xref: /freebsd/sys/kern/vfs_subr.c (revision 4e1262ac99272db5c65f924acf9686876742c2cd)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/lockf.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/namei.h>
73 #include <sys/pctrie.h>
74 #include <sys/priv.h>
75 #include <sys/reboot.h>
76 #include <sys/refcount.h>
77 #include <sys/rwlock.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smr.h>
81 #include <sys/smp.h>
82 #include <sys/stat.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 #include <sys/watchdog.h>
88 
89 #include <machine/stdarg.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_kern.h>
100 #include <vm/uma.h>
101 
102 #ifdef DDB
103 #include <ddb/ddb.h>
104 #endif
105 
106 static void	delmntque(struct vnode *vp);
107 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 		    int slpflag, int slptimeo);
109 static void	syncer_shutdown(void *arg, int howto);
110 static int	vtryrecycle(struct vnode *vp);
111 static void	v_init_counters(struct vnode *);
112 static void	vn_seqc_init(struct vnode *);
113 static void	vn_seqc_write_end_free(struct vnode *vp);
114 static void	vgonel(struct vnode *);
115 static bool	vhold_recycle_free(struct vnode *);
116 static void	vdropl_recycle(struct vnode *vp);
117 static void	vdrop_recycle(struct vnode *vp);
118 static void	vfs_knllock(void *arg);
119 static void	vfs_knlunlock(void *arg);
120 static void	vfs_knl_assert_lock(void *arg, int what);
121 static void	destroy_vpollinfo(struct vpollinfo *vi);
122 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
123 		    daddr_t startlbn, daddr_t endlbn);
124 static void	vnlru_recalc(void);
125 
126 /*
127  * Number of vnodes in existence.  Increased whenever getnewvnode()
128  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
129  */
130 static u_long __exclusive_cache_line numvnodes;
131 
132 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
133     "Number of vnodes in existence");
134 
135 static counter_u64_t vnodes_created;
136 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
137     "Number of vnodes created by getnewvnode");
138 
139 /*
140  * Conversion tables for conversion from vnode types to inode formats
141  * and back.
142  */
143 enum vtype iftovt_tab[16] = {
144 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
145 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
146 };
147 int vttoif_tab[10] = {
148 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
149 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
150 };
151 
152 /*
153  * List of allocates vnodes in the system.
154  */
155 static TAILQ_HEAD(freelst, vnode) vnode_list;
156 static struct vnode *vnode_list_free_marker;
157 static struct vnode *vnode_list_reclaim_marker;
158 
159 /*
160  * "Free" vnode target.  Free vnodes are rarely completely free, but are
161  * just ones that are cheap to recycle.  Usually they are for files which
162  * have been stat'd but not read; these usually have inode and namecache
163  * data attached to them.  This target is the preferred minimum size of a
164  * sub-cache consisting mostly of such files. The system balances the size
165  * of this sub-cache with its complement to try to prevent either from
166  * thrashing while the other is relatively inactive.  The targets express
167  * a preference for the best balance.
168  *
169  * "Above" this target there are 2 further targets (watermarks) related
170  * to recyling of free vnodes.  In the best-operating case, the cache is
171  * exactly full, the free list has size between vlowat and vhiwat above the
172  * free target, and recycling from it and normal use maintains this state.
173  * Sometimes the free list is below vlowat or even empty, but this state
174  * is even better for immediate use provided the cache is not full.
175  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
176  * ones) to reach one of these states.  The watermarks are currently hard-
177  * coded as 4% and 9% of the available space higher.  These and the default
178  * of 25% for wantfreevnodes are too large if the memory size is large.
179  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
180  * whenever vnlru_proc() becomes active.
181  */
182 static long wantfreevnodes;
183 static long __exclusive_cache_line freevnodes;
184 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
185     &freevnodes, 0, "Number of \"free\" vnodes");
186 static long freevnodes_old;
187 
188 static counter_u64_t recycles_count;
189 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
190     "Number of vnodes recycled to meet vnode cache targets");
191 
192 static counter_u64_t recycles_free_count;
193 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
194     "Number of free vnodes recycled to meet vnode cache targets");
195 
196 static counter_u64_t deferred_inact;
197 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
198     "Number of times inactive processing was deferred");
199 
200 /* To keep more than one thread at a time from running vfs_getnewfsid */
201 static struct mtx mntid_mtx;
202 
203 /*
204  * Lock for any access to the following:
205  *	vnode_list
206  *	numvnodes
207  *	freevnodes
208  */
209 static struct mtx __exclusive_cache_line vnode_list_mtx;
210 
211 /* Publicly exported FS */
212 struct nfs_public nfs_pub;
213 
214 static uma_zone_t buf_trie_zone;
215 static smr_t buf_trie_smr;
216 
217 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
218 static uma_zone_t vnode_zone;
219 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
220 
221 __read_frequently smr_t vfs_smr;
222 
223 /*
224  * The workitem queue.
225  *
226  * It is useful to delay writes of file data and filesystem metadata
227  * for tens of seconds so that quickly created and deleted files need
228  * not waste disk bandwidth being created and removed. To realize this,
229  * we append vnodes to a "workitem" queue. When running with a soft
230  * updates implementation, most pending metadata dependencies should
231  * not wait for more than a few seconds. Thus, mounted on block devices
232  * are delayed only about a half the time that file data is delayed.
233  * Similarly, directory updates are more critical, so are only delayed
234  * about a third the time that file data is delayed. Thus, there are
235  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
236  * one each second (driven off the filesystem syncer process). The
237  * syncer_delayno variable indicates the next queue that is to be processed.
238  * Items that need to be processed soon are placed in this queue:
239  *
240  *	syncer_workitem_pending[syncer_delayno]
241  *
242  * A delay of fifteen seconds is done by placing the request fifteen
243  * entries later in the queue:
244  *
245  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
246  *
247  */
248 static int syncer_delayno;
249 static long syncer_mask;
250 LIST_HEAD(synclist, bufobj);
251 static struct synclist *syncer_workitem_pending;
252 /*
253  * The sync_mtx protects:
254  *	bo->bo_synclist
255  *	sync_vnode_count
256  *	syncer_delayno
257  *	syncer_state
258  *	syncer_workitem_pending
259  *	syncer_worklist_len
260  *	rushjob
261  */
262 static struct mtx sync_mtx;
263 static struct cv sync_wakeup;
264 
265 #define SYNCER_MAXDELAY		32
266 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
267 static int syncdelay = 30;		/* max time to delay syncing data */
268 static int filedelay = 30;		/* time to delay syncing files */
269 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
270     "Time to delay syncing files (in seconds)");
271 static int dirdelay = 29;		/* time to delay syncing directories */
272 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
273     "Time to delay syncing directories (in seconds)");
274 static int metadelay = 28;		/* time to delay syncing metadata */
275 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
276     "Time to delay syncing metadata (in seconds)");
277 static int rushjob;		/* number of slots to run ASAP */
278 static int stat_rush_requests;	/* number of times I/O speeded up */
279 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
280     "Number of times I/O speeded up (rush requests)");
281 
282 #define	VDBATCH_SIZE 8
283 struct vdbatch {
284 	u_int index;
285 	long freevnodes;
286 	struct mtx lock;
287 	struct vnode *tab[VDBATCH_SIZE];
288 };
289 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
290 
291 static void	vdbatch_dequeue(struct vnode *vp);
292 
293 /*
294  * When shutting down the syncer, run it at four times normal speed.
295  */
296 #define SYNCER_SHUTDOWN_SPEEDUP		4
297 static int sync_vnode_count;
298 static int syncer_worklist_len;
299 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
300     syncer_state;
301 
302 /* Target for maximum number of vnodes. */
303 u_long desiredvnodes;
304 static u_long gapvnodes;		/* gap between wanted and desired */
305 static u_long vhiwat;		/* enough extras after expansion */
306 static u_long vlowat;		/* minimal extras before expansion */
307 static u_long vstir;		/* nonzero to stir non-free vnodes */
308 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
309 
310 static u_long vnlru_read_freevnodes(void);
311 
312 /*
313  * Note that no attempt is made to sanitize these parameters.
314  */
315 static int
316 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
317 {
318 	u_long val;
319 	int error;
320 
321 	val = desiredvnodes;
322 	error = sysctl_handle_long(oidp, &val, 0, req);
323 	if (error != 0 || req->newptr == NULL)
324 		return (error);
325 
326 	if (val == desiredvnodes)
327 		return (0);
328 	mtx_lock(&vnode_list_mtx);
329 	desiredvnodes = val;
330 	wantfreevnodes = desiredvnodes / 4;
331 	vnlru_recalc();
332 	mtx_unlock(&vnode_list_mtx);
333 	/*
334 	 * XXX There is no protection against multiple threads changing
335 	 * desiredvnodes at the same time. Locking above only helps vnlru and
336 	 * getnewvnode.
337 	 */
338 	vfs_hash_changesize(desiredvnodes);
339 	cache_changesize(desiredvnodes);
340 	return (0);
341 }
342 
343 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
344     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
345     "LU", "Target for maximum number of vnodes");
346 
347 static int
348 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = wantfreevnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == wantfreevnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	wantfreevnodes = val;
362 	vnlru_recalc();
363 	mtx_unlock(&vnode_list_mtx);
364 	return (0);
365 }
366 
367 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
369     "LU", "Target for minimum number of \"free\" vnodes");
370 
371 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
372     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
373 static int vnlru_nowhere;
374 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
375     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
376 
377 static int
378 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
379 {
380 	struct vnode *vp;
381 	struct nameidata nd;
382 	char *buf;
383 	unsigned long ndflags;
384 	int error;
385 
386 	if (req->newptr == NULL)
387 		return (EINVAL);
388 	if (req->newlen >= PATH_MAX)
389 		return (E2BIG);
390 
391 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
392 	error = SYSCTL_IN(req, buf, req->newlen);
393 	if (error != 0)
394 		goto out;
395 
396 	buf[req->newlen] = '\0';
397 
398 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
399 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
400 	if ((error = namei(&nd)) != 0)
401 		goto out;
402 	vp = nd.ni_vp;
403 
404 	if (VN_IS_DOOMED(vp)) {
405 		/*
406 		 * This vnode is being recycled.  Return != 0 to let the caller
407 		 * know that the sysctl had no effect.  Return EAGAIN because a
408 		 * subsequent call will likely succeed (since namei will create
409 		 * a new vnode if necessary)
410 		 */
411 		error = EAGAIN;
412 		goto putvnode;
413 	}
414 
415 	counter_u64_add(recycles_count, 1);
416 	vgone(vp);
417 putvnode:
418 	NDFREE(&nd, 0);
419 out:
420 	free(buf, M_TEMP);
421 	return (error);
422 }
423 
424 static int
425 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
426 {
427 	struct thread *td = curthread;
428 	struct vnode *vp;
429 	struct file *fp;
430 	int error;
431 	int fd;
432 
433 	if (req->newptr == NULL)
434 		return (EBADF);
435 
436         error = sysctl_handle_int(oidp, &fd, 0, req);
437         if (error != 0)
438                 return (error);
439 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
440 	if (error != 0)
441 		return (error);
442 	vp = fp->f_vnode;
443 
444 	error = vn_lock(vp, LK_EXCLUSIVE);
445 	if (error != 0)
446 		goto drop;
447 
448 	counter_u64_add(recycles_count, 1);
449 	vgone(vp);
450 	VOP_UNLOCK(vp);
451 drop:
452 	fdrop(fp, td);
453 	return (error);
454 }
455 
456 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
457     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
458     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
459 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
460     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
461     sysctl_ftry_reclaim_vnode, "I",
462     "Try to reclaim a vnode by its file descriptor");
463 
464 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
465 #define vnsz2log 8
466 #ifndef DEBUG_LOCKS
467 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
468     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
469     "vnsz2log needs to be updated");
470 #endif
471 
472 /*
473  * Support for the bufobj clean & dirty pctrie.
474  */
475 static void *
476 buf_trie_alloc(struct pctrie *ptree)
477 {
478 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
479 }
480 
481 static void
482 buf_trie_free(struct pctrie *ptree, void *node)
483 {
484 	uma_zfree_smr(buf_trie_zone, node);
485 }
486 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
487     buf_trie_smr);
488 
489 /*
490  * Initialize the vnode management data structures.
491  *
492  * Reevaluate the following cap on the number of vnodes after the physical
493  * memory size exceeds 512GB.  In the limit, as the physical memory size
494  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
495  */
496 #ifndef	MAXVNODES_MAX
497 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
498 #endif
499 
500 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
501 
502 static struct vnode *
503 vn_alloc_marker(struct mount *mp)
504 {
505 	struct vnode *vp;
506 
507 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
508 	vp->v_type = VMARKER;
509 	vp->v_mount = mp;
510 
511 	return (vp);
512 }
513 
514 static void
515 vn_free_marker(struct vnode *vp)
516 {
517 
518 	MPASS(vp->v_type == VMARKER);
519 	free(vp, M_VNODE_MARKER);
520 }
521 
522 #ifdef KASAN
523 static int
524 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
525 {
526 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
527 	return (0);
528 }
529 
530 static void
531 vnode_dtor(void *mem, int size, void *arg __unused)
532 {
533 	size_t end1, end2, off1, off2;
534 
535 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
536 	    offsetof(struct vnode, v_dbatchcpu),
537 	    "KASAN marks require updating");
538 
539 	off1 = offsetof(struct vnode, v_vnodelist);
540 	off2 = offsetof(struct vnode, v_dbatchcpu);
541 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
542 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
543 
544 	/*
545 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
546 	 * after the vnode has been freed.  Try to get some KASAN coverage by
547 	 * marking everything except those two fields as invalid.  Because
548 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
549 	 * the same 8-byte aligned word must also be marked valid.
550 	 */
551 
552 	/* Handle the area from the start until v_vnodelist... */
553 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
554 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
555 
556 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
557 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
558 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
559 	if (off2 > off1)
560 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
561 		    off2 - off1, KASAN_UMA_FREED);
562 
563 	/* ... and finally the area from v_dbatchcpu to the end. */
564 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
565 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
566 	    KASAN_UMA_FREED);
567 }
568 #endif /* KASAN */
569 
570 /*
571  * Initialize a vnode as it first enters the zone.
572  */
573 static int
574 vnode_init(void *mem, int size, int flags)
575 {
576 	struct vnode *vp;
577 
578 	vp = mem;
579 	bzero(vp, size);
580 	/*
581 	 * Setup locks.
582 	 */
583 	vp->v_vnlock = &vp->v_lock;
584 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
585 	/*
586 	 * By default, don't allow shared locks unless filesystems opt-in.
587 	 */
588 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
589 	    LK_NOSHARE | LK_IS_VNODE);
590 	/*
591 	 * Initialize bufobj.
592 	 */
593 	bufobj_init(&vp->v_bufobj, vp);
594 	/*
595 	 * Initialize namecache.
596 	 */
597 	cache_vnode_init(vp);
598 	/*
599 	 * Initialize rangelocks.
600 	 */
601 	rangelock_init(&vp->v_rl);
602 
603 	vp->v_dbatchcpu = NOCPU;
604 
605 	/*
606 	 * Check vhold_recycle_free for an explanation.
607 	 */
608 	vp->v_holdcnt = VHOLD_NO_SMR;
609 	vp->v_type = VNON;
610 	mtx_lock(&vnode_list_mtx);
611 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
612 	mtx_unlock(&vnode_list_mtx);
613 	return (0);
614 }
615 
616 /*
617  * Free a vnode when it is cleared from the zone.
618  */
619 static void
620 vnode_fini(void *mem, int size)
621 {
622 	struct vnode *vp;
623 	struct bufobj *bo;
624 
625 	vp = mem;
626 	vdbatch_dequeue(vp);
627 	mtx_lock(&vnode_list_mtx);
628 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
629 	mtx_unlock(&vnode_list_mtx);
630 	rangelock_destroy(&vp->v_rl);
631 	lockdestroy(vp->v_vnlock);
632 	mtx_destroy(&vp->v_interlock);
633 	bo = &vp->v_bufobj;
634 	rw_destroy(BO_LOCKPTR(bo));
635 
636 	kasan_mark(mem, size, size, 0);
637 }
638 
639 /*
640  * Provide the size of NFS nclnode and NFS fh for calculation of the
641  * vnode memory consumption.  The size is specified directly to
642  * eliminate dependency on NFS-private header.
643  *
644  * Other filesystems may use bigger or smaller (like UFS and ZFS)
645  * private inode data, but the NFS-based estimation is ample enough.
646  * Still, we care about differences in the size between 64- and 32-bit
647  * platforms.
648  *
649  * Namecache structure size is heuristically
650  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
651  */
652 #ifdef _LP64
653 #define	NFS_NCLNODE_SZ	(528 + 64)
654 #define	NC_SZ		148
655 #else
656 #define	NFS_NCLNODE_SZ	(360 + 32)
657 #define	NC_SZ		92
658 #endif
659 
660 static void
661 vntblinit(void *dummy __unused)
662 {
663 	struct vdbatch *vd;
664 	uma_ctor ctor;
665 	uma_dtor dtor;
666 	int cpu, physvnodes, virtvnodes;
667 
668 	/*
669 	 * Desiredvnodes is a function of the physical memory size and the
670 	 * kernel's heap size.  Generally speaking, it scales with the
671 	 * physical memory size.  The ratio of desiredvnodes to the physical
672 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
673 	 * Thereafter, the
674 	 * marginal ratio of desiredvnodes to the physical memory size is
675 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
676 	 * size.  The memory required by desiredvnodes vnodes and vm objects
677 	 * must not exceed 1/10th of the kernel's heap size.
678 	 */
679 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
680 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
681 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
682 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
683 	desiredvnodes = min(physvnodes, virtvnodes);
684 	if (desiredvnodes > MAXVNODES_MAX) {
685 		if (bootverbose)
686 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
687 			    desiredvnodes, MAXVNODES_MAX);
688 		desiredvnodes = MAXVNODES_MAX;
689 	}
690 	wantfreevnodes = desiredvnodes / 4;
691 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
692 	TAILQ_INIT(&vnode_list);
693 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
694 	/*
695 	 * The lock is taken to appease WITNESS.
696 	 */
697 	mtx_lock(&vnode_list_mtx);
698 	vnlru_recalc();
699 	mtx_unlock(&vnode_list_mtx);
700 	vnode_list_free_marker = vn_alloc_marker(NULL);
701 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
702 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
703 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
704 
705 #ifdef KASAN
706 	ctor = vnode_ctor;
707 	dtor = vnode_dtor;
708 #else
709 	ctor = NULL;
710 	dtor = NULL;
711 #endif
712 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
713 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
714 	uma_zone_set_smr(vnode_zone, vfs_smr);
715 
716 	/*
717 	 * Preallocate enough nodes to support one-per buf so that
718 	 * we can not fail an insert.  reassignbuf() callers can not
719 	 * tolerate the insertion failure.
720 	 */
721 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
722 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
723 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
724 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
725 	uma_prealloc(buf_trie_zone, nbuf);
726 
727 	vnodes_created = counter_u64_alloc(M_WAITOK);
728 	recycles_count = counter_u64_alloc(M_WAITOK);
729 	recycles_free_count = counter_u64_alloc(M_WAITOK);
730 	deferred_inact = counter_u64_alloc(M_WAITOK);
731 
732 	/*
733 	 * Initialize the filesystem syncer.
734 	 */
735 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
736 	    &syncer_mask);
737 	syncer_maxdelay = syncer_mask + 1;
738 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
739 	cv_init(&sync_wakeup, "syncer");
740 
741 	CPU_FOREACH(cpu) {
742 		vd = DPCPU_ID_PTR((cpu), vd);
743 		bzero(vd, sizeof(*vd));
744 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
745 	}
746 }
747 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
748 
749 /*
750  * Mark a mount point as busy. Used to synchronize access and to delay
751  * unmounting. Eventually, mountlist_mtx is not released on failure.
752  *
753  * vfs_busy() is a custom lock, it can block the caller.
754  * vfs_busy() only sleeps if the unmount is active on the mount point.
755  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
756  * vnode belonging to mp.
757  *
758  * Lookup uses vfs_busy() to traverse mount points.
759  * root fs			var fs
760  * / vnode lock		A	/ vnode lock (/var)		D
761  * /var vnode lock	B	/log vnode lock(/var/log)	E
762  * vfs_busy lock	C	vfs_busy lock			F
763  *
764  * Within each file system, the lock order is C->A->B and F->D->E.
765  *
766  * When traversing across mounts, the system follows that lock order:
767  *
768  *        C->A->B
769  *              |
770  *              +->F->D->E
771  *
772  * The lookup() process for namei("/var") illustrates the process:
773  *  VOP_LOOKUP() obtains B while A is held
774  *  vfs_busy() obtains a shared lock on F while A and B are held
775  *  vput() releases lock on B
776  *  vput() releases lock on A
777  *  VFS_ROOT() obtains lock on D while shared lock on F is held
778  *  vfs_unbusy() releases shared lock on F
779  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
780  *    Attempt to lock A (instead of vp_crossmp) while D is held would
781  *    violate the global order, causing deadlocks.
782  *
783  * dounmount() locks B while F is drained.
784  */
785 int
786 vfs_busy(struct mount *mp, int flags)
787 {
788 	struct mount_pcpu *mpcpu;
789 
790 	MPASS((flags & ~MBF_MASK) == 0);
791 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
792 
793 	if (vfs_op_thread_enter(mp, mpcpu)) {
794 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
795 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
796 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
797 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
798 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
799 		vfs_op_thread_exit(mp, mpcpu);
800 		if (flags & MBF_MNTLSTLOCK)
801 			mtx_unlock(&mountlist_mtx);
802 		return (0);
803 	}
804 
805 	MNT_ILOCK(mp);
806 	vfs_assert_mount_counters(mp);
807 	MNT_REF(mp);
808 	/*
809 	 * If mount point is currently being unmounted, sleep until the
810 	 * mount point fate is decided.  If thread doing the unmounting fails,
811 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
812 	 * that this mount point has survived the unmount attempt and vfs_busy
813 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
814 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
815 	 * about to be really destroyed.  vfs_busy needs to release its
816 	 * reference on the mount point in this case and return with ENOENT,
817 	 * telling the caller that mount mount it tried to busy is no longer
818 	 * valid.
819 	 */
820 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
821 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
822 		    ("%s: non-empty upper mount list with pending unmount",
823 		    __func__));
824 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
825 			MNT_REL(mp);
826 			MNT_IUNLOCK(mp);
827 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
828 			    __func__);
829 			return (ENOENT);
830 		}
831 		if (flags & MBF_MNTLSTLOCK)
832 			mtx_unlock(&mountlist_mtx);
833 		mp->mnt_kern_flag |= MNTK_MWAIT;
834 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
835 		if (flags & MBF_MNTLSTLOCK)
836 			mtx_lock(&mountlist_mtx);
837 		MNT_ILOCK(mp);
838 	}
839 	if (flags & MBF_MNTLSTLOCK)
840 		mtx_unlock(&mountlist_mtx);
841 	mp->mnt_lockref++;
842 	MNT_IUNLOCK(mp);
843 	return (0);
844 }
845 
846 /*
847  * Free a busy filesystem.
848  */
849 void
850 vfs_unbusy(struct mount *mp)
851 {
852 	struct mount_pcpu *mpcpu;
853 	int c;
854 
855 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
856 
857 	if (vfs_op_thread_enter(mp, mpcpu)) {
858 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
859 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
860 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
861 		vfs_op_thread_exit(mp, mpcpu);
862 		return;
863 	}
864 
865 	MNT_ILOCK(mp);
866 	vfs_assert_mount_counters(mp);
867 	MNT_REL(mp);
868 	c = --mp->mnt_lockref;
869 	if (mp->mnt_vfs_ops == 0) {
870 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
871 		MNT_IUNLOCK(mp);
872 		return;
873 	}
874 	if (c < 0)
875 		vfs_dump_mount_counters(mp);
876 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
877 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
878 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
879 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
880 		wakeup(&mp->mnt_lockref);
881 	}
882 	MNT_IUNLOCK(mp);
883 }
884 
885 /*
886  * Lookup a mount point by filesystem identifier.
887  */
888 struct mount *
889 vfs_getvfs(fsid_t *fsid)
890 {
891 	struct mount *mp;
892 
893 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
894 	mtx_lock(&mountlist_mtx);
895 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
896 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
897 			vfs_ref(mp);
898 			mtx_unlock(&mountlist_mtx);
899 			return (mp);
900 		}
901 	}
902 	mtx_unlock(&mountlist_mtx);
903 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
904 	return ((struct mount *) 0);
905 }
906 
907 /*
908  * Lookup a mount point by filesystem identifier, busying it before
909  * returning.
910  *
911  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
912  * cache for popular filesystem identifiers.  The cache is lockess, using
913  * the fact that struct mount's are never freed.  In worst case we may
914  * get pointer to unmounted or even different filesystem, so we have to
915  * check what we got, and go slow way if so.
916  */
917 struct mount *
918 vfs_busyfs(fsid_t *fsid)
919 {
920 #define	FSID_CACHE_SIZE	256
921 	typedef struct mount * volatile vmp_t;
922 	static vmp_t cache[FSID_CACHE_SIZE];
923 	struct mount *mp;
924 	int error;
925 	uint32_t hash;
926 
927 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
928 	hash = fsid->val[0] ^ fsid->val[1];
929 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
930 	mp = cache[hash];
931 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
932 		goto slow;
933 	if (vfs_busy(mp, 0) != 0) {
934 		cache[hash] = NULL;
935 		goto slow;
936 	}
937 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
938 		return (mp);
939 	else
940 	    vfs_unbusy(mp);
941 
942 slow:
943 	mtx_lock(&mountlist_mtx);
944 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
945 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
946 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
947 			if (error) {
948 				cache[hash] = NULL;
949 				mtx_unlock(&mountlist_mtx);
950 				return (NULL);
951 			}
952 			cache[hash] = mp;
953 			return (mp);
954 		}
955 	}
956 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
957 	mtx_unlock(&mountlist_mtx);
958 	return ((struct mount *) 0);
959 }
960 
961 /*
962  * Check if a user can access privileged mount options.
963  */
964 int
965 vfs_suser(struct mount *mp, struct thread *td)
966 {
967 	int error;
968 
969 	if (jailed(td->td_ucred)) {
970 		/*
971 		 * If the jail of the calling thread lacks permission for
972 		 * this type of file system, deny immediately.
973 		 */
974 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
975 			return (EPERM);
976 
977 		/*
978 		 * If the file system was mounted outside the jail of the
979 		 * calling thread, deny immediately.
980 		 */
981 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
982 			return (EPERM);
983 	}
984 
985 	/*
986 	 * If file system supports delegated administration, we don't check
987 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
988 	 * by the file system itself.
989 	 * If this is not the user that did original mount, we check for
990 	 * the PRIV_VFS_MOUNT_OWNER privilege.
991 	 */
992 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
993 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
994 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
995 			return (error);
996 	}
997 	return (0);
998 }
999 
1000 /*
1001  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1002  * will be used to create fake device numbers for stat().  Also try (but
1003  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1004  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1005  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1006  *
1007  * Keep in mind that several mounts may be running in parallel.  Starting
1008  * the search one past where the previous search terminated is both a
1009  * micro-optimization and a defense against returning the same fsid to
1010  * different mounts.
1011  */
1012 void
1013 vfs_getnewfsid(struct mount *mp)
1014 {
1015 	static uint16_t mntid_base;
1016 	struct mount *nmp;
1017 	fsid_t tfsid;
1018 	int mtype;
1019 
1020 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1021 	mtx_lock(&mntid_mtx);
1022 	mtype = mp->mnt_vfc->vfc_typenum;
1023 	tfsid.val[1] = mtype;
1024 	mtype = (mtype & 0xFF) << 24;
1025 	for (;;) {
1026 		tfsid.val[0] = makedev(255,
1027 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1028 		mntid_base++;
1029 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1030 			break;
1031 		vfs_rel(nmp);
1032 	}
1033 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1034 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1035 	mtx_unlock(&mntid_mtx);
1036 }
1037 
1038 /*
1039  * Knob to control the precision of file timestamps:
1040  *
1041  *   0 = seconds only; nanoseconds zeroed.
1042  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1043  *   2 = seconds and nanoseconds, truncated to microseconds.
1044  * >=3 = seconds and nanoseconds, maximum precision.
1045  */
1046 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1047 
1048 static int timestamp_precision = TSP_USEC;
1049 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1050     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1051     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1052     "3+: sec + ns (max. precision))");
1053 
1054 /*
1055  * Get a current timestamp.
1056  */
1057 void
1058 vfs_timestamp(struct timespec *tsp)
1059 {
1060 	struct timeval tv;
1061 
1062 	switch (timestamp_precision) {
1063 	case TSP_SEC:
1064 		tsp->tv_sec = time_second;
1065 		tsp->tv_nsec = 0;
1066 		break;
1067 	case TSP_HZ:
1068 		getnanotime(tsp);
1069 		break;
1070 	case TSP_USEC:
1071 		microtime(&tv);
1072 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1073 		break;
1074 	case TSP_NSEC:
1075 	default:
1076 		nanotime(tsp);
1077 		break;
1078 	}
1079 }
1080 
1081 /*
1082  * Set vnode attributes to VNOVAL
1083  */
1084 void
1085 vattr_null(struct vattr *vap)
1086 {
1087 
1088 	vap->va_type = VNON;
1089 	vap->va_size = VNOVAL;
1090 	vap->va_bytes = VNOVAL;
1091 	vap->va_mode = VNOVAL;
1092 	vap->va_nlink = VNOVAL;
1093 	vap->va_uid = VNOVAL;
1094 	vap->va_gid = VNOVAL;
1095 	vap->va_fsid = VNOVAL;
1096 	vap->va_fileid = VNOVAL;
1097 	vap->va_blocksize = VNOVAL;
1098 	vap->va_rdev = VNOVAL;
1099 	vap->va_atime.tv_sec = VNOVAL;
1100 	vap->va_atime.tv_nsec = VNOVAL;
1101 	vap->va_mtime.tv_sec = VNOVAL;
1102 	vap->va_mtime.tv_nsec = VNOVAL;
1103 	vap->va_ctime.tv_sec = VNOVAL;
1104 	vap->va_ctime.tv_nsec = VNOVAL;
1105 	vap->va_birthtime.tv_sec = VNOVAL;
1106 	vap->va_birthtime.tv_nsec = VNOVAL;
1107 	vap->va_flags = VNOVAL;
1108 	vap->va_gen = VNOVAL;
1109 	vap->va_vaflags = 0;
1110 }
1111 
1112 /*
1113  * Try to reduce the total number of vnodes.
1114  *
1115  * This routine (and its user) are buggy in at least the following ways:
1116  * - all parameters were picked years ago when RAM sizes were significantly
1117  *   smaller
1118  * - it can pick vnodes based on pages used by the vm object, but filesystems
1119  *   like ZFS don't use it making the pick broken
1120  * - since ZFS has its own aging policy it gets partially combated by this one
1121  * - a dedicated method should be provided for filesystems to let them decide
1122  *   whether the vnode should be recycled
1123  *
1124  * This routine is called when we have too many vnodes.  It attempts
1125  * to free <count> vnodes and will potentially free vnodes that still
1126  * have VM backing store (VM backing store is typically the cause
1127  * of a vnode blowout so we want to do this).  Therefore, this operation
1128  * is not considered cheap.
1129  *
1130  * A number of conditions may prevent a vnode from being reclaimed.
1131  * the buffer cache may have references on the vnode, a directory
1132  * vnode may still have references due to the namei cache representing
1133  * underlying files, or the vnode may be in active use.   It is not
1134  * desirable to reuse such vnodes.  These conditions may cause the
1135  * number of vnodes to reach some minimum value regardless of what
1136  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1137  *
1138  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1139  * 			 entries if this argument is strue
1140  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1141  *			 pages.
1142  * @param target	 How many vnodes to reclaim.
1143  * @return		 The number of vnodes that were reclaimed.
1144  */
1145 static int
1146 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1147 {
1148 	struct vnode *vp, *mvp;
1149 	struct mount *mp;
1150 	struct vm_object *object;
1151 	u_long done;
1152 	bool retried;
1153 
1154 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1155 
1156 	retried = false;
1157 	done = 0;
1158 
1159 	mvp = vnode_list_reclaim_marker;
1160 restart:
1161 	vp = mvp;
1162 	while (done < target) {
1163 		vp = TAILQ_NEXT(vp, v_vnodelist);
1164 		if (__predict_false(vp == NULL))
1165 			break;
1166 
1167 		if (__predict_false(vp->v_type == VMARKER))
1168 			continue;
1169 
1170 		/*
1171 		 * If it's been deconstructed already, it's still
1172 		 * referenced, or it exceeds the trigger, skip it.
1173 		 * Also skip free vnodes.  We are trying to make space
1174 		 * to expand the free list, not reduce it.
1175 		 */
1176 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1177 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1178 			goto next_iter;
1179 
1180 		if (vp->v_type == VBAD || vp->v_type == VNON)
1181 			goto next_iter;
1182 
1183 		object = atomic_load_ptr(&vp->v_object);
1184 		if (object == NULL || object->resident_page_count > trigger) {
1185 			goto next_iter;
1186 		}
1187 
1188 		/*
1189 		 * Handle races against vnode allocation. Filesystems lock the
1190 		 * vnode some time after it gets returned from getnewvnode,
1191 		 * despite type and hold count being manipulated earlier.
1192 		 * Resorting to checking v_mount restores guarantees present
1193 		 * before the global list was reworked to contain all vnodes.
1194 		 */
1195 		if (!VI_TRYLOCK(vp))
1196 			goto next_iter;
1197 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1198 			VI_UNLOCK(vp);
1199 			goto next_iter;
1200 		}
1201 		if (vp->v_mount == NULL) {
1202 			VI_UNLOCK(vp);
1203 			goto next_iter;
1204 		}
1205 		vholdl(vp);
1206 		VI_UNLOCK(vp);
1207 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1208 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1209 		mtx_unlock(&vnode_list_mtx);
1210 
1211 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1212 			vdrop_recycle(vp);
1213 			goto next_iter_unlocked;
1214 		}
1215 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1216 			vdrop_recycle(vp);
1217 			vn_finished_write(mp);
1218 			goto next_iter_unlocked;
1219 		}
1220 
1221 		VI_LOCK(vp);
1222 		if (vp->v_usecount > 0 ||
1223 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1224 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1225 		    vp->v_object->resident_page_count > trigger)) {
1226 			VOP_UNLOCK(vp);
1227 			vdropl_recycle(vp);
1228 			vn_finished_write(mp);
1229 			goto next_iter_unlocked;
1230 		}
1231 		counter_u64_add(recycles_count, 1);
1232 		vgonel(vp);
1233 		VOP_UNLOCK(vp);
1234 		vdropl_recycle(vp);
1235 		vn_finished_write(mp);
1236 		done++;
1237 next_iter_unlocked:
1238 		if (should_yield())
1239 			kern_yield(PRI_USER);
1240 		mtx_lock(&vnode_list_mtx);
1241 		goto restart;
1242 next_iter:
1243 		MPASS(vp->v_type != VMARKER);
1244 		if (!should_yield())
1245 			continue;
1246 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1247 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1248 		mtx_unlock(&vnode_list_mtx);
1249 		kern_yield(PRI_USER);
1250 		mtx_lock(&vnode_list_mtx);
1251 		goto restart;
1252 	}
1253 	if (done == 0 && !retried) {
1254 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1255 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1256 		retried = true;
1257 		goto restart;
1258 	}
1259 	return (done);
1260 }
1261 
1262 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1263 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1264     0,
1265     "limit on vnode free requests per call to the vnlru_free routine");
1266 
1267 /*
1268  * Attempt to reduce the free list by the requested amount.
1269  */
1270 static int
1271 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1272 {
1273 	struct vnode *vp;
1274 	struct mount *mp;
1275 	int ocount;
1276 
1277 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1278 	if (count > max_vnlru_free)
1279 		count = max_vnlru_free;
1280 	ocount = count;
1281 	vp = mvp;
1282 	for (;;) {
1283 		if (count == 0) {
1284 			break;
1285 		}
1286 		vp = TAILQ_NEXT(vp, v_vnodelist);
1287 		if (__predict_false(vp == NULL)) {
1288 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1289 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1290 			break;
1291 		}
1292 		if (__predict_false(vp->v_type == VMARKER))
1293 			continue;
1294 		if (vp->v_holdcnt > 0)
1295 			continue;
1296 		/*
1297 		 * Don't recycle if our vnode is from different type
1298 		 * of mount point.  Note that mp is type-safe, the
1299 		 * check does not reach unmapped address even if
1300 		 * vnode is reclaimed.
1301 		 */
1302 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1303 		    mp->mnt_op != mnt_op) {
1304 			continue;
1305 		}
1306 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1307 			continue;
1308 		}
1309 		if (!vhold_recycle_free(vp))
1310 			continue;
1311 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1312 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1313 		mtx_unlock(&vnode_list_mtx);
1314 		/*
1315 		 * FIXME: ignores the return value, meaning it may be nothing
1316 		 * got recycled but it claims otherwise to the caller.
1317 		 *
1318 		 * Originally the value started being ignored in 2005 with
1319 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1320 		 *
1321 		 * Respecting the value can run into significant stalls if most
1322 		 * vnodes belong to one file system and it has writes
1323 		 * suspended.  In presence of many threads and millions of
1324 		 * vnodes they keep contending on the vnode_list_mtx lock only
1325 		 * to find vnodes they can't recycle.
1326 		 *
1327 		 * The solution would be to pre-check if the vnode is likely to
1328 		 * be recycle-able, but it needs to happen with the
1329 		 * vnode_list_mtx lock held. This runs into a problem where
1330 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1331 		 * writes are frozen) can take locks which LOR against it.
1332 		 *
1333 		 * Check nullfs for one example (null_getwritemount).
1334 		 */
1335 		vtryrecycle(vp);
1336 		count--;
1337 		mtx_lock(&vnode_list_mtx);
1338 		vp = mvp;
1339 	}
1340 	return (ocount - count);
1341 }
1342 
1343 static int
1344 vnlru_free_locked(int count)
1345 {
1346 
1347 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1348 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1349 }
1350 
1351 void
1352 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1353 {
1354 
1355 	MPASS(mnt_op != NULL);
1356 	MPASS(mvp != NULL);
1357 	VNPASS(mvp->v_type == VMARKER, mvp);
1358 	mtx_lock(&vnode_list_mtx);
1359 	vnlru_free_impl(count, mnt_op, mvp);
1360 	mtx_unlock(&vnode_list_mtx);
1361 }
1362 
1363 struct vnode *
1364 vnlru_alloc_marker(void)
1365 {
1366 	struct vnode *mvp;
1367 
1368 	mvp = vn_alloc_marker(NULL);
1369 	mtx_lock(&vnode_list_mtx);
1370 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1371 	mtx_unlock(&vnode_list_mtx);
1372 	return (mvp);
1373 }
1374 
1375 void
1376 vnlru_free_marker(struct vnode *mvp)
1377 {
1378 	mtx_lock(&vnode_list_mtx);
1379 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1380 	mtx_unlock(&vnode_list_mtx);
1381 	vn_free_marker(mvp);
1382 }
1383 
1384 static void
1385 vnlru_recalc(void)
1386 {
1387 
1388 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1389 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1390 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1391 	vlowat = vhiwat / 2;
1392 }
1393 
1394 /*
1395  * Attempt to recycle vnodes in a context that is always safe to block.
1396  * Calling vlrurecycle() from the bowels of filesystem code has some
1397  * interesting deadlock problems.
1398  */
1399 static struct proc *vnlruproc;
1400 static int vnlruproc_sig;
1401 
1402 /*
1403  * The main freevnodes counter is only updated when threads requeue their vnode
1404  * batches. CPUs are conditionally walked to compute a more accurate total.
1405  *
1406  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1407  * at any given moment can still exceed slop, but it should not be by significant
1408  * margin in practice.
1409  */
1410 #define VNLRU_FREEVNODES_SLOP 128
1411 
1412 static __inline void
1413 vfs_freevnodes_inc(void)
1414 {
1415 	struct vdbatch *vd;
1416 
1417 	critical_enter();
1418 	vd = DPCPU_PTR(vd);
1419 	vd->freevnodes++;
1420 	critical_exit();
1421 }
1422 
1423 static __inline void
1424 vfs_freevnodes_dec(void)
1425 {
1426 	struct vdbatch *vd;
1427 
1428 	critical_enter();
1429 	vd = DPCPU_PTR(vd);
1430 	vd->freevnodes--;
1431 	critical_exit();
1432 }
1433 
1434 static u_long
1435 vnlru_read_freevnodes(void)
1436 {
1437 	struct vdbatch *vd;
1438 	long slop;
1439 	int cpu;
1440 
1441 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1442 	if (freevnodes > freevnodes_old)
1443 		slop = freevnodes - freevnodes_old;
1444 	else
1445 		slop = freevnodes_old - freevnodes;
1446 	if (slop < VNLRU_FREEVNODES_SLOP)
1447 		return (freevnodes >= 0 ? freevnodes : 0);
1448 	freevnodes_old = freevnodes;
1449 	CPU_FOREACH(cpu) {
1450 		vd = DPCPU_ID_PTR((cpu), vd);
1451 		freevnodes_old += vd->freevnodes;
1452 	}
1453 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1454 }
1455 
1456 static bool
1457 vnlru_under(u_long rnumvnodes, u_long limit)
1458 {
1459 	u_long rfreevnodes, space;
1460 
1461 	if (__predict_false(rnumvnodes > desiredvnodes))
1462 		return (true);
1463 
1464 	space = desiredvnodes - rnumvnodes;
1465 	if (space < limit) {
1466 		rfreevnodes = vnlru_read_freevnodes();
1467 		if (rfreevnodes > wantfreevnodes)
1468 			space += rfreevnodes - wantfreevnodes;
1469 	}
1470 	return (space < limit);
1471 }
1472 
1473 static bool
1474 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1475 {
1476 	long rfreevnodes, space;
1477 
1478 	if (__predict_false(rnumvnodes > desiredvnodes))
1479 		return (true);
1480 
1481 	space = desiredvnodes - rnumvnodes;
1482 	if (space < limit) {
1483 		rfreevnodes = atomic_load_long(&freevnodes);
1484 		if (rfreevnodes > wantfreevnodes)
1485 			space += rfreevnodes - wantfreevnodes;
1486 	}
1487 	return (space < limit);
1488 }
1489 
1490 static void
1491 vnlru_kick(void)
1492 {
1493 
1494 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1495 	if (vnlruproc_sig == 0) {
1496 		vnlruproc_sig = 1;
1497 		wakeup(vnlruproc);
1498 	}
1499 }
1500 
1501 static void
1502 vnlru_proc(void)
1503 {
1504 	u_long rnumvnodes, rfreevnodes, target;
1505 	unsigned long onumvnodes;
1506 	int done, force, trigger, usevnodes;
1507 	bool reclaim_nc_src, want_reread;
1508 
1509 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1510 	    SHUTDOWN_PRI_FIRST);
1511 
1512 	force = 0;
1513 	want_reread = false;
1514 	for (;;) {
1515 		kproc_suspend_check(vnlruproc);
1516 		mtx_lock(&vnode_list_mtx);
1517 		rnumvnodes = atomic_load_long(&numvnodes);
1518 
1519 		if (want_reread) {
1520 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1521 			want_reread = false;
1522 		}
1523 
1524 		/*
1525 		 * If numvnodes is too large (due to desiredvnodes being
1526 		 * adjusted using its sysctl, or emergency growth), first
1527 		 * try to reduce it by discarding from the free list.
1528 		 */
1529 		if (rnumvnodes > desiredvnodes) {
1530 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1531 			rnumvnodes = atomic_load_long(&numvnodes);
1532 		}
1533 		/*
1534 		 * Sleep if the vnode cache is in a good state.  This is
1535 		 * when it is not over-full and has space for about a 4%
1536 		 * or 9% expansion (by growing its size or inexcessively
1537 		 * reducing its free list).  Otherwise, try to reclaim
1538 		 * space for a 10% expansion.
1539 		 */
1540 		if (vstir && force == 0) {
1541 			force = 1;
1542 			vstir = 0;
1543 		}
1544 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1545 			vnlruproc_sig = 0;
1546 			wakeup(&vnlruproc_sig);
1547 			msleep(vnlruproc, &vnode_list_mtx,
1548 			    PVFS|PDROP, "vlruwt", hz);
1549 			continue;
1550 		}
1551 		rfreevnodes = vnlru_read_freevnodes();
1552 
1553 		onumvnodes = rnumvnodes;
1554 		/*
1555 		 * Calculate parameters for recycling.  These are the same
1556 		 * throughout the loop to give some semblance of fairness.
1557 		 * The trigger point is to avoid recycling vnodes with lots
1558 		 * of resident pages.  We aren't trying to free memory; we
1559 		 * are trying to recycle or at least free vnodes.
1560 		 */
1561 		if (rnumvnodes <= desiredvnodes)
1562 			usevnodes = rnumvnodes - rfreevnodes;
1563 		else
1564 			usevnodes = rnumvnodes;
1565 		if (usevnodes <= 0)
1566 			usevnodes = 1;
1567 		/*
1568 		 * The trigger value is chosen to give a conservatively
1569 		 * large value to ensure that it alone doesn't prevent
1570 		 * making progress.  The value can easily be so large that
1571 		 * it is effectively infinite in some congested and
1572 		 * misconfigured cases, and this is necessary.  Normally
1573 		 * it is about 8 to 100 (pages), which is quite large.
1574 		 */
1575 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1576 		if (force < 2)
1577 			trigger = vsmalltrigger;
1578 		reclaim_nc_src = force >= 3;
1579 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1580 		target = target / 10 + 1;
1581 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1582 		mtx_unlock(&vnode_list_mtx);
1583 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1584 			uma_reclaim(UMA_RECLAIM_DRAIN);
1585 		if (done == 0) {
1586 			if (force == 0 || force == 1) {
1587 				force = 2;
1588 				continue;
1589 			}
1590 			if (force == 2) {
1591 				force = 3;
1592 				continue;
1593 			}
1594 			want_reread = true;
1595 			force = 0;
1596 			vnlru_nowhere++;
1597 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1598 		} else {
1599 			want_reread = true;
1600 			kern_yield(PRI_USER);
1601 		}
1602 	}
1603 }
1604 
1605 static struct kproc_desc vnlru_kp = {
1606 	"vnlru",
1607 	vnlru_proc,
1608 	&vnlruproc
1609 };
1610 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1611     &vnlru_kp);
1612 
1613 /*
1614  * Routines having to do with the management of the vnode table.
1615  */
1616 
1617 /*
1618  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1619  * before we actually vgone().  This function must be called with the vnode
1620  * held to prevent the vnode from being returned to the free list midway
1621  * through vgone().
1622  */
1623 static int
1624 vtryrecycle(struct vnode *vp)
1625 {
1626 	struct mount *vnmp;
1627 
1628 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1629 	VNASSERT(vp->v_holdcnt, vp,
1630 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1631 	/*
1632 	 * This vnode may found and locked via some other list, if so we
1633 	 * can't recycle it yet.
1634 	 */
1635 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1636 		CTR2(KTR_VFS,
1637 		    "%s: impossible to recycle, vp %p lock is already held",
1638 		    __func__, vp);
1639 		vdrop_recycle(vp);
1640 		return (EWOULDBLOCK);
1641 	}
1642 	/*
1643 	 * Don't recycle if its filesystem is being suspended.
1644 	 */
1645 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1646 		VOP_UNLOCK(vp);
1647 		CTR2(KTR_VFS,
1648 		    "%s: impossible to recycle, cannot start the write for %p",
1649 		    __func__, vp);
1650 		vdrop_recycle(vp);
1651 		return (EBUSY);
1652 	}
1653 	/*
1654 	 * If we got this far, we need to acquire the interlock and see if
1655 	 * anyone picked up this vnode from another list.  If not, we will
1656 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1657 	 * will skip over it.
1658 	 */
1659 	VI_LOCK(vp);
1660 	if (vp->v_usecount) {
1661 		VOP_UNLOCK(vp);
1662 		vdropl_recycle(vp);
1663 		vn_finished_write(vnmp);
1664 		CTR2(KTR_VFS,
1665 		    "%s: impossible to recycle, %p is already referenced",
1666 		    __func__, vp);
1667 		return (EBUSY);
1668 	}
1669 	if (!VN_IS_DOOMED(vp)) {
1670 		counter_u64_add(recycles_free_count, 1);
1671 		vgonel(vp);
1672 	}
1673 	VOP_UNLOCK(vp);
1674 	vdropl_recycle(vp);
1675 	vn_finished_write(vnmp);
1676 	return (0);
1677 }
1678 
1679 /*
1680  * Allocate a new vnode.
1681  *
1682  * The operation never returns an error. Returning an error was disabled
1683  * in r145385 (dated 2005) with the following comment:
1684  *
1685  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1686  *
1687  * Given the age of this commit (almost 15 years at the time of writing this
1688  * comment) restoring the ability to fail requires a significant audit of
1689  * all codepaths.
1690  *
1691  * The routine can try to free a vnode or stall for up to 1 second waiting for
1692  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1693  */
1694 static u_long vn_alloc_cyclecount;
1695 
1696 static struct vnode * __noinline
1697 vn_alloc_hard(struct mount *mp)
1698 {
1699 	u_long rnumvnodes, rfreevnodes;
1700 
1701 	mtx_lock(&vnode_list_mtx);
1702 	rnumvnodes = atomic_load_long(&numvnodes);
1703 	if (rnumvnodes + 1 < desiredvnodes) {
1704 		vn_alloc_cyclecount = 0;
1705 		goto alloc;
1706 	}
1707 	rfreevnodes = vnlru_read_freevnodes();
1708 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1709 		vn_alloc_cyclecount = 0;
1710 		vstir = 1;
1711 	}
1712 	/*
1713 	 * Grow the vnode cache if it will not be above its target max
1714 	 * after growing.  Otherwise, if the free list is nonempty, try
1715 	 * to reclaim 1 item from it before growing the cache (possibly
1716 	 * above its target max if the reclamation failed or is delayed).
1717 	 * Otherwise, wait for some space.  In all cases, schedule
1718 	 * vnlru_proc() if we are getting short of space.  The watermarks
1719 	 * should be chosen so that we never wait or even reclaim from
1720 	 * the free list to below its target minimum.
1721 	 */
1722 	if (vnlru_free_locked(1) > 0)
1723 		goto alloc;
1724 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1725 		/*
1726 		 * Wait for space for a new vnode.
1727 		 */
1728 		vnlru_kick();
1729 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1730 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1731 		    vnlru_read_freevnodes() > 1)
1732 			vnlru_free_locked(1);
1733 	}
1734 alloc:
1735 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1736 	if (vnlru_under(rnumvnodes, vlowat))
1737 		vnlru_kick();
1738 	mtx_unlock(&vnode_list_mtx);
1739 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1740 }
1741 
1742 static struct vnode *
1743 vn_alloc(struct mount *mp)
1744 {
1745 	u_long rnumvnodes;
1746 
1747 	if (__predict_false(vn_alloc_cyclecount != 0))
1748 		return (vn_alloc_hard(mp));
1749 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1750 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1751 		atomic_subtract_long(&numvnodes, 1);
1752 		return (vn_alloc_hard(mp));
1753 	}
1754 
1755 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1756 }
1757 
1758 static void
1759 vn_free(struct vnode *vp)
1760 {
1761 
1762 	atomic_subtract_long(&numvnodes, 1);
1763 	uma_zfree_smr(vnode_zone, vp);
1764 }
1765 
1766 /*
1767  * Return the next vnode from the free list.
1768  */
1769 int
1770 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1771     struct vnode **vpp)
1772 {
1773 	struct vnode *vp;
1774 	struct thread *td;
1775 	struct lock_object *lo;
1776 
1777 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1778 
1779 	KASSERT(vops->registered,
1780 	    ("%s: not registered vector op %p\n", __func__, vops));
1781 
1782 	td = curthread;
1783 	if (td->td_vp_reserved != NULL) {
1784 		vp = td->td_vp_reserved;
1785 		td->td_vp_reserved = NULL;
1786 	} else {
1787 		vp = vn_alloc(mp);
1788 	}
1789 	counter_u64_add(vnodes_created, 1);
1790 	/*
1791 	 * Locks are given the generic name "vnode" when created.
1792 	 * Follow the historic practice of using the filesystem
1793 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1794 	 *
1795 	 * Locks live in a witness group keyed on their name. Thus,
1796 	 * when a lock is renamed, it must also move from the witness
1797 	 * group of its old name to the witness group of its new name.
1798 	 *
1799 	 * The change only needs to be made when the vnode moves
1800 	 * from one filesystem type to another. We ensure that each
1801 	 * filesystem use a single static name pointer for its tag so
1802 	 * that we can compare pointers rather than doing a strcmp().
1803 	 */
1804 	lo = &vp->v_vnlock->lock_object;
1805 #ifdef WITNESS
1806 	if (lo->lo_name != tag) {
1807 #endif
1808 		lo->lo_name = tag;
1809 #ifdef WITNESS
1810 		WITNESS_DESTROY(lo);
1811 		WITNESS_INIT(lo, tag);
1812 	}
1813 #endif
1814 	/*
1815 	 * By default, don't allow shared locks unless filesystems opt-in.
1816 	 */
1817 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1818 	/*
1819 	 * Finalize various vnode identity bits.
1820 	 */
1821 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1822 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1823 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1824 	vp->v_type = VNON;
1825 	vp->v_op = vops;
1826 	vp->v_irflag = 0;
1827 	v_init_counters(vp);
1828 	vn_seqc_init(vp);
1829 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1830 #ifdef DIAGNOSTIC
1831 	if (mp == NULL && vops != &dead_vnodeops)
1832 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1833 #endif
1834 #ifdef MAC
1835 	mac_vnode_init(vp);
1836 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1837 		mac_vnode_associate_singlelabel(mp, vp);
1838 #endif
1839 	if (mp != NULL) {
1840 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1841 	}
1842 
1843 	/*
1844 	 * For the filesystems which do not use vfs_hash_insert(),
1845 	 * still initialize v_hash to have vfs_hash_index() useful.
1846 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1847 	 * its own hashing.
1848 	 */
1849 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1850 
1851 	*vpp = vp;
1852 	return (0);
1853 }
1854 
1855 void
1856 getnewvnode_reserve(void)
1857 {
1858 	struct thread *td;
1859 
1860 	td = curthread;
1861 	MPASS(td->td_vp_reserved == NULL);
1862 	td->td_vp_reserved = vn_alloc(NULL);
1863 }
1864 
1865 void
1866 getnewvnode_drop_reserve(void)
1867 {
1868 	struct thread *td;
1869 
1870 	td = curthread;
1871 	if (td->td_vp_reserved != NULL) {
1872 		vn_free(td->td_vp_reserved);
1873 		td->td_vp_reserved = NULL;
1874 	}
1875 }
1876 
1877 static void __noinline
1878 freevnode(struct vnode *vp)
1879 {
1880 	struct bufobj *bo;
1881 
1882 	/*
1883 	 * The vnode has been marked for destruction, so free it.
1884 	 *
1885 	 * The vnode will be returned to the zone where it will
1886 	 * normally remain until it is needed for another vnode. We
1887 	 * need to cleanup (or verify that the cleanup has already
1888 	 * been done) any residual data left from its current use
1889 	 * so as not to contaminate the freshly allocated vnode.
1890 	 */
1891 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1892 	/*
1893 	 * Paired with vgone.
1894 	 */
1895 	vn_seqc_write_end_free(vp);
1896 
1897 	bo = &vp->v_bufobj;
1898 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1899 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1900 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1901 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1902 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1903 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1904 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1905 	    ("clean blk trie not empty"));
1906 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1907 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1908 	    ("dirty blk trie not empty"));
1909 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1910 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1911 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1912 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1913 	    ("Dangling rangelock waiters"));
1914 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1915 	    ("Leaked inactivation"));
1916 	VI_UNLOCK(vp);
1917 #ifdef MAC
1918 	mac_vnode_destroy(vp);
1919 #endif
1920 	if (vp->v_pollinfo != NULL) {
1921 		/*
1922 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
1923 		 * here while having another vnode locked when trying to
1924 		 * satisfy a lookup and needing to recycle.
1925 		 */
1926 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
1927 		destroy_vpollinfo(vp->v_pollinfo);
1928 		VOP_UNLOCK(vp);
1929 		vp->v_pollinfo = NULL;
1930 	}
1931 	vp->v_mountedhere = NULL;
1932 	vp->v_unpcb = NULL;
1933 	vp->v_rdev = NULL;
1934 	vp->v_fifoinfo = NULL;
1935 	vp->v_iflag = 0;
1936 	vp->v_vflag = 0;
1937 	bo->bo_flag = 0;
1938 	vn_free(vp);
1939 }
1940 
1941 /*
1942  * Delete from old mount point vnode list, if on one.
1943  */
1944 static void
1945 delmntque(struct vnode *vp)
1946 {
1947 	struct mount *mp;
1948 
1949 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1950 
1951 	mp = vp->v_mount;
1952 	MNT_ILOCK(mp);
1953 	VI_LOCK(vp);
1954 	vp->v_mount = NULL;
1955 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1956 		("bad mount point vnode list size"));
1957 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1958 	mp->mnt_nvnodelistsize--;
1959 	MNT_REL(mp);
1960 	MNT_IUNLOCK(mp);
1961 	/*
1962 	 * The caller expects the interlock to be still held.
1963 	 */
1964 	ASSERT_VI_LOCKED(vp, __func__);
1965 }
1966 
1967 static int
1968 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
1969 {
1970 
1971 	KASSERT(vp->v_mount == NULL,
1972 		("insmntque: vnode already on per mount vnode list"));
1973 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1974 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
1975 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1976 	} else {
1977 		KASSERT(!dtr,
1978 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
1979 		    __func__));
1980 	}
1981 
1982 	/*
1983 	 * We acquire the vnode interlock early to ensure that the
1984 	 * vnode cannot be recycled by another process releasing a
1985 	 * holdcnt on it before we get it on both the vnode list
1986 	 * and the active vnode list. The mount mutex protects only
1987 	 * manipulation of the vnode list and the vnode freelist
1988 	 * mutex protects only manipulation of the active vnode list.
1989 	 * Hence the need to hold the vnode interlock throughout.
1990 	 */
1991 	MNT_ILOCK(mp);
1992 	VI_LOCK(vp);
1993 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1994 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1995 	    mp->mnt_nvnodelistsize == 0)) &&
1996 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1997 		VI_UNLOCK(vp);
1998 		MNT_IUNLOCK(mp);
1999 		if (dtr) {
2000 			vp->v_data = NULL;
2001 			vp->v_op = &dead_vnodeops;
2002 			vgone(vp);
2003 			vput(vp);
2004 		}
2005 		return (EBUSY);
2006 	}
2007 	vp->v_mount = mp;
2008 	MNT_REF(mp);
2009 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2010 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2011 		("neg mount point vnode list size"));
2012 	mp->mnt_nvnodelistsize++;
2013 	VI_UNLOCK(vp);
2014 	MNT_IUNLOCK(mp);
2015 	return (0);
2016 }
2017 
2018 /*
2019  * Insert into list of vnodes for the new mount point, if available.
2020  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2021  * leaves handling of the vnode to the caller.
2022  */
2023 int
2024 insmntque(struct vnode *vp, struct mount *mp)
2025 {
2026 	return (insmntque1_int(vp, mp, true));
2027 }
2028 
2029 int
2030 insmntque1(struct vnode *vp, struct mount *mp)
2031 {
2032 	return (insmntque1_int(vp, mp, false));
2033 }
2034 
2035 /*
2036  * Flush out and invalidate all buffers associated with a bufobj
2037  * Called with the underlying object locked.
2038  */
2039 int
2040 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2041 {
2042 	int error;
2043 
2044 	BO_LOCK(bo);
2045 	if (flags & V_SAVE) {
2046 		error = bufobj_wwait(bo, slpflag, slptimeo);
2047 		if (error) {
2048 			BO_UNLOCK(bo);
2049 			return (error);
2050 		}
2051 		if (bo->bo_dirty.bv_cnt > 0) {
2052 			BO_UNLOCK(bo);
2053 			do {
2054 				error = BO_SYNC(bo, MNT_WAIT);
2055 			} while (error == ERELOOKUP);
2056 			if (error != 0)
2057 				return (error);
2058 			BO_LOCK(bo);
2059 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2060 				BO_UNLOCK(bo);
2061 				return (EBUSY);
2062 			}
2063 		}
2064 	}
2065 	/*
2066 	 * If you alter this loop please notice that interlock is dropped and
2067 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2068 	 * no race conditions occur from this.
2069 	 */
2070 	do {
2071 		error = flushbuflist(&bo->bo_clean,
2072 		    flags, bo, slpflag, slptimeo);
2073 		if (error == 0 && !(flags & V_CLEANONLY))
2074 			error = flushbuflist(&bo->bo_dirty,
2075 			    flags, bo, slpflag, slptimeo);
2076 		if (error != 0 && error != EAGAIN) {
2077 			BO_UNLOCK(bo);
2078 			return (error);
2079 		}
2080 	} while (error != 0);
2081 
2082 	/*
2083 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2084 	 * have write I/O in-progress but if there is a VM object then the
2085 	 * VM object can also have read-I/O in-progress.
2086 	 */
2087 	do {
2088 		bufobj_wwait(bo, 0, 0);
2089 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2090 			BO_UNLOCK(bo);
2091 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2092 			BO_LOCK(bo);
2093 		}
2094 	} while (bo->bo_numoutput > 0);
2095 	BO_UNLOCK(bo);
2096 
2097 	/*
2098 	 * Destroy the copy in the VM cache, too.
2099 	 */
2100 	if (bo->bo_object != NULL &&
2101 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2102 		VM_OBJECT_WLOCK(bo->bo_object);
2103 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2104 		    OBJPR_CLEANONLY : 0);
2105 		VM_OBJECT_WUNLOCK(bo->bo_object);
2106 	}
2107 
2108 #ifdef INVARIANTS
2109 	BO_LOCK(bo);
2110 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2111 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2112 	    bo->bo_clean.bv_cnt > 0))
2113 		panic("vinvalbuf: flush failed");
2114 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2115 	    bo->bo_dirty.bv_cnt > 0)
2116 		panic("vinvalbuf: flush dirty failed");
2117 	BO_UNLOCK(bo);
2118 #endif
2119 	return (0);
2120 }
2121 
2122 /*
2123  * Flush out and invalidate all buffers associated with a vnode.
2124  * Called with the underlying object locked.
2125  */
2126 int
2127 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2128 {
2129 
2130 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2131 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2132 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2133 		return (0);
2134 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2135 }
2136 
2137 /*
2138  * Flush out buffers on the specified list.
2139  *
2140  */
2141 static int
2142 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2143     int slptimeo)
2144 {
2145 	struct buf *bp, *nbp;
2146 	int retval, error;
2147 	daddr_t lblkno;
2148 	b_xflags_t xflags;
2149 
2150 	ASSERT_BO_WLOCKED(bo);
2151 
2152 	retval = 0;
2153 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2154 		/*
2155 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2156 		 * do not skip any buffers. If we are flushing only V_NORMAL
2157 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2158 		 * flushing only V_ALT buffers then skip buffers not marked
2159 		 * as BX_ALTDATA.
2160 		 */
2161 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2162 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2163 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2164 			continue;
2165 		}
2166 		if (nbp != NULL) {
2167 			lblkno = nbp->b_lblkno;
2168 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2169 		}
2170 		retval = EAGAIN;
2171 		error = BUF_TIMELOCK(bp,
2172 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2173 		    "flushbuf", slpflag, slptimeo);
2174 		if (error) {
2175 			BO_LOCK(bo);
2176 			return (error != ENOLCK ? error : EAGAIN);
2177 		}
2178 		KASSERT(bp->b_bufobj == bo,
2179 		    ("bp %p wrong b_bufobj %p should be %p",
2180 		    bp, bp->b_bufobj, bo));
2181 		/*
2182 		 * XXX Since there are no node locks for NFS, I
2183 		 * believe there is a slight chance that a delayed
2184 		 * write will occur while sleeping just above, so
2185 		 * check for it.
2186 		 */
2187 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2188 		    (flags & V_SAVE)) {
2189 			bremfree(bp);
2190 			bp->b_flags |= B_ASYNC;
2191 			bwrite(bp);
2192 			BO_LOCK(bo);
2193 			return (EAGAIN);	/* XXX: why not loop ? */
2194 		}
2195 		bremfree(bp);
2196 		bp->b_flags |= (B_INVAL | B_RELBUF);
2197 		bp->b_flags &= ~B_ASYNC;
2198 		brelse(bp);
2199 		BO_LOCK(bo);
2200 		if (nbp == NULL)
2201 			break;
2202 		nbp = gbincore(bo, lblkno);
2203 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2204 		    != xflags)
2205 			break;			/* nbp invalid */
2206 	}
2207 	return (retval);
2208 }
2209 
2210 int
2211 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2212 {
2213 	struct buf *bp;
2214 	int error;
2215 	daddr_t lblkno;
2216 
2217 	ASSERT_BO_LOCKED(bo);
2218 
2219 	for (lblkno = startn;;) {
2220 again:
2221 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2222 		if (bp == NULL || bp->b_lblkno >= endn ||
2223 		    bp->b_lblkno < startn)
2224 			break;
2225 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2226 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2227 		if (error != 0) {
2228 			BO_RLOCK(bo);
2229 			if (error == ENOLCK)
2230 				goto again;
2231 			return (error);
2232 		}
2233 		KASSERT(bp->b_bufobj == bo,
2234 		    ("bp %p wrong b_bufobj %p should be %p",
2235 		    bp, bp->b_bufobj, bo));
2236 		lblkno = bp->b_lblkno + 1;
2237 		if ((bp->b_flags & B_MANAGED) == 0)
2238 			bremfree(bp);
2239 		bp->b_flags |= B_RELBUF;
2240 		/*
2241 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2242 		 * pages backing each buffer in the range are unlikely to be
2243 		 * reused.  Dirty buffers will have the hint applied once
2244 		 * they've been written.
2245 		 */
2246 		if ((bp->b_flags & B_VMIO) != 0)
2247 			bp->b_flags |= B_NOREUSE;
2248 		brelse(bp);
2249 		BO_RLOCK(bo);
2250 	}
2251 	return (0);
2252 }
2253 
2254 /*
2255  * Truncate a file's buffer and pages to a specified length.  This
2256  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2257  * sync activity.
2258  */
2259 int
2260 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2261 {
2262 	struct buf *bp, *nbp;
2263 	struct bufobj *bo;
2264 	daddr_t startlbn;
2265 
2266 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2267 	    vp, blksize, (uintmax_t)length);
2268 
2269 	/*
2270 	 * Round up to the *next* lbn.
2271 	 */
2272 	startlbn = howmany(length, blksize);
2273 
2274 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2275 
2276 	bo = &vp->v_bufobj;
2277 restart_unlocked:
2278 	BO_LOCK(bo);
2279 
2280 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2281 		;
2282 
2283 	if (length > 0) {
2284 restartsync:
2285 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2286 			if (bp->b_lblkno > 0)
2287 				continue;
2288 			/*
2289 			 * Since we hold the vnode lock this should only
2290 			 * fail if we're racing with the buf daemon.
2291 			 */
2292 			if (BUF_LOCK(bp,
2293 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2294 			    BO_LOCKPTR(bo)) == ENOLCK)
2295 				goto restart_unlocked;
2296 
2297 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2298 			    ("buf(%p) on dirty queue without DELWRI", bp));
2299 
2300 			bremfree(bp);
2301 			bawrite(bp);
2302 			BO_LOCK(bo);
2303 			goto restartsync;
2304 		}
2305 	}
2306 
2307 	bufobj_wwait(bo, 0, 0);
2308 	BO_UNLOCK(bo);
2309 	vnode_pager_setsize(vp, length);
2310 
2311 	return (0);
2312 }
2313 
2314 /*
2315  * Invalidate the cached pages of a file's buffer within the range of block
2316  * numbers [startlbn, endlbn).
2317  */
2318 void
2319 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2320     int blksize)
2321 {
2322 	struct bufobj *bo;
2323 	off_t start, end;
2324 
2325 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2326 
2327 	start = blksize * startlbn;
2328 	end = blksize * endlbn;
2329 
2330 	bo = &vp->v_bufobj;
2331 	BO_LOCK(bo);
2332 	MPASS(blksize == bo->bo_bsize);
2333 
2334 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2335 		;
2336 
2337 	BO_UNLOCK(bo);
2338 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2339 }
2340 
2341 static int
2342 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2343     daddr_t startlbn, daddr_t endlbn)
2344 {
2345 	struct buf *bp, *nbp;
2346 	bool anyfreed;
2347 
2348 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2349 	ASSERT_BO_LOCKED(bo);
2350 
2351 	do {
2352 		anyfreed = false;
2353 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2354 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2355 				continue;
2356 			if (BUF_LOCK(bp,
2357 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2358 			    BO_LOCKPTR(bo)) == ENOLCK) {
2359 				BO_LOCK(bo);
2360 				return (EAGAIN);
2361 			}
2362 
2363 			bremfree(bp);
2364 			bp->b_flags |= B_INVAL | B_RELBUF;
2365 			bp->b_flags &= ~B_ASYNC;
2366 			brelse(bp);
2367 			anyfreed = true;
2368 
2369 			BO_LOCK(bo);
2370 			if (nbp != NULL &&
2371 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2372 			    nbp->b_vp != vp ||
2373 			    (nbp->b_flags & B_DELWRI) != 0))
2374 				return (EAGAIN);
2375 		}
2376 
2377 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2378 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2379 				continue;
2380 			if (BUF_LOCK(bp,
2381 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2382 			    BO_LOCKPTR(bo)) == ENOLCK) {
2383 				BO_LOCK(bo);
2384 				return (EAGAIN);
2385 			}
2386 			bremfree(bp);
2387 			bp->b_flags |= B_INVAL | B_RELBUF;
2388 			bp->b_flags &= ~B_ASYNC;
2389 			brelse(bp);
2390 			anyfreed = true;
2391 
2392 			BO_LOCK(bo);
2393 			if (nbp != NULL &&
2394 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2395 			    (nbp->b_vp != vp) ||
2396 			    (nbp->b_flags & B_DELWRI) == 0))
2397 				return (EAGAIN);
2398 		}
2399 	} while (anyfreed);
2400 	return (0);
2401 }
2402 
2403 static void
2404 buf_vlist_remove(struct buf *bp)
2405 {
2406 	struct bufv *bv;
2407 	b_xflags_t flags;
2408 
2409 	flags = bp->b_xflags;
2410 
2411 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2412 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2413 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2414 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2415 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2416 
2417 	if ((flags & BX_VNDIRTY) != 0)
2418 		bv = &bp->b_bufobj->bo_dirty;
2419 	else
2420 		bv = &bp->b_bufobj->bo_clean;
2421 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2422 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2423 	bv->bv_cnt--;
2424 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2425 }
2426 
2427 /*
2428  * Add the buffer to the sorted clean or dirty block list.
2429  *
2430  * NOTE: xflags is passed as a constant, optimizing this inline function!
2431  */
2432 static void
2433 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2434 {
2435 	struct bufv *bv;
2436 	struct buf *n;
2437 	int error;
2438 
2439 	ASSERT_BO_WLOCKED(bo);
2440 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2441 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2442 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2443 	    ("dead bo %p", bo));
2444 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2445 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2446 	bp->b_xflags |= xflags;
2447 	if (xflags & BX_VNDIRTY)
2448 		bv = &bo->bo_dirty;
2449 	else
2450 		bv = &bo->bo_clean;
2451 
2452 	/*
2453 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2454 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2455 	 * than _ge.
2456 	 */
2457 	if (bv->bv_cnt == 0 ||
2458 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2459 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2460 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2461 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2462 	else
2463 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2464 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2465 	if (error)
2466 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2467 	bv->bv_cnt++;
2468 }
2469 
2470 /*
2471  * Look up a buffer using the buffer tries.
2472  */
2473 struct buf *
2474 gbincore(struct bufobj *bo, daddr_t lblkno)
2475 {
2476 	struct buf *bp;
2477 
2478 	ASSERT_BO_LOCKED(bo);
2479 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2480 	if (bp != NULL)
2481 		return (bp);
2482 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2483 }
2484 
2485 /*
2486  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2487  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2488  * stability of the result.  Like other lockless lookups, the found buf may
2489  * already be invalid by the time this function returns.
2490  */
2491 struct buf *
2492 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2493 {
2494 	struct buf *bp;
2495 
2496 	ASSERT_BO_UNLOCKED(bo);
2497 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2498 	if (bp != NULL)
2499 		return (bp);
2500 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2501 }
2502 
2503 /*
2504  * Associate a buffer with a vnode.
2505  */
2506 void
2507 bgetvp(struct vnode *vp, struct buf *bp)
2508 {
2509 	struct bufobj *bo;
2510 
2511 	bo = &vp->v_bufobj;
2512 	ASSERT_BO_WLOCKED(bo);
2513 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2514 
2515 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2516 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2517 	    ("bgetvp: bp already attached! %p", bp));
2518 
2519 	vhold(vp);
2520 	bp->b_vp = vp;
2521 	bp->b_bufobj = bo;
2522 	/*
2523 	 * Insert onto list for new vnode.
2524 	 */
2525 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2526 }
2527 
2528 /*
2529  * Disassociate a buffer from a vnode.
2530  */
2531 void
2532 brelvp(struct buf *bp)
2533 {
2534 	struct bufobj *bo;
2535 	struct vnode *vp;
2536 
2537 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2538 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2539 
2540 	/*
2541 	 * Delete from old vnode list, if on one.
2542 	 */
2543 	vp = bp->b_vp;		/* XXX */
2544 	bo = bp->b_bufobj;
2545 	BO_LOCK(bo);
2546 	buf_vlist_remove(bp);
2547 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2548 		bo->bo_flag &= ~BO_ONWORKLST;
2549 		mtx_lock(&sync_mtx);
2550 		LIST_REMOVE(bo, bo_synclist);
2551 		syncer_worklist_len--;
2552 		mtx_unlock(&sync_mtx);
2553 	}
2554 	bp->b_vp = NULL;
2555 	bp->b_bufobj = NULL;
2556 	BO_UNLOCK(bo);
2557 	vdrop(vp);
2558 }
2559 
2560 /*
2561  * Add an item to the syncer work queue.
2562  */
2563 static void
2564 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2565 {
2566 	int slot;
2567 
2568 	ASSERT_BO_WLOCKED(bo);
2569 
2570 	mtx_lock(&sync_mtx);
2571 	if (bo->bo_flag & BO_ONWORKLST)
2572 		LIST_REMOVE(bo, bo_synclist);
2573 	else {
2574 		bo->bo_flag |= BO_ONWORKLST;
2575 		syncer_worklist_len++;
2576 	}
2577 
2578 	if (delay > syncer_maxdelay - 2)
2579 		delay = syncer_maxdelay - 2;
2580 	slot = (syncer_delayno + delay) & syncer_mask;
2581 
2582 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2583 	mtx_unlock(&sync_mtx);
2584 }
2585 
2586 static int
2587 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2588 {
2589 	int error, len;
2590 
2591 	mtx_lock(&sync_mtx);
2592 	len = syncer_worklist_len - sync_vnode_count;
2593 	mtx_unlock(&sync_mtx);
2594 	error = SYSCTL_OUT(req, &len, sizeof(len));
2595 	return (error);
2596 }
2597 
2598 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2599     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2600     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2601 
2602 static struct proc *updateproc;
2603 static void sched_sync(void);
2604 static struct kproc_desc up_kp = {
2605 	"syncer",
2606 	sched_sync,
2607 	&updateproc
2608 };
2609 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2610 
2611 static int
2612 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2613 {
2614 	struct vnode *vp;
2615 	struct mount *mp;
2616 
2617 	*bo = LIST_FIRST(slp);
2618 	if (*bo == NULL)
2619 		return (0);
2620 	vp = bo2vnode(*bo);
2621 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2622 		return (1);
2623 	/*
2624 	 * We use vhold in case the vnode does not
2625 	 * successfully sync.  vhold prevents the vnode from
2626 	 * going away when we unlock the sync_mtx so that
2627 	 * we can acquire the vnode interlock.
2628 	 */
2629 	vholdl(vp);
2630 	mtx_unlock(&sync_mtx);
2631 	VI_UNLOCK(vp);
2632 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2633 		vdrop(vp);
2634 		mtx_lock(&sync_mtx);
2635 		return (*bo == LIST_FIRST(slp));
2636 	}
2637 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2638 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2639 	VOP_UNLOCK(vp);
2640 	vn_finished_write(mp);
2641 	BO_LOCK(*bo);
2642 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2643 		/*
2644 		 * Put us back on the worklist.  The worklist
2645 		 * routine will remove us from our current
2646 		 * position and then add us back in at a later
2647 		 * position.
2648 		 */
2649 		vn_syncer_add_to_worklist(*bo, syncdelay);
2650 	}
2651 	BO_UNLOCK(*bo);
2652 	vdrop(vp);
2653 	mtx_lock(&sync_mtx);
2654 	return (0);
2655 }
2656 
2657 static int first_printf = 1;
2658 
2659 /*
2660  * System filesystem synchronizer daemon.
2661  */
2662 static void
2663 sched_sync(void)
2664 {
2665 	struct synclist *next, *slp;
2666 	struct bufobj *bo;
2667 	long starttime;
2668 	struct thread *td = curthread;
2669 	int last_work_seen;
2670 	int net_worklist_len;
2671 	int syncer_final_iter;
2672 	int error;
2673 
2674 	last_work_seen = 0;
2675 	syncer_final_iter = 0;
2676 	syncer_state = SYNCER_RUNNING;
2677 	starttime = time_uptime;
2678 	td->td_pflags |= TDP_NORUNNINGBUF;
2679 
2680 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2681 	    SHUTDOWN_PRI_LAST);
2682 
2683 	mtx_lock(&sync_mtx);
2684 	for (;;) {
2685 		if (syncer_state == SYNCER_FINAL_DELAY &&
2686 		    syncer_final_iter == 0) {
2687 			mtx_unlock(&sync_mtx);
2688 			kproc_suspend_check(td->td_proc);
2689 			mtx_lock(&sync_mtx);
2690 		}
2691 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2692 		if (syncer_state != SYNCER_RUNNING &&
2693 		    starttime != time_uptime) {
2694 			if (first_printf) {
2695 				printf("\nSyncing disks, vnodes remaining... ");
2696 				first_printf = 0;
2697 			}
2698 			printf("%d ", net_worklist_len);
2699 		}
2700 		starttime = time_uptime;
2701 
2702 		/*
2703 		 * Push files whose dirty time has expired.  Be careful
2704 		 * of interrupt race on slp queue.
2705 		 *
2706 		 * Skip over empty worklist slots when shutting down.
2707 		 */
2708 		do {
2709 			slp = &syncer_workitem_pending[syncer_delayno];
2710 			syncer_delayno += 1;
2711 			if (syncer_delayno == syncer_maxdelay)
2712 				syncer_delayno = 0;
2713 			next = &syncer_workitem_pending[syncer_delayno];
2714 			/*
2715 			 * If the worklist has wrapped since the
2716 			 * it was emptied of all but syncer vnodes,
2717 			 * switch to the FINAL_DELAY state and run
2718 			 * for one more second.
2719 			 */
2720 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2721 			    net_worklist_len == 0 &&
2722 			    last_work_seen == syncer_delayno) {
2723 				syncer_state = SYNCER_FINAL_DELAY;
2724 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2725 			}
2726 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2727 		    syncer_worklist_len > 0);
2728 
2729 		/*
2730 		 * Keep track of the last time there was anything
2731 		 * on the worklist other than syncer vnodes.
2732 		 * Return to the SHUTTING_DOWN state if any
2733 		 * new work appears.
2734 		 */
2735 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2736 			last_work_seen = syncer_delayno;
2737 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2738 			syncer_state = SYNCER_SHUTTING_DOWN;
2739 		while (!LIST_EMPTY(slp)) {
2740 			error = sync_vnode(slp, &bo, td);
2741 			if (error == 1) {
2742 				LIST_REMOVE(bo, bo_synclist);
2743 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2744 				continue;
2745 			}
2746 
2747 			if (first_printf == 0) {
2748 				/*
2749 				 * Drop the sync mutex, because some watchdog
2750 				 * drivers need to sleep while patting
2751 				 */
2752 				mtx_unlock(&sync_mtx);
2753 				wdog_kern_pat(WD_LASTVAL);
2754 				mtx_lock(&sync_mtx);
2755 			}
2756 		}
2757 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2758 			syncer_final_iter--;
2759 		/*
2760 		 * The variable rushjob allows the kernel to speed up the
2761 		 * processing of the filesystem syncer process. A rushjob
2762 		 * value of N tells the filesystem syncer to process the next
2763 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2764 		 * is used by the soft update code to speed up the filesystem
2765 		 * syncer process when the incore state is getting so far
2766 		 * ahead of the disk that the kernel memory pool is being
2767 		 * threatened with exhaustion.
2768 		 */
2769 		if (rushjob > 0) {
2770 			rushjob -= 1;
2771 			continue;
2772 		}
2773 		/*
2774 		 * Just sleep for a short period of time between
2775 		 * iterations when shutting down to allow some I/O
2776 		 * to happen.
2777 		 *
2778 		 * If it has taken us less than a second to process the
2779 		 * current work, then wait. Otherwise start right over
2780 		 * again. We can still lose time if any single round
2781 		 * takes more than two seconds, but it does not really
2782 		 * matter as we are just trying to generally pace the
2783 		 * filesystem activity.
2784 		 */
2785 		if (syncer_state != SYNCER_RUNNING ||
2786 		    time_uptime == starttime) {
2787 			thread_lock(td);
2788 			sched_prio(td, PPAUSE);
2789 			thread_unlock(td);
2790 		}
2791 		if (syncer_state != SYNCER_RUNNING)
2792 			cv_timedwait(&sync_wakeup, &sync_mtx,
2793 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2794 		else if (time_uptime == starttime)
2795 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2796 	}
2797 }
2798 
2799 /*
2800  * Request the syncer daemon to speed up its work.
2801  * We never push it to speed up more than half of its
2802  * normal turn time, otherwise it could take over the cpu.
2803  */
2804 int
2805 speedup_syncer(void)
2806 {
2807 	int ret = 0;
2808 
2809 	mtx_lock(&sync_mtx);
2810 	if (rushjob < syncdelay / 2) {
2811 		rushjob += 1;
2812 		stat_rush_requests += 1;
2813 		ret = 1;
2814 	}
2815 	mtx_unlock(&sync_mtx);
2816 	cv_broadcast(&sync_wakeup);
2817 	return (ret);
2818 }
2819 
2820 /*
2821  * Tell the syncer to speed up its work and run though its work
2822  * list several times, then tell it to shut down.
2823  */
2824 static void
2825 syncer_shutdown(void *arg, int howto)
2826 {
2827 
2828 	if (howto & RB_NOSYNC)
2829 		return;
2830 	mtx_lock(&sync_mtx);
2831 	syncer_state = SYNCER_SHUTTING_DOWN;
2832 	rushjob = 0;
2833 	mtx_unlock(&sync_mtx);
2834 	cv_broadcast(&sync_wakeup);
2835 	kproc_shutdown(arg, howto);
2836 }
2837 
2838 void
2839 syncer_suspend(void)
2840 {
2841 
2842 	syncer_shutdown(updateproc, 0);
2843 }
2844 
2845 void
2846 syncer_resume(void)
2847 {
2848 
2849 	mtx_lock(&sync_mtx);
2850 	first_printf = 1;
2851 	syncer_state = SYNCER_RUNNING;
2852 	mtx_unlock(&sync_mtx);
2853 	cv_broadcast(&sync_wakeup);
2854 	kproc_resume(updateproc);
2855 }
2856 
2857 /*
2858  * Move the buffer between the clean and dirty lists of its vnode.
2859  */
2860 void
2861 reassignbuf(struct buf *bp)
2862 {
2863 	struct vnode *vp;
2864 	struct bufobj *bo;
2865 	int delay;
2866 #ifdef INVARIANTS
2867 	struct bufv *bv;
2868 #endif
2869 
2870 	vp = bp->b_vp;
2871 	bo = bp->b_bufobj;
2872 
2873 	KASSERT((bp->b_flags & B_PAGING) == 0,
2874 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2875 
2876 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2877 	    bp, bp->b_vp, bp->b_flags);
2878 
2879 	BO_LOCK(bo);
2880 	buf_vlist_remove(bp);
2881 
2882 	/*
2883 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2884 	 * of clean buffers.
2885 	 */
2886 	if (bp->b_flags & B_DELWRI) {
2887 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2888 			switch (vp->v_type) {
2889 			case VDIR:
2890 				delay = dirdelay;
2891 				break;
2892 			case VCHR:
2893 				delay = metadelay;
2894 				break;
2895 			default:
2896 				delay = filedelay;
2897 			}
2898 			vn_syncer_add_to_worklist(bo, delay);
2899 		}
2900 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2901 	} else {
2902 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2903 
2904 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2905 			mtx_lock(&sync_mtx);
2906 			LIST_REMOVE(bo, bo_synclist);
2907 			syncer_worklist_len--;
2908 			mtx_unlock(&sync_mtx);
2909 			bo->bo_flag &= ~BO_ONWORKLST;
2910 		}
2911 	}
2912 #ifdef INVARIANTS
2913 	bv = &bo->bo_clean;
2914 	bp = TAILQ_FIRST(&bv->bv_hd);
2915 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2916 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2917 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2918 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2919 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2920 	bv = &bo->bo_dirty;
2921 	bp = TAILQ_FIRST(&bv->bv_hd);
2922 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2923 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2924 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2925 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2926 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2927 #endif
2928 	BO_UNLOCK(bo);
2929 }
2930 
2931 static void
2932 v_init_counters(struct vnode *vp)
2933 {
2934 
2935 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2936 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2937 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2938 
2939 	refcount_init(&vp->v_holdcnt, 1);
2940 	refcount_init(&vp->v_usecount, 1);
2941 }
2942 
2943 /*
2944  * Grab a particular vnode from the free list, increment its
2945  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2946  * is being destroyed.  Only callers who specify LK_RETRY will
2947  * see doomed vnodes.  If inactive processing was delayed in
2948  * vput try to do it here.
2949  *
2950  * usecount is manipulated using atomics without holding any locks.
2951  *
2952  * holdcnt can be manipulated using atomics without holding any locks,
2953  * except when transitioning 1<->0, in which case the interlock is held.
2954  *
2955  * Consumers which don't guarantee liveness of the vnode can use SMR to
2956  * try to get a reference. Note this operation can fail since the vnode
2957  * may be awaiting getting freed by the time they get to it.
2958  */
2959 enum vgetstate
2960 vget_prep_smr(struct vnode *vp)
2961 {
2962 	enum vgetstate vs;
2963 
2964 	VFS_SMR_ASSERT_ENTERED();
2965 
2966 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2967 		vs = VGET_USECOUNT;
2968 	} else {
2969 		if (vhold_smr(vp))
2970 			vs = VGET_HOLDCNT;
2971 		else
2972 			vs = VGET_NONE;
2973 	}
2974 	return (vs);
2975 }
2976 
2977 enum vgetstate
2978 vget_prep(struct vnode *vp)
2979 {
2980 	enum vgetstate vs;
2981 
2982 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2983 		vs = VGET_USECOUNT;
2984 	} else {
2985 		vhold(vp);
2986 		vs = VGET_HOLDCNT;
2987 	}
2988 	return (vs);
2989 }
2990 
2991 void
2992 vget_abort(struct vnode *vp, enum vgetstate vs)
2993 {
2994 
2995 	switch (vs) {
2996 	case VGET_USECOUNT:
2997 		vrele(vp);
2998 		break;
2999 	case VGET_HOLDCNT:
3000 		vdrop(vp);
3001 		break;
3002 	default:
3003 		__assert_unreachable();
3004 	}
3005 }
3006 
3007 int
3008 vget(struct vnode *vp, int flags)
3009 {
3010 	enum vgetstate vs;
3011 
3012 	vs = vget_prep(vp);
3013 	return (vget_finish(vp, flags, vs));
3014 }
3015 
3016 int
3017 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3018 {
3019 	int error;
3020 
3021 	if ((flags & LK_INTERLOCK) != 0)
3022 		ASSERT_VI_LOCKED(vp, __func__);
3023 	else
3024 		ASSERT_VI_UNLOCKED(vp, __func__);
3025 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3026 	VNPASS(vp->v_holdcnt > 0, vp);
3027 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3028 
3029 	error = vn_lock(vp, flags);
3030 	if (__predict_false(error != 0)) {
3031 		vget_abort(vp, vs);
3032 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3033 		    vp);
3034 		return (error);
3035 	}
3036 
3037 	vget_finish_ref(vp, vs);
3038 	return (0);
3039 }
3040 
3041 void
3042 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3043 {
3044 	int old;
3045 
3046 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3047 	VNPASS(vp->v_holdcnt > 0, vp);
3048 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3049 
3050 	if (vs == VGET_USECOUNT)
3051 		return;
3052 
3053 	/*
3054 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3055 	 * the vnode around. Otherwise someone else lended their hold count and
3056 	 * we have to drop ours.
3057 	 */
3058 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3059 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3060 	if (old != 0) {
3061 #ifdef INVARIANTS
3062 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3063 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3064 #else
3065 		refcount_release(&vp->v_holdcnt);
3066 #endif
3067 	}
3068 }
3069 
3070 void
3071 vref(struct vnode *vp)
3072 {
3073 	enum vgetstate vs;
3074 
3075 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3076 	vs = vget_prep(vp);
3077 	vget_finish_ref(vp, vs);
3078 }
3079 
3080 void
3081 vrefact(struct vnode *vp)
3082 {
3083 
3084 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3085 #ifdef INVARIANTS
3086 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3087 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3088 #else
3089 	refcount_acquire(&vp->v_usecount);
3090 #endif
3091 }
3092 
3093 void
3094 vlazy(struct vnode *vp)
3095 {
3096 	struct mount *mp;
3097 
3098 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3099 
3100 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3101 		return;
3102 	/*
3103 	 * We may get here for inactive routines after the vnode got doomed.
3104 	 */
3105 	if (VN_IS_DOOMED(vp))
3106 		return;
3107 	mp = vp->v_mount;
3108 	mtx_lock(&mp->mnt_listmtx);
3109 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3110 		vp->v_mflag |= VMP_LAZYLIST;
3111 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3112 		mp->mnt_lazyvnodelistsize++;
3113 	}
3114 	mtx_unlock(&mp->mnt_listmtx);
3115 }
3116 
3117 static void
3118 vunlazy(struct vnode *vp)
3119 {
3120 	struct mount *mp;
3121 
3122 	ASSERT_VI_LOCKED(vp, __func__);
3123 	VNPASS(!VN_IS_DOOMED(vp), vp);
3124 
3125 	mp = vp->v_mount;
3126 	mtx_lock(&mp->mnt_listmtx);
3127 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3128 	/*
3129 	 * Don't remove the vnode from the lazy list if another thread
3130 	 * has increased the hold count. It may have re-enqueued the
3131 	 * vnode to the lazy list and is now responsible for its
3132 	 * removal.
3133 	 */
3134 	if (vp->v_holdcnt == 0) {
3135 		vp->v_mflag &= ~VMP_LAZYLIST;
3136 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3137 		mp->mnt_lazyvnodelistsize--;
3138 	}
3139 	mtx_unlock(&mp->mnt_listmtx);
3140 }
3141 
3142 /*
3143  * This routine is only meant to be called from vgonel prior to dooming
3144  * the vnode.
3145  */
3146 static void
3147 vunlazy_gone(struct vnode *vp)
3148 {
3149 	struct mount *mp;
3150 
3151 	ASSERT_VOP_ELOCKED(vp, __func__);
3152 	ASSERT_VI_LOCKED(vp, __func__);
3153 	VNPASS(!VN_IS_DOOMED(vp), vp);
3154 
3155 	if (vp->v_mflag & VMP_LAZYLIST) {
3156 		mp = vp->v_mount;
3157 		mtx_lock(&mp->mnt_listmtx);
3158 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3159 		vp->v_mflag &= ~VMP_LAZYLIST;
3160 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3161 		mp->mnt_lazyvnodelistsize--;
3162 		mtx_unlock(&mp->mnt_listmtx);
3163 	}
3164 }
3165 
3166 static void
3167 vdefer_inactive(struct vnode *vp)
3168 {
3169 
3170 	ASSERT_VI_LOCKED(vp, __func__);
3171 	VNASSERT(vp->v_holdcnt > 0, vp,
3172 	    ("%s: vnode without hold count", __func__));
3173 	if (VN_IS_DOOMED(vp)) {
3174 		vdropl(vp);
3175 		return;
3176 	}
3177 	if (vp->v_iflag & VI_DEFINACT) {
3178 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3179 		vdropl(vp);
3180 		return;
3181 	}
3182 	if (vp->v_usecount > 0) {
3183 		vp->v_iflag &= ~VI_OWEINACT;
3184 		vdropl(vp);
3185 		return;
3186 	}
3187 	vlazy(vp);
3188 	vp->v_iflag |= VI_DEFINACT;
3189 	VI_UNLOCK(vp);
3190 	counter_u64_add(deferred_inact, 1);
3191 }
3192 
3193 static void
3194 vdefer_inactive_unlocked(struct vnode *vp)
3195 {
3196 
3197 	VI_LOCK(vp);
3198 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3199 		vdropl(vp);
3200 		return;
3201 	}
3202 	vdefer_inactive(vp);
3203 }
3204 
3205 enum vput_op { VRELE, VPUT, VUNREF };
3206 
3207 /*
3208  * Handle ->v_usecount transitioning to 0.
3209  *
3210  * By releasing the last usecount we take ownership of the hold count which
3211  * provides liveness of the vnode, meaning we have to vdrop.
3212  *
3213  * For all vnodes we may need to perform inactive processing. It requires an
3214  * exclusive lock on the vnode, while it is legal to call here with only a
3215  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3216  * inactive processing gets deferred to the syncer.
3217  *
3218  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3219  * on the lock being held all the way until VOP_INACTIVE. This in particular
3220  * happens with UFS which adds half-constructed vnodes to the hash, where they
3221  * can be found by other code.
3222  */
3223 static void
3224 vput_final(struct vnode *vp, enum vput_op func)
3225 {
3226 	int error;
3227 	bool want_unlock;
3228 
3229 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3230 	VNPASS(vp->v_holdcnt > 0, vp);
3231 
3232 	VI_LOCK(vp);
3233 
3234 	/*
3235 	 * By the time we got here someone else might have transitioned
3236 	 * the count back to > 0.
3237 	 */
3238 	if (vp->v_usecount > 0)
3239 		goto out;
3240 
3241 	/*
3242 	 * If the vnode is doomed vgone already performed inactive processing
3243 	 * (if needed).
3244 	 */
3245 	if (VN_IS_DOOMED(vp))
3246 		goto out;
3247 
3248 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3249 		goto out;
3250 
3251 	if (vp->v_iflag & VI_DOINGINACT)
3252 		goto out;
3253 
3254 	/*
3255 	 * Locking operations here will drop the interlock and possibly the
3256 	 * vnode lock, opening a window where the vnode can get doomed all the
3257 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3258 	 * perform inactive.
3259 	 */
3260 	vp->v_iflag |= VI_OWEINACT;
3261 	want_unlock = false;
3262 	error = 0;
3263 	switch (func) {
3264 	case VRELE:
3265 		switch (VOP_ISLOCKED(vp)) {
3266 		case LK_EXCLUSIVE:
3267 			break;
3268 		case LK_EXCLOTHER:
3269 		case 0:
3270 			want_unlock = true;
3271 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3272 			VI_LOCK(vp);
3273 			break;
3274 		default:
3275 			/*
3276 			 * The lock has at least one sharer, but we have no way
3277 			 * to conclude whether this is us. Play it safe and
3278 			 * defer processing.
3279 			 */
3280 			error = EAGAIN;
3281 			break;
3282 		}
3283 		break;
3284 	case VPUT:
3285 		want_unlock = true;
3286 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3287 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3288 			    LK_NOWAIT);
3289 			VI_LOCK(vp);
3290 		}
3291 		break;
3292 	case VUNREF:
3293 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3294 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3295 			VI_LOCK(vp);
3296 		}
3297 		break;
3298 	}
3299 	if (error == 0) {
3300 		if (func == VUNREF) {
3301 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3302 			    ("recursive vunref"));
3303 			vp->v_vflag |= VV_UNREF;
3304 		}
3305 		for (;;) {
3306 			error = vinactive(vp);
3307 			if (want_unlock)
3308 				VOP_UNLOCK(vp);
3309 			if (error != ERELOOKUP || !want_unlock)
3310 				break;
3311 			VOP_LOCK(vp, LK_EXCLUSIVE);
3312 		}
3313 		if (func == VUNREF)
3314 			vp->v_vflag &= ~VV_UNREF;
3315 		vdropl(vp);
3316 	} else {
3317 		vdefer_inactive(vp);
3318 	}
3319 	return;
3320 out:
3321 	if (func == VPUT)
3322 		VOP_UNLOCK(vp);
3323 	vdropl(vp);
3324 }
3325 
3326 /*
3327  * Decrement ->v_usecount for a vnode.
3328  *
3329  * Releasing the last use count requires additional processing, see vput_final
3330  * above for details.
3331  *
3332  * Comment above each variant denotes lock state on entry and exit.
3333  */
3334 
3335 /*
3336  * in: any
3337  * out: same as passed in
3338  */
3339 void
3340 vrele(struct vnode *vp)
3341 {
3342 
3343 	ASSERT_VI_UNLOCKED(vp, __func__);
3344 	if (!refcount_release(&vp->v_usecount))
3345 		return;
3346 	vput_final(vp, VRELE);
3347 }
3348 
3349 /*
3350  * in: locked
3351  * out: unlocked
3352  */
3353 void
3354 vput(struct vnode *vp)
3355 {
3356 
3357 	ASSERT_VOP_LOCKED(vp, __func__);
3358 	ASSERT_VI_UNLOCKED(vp, __func__);
3359 	if (!refcount_release(&vp->v_usecount)) {
3360 		VOP_UNLOCK(vp);
3361 		return;
3362 	}
3363 	vput_final(vp, VPUT);
3364 }
3365 
3366 /*
3367  * in: locked
3368  * out: locked
3369  */
3370 void
3371 vunref(struct vnode *vp)
3372 {
3373 
3374 	ASSERT_VOP_LOCKED(vp, __func__);
3375 	ASSERT_VI_UNLOCKED(vp, __func__);
3376 	if (!refcount_release(&vp->v_usecount))
3377 		return;
3378 	vput_final(vp, VUNREF);
3379 }
3380 
3381 void
3382 vhold(struct vnode *vp)
3383 {
3384 	int old;
3385 
3386 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3387 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3388 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3389 	    ("%s: wrong hold count %d", __func__, old));
3390 	if (old == 0)
3391 		vfs_freevnodes_dec();
3392 }
3393 
3394 void
3395 vholdnz(struct vnode *vp)
3396 {
3397 
3398 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3399 #ifdef INVARIANTS
3400 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3401 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3402 	    ("%s: wrong hold count %d", __func__, old));
3403 #else
3404 	atomic_add_int(&vp->v_holdcnt, 1);
3405 #endif
3406 }
3407 
3408 /*
3409  * Grab a hold count unless the vnode is freed.
3410  *
3411  * Only use this routine if vfs smr is the only protection you have against
3412  * freeing the vnode.
3413  *
3414  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3415  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3416  * the thread which managed to set the flag.
3417  *
3418  * It may be tempting to replace the loop with:
3419  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3420  * if (count & VHOLD_NO_SMR) {
3421  *     backpedal and error out;
3422  * }
3423  *
3424  * However, while this is more performant, it hinders debugging by eliminating
3425  * the previously mentioned invariant.
3426  */
3427 bool
3428 vhold_smr(struct vnode *vp)
3429 {
3430 	int count;
3431 
3432 	VFS_SMR_ASSERT_ENTERED();
3433 
3434 	count = atomic_load_int(&vp->v_holdcnt);
3435 	for (;;) {
3436 		if (count & VHOLD_NO_SMR) {
3437 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3438 			    ("non-zero hold count with flags %d\n", count));
3439 			return (false);
3440 		}
3441 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3442 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3443 			if (count == 0)
3444 				vfs_freevnodes_dec();
3445 			return (true);
3446 		}
3447 	}
3448 }
3449 
3450 /*
3451  * Hold a free vnode for recycling.
3452  *
3453  * Note: vnode_init references this comment.
3454  *
3455  * Attempts to recycle only need the global vnode list lock and have no use for
3456  * SMR.
3457  *
3458  * However, vnodes get inserted into the global list before they get fully
3459  * initialized and stay there until UMA decides to free the memory. This in
3460  * particular means the target can be found before it becomes usable and after
3461  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3462  * VHOLD_NO_SMR.
3463  *
3464  * Note: the vnode may gain more references after we transition the count 0->1.
3465  */
3466 static bool
3467 vhold_recycle_free(struct vnode *vp)
3468 {
3469 	int count;
3470 
3471 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3472 
3473 	count = atomic_load_int(&vp->v_holdcnt);
3474 	for (;;) {
3475 		if (count & VHOLD_NO_SMR) {
3476 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3477 			    ("non-zero hold count with flags %d\n", count));
3478 			return (false);
3479 		}
3480 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3481 		if (count > 0) {
3482 			return (false);
3483 		}
3484 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3485 			vfs_freevnodes_dec();
3486 			return (true);
3487 		}
3488 	}
3489 }
3490 
3491 static void __noinline
3492 vdbatch_process(struct vdbatch *vd)
3493 {
3494 	struct vnode *vp;
3495 	int i;
3496 
3497 	mtx_assert(&vd->lock, MA_OWNED);
3498 	MPASS(curthread->td_pinned > 0);
3499 	MPASS(vd->index == VDBATCH_SIZE);
3500 
3501 	mtx_lock(&vnode_list_mtx);
3502 	critical_enter();
3503 	freevnodes += vd->freevnodes;
3504 	for (i = 0; i < VDBATCH_SIZE; i++) {
3505 		vp = vd->tab[i];
3506 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3507 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3508 		MPASS(vp->v_dbatchcpu != NOCPU);
3509 		vp->v_dbatchcpu = NOCPU;
3510 	}
3511 	mtx_unlock(&vnode_list_mtx);
3512 	vd->freevnodes = 0;
3513 	bzero(vd->tab, sizeof(vd->tab));
3514 	vd->index = 0;
3515 	critical_exit();
3516 }
3517 
3518 static void
3519 vdbatch_enqueue(struct vnode *vp)
3520 {
3521 	struct vdbatch *vd;
3522 
3523 	ASSERT_VI_LOCKED(vp, __func__);
3524 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3525 	    ("%s: deferring requeue of a doomed vnode", __func__));
3526 
3527 	if (vp->v_dbatchcpu != NOCPU) {
3528 		VI_UNLOCK(vp);
3529 		return;
3530 	}
3531 
3532 	sched_pin();
3533 	vd = DPCPU_PTR(vd);
3534 	mtx_lock(&vd->lock);
3535 	MPASS(vd->index < VDBATCH_SIZE);
3536 	MPASS(vd->tab[vd->index] == NULL);
3537 	/*
3538 	 * A hack: we depend on being pinned so that we know what to put in
3539 	 * ->v_dbatchcpu.
3540 	 */
3541 	vp->v_dbatchcpu = curcpu;
3542 	vd->tab[vd->index] = vp;
3543 	vd->index++;
3544 	VI_UNLOCK(vp);
3545 	if (vd->index == VDBATCH_SIZE)
3546 		vdbatch_process(vd);
3547 	mtx_unlock(&vd->lock);
3548 	sched_unpin();
3549 }
3550 
3551 /*
3552  * This routine must only be called for vnodes which are about to be
3553  * deallocated. Supporting dequeue for arbitrary vndoes would require
3554  * validating that the locked batch matches.
3555  */
3556 static void
3557 vdbatch_dequeue(struct vnode *vp)
3558 {
3559 	struct vdbatch *vd;
3560 	int i;
3561 	short cpu;
3562 
3563 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3564 	    ("%s: called for a used vnode\n", __func__));
3565 
3566 	cpu = vp->v_dbatchcpu;
3567 	if (cpu == NOCPU)
3568 		return;
3569 
3570 	vd = DPCPU_ID_PTR(cpu, vd);
3571 	mtx_lock(&vd->lock);
3572 	for (i = 0; i < vd->index; i++) {
3573 		if (vd->tab[i] != vp)
3574 			continue;
3575 		vp->v_dbatchcpu = NOCPU;
3576 		vd->index--;
3577 		vd->tab[i] = vd->tab[vd->index];
3578 		vd->tab[vd->index] = NULL;
3579 		break;
3580 	}
3581 	mtx_unlock(&vd->lock);
3582 	/*
3583 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3584 	 */
3585 	MPASS(vp->v_dbatchcpu == NOCPU);
3586 }
3587 
3588 /*
3589  * Drop the hold count of the vnode.  If this is the last reference to
3590  * the vnode we place it on the free list unless it has been vgone'd
3591  * (marked VIRF_DOOMED) in which case we will free it.
3592  *
3593  * Because the vnode vm object keeps a hold reference on the vnode if
3594  * there is at least one resident non-cached page, the vnode cannot
3595  * leave the active list without the page cleanup done.
3596  */
3597 static void __noinline
3598 vdropl_final(struct vnode *vp)
3599 {
3600 
3601 	ASSERT_VI_LOCKED(vp, __func__);
3602 	VNPASS(VN_IS_DOOMED(vp), vp);
3603 	/*
3604 	 * Set the VHOLD_NO_SMR flag.
3605 	 *
3606 	 * We may be racing against vhold_smr. If they win we can just pretend
3607 	 * we never got this far, they will vdrop later.
3608 	 */
3609 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3610 		vfs_freevnodes_inc();
3611 		VI_UNLOCK(vp);
3612 		/*
3613 		 * We lost the aforementioned race. Any subsequent access is
3614 		 * invalid as they might have managed to vdropl on their own.
3615 		 */
3616 		return;
3617 	}
3618 	/*
3619 	 * Don't bump freevnodes as this one is going away.
3620 	 */
3621 	freevnode(vp);
3622 }
3623 
3624 void
3625 vdrop(struct vnode *vp)
3626 {
3627 
3628 	ASSERT_VI_UNLOCKED(vp, __func__);
3629 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3630 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3631 		return;
3632 	VI_LOCK(vp);
3633 	vdropl(vp);
3634 }
3635 
3636 static void __always_inline
3637 vdropl_impl(struct vnode *vp, bool enqueue)
3638 {
3639 
3640 	ASSERT_VI_LOCKED(vp, __func__);
3641 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3642 	if (!refcount_release(&vp->v_holdcnt)) {
3643 		VI_UNLOCK(vp);
3644 		return;
3645 	}
3646 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3647 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3648 	if (VN_IS_DOOMED(vp)) {
3649 		vdropl_final(vp);
3650 		return;
3651 	}
3652 
3653 	vfs_freevnodes_inc();
3654 	if (vp->v_mflag & VMP_LAZYLIST) {
3655 		vunlazy(vp);
3656 	}
3657 
3658 	if (!enqueue) {
3659 		VI_UNLOCK(vp);
3660 		return;
3661 	}
3662 
3663 	/*
3664 	 * Also unlocks the interlock. We can't assert on it as we
3665 	 * released our hold and by now the vnode might have been
3666 	 * freed.
3667 	 */
3668 	vdbatch_enqueue(vp);
3669 }
3670 
3671 void
3672 vdropl(struct vnode *vp)
3673 {
3674 
3675 	vdropl_impl(vp, true);
3676 }
3677 
3678 /*
3679  * vdrop a vnode when recycling
3680  *
3681  * This is a special case routine only to be used when recycling, differs from
3682  * regular vdrop by not requeieing the vnode on LRU.
3683  *
3684  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3685  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3686  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3687  * loop which can last for as long as writes are frozen.
3688  */
3689 static void
3690 vdropl_recycle(struct vnode *vp)
3691 {
3692 
3693 	vdropl_impl(vp, false);
3694 }
3695 
3696 static void
3697 vdrop_recycle(struct vnode *vp)
3698 {
3699 
3700 	VI_LOCK(vp);
3701 	vdropl_recycle(vp);
3702 }
3703 
3704 /*
3705  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3706  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3707  */
3708 static int
3709 vinactivef(struct vnode *vp)
3710 {
3711 	struct vm_object *obj;
3712 	int error;
3713 
3714 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3715 	ASSERT_VI_LOCKED(vp, "vinactive");
3716 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3717 	    ("vinactive: recursed on VI_DOINGINACT"));
3718 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3719 	vp->v_iflag |= VI_DOINGINACT;
3720 	vp->v_iflag &= ~VI_OWEINACT;
3721 	VI_UNLOCK(vp);
3722 	/*
3723 	 * Before moving off the active list, we must be sure that any
3724 	 * modified pages are converted into the vnode's dirty
3725 	 * buffers, since these will no longer be checked once the
3726 	 * vnode is on the inactive list.
3727 	 *
3728 	 * The write-out of the dirty pages is asynchronous.  At the
3729 	 * point that VOP_INACTIVE() is called, there could still be
3730 	 * pending I/O and dirty pages in the object.
3731 	 */
3732 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3733 	    vm_object_mightbedirty(obj)) {
3734 		VM_OBJECT_WLOCK(obj);
3735 		vm_object_page_clean(obj, 0, 0, 0);
3736 		VM_OBJECT_WUNLOCK(obj);
3737 	}
3738 	error = VOP_INACTIVE(vp);
3739 	VI_LOCK(vp);
3740 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3741 	    ("vinactive: lost VI_DOINGINACT"));
3742 	vp->v_iflag &= ~VI_DOINGINACT;
3743 	return (error);
3744 }
3745 
3746 int
3747 vinactive(struct vnode *vp)
3748 {
3749 
3750 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3751 	ASSERT_VI_LOCKED(vp, "vinactive");
3752 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3753 
3754 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3755 		return (0);
3756 	if (vp->v_iflag & VI_DOINGINACT)
3757 		return (0);
3758 	if (vp->v_usecount > 0) {
3759 		vp->v_iflag &= ~VI_OWEINACT;
3760 		return (0);
3761 	}
3762 	return (vinactivef(vp));
3763 }
3764 
3765 /*
3766  * Remove any vnodes in the vnode table belonging to mount point mp.
3767  *
3768  * If FORCECLOSE is not specified, there should not be any active ones,
3769  * return error if any are found (nb: this is a user error, not a
3770  * system error). If FORCECLOSE is specified, detach any active vnodes
3771  * that are found.
3772  *
3773  * If WRITECLOSE is set, only flush out regular file vnodes open for
3774  * writing.
3775  *
3776  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3777  *
3778  * `rootrefs' specifies the base reference count for the root vnode
3779  * of this filesystem. The root vnode is considered busy if its
3780  * v_usecount exceeds this value. On a successful return, vflush(, td)
3781  * will call vrele() on the root vnode exactly rootrefs times.
3782  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3783  * be zero.
3784  */
3785 #ifdef DIAGNOSTIC
3786 static int busyprt = 0;		/* print out busy vnodes */
3787 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3788 #endif
3789 
3790 int
3791 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3792 {
3793 	struct vnode *vp, *mvp, *rootvp = NULL;
3794 	struct vattr vattr;
3795 	int busy = 0, error;
3796 
3797 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3798 	    rootrefs, flags);
3799 	if (rootrefs > 0) {
3800 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3801 		    ("vflush: bad args"));
3802 		/*
3803 		 * Get the filesystem root vnode. We can vput() it
3804 		 * immediately, since with rootrefs > 0, it won't go away.
3805 		 */
3806 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3807 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3808 			    __func__, error);
3809 			return (error);
3810 		}
3811 		vput(rootvp);
3812 	}
3813 loop:
3814 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3815 		vholdl(vp);
3816 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3817 		if (error) {
3818 			vdrop(vp);
3819 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3820 			goto loop;
3821 		}
3822 		/*
3823 		 * Skip over a vnodes marked VV_SYSTEM.
3824 		 */
3825 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3826 			VOP_UNLOCK(vp);
3827 			vdrop(vp);
3828 			continue;
3829 		}
3830 		/*
3831 		 * If WRITECLOSE is set, flush out unlinked but still open
3832 		 * files (even if open only for reading) and regular file
3833 		 * vnodes open for writing.
3834 		 */
3835 		if (flags & WRITECLOSE) {
3836 			if (vp->v_object != NULL) {
3837 				VM_OBJECT_WLOCK(vp->v_object);
3838 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3839 				VM_OBJECT_WUNLOCK(vp->v_object);
3840 			}
3841 			do {
3842 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3843 			} while (error == ERELOOKUP);
3844 			if (error != 0) {
3845 				VOP_UNLOCK(vp);
3846 				vdrop(vp);
3847 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3848 				return (error);
3849 			}
3850 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3851 			VI_LOCK(vp);
3852 
3853 			if ((vp->v_type == VNON ||
3854 			    (error == 0 && vattr.va_nlink > 0)) &&
3855 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3856 				VOP_UNLOCK(vp);
3857 				vdropl(vp);
3858 				continue;
3859 			}
3860 		} else
3861 			VI_LOCK(vp);
3862 		/*
3863 		 * With v_usecount == 0, all we need to do is clear out the
3864 		 * vnode data structures and we are done.
3865 		 *
3866 		 * If FORCECLOSE is set, forcibly close the vnode.
3867 		 */
3868 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3869 			vgonel(vp);
3870 		} else {
3871 			busy++;
3872 #ifdef DIAGNOSTIC
3873 			if (busyprt)
3874 				vn_printf(vp, "vflush: busy vnode ");
3875 #endif
3876 		}
3877 		VOP_UNLOCK(vp);
3878 		vdropl(vp);
3879 	}
3880 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3881 		/*
3882 		 * If just the root vnode is busy, and if its refcount
3883 		 * is equal to `rootrefs', then go ahead and kill it.
3884 		 */
3885 		VI_LOCK(rootvp);
3886 		KASSERT(busy > 0, ("vflush: not busy"));
3887 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3888 		    ("vflush: usecount %d < rootrefs %d",
3889 		     rootvp->v_usecount, rootrefs));
3890 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3891 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3892 			vgone(rootvp);
3893 			VOP_UNLOCK(rootvp);
3894 			busy = 0;
3895 		} else
3896 			VI_UNLOCK(rootvp);
3897 	}
3898 	if (busy) {
3899 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3900 		    busy);
3901 		return (EBUSY);
3902 	}
3903 	for (; rootrefs > 0; rootrefs--)
3904 		vrele(rootvp);
3905 	return (0);
3906 }
3907 
3908 /*
3909  * Recycle an unused vnode to the front of the free list.
3910  */
3911 int
3912 vrecycle(struct vnode *vp)
3913 {
3914 	int recycled;
3915 
3916 	VI_LOCK(vp);
3917 	recycled = vrecyclel(vp);
3918 	VI_UNLOCK(vp);
3919 	return (recycled);
3920 }
3921 
3922 /*
3923  * vrecycle, with the vp interlock held.
3924  */
3925 int
3926 vrecyclel(struct vnode *vp)
3927 {
3928 	int recycled;
3929 
3930 	ASSERT_VOP_ELOCKED(vp, __func__);
3931 	ASSERT_VI_LOCKED(vp, __func__);
3932 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3933 	recycled = 0;
3934 	if (vp->v_usecount == 0) {
3935 		recycled = 1;
3936 		vgonel(vp);
3937 	}
3938 	return (recycled);
3939 }
3940 
3941 /*
3942  * Eliminate all activity associated with a vnode
3943  * in preparation for reuse.
3944  */
3945 void
3946 vgone(struct vnode *vp)
3947 {
3948 	VI_LOCK(vp);
3949 	vgonel(vp);
3950 	VI_UNLOCK(vp);
3951 }
3952 
3953 /*
3954  * Notify upper mounts about reclaimed or unlinked vnode.
3955  */
3956 void
3957 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
3958 {
3959 	struct mount *mp;
3960 	struct mount_upper_node *ump;
3961 
3962 	mp = atomic_load_ptr(&vp->v_mount);
3963 	if (mp == NULL)
3964 		return;
3965 	if (TAILQ_EMPTY(&mp->mnt_notify))
3966 		return;
3967 
3968 	MNT_ILOCK(mp);
3969 	mp->mnt_upper_pending++;
3970 	KASSERT(mp->mnt_upper_pending > 0,
3971 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3972 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3973 		MNT_IUNLOCK(mp);
3974 		switch (event) {
3975 		case VFS_NOTIFY_UPPER_RECLAIM:
3976 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
3977 			break;
3978 		case VFS_NOTIFY_UPPER_UNLINK:
3979 			VFS_UNLINK_LOWERVP(ump->mp, vp);
3980 			break;
3981 		}
3982 		MNT_ILOCK(mp);
3983 	}
3984 	mp->mnt_upper_pending--;
3985 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
3986 	    mp->mnt_upper_pending == 0) {
3987 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
3988 		wakeup(&mp->mnt_uppers);
3989 	}
3990 	MNT_IUNLOCK(mp);
3991 }
3992 
3993 /*
3994  * vgone, with the vp interlock held.
3995  */
3996 static void
3997 vgonel(struct vnode *vp)
3998 {
3999 	struct thread *td;
4000 	struct mount *mp;
4001 	vm_object_t object;
4002 	bool active, doinginact, oweinact;
4003 
4004 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4005 	ASSERT_VI_LOCKED(vp, "vgonel");
4006 	VNASSERT(vp->v_holdcnt, vp,
4007 	    ("vgonel: vp %p has no reference.", vp));
4008 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4009 	td = curthread;
4010 
4011 	/*
4012 	 * Don't vgonel if we're already doomed.
4013 	 */
4014 	if (VN_IS_DOOMED(vp))
4015 		return;
4016 	/*
4017 	 * Paired with freevnode.
4018 	 */
4019 	vn_seqc_write_begin_locked(vp);
4020 	vunlazy_gone(vp);
4021 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4022 
4023 	/*
4024 	 * Check to see if the vnode is in use.  If so, we have to
4025 	 * call VOP_CLOSE() and VOP_INACTIVE().
4026 	 *
4027 	 * It could be that VOP_INACTIVE() requested reclamation, in
4028 	 * which case we should avoid recursion, so check
4029 	 * VI_DOINGINACT.  This is not precise but good enough.
4030 	 */
4031 	active = vp->v_usecount > 0;
4032 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4033 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4034 
4035 	/*
4036 	 * If we need to do inactive VI_OWEINACT will be set.
4037 	 */
4038 	if (vp->v_iflag & VI_DEFINACT) {
4039 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4040 		vp->v_iflag &= ~VI_DEFINACT;
4041 		vdropl(vp);
4042 	} else {
4043 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4044 		VI_UNLOCK(vp);
4045 	}
4046 	cache_purge_vgone(vp);
4047 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4048 
4049 	/*
4050 	 * If purging an active vnode, it must be closed and
4051 	 * deactivated before being reclaimed.
4052 	 */
4053 	if (active)
4054 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4055 	if (!doinginact) {
4056 		do {
4057 			if (oweinact || active) {
4058 				VI_LOCK(vp);
4059 				vinactivef(vp);
4060 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4061 				VI_UNLOCK(vp);
4062 			}
4063 		} while (oweinact);
4064 	}
4065 	if (vp->v_type == VSOCK)
4066 		vfs_unp_reclaim(vp);
4067 
4068 	/*
4069 	 * Clean out any buffers associated with the vnode.
4070 	 * If the flush fails, just toss the buffers.
4071 	 */
4072 	mp = NULL;
4073 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4074 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4075 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4076 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4077 			;
4078 	}
4079 
4080 	BO_LOCK(&vp->v_bufobj);
4081 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4082 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4083 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4084 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4085 	    ("vp %p bufobj not invalidated", vp));
4086 
4087 	/*
4088 	 * For VMIO bufobj, BO_DEAD is set later, or in
4089 	 * vm_object_terminate() after the object's page queue is
4090 	 * flushed.
4091 	 */
4092 	object = vp->v_bufobj.bo_object;
4093 	if (object == NULL)
4094 		vp->v_bufobj.bo_flag |= BO_DEAD;
4095 	BO_UNLOCK(&vp->v_bufobj);
4096 
4097 	/*
4098 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4099 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4100 	 * should not touch the object borrowed from the lower vnode
4101 	 * (the handle check).
4102 	 */
4103 	if (object != NULL && object->type == OBJT_VNODE &&
4104 	    object->handle == vp)
4105 		vnode_destroy_vobject(vp);
4106 
4107 	/*
4108 	 * Reclaim the vnode.
4109 	 */
4110 	if (VOP_RECLAIM(vp))
4111 		panic("vgone: cannot reclaim");
4112 	if (mp != NULL)
4113 		vn_finished_secondary_write(mp);
4114 	VNASSERT(vp->v_object == NULL, vp,
4115 	    ("vop_reclaim left v_object vp=%p", vp));
4116 	/*
4117 	 * Clear the advisory locks and wake up waiting threads.
4118 	 */
4119 	if (vp->v_lockf != NULL) {
4120 		(void)VOP_ADVLOCKPURGE(vp);
4121 		vp->v_lockf = NULL;
4122 	}
4123 	/*
4124 	 * Delete from old mount point vnode list.
4125 	 */
4126 	if (vp->v_mount == NULL) {
4127 		VI_LOCK(vp);
4128 	} else {
4129 		delmntque(vp);
4130 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4131 	}
4132 	/*
4133 	 * Done with purge, reset to the standard lock and invalidate
4134 	 * the vnode.
4135 	 */
4136 	vp->v_vnlock = &vp->v_lock;
4137 	vp->v_op = &dead_vnodeops;
4138 	vp->v_type = VBAD;
4139 }
4140 
4141 /*
4142  * Print out a description of a vnode.
4143  */
4144 static const char * const typename[] =
4145 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4146  "VMARKER"};
4147 
4148 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4149     "new hold count flag not added to vn_printf");
4150 
4151 void
4152 vn_printf(struct vnode *vp, const char *fmt, ...)
4153 {
4154 	va_list ap;
4155 	char buf[256], buf2[16];
4156 	u_long flags;
4157 	u_int holdcnt;
4158 	short irflag;
4159 
4160 	va_start(ap, fmt);
4161 	vprintf(fmt, ap);
4162 	va_end(ap);
4163 	printf("%p: ", (void *)vp);
4164 	printf("type %s\n", typename[vp->v_type]);
4165 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4166 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4167 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4168 	    vp->v_seqc_users);
4169 	switch (vp->v_type) {
4170 	case VDIR:
4171 		printf(" mountedhere %p\n", vp->v_mountedhere);
4172 		break;
4173 	case VCHR:
4174 		printf(" rdev %p\n", vp->v_rdev);
4175 		break;
4176 	case VSOCK:
4177 		printf(" socket %p\n", vp->v_unpcb);
4178 		break;
4179 	case VFIFO:
4180 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4181 		break;
4182 	default:
4183 		printf("\n");
4184 		break;
4185 	}
4186 	buf[0] = '\0';
4187 	buf[1] = '\0';
4188 	if (holdcnt & VHOLD_NO_SMR)
4189 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4190 	printf("    hold count flags (%s)\n", buf + 1);
4191 
4192 	buf[0] = '\0';
4193 	buf[1] = '\0';
4194 	irflag = vn_irflag_read(vp);
4195 	if (irflag & VIRF_DOOMED)
4196 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4197 	if (irflag & VIRF_PGREAD)
4198 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4199 	if (irflag & VIRF_MOUNTPOINT)
4200 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4201 	if (irflag & VIRF_TEXT_REF)
4202 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4203 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4204 	if (flags != 0) {
4205 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4206 		strlcat(buf, buf2, sizeof(buf));
4207 	}
4208 	if (vp->v_vflag & VV_ROOT)
4209 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4210 	if (vp->v_vflag & VV_ISTTY)
4211 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4212 	if (vp->v_vflag & VV_NOSYNC)
4213 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4214 	if (vp->v_vflag & VV_ETERNALDEV)
4215 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4216 	if (vp->v_vflag & VV_CACHEDLABEL)
4217 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4218 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4219 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4220 	if (vp->v_vflag & VV_COPYONWRITE)
4221 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4222 	if (vp->v_vflag & VV_SYSTEM)
4223 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4224 	if (vp->v_vflag & VV_PROCDEP)
4225 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4226 	if (vp->v_vflag & VV_DELETED)
4227 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4228 	if (vp->v_vflag & VV_MD)
4229 		strlcat(buf, "|VV_MD", sizeof(buf));
4230 	if (vp->v_vflag & VV_FORCEINSMQ)
4231 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4232 	if (vp->v_vflag & VV_READLINK)
4233 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4234 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4235 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4236 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4237 	if (flags != 0) {
4238 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4239 		strlcat(buf, buf2, sizeof(buf));
4240 	}
4241 	if (vp->v_iflag & VI_MOUNT)
4242 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4243 	if (vp->v_iflag & VI_DOINGINACT)
4244 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4245 	if (vp->v_iflag & VI_OWEINACT)
4246 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4247 	if (vp->v_iflag & VI_DEFINACT)
4248 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4249 	if (vp->v_iflag & VI_FOPENING)
4250 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4251 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4252 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4253 	if (flags != 0) {
4254 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4255 		strlcat(buf, buf2, sizeof(buf));
4256 	}
4257 	if (vp->v_mflag & VMP_LAZYLIST)
4258 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4259 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4260 	if (flags != 0) {
4261 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4262 		strlcat(buf, buf2, sizeof(buf));
4263 	}
4264 	printf("    flags (%s)", buf + 1);
4265 	if (mtx_owned(VI_MTX(vp)))
4266 		printf(" VI_LOCKed");
4267 	printf("\n");
4268 	if (vp->v_object != NULL)
4269 		printf("    v_object %p ref %d pages %d "
4270 		    "cleanbuf %d dirtybuf %d\n",
4271 		    vp->v_object, vp->v_object->ref_count,
4272 		    vp->v_object->resident_page_count,
4273 		    vp->v_bufobj.bo_clean.bv_cnt,
4274 		    vp->v_bufobj.bo_dirty.bv_cnt);
4275 	printf("    ");
4276 	lockmgr_printinfo(vp->v_vnlock);
4277 	if (vp->v_data != NULL)
4278 		VOP_PRINT(vp);
4279 }
4280 
4281 #ifdef DDB
4282 /*
4283  * List all of the locked vnodes in the system.
4284  * Called when debugging the kernel.
4285  */
4286 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4287 {
4288 	struct mount *mp;
4289 	struct vnode *vp;
4290 
4291 	/*
4292 	 * Note: because this is DDB, we can't obey the locking semantics
4293 	 * for these structures, which means we could catch an inconsistent
4294 	 * state and dereference a nasty pointer.  Not much to be done
4295 	 * about that.
4296 	 */
4297 	db_printf("Locked vnodes\n");
4298 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4299 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4300 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4301 				vn_printf(vp, "vnode ");
4302 		}
4303 	}
4304 }
4305 
4306 /*
4307  * Show details about the given vnode.
4308  */
4309 DB_SHOW_COMMAND(vnode, db_show_vnode)
4310 {
4311 	struct vnode *vp;
4312 
4313 	if (!have_addr)
4314 		return;
4315 	vp = (struct vnode *)addr;
4316 	vn_printf(vp, "vnode ");
4317 }
4318 
4319 /*
4320  * Show details about the given mount point.
4321  */
4322 DB_SHOW_COMMAND(mount, db_show_mount)
4323 {
4324 	struct mount *mp;
4325 	struct vfsopt *opt;
4326 	struct statfs *sp;
4327 	struct vnode *vp;
4328 	char buf[512];
4329 	uint64_t mflags;
4330 	u_int flags;
4331 
4332 	if (!have_addr) {
4333 		/* No address given, print short info about all mount points. */
4334 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4335 			db_printf("%p %s on %s (%s)\n", mp,
4336 			    mp->mnt_stat.f_mntfromname,
4337 			    mp->mnt_stat.f_mntonname,
4338 			    mp->mnt_stat.f_fstypename);
4339 			if (db_pager_quit)
4340 				break;
4341 		}
4342 		db_printf("\nMore info: show mount <addr>\n");
4343 		return;
4344 	}
4345 
4346 	mp = (struct mount *)addr;
4347 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4348 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4349 
4350 	buf[0] = '\0';
4351 	mflags = mp->mnt_flag;
4352 #define	MNT_FLAG(flag)	do {						\
4353 	if (mflags & (flag)) {						\
4354 		if (buf[0] != '\0')					\
4355 			strlcat(buf, ", ", sizeof(buf));		\
4356 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4357 		mflags &= ~(flag);					\
4358 	}								\
4359 } while (0)
4360 	MNT_FLAG(MNT_RDONLY);
4361 	MNT_FLAG(MNT_SYNCHRONOUS);
4362 	MNT_FLAG(MNT_NOEXEC);
4363 	MNT_FLAG(MNT_NOSUID);
4364 	MNT_FLAG(MNT_NFS4ACLS);
4365 	MNT_FLAG(MNT_UNION);
4366 	MNT_FLAG(MNT_ASYNC);
4367 	MNT_FLAG(MNT_SUIDDIR);
4368 	MNT_FLAG(MNT_SOFTDEP);
4369 	MNT_FLAG(MNT_NOSYMFOLLOW);
4370 	MNT_FLAG(MNT_GJOURNAL);
4371 	MNT_FLAG(MNT_MULTILABEL);
4372 	MNT_FLAG(MNT_ACLS);
4373 	MNT_FLAG(MNT_NOATIME);
4374 	MNT_FLAG(MNT_NOCLUSTERR);
4375 	MNT_FLAG(MNT_NOCLUSTERW);
4376 	MNT_FLAG(MNT_SUJ);
4377 	MNT_FLAG(MNT_EXRDONLY);
4378 	MNT_FLAG(MNT_EXPORTED);
4379 	MNT_FLAG(MNT_DEFEXPORTED);
4380 	MNT_FLAG(MNT_EXPORTANON);
4381 	MNT_FLAG(MNT_EXKERB);
4382 	MNT_FLAG(MNT_EXPUBLIC);
4383 	MNT_FLAG(MNT_LOCAL);
4384 	MNT_FLAG(MNT_QUOTA);
4385 	MNT_FLAG(MNT_ROOTFS);
4386 	MNT_FLAG(MNT_USER);
4387 	MNT_FLAG(MNT_IGNORE);
4388 	MNT_FLAG(MNT_UPDATE);
4389 	MNT_FLAG(MNT_DELEXPORT);
4390 	MNT_FLAG(MNT_RELOAD);
4391 	MNT_FLAG(MNT_FORCE);
4392 	MNT_FLAG(MNT_SNAPSHOT);
4393 	MNT_FLAG(MNT_BYFSID);
4394 #undef MNT_FLAG
4395 	if (mflags != 0) {
4396 		if (buf[0] != '\0')
4397 			strlcat(buf, ", ", sizeof(buf));
4398 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4399 		    "0x%016jx", mflags);
4400 	}
4401 	db_printf("    mnt_flag = %s\n", buf);
4402 
4403 	buf[0] = '\0';
4404 	flags = mp->mnt_kern_flag;
4405 #define	MNT_KERN_FLAG(flag)	do {					\
4406 	if (flags & (flag)) {						\
4407 		if (buf[0] != '\0')					\
4408 			strlcat(buf, ", ", sizeof(buf));		\
4409 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4410 		flags &= ~(flag);					\
4411 	}								\
4412 } while (0)
4413 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4414 	MNT_KERN_FLAG(MNTK_ASYNC);
4415 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4416 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4417 	MNT_KERN_FLAG(MNTK_DRAINING);
4418 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4419 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4420 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4421 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4422 	MNT_KERN_FLAG(MNTK_RECURSE);
4423 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4424 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4425 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4426 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4427 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4428 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4429 	MNT_KERN_FLAG(MNTK_NOASYNC);
4430 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4431 	MNT_KERN_FLAG(MNTK_MWAIT);
4432 	MNT_KERN_FLAG(MNTK_SUSPEND);
4433 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4434 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4435 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4436 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4437 #undef MNT_KERN_FLAG
4438 	if (flags != 0) {
4439 		if (buf[0] != '\0')
4440 			strlcat(buf, ", ", sizeof(buf));
4441 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4442 		    "0x%08x", flags);
4443 	}
4444 	db_printf("    mnt_kern_flag = %s\n", buf);
4445 
4446 	db_printf("    mnt_opt = ");
4447 	opt = TAILQ_FIRST(mp->mnt_opt);
4448 	if (opt != NULL) {
4449 		db_printf("%s", opt->name);
4450 		opt = TAILQ_NEXT(opt, link);
4451 		while (opt != NULL) {
4452 			db_printf(", %s", opt->name);
4453 			opt = TAILQ_NEXT(opt, link);
4454 		}
4455 	}
4456 	db_printf("\n");
4457 
4458 	sp = &mp->mnt_stat;
4459 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4460 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4461 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4462 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4463 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4464 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4465 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4466 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4467 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4468 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4469 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4470 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4471 
4472 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4473 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4474 	if (jailed(mp->mnt_cred))
4475 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4476 	db_printf(" }\n");
4477 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4478 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4479 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4480 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4481 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4482 	    mp->mnt_lazyvnodelistsize);
4483 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4484 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4485 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4486 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4487 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4488 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4489 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4490 	db_printf("    mnt_secondary_accwrites = %d\n",
4491 	    mp->mnt_secondary_accwrites);
4492 	db_printf("    mnt_gjprovider = %s\n",
4493 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4494 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4495 
4496 	db_printf("\n\nList of active vnodes\n");
4497 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4498 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4499 			vn_printf(vp, "vnode ");
4500 			if (db_pager_quit)
4501 				break;
4502 		}
4503 	}
4504 	db_printf("\n\nList of inactive vnodes\n");
4505 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4506 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4507 			vn_printf(vp, "vnode ");
4508 			if (db_pager_quit)
4509 				break;
4510 		}
4511 	}
4512 }
4513 #endif	/* DDB */
4514 
4515 /*
4516  * Fill in a struct xvfsconf based on a struct vfsconf.
4517  */
4518 static int
4519 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4520 {
4521 	struct xvfsconf xvfsp;
4522 
4523 	bzero(&xvfsp, sizeof(xvfsp));
4524 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4525 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4526 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4527 	xvfsp.vfc_flags = vfsp->vfc_flags;
4528 	/*
4529 	 * These are unused in userland, we keep them
4530 	 * to not break binary compatibility.
4531 	 */
4532 	xvfsp.vfc_vfsops = NULL;
4533 	xvfsp.vfc_next = NULL;
4534 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4535 }
4536 
4537 #ifdef COMPAT_FREEBSD32
4538 struct xvfsconf32 {
4539 	uint32_t	vfc_vfsops;
4540 	char		vfc_name[MFSNAMELEN];
4541 	int32_t		vfc_typenum;
4542 	int32_t		vfc_refcount;
4543 	int32_t		vfc_flags;
4544 	uint32_t	vfc_next;
4545 };
4546 
4547 static int
4548 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4549 {
4550 	struct xvfsconf32 xvfsp;
4551 
4552 	bzero(&xvfsp, sizeof(xvfsp));
4553 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4554 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4555 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4556 	xvfsp.vfc_flags = vfsp->vfc_flags;
4557 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4558 }
4559 #endif
4560 
4561 /*
4562  * Top level filesystem related information gathering.
4563  */
4564 static int
4565 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4566 {
4567 	struct vfsconf *vfsp;
4568 	int error;
4569 
4570 	error = 0;
4571 	vfsconf_slock();
4572 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4573 #ifdef COMPAT_FREEBSD32
4574 		if (req->flags & SCTL_MASK32)
4575 			error = vfsconf2x32(req, vfsp);
4576 		else
4577 #endif
4578 			error = vfsconf2x(req, vfsp);
4579 		if (error)
4580 			break;
4581 	}
4582 	vfsconf_sunlock();
4583 	return (error);
4584 }
4585 
4586 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4587     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4588     "S,xvfsconf", "List of all configured filesystems");
4589 
4590 #ifndef BURN_BRIDGES
4591 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4592 
4593 static int
4594 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4595 {
4596 	int *name = (int *)arg1 - 1;	/* XXX */
4597 	u_int namelen = arg2 + 1;	/* XXX */
4598 	struct vfsconf *vfsp;
4599 
4600 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4601 	    "please rebuild world\n");
4602 
4603 #if 1 || defined(COMPAT_PRELITE2)
4604 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4605 	if (namelen == 1)
4606 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4607 #endif
4608 
4609 	switch (name[1]) {
4610 	case VFS_MAXTYPENUM:
4611 		if (namelen != 2)
4612 			return (ENOTDIR);
4613 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4614 	case VFS_CONF:
4615 		if (namelen != 3)
4616 			return (ENOTDIR);	/* overloaded */
4617 		vfsconf_slock();
4618 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4619 			if (vfsp->vfc_typenum == name[2])
4620 				break;
4621 		}
4622 		vfsconf_sunlock();
4623 		if (vfsp == NULL)
4624 			return (EOPNOTSUPP);
4625 #ifdef COMPAT_FREEBSD32
4626 		if (req->flags & SCTL_MASK32)
4627 			return (vfsconf2x32(req, vfsp));
4628 		else
4629 #endif
4630 			return (vfsconf2x(req, vfsp));
4631 	}
4632 	return (EOPNOTSUPP);
4633 }
4634 
4635 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4636     CTLFLAG_MPSAFE, vfs_sysctl,
4637     "Generic filesystem");
4638 
4639 #if 1 || defined(COMPAT_PRELITE2)
4640 
4641 static int
4642 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4643 {
4644 	int error;
4645 	struct vfsconf *vfsp;
4646 	struct ovfsconf ovfs;
4647 
4648 	vfsconf_slock();
4649 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4650 		bzero(&ovfs, sizeof(ovfs));
4651 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4652 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4653 		ovfs.vfc_index = vfsp->vfc_typenum;
4654 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4655 		ovfs.vfc_flags = vfsp->vfc_flags;
4656 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4657 		if (error != 0) {
4658 			vfsconf_sunlock();
4659 			return (error);
4660 		}
4661 	}
4662 	vfsconf_sunlock();
4663 	return (0);
4664 }
4665 
4666 #endif /* 1 || COMPAT_PRELITE2 */
4667 #endif /* !BURN_BRIDGES */
4668 
4669 #define KINFO_VNODESLOP		10
4670 #ifdef notyet
4671 /*
4672  * Dump vnode list (via sysctl).
4673  */
4674 /* ARGSUSED */
4675 static int
4676 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4677 {
4678 	struct xvnode *xvn;
4679 	struct mount *mp;
4680 	struct vnode *vp;
4681 	int error, len, n;
4682 
4683 	/*
4684 	 * Stale numvnodes access is not fatal here.
4685 	 */
4686 	req->lock = 0;
4687 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4688 	if (!req->oldptr)
4689 		/* Make an estimate */
4690 		return (SYSCTL_OUT(req, 0, len));
4691 
4692 	error = sysctl_wire_old_buffer(req, 0);
4693 	if (error != 0)
4694 		return (error);
4695 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4696 	n = 0;
4697 	mtx_lock(&mountlist_mtx);
4698 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4699 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4700 			continue;
4701 		MNT_ILOCK(mp);
4702 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4703 			if (n == len)
4704 				break;
4705 			vref(vp);
4706 			xvn[n].xv_size = sizeof *xvn;
4707 			xvn[n].xv_vnode = vp;
4708 			xvn[n].xv_id = 0;	/* XXX compat */
4709 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4710 			XV_COPY(usecount);
4711 			XV_COPY(writecount);
4712 			XV_COPY(holdcnt);
4713 			XV_COPY(mount);
4714 			XV_COPY(numoutput);
4715 			XV_COPY(type);
4716 #undef XV_COPY
4717 			xvn[n].xv_flag = vp->v_vflag;
4718 
4719 			switch (vp->v_type) {
4720 			case VREG:
4721 			case VDIR:
4722 			case VLNK:
4723 				break;
4724 			case VBLK:
4725 			case VCHR:
4726 				if (vp->v_rdev == NULL) {
4727 					vrele(vp);
4728 					continue;
4729 				}
4730 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4731 				break;
4732 			case VSOCK:
4733 				xvn[n].xv_socket = vp->v_socket;
4734 				break;
4735 			case VFIFO:
4736 				xvn[n].xv_fifo = vp->v_fifoinfo;
4737 				break;
4738 			case VNON:
4739 			case VBAD:
4740 			default:
4741 				/* shouldn't happen? */
4742 				vrele(vp);
4743 				continue;
4744 			}
4745 			vrele(vp);
4746 			++n;
4747 		}
4748 		MNT_IUNLOCK(mp);
4749 		mtx_lock(&mountlist_mtx);
4750 		vfs_unbusy(mp);
4751 		if (n == len)
4752 			break;
4753 	}
4754 	mtx_unlock(&mountlist_mtx);
4755 
4756 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4757 	free(xvn, M_TEMP);
4758 	return (error);
4759 }
4760 
4761 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4762     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4763     "");
4764 #endif
4765 
4766 static void
4767 unmount_or_warn(struct mount *mp)
4768 {
4769 	int error;
4770 
4771 	error = dounmount(mp, MNT_FORCE, curthread);
4772 	if (error != 0) {
4773 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4774 		if (error == EBUSY)
4775 			printf("BUSY)\n");
4776 		else
4777 			printf("%d)\n", error);
4778 	}
4779 }
4780 
4781 /*
4782  * Unmount all filesystems. The list is traversed in reverse order
4783  * of mounting to avoid dependencies.
4784  */
4785 void
4786 vfs_unmountall(void)
4787 {
4788 	struct mount *mp, *tmp;
4789 
4790 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4791 
4792 	/*
4793 	 * Since this only runs when rebooting, it is not interlocked.
4794 	 */
4795 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4796 		vfs_ref(mp);
4797 
4798 		/*
4799 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4800 		 * unmount of the latter.
4801 		 */
4802 		if (mp == rootdevmp)
4803 			continue;
4804 
4805 		unmount_or_warn(mp);
4806 	}
4807 
4808 	if (rootdevmp != NULL)
4809 		unmount_or_warn(rootdevmp);
4810 }
4811 
4812 static void
4813 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4814 {
4815 
4816 	ASSERT_VI_LOCKED(vp, __func__);
4817 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4818 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4819 		vdropl(vp);
4820 		return;
4821 	}
4822 	if (vn_lock(vp, lkflags) == 0) {
4823 		VI_LOCK(vp);
4824 		vinactive(vp);
4825 		VOP_UNLOCK(vp);
4826 		vdropl(vp);
4827 		return;
4828 	}
4829 	vdefer_inactive_unlocked(vp);
4830 }
4831 
4832 static int
4833 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4834 {
4835 
4836 	return (vp->v_iflag & VI_DEFINACT);
4837 }
4838 
4839 static void __noinline
4840 vfs_periodic_inactive(struct mount *mp, int flags)
4841 {
4842 	struct vnode *vp, *mvp;
4843 	int lkflags;
4844 
4845 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4846 	if (flags != MNT_WAIT)
4847 		lkflags |= LK_NOWAIT;
4848 
4849 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4850 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4851 			VI_UNLOCK(vp);
4852 			continue;
4853 		}
4854 		vp->v_iflag &= ~VI_DEFINACT;
4855 		vfs_deferred_inactive(vp, lkflags);
4856 	}
4857 }
4858 
4859 static inline bool
4860 vfs_want_msync(struct vnode *vp)
4861 {
4862 	struct vm_object *obj;
4863 
4864 	/*
4865 	 * This test may be performed without any locks held.
4866 	 * We rely on vm_object's type stability.
4867 	 */
4868 	if (vp->v_vflag & VV_NOSYNC)
4869 		return (false);
4870 	obj = vp->v_object;
4871 	return (obj != NULL && vm_object_mightbedirty(obj));
4872 }
4873 
4874 static int
4875 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4876 {
4877 
4878 	if (vp->v_vflag & VV_NOSYNC)
4879 		return (false);
4880 	if (vp->v_iflag & VI_DEFINACT)
4881 		return (true);
4882 	return (vfs_want_msync(vp));
4883 }
4884 
4885 static void __noinline
4886 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4887 {
4888 	struct vnode *vp, *mvp;
4889 	struct vm_object *obj;
4890 	int lkflags, objflags;
4891 	bool seen_defer;
4892 
4893 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4894 	if (flags != MNT_WAIT) {
4895 		lkflags |= LK_NOWAIT;
4896 		objflags = OBJPC_NOSYNC;
4897 	} else {
4898 		objflags = OBJPC_SYNC;
4899 	}
4900 
4901 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4902 		seen_defer = false;
4903 		if (vp->v_iflag & VI_DEFINACT) {
4904 			vp->v_iflag &= ~VI_DEFINACT;
4905 			seen_defer = true;
4906 		}
4907 		if (!vfs_want_msync(vp)) {
4908 			if (seen_defer)
4909 				vfs_deferred_inactive(vp, lkflags);
4910 			else
4911 				VI_UNLOCK(vp);
4912 			continue;
4913 		}
4914 		if (vget(vp, lkflags) == 0) {
4915 			obj = vp->v_object;
4916 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4917 				VM_OBJECT_WLOCK(obj);
4918 				vm_object_page_clean(obj, 0, 0, objflags);
4919 				VM_OBJECT_WUNLOCK(obj);
4920 			}
4921 			vput(vp);
4922 			if (seen_defer)
4923 				vdrop(vp);
4924 		} else {
4925 			if (seen_defer)
4926 				vdefer_inactive_unlocked(vp);
4927 		}
4928 	}
4929 }
4930 
4931 void
4932 vfs_periodic(struct mount *mp, int flags)
4933 {
4934 
4935 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4936 
4937 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4938 		vfs_periodic_inactive(mp, flags);
4939 	else
4940 		vfs_periodic_msync_inactive(mp, flags);
4941 }
4942 
4943 static void
4944 destroy_vpollinfo_free(struct vpollinfo *vi)
4945 {
4946 
4947 	knlist_destroy(&vi->vpi_selinfo.si_note);
4948 	mtx_destroy(&vi->vpi_lock);
4949 	free(vi, M_VNODEPOLL);
4950 }
4951 
4952 static void
4953 destroy_vpollinfo(struct vpollinfo *vi)
4954 {
4955 
4956 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4957 	seldrain(&vi->vpi_selinfo);
4958 	destroy_vpollinfo_free(vi);
4959 }
4960 
4961 /*
4962  * Initialize per-vnode helper structure to hold poll-related state.
4963  */
4964 void
4965 v_addpollinfo(struct vnode *vp)
4966 {
4967 	struct vpollinfo *vi;
4968 
4969 	if (vp->v_pollinfo != NULL)
4970 		return;
4971 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4972 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4973 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4974 	    vfs_knlunlock, vfs_knl_assert_lock);
4975 	VI_LOCK(vp);
4976 	if (vp->v_pollinfo != NULL) {
4977 		VI_UNLOCK(vp);
4978 		destroy_vpollinfo_free(vi);
4979 		return;
4980 	}
4981 	vp->v_pollinfo = vi;
4982 	VI_UNLOCK(vp);
4983 }
4984 
4985 /*
4986  * Record a process's interest in events which might happen to
4987  * a vnode.  Because poll uses the historic select-style interface
4988  * internally, this routine serves as both the ``check for any
4989  * pending events'' and the ``record my interest in future events''
4990  * functions.  (These are done together, while the lock is held,
4991  * to avoid race conditions.)
4992  */
4993 int
4994 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4995 {
4996 
4997 	v_addpollinfo(vp);
4998 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4999 	if (vp->v_pollinfo->vpi_revents & events) {
5000 		/*
5001 		 * This leaves events we are not interested
5002 		 * in available for the other process which
5003 		 * which presumably had requested them
5004 		 * (otherwise they would never have been
5005 		 * recorded).
5006 		 */
5007 		events &= vp->v_pollinfo->vpi_revents;
5008 		vp->v_pollinfo->vpi_revents &= ~events;
5009 
5010 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5011 		return (events);
5012 	}
5013 	vp->v_pollinfo->vpi_events |= events;
5014 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5015 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5016 	return (0);
5017 }
5018 
5019 /*
5020  * Routine to create and manage a filesystem syncer vnode.
5021  */
5022 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5023 static int	sync_fsync(struct  vop_fsync_args *);
5024 static int	sync_inactive(struct  vop_inactive_args *);
5025 static int	sync_reclaim(struct  vop_reclaim_args *);
5026 
5027 static struct vop_vector sync_vnodeops = {
5028 	.vop_bypass =	VOP_EOPNOTSUPP,
5029 	.vop_close =	sync_close,		/* close */
5030 	.vop_fsync =	sync_fsync,		/* fsync */
5031 	.vop_inactive =	sync_inactive,	/* inactive */
5032 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
5033 	.vop_reclaim =	sync_reclaim,	/* reclaim */
5034 	.vop_lock1 =	vop_stdlock,	/* lock */
5035 	.vop_unlock =	vop_stdunlock,	/* unlock */
5036 	.vop_islocked =	vop_stdislocked,	/* islocked */
5037 };
5038 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5039 
5040 /*
5041  * Create a new filesystem syncer vnode for the specified mount point.
5042  */
5043 void
5044 vfs_allocate_syncvnode(struct mount *mp)
5045 {
5046 	struct vnode *vp;
5047 	struct bufobj *bo;
5048 	static long start, incr, next;
5049 	int error;
5050 
5051 	/* Allocate a new vnode */
5052 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5053 	if (error != 0)
5054 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5055 	vp->v_type = VNON;
5056 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5057 	vp->v_vflag |= VV_FORCEINSMQ;
5058 	error = insmntque1(vp, mp);
5059 	if (error != 0)
5060 		panic("vfs_allocate_syncvnode: insmntque() failed");
5061 	vp->v_vflag &= ~VV_FORCEINSMQ;
5062 	VOP_UNLOCK(vp);
5063 	/*
5064 	 * Place the vnode onto the syncer worklist. We attempt to
5065 	 * scatter them about on the list so that they will go off
5066 	 * at evenly distributed times even if all the filesystems
5067 	 * are mounted at once.
5068 	 */
5069 	next += incr;
5070 	if (next == 0 || next > syncer_maxdelay) {
5071 		start /= 2;
5072 		incr /= 2;
5073 		if (start == 0) {
5074 			start = syncer_maxdelay / 2;
5075 			incr = syncer_maxdelay;
5076 		}
5077 		next = start;
5078 	}
5079 	bo = &vp->v_bufobj;
5080 	BO_LOCK(bo);
5081 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5082 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5083 	mtx_lock(&sync_mtx);
5084 	sync_vnode_count++;
5085 	if (mp->mnt_syncer == NULL) {
5086 		mp->mnt_syncer = vp;
5087 		vp = NULL;
5088 	}
5089 	mtx_unlock(&sync_mtx);
5090 	BO_UNLOCK(bo);
5091 	if (vp != NULL) {
5092 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5093 		vgone(vp);
5094 		vput(vp);
5095 	}
5096 }
5097 
5098 void
5099 vfs_deallocate_syncvnode(struct mount *mp)
5100 {
5101 	struct vnode *vp;
5102 
5103 	mtx_lock(&sync_mtx);
5104 	vp = mp->mnt_syncer;
5105 	if (vp != NULL)
5106 		mp->mnt_syncer = NULL;
5107 	mtx_unlock(&sync_mtx);
5108 	if (vp != NULL)
5109 		vrele(vp);
5110 }
5111 
5112 /*
5113  * Do a lazy sync of the filesystem.
5114  */
5115 static int
5116 sync_fsync(struct vop_fsync_args *ap)
5117 {
5118 	struct vnode *syncvp = ap->a_vp;
5119 	struct mount *mp = syncvp->v_mount;
5120 	int error, save;
5121 	struct bufobj *bo;
5122 
5123 	/*
5124 	 * We only need to do something if this is a lazy evaluation.
5125 	 */
5126 	if (ap->a_waitfor != MNT_LAZY)
5127 		return (0);
5128 
5129 	/*
5130 	 * Move ourselves to the back of the sync list.
5131 	 */
5132 	bo = &syncvp->v_bufobj;
5133 	BO_LOCK(bo);
5134 	vn_syncer_add_to_worklist(bo, syncdelay);
5135 	BO_UNLOCK(bo);
5136 
5137 	/*
5138 	 * Walk the list of vnodes pushing all that are dirty and
5139 	 * not already on the sync list.
5140 	 */
5141 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5142 		return (0);
5143 	VOP_UNLOCK(syncvp);
5144 	save = curthread_pflags_set(TDP_SYNCIO);
5145 	/*
5146 	 * The filesystem at hand may be idle with free vnodes stored in the
5147 	 * batch.  Return them instead of letting them stay there indefinitely.
5148 	 */
5149 	vfs_periodic(mp, MNT_NOWAIT);
5150 	error = VFS_SYNC(mp, MNT_LAZY);
5151 	curthread_pflags_restore(save);
5152 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5153 	vfs_unbusy(mp);
5154 	return (error);
5155 }
5156 
5157 /*
5158  * The syncer vnode is no referenced.
5159  */
5160 static int
5161 sync_inactive(struct vop_inactive_args *ap)
5162 {
5163 
5164 	vgone(ap->a_vp);
5165 	return (0);
5166 }
5167 
5168 /*
5169  * The syncer vnode is no longer needed and is being decommissioned.
5170  *
5171  * Modifications to the worklist must be protected by sync_mtx.
5172  */
5173 static int
5174 sync_reclaim(struct vop_reclaim_args *ap)
5175 {
5176 	struct vnode *vp = ap->a_vp;
5177 	struct bufobj *bo;
5178 
5179 	bo = &vp->v_bufobj;
5180 	BO_LOCK(bo);
5181 	mtx_lock(&sync_mtx);
5182 	if (vp->v_mount->mnt_syncer == vp)
5183 		vp->v_mount->mnt_syncer = NULL;
5184 	if (bo->bo_flag & BO_ONWORKLST) {
5185 		LIST_REMOVE(bo, bo_synclist);
5186 		syncer_worklist_len--;
5187 		sync_vnode_count--;
5188 		bo->bo_flag &= ~BO_ONWORKLST;
5189 	}
5190 	mtx_unlock(&sync_mtx);
5191 	BO_UNLOCK(bo);
5192 
5193 	return (0);
5194 }
5195 
5196 int
5197 vn_need_pageq_flush(struct vnode *vp)
5198 {
5199 	struct vm_object *obj;
5200 
5201 	obj = vp->v_object;
5202 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5203 	    vm_object_mightbedirty(obj));
5204 }
5205 
5206 /*
5207  * Check if vnode represents a disk device
5208  */
5209 bool
5210 vn_isdisk_error(struct vnode *vp, int *errp)
5211 {
5212 	int error;
5213 
5214 	if (vp->v_type != VCHR) {
5215 		error = ENOTBLK;
5216 		goto out;
5217 	}
5218 	error = 0;
5219 	dev_lock();
5220 	if (vp->v_rdev == NULL)
5221 		error = ENXIO;
5222 	else if (vp->v_rdev->si_devsw == NULL)
5223 		error = ENXIO;
5224 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5225 		error = ENOTBLK;
5226 	dev_unlock();
5227 out:
5228 	*errp = error;
5229 	return (error == 0);
5230 }
5231 
5232 bool
5233 vn_isdisk(struct vnode *vp)
5234 {
5235 	int error;
5236 
5237 	return (vn_isdisk_error(vp, &error));
5238 }
5239 
5240 /*
5241  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5242  * the comment above cache_fplookup for details.
5243  */
5244 int
5245 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5246 {
5247 	int error;
5248 
5249 	VFS_SMR_ASSERT_ENTERED();
5250 
5251 	/* Check the owner. */
5252 	if (cred->cr_uid == file_uid) {
5253 		if (file_mode & S_IXUSR)
5254 			return (0);
5255 		goto out_error;
5256 	}
5257 
5258 	/* Otherwise, check the groups (first match) */
5259 	if (groupmember(file_gid, cred)) {
5260 		if (file_mode & S_IXGRP)
5261 			return (0);
5262 		goto out_error;
5263 	}
5264 
5265 	/* Otherwise, check everyone else. */
5266 	if (file_mode & S_IXOTH)
5267 		return (0);
5268 out_error:
5269 	/*
5270 	 * Permission check failed, but it is possible denial will get overwritten
5271 	 * (e.g., when root is traversing through a 700 directory owned by someone
5272 	 * else).
5273 	 *
5274 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5275 	 * modules overriding this result. It's quite unclear what semantics
5276 	 * are allowed for them to operate, thus for safety we don't call them
5277 	 * from within the SMR section. This also means if any such modules
5278 	 * are present, we have to let the regular lookup decide.
5279 	 */
5280 	error = priv_check_cred_vfs_lookup_nomac(cred);
5281 	switch (error) {
5282 	case 0:
5283 		return (0);
5284 	case EAGAIN:
5285 		/*
5286 		 * MAC modules present.
5287 		 */
5288 		return (EAGAIN);
5289 	case EPERM:
5290 		return (EACCES);
5291 	default:
5292 		return (error);
5293 	}
5294 }
5295 
5296 /*
5297  * Common filesystem object access control check routine.  Accepts a
5298  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5299  * Returns 0 on success, or an errno on failure.
5300  */
5301 int
5302 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5303     accmode_t accmode, struct ucred *cred)
5304 {
5305 	accmode_t dac_granted;
5306 	accmode_t priv_granted;
5307 
5308 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5309 	    ("invalid bit in accmode"));
5310 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5311 	    ("VAPPEND without VWRITE"));
5312 
5313 	/*
5314 	 * Look for a normal, non-privileged way to access the file/directory
5315 	 * as requested.  If it exists, go with that.
5316 	 */
5317 
5318 	dac_granted = 0;
5319 
5320 	/* Check the owner. */
5321 	if (cred->cr_uid == file_uid) {
5322 		dac_granted |= VADMIN;
5323 		if (file_mode & S_IXUSR)
5324 			dac_granted |= VEXEC;
5325 		if (file_mode & S_IRUSR)
5326 			dac_granted |= VREAD;
5327 		if (file_mode & S_IWUSR)
5328 			dac_granted |= (VWRITE | VAPPEND);
5329 
5330 		if ((accmode & dac_granted) == accmode)
5331 			return (0);
5332 
5333 		goto privcheck;
5334 	}
5335 
5336 	/* Otherwise, check the groups (first match) */
5337 	if (groupmember(file_gid, cred)) {
5338 		if (file_mode & S_IXGRP)
5339 			dac_granted |= VEXEC;
5340 		if (file_mode & S_IRGRP)
5341 			dac_granted |= VREAD;
5342 		if (file_mode & S_IWGRP)
5343 			dac_granted |= (VWRITE | VAPPEND);
5344 
5345 		if ((accmode & dac_granted) == accmode)
5346 			return (0);
5347 
5348 		goto privcheck;
5349 	}
5350 
5351 	/* Otherwise, check everyone else. */
5352 	if (file_mode & S_IXOTH)
5353 		dac_granted |= VEXEC;
5354 	if (file_mode & S_IROTH)
5355 		dac_granted |= VREAD;
5356 	if (file_mode & S_IWOTH)
5357 		dac_granted |= (VWRITE | VAPPEND);
5358 	if ((accmode & dac_granted) == accmode)
5359 		return (0);
5360 
5361 privcheck:
5362 	/*
5363 	 * Build a privilege mask to determine if the set of privileges
5364 	 * satisfies the requirements when combined with the granted mask
5365 	 * from above.  For each privilege, if the privilege is required,
5366 	 * bitwise or the request type onto the priv_granted mask.
5367 	 */
5368 	priv_granted = 0;
5369 
5370 	if (type == VDIR) {
5371 		/*
5372 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5373 		 * requests, instead of PRIV_VFS_EXEC.
5374 		 */
5375 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5376 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5377 			priv_granted |= VEXEC;
5378 	} else {
5379 		/*
5380 		 * Ensure that at least one execute bit is on. Otherwise,
5381 		 * a privileged user will always succeed, and we don't want
5382 		 * this to happen unless the file really is executable.
5383 		 */
5384 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5385 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5386 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5387 			priv_granted |= VEXEC;
5388 	}
5389 
5390 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5391 	    !priv_check_cred(cred, PRIV_VFS_READ))
5392 		priv_granted |= VREAD;
5393 
5394 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5395 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5396 		priv_granted |= (VWRITE | VAPPEND);
5397 
5398 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5399 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5400 		priv_granted |= VADMIN;
5401 
5402 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5403 		return (0);
5404 	}
5405 
5406 	return ((accmode & VADMIN) ? EPERM : EACCES);
5407 }
5408 
5409 /*
5410  * Credential check based on process requesting service, and per-attribute
5411  * permissions.
5412  */
5413 int
5414 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5415     struct thread *td, accmode_t accmode)
5416 {
5417 
5418 	/*
5419 	 * Kernel-invoked always succeeds.
5420 	 */
5421 	if (cred == NOCRED)
5422 		return (0);
5423 
5424 	/*
5425 	 * Do not allow privileged processes in jail to directly manipulate
5426 	 * system attributes.
5427 	 */
5428 	switch (attrnamespace) {
5429 	case EXTATTR_NAMESPACE_SYSTEM:
5430 		/* Potentially should be: return (EPERM); */
5431 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5432 	case EXTATTR_NAMESPACE_USER:
5433 		return (VOP_ACCESS(vp, accmode, cred, td));
5434 	default:
5435 		return (EPERM);
5436 	}
5437 }
5438 
5439 #ifdef DEBUG_VFS_LOCKS
5440 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5441 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5442     "Drop into debugger on lock violation");
5443 
5444 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5445 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5446     0, "Check for interlock across VOPs");
5447 
5448 int vfs_badlock_print = 1;	/* Print lock violations. */
5449 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5450     0, "Print lock violations");
5451 
5452 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5453 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5454     0, "Print vnode details on lock violations");
5455 
5456 #ifdef KDB
5457 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5458 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5459     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5460 #endif
5461 
5462 static void
5463 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5464 {
5465 
5466 #ifdef KDB
5467 	if (vfs_badlock_backtrace)
5468 		kdb_backtrace();
5469 #endif
5470 	if (vfs_badlock_vnode)
5471 		vn_printf(vp, "vnode ");
5472 	if (vfs_badlock_print)
5473 		printf("%s: %p %s\n", str, (void *)vp, msg);
5474 	if (vfs_badlock_ddb)
5475 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5476 }
5477 
5478 void
5479 assert_vi_locked(struct vnode *vp, const char *str)
5480 {
5481 
5482 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5483 		vfs_badlock("interlock is not locked but should be", str, vp);
5484 }
5485 
5486 void
5487 assert_vi_unlocked(struct vnode *vp, const char *str)
5488 {
5489 
5490 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5491 		vfs_badlock("interlock is locked but should not be", str, vp);
5492 }
5493 
5494 void
5495 assert_vop_locked(struct vnode *vp, const char *str)
5496 {
5497 	int locked;
5498 
5499 	if (KERNEL_PANICKED() || vp == NULL)
5500 		return;
5501 
5502 	locked = VOP_ISLOCKED(vp);
5503 	if (locked == 0 || locked == LK_EXCLOTHER)
5504 		vfs_badlock("is not locked but should be", str, vp);
5505 }
5506 
5507 void
5508 assert_vop_unlocked(struct vnode *vp, const char *str)
5509 {
5510 	if (KERNEL_PANICKED() || vp == NULL)
5511 		return;
5512 
5513 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5514 		vfs_badlock("is locked but should not be", str, vp);
5515 }
5516 
5517 void
5518 assert_vop_elocked(struct vnode *vp, const char *str)
5519 {
5520 	if (KERNEL_PANICKED() || vp == NULL)
5521 		return;
5522 
5523 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5524 		vfs_badlock("is not exclusive locked but should be", str, vp);
5525 }
5526 #endif /* DEBUG_VFS_LOCKS */
5527 
5528 void
5529 vop_rename_fail(struct vop_rename_args *ap)
5530 {
5531 
5532 	if (ap->a_tvp != NULL)
5533 		vput(ap->a_tvp);
5534 	if (ap->a_tdvp == ap->a_tvp)
5535 		vrele(ap->a_tdvp);
5536 	else
5537 		vput(ap->a_tdvp);
5538 	vrele(ap->a_fdvp);
5539 	vrele(ap->a_fvp);
5540 }
5541 
5542 void
5543 vop_rename_pre(void *ap)
5544 {
5545 	struct vop_rename_args *a = ap;
5546 
5547 #ifdef DEBUG_VFS_LOCKS
5548 	if (a->a_tvp)
5549 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5550 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5551 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5552 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5553 
5554 	/* Check the source (from). */
5555 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5556 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5557 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5558 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5559 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5560 
5561 	/* Check the target. */
5562 	if (a->a_tvp)
5563 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5564 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5565 #endif
5566 	/*
5567 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5568 	 * in vop_rename_post but that's not going to work out since some
5569 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5570 	 *
5571 	 * For now filesystems are expected to do the relevant calls after they
5572 	 * decide what vnodes to operate on.
5573 	 */
5574 	if (a->a_tdvp != a->a_fdvp)
5575 		vhold(a->a_fdvp);
5576 	if (a->a_tvp != a->a_fvp)
5577 		vhold(a->a_fvp);
5578 	vhold(a->a_tdvp);
5579 	if (a->a_tvp)
5580 		vhold(a->a_tvp);
5581 }
5582 
5583 #ifdef DEBUG_VFS_LOCKS
5584 void
5585 vop_fplookup_vexec_debugpre(void *ap __unused)
5586 {
5587 
5588 	VFS_SMR_ASSERT_ENTERED();
5589 }
5590 
5591 void
5592 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5593 {
5594 
5595 	VFS_SMR_ASSERT_ENTERED();
5596 }
5597 
5598 void
5599 vop_fplookup_symlink_debugpre(void *ap __unused)
5600 {
5601 
5602 	VFS_SMR_ASSERT_ENTERED();
5603 }
5604 
5605 void
5606 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5607 {
5608 
5609 	VFS_SMR_ASSERT_ENTERED();
5610 }
5611 
5612 static void
5613 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5614 {
5615 	if (vp->v_type == VCHR)
5616 		;
5617 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5618 		ASSERT_VOP_LOCKED(vp, name);
5619 	else
5620 		ASSERT_VOP_ELOCKED(vp, name);
5621 }
5622 
5623 void
5624 vop_fsync_debugpre(void *a)
5625 {
5626 	struct vop_fsync_args *ap;
5627 
5628 	ap = a;
5629 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5630 }
5631 
5632 void
5633 vop_fsync_debugpost(void *a, int rc __unused)
5634 {
5635 	struct vop_fsync_args *ap;
5636 
5637 	ap = a;
5638 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5639 }
5640 
5641 void
5642 vop_fdatasync_debugpre(void *a)
5643 {
5644 	struct vop_fdatasync_args *ap;
5645 
5646 	ap = a;
5647 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5648 }
5649 
5650 void
5651 vop_fdatasync_debugpost(void *a, int rc __unused)
5652 {
5653 	struct vop_fdatasync_args *ap;
5654 
5655 	ap = a;
5656 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5657 }
5658 
5659 void
5660 vop_strategy_debugpre(void *ap)
5661 {
5662 	struct vop_strategy_args *a;
5663 	struct buf *bp;
5664 
5665 	a = ap;
5666 	bp = a->a_bp;
5667 
5668 	/*
5669 	 * Cluster ops lock their component buffers but not the IO container.
5670 	 */
5671 	if ((bp->b_flags & B_CLUSTER) != 0)
5672 		return;
5673 
5674 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5675 		if (vfs_badlock_print)
5676 			printf(
5677 			    "VOP_STRATEGY: bp is not locked but should be\n");
5678 		if (vfs_badlock_ddb)
5679 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5680 	}
5681 }
5682 
5683 void
5684 vop_lock_debugpre(void *ap)
5685 {
5686 	struct vop_lock1_args *a = ap;
5687 
5688 	if ((a->a_flags & LK_INTERLOCK) == 0)
5689 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5690 	else
5691 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5692 }
5693 
5694 void
5695 vop_lock_debugpost(void *ap, int rc)
5696 {
5697 	struct vop_lock1_args *a = ap;
5698 
5699 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5700 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5701 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5702 }
5703 
5704 void
5705 vop_unlock_debugpre(void *ap)
5706 {
5707 	struct vop_unlock_args *a = ap;
5708 
5709 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5710 }
5711 
5712 void
5713 vop_need_inactive_debugpre(void *ap)
5714 {
5715 	struct vop_need_inactive_args *a = ap;
5716 
5717 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5718 }
5719 
5720 void
5721 vop_need_inactive_debugpost(void *ap, int rc)
5722 {
5723 	struct vop_need_inactive_args *a = ap;
5724 
5725 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5726 }
5727 #endif
5728 
5729 void
5730 vop_create_pre(void *ap)
5731 {
5732 	struct vop_create_args *a;
5733 	struct vnode *dvp;
5734 
5735 	a = ap;
5736 	dvp = a->a_dvp;
5737 	vn_seqc_write_begin(dvp);
5738 }
5739 
5740 void
5741 vop_create_post(void *ap, int rc)
5742 {
5743 	struct vop_create_args *a;
5744 	struct vnode *dvp;
5745 
5746 	a = ap;
5747 	dvp = a->a_dvp;
5748 	vn_seqc_write_end(dvp);
5749 	if (!rc)
5750 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5751 }
5752 
5753 void
5754 vop_whiteout_pre(void *ap)
5755 {
5756 	struct vop_whiteout_args *a;
5757 	struct vnode *dvp;
5758 
5759 	a = ap;
5760 	dvp = a->a_dvp;
5761 	vn_seqc_write_begin(dvp);
5762 }
5763 
5764 void
5765 vop_whiteout_post(void *ap, int rc)
5766 {
5767 	struct vop_whiteout_args *a;
5768 	struct vnode *dvp;
5769 
5770 	a = ap;
5771 	dvp = a->a_dvp;
5772 	vn_seqc_write_end(dvp);
5773 }
5774 
5775 void
5776 vop_deleteextattr_pre(void *ap)
5777 {
5778 	struct vop_deleteextattr_args *a;
5779 	struct vnode *vp;
5780 
5781 	a = ap;
5782 	vp = a->a_vp;
5783 	vn_seqc_write_begin(vp);
5784 }
5785 
5786 void
5787 vop_deleteextattr_post(void *ap, int rc)
5788 {
5789 	struct vop_deleteextattr_args *a;
5790 	struct vnode *vp;
5791 
5792 	a = ap;
5793 	vp = a->a_vp;
5794 	vn_seqc_write_end(vp);
5795 	if (!rc)
5796 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5797 }
5798 
5799 void
5800 vop_link_pre(void *ap)
5801 {
5802 	struct vop_link_args *a;
5803 	struct vnode *vp, *tdvp;
5804 
5805 	a = ap;
5806 	vp = a->a_vp;
5807 	tdvp = a->a_tdvp;
5808 	vn_seqc_write_begin(vp);
5809 	vn_seqc_write_begin(tdvp);
5810 }
5811 
5812 void
5813 vop_link_post(void *ap, int rc)
5814 {
5815 	struct vop_link_args *a;
5816 	struct vnode *vp, *tdvp;
5817 
5818 	a = ap;
5819 	vp = a->a_vp;
5820 	tdvp = a->a_tdvp;
5821 	vn_seqc_write_end(vp);
5822 	vn_seqc_write_end(tdvp);
5823 	if (!rc) {
5824 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5825 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5826 	}
5827 }
5828 
5829 void
5830 vop_mkdir_pre(void *ap)
5831 {
5832 	struct vop_mkdir_args *a;
5833 	struct vnode *dvp;
5834 
5835 	a = ap;
5836 	dvp = a->a_dvp;
5837 	vn_seqc_write_begin(dvp);
5838 }
5839 
5840 void
5841 vop_mkdir_post(void *ap, int rc)
5842 {
5843 	struct vop_mkdir_args *a;
5844 	struct vnode *dvp;
5845 
5846 	a = ap;
5847 	dvp = a->a_dvp;
5848 	vn_seqc_write_end(dvp);
5849 	if (!rc)
5850 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5851 }
5852 
5853 #ifdef DEBUG_VFS_LOCKS
5854 void
5855 vop_mkdir_debugpost(void *ap, int rc)
5856 {
5857 	struct vop_mkdir_args *a;
5858 
5859 	a = ap;
5860 	if (!rc)
5861 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5862 }
5863 #endif
5864 
5865 void
5866 vop_mknod_pre(void *ap)
5867 {
5868 	struct vop_mknod_args *a;
5869 	struct vnode *dvp;
5870 
5871 	a = ap;
5872 	dvp = a->a_dvp;
5873 	vn_seqc_write_begin(dvp);
5874 }
5875 
5876 void
5877 vop_mknod_post(void *ap, int rc)
5878 {
5879 	struct vop_mknod_args *a;
5880 	struct vnode *dvp;
5881 
5882 	a = ap;
5883 	dvp = a->a_dvp;
5884 	vn_seqc_write_end(dvp);
5885 	if (!rc)
5886 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5887 }
5888 
5889 void
5890 vop_reclaim_post(void *ap, int rc)
5891 {
5892 	struct vop_reclaim_args *a;
5893 	struct vnode *vp;
5894 
5895 	a = ap;
5896 	vp = a->a_vp;
5897 	ASSERT_VOP_IN_SEQC(vp);
5898 	if (!rc)
5899 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5900 }
5901 
5902 void
5903 vop_remove_pre(void *ap)
5904 {
5905 	struct vop_remove_args *a;
5906 	struct vnode *dvp, *vp;
5907 
5908 	a = ap;
5909 	dvp = a->a_dvp;
5910 	vp = a->a_vp;
5911 	vn_seqc_write_begin(dvp);
5912 	vn_seqc_write_begin(vp);
5913 }
5914 
5915 void
5916 vop_remove_post(void *ap, int rc)
5917 {
5918 	struct vop_remove_args *a;
5919 	struct vnode *dvp, *vp;
5920 
5921 	a = ap;
5922 	dvp = a->a_dvp;
5923 	vp = a->a_vp;
5924 	vn_seqc_write_end(dvp);
5925 	vn_seqc_write_end(vp);
5926 	if (!rc) {
5927 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5928 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5929 	}
5930 }
5931 
5932 void
5933 vop_rename_post(void *ap, int rc)
5934 {
5935 	struct vop_rename_args *a = ap;
5936 	long hint;
5937 
5938 	if (!rc) {
5939 		hint = NOTE_WRITE;
5940 		if (a->a_fdvp == a->a_tdvp) {
5941 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5942 				hint |= NOTE_LINK;
5943 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5944 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5945 		} else {
5946 			hint |= NOTE_EXTEND;
5947 			if (a->a_fvp->v_type == VDIR)
5948 				hint |= NOTE_LINK;
5949 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5950 
5951 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5952 			    a->a_tvp->v_type == VDIR)
5953 				hint &= ~NOTE_LINK;
5954 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5955 		}
5956 
5957 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5958 		if (a->a_tvp)
5959 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5960 	}
5961 	if (a->a_tdvp != a->a_fdvp)
5962 		vdrop(a->a_fdvp);
5963 	if (a->a_tvp != a->a_fvp)
5964 		vdrop(a->a_fvp);
5965 	vdrop(a->a_tdvp);
5966 	if (a->a_tvp)
5967 		vdrop(a->a_tvp);
5968 }
5969 
5970 void
5971 vop_rmdir_pre(void *ap)
5972 {
5973 	struct vop_rmdir_args *a;
5974 	struct vnode *dvp, *vp;
5975 
5976 	a = ap;
5977 	dvp = a->a_dvp;
5978 	vp = a->a_vp;
5979 	vn_seqc_write_begin(dvp);
5980 	vn_seqc_write_begin(vp);
5981 }
5982 
5983 void
5984 vop_rmdir_post(void *ap, int rc)
5985 {
5986 	struct vop_rmdir_args *a;
5987 	struct vnode *dvp, *vp;
5988 
5989 	a = ap;
5990 	dvp = a->a_dvp;
5991 	vp = a->a_vp;
5992 	vn_seqc_write_end(dvp);
5993 	vn_seqc_write_end(vp);
5994 	if (!rc) {
5995 		vp->v_vflag |= VV_UNLINKED;
5996 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5997 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5998 	}
5999 }
6000 
6001 void
6002 vop_setattr_pre(void *ap)
6003 {
6004 	struct vop_setattr_args *a;
6005 	struct vnode *vp;
6006 
6007 	a = ap;
6008 	vp = a->a_vp;
6009 	vn_seqc_write_begin(vp);
6010 }
6011 
6012 void
6013 vop_setattr_post(void *ap, int rc)
6014 {
6015 	struct vop_setattr_args *a;
6016 	struct vnode *vp;
6017 
6018 	a = ap;
6019 	vp = a->a_vp;
6020 	vn_seqc_write_end(vp);
6021 	if (!rc)
6022 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6023 }
6024 
6025 void
6026 vop_setacl_pre(void *ap)
6027 {
6028 	struct vop_setacl_args *a;
6029 	struct vnode *vp;
6030 
6031 	a = ap;
6032 	vp = a->a_vp;
6033 	vn_seqc_write_begin(vp);
6034 }
6035 
6036 void
6037 vop_setacl_post(void *ap, int rc __unused)
6038 {
6039 	struct vop_setacl_args *a;
6040 	struct vnode *vp;
6041 
6042 	a = ap;
6043 	vp = a->a_vp;
6044 	vn_seqc_write_end(vp);
6045 }
6046 
6047 void
6048 vop_setextattr_pre(void *ap)
6049 {
6050 	struct vop_setextattr_args *a;
6051 	struct vnode *vp;
6052 
6053 	a = ap;
6054 	vp = a->a_vp;
6055 	vn_seqc_write_begin(vp);
6056 }
6057 
6058 void
6059 vop_setextattr_post(void *ap, int rc)
6060 {
6061 	struct vop_setextattr_args *a;
6062 	struct vnode *vp;
6063 
6064 	a = ap;
6065 	vp = a->a_vp;
6066 	vn_seqc_write_end(vp);
6067 	if (!rc)
6068 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6069 }
6070 
6071 void
6072 vop_symlink_pre(void *ap)
6073 {
6074 	struct vop_symlink_args *a;
6075 	struct vnode *dvp;
6076 
6077 	a = ap;
6078 	dvp = a->a_dvp;
6079 	vn_seqc_write_begin(dvp);
6080 }
6081 
6082 void
6083 vop_symlink_post(void *ap, int rc)
6084 {
6085 	struct vop_symlink_args *a;
6086 	struct vnode *dvp;
6087 
6088 	a = ap;
6089 	dvp = a->a_dvp;
6090 	vn_seqc_write_end(dvp);
6091 	if (!rc)
6092 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6093 }
6094 
6095 void
6096 vop_open_post(void *ap, int rc)
6097 {
6098 	struct vop_open_args *a = ap;
6099 
6100 	if (!rc)
6101 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6102 }
6103 
6104 void
6105 vop_close_post(void *ap, int rc)
6106 {
6107 	struct vop_close_args *a = ap;
6108 
6109 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6110 	    !VN_IS_DOOMED(a->a_vp))) {
6111 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6112 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6113 	}
6114 }
6115 
6116 void
6117 vop_read_post(void *ap, int rc)
6118 {
6119 	struct vop_read_args *a = ap;
6120 
6121 	if (!rc)
6122 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6123 }
6124 
6125 void
6126 vop_read_pgcache_post(void *ap, int rc)
6127 {
6128 	struct vop_read_pgcache_args *a = ap;
6129 
6130 	if (!rc)
6131 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6132 }
6133 
6134 void
6135 vop_readdir_post(void *ap, int rc)
6136 {
6137 	struct vop_readdir_args *a = ap;
6138 
6139 	if (!rc)
6140 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6141 }
6142 
6143 static struct knlist fs_knlist;
6144 
6145 static void
6146 vfs_event_init(void *arg)
6147 {
6148 	knlist_init_mtx(&fs_knlist, NULL);
6149 }
6150 /* XXX - correct order? */
6151 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6152 
6153 void
6154 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6155 {
6156 
6157 	KNOTE_UNLOCKED(&fs_knlist, event);
6158 }
6159 
6160 static int	filt_fsattach(struct knote *kn);
6161 static void	filt_fsdetach(struct knote *kn);
6162 static int	filt_fsevent(struct knote *kn, long hint);
6163 
6164 struct filterops fs_filtops = {
6165 	.f_isfd = 0,
6166 	.f_attach = filt_fsattach,
6167 	.f_detach = filt_fsdetach,
6168 	.f_event = filt_fsevent
6169 };
6170 
6171 static int
6172 filt_fsattach(struct knote *kn)
6173 {
6174 
6175 	kn->kn_flags |= EV_CLEAR;
6176 	knlist_add(&fs_knlist, kn, 0);
6177 	return (0);
6178 }
6179 
6180 static void
6181 filt_fsdetach(struct knote *kn)
6182 {
6183 
6184 	knlist_remove(&fs_knlist, kn, 0);
6185 }
6186 
6187 static int
6188 filt_fsevent(struct knote *kn, long hint)
6189 {
6190 
6191 	kn->kn_fflags |= kn->kn_sfflags & hint;
6192 
6193 	return (kn->kn_fflags != 0);
6194 }
6195 
6196 static int
6197 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6198 {
6199 	struct vfsidctl vc;
6200 	int error;
6201 	struct mount *mp;
6202 
6203 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6204 	if (error)
6205 		return (error);
6206 	if (vc.vc_vers != VFS_CTL_VERS1)
6207 		return (EINVAL);
6208 	mp = vfs_getvfs(&vc.vc_fsid);
6209 	if (mp == NULL)
6210 		return (ENOENT);
6211 	/* ensure that a specific sysctl goes to the right filesystem. */
6212 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6213 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6214 		vfs_rel(mp);
6215 		return (EINVAL);
6216 	}
6217 	VCTLTOREQ(&vc, req);
6218 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6219 	vfs_rel(mp);
6220 	return (error);
6221 }
6222 
6223 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6224     NULL, 0, sysctl_vfs_ctl, "",
6225     "Sysctl by fsid");
6226 
6227 /*
6228  * Function to initialize a va_filerev field sensibly.
6229  * XXX: Wouldn't a random number make a lot more sense ??
6230  */
6231 u_quad_t
6232 init_va_filerev(void)
6233 {
6234 	struct bintime bt;
6235 
6236 	getbinuptime(&bt);
6237 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6238 }
6239 
6240 static int	filt_vfsread(struct knote *kn, long hint);
6241 static int	filt_vfswrite(struct knote *kn, long hint);
6242 static int	filt_vfsvnode(struct knote *kn, long hint);
6243 static void	filt_vfsdetach(struct knote *kn);
6244 static struct filterops vfsread_filtops = {
6245 	.f_isfd = 1,
6246 	.f_detach = filt_vfsdetach,
6247 	.f_event = filt_vfsread
6248 };
6249 static struct filterops vfswrite_filtops = {
6250 	.f_isfd = 1,
6251 	.f_detach = filt_vfsdetach,
6252 	.f_event = filt_vfswrite
6253 };
6254 static struct filterops vfsvnode_filtops = {
6255 	.f_isfd = 1,
6256 	.f_detach = filt_vfsdetach,
6257 	.f_event = filt_vfsvnode
6258 };
6259 
6260 static void
6261 vfs_knllock(void *arg)
6262 {
6263 	struct vnode *vp = arg;
6264 
6265 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6266 }
6267 
6268 static void
6269 vfs_knlunlock(void *arg)
6270 {
6271 	struct vnode *vp = arg;
6272 
6273 	VOP_UNLOCK(vp);
6274 }
6275 
6276 static void
6277 vfs_knl_assert_lock(void *arg, int what)
6278 {
6279 #ifdef DEBUG_VFS_LOCKS
6280 	struct vnode *vp = arg;
6281 
6282 	if (what == LA_LOCKED)
6283 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6284 	else
6285 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6286 #endif
6287 }
6288 
6289 int
6290 vfs_kqfilter(struct vop_kqfilter_args *ap)
6291 {
6292 	struct vnode *vp = ap->a_vp;
6293 	struct knote *kn = ap->a_kn;
6294 	struct knlist *knl;
6295 
6296 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6297 	    kn->kn_filter != EVFILT_WRITE),
6298 	    ("READ/WRITE filter on a FIFO leaked through"));
6299 	switch (kn->kn_filter) {
6300 	case EVFILT_READ:
6301 		kn->kn_fop = &vfsread_filtops;
6302 		break;
6303 	case EVFILT_WRITE:
6304 		kn->kn_fop = &vfswrite_filtops;
6305 		break;
6306 	case EVFILT_VNODE:
6307 		kn->kn_fop = &vfsvnode_filtops;
6308 		break;
6309 	default:
6310 		return (EINVAL);
6311 	}
6312 
6313 	kn->kn_hook = (caddr_t)vp;
6314 
6315 	v_addpollinfo(vp);
6316 	if (vp->v_pollinfo == NULL)
6317 		return (ENOMEM);
6318 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6319 	vhold(vp);
6320 	knlist_add(knl, kn, 0);
6321 
6322 	return (0);
6323 }
6324 
6325 /*
6326  * Detach knote from vnode
6327  */
6328 static void
6329 filt_vfsdetach(struct knote *kn)
6330 {
6331 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6332 
6333 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6334 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6335 	vdrop(vp);
6336 }
6337 
6338 /*ARGSUSED*/
6339 static int
6340 filt_vfsread(struct knote *kn, long hint)
6341 {
6342 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6343 	struct vattr va;
6344 	int res;
6345 
6346 	/*
6347 	 * filesystem is gone, so set the EOF flag and schedule
6348 	 * the knote for deletion.
6349 	 */
6350 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6351 		VI_LOCK(vp);
6352 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6353 		VI_UNLOCK(vp);
6354 		return (1);
6355 	}
6356 
6357 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6358 		return (0);
6359 
6360 	VI_LOCK(vp);
6361 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6362 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6363 	VI_UNLOCK(vp);
6364 	return (res);
6365 }
6366 
6367 /*ARGSUSED*/
6368 static int
6369 filt_vfswrite(struct knote *kn, long hint)
6370 {
6371 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6372 
6373 	VI_LOCK(vp);
6374 
6375 	/*
6376 	 * filesystem is gone, so set the EOF flag and schedule
6377 	 * the knote for deletion.
6378 	 */
6379 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6380 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6381 
6382 	kn->kn_data = 0;
6383 	VI_UNLOCK(vp);
6384 	return (1);
6385 }
6386 
6387 static int
6388 filt_vfsvnode(struct knote *kn, long hint)
6389 {
6390 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6391 	int res;
6392 
6393 	VI_LOCK(vp);
6394 	if (kn->kn_sfflags & hint)
6395 		kn->kn_fflags |= hint;
6396 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6397 		kn->kn_flags |= EV_EOF;
6398 		VI_UNLOCK(vp);
6399 		return (1);
6400 	}
6401 	res = (kn->kn_fflags != 0);
6402 	VI_UNLOCK(vp);
6403 	return (res);
6404 }
6405 
6406 /*
6407  * Returns whether the directory is empty or not.
6408  * If it is empty, the return value is 0; otherwise
6409  * the return value is an error value (which may
6410  * be ENOTEMPTY).
6411  */
6412 int
6413 vfs_emptydir(struct vnode *vp)
6414 {
6415 	struct uio uio;
6416 	struct iovec iov;
6417 	struct dirent *dirent, *dp, *endp;
6418 	int error, eof;
6419 
6420 	error = 0;
6421 	eof = 0;
6422 
6423 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6424 	VNASSERT(vp->v_type == VDIR, vp, ("vp is not a directory"));
6425 
6426 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6427 	iov.iov_base = dirent;
6428 	iov.iov_len = sizeof(struct dirent);
6429 
6430 	uio.uio_iov = &iov;
6431 	uio.uio_iovcnt = 1;
6432 	uio.uio_offset = 0;
6433 	uio.uio_resid = sizeof(struct dirent);
6434 	uio.uio_segflg = UIO_SYSSPACE;
6435 	uio.uio_rw = UIO_READ;
6436 	uio.uio_td = curthread;
6437 
6438 	while (eof == 0 && error == 0) {
6439 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6440 		    NULL, NULL);
6441 		if (error != 0)
6442 			break;
6443 		endp = (void *)((uint8_t *)dirent +
6444 		    sizeof(struct dirent) - uio.uio_resid);
6445 		for (dp = dirent; dp < endp;
6446 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6447 			if (dp->d_type == DT_WHT)
6448 				continue;
6449 			if (dp->d_namlen == 0)
6450 				continue;
6451 			if (dp->d_type != DT_DIR &&
6452 			    dp->d_type != DT_UNKNOWN) {
6453 				error = ENOTEMPTY;
6454 				break;
6455 			}
6456 			if (dp->d_namlen > 2) {
6457 				error = ENOTEMPTY;
6458 				break;
6459 			}
6460 			if (dp->d_namlen == 1 &&
6461 			    dp->d_name[0] != '.') {
6462 				error = ENOTEMPTY;
6463 				break;
6464 			}
6465 			if (dp->d_namlen == 2 &&
6466 			    dp->d_name[1] != '.') {
6467 				error = ENOTEMPTY;
6468 				break;
6469 			}
6470 			uio.uio_resid = sizeof(struct dirent);
6471 		}
6472 	}
6473 	free(dirent, M_TEMP);
6474 	return (error);
6475 }
6476 
6477 int
6478 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6479 {
6480 	int error;
6481 
6482 	if (dp->d_reclen > ap->a_uio->uio_resid)
6483 		return (ENAMETOOLONG);
6484 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6485 	if (error) {
6486 		if (ap->a_ncookies != NULL) {
6487 			if (ap->a_cookies != NULL)
6488 				free(ap->a_cookies, M_TEMP);
6489 			ap->a_cookies = NULL;
6490 			*ap->a_ncookies = 0;
6491 		}
6492 		return (error);
6493 	}
6494 	if (ap->a_ncookies == NULL)
6495 		return (0);
6496 
6497 	KASSERT(ap->a_cookies,
6498 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6499 
6500 	*ap->a_cookies = realloc(*ap->a_cookies,
6501 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6502 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6503 	*ap->a_ncookies += 1;
6504 	return (0);
6505 }
6506 
6507 /*
6508  * The purpose of this routine is to remove granularity from accmode_t,
6509  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6510  * VADMIN and VAPPEND.
6511  *
6512  * If it returns 0, the caller is supposed to continue with the usual
6513  * access checks using 'accmode' as modified by this routine.  If it
6514  * returns nonzero value, the caller is supposed to return that value
6515  * as errno.
6516  *
6517  * Note that after this routine runs, accmode may be zero.
6518  */
6519 int
6520 vfs_unixify_accmode(accmode_t *accmode)
6521 {
6522 	/*
6523 	 * There is no way to specify explicit "deny" rule using
6524 	 * file mode or POSIX.1e ACLs.
6525 	 */
6526 	if (*accmode & VEXPLICIT_DENY) {
6527 		*accmode = 0;
6528 		return (0);
6529 	}
6530 
6531 	/*
6532 	 * None of these can be translated into usual access bits.
6533 	 * Also, the common case for NFSv4 ACLs is to not contain
6534 	 * either of these bits. Caller should check for VWRITE
6535 	 * on the containing directory instead.
6536 	 */
6537 	if (*accmode & (VDELETE_CHILD | VDELETE))
6538 		return (EPERM);
6539 
6540 	if (*accmode & VADMIN_PERMS) {
6541 		*accmode &= ~VADMIN_PERMS;
6542 		*accmode |= VADMIN;
6543 	}
6544 
6545 	/*
6546 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6547 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6548 	 */
6549 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6550 
6551 	return (0);
6552 }
6553 
6554 /*
6555  * Clear out a doomed vnode (if any) and replace it with a new one as long
6556  * as the fs is not being unmounted. Return the root vnode to the caller.
6557  */
6558 static int __noinline
6559 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6560 {
6561 	struct vnode *vp;
6562 	int error;
6563 
6564 restart:
6565 	if (mp->mnt_rootvnode != NULL) {
6566 		MNT_ILOCK(mp);
6567 		vp = mp->mnt_rootvnode;
6568 		if (vp != NULL) {
6569 			if (!VN_IS_DOOMED(vp)) {
6570 				vrefact(vp);
6571 				MNT_IUNLOCK(mp);
6572 				error = vn_lock(vp, flags);
6573 				if (error == 0) {
6574 					*vpp = vp;
6575 					return (0);
6576 				}
6577 				vrele(vp);
6578 				goto restart;
6579 			}
6580 			/*
6581 			 * Clear the old one.
6582 			 */
6583 			mp->mnt_rootvnode = NULL;
6584 		}
6585 		MNT_IUNLOCK(mp);
6586 		if (vp != NULL) {
6587 			vfs_op_barrier_wait(mp);
6588 			vrele(vp);
6589 		}
6590 	}
6591 	error = VFS_CACHEDROOT(mp, flags, vpp);
6592 	if (error != 0)
6593 		return (error);
6594 	if (mp->mnt_vfs_ops == 0) {
6595 		MNT_ILOCK(mp);
6596 		if (mp->mnt_vfs_ops != 0) {
6597 			MNT_IUNLOCK(mp);
6598 			return (0);
6599 		}
6600 		if (mp->mnt_rootvnode == NULL) {
6601 			vrefact(*vpp);
6602 			mp->mnt_rootvnode = *vpp;
6603 		} else {
6604 			if (mp->mnt_rootvnode != *vpp) {
6605 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6606 					panic("%s: mismatch between vnode returned "
6607 					    " by VFS_CACHEDROOT and the one cached "
6608 					    " (%p != %p)",
6609 					    __func__, *vpp, mp->mnt_rootvnode);
6610 				}
6611 			}
6612 		}
6613 		MNT_IUNLOCK(mp);
6614 	}
6615 	return (0);
6616 }
6617 
6618 int
6619 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6620 {
6621 	struct mount_pcpu *mpcpu;
6622 	struct vnode *vp;
6623 	int error;
6624 
6625 	if (!vfs_op_thread_enter(mp, mpcpu))
6626 		return (vfs_cache_root_fallback(mp, flags, vpp));
6627 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6628 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6629 		vfs_op_thread_exit(mp, mpcpu);
6630 		return (vfs_cache_root_fallback(mp, flags, vpp));
6631 	}
6632 	vrefact(vp);
6633 	vfs_op_thread_exit(mp, mpcpu);
6634 	error = vn_lock(vp, flags);
6635 	if (error != 0) {
6636 		vrele(vp);
6637 		return (vfs_cache_root_fallback(mp, flags, vpp));
6638 	}
6639 	*vpp = vp;
6640 	return (0);
6641 }
6642 
6643 struct vnode *
6644 vfs_cache_root_clear(struct mount *mp)
6645 {
6646 	struct vnode *vp;
6647 
6648 	/*
6649 	 * ops > 0 guarantees there is nobody who can see this vnode
6650 	 */
6651 	MPASS(mp->mnt_vfs_ops > 0);
6652 	vp = mp->mnt_rootvnode;
6653 	if (vp != NULL)
6654 		vn_seqc_write_begin(vp);
6655 	mp->mnt_rootvnode = NULL;
6656 	return (vp);
6657 }
6658 
6659 void
6660 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6661 {
6662 
6663 	MPASS(mp->mnt_vfs_ops > 0);
6664 	vrefact(vp);
6665 	mp->mnt_rootvnode = vp;
6666 }
6667 
6668 /*
6669  * These are helper functions for filesystems to traverse all
6670  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6671  *
6672  * This interface replaces MNT_VNODE_FOREACH.
6673  */
6674 
6675 struct vnode *
6676 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6677 {
6678 	struct vnode *vp;
6679 
6680 	if (should_yield())
6681 		kern_yield(PRI_USER);
6682 	MNT_ILOCK(mp);
6683 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6684 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6685 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6686 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6687 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6688 			continue;
6689 		VI_LOCK(vp);
6690 		if (VN_IS_DOOMED(vp)) {
6691 			VI_UNLOCK(vp);
6692 			continue;
6693 		}
6694 		break;
6695 	}
6696 	if (vp == NULL) {
6697 		__mnt_vnode_markerfree_all(mvp, mp);
6698 		/* MNT_IUNLOCK(mp); -- done in above function */
6699 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6700 		return (NULL);
6701 	}
6702 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6703 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6704 	MNT_IUNLOCK(mp);
6705 	return (vp);
6706 }
6707 
6708 struct vnode *
6709 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6710 {
6711 	struct vnode *vp;
6712 
6713 	*mvp = vn_alloc_marker(mp);
6714 	MNT_ILOCK(mp);
6715 	MNT_REF(mp);
6716 
6717 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6718 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6719 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6720 			continue;
6721 		VI_LOCK(vp);
6722 		if (VN_IS_DOOMED(vp)) {
6723 			VI_UNLOCK(vp);
6724 			continue;
6725 		}
6726 		break;
6727 	}
6728 	if (vp == NULL) {
6729 		MNT_REL(mp);
6730 		MNT_IUNLOCK(mp);
6731 		vn_free_marker(*mvp);
6732 		*mvp = NULL;
6733 		return (NULL);
6734 	}
6735 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6736 	MNT_IUNLOCK(mp);
6737 	return (vp);
6738 }
6739 
6740 void
6741 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6742 {
6743 
6744 	if (*mvp == NULL) {
6745 		MNT_IUNLOCK(mp);
6746 		return;
6747 	}
6748 
6749 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6750 
6751 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6752 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6753 	MNT_REL(mp);
6754 	MNT_IUNLOCK(mp);
6755 	vn_free_marker(*mvp);
6756 	*mvp = NULL;
6757 }
6758 
6759 /*
6760  * These are helper functions for filesystems to traverse their
6761  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6762  */
6763 static void
6764 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6765 {
6766 
6767 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6768 
6769 	MNT_ILOCK(mp);
6770 	MNT_REL(mp);
6771 	MNT_IUNLOCK(mp);
6772 	vn_free_marker(*mvp);
6773 	*mvp = NULL;
6774 }
6775 
6776 /*
6777  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6778  * conventional lock order during mnt_vnode_next_lazy iteration.
6779  *
6780  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6781  * The list lock is dropped and reacquired.  On success, both locks are held.
6782  * On failure, the mount vnode list lock is held but the vnode interlock is
6783  * not, and the procedure may have yielded.
6784  */
6785 static bool
6786 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6787     struct vnode *vp)
6788 {
6789 
6790 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6791 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6792 	    ("%s: bad marker", __func__));
6793 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6794 	    ("%s: inappropriate vnode", __func__));
6795 	ASSERT_VI_UNLOCKED(vp, __func__);
6796 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6797 
6798 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6799 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6800 
6801 	/*
6802 	 * Note we may be racing against vdrop which transitioned the hold
6803 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6804 	 * if we are the only user after we get the interlock we will just
6805 	 * vdrop.
6806 	 */
6807 	vhold(vp);
6808 	mtx_unlock(&mp->mnt_listmtx);
6809 	VI_LOCK(vp);
6810 	if (VN_IS_DOOMED(vp)) {
6811 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6812 		goto out_lost;
6813 	}
6814 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6815 	/*
6816 	 * There is nothing to do if we are the last user.
6817 	 */
6818 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6819 		goto out_lost;
6820 	mtx_lock(&mp->mnt_listmtx);
6821 	return (true);
6822 out_lost:
6823 	vdropl(vp);
6824 	maybe_yield();
6825 	mtx_lock(&mp->mnt_listmtx);
6826 	return (false);
6827 }
6828 
6829 static struct vnode *
6830 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6831     void *cbarg)
6832 {
6833 	struct vnode *vp;
6834 
6835 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6836 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6837 restart:
6838 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6839 	while (vp != NULL) {
6840 		if (vp->v_type == VMARKER) {
6841 			vp = TAILQ_NEXT(vp, v_lazylist);
6842 			continue;
6843 		}
6844 		/*
6845 		 * See if we want to process the vnode. Note we may encounter a
6846 		 * long string of vnodes we don't care about and hog the list
6847 		 * as a result. Check for it and requeue the marker.
6848 		 */
6849 		VNPASS(!VN_IS_DOOMED(vp), vp);
6850 		if (!cb(vp, cbarg)) {
6851 			if (!should_yield()) {
6852 				vp = TAILQ_NEXT(vp, v_lazylist);
6853 				continue;
6854 			}
6855 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6856 			    v_lazylist);
6857 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6858 			    v_lazylist);
6859 			mtx_unlock(&mp->mnt_listmtx);
6860 			kern_yield(PRI_USER);
6861 			mtx_lock(&mp->mnt_listmtx);
6862 			goto restart;
6863 		}
6864 		/*
6865 		 * Try-lock because this is the wrong lock order.
6866 		 */
6867 		if (!VI_TRYLOCK(vp) &&
6868 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6869 			goto restart;
6870 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6871 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6872 		    ("alien vnode on the lazy list %p %p", vp, mp));
6873 		VNPASS(vp->v_mount == mp, vp);
6874 		VNPASS(!VN_IS_DOOMED(vp), vp);
6875 		break;
6876 	}
6877 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6878 
6879 	/* Check if we are done */
6880 	if (vp == NULL) {
6881 		mtx_unlock(&mp->mnt_listmtx);
6882 		mnt_vnode_markerfree_lazy(mvp, mp);
6883 		return (NULL);
6884 	}
6885 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6886 	mtx_unlock(&mp->mnt_listmtx);
6887 	ASSERT_VI_LOCKED(vp, "lazy iter");
6888 	return (vp);
6889 }
6890 
6891 struct vnode *
6892 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6893     void *cbarg)
6894 {
6895 
6896 	if (should_yield())
6897 		kern_yield(PRI_USER);
6898 	mtx_lock(&mp->mnt_listmtx);
6899 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6900 }
6901 
6902 struct vnode *
6903 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6904     void *cbarg)
6905 {
6906 	struct vnode *vp;
6907 
6908 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6909 		return (NULL);
6910 
6911 	*mvp = vn_alloc_marker(mp);
6912 	MNT_ILOCK(mp);
6913 	MNT_REF(mp);
6914 	MNT_IUNLOCK(mp);
6915 
6916 	mtx_lock(&mp->mnt_listmtx);
6917 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6918 	if (vp == NULL) {
6919 		mtx_unlock(&mp->mnt_listmtx);
6920 		mnt_vnode_markerfree_lazy(mvp, mp);
6921 		return (NULL);
6922 	}
6923 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6924 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6925 }
6926 
6927 void
6928 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6929 {
6930 
6931 	if (*mvp == NULL)
6932 		return;
6933 
6934 	mtx_lock(&mp->mnt_listmtx);
6935 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6936 	mtx_unlock(&mp->mnt_listmtx);
6937 	mnt_vnode_markerfree_lazy(mvp, mp);
6938 }
6939 
6940 int
6941 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6942 {
6943 
6944 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6945 		cnp->cn_flags &= ~NOEXECCHECK;
6946 		return (0);
6947 	}
6948 
6949 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6950 }
6951 
6952 /*
6953  * Do not use this variant unless you have means other than the hold count
6954  * to prevent the vnode from getting freed.
6955  */
6956 void
6957 vn_seqc_write_begin_locked(struct vnode *vp)
6958 {
6959 
6960 	ASSERT_VI_LOCKED(vp, __func__);
6961 	VNPASS(vp->v_holdcnt > 0, vp);
6962 	VNPASS(vp->v_seqc_users >= 0, vp);
6963 	vp->v_seqc_users++;
6964 	if (vp->v_seqc_users == 1)
6965 		seqc_sleepable_write_begin(&vp->v_seqc);
6966 }
6967 
6968 void
6969 vn_seqc_write_begin(struct vnode *vp)
6970 {
6971 
6972 	VI_LOCK(vp);
6973 	vn_seqc_write_begin_locked(vp);
6974 	VI_UNLOCK(vp);
6975 }
6976 
6977 void
6978 vn_seqc_write_end_locked(struct vnode *vp)
6979 {
6980 
6981 	ASSERT_VI_LOCKED(vp, __func__);
6982 	VNPASS(vp->v_seqc_users > 0, vp);
6983 	vp->v_seqc_users--;
6984 	if (vp->v_seqc_users == 0)
6985 		seqc_sleepable_write_end(&vp->v_seqc);
6986 }
6987 
6988 void
6989 vn_seqc_write_end(struct vnode *vp)
6990 {
6991 
6992 	VI_LOCK(vp);
6993 	vn_seqc_write_end_locked(vp);
6994 	VI_UNLOCK(vp);
6995 }
6996 
6997 /*
6998  * Special case handling for allocating and freeing vnodes.
6999  *
7000  * The counter remains unchanged on free so that a doomed vnode will
7001  * keep testing as in modify as long as it is accessible with SMR.
7002  */
7003 static void
7004 vn_seqc_init(struct vnode *vp)
7005 {
7006 
7007 	vp->v_seqc = 0;
7008 	vp->v_seqc_users = 0;
7009 }
7010 
7011 static void
7012 vn_seqc_write_end_free(struct vnode *vp)
7013 {
7014 
7015 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7016 	VNPASS(vp->v_seqc_users == 1, vp);
7017 }
7018 
7019 void
7020 vn_irflag_set_locked(struct vnode *vp, short toset)
7021 {
7022 	short flags;
7023 
7024 	ASSERT_VI_LOCKED(vp, __func__);
7025 	flags = vn_irflag_read(vp);
7026 	VNASSERT((flags & toset) == 0, vp,
7027 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7028 	    __func__, flags, toset));
7029 	atomic_store_short(&vp->v_irflag, flags | toset);
7030 }
7031 
7032 void
7033 vn_irflag_set(struct vnode *vp, short toset)
7034 {
7035 
7036 	VI_LOCK(vp);
7037 	vn_irflag_set_locked(vp, toset);
7038 	VI_UNLOCK(vp);
7039 }
7040 
7041 void
7042 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7043 {
7044 	short flags;
7045 
7046 	ASSERT_VI_LOCKED(vp, __func__);
7047 	flags = vn_irflag_read(vp);
7048 	atomic_store_short(&vp->v_irflag, flags | toset);
7049 }
7050 
7051 void
7052 vn_irflag_set_cond(struct vnode *vp, short toset)
7053 {
7054 
7055 	VI_LOCK(vp);
7056 	vn_irflag_set_cond_locked(vp, toset);
7057 	VI_UNLOCK(vp);
7058 }
7059 
7060 void
7061 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7062 {
7063 	short flags;
7064 
7065 	ASSERT_VI_LOCKED(vp, __func__);
7066 	flags = vn_irflag_read(vp);
7067 	VNASSERT((flags & tounset) == tounset, vp,
7068 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7069 	    __func__, flags, tounset));
7070 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7071 }
7072 
7073 void
7074 vn_irflag_unset(struct vnode *vp, short tounset)
7075 {
7076 
7077 	VI_LOCK(vp);
7078 	vn_irflag_unset_locked(vp, tounset);
7079 	VI_UNLOCK(vp);
7080 }
7081