xref: /freebsd/sys/kern/vfs_subr.c (revision 52ec752989b2e6d4e9a59a8ff25d8ff596d85e62)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  */
40 
41 /*
42  * External virtual filesystem routines
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_ddb.h"
49 #include "opt_mac.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/bio.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/fcntl.h>
59 #include <sys/kernel.h>
60 #include <sys/kthread.h>
61 #include <sys/mac.h>
62 #include <sys/malloc.h>
63 #include <sys/mount.h>
64 #include <sys/namei.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_extern.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_kern.h>
78 #include <vm/uma.h>
79 
80 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81 
82 static void	addalias(struct vnode *vp, dev_t nvp_rdev);
83 static void	insmntque(struct vnode *vp, struct mount *mp);
84 static void	vclean(struct vnode *vp, int flags, struct thread *td);
85 static void	vlruvp(struct vnode *vp);
86 static int	flushbuflist(struct buf *blist, int flags, struct vnode *vp,
87 		    int slpflag, int slptimeo, int *errorp);
88 static int	vtryrecycle(struct vnode *vp);
89 static void	vx_lock(struct vnode *vp);
90 static void	vx_unlock(struct vnode *vp);
91 static void	vgonechrl(struct vnode *vp, struct thread *td);
92 
93 
94 /*
95  * Number of vnodes in existence.  Increased whenever getnewvnode()
96  * allocates a new vnode, never decreased.
97  */
98 static unsigned long	numvnodes;
99 
100 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
101 
102 /*
103  * Conversion tables for conversion from vnode types to inode formats
104  * and back.
105  */
106 enum vtype iftovt_tab[16] = {
107 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
108 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
109 };
110 int vttoif_tab[9] = {
111 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
112 	S_IFSOCK, S_IFIFO, S_IFMT,
113 };
114 
115 /*
116  * List of vnodes that are ready for recycling.
117  */
118 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
119 
120 /*
121  * Minimum number of free vnodes.  If there are fewer than this free vnodes,
122  * getnewvnode() will return a newly allocated vnode.
123  */
124 static u_long wantfreevnodes = 25;
125 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
126 /* Number of vnodes in the free list. */
127 static u_long freevnodes;
128 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
129 
130 /*
131  * Various variables used for debugging the new implementation of
132  * reassignbuf().
133  * XXX these are probably of (very) limited utility now.
134  */
135 static int reassignbufcalls;
136 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
137 static int nameileafonly;
138 SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
139 
140 /*
141  * Cache for the mount type id assigned to NFS.  This is used for
142  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
143  */
144 int	nfs_mount_type = -1;
145 
146 /* To keep more than one thread at a time from running vfs_getnewfsid */
147 static struct mtx mntid_mtx;
148 
149 /*
150  * Lock for any access to the following:
151  *	vnode_free_list
152  *	numvnodes
153  *	freevnodes
154  */
155 static struct mtx vnode_free_list_mtx;
156 
157 /*
158  * For any iteration/modification of dev->si_hlist (linked through
159  * v_specnext)
160  */
161 static struct mtx spechash_mtx;
162 
163 /* Publicly exported FS */
164 struct nfs_public nfs_pub;
165 
166 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
167 static uma_zone_t vnode_zone;
168 static uma_zone_t vnodepoll_zone;
169 
170 /* Set to 1 to print out reclaim of active vnodes */
171 int	prtactive;
172 
173 /*
174  * The workitem queue.
175  *
176  * It is useful to delay writes of file data and filesystem metadata
177  * for tens of seconds so that quickly created and deleted files need
178  * not waste disk bandwidth being created and removed. To realize this,
179  * we append vnodes to a "workitem" queue. When running with a soft
180  * updates implementation, most pending metadata dependencies should
181  * not wait for more than a few seconds. Thus, mounted on block devices
182  * are delayed only about a half the time that file data is delayed.
183  * Similarly, directory updates are more critical, so are only delayed
184  * about a third the time that file data is delayed. Thus, there are
185  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
186  * one each second (driven off the filesystem syncer process). The
187  * syncer_delayno variable indicates the next queue that is to be processed.
188  * Items that need to be processed soon are placed in this queue:
189  *
190  *	syncer_workitem_pending[syncer_delayno]
191  *
192  * A delay of fifteen seconds is done by placing the request fifteen
193  * entries later in the queue:
194  *
195  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
196  *
197  */
198 static int syncer_delayno;
199 static long syncer_mask;
200 LIST_HEAD(synclist, vnode);
201 static struct synclist *syncer_workitem_pending;
202 /*
203  * The sync_mtx protects:
204  *	vp->v_synclist
205  *	syncer_delayno
206  *	syncer_workitem_pending
207  *	rushjob
208  */
209 static struct mtx sync_mtx;
210 
211 #define SYNCER_MAXDELAY		32
212 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
213 static int syncdelay = 30;		/* max time to delay syncing data */
214 static int filedelay = 30;		/* time to delay syncing files */
215 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
216 static int dirdelay = 29;		/* time to delay syncing directories */
217 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
218 static int metadelay = 28;		/* time to delay syncing metadata */
219 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
220 static int rushjob;		/* number of slots to run ASAP */
221 static int stat_rush_requests;	/* number of times I/O speeded up */
222 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
223 
224 /*
225  * Number of vnodes we want to exist at any one time.  This is mostly used
226  * to size hash tables in vnode-related code.  It is normally not used in
227  * getnewvnode(), as wantfreevnodes is normally nonzero.)
228  *
229  * XXX desiredvnodes is historical cruft and should not exist.
230  */
231 int desiredvnodes;
232 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
233     &desiredvnodes, 0, "Maximum number of vnodes");
234 static int minvnodes;
235 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
236     &minvnodes, 0, "Minimum number of vnodes");
237 static int vnlru_nowhere;
238 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
239     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
240 
241 /* Hook for calling soft updates. */
242 int (*softdep_process_worklist_hook)(struct mount *);
243 
244 /*
245  * Initialize the vnode management data structures.
246  */
247 static void
248 vntblinit(void *dummy __unused)
249 {
250 
251 	/*
252 	 * Desiredvnodes is a function of the physical memory size and
253 	 * the kernel's heap size.  Specifically, desiredvnodes scales
254 	 * in proportion to the physical memory size until two fifths
255 	 * of the kernel's heap size is consumed by vnodes and vm
256 	 * objects.
257 	 */
258 	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
259 	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
260 	minvnodes = desiredvnodes / 4;
261 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
262 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
263 	mtx_init(&spechash_mtx, "spechash", NULL, MTX_DEF);
264 	TAILQ_INIT(&vnode_free_list);
265 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
266 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
267 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
268 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
269 	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
270 	/*
271 	 * Initialize the filesystem syncer.
272 	 */
273 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
274 		&syncer_mask);
275 	syncer_maxdelay = syncer_mask + 1;
276 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
277 }
278 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
279 
280 
281 /*
282  * Mark a mount point as busy. Used to synchronize access and to delay
283  * unmounting. Interlock is not released on failure.
284  */
285 int
286 vfs_busy(mp, flags, interlkp, td)
287 	struct mount *mp;
288 	int flags;
289 	struct mtx *interlkp;
290 	struct thread *td;
291 {
292 	int lkflags;
293 
294 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
295 		if (flags & LK_NOWAIT)
296 			return (ENOENT);
297 		mp->mnt_kern_flag |= MNTK_MWAIT;
298 		/*
299 		 * Since all busy locks are shared except the exclusive
300 		 * lock granted when unmounting, the only place that a
301 		 * wakeup needs to be done is at the release of the
302 		 * exclusive lock at the end of dounmount.
303 		 */
304 		msleep(mp, interlkp, PVFS, "vfs_busy", 0);
305 		return (ENOENT);
306 	}
307 	lkflags = LK_SHARED | LK_NOPAUSE;
308 	if (interlkp)
309 		lkflags |= LK_INTERLOCK;
310 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
311 		panic("vfs_busy: unexpected lock failure");
312 	return (0);
313 }
314 
315 /*
316  * Free a busy filesystem.
317  */
318 void
319 vfs_unbusy(mp, td)
320 	struct mount *mp;
321 	struct thread *td;
322 {
323 
324 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
325 }
326 
327 /*
328  * Lookup a mount point by filesystem identifier.
329  */
330 struct mount *
331 vfs_getvfs(fsid)
332 	fsid_t *fsid;
333 {
334 	register struct mount *mp;
335 
336 	mtx_lock(&mountlist_mtx);
337 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
338 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
339 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
340 			mtx_unlock(&mountlist_mtx);
341 			return (mp);
342 		}
343 	}
344 	mtx_unlock(&mountlist_mtx);
345 	return ((struct mount *) 0);
346 }
347 
348 /*
349  * Get a new unique fsid.  Try to make its val[0] unique, since this value
350  * will be used to create fake device numbers for stat().  Also try (but
351  * not so hard) make its val[0] unique mod 2^16, since some emulators only
352  * support 16-bit device numbers.  We end up with unique val[0]'s for the
353  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
354  *
355  * Keep in mind that several mounts may be running in parallel.  Starting
356  * the search one past where the previous search terminated is both a
357  * micro-optimization and a defense against returning the same fsid to
358  * different mounts.
359  */
360 void
361 vfs_getnewfsid(mp)
362 	struct mount *mp;
363 {
364 	static u_int16_t mntid_base;
365 	fsid_t tfsid;
366 	int mtype;
367 
368 	mtx_lock(&mntid_mtx);
369 	mtype = mp->mnt_vfc->vfc_typenum;
370 	tfsid.val[1] = mtype;
371 	mtype = (mtype & 0xFF) << 24;
372 	for (;;) {
373 		tfsid.val[0] = makeudev(255,
374 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
375 		mntid_base++;
376 		if (vfs_getvfs(&tfsid) == NULL)
377 			break;
378 	}
379 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
380 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
381 	mtx_unlock(&mntid_mtx);
382 }
383 
384 /*
385  * Knob to control the precision of file timestamps:
386  *
387  *   0 = seconds only; nanoseconds zeroed.
388  *   1 = seconds and nanoseconds, accurate within 1/HZ.
389  *   2 = seconds and nanoseconds, truncated to microseconds.
390  * >=3 = seconds and nanoseconds, maximum precision.
391  */
392 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
393 
394 static int timestamp_precision = TSP_SEC;
395 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
396     &timestamp_precision, 0, "");
397 
398 /*
399  * Get a current timestamp.
400  */
401 void
402 vfs_timestamp(tsp)
403 	struct timespec *tsp;
404 {
405 	struct timeval tv;
406 
407 	switch (timestamp_precision) {
408 	case TSP_SEC:
409 		tsp->tv_sec = time_second;
410 		tsp->tv_nsec = 0;
411 		break;
412 	case TSP_HZ:
413 		getnanotime(tsp);
414 		break;
415 	case TSP_USEC:
416 		microtime(&tv);
417 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
418 		break;
419 	case TSP_NSEC:
420 	default:
421 		nanotime(tsp);
422 		break;
423 	}
424 }
425 
426 /*
427  * Set vnode attributes to VNOVAL
428  */
429 void
430 vattr_null(vap)
431 	register struct vattr *vap;
432 {
433 
434 	vap->va_type = VNON;
435 	vap->va_size = VNOVAL;
436 	vap->va_bytes = VNOVAL;
437 	vap->va_mode = VNOVAL;
438 	vap->va_nlink = VNOVAL;
439 	vap->va_uid = VNOVAL;
440 	vap->va_gid = VNOVAL;
441 	vap->va_fsid = VNOVAL;
442 	vap->va_fileid = VNOVAL;
443 	vap->va_blocksize = VNOVAL;
444 	vap->va_rdev = VNOVAL;
445 	vap->va_atime.tv_sec = VNOVAL;
446 	vap->va_atime.tv_nsec = VNOVAL;
447 	vap->va_mtime.tv_sec = VNOVAL;
448 	vap->va_mtime.tv_nsec = VNOVAL;
449 	vap->va_ctime.tv_sec = VNOVAL;
450 	vap->va_ctime.tv_nsec = VNOVAL;
451 	vap->va_birthtime.tv_sec = VNOVAL;
452 	vap->va_birthtime.tv_nsec = VNOVAL;
453 	vap->va_flags = VNOVAL;
454 	vap->va_gen = VNOVAL;
455 	vap->va_vaflags = 0;
456 }
457 
458 /*
459  * This routine is called when we have too many vnodes.  It attempts
460  * to free <count> vnodes and will potentially free vnodes that still
461  * have VM backing store (VM backing store is typically the cause
462  * of a vnode blowout so we want to do this).  Therefore, this operation
463  * is not considered cheap.
464  *
465  * A number of conditions may prevent a vnode from being reclaimed.
466  * the buffer cache may have references on the vnode, a directory
467  * vnode may still have references due to the namei cache representing
468  * underlying files, or the vnode may be in active use.   It is not
469  * desireable to reuse such vnodes.  These conditions may cause the
470  * number of vnodes to reach some minimum value regardless of what
471  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
472  */
473 static int
474 vlrureclaim(struct mount *mp)
475 {
476 	struct vnode *vp;
477 	int done;
478 	int trigger;
479 	int usevnodes;
480 	int count;
481 
482 	/*
483 	 * Calculate the trigger point, don't allow user
484 	 * screwups to blow us up.   This prevents us from
485 	 * recycling vnodes with lots of resident pages.  We
486 	 * aren't trying to free memory, we are trying to
487 	 * free vnodes.
488 	 */
489 	usevnodes = desiredvnodes;
490 	if (usevnodes <= 0)
491 		usevnodes = 1;
492 	trigger = cnt.v_page_count * 2 / usevnodes;
493 
494 	done = 0;
495 	MNT_ILOCK(mp);
496 	count = mp->mnt_nvnodelistsize / 10 + 1;
497 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
498 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
499 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
500 
501 		if (vp->v_type != VNON &&
502 		    vp->v_type != VBAD &&
503 		    VI_TRYLOCK(vp)) {
504 			if (VMIGHTFREE(vp) &&           /* critical path opt */
505 			    (vp->v_object == NULL ||
506 			    vp->v_object->resident_page_count < trigger)) {
507 				MNT_IUNLOCK(mp);
508 				vgonel(vp, curthread);
509 				done++;
510 				MNT_ILOCK(mp);
511 			} else
512 				VI_UNLOCK(vp);
513 		}
514 		--count;
515 	}
516 	MNT_IUNLOCK(mp);
517 	return done;
518 }
519 
520 /*
521  * Attempt to recycle vnodes in a context that is always safe to block.
522  * Calling vlrurecycle() from the bowels of filesystem code has some
523  * interesting deadlock problems.
524  */
525 static struct proc *vnlruproc;
526 static int vnlruproc_sig;
527 
528 static void
529 vnlru_proc(void)
530 {
531 	struct mount *mp, *nmp;
532 	int done;
533 	struct proc *p = vnlruproc;
534 	struct thread *td = FIRST_THREAD_IN_PROC(p);	/* XXXKSE */
535 
536 	mtx_lock(&Giant);
537 
538 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
539 	    SHUTDOWN_PRI_FIRST);
540 
541 	for (;;) {
542 		kthread_suspend_check(p);
543 		mtx_lock(&vnode_free_list_mtx);
544 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
545 			mtx_unlock(&vnode_free_list_mtx);
546 			vnlruproc_sig = 0;
547 			wakeup(&vnlruproc_sig);
548 			tsleep(vnlruproc, PVFS, "vlruwt", hz);
549 			continue;
550 		}
551 		mtx_unlock(&vnode_free_list_mtx);
552 		done = 0;
553 		mtx_lock(&mountlist_mtx);
554 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
555 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
556 				nmp = TAILQ_NEXT(mp, mnt_list);
557 				continue;
558 			}
559 			done += vlrureclaim(mp);
560 			mtx_lock(&mountlist_mtx);
561 			nmp = TAILQ_NEXT(mp, mnt_list);
562 			vfs_unbusy(mp, td);
563 		}
564 		mtx_unlock(&mountlist_mtx);
565 		if (done == 0) {
566 #if 0
567 			/* These messages are temporary debugging aids */
568 			if (vnlru_nowhere < 5)
569 				printf("vnlru process getting nowhere..\n");
570 			else if (vnlru_nowhere == 5)
571 				printf("vnlru process messages stopped.\n");
572 #endif
573 			vnlru_nowhere++;
574 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
575 		}
576 	}
577 }
578 
579 static struct kproc_desc vnlru_kp = {
580 	"vnlru",
581 	vnlru_proc,
582 	&vnlruproc
583 };
584 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
585 
586 
587 /*
588  * Routines having to do with the management of the vnode table.
589  */
590 
591 /*
592  * Check to see if a free vnode can be recycled. If it can,
593  * recycle it and return it with the vnode interlock held.
594  */
595 static int
596 vtryrecycle(struct vnode *vp)
597 {
598 	struct thread *td = curthread;
599 	vm_object_t object;
600 	struct mount *vnmp;
601 	int error;
602 
603 	/* Don't recycle if we can't get the interlock */
604 	if (!VI_TRYLOCK(vp))
605 		return (EWOULDBLOCK);
606 	/*
607 	 * This vnode may found and locked via some other list, if so we
608 	 * can't recycle it yet.
609 	 */
610 	if (vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
611 		return (EWOULDBLOCK);
612 	/*
613 	 * Don't recycle if its filesystem is being suspended.
614 	 */
615 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
616 		error = EBUSY;
617 		goto done;
618 	}
619 
620 	/*
621 	 * Don't recycle if we still have cached pages.
622 	 */
623 	if (VOP_GETVOBJECT(vp, &object) == 0) {
624 		VM_OBJECT_LOCK(object);
625 		if (object->resident_page_count ||
626 		    object->ref_count) {
627 			VM_OBJECT_UNLOCK(object);
628 			error = EBUSY;
629 			goto done;
630 		}
631 		VM_OBJECT_UNLOCK(object);
632 	}
633 	if (LIST_FIRST(&vp->v_cache_src)) {
634 		/*
635 		 * note: nameileafonly sysctl is temporary,
636 		 * for debugging only, and will eventually be
637 		 * removed.
638 		 */
639 		if (nameileafonly > 0) {
640 			/*
641 			 * Do not reuse namei-cached directory
642 			 * vnodes that have cached
643 			 * subdirectories.
644 			 */
645 			if (cache_leaf_test(vp) < 0) {
646 				error = EISDIR;
647 				goto done;
648 			}
649 		} else if (nameileafonly < 0 ||
650 			    vmiodirenable == 0) {
651 			/*
652 			 * Do not reuse namei-cached directory
653 			 * vnodes if nameileafonly is -1 or
654 			 * if VMIO backing for directories is
655 			 * turned off (otherwise we reuse them
656 			 * too quickly).
657 			 */
658 			error = EBUSY;
659 			goto done;
660 		}
661 	}
662 	/*
663 	 * If we got this far, we need to acquire the interlock and see if
664 	 * anyone picked up this vnode from another list.  If not, we will
665 	 * mark it with XLOCK via vgonel() so that anyone who does find it
666 	 * will skip over it.
667 	 */
668 	VI_LOCK(vp);
669 	if (VSHOULDBUSY(vp) && (vp->v_iflag & VI_XLOCK) == 0) {
670 		VI_UNLOCK(vp);
671 		error = EBUSY;
672 		goto done;
673 	}
674 	mtx_lock(&vnode_free_list_mtx);
675 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
676 	vp->v_iflag &= ~VI_FREE;
677 	mtx_unlock(&vnode_free_list_mtx);
678 	vp->v_iflag |= VI_DOOMED;
679 	if (vp->v_type != VBAD) {
680 		VOP_UNLOCK(vp, 0, td);
681 		vgonel(vp, td);
682 		VI_LOCK(vp);
683 	} else
684 		VOP_UNLOCK(vp, 0, td);
685 	vn_finished_write(vnmp);
686 	return (0);
687 done:
688 	VOP_UNLOCK(vp, 0, td);
689 	return (error);
690 }
691 
692 /*
693  * Return the next vnode from the free list.
694  */
695 int
696 getnewvnode(tag, mp, vops, vpp)
697 	const char *tag;
698 	struct mount *mp;
699 	vop_t **vops;
700 	struct vnode **vpp;
701 {
702 	struct vnode *vp = NULL;
703 	struct vpollinfo *pollinfo = NULL;
704 
705 	mtx_lock(&vnode_free_list_mtx);
706 
707 	/*
708 	 * Try to reuse vnodes if we hit the max.  This situation only
709 	 * occurs in certain large-memory (2G+) situations.  We cannot
710 	 * attempt to directly reclaim vnodes due to nasty recursion
711 	 * problems.
712 	 */
713 	while (numvnodes - freevnodes > desiredvnodes) {
714 		if (vnlruproc_sig == 0) {
715 			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
716 			wakeup(vnlruproc);
717 		}
718 		mtx_unlock(&vnode_free_list_mtx);
719 		tsleep(&vnlruproc_sig, PVFS, "vlruwk", hz);
720 		mtx_lock(&vnode_free_list_mtx);
721 	}
722 
723 	/*
724 	 * Attempt to reuse a vnode already on the free list, allocating
725 	 * a new vnode if we can't find one or if we have not reached a
726 	 * good minimum for good LRU performance.
727 	 */
728 
729 	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
730 		int error;
731 		int count;
732 
733 		for (count = 0; count < freevnodes; count++) {
734 			vp = TAILQ_FIRST(&vnode_free_list);
735 
736 			KASSERT(vp->v_usecount == 0 &&
737 			    (vp->v_iflag & VI_DOINGINACT) == 0,
738 			    ("getnewvnode: free vnode isn't"));
739 
740 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
741 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
742 			mtx_unlock(&vnode_free_list_mtx);
743 			error = vtryrecycle(vp);
744 			mtx_lock(&vnode_free_list_mtx);
745 			if (error == 0)
746 				break;
747 			vp = NULL;
748 		}
749 	}
750 	if (vp) {
751 		freevnodes--;
752 		mtx_unlock(&vnode_free_list_mtx);
753 
754 #ifdef INVARIANTS
755 		{
756 			if (vp->v_data)
757 				panic("cleaned vnode isn't");
758 			if (vp->v_numoutput)
759 				panic("Clean vnode has pending I/O's");
760 			if (vp->v_writecount != 0)
761 				panic("Non-zero write count");
762 		}
763 #endif
764 		if ((pollinfo = vp->v_pollinfo) != NULL) {
765 			/*
766 			 * To avoid lock order reversals, the call to
767 			 * uma_zfree() must be delayed until the vnode
768 			 * interlock is released.
769 			 */
770 			vp->v_pollinfo = NULL;
771 		}
772 #ifdef MAC
773 		mac_destroy_vnode(vp);
774 #endif
775 		vp->v_iflag = 0;
776 		vp->v_vflag = 0;
777 		vp->v_lastw = 0;
778 		vp->v_lasta = 0;
779 		vp->v_cstart = 0;
780 		vp->v_clen = 0;
781 		vp->v_socket = 0;
782 		lockdestroy(vp->v_vnlock);
783 		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
784 		KASSERT(vp->v_cleanbufcnt == 0, ("cleanbufcnt not 0"));
785 		KASSERT(vp->v_cleanblkroot == NULL, ("cleanblkroot not NULL"));
786 		KASSERT(vp->v_dirtybufcnt == 0, ("dirtybufcnt not 0"));
787 		KASSERT(vp->v_dirtyblkroot == NULL, ("dirtyblkroot not NULL"));
788 	} else {
789 		numvnodes++;
790 		mtx_unlock(&vnode_free_list_mtx);
791 
792 		vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
793 		mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
794 		VI_LOCK(vp);
795 		vp->v_dd = vp;
796 		vp->v_vnlock = &vp->v_lock;
797 		lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOPAUSE);
798 		cache_purge(vp);		/* Sets up v_id. */
799 		LIST_INIT(&vp->v_cache_src);
800 		TAILQ_INIT(&vp->v_cache_dst);
801 	}
802 
803 	TAILQ_INIT(&vp->v_cleanblkhd);
804 	TAILQ_INIT(&vp->v_dirtyblkhd);
805 	vp->v_type = VNON;
806 	vp->v_tag = tag;
807 	vp->v_op = vops;
808 	*vpp = vp;
809 	vp->v_usecount = 1;
810 	vp->v_data = 0;
811 	vp->v_cachedid = -1;
812 	VI_UNLOCK(vp);
813 	if (pollinfo != NULL) {
814 		mtx_destroy(&pollinfo->vpi_lock);
815 		uma_zfree(vnodepoll_zone, pollinfo);
816 	}
817 #ifdef MAC
818 	mac_init_vnode(vp);
819 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
820 		mac_associate_vnode_singlelabel(mp, vp);
821 #endif
822 	insmntque(vp, mp);
823 
824 	return (0);
825 }
826 
827 /*
828  * Move a vnode from one mount queue to another.
829  */
830 static void
831 insmntque(vp, mp)
832 	register struct vnode *vp;
833 	register struct mount *mp;
834 {
835 
836 	/*
837 	 * Delete from old mount point vnode list, if on one.
838 	 */
839 	if (vp->v_mount != NULL) {
840 		MNT_ILOCK(vp->v_mount);
841 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
842 			("bad mount point vnode list size"));
843 		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
844 		vp->v_mount->mnt_nvnodelistsize--;
845 		MNT_IUNLOCK(vp->v_mount);
846 	}
847 	/*
848 	 * Insert into list of vnodes for the new mount point, if available.
849 	 */
850 	if ((vp->v_mount = mp) != NULL) {
851 		MNT_ILOCK(vp->v_mount);
852 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
853 		mp->mnt_nvnodelistsize++;
854 		MNT_IUNLOCK(vp->v_mount);
855 	}
856 }
857 
858 /*
859  * Update outstanding I/O count and do wakeup if requested.
860  */
861 void
862 vwakeup(bp)
863 	register struct buf *bp;
864 {
865 	register struct vnode *vp;
866 
867 	bp->b_flags &= ~B_WRITEINPROG;
868 	if ((vp = bp->b_vp)) {
869 		VI_LOCK(vp);
870 		vp->v_numoutput--;
871 		if (vp->v_numoutput < 0)
872 			panic("vwakeup: neg numoutput");
873 		if ((vp->v_numoutput == 0) && (vp->v_iflag & VI_BWAIT)) {
874 			vp->v_iflag &= ~VI_BWAIT;
875 			wakeup(&vp->v_numoutput);
876 		}
877 		VI_UNLOCK(vp);
878 	}
879 }
880 
881 /*
882  * Flush out and invalidate all buffers associated with a vnode.
883  * Called with the underlying object locked.
884  */
885 int
886 vinvalbuf(vp, flags, cred, td, slpflag, slptimeo)
887 	struct vnode *vp;
888 	int flags;
889 	struct ucred *cred;
890 	struct thread *td;
891 	int slpflag, slptimeo;
892 {
893 	struct buf *blist;
894 	int error;
895 	vm_object_t object;
896 
897 	GIANT_REQUIRED;
898 
899 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
900 
901 	VI_LOCK(vp);
902 	if (flags & V_SAVE) {
903 		while (vp->v_numoutput) {
904 			vp->v_iflag |= VI_BWAIT;
905 			error = msleep(&vp->v_numoutput, VI_MTX(vp),
906 			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
907 			if (error) {
908 				VI_UNLOCK(vp);
909 				return (error);
910 			}
911 		}
912 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
913 			VI_UNLOCK(vp);
914 			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, td)) != 0)
915 				return (error);
916 			/*
917 			 * XXX We could save a lock/unlock if this was only
918 			 * enabled under INVARIANTS
919 			 */
920 			VI_LOCK(vp);
921 			if (vp->v_numoutput > 0 ||
922 			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
923 				panic("vinvalbuf: dirty bufs");
924 		}
925 	}
926 	/*
927 	 * If you alter this loop please notice that interlock is dropped and
928 	 * reacquired in flushbuflist.  Special care is needed to ensure that
929 	 * no race conditions occur from this.
930 	 */
931 	for (error = 0;;) {
932 		if ((blist = TAILQ_FIRST(&vp->v_cleanblkhd)) != 0 &&
933 		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
934 			if (error)
935 				break;
936 			continue;
937 		}
938 		if ((blist = TAILQ_FIRST(&vp->v_dirtyblkhd)) != 0 &&
939 		    flushbuflist(blist, flags, vp, slpflag, slptimeo, &error)) {
940 			if (error)
941 				break;
942 			continue;
943 		}
944 		break;
945 	}
946 	if (error) {
947 		VI_UNLOCK(vp);
948 		return (error);
949 	}
950 
951 	/*
952 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
953 	 * have write I/O in-progress but if there is a VM object then the
954 	 * VM object can also have read-I/O in-progress.
955 	 */
956 	do {
957 		while (vp->v_numoutput > 0) {
958 			vp->v_iflag |= VI_BWAIT;
959 			msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vnvlbv", 0);
960 		}
961 		VI_UNLOCK(vp);
962 		if (VOP_GETVOBJECT(vp, &object) == 0) {
963 			VM_OBJECT_LOCK(object);
964 			vm_object_pip_wait(object, "vnvlbx");
965 			VM_OBJECT_UNLOCK(object);
966 		}
967 		VI_LOCK(vp);
968 	} while (vp->v_numoutput > 0);
969 	VI_UNLOCK(vp);
970 
971 	/*
972 	 * Destroy the copy in the VM cache, too.
973 	 */
974 	if (VOP_GETVOBJECT(vp, &object) == 0) {
975 		VM_OBJECT_LOCK(object);
976 		vm_object_page_remove(object, 0, 0,
977 			(flags & V_SAVE) ? TRUE : FALSE);
978 		VM_OBJECT_UNLOCK(object);
979 	}
980 
981 #ifdef INVARIANTS
982 	VI_LOCK(vp);
983 	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
984 	    (!TAILQ_EMPTY(&vp->v_dirtyblkhd) ||
985 	     !TAILQ_EMPTY(&vp->v_cleanblkhd)))
986 		panic("vinvalbuf: flush failed");
987 	VI_UNLOCK(vp);
988 #endif
989 	return (0);
990 }
991 
992 /*
993  * Flush out buffers on the specified list.
994  *
995  */
996 static int
997 flushbuflist(blist, flags, vp, slpflag, slptimeo, errorp)
998 	struct buf *blist;
999 	int flags;
1000 	struct vnode *vp;
1001 	int slpflag, slptimeo;
1002 	int *errorp;
1003 {
1004 	struct buf *bp, *nbp;
1005 	int found, error;
1006 
1007 	ASSERT_VI_LOCKED(vp, "flushbuflist");
1008 
1009 	for (found = 0, bp = blist; bp; bp = nbp) {
1010 		nbp = TAILQ_NEXT(bp, b_vnbufs);
1011 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1012 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1013 			continue;
1014 		}
1015 		found += 1;
1016 		error = BUF_TIMELOCK(bp,
1017 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, VI_MTX(vp),
1018 		    "flushbuf", slpflag, slptimeo);
1019 		if (error) {
1020 			if (error != ENOLCK)
1021 				*errorp = error;
1022 			goto done;
1023 		}
1024 		/*
1025 		 * XXX Since there are no node locks for NFS, I
1026 		 * believe there is a slight chance that a delayed
1027 		 * write will occur while sleeping just above, so
1028 		 * check for it.  Note that vfs_bio_awrite expects
1029 		 * buffers to reside on a queue, while BUF_WRITE and
1030 		 * brelse do not.
1031 		 */
1032 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1033 			(flags & V_SAVE)) {
1034 
1035 			if (bp->b_vp == vp) {
1036 				if (bp->b_flags & B_CLUSTEROK) {
1037 					vfs_bio_awrite(bp);
1038 				} else {
1039 					bremfree(bp);
1040 					bp->b_flags |= B_ASYNC;
1041 					BUF_WRITE(bp);
1042 				}
1043 			} else {
1044 				bremfree(bp);
1045 				(void) BUF_WRITE(bp);
1046 			}
1047 			goto done;
1048 		}
1049 		bremfree(bp);
1050 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1051 		bp->b_flags &= ~B_ASYNC;
1052 		brelse(bp);
1053 		VI_LOCK(vp);
1054 	}
1055 	return (found);
1056 done:
1057 	VI_LOCK(vp);
1058 	return (found);
1059 }
1060 
1061 /*
1062  * Truncate a file's buffer and pages to a specified length.  This
1063  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1064  * sync activity.
1065  */
1066 int
1067 vtruncbuf(vp, cred, td, length, blksize)
1068 	register struct vnode *vp;
1069 	struct ucred *cred;
1070 	struct thread *td;
1071 	off_t length;
1072 	int blksize;
1073 {
1074 	register struct buf *bp;
1075 	struct buf *nbp;
1076 	int anyfreed;
1077 	int trunclbn;
1078 
1079 	/*
1080 	 * Round up to the *next* lbn.
1081 	 */
1082 	trunclbn = (length + blksize - 1) / blksize;
1083 
1084 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1085 restart:
1086 	VI_LOCK(vp);
1087 	anyfreed = 1;
1088 	for (;anyfreed;) {
1089 		anyfreed = 0;
1090 		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1091 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1092 			if (bp->b_lblkno >= trunclbn) {
1093 				if (BUF_LOCK(bp,
1094 				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1095 				    VI_MTX(vp)) == ENOLCK)
1096 					goto restart;
1097 
1098 				bremfree(bp);
1099 				bp->b_flags |= (B_INVAL | B_RELBUF);
1100 				bp->b_flags &= ~B_ASYNC;
1101 				brelse(bp);
1102 				anyfreed = 1;
1103 
1104 				if (nbp &&
1105 				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1106 				    (nbp->b_vp != vp) ||
1107 				    (nbp->b_flags & B_DELWRI))) {
1108 					goto restart;
1109 				}
1110 				VI_LOCK(vp);
1111 			}
1112 		}
1113 
1114 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1115 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1116 			if (bp->b_lblkno >= trunclbn) {
1117 				if (BUF_LOCK(bp,
1118 				    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1119 				    VI_MTX(vp)) == ENOLCK)
1120 					goto restart;
1121 				bremfree(bp);
1122 				bp->b_flags |= (B_INVAL | B_RELBUF);
1123 				bp->b_flags &= ~B_ASYNC;
1124 				brelse(bp);
1125 				anyfreed = 1;
1126 				if (nbp &&
1127 				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1128 				    (nbp->b_vp != vp) ||
1129 				    (nbp->b_flags & B_DELWRI) == 0)) {
1130 					goto restart;
1131 				}
1132 				VI_LOCK(vp);
1133 			}
1134 		}
1135 	}
1136 
1137 	if (length > 0) {
1138 restartsync:
1139 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1140 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1141 			if (bp->b_lblkno > 0)
1142 				continue;
1143 			/*
1144 			 * Since we hold the vnode lock this should only
1145 			 * fail if we're racing with the buf daemon.
1146 			 */
1147 			if (BUF_LOCK(bp,
1148 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1149 			    VI_MTX(vp)) == ENOLCK) {
1150 				goto restart;
1151 			}
1152 			KASSERT((bp->b_flags & B_DELWRI),
1153 			    ("buf(%p) on dirty queue without DELWRI", bp));
1154 
1155 			bremfree(bp);
1156 			bawrite(bp);
1157 			VI_LOCK(vp);
1158 			goto restartsync;
1159 		}
1160 	}
1161 
1162 	while (vp->v_numoutput > 0) {
1163 		vp->v_iflag |= VI_BWAIT;
1164 		msleep(&vp->v_numoutput, VI_MTX(vp), PVM, "vbtrunc", 0);
1165 	}
1166 	VI_UNLOCK(vp);
1167 	vnode_pager_setsize(vp, length);
1168 
1169 	return (0);
1170 }
1171 
1172 /*
1173  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1174  * 		 a vnode.
1175  *
1176  *	NOTE: We have to deal with the special case of a background bitmap
1177  *	buffer, a situation where two buffers will have the same logical
1178  *	block offset.  We want (1) only the foreground buffer to be accessed
1179  *	in a lookup and (2) must differentiate between the foreground and
1180  *	background buffer in the splay tree algorithm because the splay
1181  *	tree cannot normally handle multiple entities with the same 'index'.
1182  *	We accomplish this by adding differentiating flags to the splay tree's
1183  *	numerical domain.
1184  */
1185 static
1186 struct buf *
1187 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1188 {
1189 	struct buf dummy;
1190 	struct buf *lefttreemax, *righttreemin, *y;
1191 
1192 	if (root == NULL)
1193 		return (NULL);
1194 	lefttreemax = righttreemin = &dummy;
1195 	for (;;) {
1196 		if (lblkno < root->b_lblkno ||
1197 		    (lblkno == root->b_lblkno &&
1198 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1199 			if ((y = root->b_left) == NULL)
1200 				break;
1201 			if (lblkno < y->b_lblkno) {
1202 				/* Rotate right. */
1203 				root->b_left = y->b_right;
1204 				y->b_right = root;
1205 				root = y;
1206 				if ((y = root->b_left) == NULL)
1207 					break;
1208 			}
1209 			/* Link into the new root's right tree. */
1210 			righttreemin->b_left = root;
1211 			righttreemin = root;
1212 		} else if (lblkno > root->b_lblkno ||
1213 		    (lblkno == root->b_lblkno &&
1214 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1215 			if ((y = root->b_right) == NULL)
1216 				break;
1217 			if (lblkno > y->b_lblkno) {
1218 				/* Rotate left. */
1219 				root->b_right = y->b_left;
1220 				y->b_left = root;
1221 				root = y;
1222 				if ((y = root->b_right) == NULL)
1223 					break;
1224 			}
1225 			/* Link into the new root's left tree. */
1226 			lefttreemax->b_right = root;
1227 			lefttreemax = root;
1228 		} else {
1229 			break;
1230 		}
1231 		root = y;
1232 	}
1233 	/* Assemble the new root. */
1234 	lefttreemax->b_right = root->b_left;
1235 	righttreemin->b_left = root->b_right;
1236 	root->b_left = dummy.b_right;
1237 	root->b_right = dummy.b_left;
1238 	return (root);
1239 }
1240 
1241 static
1242 void
1243 buf_vlist_remove(struct buf *bp)
1244 {
1245 	struct vnode *vp = bp->b_vp;
1246 	struct buf *root;
1247 
1248 	ASSERT_VI_LOCKED(vp, "buf_vlist_remove");
1249 	if (bp->b_xflags & BX_VNDIRTY) {
1250 		if (bp != vp->v_dirtyblkroot) {
1251 			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1252 			    vp->v_dirtyblkroot);
1253 			KASSERT(root == bp,
1254 			    ("splay lookup failed during dirty remove"));
1255 		}
1256 		if (bp->b_left == NULL) {
1257 			root = bp->b_right;
1258 		} else {
1259 			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1260 			    bp->b_left);
1261 			root->b_right = bp->b_right;
1262 		}
1263 		vp->v_dirtyblkroot = root;
1264 		TAILQ_REMOVE(&vp->v_dirtyblkhd, bp, b_vnbufs);
1265 		vp->v_dirtybufcnt--;
1266 	} else {
1267 		/* KASSERT(bp->b_xflags & BX_VNCLEAN, ("bp wasn't clean")); */
1268 		if (bp != vp->v_cleanblkroot) {
1269 			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1270 			    vp->v_cleanblkroot);
1271 			KASSERT(root == bp,
1272 			    ("splay lookup failed during clean remove"));
1273 		}
1274 		if (bp->b_left == NULL) {
1275 			root = bp->b_right;
1276 		} else {
1277 			root = buf_splay(bp->b_lblkno, bp->b_xflags,
1278 			    bp->b_left);
1279 			root->b_right = bp->b_right;
1280 		}
1281 		vp->v_cleanblkroot = root;
1282 		TAILQ_REMOVE(&vp->v_cleanblkhd, bp, b_vnbufs);
1283 		vp->v_cleanbufcnt--;
1284 	}
1285 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1286 }
1287 
1288 /*
1289  * Add the buffer to the sorted clean or dirty block list using a
1290  * splay tree algorithm.
1291  *
1292  * NOTE: xflags is passed as a constant, optimizing this inline function!
1293  */
1294 static
1295 void
1296 buf_vlist_add(struct buf *bp, struct vnode *vp, b_xflags_t xflags)
1297 {
1298 	struct buf *root;
1299 
1300 	ASSERT_VI_LOCKED(vp, "buf_vlist_add");
1301 	bp->b_xflags |= xflags;
1302 	if (xflags & BX_VNDIRTY) {
1303 		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_dirtyblkroot);
1304 		if (root == NULL) {
1305 			bp->b_left = NULL;
1306 			bp->b_right = NULL;
1307 			TAILQ_INSERT_TAIL(&vp->v_dirtyblkhd, bp, b_vnbufs);
1308 		} else if (bp->b_lblkno < root->b_lblkno ||
1309 		    (bp->b_lblkno == root->b_lblkno &&
1310 		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1311 			bp->b_left = root->b_left;
1312 			bp->b_right = root;
1313 			root->b_left = NULL;
1314 			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1315 		} else {
1316 			bp->b_right = root->b_right;
1317 			bp->b_left = root;
1318 			root->b_right = NULL;
1319 			TAILQ_INSERT_AFTER(&vp->v_dirtyblkhd,
1320 			    root, bp, b_vnbufs);
1321 		}
1322 		vp->v_dirtybufcnt++;
1323 		vp->v_dirtyblkroot = bp;
1324 	} else {
1325 		/* KASSERT(xflags & BX_VNCLEAN, ("xflags not clean")); */
1326 		root = buf_splay(bp->b_lblkno, bp->b_xflags, vp->v_cleanblkroot);
1327 		if (root == NULL) {
1328 			bp->b_left = NULL;
1329 			bp->b_right = NULL;
1330 			TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1331 		} else if (bp->b_lblkno < root->b_lblkno ||
1332 		    (bp->b_lblkno == root->b_lblkno &&
1333 		    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1334 			bp->b_left = root->b_left;
1335 			bp->b_right = root;
1336 			root->b_left = NULL;
1337 			TAILQ_INSERT_BEFORE(root, bp, b_vnbufs);
1338 		} else {
1339 			bp->b_right = root->b_right;
1340 			bp->b_left = root;
1341 			root->b_right = NULL;
1342 			TAILQ_INSERT_AFTER(&vp->v_cleanblkhd,
1343 			    root, bp, b_vnbufs);
1344 		}
1345 		vp->v_cleanbufcnt++;
1346 		vp->v_cleanblkroot = bp;
1347 	}
1348 }
1349 
1350 /*
1351  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1352  * shadow buffers used in background bitmap writes.
1353  *
1354  * This code isn't quite efficient as it could be because we are maintaining
1355  * two sorted lists and do not know which list the block resides in.
1356  *
1357  * During a "make buildworld" the desired buffer is found at one of
1358  * the roots more than 60% of the time.  Thus, checking both roots
1359  * before performing either splay eliminates unnecessary splays on the
1360  * first tree splayed.
1361  */
1362 struct buf *
1363 gbincore(struct vnode *vp, daddr_t lblkno)
1364 {
1365 	struct buf *bp;
1366 
1367 	GIANT_REQUIRED;
1368 
1369 	ASSERT_VI_LOCKED(vp, "gbincore");
1370 	if ((bp = vp->v_cleanblkroot) != NULL &&
1371 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1372 		return (bp);
1373 	if ((bp = vp->v_dirtyblkroot) != NULL &&
1374 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1375 		return (bp);
1376 	if ((bp = vp->v_cleanblkroot) != NULL) {
1377 		vp->v_cleanblkroot = bp = buf_splay(lblkno, 0, bp);
1378 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1379 			return (bp);
1380 	}
1381 	if ((bp = vp->v_dirtyblkroot) != NULL) {
1382 		vp->v_dirtyblkroot = bp = buf_splay(lblkno, 0, bp);
1383 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1384 			return (bp);
1385 	}
1386 	return (NULL);
1387 }
1388 
1389 /*
1390  * Associate a buffer with a vnode.
1391  */
1392 void
1393 bgetvp(vp, bp)
1394 	register struct vnode *vp;
1395 	register struct buf *bp;
1396 {
1397 
1398 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1399 
1400 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1401 	    ("bgetvp: bp already attached! %p", bp));
1402 
1403 	ASSERT_VI_LOCKED(vp, "bgetvp");
1404 	vholdl(vp);
1405 	bp->b_vp = vp;
1406 	bp->b_dev = vn_todev(vp);
1407 	/*
1408 	 * Insert onto list for new vnode.
1409 	 */
1410 	buf_vlist_add(bp, vp, BX_VNCLEAN);
1411 }
1412 
1413 /*
1414  * Disassociate a buffer from a vnode.
1415  */
1416 void
1417 brelvp(bp)
1418 	register struct buf *bp;
1419 {
1420 	struct vnode *vp;
1421 
1422 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1423 
1424 	/*
1425 	 * Delete from old vnode list, if on one.
1426 	 */
1427 	vp = bp->b_vp;
1428 	VI_LOCK(vp);
1429 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1430 		buf_vlist_remove(bp);
1431 	if ((vp->v_iflag & VI_ONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1432 		vp->v_iflag &= ~VI_ONWORKLST;
1433 		mtx_lock(&sync_mtx);
1434 		LIST_REMOVE(vp, v_synclist);
1435 		mtx_unlock(&sync_mtx);
1436 	}
1437 	vdropl(vp);
1438 	bp->b_vp = (struct vnode *) 0;
1439 	if (bp->b_object)
1440 		bp->b_object = NULL;
1441 	VI_UNLOCK(vp);
1442 }
1443 
1444 /*
1445  * Add an item to the syncer work queue.
1446  */
1447 static void
1448 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1449 {
1450 	int slot;
1451 
1452 	ASSERT_VI_LOCKED(vp, "vn_syncer_add_to_worklist");
1453 
1454 	mtx_lock(&sync_mtx);
1455 	if (vp->v_iflag & VI_ONWORKLST)
1456 		LIST_REMOVE(vp, v_synclist);
1457 	else
1458 		vp->v_iflag |= VI_ONWORKLST;
1459 
1460 	if (delay > syncer_maxdelay - 2)
1461 		delay = syncer_maxdelay - 2;
1462 	slot = (syncer_delayno + delay) & syncer_mask;
1463 
1464 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1465 	mtx_unlock(&sync_mtx);
1466 }
1467 
1468 struct  proc *updateproc;
1469 static void sched_sync(void);
1470 static struct kproc_desc up_kp = {
1471 	"syncer",
1472 	sched_sync,
1473 	&updateproc
1474 };
1475 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1476 
1477 /*
1478  * System filesystem synchronizer daemon.
1479  */
1480 static void
1481 sched_sync(void)
1482 {
1483 	struct synclist *next;
1484 	struct synclist *slp;
1485 	struct vnode *vp;
1486 	struct mount *mp;
1487 	long starttime;
1488 	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);  /* XXXKSE */
1489 
1490 	mtx_lock(&Giant);
1491 
1492 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, td->td_proc,
1493 	    SHUTDOWN_PRI_LAST);
1494 
1495 	for (;;) {
1496 		kthread_suspend_check(td->td_proc);
1497 
1498 		starttime = time_second;
1499 
1500 		/*
1501 		 * Push files whose dirty time has expired.  Be careful
1502 		 * of interrupt race on slp queue.
1503 		 */
1504 		mtx_lock(&sync_mtx);
1505 		slp = &syncer_workitem_pending[syncer_delayno];
1506 		syncer_delayno += 1;
1507 		if (syncer_delayno == syncer_maxdelay)
1508 			syncer_delayno = 0;
1509 		next = &syncer_workitem_pending[syncer_delayno];
1510 
1511 		while ((vp = LIST_FIRST(slp)) != NULL) {
1512 			if (VOP_ISLOCKED(vp, NULL) != 0 ||
1513 			    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1514 				LIST_REMOVE(vp, v_synclist);
1515 				LIST_INSERT_HEAD(next, vp, v_synclist);
1516 				continue;
1517 			}
1518 			if (VI_TRYLOCK(vp) == 0) {
1519 				LIST_REMOVE(vp, v_synclist);
1520 				LIST_INSERT_HEAD(next, vp, v_synclist);
1521 				vn_finished_write(mp);
1522 				continue;
1523 			}
1524 			/*
1525 			 * We use vhold in case the vnode does not
1526 			 * successfully sync.  vhold prevents the vnode from
1527 			 * going away when we unlock the sync_mtx so that
1528 			 * we can acquire the vnode interlock.
1529 			 */
1530 			vholdl(vp);
1531 			mtx_unlock(&sync_mtx);
1532 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK, td);
1533 			(void) VOP_FSYNC(vp, td->td_ucred, MNT_LAZY, td);
1534 			VOP_UNLOCK(vp, 0, td);
1535 			vn_finished_write(mp);
1536 			VI_LOCK(vp);
1537 			if ((vp->v_iflag & VI_ONWORKLST) != 0) {
1538 				/*
1539 				 * Put us back on the worklist.  The worklist
1540 				 * routine will remove us from our current
1541 				 * position and then add us back in at a later
1542 				 * position.
1543 				 */
1544 				vn_syncer_add_to_worklist(vp, syncdelay);
1545 			}
1546 			vdropl(vp);
1547 			VI_UNLOCK(vp);
1548 			mtx_lock(&sync_mtx);
1549 		}
1550 		mtx_unlock(&sync_mtx);
1551 
1552 		/*
1553 		 * Do soft update processing.
1554 		 */
1555 		if (softdep_process_worklist_hook != NULL)
1556 			(*softdep_process_worklist_hook)(NULL);
1557 
1558 		/*
1559 		 * The variable rushjob allows the kernel to speed up the
1560 		 * processing of the filesystem syncer process. A rushjob
1561 		 * value of N tells the filesystem syncer to process the next
1562 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1563 		 * is used by the soft update code to speed up the filesystem
1564 		 * syncer process when the incore state is getting so far
1565 		 * ahead of the disk that the kernel memory pool is being
1566 		 * threatened with exhaustion.
1567 		 */
1568 		mtx_lock(&sync_mtx);
1569 		if (rushjob > 0) {
1570 			rushjob -= 1;
1571 			mtx_unlock(&sync_mtx);
1572 			continue;
1573 		}
1574 		mtx_unlock(&sync_mtx);
1575 		/*
1576 		 * If it has taken us less than a second to process the
1577 		 * current work, then wait. Otherwise start right over
1578 		 * again. We can still lose time if any single round
1579 		 * takes more than two seconds, but it does not really
1580 		 * matter as we are just trying to generally pace the
1581 		 * filesystem activity.
1582 		 */
1583 		if (time_second == starttime)
1584 			tsleep(&lbolt, PPAUSE, "syncer", 0);
1585 	}
1586 }
1587 
1588 /*
1589  * Request the syncer daemon to speed up its work.
1590  * We never push it to speed up more than half of its
1591  * normal turn time, otherwise it could take over the cpu.
1592  * XXXKSE  only one update?
1593  */
1594 int
1595 speedup_syncer()
1596 {
1597 	struct thread *td;
1598 	int ret = 0;
1599 
1600 	td = FIRST_THREAD_IN_PROC(updateproc);
1601 	mtx_lock_spin(&sched_lock);
1602 	if (td->td_wchan == &lbolt) {
1603 		unsleep(td);
1604 		TD_CLR_SLEEPING(td);
1605 		setrunnable(td);
1606 	}
1607 	mtx_unlock_spin(&sched_lock);
1608 	mtx_lock(&sync_mtx);
1609 	if (rushjob < syncdelay / 2) {
1610 		rushjob += 1;
1611 		stat_rush_requests += 1;
1612 		ret = 1;
1613 	}
1614 	mtx_unlock(&sync_mtx);
1615 	return (ret);
1616 }
1617 
1618 /*
1619  * Associate a p-buffer with a vnode.
1620  *
1621  * Also sets B_PAGING flag to indicate that vnode is not fully associated
1622  * with the buffer.  i.e. the bp has not been linked into the vnode or
1623  * ref-counted.
1624  */
1625 void
1626 pbgetvp(vp, bp)
1627 	register struct vnode *vp;
1628 	register struct buf *bp;
1629 {
1630 
1631 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1632 
1633 	bp->b_vp = vp;
1634 	bp->b_object = vp->v_object;
1635 	bp->b_flags |= B_PAGING;
1636 	bp->b_dev = vn_todev(vp);
1637 }
1638 
1639 /*
1640  * Disassociate a p-buffer from a vnode.
1641  */
1642 void
1643 pbrelvp(bp)
1644 	register struct buf *bp;
1645 {
1646 
1647 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1648 
1649 	/* XXX REMOVE ME */
1650 	VI_LOCK(bp->b_vp);
1651 	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1652 		panic(
1653 		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1654 		    bp,
1655 		    (int)bp->b_flags
1656 		);
1657 	}
1658 	VI_UNLOCK(bp->b_vp);
1659 	bp->b_vp = (struct vnode *) 0;
1660 	bp->b_object = NULL;
1661 	bp->b_flags &= ~B_PAGING;
1662 }
1663 
1664 /*
1665  * Reassign a buffer from one vnode to another.
1666  * Used to assign file specific control information
1667  * (indirect blocks) to the vnode to which they belong.
1668  */
1669 void
1670 reassignbuf(bp, newvp)
1671 	register struct buf *bp;
1672 	register struct vnode *newvp;
1673 {
1674 	struct vnode *vp;
1675 	int delay;
1676 
1677 	if (newvp == NULL) {
1678 		printf("reassignbuf: NULL");
1679 		return;
1680 	}
1681 	vp = bp->b_vp;
1682 	++reassignbufcalls;
1683 
1684 	/*
1685 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1686 	 * is not fully linked in.
1687 	 */
1688 	if (bp->b_flags & B_PAGING)
1689 		panic("cannot reassign paging buffer");
1690 
1691 	/*
1692 	 * Delete from old vnode list, if on one.
1693 	 */
1694 	VI_LOCK(vp);
1695 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1696 		buf_vlist_remove(bp);
1697 		if (vp != newvp) {
1698 			vdropl(bp->b_vp);
1699 			bp->b_vp = NULL;	/* for clarification */
1700 		}
1701 	}
1702 	if (vp != newvp) {
1703 		VI_UNLOCK(vp);
1704 		VI_LOCK(newvp);
1705 	}
1706 	/*
1707 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1708 	 * of clean buffers.
1709 	 */
1710 	if (bp->b_flags & B_DELWRI) {
1711 		if ((newvp->v_iflag & VI_ONWORKLST) == 0) {
1712 			switch (newvp->v_type) {
1713 			case VDIR:
1714 				delay = dirdelay;
1715 				break;
1716 			case VCHR:
1717 				if (newvp->v_rdev->si_mountpoint != NULL) {
1718 					delay = metadelay;
1719 					break;
1720 				}
1721 				/* FALLTHROUGH */
1722 			default:
1723 				delay = filedelay;
1724 			}
1725 			vn_syncer_add_to_worklist(newvp, delay);
1726 		}
1727 		buf_vlist_add(bp, newvp, BX_VNDIRTY);
1728 	} else {
1729 		buf_vlist_add(bp, newvp, BX_VNCLEAN);
1730 
1731 		if ((newvp->v_iflag & VI_ONWORKLST) &&
1732 		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1733 			mtx_lock(&sync_mtx);
1734 			LIST_REMOVE(newvp, v_synclist);
1735 			mtx_unlock(&sync_mtx);
1736 			newvp->v_iflag &= ~VI_ONWORKLST;
1737 		}
1738 	}
1739 	if (bp->b_vp != newvp) {
1740 		bp->b_vp = newvp;
1741 		vholdl(bp->b_vp);
1742 	}
1743 	VI_UNLOCK(newvp);
1744 }
1745 
1746 /*
1747  * Create a vnode for a device.
1748  * Used for mounting the root filesystem.
1749  */
1750 int
1751 bdevvp(dev, vpp)
1752 	dev_t dev;
1753 	struct vnode **vpp;
1754 {
1755 	register struct vnode *vp;
1756 	struct vnode *nvp;
1757 	int error;
1758 
1759 	if (dev == NODEV) {
1760 		*vpp = NULLVP;
1761 		return (ENXIO);
1762 	}
1763 	if (vfinddev(dev, VCHR, vpp))
1764 		return (0);
1765 	error = getnewvnode("none", (struct mount *)0, spec_vnodeop_p, &nvp);
1766 	if (error) {
1767 		*vpp = NULLVP;
1768 		return (error);
1769 	}
1770 	vp = nvp;
1771 	vp->v_type = VCHR;
1772 	addalias(vp, dev);
1773 	*vpp = vp;
1774 	return (0);
1775 }
1776 
1777 static void
1778 v_incr_usecount(struct vnode *vp, int delta)
1779 {
1780 
1781 	vp->v_usecount += delta;
1782 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1783 		mtx_lock(&spechash_mtx);
1784 		vp->v_rdev->si_usecount += delta;
1785 		mtx_unlock(&spechash_mtx);
1786 	}
1787 }
1788 
1789 /*
1790  * Add vnode to the alias list hung off the dev_t.
1791  *
1792  * The reason for this gunk is that multiple vnodes can reference
1793  * the same physical device, so checking vp->v_usecount to see
1794  * how many users there are is inadequate; the v_usecount for
1795  * the vnodes need to be accumulated.  vcount() does that.
1796  */
1797 struct vnode *
1798 addaliasu(nvp, nvp_rdev)
1799 	struct vnode *nvp;
1800 	udev_t nvp_rdev;
1801 {
1802 	struct vnode *ovp;
1803 	vop_t **ops;
1804 	dev_t dev;
1805 
1806 	if (nvp->v_type == VBLK)
1807 		return (nvp);
1808 	if (nvp->v_type != VCHR)
1809 		panic("addaliasu on non-special vnode");
1810 	dev = udev2dev(nvp_rdev, 0);
1811 	/*
1812 	 * Check to see if we have a bdevvp vnode with no associated
1813 	 * filesystem. If so, we want to associate the filesystem of
1814 	 * the new newly instigated vnode with the bdevvp vnode and
1815 	 * discard the newly created vnode rather than leaving the
1816 	 * bdevvp vnode lying around with no associated filesystem.
1817 	 */
1818 	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
1819 		addalias(nvp, dev);
1820 		return (nvp);
1821 	}
1822 	/*
1823 	 * Discard unneeded vnode, but save its node specific data.
1824 	 * Note that if there is a lock, it is carried over in the
1825 	 * node specific data to the replacement vnode.
1826 	 */
1827 	vref(ovp);
1828 	ovp->v_data = nvp->v_data;
1829 	ovp->v_tag = nvp->v_tag;
1830 	nvp->v_data = NULL;
1831 	lockdestroy(ovp->v_vnlock);
1832 	lockinit(ovp->v_vnlock, PVFS, nvp->v_vnlock->lk_wmesg,
1833 	    nvp->v_vnlock->lk_timo, nvp->v_vnlock->lk_flags & LK_EXTFLG_MASK);
1834 	ops = ovp->v_op;
1835 	ovp->v_op = nvp->v_op;
1836 	if (VOP_ISLOCKED(nvp, curthread)) {
1837 		VOP_UNLOCK(nvp, 0, curthread);
1838 		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curthread);
1839 	}
1840 	nvp->v_op = ops;
1841 	insmntque(ovp, nvp->v_mount);
1842 	vrele(nvp);
1843 	vgone(nvp);
1844 	return (ovp);
1845 }
1846 
1847 /* This is a local helper function that do the same as addaliasu, but for a
1848  * dev_t instead of an udev_t. */
1849 static void
1850 addalias(nvp, dev)
1851 	struct vnode *nvp;
1852 	dev_t dev;
1853 {
1854 
1855 	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1856 	nvp->v_rdev = dev;
1857 	VI_LOCK(nvp);
1858 	mtx_lock(&spechash_mtx);
1859 	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1860 	dev->si_usecount += nvp->v_usecount;
1861 	mtx_unlock(&spechash_mtx);
1862 	VI_UNLOCK(nvp);
1863 }
1864 
1865 /*
1866  * Grab a particular vnode from the free list, increment its
1867  * reference count and lock it. The vnode lock bit is set if the
1868  * vnode is being eliminated in vgone. The process is awakened
1869  * when the transition is completed, and an error returned to
1870  * indicate that the vnode is no longer usable (possibly having
1871  * been changed to a new filesystem type).
1872  */
1873 int
1874 vget(vp, flags, td)
1875 	register struct vnode *vp;
1876 	int flags;
1877 	struct thread *td;
1878 {
1879 	int error;
1880 
1881 	/*
1882 	 * If the vnode is in the process of being cleaned out for
1883 	 * another use, we wait for the cleaning to finish and then
1884 	 * return failure. Cleaning is determined by checking that
1885 	 * the VI_XLOCK flag is set.
1886 	 */
1887 	if ((flags & LK_INTERLOCK) == 0)
1888 		VI_LOCK(vp);
1889 	if (vp->v_iflag & VI_XLOCK && vp->v_vxthread != curthread) {
1890 		if ((flags & LK_NOWAIT) == 0) {
1891 			vp->v_iflag |= VI_XWANT;
1892 			msleep(vp, VI_MTX(vp), PINOD | PDROP, "vget", 0);
1893 			return (ENOENT);
1894 		}
1895 		VI_UNLOCK(vp);
1896 		return (EBUSY);
1897 	}
1898 
1899 	v_incr_usecount(vp, 1);
1900 
1901 	if (VSHOULDBUSY(vp))
1902 		vbusy(vp);
1903 	if (flags & LK_TYPE_MASK) {
1904 		if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1905 			/*
1906 			 * must expand vrele here because we do not want
1907 			 * to call VOP_INACTIVE if the reference count
1908 			 * drops back to zero since it was never really
1909 			 * active. We must remove it from the free list
1910 			 * before sleeping so that multiple processes do
1911 			 * not try to recycle it.
1912 			 */
1913 			VI_LOCK(vp);
1914 			v_incr_usecount(vp, -1);
1915 			if (VSHOULDFREE(vp))
1916 				vfree(vp);
1917 			else
1918 				vlruvp(vp);
1919 			VI_UNLOCK(vp);
1920 		}
1921 		return (error);
1922 	}
1923 	VI_UNLOCK(vp);
1924 	return (0);
1925 }
1926 
1927 /*
1928  * Increase the reference count of a vnode.
1929  */
1930 void
1931 vref(struct vnode *vp)
1932 {
1933 
1934 	VI_LOCK(vp);
1935 	v_incr_usecount(vp, 1);
1936 	VI_UNLOCK(vp);
1937 }
1938 
1939 /*
1940  * Return reference count of a vnode.
1941  *
1942  * The results of this call are only guaranteed when some mechanism other
1943  * than the VI lock is used to stop other processes from gaining references
1944  * to the vnode.  This may be the case if the caller holds the only reference.
1945  * This is also useful when stale data is acceptable as race conditions may
1946  * be accounted for by some other means.
1947  */
1948 int
1949 vrefcnt(struct vnode *vp)
1950 {
1951 	int usecnt;
1952 
1953 	VI_LOCK(vp);
1954 	usecnt = vp->v_usecount;
1955 	VI_UNLOCK(vp);
1956 
1957 	return (usecnt);
1958 }
1959 
1960 
1961 /*
1962  * Vnode put/release.
1963  * If count drops to zero, call inactive routine and return to freelist.
1964  */
1965 void
1966 vrele(vp)
1967 	struct vnode *vp;
1968 {
1969 	struct thread *td = curthread;	/* XXX */
1970 
1971 	KASSERT(vp != NULL, ("vrele: null vp"));
1972 
1973 	VI_LOCK(vp);
1974 
1975 	/* Skip this v_writecount check if we're going to panic below. */
1976 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
1977 	    ("vrele: missed vn_close"));
1978 
1979 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
1980 	    vp->v_usecount == 1)) {
1981 		v_incr_usecount(vp, -1);
1982 		VI_UNLOCK(vp);
1983 
1984 		return;
1985 	}
1986 
1987 	if (vp->v_usecount == 1) {
1988 		v_incr_usecount(vp, -1);
1989 		/*
1990 		 * We must call VOP_INACTIVE with the node locked. Mark
1991 		 * as VI_DOINGINACT to avoid recursion.
1992 		 */
1993 		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
1994 			VI_LOCK(vp);
1995 			vp->v_iflag |= VI_DOINGINACT;
1996 			VI_UNLOCK(vp);
1997 			VOP_INACTIVE(vp, td);
1998 			VI_LOCK(vp);
1999 			KASSERT(vp->v_iflag & VI_DOINGINACT,
2000 			    ("vrele: lost VI_DOINGINACT"));
2001 			vp->v_iflag &= ~VI_DOINGINACT;
2002 		} else
2003 			VI_LOCK(vp);
2004 		if (VSHOULDFREE(vp))
2005 			vfree(vp);
2006 		else
2007 			vlruvp(vp);
2008 		VI_UNLOCK(vp);
2009 
2010 	} else {
2011 #ifdef DIAGNOSTIC
2012 		vprint("vrele: negative ref count", vp);
2013 #endif
2014 		VI_UNLOCK(vp);
2015 		panic("vrele: negative ref cnt");
2016 	}
2017 }
2018 
2019 /*
2020  * Release an already locked vnode.  This give the same effects as
2021  * unlock+vrele(), but takes less time and avoids releasing and
2022  * re-aquiring the lock (as vrele() aquires the lock internally.)
2023  */
2024 void
2025 vput(vp)
2026 	struct vnode *vp;
2027 {
2028 	struct thread *td = curthread;	/* XXX */
2029 
2030 	GIANT_REQUIRED;
2031 
2032 	KASSERT(vp != NULL, ("vput: null vp"));
2033 	VI_LOCK(vp);
2034 	/* Skip this v_writecount check if we're going to panic below. */
2035 	KASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1,
2036 	    ("vput: missed vn_close"));
2037 
2038 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2039 	    vp->v_usecount == 1)) {
2040 		v_incr_usecount(vp, -1);
2041 		VOP_UNLOCK(vp, LK_INTERLOCK, td);
2042 		return;
2043 	}
2044 
2045 	if (vp->v_usecount == 1) {
2046 		v_incr_usecount(vp, -1);
2047 		/*
2048 		 * We must call VOP_INACTIVE with the node locked, so
2049 		 * we just need to release the vnode mutex. Mark as
2050 		 * as VI_DOINGINACT to avoid recursion.
2051 		 */
2052 		vp->v_iflag |= VI_DOINGINACT;
2053 		VI_UNLOCK(vp);
2054 		VOP_INACTIVE(vp, td);
2055 		VI_LOCK(vp);
2056 		KASSERT(vp->v_iflag & VI_DOINGINACT,
2057 		    ("vput: lost VI_DOINGINACT"));
2058 		vp->v_iflag &= ~VI_DOINGINACT;
2059 		if (VSHOULDFREE(vp))
2060 			vfree(vp);
2061 		else
2062 			vlruvp(vp);
2063 		VI_UNLOCK(vp);
2064 
2065 	} else {
2066 #ifdef DIAGNOSTIC
2067 		vprint("vput: negative ref count", vp);
2068 #endif
2069 		panic("vput: negative ref cnt");
2070 	}
2071 }
2072 
2073 /*
2074  * Somebody doesn't want the vnode recycled.
2075  */
2076 void
2077 vhold(struct vnode *vp)
2078 {
2079 
2080 	VI_LOCK(vp);
2081 	vholdl(vp);
2082 	VI_UNLOCK(vp);
2083 }
2084 
2085 void
2086 vholdl(vp)
2087 	register struct vnode *vp;
2088 {
2089 
2090 	vp->v_holdcnt++;
2091 	if (VSHOULDBUSY(vp))
2092 		vbusy(vp);
2093 }
2094 
2095 /*
2096  * Note that there is one less who cares about this vnode.  vdrop() is the
2097  * opposite of vhold().
2098  */
2099 void
2100 vdrop(struct vnode *vp)
2101 {
2102 
2103 	VI_LOCK(vp);
2104 	vdropl(vp);
2105 	VI_UNLOCK(vp);
2106 }
2107 
2108 void
2109 vdropl(vp)
2110 	register struct vnode *vp;
2111 {
2112 
2113 	if (vp->v_holdcnt <= 0)
2114 		panic("vdrop: holdcnt");
2115 	vp->v_holdcnt--;
2116 	if (VSHOULDFREE(vp))
2117 		vfree(vp);
2118 	else
2119 		vlruvp(vp);
2120 }
2121 
2122 /*
2123  * Remove any vnodes in the vnode table belonging to mount point mp.
2124  *
2125  * If FORCECLOSE is not specified, there should not be any active ones,
2126  * return error if any are found (nb: this is a user error, not a
2127  * system error). If FORCECLOSE is specified, detach any active vnodes
2128  * that are found.
2129  *
2130  * If WRITECLOSE is set, only flush out regular file vnodes open for
2131  * writing.
2132  *
2133  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2134  *
2135  * `rootrefs' specifies the base reference count for the root vnode
2136  * of this filesystem. The root vnode is considered busy if its
2137  * v_usecount exceeds this value. On a successful return, vflush()
2138  * will call vrele() on the root vnode exactly rootrefs times.
2139  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2140  * be zero.
2141  */
2142 #ifdef DIAGNOSTIC
2143 static int busyprt = 0;		/* print out busy vnodes */
2144 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2145 #endif
2146 
2147 int
2148 vflush(mp, rootrefs, flags)
2149 	struct mount *mp;
2150 	int rootrefs;
2151 	int flags;
2152 {
2153 	struct thread *td = curthread;	/* XXX */
2154 	struct vnode *vp, *nvp, *rootvp = NULL;
2155 	struct vattr vattr;
2156 	int busy = 0, error;
2157 
2158 	if (rootrefs > 0) {
2159 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2160 		    ("vflush: bad args"));
2161 		/*
2162 		 * Get the filesystem root vnode. We can vput() it
2163 		 * immediately, since with rootrefs > 0, it won't go away.
2164 		 */
2165 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
2166 			return (error);
2167 		vput(rootvp);
2168 
2169 	}
2170 	MNT_ILOCK(mp);
2171 loop:
2172 	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
2173 		/*
2174 		 * Make sure this vnode wasn't reclaimed in getnewvnode().
2175 		 * Start over if it has (it won't be on the list anymore).
2176 		 */
2177 		if (vp->v_mount != mp)
2178 			goto loop;
2179 		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2180 
2181 		VI_LOCK(vp);
2182 		MNT_IUNLOCK(mp);
2183 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
2184 		if (error) {
2185 			MNT_ILOCK(mp);
2186 			goto loop;
2187 		}
2188 		/*
2189 		 * Skip over a vnodes marked VV_SYSTEM.
2190 		 */
2191 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2192 			VOP_UNLOCK(vp, 0, td);
2193 			MNT_ILOCK(mp);
2194 			continue;
2195 		}
2196 		/*
2197 		 * If WRITECLOSE is set, flush out unlinked but still open
2198 		 * files (even if open only for reading) and regular file
2199 		 * vnodes open for writing.
2200 		 */
2201 		if (flags & WRITECLOSE) {
2202 			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2203 			VI_LOCK(vp);
2204 
2205 			if ((vp->v_type == VNON ||
2206 			    (error == 0 && vattr.va_nlink > 0)) &&
2207 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2208 				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2209 				MNT_ILOCK(mp);
2210 				continue;
2211 			}
2212 		} else
2213 			VI_LOCK(vp);
2214 
2215 		VOP_UNLOCK(vp, 0, td);
2216 
2217 		/*
2218 		 * With v_usecount == 0, all we need to do is clear out the
2219 		 * vnode data structures and we are done.
2220 		 */
2221 		if (vp->v_usecount == 0) {
2222 			vgonel(vp, td);
2223 			MNT_ILOCK(mp);
2224 			continue;
2225 		}
2226 
2227 		/*
2228 		 * If FORCECLOSE is set, forcibly close the vnode. For block
2229 		 * or character devices, revert to an anonymous device. For
2230 		 * all other files, just kill them.
2231 		 */
2232 		if (flags & FORCECLOSE) {
2233 			if (vp->v_type != VCHR)
2234 				vgonel(vp, td);
2235 			else
2236 				vgonechrl(vp, td);
2237 			MNT_ILOCK(mp);
2238 			continue;
2239 		}
2240 #ifdef DIAGNOSTIC
2241 		if (busyprt)
2242 			vprint("vflush: busy vnode", vp);
2243 #endif
2244 		VI_UNLOCK(vp);
2245 		MNT_ILOCK(mp);
2246 		busy++;
2247 	}
2248 	MNT_IUNLOCK(mp);
2249 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2250 		/*
2251 		 * If just the root vnode is busy, and if its refcount
2252 		 * is equal to `rootrefs', then go ahead and kill it.
2253 		 */
2254 		VI_LOCK(rootvp);
2255 		KASSERT(busy > 0, ("vflush: not busy"));
2256 		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
2257 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2258 			vgonel(rootvp, td);
2259 			busy = 0;
2260 		} else
2261 			VI_UNLOCK(rootvp);
2262 	}
2263 	if (busy)
2264 		return (EBUSY);
2265 	for (; rootrefs > 0; rootrefs--)
2266 		vrele(rootvp);
2267 	return (0);
2268 }
2269 
2270 /*
2271  * This moves a now (likely recyclable) vnode to the end of the
2272  * mountlist.  XXX However, it is temporarily disabled until we
2273  * can clean up ffs_sync() and friends, which have loop restart
2274  * conditions which this code causes to operate O(N^2).
2275  */
2276 static void
2277 vlruvp(struct vnode *vp)
2278 {
2279 #if 0
2280 	struct mount *mp;
2281 
2282 	if ((mp = vp->v_mount) != NULL) {
2283 		MNT_ILOCK(mp);
2284 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2285 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2286 		MNT_IUNLOCK(mp);
2287 	}
2288 #endif
2289 }
2290 
2291 static void
2292 vx_lock(struct vnode *vp)
2293 {
2294 
2295 	ASSERT_VI_LOCKED(vp, "vx_lock");
2296 
2297 	/*
2298 	 * Prevent the vnode from being recycled or brought into use while we
2299 	 * clean it out.
2300 	 */
2301 	if (vp->v_iflag & VI_XLOCK)
2302 		panic("vclean: deadlock");
2303 	vp->v_iflag |= VI_XLOCK;
2304 	vp->v_vxthread = curthread;
2305 }
2306 
2307 static void
2308 vx_unlock(struct vnode *vp)
2309 {
2310 	ASSERT_VI_LOCKED(vp, "vx_unlock");
2311 	vp->v_iflag &= ~VI_XLOCK;
2312 	vp->v_vxthread = NULL;
2313 	if (vp->v_iflag & VI_XWANT) {
2314 		vp->v_iflag &= ~VI_XWANT;
2315 		wakeup(vp);
2316 	}
2317 }
2318 
2319 /*
2320  * Disassociate the underlying filesystem from a vnode.
2321  */
2322 static void
2323 vclean(vp, flags, td)
2324 	struct vnode *vp;
2325 	int flags;
2326 	struct thread *td;
2327 {
2328 	int active;
2329 
2330 	ASSERT_VI_LOCKED(vp, "vclean");
2331 	/*
2332 	 * Check to see if the vnode is in use. If so we have to reference it
2333 	 * before we clean it out so that its count cannot fall to zero and
2334 	 * generate a race against ourselves to recycle it.
2335 	 */
2336 	if ((active = vp->v_usecount))
2337 		v_incr_usecount(vp, 1);
2338 
2339 	/*
2340 	 * Even if the count is zero, the VOP_INACTIVE routine may still
2341 	 * have the object locked while it cleans it out. The VOP_LOCK
2342 	 * ensures that the VOP_INACTIVE routine is done with its work.
2343 	 * For active vnodes, it ensures that no other activity can
2344 	 * occur while the underlying object is being cleaned out.
2345 	 */
2346 	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2347 
2348 	/*
2349 	 * Clean out any buffers associated with the vnode.
2350 	 * If the flush fails, just toss the buffers.
2351 	 */
2352 	if (flags & DOCLOSE) {
2353 		struct buf *bp;
2354 		bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
2355 		if (bp != NULL)
2356 			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2357 		if (vinvalbuf(vp, V_SAVE, NOCRED, td, 0, 0) != 0)
2358 			vinvalbuf(vp, 0, NOCRED, td, 0, 0);
2359 	}
2360 
2361 	VOP_DESTROYVOBJECT(vp);
2362 
2363 	/*
2364 	 * Any other processes trying to obtain this lock must first
2365 	 * wait for VXLOCK to clear, then call the new lock operation.
2366 	 */
2367 	VOP_UNLOCK(vp, 0, td);
2368 
2369 	/*
2370 	 * If purging an active vnode, it must be closed and
2371 	 * deactivated before being reclaimed. Note that the
2372 	 * VOP_INACTIVE will unlock the vnode.
2373 	 */
2374 	if (active) {
2375 		if (flags & DOCLOSE)
2376 			VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2377 		VI_LOCK(vp);
2378 		if ((vp->v_iflag & VI_DOINGINACT) == 0) {
2379 			vp->v_iflag |= VI_DOINGINACT;
2380 			VI_UNLOCK(vp);
2381 			if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
2382 				panic("vclean: cannot relock.");
2383 			VOP_INACTIVE(vp, td);
2384 			VI_LOCK(vp);
2385 			KASSERT(vp->v_iflag & VI_DOINGINACT,
2386 			    ("vclean: lost VI_DOINGINACT"));
2387 			vp->v_iflag &= ~VI_DOINGINACT;
2388 		}
2389 		VI_UNLOCK(vp);
2390 	}
2391 	/*
2392 	 * Reclaim the vnode.
2393 	 */
2394 	if (VOP_RECLAIM(vp, td))
2395 		panic("vclean: cannot reclaim");
2396 
2397 	if (active) {
2398 		/*
2399 		 * Inline copy of vrele() since VOP_INACTIVE
2400 		 * has already been called.
2401 		 */
2402 		VI_LOCK(vp);
2403 		v_incr_usecount(vp, -1);
2404 		if (vp->v_usecount <= 0) {
2405 #ifdef INVARIANTS
2406 			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2407 				vprint("vclean: bad ref count", vp);
2408 				panic("vclean: ref cnt");
2409 			}
2410 #endif
2411 			if (VSHOULDFREE(vp))
2412 				vfree(vp);
2413 		}
2414 		VI_UNLOCK(vp);
2415 	}
2416 	/*
2417 	 * Delete from old mount point vnode list.
2418 	 */
2419 	if (vp->v_mount != NULL)
2420 		insmntque(vp, (struct mount *)0);
2421 	cache_purge(vp);
2422 	VI_LOCK(vp);
2423 	if (VSHOULDFREE(vp))
2424 		vfree(vp);
2425 
2426 	/*
2427 	 * Done with purge, reset to the standard lock and
2428 	 * notify sleepers of the grim news.
2429 	 */
2430 	vp->v_vnlock = &vp->v_lock;
2431 	vp->v_op = dead_vnodeop_p;
2432 	if (vp->v_pollinfo != NULL)
2433 		vn_pollgone(vp);
2434 	vp->v_tag = "none";
2435 }
2436 
2437 /*
2438  * Eliminate all activity associated with the requested vnode
2439  * and with all vnodes aliased to the requested vnode.
2440  */
2441 int
2442 vop_revoke(ap)
2443 	struct vop_revoke_args /* {
2444 		struct vnode *a_vp;
2445 		int a_flags;
2446 	} */ *ap;
2447 {
2448 	struct vnode *vp, *vq;
2449 	dev_t dev;
2450 
2451 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2452 	vp = ap->a_vp;
2453 	KASSERT((vp->v_type == VCHR), ("vop_revoke: not VCHR"));
2454 
2455 	VI_LOCK(vp);
2456 	/*
2457 	 * If a vgone (or vclean) is already in progress,
2458 	 * wait until it is done and return.
2459 	 */
2460 	if (vp->v_iflag & VI_XLOCK) {
2461 		vp->v_iflag |= VI_XWANT;
2462 		msleep(vp, VI_MTX(vp), PINOD | PDROP,
2463 		    "vop_revokeall", 0);
2464 		return (0);
2465 	}
2466 	VI_UNLOCK(vp);
2467 	dev = vp->v_rdev;
2468 	for (;;) {
2469 		mtx_lock(&spechash_mtx);
2470 		vq = SLIST_FIRST(&dev->si_hlist);
2471 		mtx_unlock(&spechash_mtx);
2472 		if (!vq)
2473 			break;
2474 		vgone(vq);
2475 	}
2476 	return (0);
2477 }
2478 
2479 /*
2480  * Recycle an unused vnode to the front of the free list.
2481  * Release the passed interlock if the vnode will be recycled.
2482  */
2483 int
2484 vrecycle(vp, inter_lkp, td)
2485 	struct vnode *vp;
2486 	struct mtx *inter_lkp;
2487 	struct thread *td;
2488 {
2489 
2490 	VI_LOCK(vp);
2491 	if (vp->v_usecount == 0) {
2492 		if (inter_lkp) {
2493 			mtx_unlock(inter_lkp);
2494 		}
2495 		vgonel(vp, td);
2496 		return (1);
2497 	}
2498 	VI_UNLOCK(vp);
2499 	return (0);
2500 }
2501 
2502 /*
2503  * Eliminate all activity associated with a vnode
2504  * in preparation for reuse.
2505  */
2506 void
2507 vgone(vp)
2508 	register struct vnode *vp;
2509 {
2510 	struct thread *td = curthread;	/* XXX */
2511 
2512 	VI_LOCK(vp);
2513 	vgonel(vp, td);
2514 }
2515 
2516 /*
2517  * Disassociate a character device from the its underlying filesystem and
2518  * attach it to spec.  This is for use when the chr device is still active
2519  * and the filesystem is going away.
2520  */
2521 static void
2522 vgonechrl(struct vnode *vp, struct thread *td)
2523 {
2524 	ASSERT_VI_LOCKED(vp, "vgonechrl");
2525 	vx_lock(vp);
2526 	/*
2527 	 * This is a custom version of vclean() which does not tearm down
2528 	 * the bufs or vm objects held by this vnode.  This allows filesystems
2529 	 * to continue using devices which were discovered via another
2530 	 * filesystem that has been unmounted.
2531 	 */
2532 	if (vp->v_usecount != 0) {
2533 		v_incr_usecount(vp, 1);
2534 		/*
2535 		 * Ensure that no other activity can occur while the
2536 		 * underlying object is being cleaned out.
2537 		 */
2538 		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
2539 		/*
2540 		 * Any other processes trying to obtain this lock must first
2541 		 * wait for VXLOCK to clear, then call the new lock operation.
2542 		 */
2543 		VOP_UNLOCK(vp, 0, td);
2544 		vp->v_vnlock = &vp->v_lock;
2545 		vp->v_tag = "orphanchr";
2546 		vp->v_op = spec_vnodeop_p;
2547 		if (vp->v_mount != NULL)
2548 			insmntque(vp, (struct mount *)0);
2549 		cache_purge(vp);
2550 		vrele(vp);
2551 		VI_LOCK(vp);
2552 	} else
2553 		vclean(vp, 0, td);
2554 	vp->v_op = spec_vnodeop_p;
2555 	vx_unlock(vp);
2556 	VI_UNLOCK(vp);
2557 }
2558 
2559 /*
2560  * vgone, with the vp interlock held.
2561  */
2562 void
2563 vgonel(vp, td)
2564 	struct vnode *vp;
2565 	struct thread *td;
2566 {
2567 	/*
2568 	 * If a vgone (or vclean) is already in progress,
2569 	 * wait until it is done and return.
2570 	 */
2571 	ASSERT_VI_LOCKED(vp, "vgonel");
2572 	if (vp->v_iflag & VI_XLOCK) {
2573 		vp->v_iflag |= VI_XWANT;
2574 		msleep(vp, VI_MTX(vp), PINOD | PDROP, "vgone", 0);
2575 		return;
2576 	}
2577 	vx_lock(vp);
2578 
2579 	/*
2580 	 * Clean out the filesystem specific data.
2581 	 */
2582 	vclean(vp, DOCLOSE, td);
2583 	VI_UNLOCK(vp);
2584 
2585 	/*
2586 	 * If special device, remove it from special device alias list
2587 	 * if it is on one.
2588 	 */
2589 	VI_LOCK(vp);
2590 	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
2591 		mtx_lock(&spechash_mtx);
2592 		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
2593 		vp->v_rdev->si_usecount -= vp->v_usecount;
2594 		mtx_unlock(&spechash_mtx);
2595 		vp->v_rdev = NULL;
2596 	}
2597 
2598 	/*
2599 	 * If it is on the freelist and not already at the head,
2600 	 * move it to the head of the list. The test of the
2601 	 * VDOOMED flag and the reference count of zero is because
2602 	 * it will be removed from the free list by getnewvnode,
2603 	 * but will not have its reference count incremented until
2604 	 * after calling vgone. If the reference count were
2605 	 * incremented first, vgone would (incorrectly) try to
2606 	 * close the previous instance of the underlying object.
2607 	 */
2608 	if (vp->v_usecount == 0 && !(vp->v_iflag & VI_DOOMED)) {
2609 		mtx_lock(&vnode_free_list_mtx);
2610 		if (vp->v_iflag & VI_FREE) {
2611 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2612 		} else {
2613 			vp->v_iflag |= VI_FREE;
2614 			freevnodes++;
2615 		}
2616 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2617 		mtx_unlock(&vnode_free_list_mtx);
2618 	}
2619 
2620 	vp->v_type = VBAD;
2621 	vx_unlock(vp);
2622 	VI_UNLOCK(vp);
2623 }
2624 
2625 /*
2626  * Lookup a vnode by device number.
2627  */
2628 int
2629 vfinddev(dev, type, vpp)
2630 	dev_t dev;
2631 	enum vtype type;
2632 	struct vnode **vpp;
2633 {
2634 	struct vnode *vp;
2635 
2636 	mtx_lock(&spechash_mtx);
2637 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2638 		if (type == vp->v_type) {
2639 			*vpp = vp;
2640 			mtx_unlock(&spechash_mtx);
2641 			return (1);
2642 		}
2643 	}
2644 	mtx_unlock(&spechash_mtx);
2645 	return (0);
2646 }
2647 
2648 /*
2649  * Calculate the total number of references to a special device.
2650  */
2651 int
2652 vcount(vp)
2653 	struct vnode *vp;
2654 {
2655 	int count;
2656 
2657 	mtx_lock(&spechash_mtx);
2658 	count = vp->v_rdev->si_usecount;
2659 	mtx_unlock(&spechash_mtx);
2660 	return (count);
2661 }
2662 
2663 /*
2664  * Same as above, but using the dev_t as argument
2665  */
2666 int
2667 count_dev(dev)
2668 	dev_t dev;
2669 {
2670 	int count;
2671 
2672 	mtx_lock(&spechash_mtx);
2673 	count = dev->si_usecount;
2674 	mtx_unlock(&spechash_mtx);
2675 	return(count);
2676 }
2677 
2678 /*
2679  * Print out a description of a vnode.
2680  */
2681 static char *typename[] =
2682 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2683 
2684 void
2685 vprint(label, vp)
2686 	char *label;
2687 	struct vnode *vp;
2688 {
2689 	char buf[96];
2690 
2691 	if (label != NULL)
2692 		printf("%s: %p: ", label, (void *)vp);
2693 	else
2694 		printf("%p: ", (void *)vp);
2695 	printf("tag %s, type %s, usecount %d, writecount %d, refcount %d,",
2696 	    vp->v_tag, typename[vp->v_type], vp->v_usecount,
2697 	    vp->v_writecount, vp->v_holdcnt);
2698 	buf[0] = '\0';
2699 	if (vp->v_vflag & VV_ROOT)
2700 		strcat(buf, "|VV_ROOT");
2701 	if (vp->v_vflag & VV_TEXT)
2702 		strcat(buf, "|VV_TEXT");
2703 	if (vp->v_vflag & VV_SYSTEM)
2704 		strcat(buf, "|VV_SYSTEM");
2705 	if (vp->v_iflag & VI_XLOCK)
2706 		strcat(buf, "|VI_XLOCK");
2707 	if (vp->v_iflag & VI_XWANT)
2708 		strcat(buf, "|VI_XWANT");
2709 	if (vp->v_iflag & VI_BWAIT)
2710 		strcat(buf, "|VI_BWAIT");
2711 	if (vp->v_iflag & VI_DOOMED)
2712 		strcat(buf, "|VI_DOOMED");
2713 	if (vp->v_iflag & VI_FREE)
2714 		strcat(buf, "|VI_FREE");
2715 	if (vp->v_vflag & VV_OBJBUF)
2716 		strcat(buf, "|VV_OBJBUF");
2717 	if (buf[0] != '\0')
2718 		printf(" flags (%s),", &buf[1]);
2719 	lockmgr_printinfo(vp->v_vnlock);
2720 	printf("\n");
2721 	if (vp->v_data != NULL)
2722 		VOP_PRINT(vp);
2723 }
2724 
2725 #ifdef DDB
2726 #include <ddb/ddb.h>
2727 /*
2728  * List all of the locked vnodes in the system.
2729  * Called when debugging the kernel.
2730  */
2731 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2732 {
2733 	struct mount *mp, *nmp;
2734 	struct vnode *vp;
2735 
2736 	/*
2737 	 * Note: because this is DDB, we can't obey the locking semantics
2738 	 * for these structures, which means we could catch an inconsistent
2739 	 * state and dereference a nasty pointer.  Not much to be done
2740 	 * about that.
2741 	 */
2742 	printf("Locked vnodes\n");
2743 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2744 		nmp = TAILQ_NEXT(mp, mnt_list);
2745 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2746 			if (VOP_ISLOCKED(vp, NULL))
2747 				vprint(NULL, vp);
2748 		}
2749 		nmp = TAILQ_NEXT(mp, mnt_list);
2750 	}
2751 }
2752 #endif
2753 
2754 /*
2755  * Fill in a struct xvfsconf based on a struct vfsconf.
2756  */
2757 static void
2758 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2759 {
2760 
2761 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2762 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2763 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2764 	xvfsp->vfc_flags = vfsp->vfc_flags;
2765 	/*
2766 	 * These are unused in userland, we keep them
2767 	 * to not break binary compatibility.
2768 	 */
2769 	xvfsp->vfc_vfsops = NULL;
2770 	xvfsp->vfc_next = NULL;
2771 }
2772 
2773 static int
2774 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2775 {
2776 	struct vfsconf *vfsp;
2777 	struct xvfsconf *xvfsp;
2778 	int cnt, error, i;
2779 
2780 	cnt = 0;
2781 	for (vfsp = vfsconf; vfsp != NULL; vfsp = vfsp->vfc_next)
2782 		cnt++;
2783 	xvfsp = malloc(sizeof(struct xvfsconf) * cnt, M_TEMP, M_WAITOK);
2784 	/*
2785 	 * Handle the race that we will have here when struct vfsconf
2786 	 * will be locked down by using both cnt and checking vfc_next
2787 	 * against NULL to determine the end of the loop.  The race will
2788 	 * happen because we will have to unlock before calling malloc().
2789 	 * We are protected by Giant for now.
2790 	 */
2791 	i = 0;
2792 	for (vfsp = vfsconf; vfsp != NULL && i < cnt; vfsp = vfsp->vfc_next) {
2793 		vfsconf2x(vfsp, xvfsp + i);
2794 		i++;
2795 	}
2796 	error = SYSCTL_OUT(req, xvfsp, sizeof(struct xvfsconf) * i);
2797 	free(xvfsp, M_TEMP);
2798 	return (error);
2799 }
2800 
2801 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2802     "S,xvfsconf", "List of all configured filesystems");
2803 
2804 /*
2805  * Top level filesystem related information gathering.
2806  */
2807 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2808 
2809 static int
2810 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2811 {
2812 	int *name = (int *)arg1 - 1;	/* XXX */
2813 	u_int namelen = arg2 + 1;	/* XXX */
2814 	struct vfsconf *vfsp;
2815 	struct xvfsconf xvfsp;
2816 
2817 	printf("WARNING: userland calling deprecated sysctl, "
2818 	    "please rebuild world\n");
2819 
2820 #if 1 || defined(COMPAT_PRELITE2)
2821 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2822 	if (namelen == 1)
2823 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2824 #endif
2825 
2826 	switch (name[1]) {
2827 	case VFS_MAXTYPENUM:
2828 		if (namelen != 2)
2829 			return (ENOTDIR);
2830 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2831 	case VFS_CONF:
2832 		if (namelen != 3)
2833 			return (ENOTDIR);	/* overloaded */
2834 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2835 			if (vfsp->vfc_typenum == name[2])
2836 				break;
2837 		if (vfsp == NULL)
2838 			return (EOPNOTSUPP);
2839 		vfsconf2x(vfsp, &xvfsp);
2840 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2841 	}
2842 	return (EOPNOTSUPP);
2843 }
2844 
2845 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP, vfs_sysctl,
2846 	"Generic filesystem");
2847 
2848 #if 1 || defined(COMPAT_PRELITE2)
2849 
2850 static int
2851 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2852 {
2853 	int error;
2854 	struct vfsconf *vfsp;
2855 	struct ovfsconf ovfs;
2856 
2857 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2858 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2859 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2860 		ovfs.vfc_index = vfsp->vfc_typenum;
2861 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2862 		ovfs.vfc_flags = vfsp->vfc_flags;
2863 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2864 		if (error)
2865 			return error;
2866 	}
2867 	return 0;
2868 }
2869 
2870 #endif /* 1 || COMPAT_PRELITE2 */
2871 
2872 #define KINFO_VNODESLOP		10
2873 #ifdef notyet
2874 /*
2875  * Dump vnode list (via sysctl).
2876  */
2877 /* ARGSUSED */
2878 static int
2879 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2880 {
2881 	struct xvnode *xvn;
2882 	struct thread *td = req->td;
2883 	struct mount *mp;
2884 	struct vnode *vp;
2885 	int error, len, n;
2886 
2887 	/*
2888 	 * Stale numvnodes access is not fatal here.
2889 	 */
2890 	req->lock = 0;
2891 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2892 	if (!req->oldptr)
2893 		/* Make an estimate */
2894 		return (SYSCTL_OUT(req, 0, len));
2895 
2896 	sysctl_wire_old_buffer(req, 0);
2897 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2898 	n = 0;
2899 	mtx_lock(&mountlist_mtx);
2900 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2901 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2902 			continue;
2903 		MNT_ILOCK(mp);
2904 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2905 			if (n == len)
2906 				break;
2907 			vref(vp);
2908 			xvn[n].xv_size = sizeof *xvn;
2909 			xvn[n].xv_vnode = vp;
2910 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2911 			XV_COPY(usecount);
2912 			XV_COPY(writecount);
2913 			XV_COPY(holdcnt);
2914 			XV_COPY(id);
2915 			XV_COPY(mount);
2916 			XV_COPY(numoutput);
2917 			XV_COPY(type);
2918 #undef XV_COPY
2919 			xvn[n].xv_flag = vp->v_vflag;
2920 
2921 			switch (vp->v_type) {
2922 			case VREG:
2923 			case VDIR:
2924 			case VLNK:
2925 				xvn[n].xv_dev = vp->v_cachedfs;
2926 				xvn[n].xv_ino = vp->v_cachedid;
2927 				break;
2928 			case VBLK:
2929 			case VCHR:
2930 				if (vp->v_rdev == NULL) {
2931 					vrele(vp);
2932 					continue;
2933 				}
2934 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2935 				break;
2936 			case VSOCK:
2937 				xvn[n].xv_socket = vp->v_socket;
2938 				break;
2939 			case VFIFO:
2940 				xvn[n].xv_fifo = vp->v_fifoinfo;
2941 				break;
2942 			case VNON:
2943 			case VBAD:
2944 			default:
2945 				/* shouldn't happen? */
2946 				vrele(vp);
2947 				continue;
2948 			}
2949 			vrele(vp);
2950 			++n;
2951 		}
2952 		MNT_IUNLOCK(mp);
2953 		mtx_lock(&mountlist_mtx);
2954 		vfs_unbusy(mp, td);
2955 		if (n == len)
2956 			break;
2957 	}
2958 	mtx_unlock(&mountlist_mtx);
2959 
2960 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2961 	free(xvn, M_TEMP);
2962 	return (error);
2963 }
2964 
2965 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2966 	0, 0, sysctl_vnode, "S,xvnode", "");
2967 #endif
2968 
2969 /*
2970  * Check to see if a filesystem is mounted on a block device.
2971  */
2972 int
2973 vfs_mountedon(vp)
2974 	struct vnode *vp;
2975 {
2976 
2977 	if (vp->v_rdev->si_mountpoint != NULL)
2978 		return (EBUSY);
2979 	return (0);
2980 }
2981 
2982 /*
2983  * Unmount all filesystems. The list is traversed in reverse order
2984  * of mounting to avoid dependencies.
2985  */
2986 void
2987 vfs_unmountall()
2988 {
2989 	struct mount *mp;
2990 	struct thread *td;
2991 	int error;
2992 
2993 	if (curthread != NULL)
2994 		td = curthread;
2995 	else
2996 		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
2997 	/*
2998 	 * Since this only runs when rebooting, it is not interlocked.
2999 	 */
3000 	while(!TAILQ_EMPTY(&mountlist)) {
3001 		mp = TAILQ_LAST(&mountlist, mntlist);
3002 		error = dounmount(mp, MNT_FORCE, td);
3003 		if (error) {
3004 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3005 			printf("unmount of %s failed (",
3006 			    mp->mnt_stat.f_mntonname);
3007 			if (error == EBUSY)
3008 				printf("BUSY)\n");
3009 			else
3010 				printf("%d)\n", error);
3011 		} else {
3012 			/* The unmount has removed mp from the mountlist */
3013 		}
3014 	}
3015 }
3016 
3017 /*
3018  * perform msync on all vnodes under a mount point
3019  * the mount point must be locked.
3020  */
3021 void
3022 vfs_msync(struct mount *mp, int flags)
3023 {
3024 	struct vnode *vp, *nvp;
3025 	struct vm_object *obj;
3026 	int tries;
3027 
3028 	GIANT_REQUIRED;
3029 
3030 	tries = 5;
3031 	MNT_ILOCK(mp);
3032 loop:
3033 	for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
3034 		if (vp->v_mount != mp) {
3035 			if (--tries > 0)
3036 				goto loop;
3037 			break;
3038 		}
3039 		nvp = TAILQ_NEXT(vp, v_nmntvnodes);
3040 
3041 		VI_LOCK(vp);
3042 		if (vp->v_iflag & VI_XLOCK) {
3043 			VI_UNLOCK(vp);
3044 			continue;
3045 		}
3046 
3047 		if ((vp->v_iflag & VI_OBJDIRTY) &&
3048 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
3049 			MNT_IUNLOCK(mp);
3050 			if (!vget(vp,
3051 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3052 			    curthread)) {
3053 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3054 					vput(vp);
3055 					MNT_ILOCK(mp);
3056 					continue;
3057 				}
3058 
3059 				if (VOP_GETVOBJECT(vp, &obj) == 0) {
3060 					VM_OBJECT_LOCK(obj);
3061 					vm_object_page_clean(obj, 0, 0,
3062 					    flags == MNT_WAIT ?
3063 					    OBJPC_SYNC : OBJPC_NOSYNC);
3064 					VM_OBJECT_UNLOCK(obj);
3065 				}
3066 				vput(vp);
3067 			}
3068 			MNT_ILOCK(mp);
3069 			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
3070 				if (--tries > 0)
3071 					goto loop;
3072 				break;
3073 			}
3074 		} else
3075 			VI_UNLOCK(vp);
3076 	}
3077 	MNT_IUNLOCK(mp);
3078 }
3079 
3080 /*
3081  * Create the VM object needed for VMIO and mmap support.  This
3082  * is done for all VREG files in the system.  Some filesystems might
3083  * afford the additional metadata buffering capability of the
3084  * VMIO code by making the device node be VMIO mode also.
3085  *
3086  * vp must be locked when vfs_object_create is called.
3087  */
3088 int
3089 vfs_object_create(vp, td, cred)
3090 	struct vnode *vp;
3091 	struct thread *td;
3092 	struct ucred *cred;
3093 {
3094 
3095 	GIANT_REQUIRED;
3096 	return (VOP_CREATEVOBJECT(vp, cred, td));
3097 }
3098 
3099 /*
3100  * Mark a vnode as free, putting it up for recycling.
3101  */
3102 void
3103 vfree(vp)
3104 	struct vnode *vp;
3105 {
3106 
3107 	ASSERT_VI_LOCKED(vp, "vfree");
3108 	mtx_lock(&vnode_free_list_mtx);
3109 	KASSERT((vp->v_iflag & VI_FREE) == 0, ("vnode already free"));
3110 	if (vp->v_iflag & VI_AGE) {
3111 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3112 	} else {
3113 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3114 	}
3115 	freevnodes++;
3116 	mtx_unlock(&vnode_free_list_mtx);
3117 	vp->v_iflag &= ~VI_AGE;
3118 	vp->v_iflag |= VI_FREE;
3119 }
3120 
3121 /*
3122  * Opposite of vfree() - mark a vnode as in use.
3123  */
3124 void
3125 vbusy(vp)
3126 	struct vnode *vp;
3127 {
3128 
3129 	ASSERT_VI_LOCKED(vp, "vbusy");
3130 	KASSERT((vp->v_iflag & VI_FREE) != 0, ("vnode not free"));
3131 
3132 	mtx_lock(&vnode_free_list_mtx);
3133 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3134 	freevnodes--;
3135 	mtx_unlock(&vnode_free_list_mtx);
3136 
3137 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3138 }
3139 
3140 /*
3141  * Initalize per-vnode helper structure to hold poll-related state.
3142  */
3143 void
3144 v_addpollinfo(struct vnode *vp)
3145 {
3146 
3147 	vp->v_pollinfo = uma_zalloc(vnodepoll_zone, M_WAITOK);
3148 	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3149 }
3150 
3151 /*
3152  * Record a process's interest in events which might happen to
3153  * a vnode.  Because poll uses the historic select-style interface
3154  * internally, this routine serves as both the ``check for any
3155  * pending events'' and the ``record my interest in future events''
3156  * functions.  (These are done together, while the lock is held,
3157  * to avoid race conditions.)
3158  */
3159 int
3160 vn_pollrecord(vp, td, events)
3161 	struct vnode *vp;
3162 	struct thread *td;
3163 	short events;
3164 {
3165 
3166 	if (vp->v_pollinfo == NULL)
3167 		v_addpollinfo(vp);
3168 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3169 	if (vp->v_pollinfo->vpi_revents & events) {
3170 		/*
3171 		 * This leaves events we are not interested
3172 		 * in available for the other process which
3173 		 * which presumably had requested them
3174 		 * (otherwise they would never have been
3175 		 * recorded).
3176 		 */
3177 		events &= vp->v_pollinfo->vpi_revents;
3178 		vp->v_pollinfo->vpi_revents &= ~events;
3179 
3180 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3181 		return events;
3182 	}
3183 	vp->v_pollinfo->vpi_events |= events;
3184 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3185 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3186 	return 0;
3187 }
3188 
3189 /*
3190  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3191  * it is possible for us to miss an event due to race conditions, but
3192  * that condition is expected to be rare, so for the moment it is the
3193  * preferred interface.
3194  */
3195 void
3196 vn_pollevent(vp, events)
3197 	struct vnode *vp;
3198 	short events;
3199 {
3200 
3201 	if (vp->v_pollinfo == NULL)
3202 		v_addpollinfo(vp);
3203 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3204 	if (vp->v_pollinfo->vpi_events & events) {
3205 		/*
3206 		 * We clear vpi_events so that we don't
3207 		 * call selwakeup() twice if two events are
3208 		 * posted before the polling process(es) is
3209 		 * awakened.  This also ensures that we take at
3210 		 * most one selwakeup() if the polling process
3211 		 * is no longer interested.  However, it does
3212 		 * mean that only one event can be noticed at
3213 		 * a time.  (Perhaps we should only clear those
3214 		 * event bits which we note?) XXX
3215 		 */
3216 		vp->v_pollinfo->vpi_events = 0;	/* &= ~events ??? */
3217 		vp->v_pollinfo->vpi_revents |= events;
3218 		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3219 	}
3220 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3221 }
3222 
3223 /*
3224  * Wake up anyone polling on vp because it is being revoked.
3225  * This depends on dead_poll() returning POLLHUP for correct
3226  * behavior.
3227  */
3228 void
3229 vn_pollgone(vp)
3230 	struct vnode *vp;
3231 {
3232 
3233 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3234 	VN_KNOTE(vp, NOTE_REVOKE);
3235 	if (vp->v_pollinfo->vpi_events) {
3236 		vp->v_pollinfo->vpi_events = 0;
3237 		selwakeuppri(&vp->v_pollinfo->vpi_selinfo, PRIBIO);
3238 	}
3239 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3240 }
3241 
3242 
3243 
3244 /*
3245  * Routine to create and manage a filesystem syncer vnode.
3246  */
3247 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3248 static int	sync_fsync(struct  vop_fsync_args *);
3249 static int	sync_inactive(struct  vop_inactive_args *);
3250 static int	sync_reclaim(struct  vop_reclaim_args *);
3251 
3252 static vop_t **sync_vnodeop_p;
3253 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3254 	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
3255 	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
3256 	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
3257 	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
3258 	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
3259 	{ &vop_lock_desc,	(vop_t *) vop_stdlock },	/* lock */
3260 	{ &vop_unlock_desc,	(vop_t *) vop_stdunlock },	/* unlock */
3261 	{ &vop_islocked_desc,	(vop_t *) vop_stdislocked },	/* islocked */
3262 	{ NULL, NULL }
3263 };
3264 static struct vnodeopv_desc sync_vnodeop_opv_desc =
3265 	{ &sync_vnodeop_p, sync_vnodeop_entries };
3266 
3267 VNODEOP_SET(sync_vnodeop_opv_desc);
3268 
3269 /*
3270  * Create a new filesystem syncer vnode for the specified mount point.
3271  */
3272 int
3273 vfs_allocate_syncvnode(mp)
3274 	struct mount *mp;
3275 {
3276 	struct vnode *vp;
3277 	static long start, incr, next;
3278 	int error;
3279 
3280 	/* Allocate a new vnode */
3281 	if ((error = getnewvnode("syncer", mp, sync_vnodeop_p, &vp)) != 0) {
3282 		mp->mnt_syncer = NULL;
3283 		return (error);
3284 	}
3285 	vp->v_type = VNON;
3286 	/*
3287 	 * Place the vnode onto the syncer worklist. We attempt to
3288 	 * scatter them about on the list so that they will go off
3289 	 * at evenly distributed times even if all the filesystems
3290 	 * are mounted at once.
3291 	 */
3292 	next += incr;
3293 	if (next == 0 || next > syncer_maxdelay) {
3294 		start /= 2;
3295 		incr /= 2;
3296 		if (start == 0) {
3297 			start = syncer_maxdelay / 2;
3298 			incr = syncer_maxdelay;
3299 		}
3300 		next = start;
3301 	}
3302 	VI_LOCK(vp);
3303 	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3304 	VI_UNLOCK(vp);
3305 	mp->mnt_syncer = vp;
3306 	return (0);
3307 }
3308 
3309 /*
3310  * Do a lazy sync of the filesystem.
3311  */
3312 static int
3313 sync_fsync(ap)
3314 	struct vop_fsync_args /* {
3315 		struct vnode *a_vp;
3316 		struct ucred *a_cred;
3317 		int a_waitfor;
3318 		struct thread *a_td;
3319 	} */ *ap;
3320 {
3321 	struct vnode *syncvp = ap->a_vp;
3322 	struct mount *mp = syncvp->v_mount;
3323 	struct thread *td = ap->a_td;
3324 	int error, asyncflag;
3325 
3326 	/*
3327 	 * We only need to do something if this is a lazy evaluation.
3328 	 */
3329 	if (ap->a_waitfor != MNT_LAZY)
3330 		return (0);
3331 
3332 	/*
3333 	 * Move ourselves to the back of the sync list.
3334 	 */
3335 	VI_LOCK(syncvp);
3336 	vn_syncer_add_to_worklist(syncvp, syncdelay);
3337 	VI_UNLOCK(syncvp);
3338 
3339 	/*
3340 	 * Walk the list of vnodes pushing all that are dirty and
3341 	 * not already on the sync list.
3342 	 */
3343 	mtx_lock(&mountlist_mtx);
3344 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3345 		mtx_unlock(&mountlist_mtx);
3346 		return (0);
3347 	}
3348 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3349 		vfs_unbusy(mp, td);
3350 		return (0);
3351 	}
3352 	asyncflag = mp->mnt_flag & MNT_ASYNC;
3353 	mp->mnt_flag &= ~MNT_ASYNC;
3354 	vfs_msync(mp, MNT_NOWAIT);
3355 	error = VFS_SYNC(mp, MNT_LAZY, ap->a_cred, td);
3356 	if (asyncflag)
3357 		mp->mnt_flag |= MNT_ASYNC;
3358 	vn_finished_write(mp);
3359 	vfs_unbusy(mp, td);
3360 	return (error);
3361 }
3362 
3363 /*
3364  * The syncer vnode is no referenced.
3365  */
3366 static int
3367 sync_inactive(ap)
3368 	struct vop_inactive_args /* {
3369 		struct vnode *a_vp;
3370 		struct thread *a_td;
3371 	} */ *ap;
3372 {
3373 
3374 	VOP_UNLOCK(ap->a_vp, 0, ap->a_td);
3375 	vgone(ap->a_vp);
3376 	return (0);
3377 }
3378 
3379 /*
3380  * The syncer vnode is no longer needed and is being decommissioned.
3381  *
3382  * Modifications to the worklist must be protected by sync_mtx.
3383  */
3384 static int
3385 sync_reclaim(ap)
3386 	struct vop_reclaim_args /* {
3387 		struct vnode *a_vp;
3388 	} */ *ap;
3389 {
3390 	struct vnode *vp = ap->a_vp;
3391 
3392 	VI_LOCK(vp);
3393 	vp->v_mount->mnt_syncer = NULL;
3394 	if (vp->v_iflag & VI_ONWORKLST) {
3395 		mtx_lock(&sync_mtx);
3396 		LIST_REMOVE(vp, v_synclist);
3397 		mtx_unlock(&sync_mtx);
3398 		vp->v_iflag &= ~VI_ONWORKLST;
3399 	}
3400 	VI_UNLOCK(vp);
3401 
3402 	return (0);
3403 }
3404 
3405 /*
3406  * extract the dev_t from a VCHR
3407  */
3408 dev_t
3409 vn_todev(vp)
3410 	struct vnode *vp;
3411 {
3412 
3413 	if (vp->v_type != VCHR)
3414 		return (NODEV);
3415 	return (vp->v_rdev);
3416 }
3417 
3418 /*
3419  * Check if vnode represents a disk device
3420  */
3421 int
3422 vn_isdisk(vp, errp)
3423 	struct vnode *vp;
3424 	int *errp;
3425 {
3426 	int error;
3427 
3428 	error = 0;
3429 	if (vp->v_type != VCHR)
3430 		error = ENOTBLK;
3431 	else if (vp->v_rdev == NULL)
3432 		error = ENXIO;
3433 	else if (!(devsw(vp->v_rdev)->d_flags & D_DISK))
3434 		error = ENOTBLK;
3435 	if (errp != NULL)
3436 		*errp = error;
3437 	return (error == 0);
3438 }
3439 
3440 /*
3441  * Free data allocated by namei(); see namei(9) for details.
3442  */
3443 void
3444 NDFREE(ndp, flags)
3445      struct nameidata *ndp;
3446      const u_int flags;
3447 {
3448 
3449 	if (!(flags & NDF_NO_FREE_PNBUF) &&
3450 	    (ndp->ni_cnd.cn_flags & HASBUF)) {
3451 		uma_zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3452 		ndp->ni_cnd.cn_flags &= ~HASBUF;
3453 	}
3454 	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3455 	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3456 	    ndp->ni_dvp != ndp->ni_vp)
3457 		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_thread);
3458 	if (!(flags & NDF_NO_DVP_RELE) &&
3459 	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3460 		vrele(ndp->ni_dvp);
3461 		ndp->ni_dvp = NULL;
3462 	}
3463 	if (!(flags & NDF_NO_VP_UNLOCK) &&
3464 	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3465 		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_thread);
3466 	if (!(flags & NDF_NO_VP_RELE) &&
3467 	    ndp->ni_vp) {
3468 		vrele(ndp->ni_vp);
3469 		ndp->ni_vp = NULL;
3470 	}
3471 	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3472 	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3473 		vrele(ndp->ni_startdir);
3474 		ndp->ni_startdir = NULL;
3475 	}
3476 }
3477 
3478 /*
3479  * Common filesystem object access control check routine.  Accepts a
3480  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3481  * and optional call-by-reference privused argument allowing vaccess()
3482  * to indicate to the caller whether privilege was used to satisfy the
3483  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3484  */
3485 int
3486 vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3487 	enum vtype type;
3488 	mode_t file_mode;
3489 	uid_t file_uid;
3490 	gid_t file_gid;
3491 	mode_t acc_mode;
3492 	struct ucred *cred;
3493 	int *privused;
3494 {
3495 	mode_t dac_granted;
3496 #ifdef CAPABILITIES
3497 	mode_t cap_granted;
3498 #endif
3499 
3500 	/*
3501 	 * Look for a normal, non-privileged way to access the file/directory
3502 	 * as requested.  If it exists, go with that.
3503 	 */
3504 
3505 	if (privused != NULL)
3506 		*privused = 0;
3507 
3508 	dac_granted = 0;
3509 
3510 	/* Check the owner. */
3511 	if (cred->cr_uid == file_uid) {
3512 		dac_granted |= VADMIN;
3513 		if (file_mode & S_IXUSR)
3514 			dac_granted |= VEXEC;
3515 		if (file_mode & S_IRUSR)
3516 			dac_granted |= VREAD;
3517 		if (file_mode & S_IWUSR)
3518 			dac_granted |= (VWRITE | VAPPEND);
3519 
3520 		if ((acc_mode & dac_granted) == acc_mode)
3521 			return (0);
3522 
3523 		goto privcheck;
3524 	}
3525 
3526 	/* Otherwise, check the groups (first match) */
3527 	if (groupmember(file_gid, cred)) {
3528 		if (file_mode & S_IXGRP)
3529 			dac_granted |= VEXEC;
3530 		if (file_mode & S_IRGRP)
3531 			dac_granted |= VREAD;
3532 		if (file_mode & S_IWGRP)
3533 			dac_granted |= (VWRITE | VAPPEND);
3534 
3535 		if ((acc_mode & dac_granted) == acc_mode)
3536 			return (0);
3537 
3538 		goto privcheck;
3539 	}
3540 
3541 	/* Otherwise, check everyone else. */
3542 	if (file_mode & S_IXOTH)
3543 		dac_granted |= VEXEC;
3544 	if (file_mode & S_IROTH)
3545 		dac_granted |= VREAD;
3546 	if (file_mode & S_IWOTH)
3547 		dac_granted |= (VWRITE | VAPPEND);
3548 	if ((acc_mode & dac_granted) == acc_mode)
3549 		return (0);
3550 
3551 privcheck:
3552 	if (!suser_cred(cred, PRISON_ROOT)) {
3553 		/* XXX audit: privilege used */
3554 		if (privused != NULL)
3555 			*privused = 1;
3556 		return (0);
3557 	}
3558 
3559 #ifdef CAPABILITIES
3560 	/*
3561 	 * Build a capability mask to determine if the set of capabilities
3562 	 * satisfies the requirements when combined with the granted mask
3563 	 * from above.
3564 	 * For each capability, if the capability is required, bitwise
3565 	 * or the request type onto the cap_granted mask.
3566 	 */
3567 	cap_granted = 0;
3568 
3569 	if (type == VDIR) {
3570 		/*
3571 		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3572 		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3573 		 */
3574 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3575 		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3576 			cap_granted |= VEXEC;
3577 	} else {
3578 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3579 		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3580 			cap_granted |= VEXEC;
3581 	}
3582 
3583 	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3584 	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3585 		cap_granted |= VREAD;
3586 
3587 	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3588 	    !cap_check(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3589 		cap_granted |= (VWRITE | VAPPEND);
3590 
3591 	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3592 	    !cap_check(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3593 		cap_granted |= VADMIN;
3594 
3595 	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3596 		/* XXX audit: privilege used */
3597 		if (privused != NULL)
3598 			*privused = 1;
3599 		return (0);
3600 	}
3601 #endif
3602 
3603 	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3604 }
3605 
3606 /*
3607  * Credential check based on process requesting service, and per-attribute
3608  * permissions.
3609  */
3610 int
3611 extattr_check_cred(struct vnode *vp, int attrnamespace,
3612     struct ucred *cred, struct thread *td, int access)
3613 {
3614 
3615 	/*
3616 	 * Kernel-invoked always succeeds.
3617 	 */
3618 	if (cred == NOCRED)
3619 		return (0);
3620 
3621 	/*
3622 	 * Do not allow privileged processes in jail to directly
3623 	 * manipulate system attributes.
3624 	 *
3625 	 * XXX What capability should apply here?
3626 	 * Probably CAP_SYS_SETFFLAG.
3627 	 */
3628 	switch (attrnamespace) {
3629 	case EXTATTR_NAMESPACE_SYSTEM:
3630 		/* Potentially should be: return (EPERM); */
3631 		return (suser_cred(cred, 0));
3632 	case EXTATTR_NAMESPACE_USER:
3633 		return (VOP_ACCESS(vp, access, cred, td));
3634 	default:
3635 		return (EPERM);
3636 	}
3637 }
3638 
3639 #ifdef DEBUG_VFS_LOCKS
3640 /*
3641  * This only exists to supress warnings from unlocked specfs accesses.  It is
3642  * no longer ok to have an unlocked VFS.
3643  */
3644 #define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3645 
3646 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3647 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3648 int vfs_badlock_print = 1;	/* Print lock violations. */
3649 
3650 static void
3651 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3652 {
3653 
3654 	if (vfs_badlock_print)
3655 		printf("%s: %p %s\n", str, (void *)vp, msg);
3656 	if (vfs_badlock_ddb)
3657 		Debugger("lock violation");
3658 }
3659 
3660 void
3661 assert_vi_locked(struct vnode *vp, const char *str)
3662 {
3663 
3664 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3665 		vfs_badlock("interlock is not locked but should be", str, vp);
3666 }
3667 
3668 void
3669 assert_vi_unlocked(struct vnode *vp, const char *str)
3670 {
3671 
3672 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3673 		vfs_badlock("interlock is locked but should not be", str, vp);
3674 }
3675 
3676 void
3677 assert_vop_locked(struct vnode *vp, const char *str)
3678 {
3679 
3680 	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3681 		vfs_badlock("is not locked but should be", str, vp);
3682 }
3683 
3684 void
3685 assert_vop_unlocked(struct vnode *vp, const char *str)
3686 {
3687 
3688 	if (vp && !IGNORE_LOCK(vp) &&
3689 	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3690 		vfs_badlock("is locked but should not be", str, vp);
3691 }
3692 
3693 #if 0
3694 void
3695 assert_vop_elocked(struct vnode *vp, const char *str)
3696 {
3697 
3698 	if (vp && !IGNORE_LOCK(vp) &&
3699 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3700 		vfs_badlock("is not exclusive locked but should be", str, vp);
3701 }
3702 
3703 void
3704 assert_vop_elocked_other(struct vnode *vp, const char *str)
3705 {
3706 
3707 	if (vp && !IGNORE_LOCK(vp) &&
3708 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3709 		vfs_badlock("is not exclusive locked by another thread",
3710 		    str, vp);
3711 }
3712 
3713 void
3714 assert_vop_slocked(struct vnode *vp, const char *str)
3715 {
3716 
3717 	if (vp && !IGNORE_LOCK(vp) &&
3718 	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3719 		vfs_badlock("is not locked shared but should be", str, vp);
3720 }
3721 #endif /* 0 */
3722 
3723 void
3724 vop_rename_pre(void *ap)
3725 {
3726 	struct vop_rename_args *a = ap;
3727 
3728 	if (a->a_tvp)
3729 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3730 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3731 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3732 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3733 
3734 	/* Check the source (from). */
3735 	if (a->a_tdvp != a->a_fdvp)
3736 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3737 	if (a->a_tvp != a->a_fvp)
3738 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");
3739 
3740 	/* Check the target. */
3741 	if (a->a_tvp)
3742 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3743 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3744 }
3745 
3746 void
3747 vop_strategy_pre(void *ap)
3748 {
3749 	struct vop_strategy_args *a;
3750 	struct buf *bp;
3751 
3752 	a = ap;
3753 	bp = a->a_bp;
3754 
3755 	/*
3756 	 * Cluster ops lock their component buffers but not the IO container.
3757 	 */
3758 	if ((bp->b_flags & B_CLUSTER) != 0)
3759 		return;
3760 
3761 	if (BUF_REFCNT(bp) < 1) {
3762 		if (vfs_badlock_print)
3763 			printf(
3764 			    "VOP_STRATEGY: bp is not locked but should be\n");
3765 		if (vfs_badlock_ddb)
3766 			Debugger("lock violation");
3767 	}
3768 }
3769 
3770 void
3771 vop_lookup_pre(void *ap)
3772 {
3773 	struct vop_lookup_args *a;
3774 	struct vnode *dvp;
3775 
3776 	a = ap;
3777 	dvp = a->a_dvp;
3778 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3779 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3780 }
3781 
3782 void
3783 vop_lookup_post(void *ap, int rc)
3784 {
3785 	struct vop_lookup_args *a;
3786 	struct componentname *cnp;
3787 	struct vnode *dvp;
3788 	struct vnode *vp;
3789 	int flags;
3790 
3791 	a = ap;
3792 	dvp = a->a_dvp;
3793 	cnp = a->a_cnp;
3794 	vp = *(a->a_vpp);
3795 	flags = cnp->cn_flags;
3796 
3797 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3798 
3799 	/*
3800 	 * If this is the last path component for this lookup and LOCKPARENT
3801 	 * is set, OR if there is an error the directory has to be locked.
3802 	 */
3803 	if ((flags & LOCKPARENT) && (flags & ISLASTCN))
3804 		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (LOCKPARENT)");
3805 	else if (rc != 0)
3806 		ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP (error)");
3807 	else if (dvp != vp)
3808 		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (dvp)");
3809 	if (flags & PDIRUNLOCK)
3810 		ASSERT_VOP_UNLOCKED(dvp, "VOP_LOOKUP (PDIRUNLOCK)");
3811 }
3812 
3813 void
3814 vop_lock_pre(void *ap)
3815 {
3816 	struct vop_lock_args *a = ap;
3817 
3818 	if ((a->a_flags & LK_INTERLOCK) == 0)
3819 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3820 	else
3821 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3822 }
3823 
3824 void
3825 vop_lock_post(void *ap, int rc)
3826 {
3827 	struct vop_lock_args *a = ap;
3828 
3829 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3830 	if (rc == 0)
3831 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3832 }
3833 
3834 void
3835 vop_unlock_pre(void *ap)
3836 {
3837 	struct vop_unlock_args *a = ap;
3838 
3839 	if (a->a_flags & LK_INTERLOCK)
3840 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3841 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3842 }
3843 
3844 void
3845 vop_unlock_post(void *ap, int rc)
3846 {
3847 	struct vop_unlock_args *a = ap;
3848 
3849 	if (a->a_flags & LK_INTERLOCK)
3850 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3851 }
3852 #endif /* DEBUG_VFS_LOCKS */
3853