_args *a;
5876 	struct vnode *vp, *tdvp;
5877 
5878 	a = ap;
5879 	vp = a->a_vp;
5880 	tdvp = a->a_tdvp;
5881 	vn_seqc_write_begin(vp);
5882 	vn_seqc_write_begin(tdvp);
5883 }
5884 
5885 void
5886 vop_link_post(void *ap, int rc)
5887 {
5888 	struct vop_link_args *a;
5889 	struct vnode *vp, *tdvp;
5890 
5891 	a = ap;
5892 	vp = a->a_vp;
5893 	tdvp = a->a_tdvp;
5894 	vn_seqc_write_end(vp);
5895 	vn_seqc_write_end(tdvp);
5896 	if (!rc) {
5897 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5898 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5899 	}
5900 }
5901 
5902 void
5903 vop_mkdir_pre(void *ap)
5904 {
5905 	struct vop_mkdir_args *a;
5906 	struct vnode *dvp;
5907 
5908 	a = ap;
5909 	dvp = a->a_dvp;
5910 	vn_seqc_write_begin(dvp);
5911 }
5912 
5913 void
5914 vop_mkdir_post(void *ap, int rc)
5915 {
5916 	struct vop_mkdir_args *a;
5917 	struct vnode *dvp;
5918 
5919 	a = ap;
5920 	dvp = a->a_dvp;
5921 	vn_seqc_write_end(dvp);
5922 	if (!rc)
5923 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5924 }
5925 
5926 #ifdef DEBUG_VFS_LOCKS
5927 void
5928 vop_mkdir_debugpost(void *ap, int rc)
5929 {
5930 	struct vop_mkdir_args *a;
5931 
5932 	a = ap;
5933 	if (!rc)
5934 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5935 }
5936 #endif
5937 
5938 void
5939 vop_mknod_pre(void *ap)
5940 {
5941 	struct vop_mknod_args *a;
5942 	struct vnode *dvp;
5943 
5944 	a = ap;
5945 	dvp = a->a_dvp;
5946 	vn_seqc_write_begin(dvp);
5947 }
5948 
5949 void
5950 vop_mknod_post(void *ap, int rc)
5951 {
5952 	struct vop_mknod_args *a;
5953 	struct vnode *dvp;
5954 
5955 	a = ap;
5956 	dvp = a->a_dvp;
5957 	vn_seqc_write_end(dvp);
5958 	if (!rc)
5959 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5960 }
5961 
5962 void
5963 vop_reclaim_post(void *ap, int rc)
5964 {
5965 	struct vop_reclaim_args *a;
5966 	struct vnode *vp;
5967 
5968 	a = ap;
5969 	vp = a->a_vp;
5970 	ASSERT_VOP_IN_SEQC(vp);
5971 	if (!rc)
5972 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5973 }
5974 
5975 void
5976 vop_remove_pre(void *ap)
5977 {
5978 	struct vop_remove_args *a;
5979 	struct vnode *dvp, *vp;
5980 
5981 	a = ap;
5982 	dvp = a->a_dvp;
5983 	vp = a->a_vp;
5984 	vn_seqc_write_begin(dvp);
5985 	vn_seqc_write_begin(vp);
5986 }
5987 
5988 void
5989 vop_remove_post(void *ap, int rc)
5990 {
5991 	struct vop_remove_args *a;
5992 	struct vnode *dvp, *vp;
5993 
5994 	a = ap;
5995 	dvp = a->a_dvp;
5996 	vp = a->a_vp;
5997 	vn_seqc_write_end(dvp);
5998 	vn_seqc_write_end(vp);
5999 	if (!rc) {
6000 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6001 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6002 	}
6003 }
6004 
6005 void
6006 vop_rename_post(void *ap, int rc)
6007 {
6008 	struct vop_rename_args *a = ap;
6009 	long hint;
6010 
6011 	if (!rc) {
6012 		hint = NOTE_WRITE;
6013 		if (a->a_fdvp == a->a_tdvp) {
6014 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6015 				hint |= NOTE_LINK;
6016 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6017 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6018 		} else {
6019 			hint |= NOTE_EXTEND;
6020 			if (a->a_fvp->v_type == VDIR)
6021 				hint |= NOTE_LINK;
6022 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6023 
6024 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6025 			    a->a_tvp->v_type == VDIR)
6026 				hint &= ~NOTE_LINK;
6027 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6028 		}
6029 
6030 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6031 		if (a->a_tvp)
6032 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6033 	}
6034 	if (a->a_tdvp != a->a_fdvp)
6035 		vdrop(a->a_fdvp);
6036 	if (a->a_tvp != a->a_fvp)
6037 		vdrop(a->a_fvp);
6038 	vdrop(a->a_tdvp);
6039 	if (a->a_tvp)
6040 		vdrop(a->a_tvp);
6041 }
6042 
6043 void
6044 vop_rmdir_pre(void *ap)
6045 {
6046 	struct vop_rmdir_args *a;
6047 	struct vnode *dvp, *vp;
6048 
6049 	a = ap;
6050 	dvp = a->a_dvp;
6051 	vp = a->a_vp;
6052 	vn_seqc_write_begin(dvp);
6053 	vn_seqc_write_begin(vp);
6054 }
6055 
6056 void
6057 vop_rmdir_post(void *ap, int rc)
6058 {
6059 	struct vop_rmdir_args *a;
6060 	struct vnode *dvp, *vp;
6061 
6062 	a = ap;
6063 	dvp = a->a_dvp;
6064 	vp = a->a_vp;
6065 	vn_seqc_write_end(dvp);
6066 	vn_seqc_write_end(vp);
6067 	if (!rc) {
6068 		vp->v_vflag |= VV_UNLINKED;
6069 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6070 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6071 	}
6072 }
6073 
6074 void
6075 vop_setattr_pre(void *ap)
6076 {
6077 	struct vop_setattr_args *a;
6078 	struct vnode *vp;
6079 
6080 	a = ap;
6081 	vp = a->a_vp;
6082 	vn_seqc_write_begin(vp);
6083 }
6084 
6085 void
6086 vop_setattr_post(void *ap, int rc)
6087 {
6088 	struct vop_setattr_args *a;
6089 	struct vnode *vp;
6090 
6091 	a = ap;
6092 	vp = a->a_vp;
6093 	vn_seqc_write_end(vp);
6094 	if (!rc)
6095 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6096 }
6097 
6098 void
6099 vop_setacl_pre(void *ap)
6100 {
6101 	struct vop_setacl_args *a;
6102 	struct vnode *vp;
6103 
6104 	a = ap;
6105 	vp = a->a_vp;
6106 	vn_seqc_write_begin(vp);
6107 }
6108 
6109 void
6110 vop_setacl_post(void *ap, int rc __unused)
6111 {
6112 	struct vop_setacl_args *a;
6113 	struct vnode *vp;
6114 
6115 	a = ap;
6116 	vp = a->a_vp;
6117 	vn_seqc_write_end(vp);
6118 }
6119 
6120 void
6121 vop_setextattr_pre(void *ap)
6122 {
6123 	struct vop_setextattr_args *a;
6124 	struct vnode *vp;
6125 
6126 	a = ap;
6127 	vp = a->a_vp;
6128 	vn_seqc_write_begin(vp);
6129 }
6130 
6131 void
6132 vop_setextattr_post(void *ap, int rc)
6133 {
6134 	struct vop_setextattr_args *a;
6135 	struct vnode *vp;
6136 
6137 	a = ap;
6138 	vp = a->a_vp;
6139 	vn_seqc_write_end(vp);
6140 	if (!rc)
6141 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6142 }
6143 
6144 void
6145 vop_symlink_pre(void *ap)
6146 {
6147 	struct vop_symlink_args *a;
6148 	struct vnode *dvp;
6149 
6150 	a = ap;
6151 	dvp = a->a_dvp;
6152 	vn_seqc_write_begin(dvp);
6153 }
6154 
6155 void
6156 vop_symlink_post(void *ap, int rc)
6157 {
6158 	struct vop_symlink_args *a;
6159 	struct vnode *dvp;
6160 
6161 	a = ap;
6162 	dvp = a->a_dvp;
6163 	vn_seqc_write_end(dvp);
6164 	if (!rc)
6165 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6166 }
6167 
6168 void
6169 vop_open_post(void *ap, int rc)
6170 {
6171 	struct vop_open_args *a = ap;
6172 
6173 	if (!rc)
6174 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6175 }
6176 
6177 void
6178 vop_close_post(void *ap, int rc)
6179 {
6180 	struct vop_close_args *a = ap;
6181 
6182 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6183 	    !VN_IS_DOOMED(a->a_vp))) {
6184 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6185 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6186 	}
6187 }
6188 
6189 void
6190 vop_read_post(void *ap, int rc)
6191 {
6192 	struct vop_read_args *a = ap;
6193 
6194 	if (!rc)
6195 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6196 }
6197 
6198 void
6199 vop_read_pgcache_post(void *ap, int rc)
6200 {
6201 	struct vop_read_pgcache_args *a = ap;
6202 
6203 	if (!rc)
6204 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6205 }
6206 
6207 void
6208 vop_readdir_post(void *ap, int rc)
6209 {
6210 	struct vop_readdir_args *a = ap;
6211 
6212 	if (!rc)
6213 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6214 }
6215 
6216 static struct knlist fs_knlist;
6217 
6218 static void
6219 vfs_event_init(void *arg)
6220 {
6221 	knlist_init_mtx(&fs_knlist, NULL);
6222 }
6223 /* XXX - correct order? */
6224 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6225 
6226 void
6227 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6228 {
6229 
6230 	KNOTE_UNLOCKED(&fs_knlist, event);
6231 }
6232 
6233 static int	filt_fsattach(struct knote *kn);
6234 static void	filt_fsdetach(struct knote *kn);
6235 static int	filt_fsevent(struct knote *kn, long hint);
6236 
6237 struct filterops fs_filtops = {
6238 	.f_isfd = 0,
6239 	.f_attach = filt_fsattach,
6240 	.f_detach = filt_fsdetach,
6241 	.f_event = filt_fsevent
6242 };
6243 
6244 static int
6245 filt_fsattach(struct knote *kn)
6246 {
6247 
6248 	kn->kn_flags |= EV_CLEAR;
6249 	knlist_add(&fs_knlist, kn, 0);
6250 	return (0);
6251 }
6252 
6253 static void
6254 filt_fsdetach(struct knote *kn)
6255 {
6256 
6257 	knlist_remove(&fs_knlist, kn, 0);
6258 }
6259 
6260 static int
6261 filt_fsevent(struct knote *kn, long hint)
6262 {
6263 
6264 	kn->kn_fflags |= kn->kn_sfflags & hint;
6265 
6266 	return (kn->kn_fflags != 0);
6267 }
6268 
6269 static int
6270 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6271 {
6272 	struct vfsidctl vc;
6273 	int error;
6274 	struct mount *mp;
6275 
6276 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6277 	if (error)
6278 		return (error);
6279 	if (vc.vc_vers != VFS_CTL_VERS1)
6280 		return (EINVAL);
6281 	mp = vfs_getvfs(&vc.vc_fsid);
6282 	if (mp == NULL)
6283 		return (ENOENT);
6284 	/* ensure that a specific sysctl goes to the right filesystem. */
6285 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6286 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6287 		vfs_rel(mp);
6288 		return (EINVAL);
6289 	}
6290 	VCTLTOREQ(&vc, req);
6291 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6292 	vfs_rel(mp);
6293 	return (error);
6294 }
6295 
6296 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6297     NULL, 0, sysctl_vfs_ctl, "",
6298     "Sysctl by fsid");
6299 
6300 /*
6301  * Function to initialize a va_filerev field sensibly.
6302  * XXX: Wouldn't a random number make a lot more sense ??
6303  */
6304 u_quad_t
6305 init_va_filerev(void)
6306 {
6307 	struct bintime bt;
6308 
6309 	getbinuptime(&bt);
6310 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6311 }
6312 
6313 static int	filt_vfsread(struct knote *kn, long hint);
6314 static int	filt_vfswrite(struct knote *kn, long hint);
6315 static int	filt_vfsvnode(struct knote *kn, long hint);
6316 static void	filt_vfsdetach(struct knote *kn);
6317 static struct filterops vfsread_filtops = {
6318 	.f_isfd = 1,
6319 	.f_detach = filt_vfsdetach,
6320 	.f_event = filt_vfsread
6321 };
6322 static struct filterops vfswrite_filtops = {
6323 	.f_isfd = 1,
6324 	.f_detach = filt_vfsdetach,
6325 	.f_event = filt_vfswrite
6326 };
6327 static struct filterops vfsvnode_filtops = {
6328 	.f_isfd = 1,
6329 	.f_detach = filt_vfsdetach,
6330 	.f_event = filt_vfsvnode
6331 };
6332 
6333 static void
6334 vfs_knllock(void *arg)
6335 {
6336 	struct vnode *vp = arg;
6337 
6338 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6339 }
6340 
6341 static void
6342 vfs_knlunlock(void *arg)
6343 {
6344 	struct vnode *vp = arg;
6345 
6346 	VOP_UNLOCK(vp);
6347 }
6348 
6349 static void
6350 vfs_knl_assert_lock(void *arg, int what)
6351 {
6352 #ifdef DEBUG_VFS_LOCKS
6353 	struct vnode *vp = arg;
6354 
6355 	if (what == LA_LOCKED)
6356 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6357 	else
6358 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6359 #endif
6360 }
6361 
6362 int
6363 vfs_kqfilter(struct vop_kqfilter_args *ap)
6364 {
6365 	struct vnode *vp = ap->a_vp;
6366 	struct knote *kn = ap->a_kn;
6367 	struct knlist *knl;
6368 
6369 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6370 	    kn->kn_filter != EVFILT_WRITE),
6371 	    ("READ/WRITE filter on a FIFO leaked through"));
6372 	switch (kn->kn_filter) {
6373 	case EVFILT_READ:
6374 		kn->kn_fop = &vfsread_filtops;
6375 		break;
6376 	case EVFILT_WRITE:
6377 		kn->kn_fop = &vfswrite_filtops;
6378 		break;
6379 	case EVFILT_VNODE:
6380 		kn->kn_fop = &vfsvnode_filtops;
6381 		break;
6382 	default:
6383 		return (EINVAL);
6384 	}
6385 
6386 	kn->kn_hook = (caddr_t)vp;
6387 
6388 	v_addpollinfo(vp);
6389 	if (vp->v_pollinfo == NULL)
6390 		return (ENOMEM);
6391 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6392 	vhold(vp);
6393 	knlist_add(knl, kn, 0);
6394 
6395 	return (0);
6396 }
6397 
6398 /*
6399  * Detach knote from vnode
6400  */
6401 static void
6402 filt_vfsdetach(struct knote *kn)
6403 {
6404 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6405 
6406 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6407 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6408 	vdrop(vp);
6409 }
6410 
6411 /*ARGSUSED*/
6412 static int
6413 filt_vfsread(struct knote *kn, long hint)
6414 {
6415 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6416 	off_t size;
6417 	int res;
6418 
6419 	/*
6420 	 * filesystem is gone, so set the EOF flag and schedule
6421 	 * the knote for deletion.
6422 	 */
6423 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6424 		VI_LOCK(vp);
6425 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6426 		VI_UNLOCK(vp);
6427 		return (1);
6428 	}
6429 
6430 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6431 		return (0);
6432 
6433 	VI_LOCK(vp);
6434 	kn->kn_data = size - kn->kn_fp->f_offset;
6435 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6436 	VI_UNLOCK(vp);
6437 	return (res);
6438 }
6439 
6440 /*ARGSUSED*/
6441 static int
6442 filt_vfswrite(struct knote *kn, long hint)
6443 {
6444 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6445 
6446 	VI_LOCK(vp);
6447 
6448 	/*
6449 	 * filesystem is gone, so set the EOF flag and schedule
6450 	 * the knote for deletion.
6451 	 */
6452 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6453 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6454 
6455 	kn->kn_data = 0;
6456 	VI_UNLOCK(vp);
6457 	return (1);
6458 }
6459 
6460 static int
6461 filt_vfsvnode(struct knote *kn, long hint)
6462 {
6463 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6464 	int res;
6465 
6466 	VI_LOCK(vp);
6467 	if (kn->kn_sfflags & hint)
6468 		kn->kn_fflags |= hint;
6469 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6470 		kn->kn_flags |= EV_EOF;
6471 		VI_UNLOCK(vp);
6472 		return (1);
6473 	}
6474 	res = (kn->kn_fflags != 0);
6475 	VI_UNLOCK(vp);
6476 	return (res);
6477 }
6478 
6479 int
6480 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6481 {
6482 	int error;
6483 
6484 	if (dp->d_reclen > ap->a_uio->uio_resid)
6485 		return (ENAMETOOLONG);
6486 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6487 	if (error) {
6488 		if (ap->a_ncookies != NULL) {
6489 			if (ap->a_cookies != NULL)
6490 				free(ap->a_cookies, M_TEMP);
6491 			ap->a_cookies = NULL;
6492 			*ap->a_ncookies = 0;
6493 		}
6494 		return (error);
6495 	}
6496 	if (ap->a_ncookies == NULL)
6497 		return (0);
6498 
6499 	KASSERT(ap->a_cookies,
6500 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6501 
6502 	*ap->a_cookies = realloc(*ap->a_cookies,
6503 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6504 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6505 	*ap->a_ncookies += 1;
6506 	return (0);
6507 }
6508 
6509 /*
6510  * The purpose of this routine is to remove granularity from accmode_t,
6511  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6512  * VADMIN and VAPPEND.
6513  *
6514  * If it returns 0, the caller is supposed to continue with the usual
6515  * access checks using 'accmode' as modified by this routine.  If it
6516  * returns nonzero value, the caller is supposed to return that value
6517  * as errno.
6518  *
6519  * Note that after this routine runs, accmode may be zero.
6520  */
6521 int
6522 vfs_unixify_accmode(accmode_t *accmode)
6523 {
6524 	/*
6525 	 * There is no way to specify explicit "deny" rule using
6526 	 * file mode or POSIX.1e ACLs.
6527 	 */
6528 	if (*accmode & VEXPLICIT_DENY) {
6529 		*accmode = 0;
6530 		return (0);
6531 	}
6532 
6533 	/*
6534 	 * None of these can be translated into usual access bits.
6535 	 * Also, the common case for NFSv4 ACLs is to not contain
6536 	 * either of these bits. Caller should check for VWRITE
6537 	 * on the containing directory instead.
6538 	 */
6539 	if (*accmode & (VDELETE_CHILD | VDELETE))
6540 		return (EPERM);
6541 
6542 	if (*accmode & VADMIN_PERMS) {
6543 		*accmode &= ~VADMIN_PERMS;
6544 		*accmode |= VADMIN;
6545 	}
6546 
6547 	/*
6548 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6549 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6550 	 */
6551 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6552 
6553 	return (0);
6554 }
6555 
6556 /*
6557  * Clear out a doomed vnode (if any) and replace it with a new one as long
6558  * as the fs is not being unmounted. Return the root vnode to the caller.
6559  */
6560 static int __noinline
6561 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6562 {
6563 	struct vnode *vp;
6564 	int error;
6565 
6566 restart:
6567 	if (mp->mnt_rootvnode != NULL) {
6568 		MNT_ILOCK(mp);
6569 		vp = mp->mnt_rootvnode;
6570 		if (vp != NULL) {
6571 			if (!VN_IS_DOOMED(vp)) {
6572 				vrefact(vp);
6573 				MNT_IUNLOCK(mp);
6574 				error = vn_lock(vp, flags);
6575 				if (error == 0) {
6576 					*vpp = vp;
6577 					return (0);
6578 				}
6579 				vrele(vp);
6580 				goto restart;
6581 			}
6582 			/*
6583 			 * Clear the old one.
6584 			 */
6585 			mp->mnt_rootvnode = NULL;
6586 		}
6587 		MNT_IUNLOCK(mp);
6588 		if (vp != NULL) {
6589 			vfs_op_barrier_wait(mp);
6590 			vrele(vp);
6591 		}
6592 	}
6593 	error = VFS_CACHEDROOT(mp, flags, vpp);
6594 	if (error != 0)
6595 		return (error);
6596 	if (mp->mnt_vfs_ops == 0) {
6597 		MNT_ILOCK(mp);
6598 		if (mp->mnt_vfs_ops != 0) {
6599 			MNT_IUNLOCK(mp);
6600 			return (0);
6601 		}
6602 		if (mp->mnt_rootvnode == NULL) {
6603 			vrefact(*vpp);
6604 			mp->mnt_rootvnode = *vpp;
6605 		} else {
6606 			if (mp->mnt_rootvnode != *vpp) {
6607 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6608 					panic("%s: mismatch between vnode returned "
6609 					    " by VFS_CACHEDROOT and the one cached "
6610 					    " (%p != %p)",
6611 					    __func__, *vpp, mp->mnt_rootvnode);
6612 				}
6613 			}
6614 		}
6615 		MNT_IUNLOCK(mp);
6616 	}
6617 	return (0);
6618 }
6619 
6620 int
6621 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6622 {
6623 	struct mount_pcpu *mpcpu;
6624 	struct vnode *vp;
6625 	int error;
6626 
6627 	if (!vfs_op_thread_enter(mp, mpcpu))
6628 		return (vfs_cache_root_fallback(mp, flags, vpp));
6629 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6630 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6631 		vfs_op_thread_exit(mp, mpcpu);
6632 		return (vfs_cache_root_fallback(mp, flags, vpp));
6633 	}
6634 	vrefact(vp);
6635 	vfs_op_thread_exit(mp, mpcpu);
6636 	error = vn_lock(vp, flags);
6637 	if (error != 0) {
6638 		vrele(vp);
6639 		return (vfs_cache_root_fallback(mp, flags, vpp));
6640 	}
6641 	*vpp = vp;
6642 	return (0);
6643 }
6644 
6645 struct vnode *
6646 vfs_cache_root_clear(struct mount *mp)
6647 {
6648 	struct vnode *vp;
6649 
6650 	/*
6651 	 * ops > 0 guarantees there is nobody who can see this vnode
6652 	 */
6653 	MPASS(mp->mnt_vfs_ops > 0);
6654 	vp = mp->mnt_rootvnode;
6655 	if (vp != NULL)
6656 		vn_seqc_write_begin(vp);
6657 	mp->mnt_rootvnode = NULL;
6658 	return (vp);
6659 }
6660 
6661 void
6662 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6663 {
6664 
6665 	MPASS(mp->mnt_vfs_ops > 0);
6666 	vrefact(vp);
6667 	mp->mnt_rootvnode = vp;
6668 }
6669 
6670 /*
6671  * These are helper functions for filesystems to traverse all
6672  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6673  *
6674  * This interface replaces MNT_VNODE_FOREACH.
6675  */
6676 
6677 struct vnode *
6678 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6679 {
6680 	struct vnode *vp;
6681 
6682 	maybe_yield();
6683 	MNT_ILOCK(mp);
6684 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6685 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6686 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6687 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6688 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6689 			continue;
6690 		VI_LOCK(vp);
6691 		if (VN_IS_DOOMED(vp)) {
6692 			VI_UNLOCK(vp);
6693 			continue;
6694 		}
6695 		break;
6696 	}
6697 	if (vp == NULL) {
6698 		__mnt_vnode_markerfree_all(mvp, mp);
6699 		/* MNT_IUNLOCK(mp); -- done in above function */
6700 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6701 		return (NULL);
6702 	}
6703 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6704 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6705 	MNT_IUNLOCK(mp);
6706 	return (vp);
6707 }
6708 
6709 struct vnode *
6710 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6711 {
6712 	struct vnode *vp;
6713 
6714 	*mvp = vn_alloc_marker(mp);
6715 	MNT_ILOCK(mp);
6716 	MNT_REF(mp);
6717 
6718 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6719 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6720 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6721 			continue;
6722 		VI_LOCK(vp);
6723 		if (VN_IS_DOOMED(vp)) {
6724 			VI_UNLOCK(vp);
6725 			continue;
6726 		}
6727 		break;
6728 	}
6729 	if (vp == NULL) {
6730 		MNT_REL(mp);
6731 		MNT_IUNLOCK(mp);
6732 		vn_free_marker(*mvp);
6733 		*mvp = NULL;
6734 		return (NULL);
6735 	}
6736 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6737 	MNT_IUNLOCK(mp);
6738 	return (vp);
6739 }
6740 
6741 void
6742 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6743 {
6744 
6745 	if (*mvp == NULL) {
6746 		MNT_IUNLOCK(mp);
6747 		return;
6748 	}
6749 
6750 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6751 
6752 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6753 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6754 	MNT_REL(mp);
6755 	MNT_IUNLOCK(mp);
6756 	vn_free_marker(*mvp);
6757 	*mvp = NULL;
6758 }
6759 
6760 /*
6761  * These are helper functions for filesystems to traverse their
6762  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6763  */
6764 static void
6765 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6766 {
6767 
6768 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6769 
6770 	MNT_ILOCK(mp);
6771 	MNT_REL(mp);
6772 	MNT_IUNLOCK(mp);
6773 	vn_free_marker(*mvp);
6774 	*mvp = NULL;
6775 }
6776 
6777 /*
6778  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6779  * conventional lock order during mnt_vnode_next_lazy iteration.
6780  *
6781  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6782  * The list lock is dropped and reacquired.  On success, both locks are held.
6783  * On failure, the mount vnode list lock is held but the vnode interlock is
6784  * not, and the procedure may have yielded.
6785  */
6786 static bool
6787 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6788     struct vnode *vp)
6789 {
6790 
6791 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6792 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6793 	    ("%s: bad marker", __func__));
6794 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6795 	    ("%s: inappropriate vnode", __func__));
6796 	ASSERT_VI_UNLOCKED(vp, __func__);
6797 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6798 
6799 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6800 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6801 
6802 	/*
6803 	 * Note we may be racing against vdrop which transitioned the hold
6804 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6805 	 * if we are the only user after we get the interlock we will just
6806 	 * vdrop.
6807 	 */
6808 	vhold(vp);
6809 	mtx_unlock(&mp->mnt_listmtx);
6810 	VI_LOCK(vp);
6811 	if (VN_IS_DOOMED(vp)) {
6812 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6813 		goto out_lost;
6814 	}
6815 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6816 	/*
6817 	 * There is nothing to do if we are the last user.
6818 	 */
6819 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6820 		goto out_lost;
6821 	mtx_lock(&mp->mnt_listmtx);
6822 	return (true);
6823 out_lost:
6824 	vdropl(vp);
6825 	maybe_yield();
6826 	mtx_lock(&mp->mnt_listmtx);
6827 	return (false);
6828 }
6829 
6830 static struct vnode *
6831 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6832     void *cbarg)
6833 {
6834 	struct vnode *vp;
6835 
6836 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6837 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6838 restart:
6839 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6840 	while (vp != NULL) {
6841 		if (vp->v_type == VMARKER) {
6842 			vp = TAILQ_NEXT(vp, v_lazylist);
6843 			continue;
6844 		}
6845 		/*
6846 		 * See if we want to process the vnode. Note we may encounter a
6847 		 * long string of vnodes we don't care about and hog the list
6848 		 * as a result. Check for it and requeue the marker.
6849 		 */
6850 		VNPASS(!VN_IS_DOOMED(vp), vp);
6851 		if (!cb(vp, cbarg)) {
6852 			if (!should_yield()) {
6853 				vp = TAILQ_NEXT(vp, v_lazylist);
6854 				continue;
6855 			}
6856 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6857 			    v_lazylist);
6858 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6859 			    v_lazylist);
6860 			mtx_unlock(&mp->mnt_listmtx);
6861 			kern_yield(PRI_USER);
6862 			mtx_lock(&mp->mnt_listmtx);
6863 			goto restart;
6864 		}
6865 		/*
6866 		 * Try-lock because this is the wrong lock order.
6867 		 */
6868 		if (!VI_TRYLOCK(vp) &&
6869 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6870 			goto restart;
6871 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6872 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6873 		    ("alien vnode on the lazy list %p %p", vp, mp));
6874 		VNPASS(vp->v_mount == mp, vp);
6875 		VNPASS(!VN_IS_DOOMED(vp), vp);
6876 		break;
6877 	}
6878 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6879 
6880 	/* Check if we are done */
6881 	if (vp == NULL) {
6882 		mtx_unlock(&mp->mnt_listmtx);
6883 		mnt_vnode_markerfree_lazy(mvp, mp);
6884 		return (NULL);
6885 	}
6886 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6887 	mtx_unlock(&mp->mnt_listmtx);
6888 	ASSERT_VI_LOCKED(vp, "lazy iter");
6889 	return (vp);
6890 }
6891 
6892 struct vnode *
6893 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6894     void *cbarg)
6895 {
6896 
6897 	maybe_yield();
6898 	mtx_lock(&mp->mnt_listmtx);
6899 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6900 }
6901 
6902 struct vnode *
6903 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6904     void *cbarg)
6905 {
6906 	struct vnode *vp;
6907 
6908 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6909 		return (NULL);
6910 
6911 	*mvp = vn_alloc_marker(mp);
6912 	MNT_ILOCK(mp);
6913 	MNT_REF(mp);
6914 	MNT_IUNLOCK(mp);
6915 
6916 	mtx_lock(&mp->mnt_listmtx);
6917 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6918 	if (vp == NULL) {
6919 		mtx_unlock(&mp->mnt_listmtx);
6920 		mnt_vnode_markerfree_lazy(mvp, mp);
6921 		return (NULL);
6922 	}
6923 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6924 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6925 }
6926 
6927 void
6928 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6929 {
6930 
6931 	if (*mvp == NULL)
6932 		return;
6933 
6934 	mtx_lock(&mp->mnt_listmtx);
6935 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6936 	mtx_unlock(&mp->mnt_listmtx);
6937 	mnt_vnode_markerfree_lazy(mvp, mp);
6938 }
6939 
6940 int
6941 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6942 {
6943 
6944 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6945 		cnp->cn_flags &= ~NOEXECCHECK;
6946 		return (0);
6947 	}
6948 
6949 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6950 }
6951 
6952 /*
6953  * Do not use this variant unless you have means other than the hold count
6954  * to prevent the vnode from getting freed.
6955  */
6956 void
6957 vn_seqc_write_begin_locked(struct vnode *vp)
6958 {
6959 
6960 	ASSERT_VI_LOCKED(vp, __func__);
6961 	VNPASS(vp->v_holdcnt > 0, vp);
6962 	VNPASS(vp->v_seqc_users >= 0, vp);
6963 	vp->v_seqc_users++;
6964 	if (vp->v_seqc_users == 1)
6965 		seqc_sleepable_write_begin(&vp->v_seqc);
6966 }
6967 
6968 void
6969 vn_seqc_write_begin(struct vnode *vp)
6970 {
6971 
6972 	VI_LOCK(vp);
6973 	vn_seqc_write_begin_locked(vp);
6974 	VI_UNLOCK(vp);
6975 }
6976 
6977 void
6978 vn_seqc_write_end_locked(struct vnode *vp)
6979 {
6980 
6981 	ASSERT_VI_LOCKED(vp, __func__);
6982 	VNPASS(vp->v_seqc_users > 0, vp);
6983 	vp->v_seqc_users--;
6984 	if (vp->v_seqc_users == 0)
6985 		seqc_sleepable_write_end(&vp->v_seqc);
6986 }
6987 
6988 void
6989 vn_seqc_write_end(struct vnode *vp)
6990 {
6991 
6992 	VI_LOCK(vp);
6993 	vn_seqc_write_end_locked(vp);
6994 	VI_UNLOCK(vp);
6995 }
6996 
6997 /*
6998  * Special case handling for allocating and freeing vnodes.
6999  *
7000  * The counter remains unchanged on free so that a doomed vnode will
7001  * keep testing as in modify as long as it is accessible with SMR.
7002  */
7003 static void
7004 vn_seqc_init(struct vnode *vp)
7005 {
7006 
7007 	vp->v_seqc = 0;
7008 	vp->v_seqc_users = 0;
7009 }
7010 
7011 static void
7012 vn_seqc_write_end_free(struct vnode *vp)
7013 {
7014 
7015 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7016 	VNPASS(vp->v_seqc_users == 1, vp);
7017 }
7018 
7019 void
7020 vn_irflag_set_locked(struct vnode *vp, short toset)
7021 {
7022 	short flags;
7023 
7024 	ASSERT_VI_LOCKED(vp, __func__);
7025 	flags = vn_irflag_read(vp);
7026 	VNASSERT((flags & toset) == 0, vp,
7027 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7028 	    __func__, flags, toset));
7029 	atomic_store_short(&vp->v_irflag, flags | toset);
7030 }
7031 
7032 void
7033 vn_irflag_set(struct vnode *vp, short toset)
7034 {
7035 
7036 	VI_LOCK(vp);
7037 	vn_irflag_set_locked(vp, toset);
7038 	VI_UNLOCK(vp);
7039 }
7040 
7041 void
7042 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7043 {
7044 	short flags;
7045 
7046 	ASSERT_VI_LOCKED(vp, __func__);
7047 	flags = vn_irflag_read(vp);
7048 	atomic_store_short(&vp->v_irflag, flags | toset);
7049 }
7050 
7051 void
7052 vn_irflag_set_cond(struct vnode *vp, short toset)
7053 {
7054 
7055 	VI_LOCK(vp);
7056 	vn_irflag_set_cond_locked(vp, toset);
7057 	VI_UNLOCK(vp);
7058 }
7059 
7060 void
7061 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7062 {
7063 	short flags;
7064 
7065 	ASSERT_VI_LOCKED(vp, __func__);
7066 	flags = vn_irflag_read(vp);
7067 	VNASSERT((flags & tounset) == tounset, vp,
7068 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7069 	    __func__, flags, tounset));
7070 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7071 }
7072 
7073 void
7074 vn_irflag_unset(struct vnode *vp, short tounset)
7075 {
7076 
7077 	VI_LOCK(vp);
7078 	vn_irflag_unset_locked(vp, tounset);
7079 	VI_UNLOCK(vp);
7080 }
7081 
7082 int
7083 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7084 {
7085 	struct vattr vattr;
7086 	int error;
7087 
7088 	ASSERT_VOP_LOCKED(vp, __func__);
7089 	error = VOP_GETATTR(vp, &vattr, cred);
7090 	if (__predict_true(error == 0)) {
7091 		if (vattr.va_size <= OFF_MAX)
7092 			*size = vattr.va_size;
7093 		else
7094 			error = EFBIG;
7095 	}
7096 	return (error);
7097 }
7098 
7099 int
7100 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7101 {
7102 	int error;
7103 
7104 	VOP_LOCK(vp, LK_SHARED);
7105 	error = vn_getsize_locked(vp, size, cred);
7106 	VOP_UNLOCK(vp);
7107 	return (error);
7108 }
7109 
7110 #ifdef INVARIANTS
7111 void
7112 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7113 {
7114 
7115 	switch (vp->v_state) {
7116 	case VSTATE_UNINITIALIZED:
7117 		switch (state) {
7118 		case VSTATE_CONSTRUCTED:
7119 		case VSTATE_DESTROYING:
7120 			return;
7121 		default:
7122 			break;
7123 		}
7124 		break;
7125 	case VSTATE_CONSTRUCTED:
7126 		ASSERT_VOP_ELOCKED(vp, __func__);
7127 		switch (state) {
7128 		case VSTATE_DESTROYING:
7129 			return;
7130 		default:
7131 			break;
7132 		}
7133 		break;
7134 	case VSTATE_DESTROYING:
7135 		ASSERT_VOP_ELOCKED(vp, __func__);
7136 		switch (state) {
7137 		case VSTATE_DEAD:
7138 			return;
7139 		default:
7140 			break;
7141 		}
7142 		break;
7143 	case VSTATE_DEAD:
7144 		switch (state) {
7145 		case VSTATE_UNINITIALIZED:
7146 			return;
7147 		default:
7148 			break;
7149 		}
7150 		break;
7151 	}
7152 
7153 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7154 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7155 }
7156 #endif
7157