xref: /freebsd/sys/kern/vfs_subr.c (revision 52267f7411adcc76ede961420e08c0e42f42d415)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_mac.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bio.h>
50 #include <sys/buf.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/jail.h>
60 #include <sys/kdb.h>
61 #include <sys/kernel.h>
62 #include <sys/kthread.h>
63 #include <sys/lockf.h>
64 #include <sys/malloc.h>
65 #include <sys/mount.h>
66 #include <sys/namei.h>
67 #include <sys/priv.h>
68 #include <sys/reboot.h>
69 #include <sys/sleepqueue.h>
70 #include <sys/stat.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 
76 #include <machine/stdarg.h>
77 
78 #include <security/mac/mac_framework.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_kern.h>
87 #include <vm/uma.h>
88 
89 #ifdef DDB
90 #include <ddb/ddb.h>
91 #endif
92 
93 #define	WI_MPSAFEQ	0
94 #define	WI_GIANTQ	1
95 
96 static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
97 
98 static void	delmntque(struct vnode *vp);
99 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
100 		    int slpflag, int slptimeo);
101 static void	syncer_shutdown(void *arg, int howto);
102 static int	vtryrecycle(struct vnode *vp);
103 static void	vbusy(struct vnode *vp);
104 static void	vinactive(struct vnode *, struct thread *);
105 static void	v_incr_usecount(struct vnode *);
106 static void	v_decr_usecount(struct vnode *);
107 static void	v_decr_useonly(struct vnode *);
108 static void	v_upgrade_usecount(struct vnode *);
109 static void	vfree(struct vnode *);
110 static void	vnlru_free(int);
111 static void	vgonel(struct vnode *);
112 static void	vfs_knllock(void *arg);
113 static void	vfs_knlunlock(void *arg);
114 static int	vfs_knllocked(void *arg);
115 static void	destroy_vpollinfo(struct vpollinfo *vi);
116 
117 /*
118  * Enable Giant pushdown based on whether or not the vm is mpsafe in this
119  * build.  Without mpsafevm the buffer cache can not run Giant free.
120  */
121 int mpsafe_vfs = 1;
122 TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs);
123 SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0,
124     "MPSAFE VFS");
125 
126 /*
127  * Number of vnodes in existence.  Increased whenever getnewvnode()
128  * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
129  * vnode.
130  */
131 static unsigned long	numvnodes;
132 
133 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
134 
135 /*
136  * Conversion tables for conversion from vnode types to inode formats
137  * and back.
138  */
139 enum vtype iftovt_tab[16] = {
140 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
141 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
142 };
143 int vttoif_tab[10] = {
144 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
145 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
146 };
147 
148 /*
149  * List of vnodes that are ready for recycling.
150  */
151 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
152 
153 /*
154  * Free vnode target.  Free vnodes may simply be files which have been stat'd
155  * but not read.  This is somewhat common, and a small cache of such files
156  * should be kept to avoid recreation costs.
157  */
158 static u_long wantfreevnodes;
159 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
160 /* Number of vnodes in the free list. */
161 static u_long freevnodes;
162 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
163 
164 /*
165  * Various variables used for debugging the new implementation of
166  * reassignbuf().
167  * XXX these are probably of (very) limited utility now.
168  */
169 static int reassignbufcalls;
170 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
171 
172 /*
173  * Cache for the mount type id assigned to NFS.  This is used for
174  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
175  */
176 int	nfs_mount_type = -1;
177 
178 /* To keep more than one thread at a time from running vfs_getnewfsid */
179 static struct mtx mntid_mtx;
180 
181 /*
182  * Lock for any access to the following:
183  *	vnode_free_list
184  *	numvnodes
185  *	freevnodes
186  */
187 static struct mtx vnode_free_list_mtx;
188 
189 /* Publicly exported FS */
190 struct nfs_public nfs_pub;
191 
192 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
193 static uma_zone_t vnode_zone;
194 static uma_zone_t vnodepoll_zone;
195 
196 /* Set to 1 to print out reclaim of active vnodes */
197 int	prtactive;
198 
199 /*
200  * The workitem queue.
201  *
202  * It is useful to delay writes of file data and filesystem metadata
203  * for tens of seconds so that quickly created and deleted files need
204  * not waste disk bandwidth being created and removed. To realize this,
205  * we append vnodes to a "workitem" queue. When running with a soft
206  * updates implementation, most pending metadata dependencies should
207  * not wait for more than a few seconds. Thus, mounted on block devices
208  * are delayed only about a half the time that file data is delayed.
209  * Similarly, directory updates are more critical, so are only delayed
210  * about a third the time that file data is delayed. Thus, there are
211  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
212  * one each second (driven off the filesystem syncer process). The
213  * syncer_delayno variable indicates the next queue that is to be processed.
214  * Items that need to be processed soon are placed in this queue:
215  *
216  *	syncer_workitem_pending[syncer_delayno]
217  *
218  * A delay of fifteen seconds is done by placing the request fifteen
219  * entries later in the queue:
220  *
221  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
222  *
223  */
224 static int syncer_delayno;
225 static long syncer_mask;
226 LIST_HEAD(synclist, bufobj);
227 static struct synclist *syncer_workitem_pending[2];
228 /*
229  * The sync_mtx protects:
230  *	bo->bo_synclist
231  *	sync_vnode_count
232  *	syncer_delayno
233  *	syncer_state
234  *	syncer_workitem_pending
235  *	syncer_worklist_len
236  *	rushjob
237  */
238 static struct mtx sync_mtx;
239 static struct cv sync_wakeup;
240 
241 #define SYNCER_MAXDELAY		32
242 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
243 static int syncdelay = 30;		/* max time to delay syncing data */
244 static int filedelay = 30;		/* time to delay syncing files */
245 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
246 static int dirdelay = 29;		/* time to delay syncing directories */
247 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
248 static int metadelay = 28;		/* time to delay syncing metadata */
249 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
250 static int rushjob;		/* number of slots to run ASAP */
251 static int stat_rush_requests;	/* number of times I/O speeded up */
252 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
253 
254 /*
255  * When shutting down the syncer, run it at four times normal speed.
256  */
257 #define SYNCER_SHUTDOWN_SPEEDUP		4
258 static int sync_vnode_count;
259 static int syncer_worklist_len;
260 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
261     syncer_state;
262 
263 /*
264  * Number of vnodes we want to exist at any one time.  This is mostly used
265  * to size hash tables in vnode-related code.  It is normally not used in
266  * getnewvnode(), as wantfreevnodes is normally nonzero.)
267  *
268  * XXX desiredvnodes is historical cruft and should not exist.
269  */
270 int desiredvnodes;
271 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
272     &desiredvnodes, 0, "Maximum number of vnodes");
273 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
274     &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
275 static int vnlru_nowhere;
276 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
277     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
278 
279 /*
280  * Macros to control when a vnode is freed and recycled.  All require
281  * the vnode interlock.
282  */
283 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
284 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
285 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
286 
287 
288 /*
289  * Initialize the vnode management data structures.
290  */
291 #ifndef	MAXVNODES_MAX
292 #define	MAXVNODES_MAX	100000
293 #endif
294 static void
295 vntblinit(void *dummy __unused)
296 {
297 
298 	/*
299 	 * Desiredvnodes is a function of the physical memory size and
300 	 * the kernel's heap size.  Specifically, desiredvnodes scales
301 	 * in proportion to the physical memory size until two fifths
302 	 * of the kernel's heap size is consumed by vnodes and vm
303 	 * objects.
304 	 */
305 	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
306 	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
307 	if (desiredvnodes > MAXVNODES_MAX) {
308 		if (bootverbose)
309 			printf("Reducing kern.maxvnodes %d -> %d\n",
310 			    desiredvnodes, MAXVNODES_MAX);
311 		desiredvnodes = MAXVNODES_MAX;
312 	}
313 	wantfreevnodes = desiredvnodes / 4;
314 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
315 	TAILQ_INIT(&vnode_free_list);
316 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
317 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
318 	    NULL, NULL, UMA_ALIGN_PTR, 0);
319 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
320 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
321 	/*
322 	 * Initialize the filesystem syncer.
323 	 */
324 	syncer_workitem_pending[WI_MPSAFEQ] = hashinit(syncer_maxdelay, M_VNODE,
325 	    &syncer_mask);
326 	syncer_workitem_pending[WI_GIANTQ] = hashinit(syncer_maxdelay, M_VNODE,
327 	    &syncer_mask);
328 	syncer_maxdelay = syncer_mask + 1;
329 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
330 	cv_init(&sync_wakeup, "syncer");
331 }
332 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
333 
334 
335 /*
336  * Mark a mount point as busy. Used to synchronize access and to delay
337  * unmounting. Eventually, mountlist_mtx is not released on failure.
338  */
339 int
340 vfs_busy(struct mount *mp, int flags)
341 {
342 
343 	MPASS((flags & ~MBF_MASK) == 0);
344 
345 	MNT_ILOCK(mp);
346 	MNT_REF(mp);
347 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
348 		if (flags & MBF_NOWAIT) {
349 			MNT_REL(mp);
350 			MNT_IUNLOCK(mp);
351 			return (ENOENT);
352 		}
353 		if (flags & MBF_MNTLSTLOCK)
354 			mtx_unlock(&mountlist_mtx);
355 		mp->mnt_kern_flag |= MNTK_MWAIT;
356 		msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
357 		MNT_REL(mp);
358 		MNT_IUNLOCK(mp);
359 		if (flags & MBF_MNTLSTLOCK)
360 			mtx_lock(&mountlist_mtx);
361 		return (ENOENT);
362 	}
363 	if (flags & MBF_MNTLSTLOCK)
364 		mtx_unlock(&mountlist_mtx);
365 	mp->mnt_lockref++;
366 	MNT_IUNLOCK(mp);
367 	return (0);
368 }
369 
370 /*
371  * Free a busy filesystem.
372  */
373 void
374 vfs_unbusy(struct mount *mp)
375 {
376 
377 	MNT_ILOCK(mp);
378 	MNT_REL(mp);
379 	mp->mnt_lockref--;
380 	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
381 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
382 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
383 		wakeup(&mp->mnt_lockref);
384 	}
385 	MNT_IUNLOCK(mp);
386 }
387 
388 /*
389  * Lookup a mount point by filesystem identifier.
390  */
391 struct mount *
392 vfs_getvfs(fsid_t *fsid)
393 {
394 	struct mount *mp;
395 
396 	mtx_lock(&mountlist_mtx);
397 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
398 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
399 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
400 			vfs_ref(mp);
401 			mtx_unlock(&mountlist_mtx);
402 			return (mp);
403 		}
404 	}
405 	mtx_unlock(&mountlist_mtx);
406 	return ((struct mount *) 0);
407 }
408 
409 /*
410  * Lookup a mount point by filesystem identifier, busying it before
411  * returning.
412  */
413 struct mount *
414 vfs_busyfs(fsid_t *fsid)
415 {
416 	struct mount *mp;
417 	int error;
418 
419 	mtx_lock(&mountlist_mtx);
420 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
421 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
422 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
423 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
424 			if (error) {
425 				mtx_unlock(&mountlist_mtx);
426 				return (NULL);
427 			}
428 			return (mp);
429 		}
430 	}
431 	mtx_unlock(&mountlist_mtx);
432 	return ((struct mount *) 0);
433 }
434 
435 /*
436  * Check if a user can access privileged mount options.
437  */
438 int
439 vfs_suser(struct mount *mp, struct thread *td)
440 {
441 	int error;
442 
443 	/*
444 	 * If the thread is jailed, but this is not a jail-friendly file
445 	 * system, deny immediately.
446 	 */
447 	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
448 		return (EPERM);
449 
450 	/*
451 	 * If the file system was mounted outside a jail and a jailed thread
452 	 * tries to access it, deny immediately.
453 	 */
454 	if (!jailed(mp->mnt_cred) && jailed(td->td_ucred))
455 		return (EPERM);
456 
457 	/*
458 	 * If the file system was mounted inside different jail that the jail of
459 	 * the calling thread, deny immediately.
460 	 */
461 	if (jailed(mp->mnt_cred) && jailed(td->td_ucred) &&
462 	    mp->mnt_cred->cr_prison != td->td_ucred->cr_prison) {
463 		return (EPERM);
464 	}
465 
466 	/*
467 	 * If file system supports delegated administration, we don't check
468 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
469 	 * by the file system itself.
470 	 * If this is not the user that did original mount, we check for
471 	 * the PRIV_VFS_MOUNT_OWNER privilege.
472 	 */
473 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
474 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
475 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
476 			return (error);
477 	}
478 	return (0);
479 }
480 
481 /*
482  * Get a new unique fsid.  Try to make its val[0] unique, since this value
483  * will be used to create fake device numbers for stat().  Also try (but
484  * not so hard) make its val[0] unique mod 2^16, since some emulators only
485  * support 16-bit device numbers.  We end up with unique val[0]'s for the
486  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
487  *
488  * Keep in mind that several mounts may be running in parallel.  Starting
489  * the search one past where the previous search terminated is both a
490  * micro-optimization and a defense against returning the same fsid to
491  * different mounts.
492  */
493 void
494 vfs_getnewfsid(struct mount *mp)
495 {
496 	static u_int16_t mntid_base;
497 	struct mount *nmp;
498 	fsid_t tfsid;
499 	int mtype;
500 
501 	mtx_lock(&mntid_mtx);
502 	mtype = mp->mnt_vfc->vfc_typenum;
503 	tfsid.val[1] = mtype;
504 	mtype = (mtype & 0xFF) << 24;
505 	for (;;) {
506 		tfsid.val[0] = makedev(255,
507 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
508 		mntid_base++;
509 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
510 			break;
511 		vfs_rel(nmp);
512 	}
513 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
514 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
515 	mtx_unlock(&mntid_mtx);
516 }
517 
518 /*
519  * Knob to control the precision of file timestamps:
520  *
521  *   0 = seconds only; nanoseconds zeroed.
522  *   1 = seconds and nanoseconds, accurate within 1/HZ.
523  *   2 = seconds and nanoseconds, truncated to microseconds.
524  * >=3 = seconds and nanoseconds, maximum precision.
525  */
526 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
527 
528 static int timestamp_precision = TSP_SEC;
529 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
530     &timestamp_precision, 0, "");
531 
532 /*
533  * Get a current timestamp.
534  */
535 void
536 vfs_timestamp(struct timespec *tsp)
537 {
538 	struct timeval tv;
539 
540 	switch (timestamp_precision) {
541 	case TSP_SEC:
542 		tsp->tv_sec = time_second;
543 		tsp->tv_nsec = 0;
544 		break;
545 	case TSP_HZ:
546 		getnanotime(tsp);
547 		break;
548 	case TSP_USEC:
549 		microtime(&tv);
550 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
551 		break;
552 	case TSP_NSEC:
553 	default:
554 		nanotime(tsp);
555 		break;
556 	}
557 }
558 
559 /*
560  * Set vnode attributes to VNOVAL
561  */
562 void
563 vattr_null(struct vattr *vap)
564 {
565 
566 	vap->va_type = VNON;
567 	vap->va_size = VNOVAL;
568 	vap->va_bytes = VNOVAL;
569 	vap->va_mode = VNOVAL;
570 	vap->va_nlink = VNOVAL;
571 	vap->va_uid = VNOVAL;
572 	vap->va_gid = VNOVAL;
573 	vap->va_fsid = VNOVAL;
574 	vap->va_fileid = VNOVAL;
575 	vap->va_blocksize = VNOVAL;
576 	vap->va_rdev = VNOVAL;
577 	vap->va_atime.tv_sec = VNOVAL;
578 	vap->va_atime.tv_nsec = VNOVAL;
579 	vap->va_mtime.tv_sec = VNOVAL;
580 	vap->va_mtime.tv_nsec = VNOVAL;
581 	vap->va_ctime.tv_sec = VNOVAL;
582 	vap->va_ctime.tv_nsec = VNOVAL;
583 	vap->va_birthtime.tv_sec = VNOVAL;
584 	vap->va_birthtime.tv_nsec = VNOVAL;
585 	vap->va_flags = VNOVAL;
586 	vap->va_gen = VNOVAL;
587 	vap->va_vaflags = 0;
588 }
589 
590 /*
591  * This routine is called when we have too many vnodes.  It attempts
592  * to free <count> vnodes and will potentially free vnodes that still
593  * have VM backing store (VM backing store is typically the cause
594  * of a vnode blowout so we want to do this).  Therefore, this operation
595  * is not considered cheap.
596  *
597  * A number of conditions may prevent a vnode from being reclaimed.
598  * the buffer cache may have references on the vnode, a directory
599  * vnode may still have references due to the namei cache representing
600  * underlying files, or the vnode may be in active use.   It is not
601  * desireable to reuse such vnodes.  These conditions may cause the
602  * number of vnodes to reach some minimum value regardless of what
603  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
604  */
605 static int
606 vlrureclaim(struct mount *mp)
607 {
608 	struct vnode *vp;
609 	int done;
610 	int trigger;
611 	int usevnodes;
612 	int count;
613 
614 	/*
615 	 * Calculate the trigger point, don't allow user
616 	 * screwups to blow us up.   This prevents us from
617 	 * recycling vnodes with lots of resident pages.  We
618 	 * aren't trying to free memory, we are trying to
619 	 * free vnodes.
620 	 */
621 	usevnodes = desiredvnodes;
622 	if (usevnodes <= 0)
623 		usevnodes = 1;
624 	trigger = cnt.v_page_count * 2 / usevnodes;
625 	done = 0;
626 	vn_start_write(NULL, &mp, V_WAIT);
627 	MNT_ILOCK(mp);
628 	count = mp->mnt_nvnodelistsize / 10 + 1;
629 	while (count != 0) {
630 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
631 		while (vp != NULL && vp->v_type == VMARKER)
632 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
633 		if (vp == NULL)
634 			break;
635 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
636 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
637 		--count;
638 		if (!VI_TRYLOCK(vp))
639 			goto next_iter;
640 		/*
641 		 * If it's been deconstructed already, it's still
642 		 * referenced, or it exceeds the trigger, skip it.
643 		 */
644 		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
645 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
646 		    vp->v_object->resident_page_count > trigger)) {
647 			VI_UNLOCK(vp);
648 			goto next_iter;
649 		}
650 		MNT_IUNLOCK(mp);
651 		vholdl(vp);
652 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
653 			vdrop(vp);
654 			goto next_iter_mntunlocked;
655 		}
656 		VI_LOCK(vp);
657 		/*
658 		 * v_usecount may have been bumped after VOP_LOCK() dropped
659 		 * the vnode interlock and before it was locked again.
660 		 *
661 		 * It is not necessary to recheck VI_DOOMED because it can
662 		 * only be set by another thread that holds both the vnode
663 		 * lock and vnode interlock.  If another thread has the
664 		 * vnode lock before we get to VOP_LOCK() and obtains the
665 		 * vnode interlock after VOP_LOCK() drops the vnode
666 		 * interlock, the other thread will be unable to drop the
667 		 * vnode lock before our VOP_LOCK() call fails.
668 		 */
669 		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
670 		    (vp->v_object != NULL &&
671 		    vp->v_object->resident_page_count > trigger)) {
672 			VOP_UNLOCK(vp, LK_INTERLOCK);
673 			goto next_iter_mntunlocked;
674 		}
675 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
676 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
677 		vgonel(vp);
678 		VOP_UNLOCK(vp, 0);
679 		vdropl(vp);
680 		done++;
681 next_iter_mntunlocked:
682 		if ((count % 256) != 0)
683 			goto relock_mnt;
684 		goto yield;
685 next_iter:
686 		if ((count % 256) != 0)
687 			continue;
688 		MNT_IUNLOCK(mp);
689 yield:
690 		uio_yield();
691 relock_mnt:
692 		MNT_ILOCK(mp);
693 	}
694 	MNT_IUNLOCK(mp);
695 	vn_finished_write(mp);
696 	return done;
697 }
698 
699 /*
700  * Attempt to keep the free list at wantfreevnodes length.
701  */
702 static void
703 vnlru_free(int count)
704 {
705 	struct vnode *vp;
706 	int vfslocked;
707 
708 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
709 	for (; count > 0; count--) {
710 		vp = TAILQ_FIRST(&vnode_free_list);
711 		/*
712 		 * The list can be modified while the free_list_mtx
713 		 * has been dropped and vp could be NULL here.
714 		 */
715 		if (!vp)
716 			break;
717 		VNASSERT(vp->v_op != NULL, vp,
718 		    ("vnlru_free: vnode already reclaimed."));
719 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
720 		/*
721 		 * Don't recycle if we can't get the interlock.
722 		 */
723 		if (!VI_TRYLOCK(vp)) {
724 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
725 			continue;
726 		}
727 		VNASSERT(VCANRECYCLE(vp), vp,
728 		    ("vp inconsistent on freelist"));
729 		freevnodes--;
730 		vp->v_iflag &= ~VI_FREE;
731 		vholdl(vp);
732 		mtx_unlock(&vnode_free_list_mtx);
733 		VI_UNLOCK(vp);
734 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
735 		vtryrecycle(vp);
736 		VFS_UNLOCK_GIANT(vfslocked);
737 		/*
738 		 * If the recycled succeeded this vdrop will actually free
739 		 * the vnode.  If not it will simply place it back on
740 		 * the free list.
741 		 */
742 		vdrop(vp);
743 		mtx_lock(&vnode_free_list_mtx);
744 	}
745 }
746 /*
747  * Attempt to recycle vnodes in a context that is always safe to block.
748  * Calling vlrurecycle() from the bowels of filesystem code has some
749  * interesting deadlock problems.
750  */
751 static struct proc *vnlruproc;
752 static int vnlruproc_sig;
753 
754 static void
755 vnlru_proc(void)
756 {
757 	struct mount *mp, *nmp;
758 	int done;
759 	struct proc *p = vnlruproc;
760 
761 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
762 	    SHUTDOWN_PRI_FIRST);
763 
764 	mtx_lock(&Giant);
765 
766 	for (;;) {
767 		kproc_suspend_check(p);
768 		mtx_lock(&vnode_free_list_mtx);
769 		if (freevnodes > wantfreevnodes)
770 			vnlru_free(freevnodes - wantfreevnodes);
771 		if (numvnodes <= desiredvnodes * 9 / 10) {
772 			vnlruproc_sig = 0;
773 			wakeup(&vnlruproc_sig);
774 			msleep(vnlruproc, &vnode_free_list_mtx,
775 			    PVFS|PDROP, "vlruwt", hz);
776 			continue;
777 		}
778 		mtx_unlock(&vnode_free_list_mtx);
779 		done = 0;
780 		mtx_lock(&mountlist_mtx);
781 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
782 			int vfsunlocked;
783 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
784 				nmp = TAILQ_NEXT(mp, mnt_list);
785 				continue;
786 			}
787 			if (!VFS_NEEDSGIANT(mp)) {
788 				mtx_unlock(&Giant);
789 				vfsunlocked = 1;
790 			} else
791 				vfsunlocked = 0;
792 			done += vlrureclaim(mp);
793 			if (vfsunlocked)
794 				mtx_lock(&Giant);
795 			mtx_lock(&mountlist_mtx);
796 			nmp = TAILQ_NEXT(mp, mnt_list);
797 			vfs_unbusy(mp);
798 		}
799 		mtx_unlock(&mountlist_mtx);
800 		if (done == 0) {
801 			EVENTHANDLER_INVOKE(vfs_lowvnodes, desiredvnodes / 10);
802 #if 0
803 			/* These messages are temporary debugging aids */
804 			if (vnlru_nowhere < 5)
805 				printf("vnlru process getting nowhere..\n");
806 			else if (vnlru_nowhere == 5)
807 				printf("vnlru process messages stopped.\n");
808 #endif
809 			vnlru_nowhere++;
810 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
811 		} else
812 			uio_yield();
813 	}
814 }
815 
816 static struct kproc_desc vnlru_kp = {
817 	"vnlru",
818 	vnlru_proc,
819 	&vnlruproc
820 };
821 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
822     &vnlru_kp);
823 
824 /*
825  * Routines having to do with the management of the vnode table.
826  */
827 
828 void
829 vdestroy(struct vnode *vp)
830 {
831 	struct bufobj *bo;
832 
833 	CTR1(KTR_VFS, "vdestroy vp %p", vp);
834 	mtx_lock(&vnode_free_list_mtx);
835 	numvnodes--;
836 	mtx_unlock(&vnode_free_list_mtx);
837 	bo = &vp->v_bufobj;
838 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
839 	    ("cleaned vnode still on the free list."));
840 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
841 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
842 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
843 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
844 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
845 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
846 	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
847 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
848 	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
849 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
850 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
851 	VI_UNLOCK(vp);
852 #ifdef MAC
853 	mac_vnode_destroy(vp);
854 #endif
855 	if (vp->v_pollinfo != NULL)
856 		destroy_vpollinfo(vp->v_pollinfo);
857 #ifdef INVARIANTS
858 	/* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
859 	vp->v_op = NULL;
860 #endif
861 	lockdestroy(vp->v_vnlock);
862 	mtx_destroy(&vp->v_interlock);
863 	mtx_destroy(BO_MTX(bo));
864 	uma_zfree(vnode_zone, vp);
865 }
866 
867 /*
868  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
869  * before we actually vgone().  This function must be called with the vnode
870  * held to prevent the vnode from being returned to the free list midway
871  * through vgone().
872  */
873 static int
874 vtryrecycle(struct vnode *vp)
875 {
876 	struct mount *vnmp;
877 
878 	CTR1(KTR_VFS, "vtryrecycle: trying vp %p", vp);
879 	VNASSERT(vp->v_holdcnt, vp,
880 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
881 	/*
882 	 * This vnode may found and locked via some other list, if so we
883 	 * can't recycle it yet.
884 	 */
885 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
886 		return (EWOULDBLOCK);
887 	/*
888 	 * Don't recycle if its filesystem is being suspended.
889 	 */
890 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
891 		VOP_UNLOCK(vp, 0);
892 		return (EBUSY);
893 	}
894 	/*
895 	 * If we got this far, we need to acquire the interlock and see if
896 	 * anyone picked up this vnode from another list.  If not, we will
897 	 * mark it with DOOMED via vgonel() so that anyone who does find it
898 	 * will skip over it.
899 	 */
900 	VI_LOCK(vp);
901 	if (vp->v_usecount) {
902 		VOP_UNLOCK(vp, LK_INTERLOCK);
903 		vn_finished_write(vnmp);
904 		return (EBUSY);
905 	}
906 	if ((vp->v_iflag & VI_DOOMED) == 0)
907 		vgonel(vp);
908 	VOP_UNLOCK(vp, LK_INTERLOCK);
909 	vn_finished_write(vnmp);
910 	CTR1(KTR_VFS, "vtryrecycle: recycled vp %p", vp);
911 	return (0);
912 }
913 
914 /*
915  * Return the next vnode from the free list.
916  */
917 int
918 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
919     struct vnode **vpp)
920 {
921 	struct vnode *vp = NULL;
922 	struct bufobj *bo;
923 
924 	mtx_lock(&vnode_free_list_mtx);
925 	/*
926 	 * Lend our context to reclaim vnodes if they've exceeded the max.
927 	 */
928 	if (freevnodes > wantfreevnodes)
929 		vnlru_free(1);
930 	/*
931 	 * Wait for available vnodes.
932 	 */
933 	if (numvnodes > desiredvnodes) {
934 		if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
935 			/*
936 			 * File system is beeing suspended, we cannot risk a
937 			 * deadlock here, so allocate new vnode anyway.
938 			 */
939 			if (freevnodes > wantfreevnodes)
940 				vnlru_free(freevnodes - wantfreevnodes);
941 			goto alloc;
942 		}
943 		if (vnlruproc_sig == 0) {
944 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
945 			wakeup(vnlruproc);
946 		}
947 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
948 		    "vlruwk", hz);
949 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
950 		if (numvnodes > desiredvnodes) {
951 			mtx_unlock(&vnode_free_list_mtx);
952 			return (ENFILE);
953 		}
954 #endif
955 	}
956 alloc:
957 	numvnodes++;
958 	mtx_unlock(&vnode_free_list_mtx);
959 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
960 	/*
961 	 * Setup locks.
962 	 */
963 	vp->v_vnlock = &vp->v_lock;
964 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
965 	/*
966 	 * By default, don't allow shared locks unless filesystems
967 	 * opt-in.
968 	 */
969 	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
970 	/*
971 	 * Initialize bufobj.
972 	 */
973 	bo = &vp->v_bufobj;
974 	bo->__bo_vnode = vp;
975 	mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
976 	bo->bo_ops = &buf_ops_bio;
977 	bo->bo_private = vp;
978 	TAILQ_INIT(&bo->bo_clean.bv_hd);
979 	TAILQ_INIT(&bo->bo_dirty.bv_hd);
980 	/*
981 	 * Initialize namecache.
982 	 */
983 	LIST_INIT(&vp->v_cache_src);
984 	TAILQ_INIT(&vp->v_cache_dst);
985 	/*
986 	 * Finalize various vnode identity bits.
987 	 */
988 	vp->v_type = VNON;
989 	vp->v_tag = tag;
990 	vp->v_op = vops;
991 	v_incr_usecount(vp);
992 	vp->v_data = 0;
993 #ifdef MAC
994 	mac_vnode_init(vp);
995 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
996 		mac_vnode_associate_singlelabel(mp, vp);
997 	else if (mp == NULL && vops != &dead_vnodeops)
998 		printf("NULL mp in getnewvnode()\n");
999 #endif
1000 	if (mp != NULL) {
1001 		bo->bo_bsize = mp->mnt_stat.f_iosize;
1002 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1003 			vp->v_vflag |= VV_NOKNOTE;
1004 	}
1005 
1006 	CTR2(KTR_VFS, "getnewvnode: mp %p vp %p", mp, vp);
1007 	*vpp = vp;
1008 	return (0);
1009 }
1010 
1011 /*
1012  * Delete from old mount point vnode list, if on one.
1013  */
1014 static void
1015 delmntque(struct vnode *vp)
1016 {
1017 	struct mount *mp;
1018 
1019 	mp = vp->v_mount;
1020 	if (mp == NULL)
1021 		return;
1022 	MNT_ILOCK(mp);
1023 	vp->v_mount = NULL;
1024 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1025 		("bad mount point vnode list size"));
1026 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1027 	mp->mnt_nvnodelistsize--;
1028 	MNT_REL(mp);
1029 	MNT_IUNLOCK(mp);
1030 }
1031 
1032 static void
1033 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1034 {
1035 
1036 	vp->v_data = NULL;
1037 	vp->v_op = &dead_vnodeops;
1038 	/* XXX non mp-safe fs may still call insmntque with vnode
1039 	   unlocked */
1040 	if (!VOP_ISLOCKED(vp))
1041 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1042 	vgone(vp);
1043 	vput(vp);
1044 }
1045 
1046 /*
1047  * Insert into list of vnodes for the new mount point, if available.
1048  */
1049 int
1050 insmntque1(struct vnode *vp, struct mount *mp,
1051 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1052 {
1053 	int locked;
1054 
1055 	KASSERT(vp->v_mount == NULL,
1056 		("insmntque: vnode already on per mount vnode list"));
1057 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1058 #ifdef DEBUG_VFS_LOCKS
1059 	if (!VFS_NEEDSGIANT(mp))
1060 		ASSERT_VOP_ELOCKED(vp,
1061 		    "insmntque: mp-safe fs and non-locked vp");
1062 #endif
1063 	MNT_ILOCK(mp);
1064 	if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1065 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1066 	     mp->mnt_nvnodelistsize == 0)) {
1067 		locked = VOP_ISLOCKED(vp);
1068 		if (!locked || (locked == LK_EXCLUSIVE &&
1069 		     (vp->v_vflag & VV_FORCEINSMQ) == 0)) {
1070 			MNT_IUNLOCK(mp);
1071 			if (dtr != NULL)
1072 				dtr(vp, dtr_arg);
1073 			return (EBUSY);
1074 		}
1075 	}
1076 	vp->v_mount = mp;
1077 	MNT_REF(mp);
1078 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1079 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1080 		("neg mount point vnode list size"));
1081 	mp->mnt_nvnodelistsize++;
1082 	MNT_IUNLOCK(mp);
1083 	return (0);
1084 }
1085 
1086 int
1087 insmntque(struct vnode *vp, struct mount *mp)
1088 {
1089 
1090 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1091 }
1092 
1093 /*
1094  * Flush out and invalidate all buffers associated with a bufobj
1095  * Called with the underlying object locked.
1096  */
1097 int
1098 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1099 {
1100 	int error;
1101 
1102 	BO_LOCK(bo);
1103 	if (flags & V_SAVE) {
1104 		error = bufobj_wwait(bo, slpflag, slptimeo);
1105 		if (error) {
1106 			BO_UNLOCK(bo);
1107 			return (error);
1108 		}
1109 		if (bo->bo_dirty.bv_cnt > 0) {
1110 			BO_UNLOCK(bo);
1111 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1112 				return (error);
1113 			/*
1114 			 * XXX We could save a lock/unlock if this was only
1115 			 * enabled under INVARIANTS
1116 			 */
1117 			BO_LOCK(bo);
1118 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1119 				panic("vinvalbuf: dirty bufs");
1120 		}
1121 	}
1122 	/*
1123 	 * If you alter this loop please notice that interlock is dropped and
1124 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1125 	 * no race conditions occur from this.
1126 	 */
1127 	do {
1128 		error = flushbuflist(&bo->bo_clean,
1129 		    flags, bo, slpflag, slptimeo);
1130 		if (error == 0)
1131 			error = flushbuflist(&bo->bo_dirty,
1132 			    flags, bo, slpflag, slptimeo);
1133 		if (error != 0 && error != EAGAIN) {
1134 			BO_UNLOCK(bo);
1135 			return (error);
1136 		}
1137 	} while (error != 0);
1138 
1139 	/*
1140 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1141 	 * have write I/O in-progress but if there is a VM object then the
1142 	 * VM object can also have read-I/O in-progress.
1143 	 */
1144 	do {
1145 		bufobj_wwait(bo, 0, 0);
1146 		BO_UNLOCK(bo);
1147 		if (bo->bo_object != NULL) {
1148 			VM_OBJECT_LOCK(bo->bo_object);
1149 			vm_object_pip_wait(bo->bo_object, "bovlbx");
1150 			VM_OBJECT_UNLOCK(bo->bo_object);
1151 		}
1152 		BO_LOCK(bo);
1153 	} while (bo->bo_numoutput > 0);
1154 	BO_UNLOCK(bo);
1155 
1156 	/*
1157 	 * Destroy the copy in the VM cache, too.
1158 	 */
1159 	if (bo->bo_object != NULL) {
1160 		VM_OBJECT_LOCK(bo->bo_object);
1161 		vm_object_page_remove(bo->bo_object, 0, 0,
1162 			(flags & V_SAVE) ? TRUE : FALSE);
1163 		VM_OBJECT_UNLOCK(bo->bo_object);
1164 	}
1165 
1166 #ifdef INVARIANTS
1167 	BO_LOCK(bo);
1168 	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1169 	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1170 		panic("vinvalbuf: flush failed");
1171 	BO_UNLOCK(bo);
1172 #endif
1173 	return (0);
1174 }
1175 
1176 /*
1177  * Flush out and invalidate all buffers associated with a vnode.
1178  * Called with the underlying object locked.
1179  */
1180 int
1181 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1182 {
1183 
1184 	CTR2(KTR_VFS, "vinvalbuf vp %p flags %d", vp, flags);
1185 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1186 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1187 }
1188 
1189 /*
1190  * Flush out buffers on the specified list.
1191  *
1192  */
1193 static int
1194 flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1195     int slptimeo)
1196 {
1197 	struct buf *bp, *nbp;
1198 	int retval, error;
1199 	daddr_t lblkno;
1200 	b_xflags_t xflags;
1201 
1202 	ASSERT_BO_LOCKED(bo);
1203 
1204 	retval = 0;
1205 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1206 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1207 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1208 			continue;
1209 		}
1210 		lblkno = 0;
1211 		xflags = 0;
1212 		if (nbp != NULL) {
1213 			lblkno = nbp->b_lblkno;
1214 			xflags = nbp->b_xflags &
1215 				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1216 		}
1217 		retval = EAGAIN;
1218 		error = BUF_TIMELOCK(bp,
1219 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1220 		    "flushbuf", slpflag, slptimeo);
1221 		if (error) {
1222 			BO_LOCK(bo);
1223 			return (error != ENOLCK ? error : EAGAIN);
1224 		}
1225 		KASSERT(bp->b_bufobj == bo,
1226 		    ("bp %p wrong b_bufobj %p should be %p",
1227 		    bp, bp->b_bufobj, bo));
1228 		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1229 			BUF_UNLOCK(bp);
1230 			BO_LOCK(bo);
1231 			return (EAGAIN);
1232 		}
1233 		/*
1234 		 * XXX Since there are no node locks for NFS, I
1235 		 * believe there is a slight chance that a delayed
1236 		 * write will occur while sleeping just above, so
1237 		 * check for it.
1238 		 */
1239 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1240 		    (flags & V_SAVE)) {
1241 			bremfree(bp);
1242 			bp->b_flags |= B_ASYNC;
1243 			bwrite(bp);
1244 			BO_LOCK(bo);
1245 			return (EAGAIN);	/* XXX: why not loop ? */
1246 		}
1247 		bremfree(bp);
1248 		bp->b_flags |= (B_INVAL | B_RELBUF);
1249 		bp->b_flags &= ~B_ASYNC;
1250 		brelse(bp);
1251 		BO_LOCK(bo);
1252 		if (nbp != NULL &&
1253 		    (nbp->b_bufobj != bo ||
1254 		     nbp->b_lblkno != lblkno ||
1255 		     (nbp->b_xflags &
1256 		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1257 			break;			/* nbp invalid */
1258 	}
1259 	return (retval);
1260 }
1261 
1262 /*
1263  * Truncate a file's buffer and pages to a specified length.  This
1264  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1265  * sync activity.
1266  */
1267 int
1268 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1269     off_t length, int blksize)
1270 {
1271 	struct buf *bp, *nbp;
1272 	int anyfreed;
1273 	int trunclbn;
1274 	struct bufobj *bo;
1275 
1276 	CTR2(KTR_VFS, "vtruncbuf vp %p length %jd", vp, length);
1277 	/*
1278 	 * Round up to the *next* lbn.
1279 	 */
1280 	trunclbn = (length + blksize - 1) / blksize;
1281 
1282 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1283 restart:
1284 	bo = &vp->v_bufobj;
1285 	BO_LOCK(bo);
1286 	anyfreed = 1;
1287 	for (;anyfreed;) {
1288 		anyfreed = 0;
1289 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1290 			if (bp->b_lblkno < trunclbn)
1291 				continue;
1292 			if (BUF_LOCK(bp,
1293 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1294 			    BO_MTX(bo)) == ENOLCK)
1295 				goto restart;
1296 
1297 			bremfree(bp);
1298 			bp->b_flags |= (B_INVAL | B_RELBUF);
1299 			bp->b_flags &= ~B_ASYNC;
1300 			brelse(bp);
1301 			anyfreed = 1;
1302 
1303 			if (nbp != NULL &&
1304 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1305 			    (nbp->b_vp != vp) ||
1306 			    (nbp->b_flags & B_DELWRI))) {
1307 				goto restart;
1308 			}
1309 			BO_LOCK(bo);
1310 		}
1311 
1312 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1313 			if (bp->b_lblkno < trunclbn)
1314 				continue;
1315 			if (BUF_LOCK(bp,
1316 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1317 			    BO_MTX(bo)) == ENOLCK)
1318 				goto restart;
1319 			bremfree(bp);
1320 			bp->b_flags |= (B_INVAL | B_RELBUF);
1321 			bp->b_flags &= ~B_ASYNC;
1322 			brelse(bp);
1323 			anyfreed = 1;
1324 			if (nbp != NULL &&
1325 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1326 			    (nbp->b_vp != vp) ||
1327 			    (nbp->b_flags & B_DELWRI) == 0)) {
1328 				goto restart;
1329 			}
1330 			BO_LOCK(bo);
1331 		}
1332 	}
1333 
1334 	if (length > 0) {
1335 restartsync:
1336 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1337 			if (bp->b_lblkno > 0)
1338 				continue;
1339 			/*
1340 			 * Since we hold the vnode lock this should only
1341 			 * fail if we're racing with the buf daemon.
1342 			 */
1343 			if (BUF_LOCK(bp,
1344 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1345 			    BO_MTX(bo)) == ENOLCK) {
1346 				goto restart;
1347 			}
1348 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1349 			    ("buf(%p) on dirty queue without DELWRI", bp));
1350 
1351 			bremfree(bp);
1352 			bawrite(bp);
1353 			BO_LOCK(bo);
1354 			goto restartsync;
1355 		}
1356 	}
1357 
1358 	bufobj_wwait(bo, 0, 0);
1359 	BO_UNLOCK(bo);
1360 	vnode_pager_setsize(vp, length);
1361 
1362 	return (0);
1363 }
1364 
1365 /*
1366  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1367  * 		 a vnode.
1368  *
1369  *	NOTE: We have to deal with the special case of a background bitmap
1370  *	buffer, a situation where two buffers will have the same logical
1371  *	block offset.  We want (1) only the foreground buffer to be accessed
1372  *	in a lookup and (2) must differentiate between the foreground and
1373  *	background buffer in the splay tree algorithm because the splay
1374  *	tree cannot normally handle multiple entities with the same 'index'.
1375  *	We accomplish this by adding differentiating flags to the splay tree's
1376  *	numerical domain.
1377  */
1378 static
1379 struct buf *
1380 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1381 {
1382 	struct buf dummy;
1383 	struct buf *lefttreemax, *righttreemin, *y;
1384 
1385 	if (root == NULL)
1386 		return (NULL);
1387 	lefttreemax = righttreemin = &dummy;
1388 	for (;;) {
1389 		if (lblkno < root->b_lblkno ||
1390 		    (lblkno == root->b_lblkno &&
1391 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1392 			if ((y = root->b_left) == NULL)
1393 				break;
1394 			if (lblkno < y->b_lblkno) {
1395 				/* Rotate right. */
1396 				root->b_left = y->b_right;
1397 				y->b_right = root;
1398 				root = y;
1399 				if ((y = root->b_left) == NULL)
1400 					break;
1401 			}
1402 			/* Link into the new root's right tree. */
1403 			righttreemin->b_left = root;
1404 			righttreemin = root;
1405 		} else if (lblkno > root->b_lblkno ||
1406 		    (lblkno == root->b_lblkno &&
1407 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1408 			if ((y = root->b_right) == NULL)
1409 				break;
1410 			if (lblkno > y->b_lblkno) {
1411 				/* Rotate left. */
1412 				root->b_right = y->b_left;
1413 				y->b_left = root;
1414 				root = y;
1415 				if ((y = root->b_right) == NULL)
1416 					break;
1417 			}
1418 			/* Link into the new root's left tree. */
1419 			lefttreemax->b_right = root;
1420 			lefttreemax = root;
1421 		} else {
1422 			break;
1423 		}
1424 		root = y;
1425 	}
1426 	/* Assemble the new root. */
1427 	lefttreemax->b_right = root->b_left;
1428 	righttreemin->b_left = root->b_right;
1429 	root->b_left = dummy.b_right;
1430 	root->b_right = dummy.b_left;
1431 	return (root);
1432 }
1433 
1434 static void
1435 buf_vlist_remove(struct buf *bp)
1436 {
1437 	struct buf *root;
1438 	struct bufv *bv;
1439 
1440 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1441 	ASSERT_BO_LOCKED(bp->b_bufobj);
1442 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1443 	    (BX_VNDIRTY|BX_VNCLEAN),
1444 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1445 	if (bp->b_xflags & BX_VNDIRTY)
1446 		bv = &bp->b_bufobj->bo_dirty;
1447 	else
1448 		bv = &bp->b_bufobj->bo_clean;
1449 	if (bp != bv->bv_root) {
1450 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1451 		KASSERT(root == bp, ("splay lookup failed in remove"));
1452 	}
1453 	if (bp->b_left == NULL) {
1454 		root = bp->b_right;
1455 	} else {
1456 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1457 		root->b_right = bp->b_right;
1458 	}
1459 	bv->bv_root = root;
1460 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1461 	bv->bv_cnt--;
1462 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1463 }
1464 
1465 /*
1466  * Add the buffer to the sorted clean or dirty block list using a
1467  * splay tree algorithm.
1468  *
1469  * NOTE: xflags is passed as a constant, optimizing this inline function!
1470  */
1471 static void
1472 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1473 {
1474 	struct buf *root;
1475 	struct bufv *bv;
1476 
1477 	ASSERT_BO_LOCKED(bo);
1478 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1479 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1480 	bp->b_xflags |= xflags;
1481 	if (xflags & BX_VNDIRTY)
1482 		bv = &bo->bo_dirty;
1483 	else
1484 		bv = &bo->bo_clean;
1485 
1486 	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1487 	if (root == NULL) {
1488 		bp->b_left = NULL;
1489 		bp->b_right = NULL;
1490 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1491 	} else if (bp->b_lblkno < root->b_lblkno ||
1492 	    (bp->b_lblkno == root->b_lblkno &&
1493 	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1494 		bp->b_left = root->b_left;
1495 		bp->b_right = root;
1496 		root->b_left = NULL;
1497 		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1498 	} else {
1499 		bp->b_right = root->b_right;
1500 		bp->b_left = root;
1501 		root->b_right = NULL;
1502 		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1503 	}
1504 	bv->bv_cnt++;
1505 	bv->bv_root = bp;
1506 }
1507 
1508 /*
1509  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1510  * shadow buffers used in background bitmap writes.
1511  *
1512  * This code isn't quite efficient as it could be because we are maintaining
1513  * two sorted lists and do not know which list the block resides in.
1514  *
1515  * During a "make buildworld" the desired buffer is found at one of
1516  * the roots more than 60% of the time.  Thus, checking both roots
1517  * before performing either splay eliminates unnecessary splays on the
1518  * first tree splayed.
1519  */
1520 struct buf *
1521 gbincore(struct bufobj *bo, daddr_t lblkno)
1522 {
1523 	struct buf *bp;
1524 
1525 	ASSERT_BO_LOCKED(bo);
1526 	if ((bp = bo->bo_clean.bv_root) != NULL &&
1527 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1528 		return (bp);
1529 	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1530 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1531 		return (bp);
1532 	if ((bp = bo->bo_clean.bv_root) != NULL) {
1533 		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1534 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1535 			return (bp);
1536 	}
1537 	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1538 		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1539 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1540 			return (bp);
1541 	}
1542 	return (NULL);
1543 }
1544 
1545 /*
1546  * Associate a buffer with a vnode.
1547  */
1548 void
1549 bgetvp(struct vnode *vp, struct buf *bp)
1550 {
1551 	struct bufobj *bo;
1552 
1553 	bo = &vp->v_bufobj;
1554 	ASSERT_BO_LOCKED(bo);
1555 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1556 
1557 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1558 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1559 	    ("bgetvp: bp already attached! %p", bp));
1560 
1561 	vhold(vp);
1562 	if (VFS_NEEDSGIANT(vp->v_mount) || bo->bo_flag & BO_NEEDSGIANT)
1563 		bp->b_flags |= B_NEEDSGIANT;
1564 	bp->b_vp = vp;
1565 	bp->b_bufobj = bo;
1566 	/*
1567 	 * Insert onto list for new vnode.
1568 	 */
1569 	buf_vlist_add(bp, bo, BX_VNCLEAN);
1570 }
1571 
1572 /*
1573  * Disassociate a buffer from a vnode.
1574  */
1575 void
1576 brelvp(struct buf *bp)
1577 {
1578 	struct bufobj *bo;
1579 	struct vnode *vp;
1580 
1581 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1582 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1583 
1584 	/*
1585 	 * Delete from old vnode list, if on one.
1586 	 */
1587 	vp = bp->b_vp;		/* XXX */
1588 	bo = bp->b_bufobj;
1589 	BO_LOCK(bo);
1590 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1591 		buf_vlist_remove(bp);
1592 	else
1593 		panic("brelvp: Buffer %p not on queue.", bp);
1594 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1595 		bo->bo_flag &= ~BO_ONWORKLST;
1596 		mtx_lock(&sync_mtx);
1597 		LIST_REMOVE(bo, bo_synclist);
1598 		syncer_worklist_len--;
1599 		mtx_unlock(&sync_mtx);
1600 	}
1601 	bp->b_flags &= ~B_NEEDSGIANT;
1602 	bp->b_vp = NULL;
1603 	bp->b_bufobj = NULL;
1604 	BO_UNLOCK(bo);
1605 	vdrop(vp);
1606 }
1607 
1608 /*
1609  * Add an item to the syncer work queue.
1610  */
1611 static void
1612 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1613 {
1614 	int queue, slot;
1615 
1616 	ASSERT_BO_LOCKED(bo);
1617 
1618 	mtx_lock(&sync_mtx);
1619 	if (bo->bo_flag & BO_ONWORKLST)
1620 		LIST_REMOVE(bo, bo_synclist);
1621 	else {
1622 		bo->bo_flag |= BO_ONWORKLST;
1623 		syncer_worklist_len++;
1624 	}
1625 
1626 	if (delay > syncer_maxdelay - 2)
1627 		delay = syncer_maxdelay - 2;
1628 	slot = (syncer_delayno + delay) & syncer_mask;
1629 
1630 	queue = VFS_NEEDSGIANT(bo->__bo_vnode->v_mount) ? WI_GIANTQ :
1631 	    WI_MPSAFEQ;
1632 	LIST_INSERT_HEAD(&syncer_workitem_pending[queue][slot], bo,
1633 	    bo_synclist);
1634 	mtx_unlock(&sync_mtx);
1635 }
1636 
1637 static int
1638 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1639 {
1640 	int error, len;
1641 
1642 	mtx_lock(&sync_mtx);
1643 	len = syncer_worklist_len - sync_vnode_count;
1644 	mtx_unlock(&sync_mtx);
1645 	error = SYSCTL_OUT(req, &len, sizeof(len));
1646 	return (error);
1647 }
1648 
1649 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1650     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1651 
1652 static struct proc *updateproc;
1653 static void sched_sync(void);
1654 static struct kproc_desc up_kp = {
1655 	"syncer",
1656 	sched_sync,
1657 	&updateproc
1658 };
1659 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1660 
1661 static int
1662 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1663 {
1664 	struct vnode *vp;
1665 	struct mount *mp;
1666 
1667 	*bo = LIST_FIRST(slp);
1668 	if (*bo == NULL)
1669 		return (0);
1670 	vp = (*bo)->__bo_vnode;	/* XXX */
1671 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1672 		return (1);
1673 	/*
1674 	 * We use vhold in case the vnode does not
1675 	 * successfully sync.  vhold prevents the vnode from
1676 	 * going away when we unlock the sync_mtx so that
1677 	 * we can acquire the vnode interlock.
1678 	 */
1679 	vholdl(vp);
1680 	mtx_unlock(&sync_mtx);
1681 	VI_UNLOCK(vp);
1682 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1683 		vdrop(vp);
1684 		mtx_lock(&sync_mtx);
1685 		return (*bo == LIST_FIRST(slp));
1686 	}
1687 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1688 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1689 	VOP_UNLOCK(vp, 0);
1690 	vn_finished_write(mp);
1691 	BO_LOCK(*bo);
1692 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1693 		/*
1694 		 * Put us back on the worklist.  The worklist
1695 		 * routine will remove us from our current
1696 		 * position and then add us back in at a later
1697 		 * position.
1698 		 */
1699 		vn_syncer_add_to_worklist(*bo, syncdelay);
1700 	}
1701 	BO_UNLOCK(*bo);
1702 	vdrop(vp);
1703 	mtx_lock(&sync_mtx);
1704 	return (0);
1705 }
1706 
1707 /*
1708  * System filesystem synchronizer daemon.
1709  */
1710 static void
1711 sched_sync(void)
1712 {
1713 	struct synclist *gnext, *next;
1714 	struct synclist *gslp, *slp;
1715 	struct bufobj *bo;
1716 	long starttime;
1717 	struct thread *td = curthread;
1718 	int last_work_seen;
1719 	int net_worklist_len;
1720 	int syncer_final_iter;
1721 	int first_printf;
1722 	int error;
1723 
1724 	last_work_seen = 0;
1725 	syncer_final_iter = 0;
1726 	first_printf = 1;
1727 	syncer_state = SYNCER_RUNNING;
1728 	starttime = time_uptime;
1729 	td->td_pflags |= TDP_NORUNNINGBUF;
1730 
1731 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1732 	    SHUTDOWN_PRI_LAST);
1733 
1734 	mtx_lock(&sync_mtx);
1735 	for (;;) {
1736 		if (syncer_state == SYNCER_FINAL_DELAY &&
1737 		    syncer_final_iter == 0) {
1738 			mtx_unlock(&sync_mtx);
1739 			kproc_suspend_check(td->td_proc);
1740 			mtx_lock(&sync_mtx);
1741 		}
1742 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1743 		if (syncer_state != SYNCER_RUNNING &&
1744 		    starttime != time_uptime) {
1745 			if (first_printf) {
1746 				printf("\nSyncing disks, vnodes remaining...");
1747 				first_printf = 0;
1748 			}
1749 			printf("%d ", net_worklist_len);
1750 		}
1751 		starttime = time_uptime;
1752 
1753 		/*
1754 		 * Push files whose dirty time has expired.  Be careful
1755 		 * of interrupt race on slp queue.
1756 		 *
1757 		 * Skip over empty worklist slots when shutting down.
1758 		 */
1759 		do {
1760 			slp = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1761 			gslp = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1762 			syncer_delayno += 1;
1763 			if (syncer_delayno == syncer_maxdelay)
1764 				syncer_delayno = 0;
1765 			next = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1766 			gnext = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1767 			/*
1768 			 * If the worklist has wrapped since the
1769 			 * it was emptied of all but syncer vnodes,
1770 			 * switch to the FINAL_DELAY state and run
1771 			 * for one more second.
1772 			 */
1773 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1774 			    net_worklist_len == 0 &&
1775 			    last_work_seen == syncer_delayno) {
1776 				syncer_state = SYNCER_FINAL_DELAY;
1777 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1778 			}
1779 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1780 		    LIST_EMPTY(gslp) && syncer_worklist_len > 0);
1781 
1782 		/*
1783 		 * Keep track of the last time there was anything
1784 		 * on the worklist other than syncer vnodes.
1785 		 * Return to the SHUTTING_DOWN state if any
1786 		 * new work appears.
1787 		 */
1788 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1789 			last_work_seen = syncer_delayno;
1790 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1791 			syncer_state = SYNCER_SHUTTING_DOWN;
1792 		while (!LIST_EMPTY(slp)) {
1793 			error = sync_vnode(slp, &bo, td);
1794 			if (error == 1) {
1795 				LIST_REMOVE(bo, bo_synclist);
1796 				LIST_INSERT_HEAD(next, bo, bo_synclist);
1797 				continue;
1798 			}
1799 		}
1800 		if (!LIST_EMPTY(gslp)) {
1801 			mtx_unlock(&sync_mtx);
1802 			mtx_lock(&Giant);
1803 			mtx_lock(&sync_mtx);
1804 			while (!LIST_EMPTY(gslp)) {
1805 				error = sync_vnode(gslp, &bo, td);
1806 				if (error == 1) {
1807 					LIST_REMOVE(bo, bo_synclist);
1808 					LIST_INSERT_HEAD(gnext, bo,
1809 					    bo_synclist);
1810 					continue;
1811 				}
1812 			}
1813 			mtx_unlock(&Giant);
1814 		}
1815 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1816 			syncer_final_iter--;
1817 		/*
1818 		 * The variable rushjob allows the kernel to speed up the
1819 		 * processing of the filesystem syncer process. A rushjob
1820 		 * value of N tells the filesystem syncer to process the next
1821 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1822 		 * is used by the soft update code to speed up the filesystem
1823 		 * syncer process when the incore state is getting so far
1824 		 * ahead of the disk that the kernel memory pool is being
1825 		 * threatened with exhaustion.
1826 		 */
1827 		if (rushjob > 0) {
1828 			rushjob -= 1;
1829 			continue;
1830 		}
1831 		/*
1832 		 * Just sleep for a short period of time between
1833 		 * iterations when shutting down to allow some I/O
1834 		 * to happen.
1835 		 *
1836 		 * If it has taken us less than a second to process the
1837 		 * current work, then wait. Otherwise start right over
1838 		 * again. We can still lose time if any single round
1839 		 * takes more than two seconds, but it does not really
1840 		 * matter as we are just trying to generally pace the
1841 		 * filesystem activity.
1842 		 */
1843 		if (syncer_state != SYNCER_RUNNING)
1844 			cv_timedwait(&sync_wakeup, &sync_mtx,
1845 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1846 		else if (time_uptime == starttime)
1847 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1848 	}
1849 }
1850 
1851 /*
1852  * Request the syncer daemon to speed up its work.
1853  * We never push it to speed up more than half of its
1854  * normal turn time, otherwise it could take over the cpu.
1855  */
1856 int
1857 speedup_syncer(void)
1858 {
1859 	int ret = 0;
1860 
1861 	mtx_lock(&sync_mtx);
1862 	if (rushjob < syncdelay / 2) {
1863 		rushjob += 1;
1864 		stat_rush_requests += 1;
1865 		ret = 1;
1866 	}
1867 	mtx_unlock(&sync_mtx);
1868 	cv_broadcast(&sync_wakeup);
1869 	return (ret);
1870 }
1871 
1872 /*
1873  * Tell the syncer to speed up its work and run though its work
1874  * list several times, then tell it to shut down.
1875  */
1876 static void
1877 syncer_shutdown(void *arg, int howto)
1878 {
1879 
1880 	if (howto & RB_NOSYNC)
1881 		return;
1882 	mtx_lock(&sync_mtx);
1883 	syncer_state = SYNCER_SHUTTING_DOWN;
1884 	rushjob = 0;
1885 	mtx_unlock(&sync_mtx);
1886 	cv_broadcast(&sync_wakeup);
1887 	kproc_shutdown(arg, howto);
1888 }
1889 
1890 /*
1891  * Reassign a buffer from one vnode to another.
1892  * Used to assign file specific control information
1893  * (indirect blocks) to the vnode to which they belong.
1894  */
1895 void
1896 reassignbuf(struct buf *bp)
1897 {
1898 	struct vnode *vp;
1899 	struct bufobj *bo;
1900 	int delay;
1901 #ifdef INVARIANTS
1902 	struct bufv *bv;
1903 #endif
1904 
1905 	vp = bp->b_vp;
1906 	bo = bp->b_bufobj;
1907 	++reassignbufcalls;
1908 
1909 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1910 	    bp, bp->b_vp, bp->b_flags);
1911 	/*
1912 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1913 	 * is not fully linked in.
1914 	 */
1915 	if (bp->b_flags & B_PAGING)
1916 		panic("cannot reassign paging buffer");
1917 
1918 	/*
1919 	 * Delete from old vnode list, if on one.
1920 	 */
1921 	BO_LOCK(bo);
1922 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1923 		buf_vlist_remove(bp);
1924 	else
1925 		panic("reassignbuf: Buffer %p not on queue.", bp);
1926 	/*
1927 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1928 	 * of clean buffers.
1929 	 */
1930 	if (bp->b_flags & B_DELWRI) {
1931 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1932 			switch (vp->v_type) {
1933 			case VDIR:
1934 				delay = dirdelay;
1935 				break;
1936 			case VCHR:
1937 				delay = metadelay;
1938 				break;
1939 			default:
1940 				delay = filedelay;
1941 			}
1942 			vn_syncer_add_to_worklist(bo, delay);
1943 		}
1944 		buf_vlist_add(bp, bo, BX_VNDIRTY);
1945 	} else {
1946 		buf_vlist_add(bp, bo, BX_VNCLEAN);
1947 
1948 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1949 			mtx_lock(&sync_mtx);
1950 			LIST_REMOVE(bo, bo_synclist);
1951 			syncer_worklist_len--;
1952 			mtx_unlock(&sync_mtx);
1953 			bo->bo_flag &= ~BO_ONWORKLST;
1954 		}
1955 	}
1956 #ifdef INVARIANTS
1957 	bv = &bo->bo_clean;
1958 	bp = TAILQ_FIRST(&bv->bv_hd);
1959 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1960 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1961 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1962 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1963 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1964 	bv = &bo->bo_dirty;
1965 	bp = TAILQ_FIRST(&bv->bv_hd);
1966 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1967 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1968 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1969 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1970 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1971 #endif
1972 	BO_UNLOCK(bo);
1973 }
1974 
1975 /*
1976  * Increment the use and hold counts on the vnode, taking care to reference
1977  * the driver's usecount if this is a chardev.  The vholdl() will remove
1978  * the vnode from the free list if it is presently free.  Requires the
1979  * vnode interlock and returns with it held.
1980  */
1981 static void
1982 v_incr_usecount(struct vnode *vp)
1983 {
1984 
1985 	CTR3(KTR_VFS, "v_incr_usecount: vp %p holdcnt %d usecount %d\n",
1986 	    vp, vp->v_holdcnt, vp->v_usecount);
1987 	vp->v_usecount++;
1988 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1989 		dev_lock();
1990 		vp->v_rdev->si_usecount++;
1991 		dev_unlock();
1992 	}
1993 	vholdl(vp);
1994 }
1995 
1996 /*
1997  * Turn a holdcnt into a use+holdcnt such that only one call to
1998  * v_decr_usecount is needed.
1999  */
2000 static void
2001 v_upgrade_usecount(struct vnode *vp)
2002 {
2003 
2004 	CTR3(KTR_VFS, "v_upgrade_usecount: vp %p holdcnt %d usecount %d\n",
2005 	    vp, vp->v_holdcnt, vp->v_usecount);
2006 	vp->v_usecount++;
2007 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2008 		dev_lock();
2009 		vp->v_rdev->si_usecount++;
2010 		dev_unlock();
2011 	}
2012 }
2013 
2014 /*
2015  * Decrement the vnode use and hold count along with the driver's usecount
2016  * if this is a chardev.  The vdropl() below releases the vnode interlock
2017  * as it may free the vnode.
2018  */
2019 static void
2020 v_decr_usecount(struct vnode *vp)
2021 {
2022 
2023 	CTR3(KTR_VFS, "v_decr_usecount: vp %p holdcnt %d usecount %d\n",
2024 	    vp, vp->v_holdcnt, vp->v_usecount);
2025 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2026 	VNASSERT(vp->v_usecount > 0, vp,
2027 	    ("v_decr_usecount: negative usecount"));
2028 	vp->v_usecount--;
2029 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2030 		dev_lock();
2031 		vp->v_rdev->si_usecount--;
2032 		dev_unlock();
2033 	}
2034 	vdropl(vp);
2035 }
2036 
2037 /*
2038  * Decrement only the use count and driver use count.  This is intended to
2039  * be paired with a follow on vdropl() to release the remaining hold count.
2040  * In this way we may vgone() a vnode with a 0 usecount without risk of
2041  * having it end up on a free list because the hold count is kept above 0.
2042  */
2043 static void
2044 v_decr_useonly(struct vnode *vp)
2045 {
2046 
2047 	CTR3(KTR_VFS, "v_decr_useonly: vp %p holdcnt %d usecount %d\n",
2048 	    vp, vp->v_holdcnt, vp->v_usecount);
2049 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2050 	VNASSERT(vp->v_usecount > 0, vp,
2051 	    ("v_decr_useonly: negative usecount"));
2052 	vp->v_usecount--;
2053 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2054 		dev_lock();
2055 		vp->v_rdev->si_usecount--;
2056 		dev_unlock();
2057 	}
2058 }
2059 
2060 /*
2061  * Grab a particular vnode from the free list, increment its
2062  * reference count and lock it.  VI_DOOMED is set if the vnode
2063  * is being destroyed.  Only callers who specify LK_RETRY will
2064  * see doomed vnodes.  If inactive processing was delayed in
2065  * vput try to do it here.
2066  */
2067 int
2068 vget(struct vnode *vp, int flags, struct thread *td)
2069 {
2070 	int error;
2071 
2072 	error = 0;
2073 	VFS_ASSERT_GIANT(vp->v_mount);
2074 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2075 	    ("vget: invalid lock operation"));
2076 	if ((flags & LK_INTERLOCK) == 0)
2077 		VI_LOCK(vp);
2078 	vholdl(vp);
2079 	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2080 		vdrop(vp);
2081 		return (error);
2082 	}
2083 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2084 		panic("vget: vn_lock failed to return ENOENT\n");
2085 	VI_LOCK(vp);
2086 	/* Upgrade our holdcnt to a usecount. */
2087 	v_upgrade_usecount(vp);
2088 	/*
2089  	 * We don't guarantee that any particular close will
2090 	 * trigger inactive processing so just make a best effort
2091 	 * here at preventing a reference to a removed file.  If
2092 	 * we don't succeed no harm is done.
2093 	 */
2094 	if (vp->v_iflag & VI_OWEINACT) {
2095 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2096 		    (flags & LK_NOWAIT) == 0)
2097 			vinactive(vp, td);
2098 		vp->v_iflag &= ~VI_OWEINACT;
2099 	}
2100 	VI_UNLOCK(vp);
2101 	return (0);
2102 }
2103 
2104 /*
2105  * Increase the reference count of a vnode.
2106  */
2107 void
2108 vref(struct vnode *vp)
2109 {
2110 
2111 	VI_LOCK(vp);
2112 	v_incr_usecount(vp);
2113 	VI_UNLOCK(vp);
2114 }
2115 
2116 /*
2117  * Return reference count of a vnode.
2118  *
2119  * The results of this call are only guaranteed when some mechanism other
2120  * than the VI lock is used to stop other processes from gaining references
2121  * to the vnode.  This may be the case if the caller holds the only reference.
2122  * This is also useful when stale data is acceptable as race conditions may
2123  * be accounted for by some other means.
2124  */
2125 int
2126 vrefcnt(struct vnode *vp)
2127 {
2128 	int usecnt;
2129 
2130 	VI_LOCK(vp);
2131 	usecnt = vp->v_usecount;
2132 	VI_UNLOCK(vp);
2133 
2134 	return (usecnt);
2135 }
2136 
2137 
2138 /*
2139  * Vnode put/release.
2140  * If count drops to zero, call inactive routine and return to freelist.
2141  */
2142 void
2143 vrele(struct vnode *vp)
2144 {
2145 	struct thread *td = curthread;	/* XXX */
2146 
2147 	KASSERT(vp != NULL, ("vrele: null vp"));
2148 	VFS_ASSERT_GIANT(vp->v_mount);
2149 
2150 	VI_LOCK(vp);
2151 
2152 	/* Skip this v_writecount check if we're going to panic below. */
2153 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2154 	    ("vrele: missed vn_close"));
2155 
2156 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2157 	    vp->v_usecount == 1)) {
2158 		v_decr_usecount(vp);
2159 		return;
2160 	}
2161 	if (vp->v_usecount != 1) {
2162 #ifdef DIAGNOSTIC
2163 		vprint("vrele: negative ref count", vp);
2164 #endif
2165 		VI_UNLOCK(vp);
2166 		panic("vrele: negative ref cnt");
2167 	}
2168 	/*
2169 	 * We want to hold the vnode until the inactive finishes to
2170 	 * prevent vgone() races.  We drop the use count here and the
2171 	 * hold count below when we're done.
2172 	 */
2173 	v_decr_useonly(vp);
2174 	/*
2175 	 * We must call VOP_INACTIVE with the node locked. Mark
2176 	 * as VI_DOINGINACT to avoid recursion.
2177 	 */
2178 	vp->v_iflag |= VI_OWEINACT;
2179 	if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK) == 0) {
2180 		VI_LOCK(vp);
2181 		if (vp->v_usecount > 0)
2182 			vp->v_iflag &= ~VI_OWEINACT;
2183 		if (vp->v_iflag & VI_OWEINACT)
2184 			vinactive(vp, td);
2185 		VOP_UNLOCK(vp, 0);
2186 	} else {
2187 		VI_LOCK(vp);
2188 		if (vp->v_usecount > 0)
2189 			vp->v_iflag &= ~VI_OWEINACT;
2190 	}
2191 	vdropl(vp);
2192 }
2193 
2194 /*
2195  * Release an already locked vnode.  This give the same effects as
2196  * unlock+vrele(), but takes less time and avoids releasing and
2197  * re-aquiring the lock (as vrele() acquires the lock internally.)
2198  */
2199 void
2200 vput(struct vnode *vp)
2201 {
2202 	struct thread *td = curthread;	/* XXX */
2203 	int error;
2204 
2205 	KASSERT(vp != NULL, ("vput: null vp"));
2206 	ASSERT_VOP_LOCKED(vp, "vput");
2207 	VFS_ASSERT_GIANT(vp->v_mount);
2208 	VI_LOCK(vp);
2209 	/* Skip this v_writecount check if we're going to panic below. */
2210 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2211 	    ("vput: missed vn_close"));
2212 	error = 0;
2213 
2214 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2215 	    vp->v_usecount == 1)) {
2216 		VOP_UNLOCK(vp, 0);
2217 		v_decr_usecount(vp);
2218 		return;
2219 	}
2220 
2221 	if (vp->v_usecount != 1) {
2222 #ifdef DIAGNOSTIC
2223 		vprint("vput: negative ref count", vp);
2224 #endif
2225 		panic("vput: negative ref cnt");
2226 	}
2227 	/*
2228 	 * We want to hold the vnode until the inactive finishes to
2229 	 * prevent vgone() races.  We drop the use count here and the
2230 	 * hold count below when we're done.
2231 	 */
2232 	v_decr_useonly(vp);
2233 	vp->v_iflag |= VI_OWEINACT;
2234 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2235 		error = VOP_LOCK(vp, LK_UPGRADE|LK_INTERLOCK|LK_NOWAIT);
2236 		VI_LOCK(vp);
2237 		if (error) {
2238 			if (vp->v_usecount > 0)
2239 				vp->v_iflag &= ~VI_OWEINACT;
2240 			goto done;
2241 		}
2242 	}
2243 	if (vp->v_usecount > 0)
2244 		vp->v_iflag &= ~VI_OWEINACT;
2245 	if (vp->v_iflag & VI_OWEINACT)
2246 		vinactive(vp, td);
2247 	VOP_UNLOCK(vp, 0);
2248 done:
2249 	vdropl(vp);
2250 }
2251 
2252 /*
2253  * Somebody doesn't want the vnode recycled.
2254  */
2255 void
2256 vhold(struct vnode *vp)
2257 {
2258 
2259 	VI_LOCK(vp);
2260 	vholdl(vp);
2261 	VI_UNLOCK(vp);
2262 }
2263 
2264 void
2265 vholdl(struct vnode *vp)
2266 {
2267 
2268 	vp->v_holdcnt++;
2269 	if (VSHOULDBUSY(vp))
2270 		vbusy(vp);
2271 }
2272 
2273 /*
2274  * Note that there is one less who cares about this vnode.  vdrop() is the
2275  * opposite of vhold().
2276  */
2277 void
2278 vdrop(struct vnode *vp)
2279 {
2280 
2281 	VI_LOCK(vp);
2282 	vdropl(vp);
2283 }
2284 
2285 /*
2286  * Drop the hold count of the vnode.  If this is the last reference to
2287  * the vnode we will free it if it has been vgone'd otherwise it is
2288  * placed on the free list.
2289  */
2290 void
2291 vdropl(struct vnode *vp)
2292 {
2293 
2294 	ASSERT_VI_LOCKED(vp, "vdropl");
2295 	if (vp->v_holdcnt <= 0)
2296 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2297 	vp->v_holdcnt--;
2298 	if (vp->v_holdcnt == 0) {
2299 		if (vp->v_iflag & VI_DOOMED) {
2300 			vdestroy(vp);
2301 			return;
2302 		} else
2303 			vfree(vp);
2304 	}
2305 	VI_UNLOCK(vp);
2306 }
2307 
2308 /*
2309  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2310  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2311  * OWEINACT tracks whether a vnode missed a call to inactive due to a
2312  * failed lock upgrade.
2313  */
2314 static void
2315 vinactive(struct vnode *vp, struct thread *td)
2316 {
2317 
2318 	ASSERT_VOP_ELOCKED(vp, "vinactive");
2319 	ASSERT_VI_LOCKED(vp, "vinactive");
2320 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2321 	    ("vinactive: recursed on VI_DOINGINACT"));
2322 	vp->v_iflag |= VI_DOINGINACT;
2323 	vp->v_iflag &= ~VI_OWEINACT;
2324 	VI_UNLOCK(vp);
2325 	VOP_INACTIVE(vp, td);
2326 	VI_LOCK(vp);
2327 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2328 	    ("vinactive: lost VI_DOINGINACT"));
2329 	vp->v_iflag &= ~VI_DOINGINACT;
2330 }
2331 
2332 /*
2333  * Remove any vnodes in the vnode table belonging to mount point mp.
2334  *
2335  * If FORCECLOSE is not specified, there should not be any active ones,
2336  * return error if any are found (nb: this is a user error, not a
2337  * system error). If FORCECLOSE is specified, detach any active vnodes
2338  * that are found.
2339  *
2340  * If WRITECLOSE is set, only flush out regular file vnodes open for
2341  * writing.
2342  *
2343  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2344  *
2345  * `rootrefs' specifies the base reference count for the root vnode
2346  * of this filesystem. The root vnode is considered busy if its
2347  * v_usecount exceeds this value. On a successful return, vflush(, td)
2348  * will call vrele() on the root vnode exactly rootrefs times.
2349  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2350  * be zero.
2351  */
2352 #ifdef DIAGNOSTIC
2353 static int busyprt = 0;		/* print out busy vnodes */
2354 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2355 #endif
2356 
2357 int
2358 vflush( struct mount *mp, int rootrefs, int flags, struct thread *td)
2359 {
2360 	struct vnode *vp, *mvp, *rootvp = NULL;
2361 	struct vattr vattr;
2362 	int busy = 0, error;
2363 
2364 	CTR1(KTR_VFS, "vflush: mp %p", mp);
2365 	if (rootrefs > 0) {
2366 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2367 		    ("vflush: bad args"));
2368 		/*
2369 		 * Get the filesystem root vnode. We can vput() it
2370 		 * immediately, since with rootrefs > 0, it won't go away.
2371 		 */
2372 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0)
2373 			return (error);
2374 		vput(rootvp);
2375 
2376 	}
2377 	MNT_ILOCK(mp);
2378 loop:
2379 	MNT_VNODE_FOREACH(vp, mp, mvp) {
2380 
2381 		VI_LOCK(vp);
2382 		vholdl(vp);
2383 		MNT_IUNLOCK(mp);
2384 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2385 		if (error) {
2386 			vdrop(vp);
2387 			MNT_ILOCK(mp);
2388 			MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2389 			goto loop;
2390 		}
2391 		/*
2392 		 * Skip over a vnodes marked VV_SYSTEM.
2393 		 */
2394 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2395 			VOP_UNLOCK(vp, 0);
2396 			vdrop(vp);
2397 			MNT_ILOCK(mp);
2398 			continue;
2399 		}
2400 		/*
2401 		 * If WRITECLOSE is set, flush out unlinked but still open
2402 		 * files (even if open only for reading) and regular file
2403 		 * vnodes open for writing.
2404 		 */
2405 		if (flags & WRITECLOSE) {
2406 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2407 			VI_LOCK(vp);
2408 
2409 			if ((vp->v_type == VNON ||
2410 			    (error == 0 && vattr.va_nlink > 0)) &&
2411 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2412 				VOP_UNLOCK(vp, 0);
2413 				vdropl(vp);
2414 				MNT_ILOCK(mp);
2415 				continue;
2416 			}
2417 		} else
2418 			VI_LOCK(vp);
2419 		/*
2420 		 * With v_usecount == 0, all we need to do is clear out the
2421 		 * vnode data structures and we are done.
2422 		 *
2423 		 * If FORCECLOSE is set, forcibly close the vnode.
2424 		 */
2425 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2426 			VNASSERT(vp->v_usecount == 0 ||
2427 			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2428 			    ("device VNODE %p is FORCECLOSED", vp));
2429 			vgonel(vp);
2430 		} else {
2431 			busy++;
2432 #ifdef DIAGNOSTIC
2433 			if (busyprt)
2434 				vprint("vflush: busy vnode", vp);
2435 #endif
2436 		}
2437 		VOP_UNLOCK(vp, 0);
2438 		vdropl(vp);
2439 		MNT_ILOCK(mp);
2440 	}
2441 	MNT_IUNLOCK(mp);
2442 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2443 		/*
2444 		 * If just the root vnode is busy, and if its refcount
2445 		 * is equal to `rootrefs', then go ahead and kill it.
2446 		 */
2447 		VI_LOCK(rootvp);
2448 		KASSERT(busy > 0, ("vflush: not busy"));
2449 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2450 		    ("vflush: usecount %d < rootrefs %d",
2451 		     rootvp->v_usecount, rootrefs));
2452 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2453 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2454 			vgone(rootvp);
2455 			VOP_UNLOCK(rootvp, 0);
2456 			busy = 0;
2457 		} else
2458 			VI_UNLOCK(rootvp);
2459 	}
2460 	if (busy)
2461 		return (EBUSY);
2462 	for (; rootrefs > 0; rootrefs--)
2463 		vrele(rootvp);
2464 	return (0);
2465 }
2466 
2467 /*
2468  * Recycle an unused vnode to the front of the free list.
2469  */
2470 int
2471 vrecycle(struct vnode *vp, struct thread *td)
2472 {
2473 	int recycled;
2474 
2475 	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2476 	recycled = 0;
2477 	VI_LOCK(vp);
2478 	if (vp->v_usecount == 0) {
2479 		recycled = 1;
2480 		vgonel(vp);
2481 	}
2482 	VI_UNLOCK(vp);
2483 	return (recycled);
2484 }
2485 
2486 /*
2487  * Eliminate all activity associated with a vnode
2488  * in preparation for reuse.
2489  */
2490 void
2491 vgone(struct vnode *vp)
2492 {
2493 	VI_LOCK(vp);
2494 	vgonel(vp);
2495 	VI_UNLOCK(vp);
2496 }
2497 
2498 /*
2499  * vgone, with the vp interlock held.
2500  */
2501 void
2502 vgonel(struct vnode *vp)
2503 {
2504 	struct thread *td;
2505 	int oweinact;
2506 	int active;
2507 	struct mount *mp;
2508 
2509 	CTR1(KTR_VFS, "vgonel: vp %p", vp);
2510 	ASSERT_VOP_ELOCKED(vp, "vgonel");
2511 	ASSERT_VI_LOCKED(vp, "vgonel");
2512 	VNASSERT(vp->v_holdcnt, vp,
2513 	    ("vgonel: vp %p has no reference.", vp));
2514 	td = curthread;
2515 
2516 	/*
2517 	 * Don't vgonel if we're already doomed.
2518 	 */
2519 	if (vp->v_iflag & VI_DOOMED)
2520 		return;
2521 	vp->v_iflag |= VI_DOOMED;
2522 	/*
2523 	 * Check to see if the vnode is in use.  If so, we have to call
2524 	 * VOP_CLOSE() and VOP_INACTIVE().
2525 	 */
2526 	active = vp->v_usecount;
2527 	oweinact = (vp->v_iflag & VI_OWEINACT);
2528 	VI_UNLOCK(vp);
2529 	/*
2530 	 * Clean out any buffers associated with the vnode.
2531 	 * If the flush fails, just toss the buffers.
2532 	 */
2533 	mp = NULL;
2534 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2535 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2536 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2537 		vinvalbuf(vp, 0, 0, 0);
2538 
2539 	/*
2540 	 * If purging an active vnode, it must be closed and
2541 	 * deactivated before being reclaimed.
2542 	 */
2543 	if (active)
2544 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2545 	if (oweinact || active) {
2546 		VI_LOCK(vp);
2547 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2548 			vinactive(vp, td);
2549 		VI_UNLOCK(vp);
2550 	}
2551 	/*
2552 	 * Reclaim the vnode.
2553 	 */
2554 	if (VOP_RECLAIM(vp, td))
2555 		panic("vgone: cannot reclaim");
2556 	if (mp != NULL)
2557 		vn_finished_secondary_write(mp);
2558 	VNASSERT(vp->v_object == NULL, vp,
2559 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2560 	/*
2561 	 * Clear the advisory locks and wake up waiting threads.
2562 	 */
2563 	lf_purgelocks(vp, &(vp->v_lockf));
2564 	/*
2565 	 * Delete from old mount point vnode list.
2566 	 */
2567 	delmntque(vp);
2568 	cache_purge(vp);
2569 	/*
2570 	 * Done with purge, reset to the standard lock and invalidate
2571 	 * the vnode.
2572 	 */
2573 	VI_LOCK(vp);
2574 	vp->v_vnlock = &vp->v_lock;
2575 	vp->v_op = &dead_vnodeops;
2576 	vp->v_tag = "none";
2577 	vp->v_type = VBAD;
2578 }
2579 
2580 /*
2581  * Calculate the total number of references to a special device.
2582  */
2583 int
2584 vcount(struct vnode *vp)
2585 {
2586 	int count;
2587 
2588 	dev_lock();
2589 	count = vp->v_rdev->si_usecount;
2590 	dev_unlock();
2591 	return (count);
2592 }
2593 
2594 /*
2595  * Same as above, but using the struct cdev *as argument
2596  */
2597 int
2598 count_dev(struct cdev *dev)
2599 {
2600 	int count;
2601 
2602 	dev_lock();
2603 	count = dev->si_usecount;
2604 	dev_unlock();
2605 	return(count);
2606 }
2607 
2608 /*
2609  * Print out a description of a vnode.
2610  */
2611 static char *typename[] =
2612 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2613  "VMARKER"};
2614 
2615 void
2616 vn_printf(struct vnode *vp, const char *fmt, ...)
2617 {
2618 	va_list ap;
2619 	char buf[256], buf2[16];
2620 	u_long flags;
2621 
2622 	va_start(ap, fmt);
2623 	vprintf(fmt, ap);
2624 	va_end(ap);
2625 	printf("%p: ", (void *)vp);
2626 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2627 	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2628 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2629 	buf[0] = '\0';
2630 	buf[1] = '\0';
2631 	if (vp->v_vflag & VV_ROOT)
2632 		strlcat(buf, "|VV_ROOT", sizeof(buf));
2633 	if (vp->v_vflag & VV_ISTTY)
2634 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2635 	if (vp->v_vflag & VV_NOSYNC)
2636 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2637 	if (vp->v_vflag & VV_CACHEDLABEL)
2638 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2639 	if (vp->v_vflag & VV_TEXT)
2640 		strlcat(buf, "|VV_TEXT", sizeof(buf));
2641 	if (vp->v_vflag & VV_COPYONWRITE)
2642 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2643 	if (vp->v_vflag & VV_SYSTEM)
2644 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2645 	if (vp->v_vflag & VV_PROCDEP)
2646 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2647 	if (vp->v_vflag & VV_NOKNOTE)
2648 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2649 	if (vp->v_vflag & VV_DELETED)
2650 		strlcat(buf, "|VV_DELETED", sizeof(buf));
2651 	if (vp->v_vflag & VV_MD)
2652 		strlcat(buf, "|VV_MD", sizeof(buf));
2653 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2654 	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2655 	    VV_NOKNOTE | VV_DELETED | VV_MD);
2656 	if (flags != 0) {
2657 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2658 		strlcat(buf, buf2, sizeof(buf));
2659 	}
2660 	if (vp->v_iflag & VI_MOUNT)
2661 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2662 	if (vp->v_iflag & VI_AGE)
2663 		strlcat(buf, "|VI_AGE", sizeof(buf));
2664 	if (vp->v_iflag & VI_DOOMED)
2665 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2666 	if (vp->v_iflag & VI_FREE)
2667 		strlcat(buf, "|VI_FREE", sizeof(buf));
2668 	if (vp->v_iflag & VI_OBJDIRTY)
2669 		strlcat(buf, "|VI_OBJDIRTY", sizeof(buf));
2670 	if (vp->v_iflag & VI_DOINGINACT)
2671 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2672 	if (vp->v_iflag & VI_OWEINACT)
2673 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2674 	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2675 	    VI_OBJDIRTY | VI_DOINGINACT | VI_OWEINACT);
2676 	if (flags != 0) {
2677 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2678 		strlcat(buf, buf2, sizeof(buf));
2679 	}
2680 	printf("    flags (%s)\n", buf + 1);
2681 	if (mtx_owned(VI_MTX(vp)))
2682 		printf(" VI_LOCKed");
2683 	if (vp->v_object != NULL)
2684 		printf("    v_object %p ref %d pages %d\n",
2685 		    vp->v_object, vp->v_object->ref_count,
2686 		    vp->v_object->resident_page_count);
2687 	printf("    ");
2688 	lockmgr_printinfo(vp->v_vnlock);
2689 	printf("\n");
2690 	if (vp->v_data != NULL)
2691 		VOP_PRINT(vp);
2692 }
2693 
2694 #ifdef DDB
2695 /*
2696  * List all of the locked vnodes in the system.
2697  * Called when debugging the kernel.
2698  */
2699 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2700 {
2701 	struct mount *mp, *nmp;
2702 	struct vnode *vp;
2703 
2704 	/*
2705 	 * Note: because this is DDB, we can't obey the locking semantics
2706 	 * for these structures, which means we could catch an inconsistent
2707 	 * state and dereference a nasty pointer.  Not much to be done
2708 	 * about that.
2709 	 */
2710 	db_printf("Locked vnodes\n");
2711 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2712 		nmp = TAILQ_NEXT(mp, mnt_list);
2713 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2714 			if (vp->v_type != VMARKER &&
2715 			    VOP_ISLOCKED(vp))
2716 				vprint("", vp);
2717 		}
2718 		nmp = TAILQ_NEXT(mp, mnt_list);
2719 	}
2720 }
2721 
2722 /*
2723  * Show details about the given vnode.
2724  */
2725 DB_SHOW_COMMAND(vnode, db_show_vnode)
2726 {
2727 	struct vnode *vp;
2728 
2729 	if (!have_addr)
2730 		return;
2731 	vp = (struct vnode *)addr;
2732 	vn_printf(vp, "vnode ");
2733 }
2734 
2735 /*
2736  * Show details about the given mount point.
2737  */
2738 DB_SHOW_COMMAND(mount, db_show_mount)
2739 {
2740 	struct mount *mp;
2741 	struct statfs *sp;
2742 	struct vnode *vp;
2743 	char buf[512];
2744 	u_int flags;
2745 
2746 	if (!have_addr) {
2747 		/* No address given, print short info about all mount points. */
2748 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2749 			db_printf("%p %s on %s (%s)\n", mp,
2750 			    mp->mnt_stat.f_mntfromname,
2751 			    mp->mnt_stat.f_mntonname,
2752 			    mp->mnt_stat.f_fstypename);
2753 			if (db_pager_quit)
2754 				break;
2755 		}
2756 		db_printf("\nMore info: show mount <addr>\n");
2757 		return;
2758 	}
2759 
2760 	mp = (struct mount *)addr;
2761 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
2762 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
2763 
2764 	buf[0] = '\0';
2765 	flags = mp->mnt_flag;
2766 #define	MNT_FLAG(flag)	do {						\
2767 	if (flags & (flag)) {						\
2768 		if (buf[0] != '\0')					\
2769 			strlcat(buf, ", ", sizeof(buf));		\
2770 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
2771 		flags &= ~(flag);					\
2772 	}								\
2773 } while (0)
2774 	MNT_FLAG(MNT_RDONLY);
2775 	MNT_FLAG(MNT_SYNCHRONOUS);
2776 	MNT_FLAG(MNT_NOEXEC);
2777 	MNT_FLAG(MNT_NOSUID);
2778 	MNT_FLAG(MNT_UNION);
2779 	MNT_FLAG(MNT_ASYNC);
2780 	MNT_FLAG(MNT_SUIDDIR);
2781 	MNT_FLAG(MNT_SOFTDEP);
2782 	MNT_FLAG(MNT_NOSYMFOLLOW);
2783 	MNT_FLAG(MNT_GJOURNAL);
2784 	MNT_FLAG(MNT_MULTILABEL);
2785 	MNT_FLAG(MNT_ACLS);
2786 	MNT_FLAG(MNT_NOATIME);
2787 	MNT_FLAG(MNT_NOCLUSTERR);
2788 	MNT_FLAG(MNT_NOCLUSTERW);
2789 	MNT_FLAG(MNT_EXRDONLY);
2790 	MNT_FLAG(MNT_EXPORTED);
2791 	MNT_FLAG(MNT_DEFEXPORTED);
2792 	MNT_FLAG(MNT_EXPORTANON);
2793 	MNT_FLAG(MNT_EXKERB);
2794 	MNT_FLAG(MNT_EXPUBLIC);
2795 	MNT_FLAG(MNT_LOCAL);
2796 	MNT_FLAG(MNT_QUOTA);
2797 	MNT_FLAG(MNT_ROOTFS);
2798 	MNT_FLAG(MNT_USER);
2799 	MNT_FLAG(MNT_IGNORE);
2800 	MNT_FLAG(MNT_UPDATE);
2801 	MNT_FLAG(MNT_DELEXPORT);
2802 	MNT_FLAG(MNT_RELOAD);
2803 	MNT_FLAG(MNT_FORCE);
2804 	MNT_FLAG(MNT_SNAPSHOT);
2805 	MNT_FLAG(MNT_BYFSID);
2806 #undef MNT_FLAG
2807 	if (flags != 0) {
2808 		if (buf[0] != '\0')
2809 			strlcat(buf, ", ", sizeof(buf));
2810 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2811 		    "0x%08x", flags);
2812 	}
2813 	db_printf("    mnt_flag = %s\n", buf);
2814 
2815 	buf[0] = '\0';
2816 	flags = mp->mnt_kern_flag;
2817 #define	MNT_KERN_FLAG(flag)	do {					\
2818 	if (flags & (flag)) {						\
2819 		if (buf[0] != '\0')					\
2820 			strlcat(buf, ", ", sizeof(buf));		\
2821 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
2822 		flags &= ~(flag);					\
2823 	}								\
2824 } while (0)
2825 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
2826 	MNT_KERN_FLAG(MNTK_ASYNC);
2827 	MNT_KERN_FLAG(MNTK_SOFTDEP);
2828 	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
2829 	MNT_KERN_FLAG(MNTK_UNMOUNT);
2830 	MNT_KERN_FLAG(MNTK_MWAIT);
2831 	MNT_KERN_FLAG(MNTK_SUSPEND);
2832 	MNT_KERN_FLAG(MNTK_SUSPEND2);
2833 	MNT_KERN_FLAG(MNTK_SUSPENDED);
2834 	MNT_KERN_FLAG(MNTK_MPSAFE);
2835 	MNT_KERN_FLAG(MNTK_NOKNOTE);
2836 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
2837 #undef MNT_KERN_FLAG
2838 	if (flags != 0) {
2839 		if (buf[0] != '\0')
2840 			strlcat(buf, ", ", sizeof(buf));
2841 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2842 		    "0x%08x", flags);
2843 	}
2844 	db_printf("    mnt_kern_flag = %s\n", buf);
2845 
2846 	sp = &mp->mnt_stat;
2847 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
2848 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
2849 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
2850 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
2851 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
2852 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
2853 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
2854 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
2855 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
2856 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
2857 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
2858 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
2859 
2860 	db_printf("    mnt_cred = { uid=%u ruid=%u",
2861 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
2862 	if (mp->mnt_cred->cr_prison != NULL)
2863 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
2864 	db_printf(" }\n");
2865 	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
2866 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
2867 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
2868 	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
2869 	db_printf("    mnt_noasync = %u\n", mp->mnt_noasync);
2870 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
2871 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
2872 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
2873 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
2874 	db_printf("    mnt_secondary_accwrites = %d\n",
2875 	    mp->mnt_secondary_accwrites);
2876 	db_printf("    mnt_gjprovider = %s\n",
2877 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
2878 	db_printf("\n");
2879 
2880 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2881 		if (vp->v_type != VMARKER) {
2882 			vn_printf(vp, "vnode ");
2883 			if (db_pager_quit)
2884 				break;
2885 		}
2886 	}
2887 }
2888 #endif	/* DDB */
2889 
2890 /*
2891  * Fill in a struct xvfsconf based on a struct vfsconf.
2892  */
2893 static void
2894 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2895 {
2896 
2897 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2898 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2899 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2900 	xvfsp->vfc_flags = vfsp->vfc_flags;
2901 	/*
2902 	 * These are unused in userland, we keep them
2903 	 * to not break binary compatibility.
2904 	 */
2905 	xvfsp->vfc_vfsops = NULL;
2906 	xvfsp->vfc_next = NULL;
2907 }
2908 
2909 /*
2910  * Top level filesystem related information gathering.
2911  */
2912 static int
2913 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2914 {
2915 	struct vfsconf *vfsp;
2916 	struct xvfsconf xvfsp;
2917 	int error;
2918 
2919 	error = 0;
2920 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2921 		bzero(&xvfsp, sizeof(xvfsp));
2922 		vfsconf2x(vfsp, &xvfsp);
2923 		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2924 		if (error)
2925 			break;
2926 	}
2927 	return (error);
2928 }
2929 
2930 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2931     "S,xvfsconf", "List of all configured filesystems");
2932 
2933 #ifndef BURN_BRIDGES
2934 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2935 
2936 static int
2937 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2938 {
2939 	int *name = (int *)arg1 - 1;	/* XXX */
2940 	u_int namelen = arg2 + 1;	/* XXX */
2941 	struct vfsconf *vfsp;
2942 	struct xvfsconf xvfsp;
2943 
2944 	printf("WARNING: userland calling deprecated sysctl, "
2945 	    "please rebuild world\n");
2946 
2947 #if 1 || defined(COMPAT_PRELITE2)
2948 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2949 	if (namelen == 1)
2950 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2951 #endif
2952 
2953 	switch (name[1]) {
2954 	case VFS_MAXTYPENUM:
2955 		if (namelen != 2)
2956 			return (ENOTDIR);
2957 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2958 	case VFS_CONF:
2959 		if (namelen != 3)
2960 			return (ENOTDIR);	/* overloaded */
2961 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2962 			if (vfsp->vfc_typenum == name[2])
2963 				break;
2964 		if (vfsp == NULL)
2965 			return (EOPNOTSUPP);
2966 		bzero(&xvfsp, sizeof(xvfsp));
2967 		vfsconf2x(vfsp, &xvfsp);
2968 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2969 	}
2970 	return (EOPNOTSUPP);
2971 }
2972 
2973 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
2974 	vfs_sysctl, "Generic filesystem");
2975 
2976 #if 1 || defined(COMPAT_PRELITE2)
2977 
2978 static int
2979 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2980 {
2981 	int error;
2982 	struct vfsconf *vfsp;
2983 	struct ovfsconf ovfs;
2984 
2985 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2986 		bzero(&ovfs, sizeof(ovfs));
2987 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2988 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2989 		ovfs.vfc_index = vfsp->vfc_typenum;
2990 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2991 		ovfs.vfc_flags = vfsp->vfc_flags;
2992 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2993 		if (error)
2994 			return error;
2995 	}
2996 	return 0;
2997 }
2998 
2999 #endif /* 1 || COMPAT_PRELITE2 */
3000 #endif /* !BURN_BRIDGES */
3001 
3002 #define KINFO_VNODESLOP		10
3003 #ifdef notyet
3004 /*
3005  * Dump vnode list (via sysctl).
3006  */
3007 /* ARGSUSED */
3008 static int
3009 sysctl_vnode(SYSCTL_HANDLER_ARGS)
3010 {
3011 	struct xvnode *xvn;
3012 	struct mount *mp;
3013 	struct vnode *vp;
3014 	int error, len, n;
3015 
3016 	/*
3017 	 * Stale numvnodes access is not fatal here.
3018 	 */
3019 	req->lock = 0;
3020 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3021 	if (!req->oldptr)
3022 		/* Make an estimate */
3023 		return (SYSCTL_OUT(req, 0, len));
3024 
3025 	error = sysctl_wire_old_buffer(req, 0);
3026 	if (error != 0)
3027 		return (error);
3028 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3029 	n = 0;
3030 	mtx_lock(&mountlist_mtx);
3031 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3032 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3033 			continue;
3034 		MNT_ILOCK(mp);
3035 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3036 			if (n == len)
3037 				break;
3038 			vref(vp);
3039 			xvn[n].xv_size = sizeof *xvn;
3040 			xvn[n].xv_vnode = vp;
3041 			xvn[n].xv_id = 0;	/* XXX compat */
3042 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3043 			XV_COPY(usecount);
3044 			XV_COPY(writecount);
3045 			XV_COPY(holdcnt);
3046 			XV_COPY(mount);
3047 			XV_COPY(numoutput);
3048 			XV_COPY(type);
3049 #undef XV_COPY
3050 			xvn[n].xv_flag = vp->v_vflag;
3051 
3052 			switch (vp->v_type) {
3053 			case VREG:
3054 			case VDIR:
3055 			case VLNK:
3056 				break;
3057 			case VBLK:
3058 			case VCHR:
3059 				if (vp->v_rdev == NULL) {
3060 					vrele(vp);
3061 					continue;
3062 				}
3063 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3064 				break;
3065 			case VSOCK:
3066 				xvn[n].xv_socket = vp->v_socket;
3067 				break;
3068 			case VFIFO:
3069 				xvn[n].xv_fifo = vp->v_fifoinfo;
3070 				break;
3071 			case VNON:
3072 			case VBAD:
3073 			default:
3074 				/* shouldn't happen? */
3075 				vrele(vp);
3076 				continue;
3077 			}
3078 			vrele(vp);
3079 			++n;
3080 		}
3081 		MNT_IUNLOCK(mp);
3082 		mtx_lock(&mountlist_mtx);
3083 		vfs_unbusy(mp);
3084 		if (n == len)
3085 			break;
3086 	}
3087 	mtx_unlock(&mountlist_mtx);
3088 
3089 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3090 	free(xvn, M_TEMP);
3091 	return (error);
3092 }
3093 
3094 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3095 	0, 0, sysctl_vnode, "S,xvnode", "");
3096 #endif
3097 
3098 /*
3099  * Unmount all filesystems. The list is traversed in reverse order
3100  * of mounting to avoid dependencies.
3101  */
3102 void
3103 vfs_unmountall(void)
3104 {
3105 	struct mount *mp;
3106 	struct thread *td;
3107 	int error;
3108 
3109 	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
3110 	td = curthread;
3111 	/*
3112 	 * Since this only runs when rebooting, it is not interlocked.
3113 	 */
3114 	while(!TAILQ_EMPTY(&mountlist)) {
3115 		mp = TAILQ_LAST(&mountlist, mntlist);
3116 		error = dounmount(mp, MNT_FORCE, td);
3117 		if (error) {
3118 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3119 			/*
3120 			 * XXX: Due to the way in which we mount the root
3121 			 * file system off of devfs, devfs will generate a
3122 			 * "busy" warning when we try to unmount it before
3123 			 * the root.  Don't print a warning as a result in
3124 			 * order to avoid false positive errors that may
3125 			 * cause needless upset.
3126 			 */
3127 			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3128 				printf("unmount of %s failed (",
3129 				    mp->mnt_stat.f_mntonname);
3130 				if (error == EBUSY)
3131 					printf("BUSY)\n");
3132 				else
3133 					printf("%d)\n", error);
3134 			}
3135 		} else {
3136 			/* The unmount has removed mp from the mountlist */
3137 		}
3138 	}
3139 }
3140 
3141 /*
3142  * perform msync on all vnodes under a mount point
3143  * the mount point must be locked.
3144  */
3145 void
3146 vfs_msync(struct mount *mp, int flags)
3147 {
3148 	struct vnode *vp, *mvp;
3149 	struct vm_object *obj;
3150 
3151 	MNT_ILOCK(mp);
3152 	MNT_VNODE_FOREACH(vp, mp, mvp) {
3153 		VI_LOCK(vp);
3154 		if ((vp->v_iflag & VI_OBJDIRTY) &&
3155 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3156 			MNT_IUNLOCK(mp);
3157 			if (!vget(vp,
3158 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3159 			    curthread)) {
3160 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3161 					vput(vp);
3162 					MNT_ILOCK(mp);
3163 					continue;
3164 				}
3165 
3166 				obj = vp->v_object;
3167 				if (obj != NULL) {
3168 					VM_OBJECT_LOCK(obj);
3169 					vm_object_page_clean(obj, 0, 0,
3170 					    flags == MNT_WAIT ?
3171 					    OBJPC_SYNC : OBJPC_NOSYNC);
3172 					VM_OBJECT_UNLOCK(obj);
3173 				}
3174 				vput(vp);
3175 			}
3176 			MNT_ILOCK(mp);
3177 		} else
3178 			VI_UNLOCK(vp);
3179 	}
3180 	MNT_IUNLOCK(mp);
3181 }
3182 
3183 /*
3184  * Mark a vnode as free, putting it up for recycling.
3185  */
3186 static void
3187 vfree(struct vnode *vp)
3188 {
3189 
3190 	CTR1(KTR_VFS, "vfree vp %p", vp);
3191 	ASSERT_VI_LOCKED(vp, "vfree");
3192 	mtx_lock(&vnode_free_list_mtx);
3193 	VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
3194 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
3195 	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
3196 	VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
3197 	    ("vfree: Freeing doomed vnode"));
3198 	if (vp->v_iflag & VI_AGE) {
3199 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3200 	} else {
3201 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3202 	}
3203 	freevnodes++;
3204 	vp->v_iflag &= ~VI_AGE;
3205 	vp->v_iflag |= VI_FREE;
3206 	mtx_unlock(&vnode_free_list_mtx);
3207 }
3208 
3209 /*
3210  * Opposite of vfree() - mark a vnode as in use.
3211  */
3212 static void
3213 vbusy(struct vnode *vp)
3214 {
3215 	CTR1(KTR_VFS, "vbusy vp %p", vp);
3216 	ASSERT_VI_LOCKED(vp, "vbusy");
3217 	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
3218 	VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
3219 
3220 	mtx_lock(&vnode_free_list_mtx);
3221 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3222 	freevnodes--;
3223 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3224 	mtx_unlock(&vnode_free_list_mtx);
3225 }
3226 
3227 static void
3228 destroy_vpollinfo(struct vpollinfo *vi)
3229 {
3230 	knlist_destroy(&vi->vpi_selinfo.si_note);
3231 	mtx_destroy(&vi->vpi_lock);
3232 	uma_zfree(vnodepoll_zone, vi);
3233 }
3234 
3235 /*
3236  * Initalize per-vnode helper structure to hold poll-related state.
3237  */
3238 void
3239 v_addpollinfo(struct vnode *vp)
3240 {
3241 	struct vpollinfo *vi;
3242 
3243 	if (vp->v_pollinfo != NULL)
3244 		return;
3245 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3246 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3247 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3248 	    vfs_knlunlock, vfs_knllocked);
3249 	VI_LOCK(vp);
3250 	if (vp->v_pollinfo != NULL) {
3251 		VI_UNLOCK(vp);
3252 		destroy_vpollinfo(vi);
3253 		return;
3254 	}
3255 	vp->v_pollinfo = vi;
3256 	VI_UNLOCK(vp);
3257 }
3258 
3259 /*
3260  * Record a process's interest in events which might happen to
3261  * a vnode.  Because poll uses the historic select-style interface
3262  * internally, this routine serves as both the ``check for any
3263  * pending events'' and the ``record my interest in future events''
3264  * functions.  (These are done together, while the lock is held,
3265  * to avoid race conditions.)
3266  */
3267 int
3268 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3269 {
3270 
3271 	v_addpollinfo(vp);
3272 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3273 	if (vp->v_pollinfo->vpi_revents & events) {
3274 		/*
3275 		 * This leaves events we are not interested
3276 		 * in available for the other process which
3277 		 * which presumably had requested them
3278 		 * (otherwise they would never have been
3279 		 * recorded).
3280 		 */
3281 		events &= vp->v_pollinfo->vpi_revents;
3282 		vp->v_pollinfo->vpi_revents &= ~events;
3283 
3284 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3285 		return (events);
3286 	}
3287 	vp->v_pollinfo->vpi_events |= events;
3288 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3289 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3290 	return (0);
3291 }
3292 
3293 /*
3294  * Routine to create and manage a filesystem syncer vnode.
3295  */
3296 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3297 static int	sync_fsync(struct  vop_fsync_args *);
3298 static int	sync_inactive(struct  vop_inactive_args *);
3299 static int	sync_reclaim(struct  vop_reclaim_args *);
3300 
3301 static struct vop_vector sync_vnodeops = {
3302 	.vop_bypass =	VOP_EOPNOTSUPP,
3303 	.vop_close =	sync_close,		/* close */
3304 	.vop_fsync =	sync_fsync,		/* fsync */
3305 	.vop_inactive =	sync_inactive,	/* inactive */
3306 	.vop_reclaim =	sync_reclaim,	/* reclaim */
3307 	.vop_lock1 =	vop_stdlock,	/* lock */
3308 	.vop_unlock =	vop_stdunlock,	/* unlock */
3309 	.vop_islocked =	vop_stdislocked,	/* islocked */
3310 };
3311 
3312 /*
3313  * Create a new filesystem syncer vnode for the specified mount point.
3314  */
3315 int
3316 vfs_allocate_syncvnode(struct mount *mp)
3317 {
3318 	struct vnode *vp;
3319 	struct bufobj *bo;
3320 	static long start, incr, next;
3321 	int error;
3322 
3323 	/* Allocate a new vnode */
3324 	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
3325 		mp->mnt_syncer = NULL;
3326 		return (error);
3327 	}
3328 	vp->v_type = VNON;
3329 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3330 	vp->v_vflag |= VV_FORCEINSMQ;
3331 	error = insmntque(vp, mp);
3332 	if (error != 0)
3333 		panic("vfs_allocate_syncvnode: insmntque failed");
3334 	vp->v_vflag &= ~VV_FORCEINSMQ;
3335 	VOP_UNLOCK(vp, 0);
3336 	/*
3337 	 * Place the vnode onto the syncer worklist. We attempt to
3338 	 * scatter them about on the list so that they will go off
3339 	 * at evenly distributed times even if all the filesystems
3340 	 * are mounted at once.
3341 	 */
3342 	next += incr;
3343 	if (next == 0 || next > syncer_maxdelay) {
3344 		start /= 2;
3345 		incr /= 2;
3346 		if (start == 0) {
3347 			start = syncer_maxdelay / 2;
3348 			incr = syncer_maxdelay;
3349 		}
3350 		next = start;
3351 	}
3352 	bo = &vp->v_bufobj;
3353 	BO_LOCK(bo);
3354 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3355 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3356 	mtx_lock(&sync_mtx);
3357 	sync_vnode_count++;
3358 	mtx_unlock(&sync_mtx);
3359 	BO_UNLOCK(bo);
3360 	mp->mnt_syncer = vp;
3361 	return (0);
3362 }
3363 
3364 /*
3365  * Do a lazy sync of the filesystem.
3366  */
3367 static int
3368 sync_fsync(struct vop_fsync_args *ap)
3369 {
3370 	struct vnode *syncvp = ap->a_vp;
3371 	struct mount *mp = syncvp->v_mount;
3372 	int error;
3373 	struct bufobj *bo;
3374 
3375 	/*
3376 	 * We only need to do something if this is a lazy evaluation.
3377 	 */
3378 	if (ap->a_waitfor != MNT_LAZY)
3379 		return (0);
3380 
3381 	/*
3382 	 * Move ourselves to the back of the sync list.
3383 	 */
3384 	bo = &syncvp->v_bufobj;
3385 	BO_LOCK(bo);
3386 	vn_syncer_add_to_worklist(bo, syncdelay);
3387 	BO_UNLOCK(bo);
3388 
3389 	/*
3390 	 * Walk the list of vnodes pushing all that are dirty and
3391 	 * not already on the sync list.
3392 	 */
3393 	mtx_lock(&mountlist_mtx);
3394 	if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) {
3395 		mtx_unlock(&mountlist_mtx);
3396 		return (0);
3397 	}
3398 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3399 		vfs_unbusy(mp);
3400 		return (0);
3401 	}
3402 	MNT_ILOCK(mp);
3403 	mp->mnt_noasync++;
3404 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
3405 	MNT_IUNLOCK(mp);
3406 	vfs_msync(mp, MNT_NOWAIT);
3407 	error = VFS_SYNC(mp, MNT_LAZY, ap->a_td);
3408 	MNT_ILOCK(mp);
3409 	mp->mnt_noasync--;
3410 	if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
3411 		mp->mnt_kern_flag |= MNTK_ASYNC;
3412 	MNT_IUNLOCK(mp);
3413 	vn_finished_write(mp);
3414 	vfs_unbusy(mp);
3415 	return (error);
3416 }
3417 
3418 /*
3419  * The syncer vnode is no referenced.
3420  */
3421 static int
3422 sync_inactive(struct vop_inactive_args *ap)
3423 {
3424 
3425 	vgone(ap->a_vp);
3426 	return (0);
3427 }
3428 
3429 /*
3430  * The syncer vnode is no longer needed and is being decommissioned.
3431  *
3432  * Modifications to the worklist must be protected by sync_mtx.
3433  */
3434 static int
3435 sync_reclaim(struct vop_reclaim_args *ap)
3436 {
3437 	struct vnode *vp = ap->a_vp;
3438 	struct bufobj *bo;
3439 
3440 	bo = &vp->v_bufobj;
3441 	BO_LOCK(bo);
3442 	vp->v_mount->mnt_syncer = NULL;
3443 	if (bo->bo_flag & BO_ONWORKLST) {
3444 		mtx_lock(&sync_mtx);
3445 		LIST_REMOVE(bo, bo_synclist);
3446 		syncer_worklist_len--;
3447 		sync_vnode_count--;
3448 		mtx_unlock(&sync_mtx);
3449 		bo->bo_flag &= ~BO_ONWORKLST;
3450 	}
3451 	BO_UNLOCK(bo);
3452 
3453 	return (0);
3454 }
3455 
3456 /*
3457  * Check if vnode represents a disk device
3458  */
3459 int
3460 vn_isdisk(struct vnode *vp, int *errp)
3461 {
3462 	int error;
3463 
3464 	error = 0;
3465 	dev_lock();
3466 	if (vp->v_type != VCHR)
3467 		error = ENOTBLK;
3468 	else if (vp->v_rdev == NULL)
3469 		error = ENXIO;
3470 	else if (vp->v_rdev->si_devsw == NULL)
3471 		error = ENXIO;
3472 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3473 		error = ENOTBLK;
3474 	dev_unlock();
3475 	if (errp != NULL)
3476 		*errp = error;
3477 	return (error == 0);
3478 }
3479 
3480 /*
3481  * Common filesystem object access control check routine.  Accepts a
3482  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3483  * and optional call-by-reference privused argument allowing vaccess()
3484  * to indicate to the caller whether privilege was used to satisfy the
3485  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3486  *
3487  * The ifdef'd CAPABILITIES version is here for reference, but is not
3488  * actually used.
3489  */
3490 int
3491 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3492     accmode_t accmode, struct ucred *cred, int *privused)
3493 {
3494 	accmode_t dac_granted;
3495 	accmode_t priv_granted;
3496 
3497 	/*
3498 	 * Look for a normal, non-privileged way to access the file/directory
3499 	 * as requested.  If it exists, go with that.
3500 	 */
3501 
3502 	if (privused != NULL)
3503 		*privused = 0;
3504 
3505 	dac_granted = 0;
3506 
3507 	/* Check the owner. */
3508 	if (cred->cr_uid == file_uid) {
3509 		dac_granted |= VADMIN;
3510 		if (file_mode & S_IXUSR)
3511 			dac_granted |= VEXEC;
3512 		if (file_mode & S_IRUSR)
3513 			dac_granted |= VREAD;
3514 		if (file_mode & S_IWUSR)
3515 			dac_granted |= (VWRITE | VAPPEND);
3516 
3517 		if ((accmode & dac_granted) == accmode)
3518 			return (0);
3519 
3520 		goto privcheck;
3521 	}
3522 
3523 	/* Otherwise, check the groups (first match) */
3524 	if (groupmember(file_gid, cred)) {
3525 		if (file_mode & S_IXGRP)
3526 			dac_granted |= VEXEC;
3527 		if (file_mode & S_IRGRP)
3528 			dac_granted |= VREAD;
3529 		if (file_mode & S_IWGRP)
3530 			dac_granted |= (VWRITE | VAPPEND);
3531 
3532 		if ((accmode & dac_granted) == accmode)
3533 			return (0);
3534 
3535 		goto privcheck;
3536 	}
3537 
3538 	/* Otherwise, check everyone else. */
3539 	if (file_mode & S_IXOTH)
3540 		dac_granted |= VEXEC;
3541 	if (file_mode & S_IROTH)
3542 		dac_granted |= VREAD;
3543 	if (file_mode & S_IWOTH)
3544 		dac_granted |= (VWRITE | VAPPEND);
3545 	if ((accmode & dac_granted) == accmode)
3546 		return (0);
3547 
3548 privcheck:
3549 	/*
3550 	 * Build a privilege mask to determine if the set of privileges
3551 	 * satisfies the requirements when combined with the granted mask
3552 	 * from above.  For each privilege, if the privilege is required,
3553 	 * bitwise or the request type onto the priv_granted mask.
3554 	 */
3555 	priv_granted = 0;
3556 
3557 	if (type == VDIR) {
3558 		/*
3559 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3560 		 * requests, instead of PRIV_VFS_EXEC.
3561 		 */
3562 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3563 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3564 			priv_granted |= VEXEC;
3565 	} else {
3566 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3567 		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3568 			priv_granted |= VEXEC;
3569 	}
3570 
3571 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
3572 	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3573 		priv_granted |= VREAD;
3574 
3575 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3576 	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3577 		priv_granted |= (VWRITE | VAPPEND);
3578 
3579 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3580 	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3581 		priv_granted |= VADMIN;
3582 
3583 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
3584 		/* XXX audit: privilege used */
3585 		if (privused != NULL)
3586 			*privused = 1;
3587 		return (0);
3588 	}
3589 
3590 	return ((accmode & VADMIN) ? EPERM : EACCES);
3591 }
3592 
3593 /*
3594  * Credential check based on process requesting service, and per-attribute
3595  * permissions.
3596  */
3597 int
3598 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3599     struct thread *td, accmode_t accmode)
3600 {
3601 
3602 	/*
3603 	 * Kernel-invoked always succeeds.
3604 	 */
3605 	if (cred == NOCRED)
3606 		return (0);
3607 
3608 	/*
3609 	 * Do not allow privileged processes in jail to directly manipulate
3610 	 * system attributes.
3611 	 */
3612 	switch (attrnamespace) {
3613 	case EXTATTR_NAMESPACE_SYSTEM:
3614 		/* Potentially should be: return (EPERM); */
3615 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3616 	case EXTATTR_NAMESPACE_USER:
3617 		return (VOP_ACCESS(vp, accmode, cred, td));
3618 	default:
3619 		return (EPERM);
3620 	}
3621 }
3622 
3623 #ifdef DEBUG_VFS_LOCKS
3624 /*
3625  * This only exists to supress warnings from unlocked specfs accesses.  It is
3626  * no longer ok to have an unlocked VFS.
3627  */
3628 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
3629 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
3630 
3631 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3632 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3633 
3634 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3635 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3636 
3637 int vfs_badlock_print = 1;	/* Print lock violations. */
3638 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3639 
3640 #ifdef KDB
3641 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3642 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3643 #endif
3644 
3645 static void
3646 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3647 {
3648 
3649 #ifdef KDB
3650 	if (vfs_badlock_backtrace)
3651 		kdb_backtrace();
3652 #endif
3653 	if (vfs_badlock_print)
3654 		printf("%s: %p %s\n", str, (void *)vp, msg);
3655 	if (vfs_badlock_ddb)
3656 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3657 }
3658 
3659 void
3660 assert_vi_locked(struct vnode *vp, const char *str)
3661 {
3662 
3663 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3664 		vfs_badlock("interlock is not locked but should be", str, vp);
3665 }
3666 
3667 void
3668 assert_vi_unlocked(struct vnode *vp, const char *str)
3669 {
3670 
3671 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3672 		vfs_badlock("interlock is locked but should not be", str, vp);
3673 }
3674 
3675 void
3676 assert_vop_locked(struct vnode *vp, const char *str)
3677 {
3678 
3679 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0)
3680 		vfs_badlock("is not locked but should be", str, vp);
3681 }
3682 
3683 void
3684 assert_vop_unlocked(struct vnode *vp, const char *str)
3685 {
3686 
3687 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3688 		vfs_badlock("is locked but should not be", str, vp);
3689 }
3690 
3691 void
3692 assert_vop_elocked(struct vnode *vp, const char *str)
3693 {
3694 
3695 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3696 		vfs_badlock("is not exclusive locked but should be", str, vp);
3697 }
3698 
3699 #if 0
3700 void
3701 assert_vop_elocked_other(struct vnode *vp, const char *str)
3702 {
3703 
3704 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
3705 		vfs_badlock("is not exclusive locked by another thread",
3706 		    str, vp);
3707 }
3708 
3709 void
3710 assert_vop_slocked(struct vnode *vp, const char *str)
3711 {
3712 
3713 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
3714 		vfs_badlock("is not locked shared but should be", str, vp);
3715 }
3716 #endif /* 0 */
3717 #endif /* DEBUG_VFS_LOCKS */
3718 
3719 void
3720 vop_rename_pre(void *ap)
3721 {
3722 	struct vop_rename_args *a = ap;
3723 
3724 #ifdef DEBUG_VFS_LOCKS
3725 	if (a->a_tvp)
3726 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3727 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3728 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3729 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3730 
3731 	/* Check the source (from). */
3732 	if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp)
3733 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3734 	if (a->a_tvp != a->a_fvp)
3735 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
3736 
3737 	/* Check the target. */
3738 	if (a->a_tvp)
3739 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3740 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3741 #endif
3742 	if (a->a_tdvp != a->a_fdvp)
3743 		vhold(a->a_fdvp);
3744 	if (a->a_tvp != a->a_fvp)
3745 		vhold(a->a_fvp);
3746 	vhold(a->a_tdvp);
3747 	if (a->a_tvp)
3748 		vhold(a->a_tvp);
3749 }
3750 
3751 void
3752 vop_strategy_pre(void *ap)
3753 {
3754 #ifdef DEBUG_VFS_LOCKS
3755 	struct vop_strategy_args *a;
3756 	struct buf *bp;
3757 
3758 	a = ap;
3759 	bp = a->a_bp;
3760 
3761 	/*
3762 	 * Cluster ops lock their component buffers but not the IO container.
3763 	 */
3764 	if ((bp->b_flags & B_CLUSTER) != 0)
3765 		return;
3766 
3767 	if (!BUF_ISLOCKED(bp)) {
3768 		if (vfs_badlock_print)
3769 			printf(
3770 			    "VOP_STRATEGY: bp is not locked but should be\n");
3771 		if (vfs_badlock_ddb)
3772 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3773 	}
3774 #endif
3775 }
3776 
3777 void
3778 vop_lookup_pre(void *ap)
3779 {
3780 #ifdef DEBUG_VFS_LOCKS
3781 	struct vop_lookup_args *a;
3782 	struct vnode *dvp;
3783 
3784 	a = ap;
3785 	dvp = a->a_dvp;
3786 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3787 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3788 #endif
3789 }
3790 
3791 void
3792 vop_lookup_post(void *ap, int rc)
3793 {
3794 #ifdef DEBUG_VFS_LOCKS
3795 	struct vop_lookup_args *a;
3796 	struct vnode *dvp;
3797 	struct vnode *vp;
3798 
3799 	a = ap;
3800 	dvp = a->a_dvp;
3801 	vp = *(a->a_vpp);
3802 
3803 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3804 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3805 
3806 	if (!rc)
3807 		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3808 #endif
3809 }
3810 
3811 void
3812 vop_lock_pre(void *ap)
3813 {
3814 #ifdef DEBUG_VFS_LOCKS
3815 	struct vop_lock1_args *a = ap;
3816 
3817 	if ((a->a_flags & LK_INTERLOCK) == 0)
3818 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3819 	else
3820 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3821 #endif
3822 }
3823 
3824 void
3825 vop_lock_post(void *ap, int rc)
3826 {
3827 #ifdef DEBUG_VFS_LOCKS
3828 	struct vop_lock1_args *a = ap;
3829 
3830 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3831 	if (rc == 0)
3832 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3833 #endif
3834 }
3835 
3836 void
3837 vop_unlock_pre(void *ap)
3838 {
3839 #ifdef DEBUG_VFS_LOCKS
3840 	struct vop_unlock_args *a = ap;
3841 
3842 	if (a->a_flags & LK_INTERLOCK)
3843 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3844 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3845 #endif
3846 }
3847 
3848 void
3849 vop_unlock_post(void *ap, int rc)
3850 {
3851 #ifdef DEBUG_VFS_LOCKS
3852 	struct vop_unlock_args *a = ap;
3853 
3854 	if (a->a_flags & LK_INTERLOCK)
3855 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3856 #endif
3857 }
3858 
3859 void
3860 vop_create_post(void *ap, int rc)
3861 {
3862 	struct vop_create_args *a = ap;
3863 
3864 	if (!rc)
3865 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3866 }
3867 
3868 void
3869 vop_link_post(void *ap, int rc)
3870 {
3871 	struct vop_link_args *a = ap;
3872 
3873 	if (!rc) {
3874 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
3875 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
3876 	}
3877 }
3878 
3879 void
3880 vop_mkdir_post(void *ap, int rc)
3881 {
3882 	struct vop_mkdir_args *a = ap;
3883 
3884 	if (!rc)
3885 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3886 }
3887 
3888 void
3889 vop_mknod_post(void *ap, int rc)
3890 {
3891 	struct vop_mknod_args *a = ap;
3892 
3893 	if (!rc)
3894 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3895 }
3896 
3897 void
3898 vop_remove_post(void *ap, int rc)
3899 {
3900 	struct vop_remove_args *a = ap;
3901 
3902 	if (!rc) {
3903 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3904 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3905 	}
3906 }
3907 
3908 void
3909 vop_rename_post(void *ap, int rc)
3910 {
3911 	struct vop_rename_args *a = ap;
3912 
3913 	if (!rc) {
3914 		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
3915 		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
3916 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
3917 		if (a->a_tvp)
3918 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
3919 	}
3920 	if (a->a_tdvp != a->a_fdvp)
3921 		vdrop(a->a_fdvp);
3922 	if (a->a_tvp != a->a_fvp)
3923 		vdrop(a->a_fvp);
3924 	vdrop(a->a_tdvp);
3925 	if (a->a_tvp)
3926 		vdrop(a->a_tvp);
3927 }
3928 
3929 void
3930 vop_rmdir_post(void *ap, int rc)
3931 {
3932 	struct vop_rmdir_args *a = ap;
3933 
3934 	if (!rc) {
3935 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3936 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3937 	}
3938 }
3939 
3940 void
3941 vop_setattr_post(void *ap, int rc)
3942 {
3943 	struct vop_setattr_args *a = ap;
3944 
3945 	if (!rc)
3946 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
3947 }
3948 
3949 void
3950 vop_symlink_post(void *ap, int rc)
3951 {
3952 	struct vop_symlink_args *a = ap;
3953 
3954 	if (!rc)
3955 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3956 }
3957 
3958 static struct knlist fs_knlist;
3959 
3960 static void
3961 vfs_event_init(void *arg)
3962 {
3963 	knlist_init(&fs_knlist, NULL, NULL, NULL, NULL);
3964 }
3965 /* XXX - correct order? */
3966 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3967 
3968 void
3969 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3970 {
3971 
3972 	KNOTE_UNLOCKED(&fs_knlist, event);
3973 }
3974 
3975 static int	filt_fsattach(struct knote *kn);
3976 static void	filt_fsdetach(struct knote *kn);
3977 static int	filt_fsevent(struct knote *kn, long hint);
3978 
3979 struct filterops fs_filtops =
3980 	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3981 
3982 static int
3983 filt_fsattach(struct knote *kn)
3984 {
3985 
3986 	kn->kn_flags |= EV_CLEAR;
3987 	knlist_add(&fs_knlist, kn, 0);
3988 	return (0);
3989 }
3990 
3991 static void
3992 filt_fsdetach(struct knote *kn)
3993 {
3994 
3995 	knlist_remove(&fs_knlist, kn, 0);
3996 }
3997 
3998 static int
3999 filt_fsevent(struct knote *kn, long hint)
4000 {
4001 
4002 	kn->kn_fflags |= hint;
4003 	return (kn->kn_fflags != 0);
4004 }
4005 
4006 static int
4007 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4008 {
4009 	struct vfsidctl vc;
4010 	int error;
4011 	struct mount *mp;
4012 
4013 	error = SYSCTL_IN(req, &vc, sizeof(vc));
4014 	if (error)
4015 		return (error);
4016 	if (vc.vc_vers != VFS_CTL_VERS1)
4017 		return (EINVAL);
4018 	mp = vfs_getvfs(&vc.vc_fsid);
4019 	if (mp == NULL)
4020 		return (ENOENT);
4021 	/* ensure that a specific sysctl goes to the right filesystem. */
4022 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4023 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4024 		vfs_rel(mp);
4025 		return (EINVAL);
4026 	}
4027 	VCTLTOREQ(&vc, req);
4028 	error = VFS_SYSCTL(mp, vc.vc_op, req);
4029 	vfs_rel(mp);
4030 	return (error);
4031 }
4032 
4033 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "",
4034     "Sysctl by fsid");
4035 
4036 /*
4037  * Function to initialize a va_filerev field sensibly.
4038  * XXX: Wouldn't a random number make a lot more sense ??
4039  */
4040 u_quad_t
4041 init_va_filerev(void)
4042 {
4043 	struct bintime bt;
4044 
4045 	getbinuptime(&bt);
4046 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4047 }
4048 
4049 static int	filt_vfsread(struct knote *kn, long hint);
4050 static int	filt_vfswrite(struct knote *kn, long hint);
4051 static int	filt_vfsvnode(struct knote *kn, long hint);
4052 static void	filt_vfsdetach(struct knote *kn);
4053 static struct filterops vfsread_filtops =
4054 	{ 1, NULL, filt_vfsdetach, filt_vfsread };
4055 static struct filterops vfswrite_filtops =
4056 	{ 1, NULL, filt_vfsdetach, filt_vfswrite };
4057 static struct filterops vfsvnode_filtops =
4058 	{ 1, NULL, filt_vfsdetach, filt_vfsvnode };
4059 
4060 static void
4061 vfs_knllock(void *arg)
4062 {
4063 	struct vnode *vp = arg;
4064 
4065 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4066 }
4067 
4068 static void
4069 vfs_knlunlock(void *arg)
4070 {
4071 	struct vnode *vp = arg;
4072 
4073 	VOP_UNLOCK(vp, 0);
4074 }
4075 
4076 static int
4077 vfs_knllocked(void *arg)
4078 {
4079 	struct vnode *vp = arg;
4080 
4081 	return (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
4082 }
4083 
4084 int
4085 vfs_kqfilter(struct vop_kqfilter_args *ap)
4086 {
4087 	struct vnode *vp = ap->a_vp;
4088 	struct knote *kn = ap->a_kn;
4089 	struct knlist *knl;
4090 
4091 	switch (kn->kn_filter) {
4092 	case EVFILT_READ:
4093 		kn->kn_fop = &vfsread_filtops;
4094 		break;
4095 	case EVFILT_WRITE:
4096 		kn->kn_fop = &vfswrite_filtops;
4097 		break;
4098 	case EVFILT_VNODE:
4099 		kn->kn_fop = &vfsvnode_filtops;
4100 		break;
4101 	default:
4102 		return (EINVAL);
4103 	}
4104 
4105 	kn->kn_hook = (caddr_t)vp;
4106 
4107 	v_addpollinfo(vp);
4108 	if (vp->v_pollinfo == NULL)
4109 		return (ENOMEM);
4110 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4111 	knlist_add(knl, kn, 0);
4112 
4113 	return (0);
4114 }
4115 
4116 /*
4117  * Detach knote from vnode
4118  */
4119 static void
4120 filt_vfsdetach(struct knote *kn)
4121 {
4122 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4123 
4124 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4125 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4126 }
4127 
4128 /*ARGSUSED*/
4129 static int
4130 filt_vfsread(struct knote *kn, long hint)
4131 {
4132 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4133 	struct vattr va;
4134 
4135 	/*
4136 	 * filesystem is gone, so set the EOF flag and schedule
4137 	 * the knote for deletion.
4138 	 */
4139 	if (hint == NOTE_REVOKE) {
4140 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4141 		return (1);
4142 	}
4143 
4144 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4145 		return (0);
4146 
4147 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4148 	return (kn->kn_data != 0);
4149 }
4150 
4151 /*ARGSUSED*/
4152 static int
4153 filt_vfswrite(struct knote *kn, long hint)
4154 {
4155 	/*
4156 	 * filesystem is gone, so set the EOF flag and schedule
4157 	 * the knote for deletion.
4158 	 */
4159 	if (hint == NOTE_REVOKE)
4160 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4161 
4162 	kn->kn_data = 0;
4163 	return (1);
4164 }
4165 
4166 static int
4167 filt_vfsvnode(struct knote *kn, long hint)
4168 {
4169 	if (kn->kn_sfflags & hint)
4170 		kn->kn_fflags |= hint;
4171 	if (hint == NOTE_REVOKE) {
4172 		kn->kn_flags |= EV_EOF;
4173 		return (1);
4174 	}
4175 	return (kn->kn_fflags != 0);
4176 }
4177 
4178 int
4179 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4180 {
4181 	int error;
4182 
4183 	if (dp->d_reclen > ap->a_uio->uio_resid)
4184 		return (ENAMETOOLONG);
4185 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4186 	if (error) {
4187 		if (ap->a_ncookies != NULL) {
4188 			if (ap->a_cookies != NULL)
4189 				free(ap->a_cookies, M_TEMP);
4190 			ap->a_cookies = NULL;
4191 			*ap->a_ncookies = 0;
4192 		}
4193 		return (error);
4194 	}
4195 	if (ap->a_ncookies == NULL)
4196 		return (0);
4197 
4198 	KASSERT(ap->a_cookies,
4199 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4200 
4201 	*ap->a_cookies = realloc(*ap->a_cookies,
4202 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4203 	(*ap->a_cookies)[*ap->a_ncookies] = off;
4204 	return (0);
4205 }
4206 
4207 /*
4208  * Mark for update the access time of the file if the filesystem
4209  * supports VA_MARK_ATIME.  This functionality is used by execve
4210  * and mmap, so we want to avoid the synchronous I/O implied by
4211  * directly setting va_atime for the sake of efficiency.
4212  */
4213 void
4214 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4215 {
4216 	struct vattr atimeattr;
4217 
4218 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
4219 		VATTR_NULL(&atimeattr);
4220 		atimeattr.va_vaflags |= VA_MARK_ATIME;
4221 		(void)VOP_SETATTR(vp, &atimeattr, cred);
4222 	}
4223 }
4224