xref: /freebsd/sys/kern/vfs_subr.c (revision 4310d6deb27da04d3fe079a0584edd557a764e21)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_watchdog.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bio.h>
50 #include <sys/buf.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/jail.h>
60 #include <sys/kdb.h>
61 #include <sys/kernel.h>
62 #include <sys/kthread.h>
63 #include <sys/lockf.h>
64 #include <sys/malloc.h>
65 #include <sys/mount.h>
66 #include <sys/namei.h>
67 #include <sys/priv.h>
68 #include <sys/reboot.h>
69 #include <sys/sched.h>
70 #include <sys/sleepqueue.h>
71 #include <sys/stat.h>
72 #include <sys/sysctl.h>
73 #include <sys/syslog.h>
74 #include <sys/vmmeter.h>
75 #include <sys/vnode.h>
76 #ifdef SW_WATCHDOG
77 #include <sys/watchdog.h>
78 #endif
79 
80 #include <machine/stdarg.h>
81 
82 #include <security/mac/mac_framework.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_extern.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_kern.h>
91 #include <vm/uma.h>
92 
93 #ifdef DDB
94 #include <ddb/ddb.h>
95 #endif
96 
97 #define	WI_MPSAFEQ	0
98 #define	WI_GIANTQ	1
99 
100 static void	delmntque(struct vnode *vp);
101 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
102 		    int slpflag, int slptimeo);
103 static void	syncer_shutdown(void *arg, int howto);
104 static int	vtryrecycle(struct vnode *vp);
105 static void	v_incr_usecount(struct vnode *);
106 static void	v_decr_usecount(struct vnode *);
107 static void	v_decr_useonly(struct vnode *);
108 static void	v_upgrade_usecount(struct vnode *);
109 static void	vnlru_free(int);
110 static void	vgonel(struct vnode *);
111 static void	vfs_knllock(void *arg);
112 static void	vfs_knlunlock(void *arg);
113 static void	vfs_knl_assert_locked(void *arg);
114 static void	vfs_knl_assert_unlocked(void *arg);
115 static void	destroy_vpollinfo(struct vpollinfo *vi);
116 
117 /*
118  * Number of vnodes in existence.  Increased whenever getnewvnode()
119  * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
120  */
121 static unsigned long	numvnodes;
122 
123 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
124     "Number of vnodes in existence");
125 
126 /*
127  * Conversion tables for conversion from vnode types to inode formats
128  * and back.
129  */
130 enum vtype iftovt_tab[16] = {
131 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
132 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
133 };
134 int vttoif_tab[10] = {
135 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
136 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
137 };
138 
139 /*
140  * List of vnodes that are ready for recycling.
141  */
142 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
143 
144 /*
145  * Free vnode target.  Free vnodes may simply be files which have been stat'd
146  * but not read.  This is somewhat common, and a small cache of such files
147  * should be kept to avoid recreation costs.
148  */
149 static u_long wantfreevnodes;
150 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
151 /* Number of vnodes in the free list. */
152 static u_long freevnodes;
153 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0,
154     "Number of vnodes in the free list");
155 
156 static int vlru_allow_cache_src;
157 SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW,
158     &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode");
159 
160 /*
161  * Various variables used for debugging the new implementation of
162  * reassignbuf().
163  * XXX these are probably of (very) limited utility now.
164  */
165 static int reassignbufcalls;
166 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
167     "Number of calls to reassignbuf");
168 
169 /*
170  * Cache for the mount type id assigned to NFS.  This is used for
171  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
172  */
173 int	nfs_mount_type = -1;
174 
175 /* To keep more than one thread at a time from running vfs_getnewfsid */
176 static struct mtx mntid_mtx;
177 
178 /*
179  * Lock for any access to the following:
180  *	vnode_free_list
181  *	numvnodes
182  *	freevnodes
183  */
184 static struct mtx vnode_free_list_mtx;
185 
186 /* Publicly exported FS */
187 struct nfs_public nfs_pub;
188 
189 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
190 static uma_zone_t vnode_zone;
191 static uma_zone_t vnodepoll_zone;
192 
193 /*
194  * The workitem queue.
195  *
196  * It is useful to delay writes of file data and filesystem metadata
197  * for tens of seconds so that quickly created and deleted files need
198  * not waste disk bandwidth being created and removed. To realize this,
199  * we append vnodes to a "workitem" queue. When running with a soft
200  * updates implementation, most pending metadata dependencies should
201  * not wait for more than a few seconds. Thus, mounted on block devices
202  * are delayed only about a half the time that file data is delayed.
203  * Similarly, directory updates are more critical, so are only delayed
204  * about a third the time that file data is delayed. Thus, there are
205  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
206  * one each second (driven off the filesystem syncer process). The
207  * syncer_delayno variable indicates the next queue that is to be processed.
208  * Items that need to be processed soon are placed in this queue:
209  *
210  *	syncer_workitem_pending[syncer_delayno]
211  *
212  * A delay of fifteen seconds is done by placing the request fifteen
213  * entries later in the queue:
214  *
215  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
216  *
217  */
218 static int syncer_delayno;
219 static long syncer_mask;
220 LIST_HEAD(synclist, bufobj);
221 static struct synclist *syncer_workitem_pending[2];
222 /*
223  * The sync_mtx protects:
224  *	bo->bo_synclist
225  *	sync_vnode_count
226  *	syncer_delayno
227  *	syncer_state
228  *	syncer_workitem_pending
229  *	syncer_worklist_len
230  *	rushjob
231  */
232 static struct mtx sync_mtx;
233 static struct cv sync_wakeup;
234 
235 #define SYNCER_MAXDELAY		32
236 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
237 static int syncdelay = 30;		/* max time to delay syncing data */
238 static int filedelay = 30;		/* time to delay syncing files */
239 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
240     "Time to delay syncing files (in seconds)");
241 static int dirdelay = 29;		/* time to delay syncing directories */
242 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
243     "Time to delay syncing directories (in seconds)");
244 static int metadelay = 28;		/* time to delay syncing metadata */
245 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
246     "Time to delay syncing metadata (in seconds)");
247 static int rushjob;		/* number of slots to run ASAP */
248 static int stat_rush_requests;	/* number of times I/O speeded up */
249 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
250     "Number of times I/O speeded up (rush requests)");
251 
252 /*
253  * When shutting down the syncer, run it at four times normal speed.
254  */
255 #define SYNCER_SHUTDOWN_SPEEDUP		4
256 static int sync_vnode_count;
257 static int syncer_worklist_len;
258 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
259     syncer_state;
260 
261 /*
262  * Number of vnodes we want to exist at any one time.  This is mostly used
263  * to size hash tables in vnode-related code.  It is normally not used in
264  * getnewvnode(), as wantfreevnodes is normally nonzero.)
265  *
266  * XXX desiredvnodes is historical cruft and should not exist.
267  */
268 int desiredvnodes;
269 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
270     &desiredvnodes, 0, "Maximum number of vnodes");
271 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
272     &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
273 static int vnlru_nowhere;
274 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
275     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
276 
277 /*
278  * Macros to control when a vnode is freed and recycled.  All require
279  * the vnode interlock.
280  */
281 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
282 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
283 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
284 
285 
286 /*
287  * Initialize the vnode management data structures.
288  *
289  * Reevaluate the following cap on the number of vnodes after the physical
290  * memory size exceeds 512GB.  In the limit, as the physical memory size
291  * grows, the ratio of physical pages to vnodes approaches sixteen to one.
292  */
293 #ifndef	MAXVNODES_MAX
294 #define	MAXVNODES_MAX	(512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16))
295 #endif
296 static void
297 vntblinit(void *dummy __unused)
298 {
299 	int physvnodes, virtvnodes;
300 
301 	/*
302 	 * Desiredvnodes is a function of the physical memory size and the
303 	 * kernel's heap size.  Generally speaking, it scales with the
304 	 * physical memory size.  The ratio of desiredvnodes to physical pages
305 	 * is one to four until desiredvnodes exceeds 98,304.  Thereafter, the
306 	 * marginal ratio of desiredvnodes to physical pages is one to
307 	 * sixteen.  However, desiredvnodes is limited by the kernel's heap
308 	 * size.  The memory required by desiredvnodes vnodes and vm objects
309 	 * may not exceed one seventh of the kernel's heap size.
310 	 */
311 	physvnodes = maxproc + cnt.v_page_count / 16 + 3 * min(98304 * 4,
312 	    cnt.v_page_count) / 16;
313 	virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) +
314 	    sizeof(struct vnode)));
315 	desiredvnodes = min(physvnodes, virtvnodes);
316 	if (desiredvnodes > MAXVNODES_MAX) {
317 		if (bootverbose)
318 			printf("Reducing kern.maxvnodes %d -> %d\n",
319 			    desiredvnodes, MAXVNODES_MAX);
320 		desiredvnodes = MAXVNODES_MAX;
321 	}
322 	wantfreevnodes = desiredvnodes / 4;
323 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
324 	TAILQ_INIT(&vnode_free_list);
325 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
326 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
327 	    NULL, NULL, UMA_ALIGN_PTR, 0);
328 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
329 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
330 	/*
331 	 * Initialize the filesystem syncer.
332 	 */
333 	syncer_workitem_pending[WI_MPSAFEQ] = hashinit(syncer_maxdelay, M_VNODE,
334 	    &syncer_mask);
335 	syncer_workitem_pending[WI_GIANTQ] = hashinit(syncer_maxdelay, M_VNODE,
336 	    &syncer_mask);
337 	syncer_maxdelay = syncer_mask + 1;
338 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
339 	cv_init(&sync_wakeup, "syncer");
340 }
341 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
342 
343 
344 /*
345  * Mark a mount point as busy. Used to synchronize access and to delay
346  * unmounting. Eventually, mountlist_mtx is not released on failure.
347  *
348  * vfs_busy() is a custom lock, it can block the caller.
349  * vfs_busy() only sleeps if the unmount is active on the mount point.
350  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
351  * vnode belonging to mp.
352  *
353  * Lookup uses vfs_busy() to traverse mount points.
354  * root fs			var fs
355  * / vnode lock		A	/ vnode lock (/var)		D
356  * /var vnode lock	B	/log vnode lock(/var/log)	E
357  * vfs_busy lock	C	vfs_busy lock			F
358  *
359  * Within each file system, the lock order is C->A->B and F->D->E.
360  *
361  * When traversing across mounts, the system follows that lock order:
362  *
363  *        C->A->B
364  *              |
365  *              +->F->D->E
366  *
367  * The lookup() process for namei("/var") illustrates the process:
368  *  VOP_LOOKUP() obtains B while A is held
369  *  vfs_busy() obtains a shared lock on F while A and B are held
370  *  vput() releases lock on B
371  *  vput() releases lock on A
372  *  VFS_ROOT() obtains lock on D while shared lock on F is held
373  *  vfs_unbusy() releases shared lock on F
374  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
375  *    Attempt to lock A (instead of vp_crossmp) while D is held would
376  *    violate the global order, causing deadlocks.
377  *
378  * dounmount() locks B while F is drained.
379  */
380 int
381 vfs_busy(struct mount *mp, int flags)
382 {
383 
384 	MPASS((flags & ~MBF_MASK) == 0);
385 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
386 
387 	MNT_ILOCK(mp);
388 	MNT_REF(mp);
389 	/*
390 	 * If mount point is currenly being unmounted, sleep until the
391 	 * mount point fate is decided.  If thread doing the unmounting fails,
392 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
393 	 * that this mount point has survived the unmount attempt and vfs_busy
394 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
395 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
396 	 * about to be really destroyed.  vfs_busy needs to release its
397 	 * reference on the mount point in this case and return with ENOENT,
398 	 * telling the caller that mount mount it tried to busy is no longer
399 	 * valid.
400 	 */
401 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
402 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
403 			MNT_REL(mp);
404 			MNT_IUNLOCK(mp);
405 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
406 			    __func__);
407 			return (ENOENT);
408 		}
409 		if (flags & MBF_MNTLSTLOCK)
410 			mtx_unlock(&mountlist_mtx);
411 		mp->mnt_kern_flag |= MNTK_MWAIT;
412 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
413 		if (flags & MBF_MNTLSTLOCK)
414 			mtx_lock(&mountlist_mtx);
415 		MNT_ILOCK(mp);
416 	}
417 	if (flags & MBF_MNTLSTLOCK)
418 		mtx_unlock(&mountlist_mtx);
419 	mp->mnt_lockref++;
420 	MNT_IUNLOCK(mp);
421 	return (0);
422 }
423 
424 /*
425  * Free a busy filesystem.
426  */
427 void
428 vfs_unbusy(struct mount *mp)
429 {
430 
431 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
432 	MNT_ILOCK(mp);
433 	MNT_REL(mp);
434 	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
435 	mp->mnt_lockref--;
436 	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
437 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
438 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
439 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
440 		wakeup(&mp->mnt_lockref);
441 	}
442 	MNT_IUNLOCK(mp);
443 }
444 
445 /*
446  * Lookup a mount point by filesystem identifier.
447  */
448 struct mount *
449 vfs_getvfs(fsid_t *fsid)
450 {
451 	struct mount *mp;
452 
453 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
454 	mtx_lock(&mountlist_mtx);
455 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
456 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
457 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
458 			vfs_ref(mp);
459 			mtx_unlock(&mountlist_mtx);
460 			return (mp);
461 		}
462 	}
463 	mtx_unlock(&mountlist_mtx);
464 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
465 	return ((struct mount *) 0);
466 }
467 
468 /*
469  * Lookup a mount point by filesystem identifier, busying it before
470  * returning.
471  */
472 struct mount *
473 vfs_busyfs(fsid_t *fsid)
474 {
475 	struct mount *mp;
476 	int error;
477 
478 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
479 	mtx_lock(&mountlist_mtx);
480 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
481 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
482 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
483 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
484 			if (error) {
485 				mtx_unlock(&mountlist_mtx);
486 				return (NULL);
487 			}
488 			return (mp);
489 		}
490 	}
491 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
492 	mtx_unlock(&mountlist_mtx);
493 	return ((struct mount *) 0);
494 }
495 
496 /*
497  * Check if a user can access privileged mount options.
498  */
499 int
500 vfs_suser(struct mount *mp, struct thread *td)
501 {
502 	int error;
503 
504 	/*
505 	 * If the thread is jailed, but this is not a jail-friendly file
506 	 * system, deny immediately.
507 	 */
508 	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
509 		return (EPERM);
510 
511 	/*
512 	 * If the file system was mounted outside the jail of the calling
513 	 * thread, deny immediately.
514 	 */
515 	if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
516 		return (EPERM);
517 
518 	/*
519 	 * If file system supports delegated administration, we don't check
520 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
521 	 * by the file system itself.
522 	 * If this is not the user that did original mount, we check for
523 	 * the PRIV_VFS_MOUNT_OWNER privilege.
524 	 */
525 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
526 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
527 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
528 			return (error);
529 	}
530 	return (0);
531 }
532 
533 /*
534  * Get a new unique fsid.  Try to make its val[0] unique, since this value
535  * will be used to create fake device numbers for stat().  Also try (but
536  * not so hard) make its val[0] unique mod 2^16, since some emulators only
537  * support 16-bit device numbers.  We end up with unique val[0]'s for the
538  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
539  *
540  * Keep in mind that several mounts may be running in parallel.  Starting
541  * the search one past where the previous search terminated is both a
542  * micro-optimization and a defense against returning the same fsid to
543  * different mounts.
544  */
545 void
546 vfs_getnewfsid(struct mount *mp)
547 {
548 	static uint16_t mntid_base;
549 	struct mount *nmp;
550 	fsid_t tfsid;
551 	int mtype;
552 
553 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
554 	mtx_lock(&mntid_mtx);
555 	mtype = mp->mnt_vfc->vfc_typenum;
556 	tfsid.val[1] = mtype;
557 	mtype = (mtype & 0xFF) << 24;
558 	for (;;) {
559 		tfsid.val[0] = makedev(255,
560 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
561 		mntid_base++;
562 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
563 			break;
564 		vfs_rel(nmp);
565 	}
566 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
567 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
568 	mtx_unlock(&mntid_mtx);
569 }
570 
571 /*
572  * Knob to control the precision of file timestamps:
573  *
574  *   0 = seconds only; nanoseconds zeroed.
575  *   1 = seconds and nanoseconds, accurate within 1/HZ.
576  *   2 = seconds and nanoseconds, truncated to microseconds.
577  * >=3 = seconds and nanoseconds, maximum precision.
578  */
579 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
580 
581 static int timestamp_precision = TSP_SEC;
582 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
583     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
584     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, "
585     "3+: sec + ns (max. precision))");
586 
587 /*
588  * Get a current timestamp.
589  */
590 void
591 vfs_timestamp(struct timespec *tsp)
592 {
593 	struct timeval tv;
594 
595 	switch (timestamp_precision) {
596 	case TSP_SEC:
597 		tsp->tv_sec = time_second;
598 		tsp->tv_nsec = 0;
599 		break;
600 	case TSP_HZ:
601 		getnanotime(tsp);
602 		break;
603 	case TSP_USEC:
604 		microtime(&tv);
605 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
606 		break;
607 	case TSP_NSEC:
608 	default:
609 		nanotime(tsp);
610 		break;
611 	}
612 }
613 
614 /*
615  * Set vnode attributes to VNOVAL
616  */
617 void
618 vattr_null(struct vattr *vap)
619 {
620 
621 	vap->va_type = VNON;
622 	vap->va_size = VNOVAL;
623 	vap->va_bytes = VNOVAL;
624 	vap->va_mode = VNOVAL;
625 	vap->va_nlink = VNOVAL;
626 	vap->va_uid = VNOVAL;
627 	vap->va_gid = VNOVAL;
628 	vap->va_fsid = VNOVAL;
629 	vap->va_fileid = VNOVAL;
630 	vap->va_blocksize = VNOVAL;
631 	vap->va_rdev = VNOVAL;
632 	vap->va_atime.tv_sec = VNOVAL;
633 	vap->va_atime.tv_nsec = VNOVAL;
634 	vap->va_mtime.tv_sec = VNOVAL;
635 	vap->va_mtime.tv_nsec = VNOVAL;
636 	vap->va_ctime.tv_sec = VNOVAL;
637 	vap->va_ctime.tv_nsec = VNOVAL;
638 	vap->va_birthtime.tv_sec = VNOVAL;
639 	vap->va_birthtime.tv_nsec = VNOVAL;
640 	vap->va_flags = VNOVAL;
641 	vap->va_gen = VNOVAL;
642 	vap->va_vaflags = 0;
643 }
644 
645 /*
646  * This routine is called when we have too many vnodes.  It attempts
647  * to free <count> vnodes and will potentially free vnodes that still
648  * have VM backing store (VM backing store is typically the cause
649  * of a vnode blowout so we want to do this).  Therefore, this operation
650  * is not considered cheap.
651  *
652  * A number of conditions may prevent a vnode from being reclaimed.
653  * the buffer cache may have references on the vnode, a directory
654  * vnode may still have references due to the namei cache representing
655  * underlying files, or the vnode may be in active use.   It is not
656  * desireable to reuse such vnodes.  These conditions may cause the
657  * number of vnodes to reach some minimum value regardless of what
658  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
659  */
660 static int
661 vlrureclaim(struct mount *mp)
662 {
663 	struct vnode *vp;
664 	int done;
665 	int trigger;
666 	int usevnodes;
667 	int count;
668 
669 	/*
670 	 * Calculate the trigger point, don't allow user
671 	 * screwups to blow us up.   This prevents us from
672 	 * recycling vnodes with lots of resident pages.  We
673 	 * aren't trying to free memory, we are trying to
674 	 * free vnodes.
675 	 */
676 	usevnodes = desiredvnodes;
677 	if (usevnodes <= 0)
678 		usevnodes = 1;
679 	trigger = cnt.v_page_count * 2 / usevnodes;
680 	done = 0;
681 	vn_start_write(NULL, &mp, V_WAIT);
682 	MNT_ILOCK(mp);
683 	count = mp->mnt_nvnodelistsize / 10 + 1;
684 	while (count != 0) {
685 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
686 		while (vp != NULL && vp->v_type == VMARKER)
687 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
688 		if (vp == NULL)
689 			break;
690 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
691 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
692 		--count;
693 		if (!VI_TRYLOCK(vp))
694 			goto next_iter;
695 		/*
696 		 * If it's been deconstructed already, it's still
697 		 * referenced, or it exceeds the trigger, skip it.
698 		 */
699 		if (vp->v_usecount ||
700 		    (!vlru_allow_cache_src &&
701 			!LIST_EMPTY(&(vp)->v_cache_src)) ||
702 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
703 		    vp->v_object->resident_page_count > trigger)) {
704 			VI_UNLOCK(vp);
705 			goto next_iter;
706 		}
707 		MNT_IUNLOCK(mp);
708 		vholdl(vp);
709 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
710 			vdrop(vp);
711 			goto next_iter_mntunlocked;
712 		}
713 		VI_LOCK(vp);
714 		/*
715 		 * v_usecount may have been bumped after VOP_LOCK() dropped
716 		 * the vnode interlock and before it was locked again.
717 		 *
718 		 * It is not necessary to recheck VI_DOOMED because it can
719 		 * only be set by another thread that holds both the vnode
720 		 * lock and vnode interlock.  If another thread has the
721 		 * vnode lock before we get to VOP_LOCK() and obtains the
722 		 * vnode interlock after VOP_LOCK() drops the vnode
723 		 * interlock, the other thread will be unable to drop the
724 		 * vnode lock before our VOP_LOCK() call fails.
725 		 */
726 		if (vp->v_usecount ||
727 		    (!vlru_allow_cache_src &&
728 			!LIST_EMPTY(&(vp)->v_cache_src)) ||
729 		    (vp->v_object != NULL &&
730 		    vp->v_object->resident_page_count > trigger)) {
731 			VOP_UNLOCK(vp, LK_INTERLOCK);
732 			goto next_iter_mntunlocked;
733 		}
734 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
735 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
736 		vgonel(vp);
737 		VOP_UNLOCK(vp, 0);
738 		vdropl(vp);
739 		done++;
740 next_iter_mntunlocked:
741 		if (!should_yield())
742 			goto relock_mnt;
743 		goto yield;
744 next_iter:
745 		if (!should_yield())
746 			continue;
747 		MNT_IUNLOCK(mp);
748 yield:
749 		kern_yield(PRI_UNCHANGED);
750 relock_mnt:
751 		MNT_ILOCK(mp);
752 	}
753 	MNT_IUNLOCK(mp);
754 	vn_finished_write(mp);
755 	return done;
756 }
757 
758 /*
759  * Attempt to keep the free list at wantfreevnodes length.
760  */
761 static void
762 vnlru_free(int count)
763 {
764 	struct vnode *vp;
765 	int vfslocked;
766 
767 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
768 	for (; count > 0; count--) {
769 		vp = TAILQ_FIRST(&vnode_free_list);
770 		/*
771 		 * The list can be modified while the free_list_mtx
772 		 * has been dropped and vp could be NULL here.
773 		 */
774 		if (!vp)
775 			break;
776 		VNASSERT(vp->v_op != NULL, vp,
777 		    ("vnlru_free: vnode already reclaimed."));
778 		KASSERT((vp->v_iflag & VI_FREE) != 0,
779 		    ("Removing vnode not on freelist"));
780 		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
781 		    ("Mangling active vnode"));
782 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
783 		/*
784 		 * Don't recycle if we can't get the interlock.
785 		 */
786 		if (!VI_TRYLOCK(vp)) {
787 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
788 			continue;
789 		}
790 		VNASSERT(VCANRECYCLE(vp), vp,
791 		    ("vp inconsistent on freelist"));
792 		freevnodes--;
793 		vp->v_iflag &= ~VI_FREE;
794 		vholdl(vp);
795 		mtx_unlock(&vnode_free_list_mtx);
796 		VI_UNLOCK(vp);
797 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
798 		vtryrecycle(vp);
799 		VFS_UNLOCK_GIANT(vfslocked);
800 		/*
801 		 * If the recycled succeeded this vdrop will actually free
802 		 * the vnode.  If not it will simply place it back on
803 		 * the free list.
804 		 */
805 		vdrop(vp);
806 		mtx_lock(&vnode_free_list_mtx);
807 	}
808 }
809 /*
810  * Attempt to recycle vnodes in a context that is always safe to block.
811  * Calling vlrurecycle() from the bowels of filesystem code has some
812  * interesting deadlock problems.
813  */
814 static struct proc *vnlruproc;
815 static int vnlruproc_sig;
816 
817 static void
818 vnlru_proc(void)
819 {
820 	struct mount *mp, *nmp;
821 	int done, vfslocked;
822 	struct proc *p = vnlruproc;
823 
824 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
825 	    SHUTDOWN_PRI_FIRST);
826 
827 	for (;;) {
828 		kproc_suspend_check(p);
829 		mtx_lock(&vnode_free_list_mtx);
830 		if (freevnodes > wantfreevnodes)
831 			vnlru_free(freevnodes - wantfreevnodes);
832 		if (numvnodes <= desiredvnodes * 9 / 10) {
833 			vnlruproc_sig = 0;
834 			wakeup(&vnlruproc_sig);
835 			msleep(vnlruproc, &vnode_free_list_mtx,
836 			    PVFS|PDROP, "vlruwt", hz);
837 			continue;
838 		}
839 		mtx_unlock(&vnode_free_list_mtx);
840 		done = 0;
841 		mtx_lock(&mountlist_mtx);
842 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
843 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
844 				nmp = TAILQ_NEXT(mp, mnt_list);
845 				continue;
846 			}
847 			vfslocked = VFS_LOCK_GIANT(mp);
848 			done += vlrureclaim(mp);
849 			VFS_UNLOCK_GIANT(vfslocked);
850 			mtx_lock(&mountlist_mtx);
851 			nmp = TAILQ_NEXT(mp, mnt_list);
852 			vfs_unbusy(mp);
853 		}
854 		mtx_unlock(&mountlist_mtx);
855 		if (done == 0) {
856 #if 0
857 			/* These messages are temporary debugging aids */
858 			if (vnlru_nowhere < 5)
859 				printf("vnlru process getting nowhere..\n");
860 			else if (vnlru_nowhere == 5)
861 				printf("vnlru process messages stopped.\n");
862 #endif
863 			vnlru_nowhere++;
864 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
865 		} else
866 			kern_yield(PRI_UNCHANGED);
867 	}
868 }
869 
870 static struct kproc_desc vnlru_kp = {
871 	"vnlru",
872 	vnlru_proc,
873 	&vnlruproc
874 };
875 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
876     &vnlru_kp);
877 
878 /*
879  * Routines having to do with the management of the vnode table.
880  */
881 
882 /*
883  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
884  * before we actually vgone().  This function must be called with the vnode
885  * held to prevent the vnode from being returned to the free list midway
886  * through vgone().
887  */
888 static int
889 vtryrecycle(struct vnode *vp)
890 {
891 	struct mount *vnmp;
892 
893 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
894 	VNASSERT(vp->v_holdcnt, vp,
895 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
896 	/*
897 	 * This vnode may found and locked via some other list, if so we
898 	 * can't recycle it yet.
899 	 */
900 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
901 		CTR2(KTR_VFS,
902 		    "%s: impossible to recycle, vp %p lock is already held",
903 		    __func__, vp);
904 		return (EWOULDBLOCK);
905 	}
906 	/*
907 	 * Don't recycle if its filesystem is being suspended.
908 	 */
909 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
910 		VOP_UNLOCK(vp, 0);
911 		CTR2(KTR_VFS,
912 		    "%s: impossible to recycle, cannot start the write for %p",
913 		    __func__, vp);
914 		return (EBUSY);
915 	}
916 	/*
917 	 * If we got this far, we need to acquire the interlock and see if
918 	 * anyone picked up this vnode from another list.  If not, we will
919 	 * mark it with DOOMED via vgonel() so that anyone who does find it
920 	 * will skip over it.
921 	 */
922 	VI_LOCK(vp);
923 	if (vp->v_usecount) {
924 		VOP_UNLOCK(vp, LK_INTERLOCK);
925 		vn_finished_write(vnmp);
926 		CTR2(KTR_VFS,
927 		    "%s: impossible to recycle, %p is already referenced",
928 		    __func__, vp);
929 		return (EBUSY);
930 	}
931 	if ((vp->v_iflag & VI_DOOMED) == 0)
932 		vgonel(vp);
933 	VOP_UNLOCK(vp, LK_INTERLOCK);
934 	vn_finished_write(vnmp);
935 	return (0);
936 }
937 
938 /*
939  * Return the next vnode from the free list.
940  */
941 int
942 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
943     struct vnode **vpp)
944 {
945 	struct vnode *vp = NULL;
946 	struct bufobj *bo;
947 
948 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
949 	mtx_lock(&vnode_free_list_mtx);
950 	/*
951 	 * Lend our context to reclaim vnodes if they've exceeded the max.
952 	 */
953 	if (freevnodes > wantfreevnodes)
954 		vnlru_free(1);
955 	/*
956 	 * Wait for available vnodes.
957 	 */
958 	if (numvnodes > desiredvnodes) {
959 		if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
960 			/*
961 			 * File system is beeing suspended, we cannot risk a
962 			 * deadlock here, so allocate new vnode anyway.
963 			 */
964 			if (freevnodes > wantfreevnodes)
965 				vnlru_free(freevnodes - wantfreevnodes);
966 			goto alloc;
967 		}
968 		if (vnlruproc_sig == 0) {
969 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
970 			wakeup(vnlruproc);
971 		}
972 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
973 		    "vlruwk", hz);
974 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
975 		if (numvnodes > desiredvnodes) {
976 			mtx_unlock(&vnode_free_list_mtx);
977 			return (ENFILE);
978 		}
979 #endif
980 	}
981 alloc:
982 	numvnodes++;
983 	mtx_unlock(&vnode_free_list_mtx);
984 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
985 	/*
986 	 * Setup locks.
987 	 */
988 	vp->v_vnlock = &vp->v_lock;
989 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
990 	/*
991 	 * By default, don't allow shared locks unless filesystems
992 	 * opt-in.
993 	 */
994 	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
995 	/*
996 	 * Initialize bufobj.
997 	 */
998 	bo = &vp->v_bufobj;
999 	bo->__bo_vnode = vp;
1000 	mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
1001 	bo->bo_ops = &buf_ops_bio;
1002 	bo->bo_private = vp;
1003 	TAILQ_INIT(&bo->bo_clean.bv_hd);
1004 	TAILQ_INIT(&bo->bo_dirty.bv_hd);
1005 	/*
1006 	 * Initialize namecache.
1007 	 */
1008 	LIST_INIT(&vp->v_cache_src);
1009 	TAILQ_INIT(&vp->v_cache_dst);
1010 	/*
1011 	 * Finalize various vnode identity bits.
1012 	 */
1013 	vp->v_type = VNON;
1014 	vp->v_tag = tag;
1015 	vp->v_op = vops;
1016 	v_incr_usecount(vp);
1017 	vp->v_data = NULL;
1018 #ifdef MAC
1019 	mac_vnode_init(vp);
1020 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1021 		mac_vnode_associate_singlelabel(mp, vp);
1022 	else if (mp == NULL && vops != &dead_vnodeops)
1023 		printf("NULL mp in getnewvnode()\n");
1024 #endif
1025 	if (mp != NULL) {
1026 		bo->bo_bsize = mp->mnt_stat.f_iosize;
1027 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1028 			vp->v_vflag |= VV_NOKNOTE;
1029 	}
1030 
1031 	*vpp = vp;
1032 	return (0);
1033 }
1034 
1035 /*
1036  * Delete from old mount point vnode list, if on one.
1037  */
1038 static void
1039 delmntque(struct vnode *vp)
1040 {
1041 	struct mount *mp;
1042 	int active;
1043 
1044 	mp = vp->v_mount;
1045 	if (mp == NULL)
1046 		return;
1047 	MNT_ILOCK(mp);
1048 	VI_LOCK(vp);
1049 	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1050 	    ("Active vnode list size %d > Vnode list size %d",
1051 	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1052 	active = vp->v_iflag & VI_ACTIVE;
1053 	vp->v_iflag &= ~VI_ACTIVE;
1054 	if (active) {
1055 		mtx_lock(&vnode_free_list_mtx);
1056 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1057 		mp->mnt_activevnodelistsize--;
1058 		mtx_unlock(&vnode_free_list_mtx);
1059 	}
1060 	vp->v_mount = NULL;
1061 	VI_UNLOCK(vp);
1062 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1063 		("bad mount point vnode list size"));
1064 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1065 	mp->mnt_nvnodelistsize--;
1066 	MNT_REL(mp);
1067 	MNT_IUNLOCK(mp);
1068 }
1069 
1070 static void
1071 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1072 {
1073 
1074 	vp->v_data = NULL;
1075 	vp->v_op = &dead_vnodeops;
1076 	/* XXX non mp-safe fs may still call insmntque with vnode
1077 	   unlocked */
1078 	if (!VOP_ISLOCKED(vp))
1079 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1080 	vgone(vp);
1081 	vput(vp);
1082 }
1083 
1084 /*
1085  * Insert into list of vnodes for the new mount point, if available.
1086  */
1087 int
1088 insmntque1(struct vnode *vp, struct mount *mp,
1089 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1090 {
1091 	int locked;
1092 
1093 	KASSERT(vp->v_mount == NULL,
1094 		("insmntque: vnode already on per mount vnode list"));
1095 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1096 #ifdef DEBUG_VFS_LOCKS
1097 	if (!VFS_NEEDSGIANT(mp))
1098 		ASSERT_VOP_ELOCKED(vp,
1099 		    "insmntque: mp-safe fs and non-locked vp");
1100 #endif
1101 	/*
1102 	 * We acquire the vnode interlock early to ensure that the
1103 	 * vnode cannot be recycled by another process releasing a
1104 	 * holdcnt on it before we get it on both the vnode list
1105 	 * and the active vnode list. The mount mutex protects only
1106 	 * manipulation of the vnode list and the vnode freelist
1107 	 * mutex protects only manipulation of the active vnode list.
1108 	 * Hence the need to hold the vnode interlock throughout.
1109 	 */
1110 	MNT_ILOCK(mp);
1111 	VI_LOCK(vp);
1112 	if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1113 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1114 	     mp->mnt_nvnodelistsize == 0)) {
1115 		locked = VOP_ISLOCKED(vp);
1116 		if (!locked || (locked == LK_EXCLUSIVE &&
1117 		     (vp->v_vflag & VV_FORCEINSMQ) == 0)) {
1118 			VI_UNLOCK(vp);
1119 			MNT_IUNLOCK(mp);
1120 			if (dtr != NULL)
1121 				dtr(vp, dtr_arg);
1122 			return (EBUSY);
1123 		}
1124 	}
1125 	vp->v_mount = mp;
1126 	MNT_REF(mp);
1127 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1128 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1129 		("neg mount point vnode list size"));
1130 	mp->mnt_nvnodelistsize++;
1131 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1132 	    ("Activating already active vnode"));
1133 	vp->v_iflag |= VI_ACTIVE;
1134 	mtx_lock(&vnode_free_list_mtx);
1135 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1136 	mp->mnt_activevnodelistsize++;
1137 	mtx_unlock(&vnode_free_list_mtx);
1138 	VI_UNLOCK(vp);
1139 	MNT_IUNLOCK(mp);
1140 	return (0);
1141 }
1142 
1143 int
1144 insmntque(struct vnode *vp, struct mount *mp)
1145 {
1146 
1147 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1148 }
1149 
1150 /*
1151  * Flush out and invalidate all buffers associated with a bufobj
1152  * Called with the underlying object locked.
1153  */
1154 int
1155 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1156 {
1157 	int error;
1158 
1159 	BO_LOCK(bo);
1160 	if (flags & V_SAVE) {
1161 		error = bufobj_wwait(bo, slpflag, slptimeo);
1162 		if (error) {
1163 			BO_UNLOCK(bo);
1164 			return (error);
1165 		}
1166 		if (bo->bo_dirty.bv_cnt > 0) {
1167 			BO_UNLOCK(bo);
1168 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1169 				return (error);
1170 			/*
1171 			 * XXX We could save a lock/unlock if this was only
1172 			 * enabled under INVARIANTS
1173 			 */
1174 			BO_LOCK(bo);
1175 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1176 				panic("vinvalbuf: dirty bufs");
1177 		}
1178 	}
1179 	/*
1180 	 * If you alter this loop please notice that interlock is dropped and
1181 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1182 	 * no race conditions occur from this.
1183 	 */
1184 	do {
1185 		error = flushbuflist(&bo->bo_clean,
1186 		    flags, bo, slpflag, slptimeo);
1187 		if (error == 0 && !(flags & V_CLEANONLY))
1188 			error = flushbuflist(&bo->bo_dirty,
1189 			    flags, bo, slpflag, slptimeo);
1190 		if (error != 0 && error != EAGAIN) {
1191 			BO_UNLOCK(bo);
1192 			return (error);
1193 		}
1194 	} while (error != 0);
1195 
1196 	/*
1197 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1198 	 * have write I/O in-progress but if there is a VM object then the
1199 	 * VM object can also have read-I/O in-progress.
1200 	 */
1201 	do {
1202 		bufobj_wwait(bo, 0, 0);
1203 		BO_UNLOCK(bo);
1204 		if (bo->bo_object != NULL) {
1205 			VM_OBJECT_LOCK(bo->bo_object);
1206 			vm_object_pip_wait(bo->bo_object, "bovlbx");
1207 			VM_OBJECT_UNLOCK(bo->bo_object);
1208 		}
1209 		BO_LOCK(bo);
1210 	} while (bo->bo_numoutput > 0);
1211 	BO_UNLOCK(bo);
1212 
1213 	/*
1214 	 * Destroy the copy in the VM cache, too.
1215 	 */
1216 	if (bo->bo_object != NULL &&
1217 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0) {
1218 		VM_OBJECT_LOCK(bo->bo_object);
1219 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1220 		    OBJPR_CLEANONLY : 0);
1221 		VM_OBJECT_UNLOCK(bo->bo_object);
1222 	}
1223 
1224 #ifdef INVARIANTS
1225 	BO_LOCK(bo);
1226 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0 &&
1227 	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1228 		panic("vinvalbuf: flush failed");
1229 	BO_UNLOCK(bo);
1230 #endif
1231 	return (0);
1232 }
1233 
1234 /*
1235  * Flush out and invalidate all buffers associated with a vnode.
1236  * Called with the underlying object locked.
1237  */
1238 int
1239 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1240 {
1241 
1242 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1243 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1244 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1245 }
1246 
1247 /*
1248  * Flush out buffers on the specified list.
1249  *
1250  */
1251 static int
1252 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1253     int slptimeo)
1254 {
1255 	struct buf *bp, *nbp;
1256 	int retval, error;
1257 	daddr_t lblkno;
1258 	b_xflags_t xflags;
1259 
1260 	ASSERT_BO_LOCKED(bo);
1261 
1262 	retval = 0;
1263 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1264 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1265 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1266 			continue;
1267 		}
1268 		lblkno = 0;
1269 		xflags = 0;
1270 		if (nbp != NULL) {
1271 			lblkno = nbp->b_lblkno;
1272 			xflags = nbp->b_xflags &
1273 				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1274 		}
1275 		retval = EAGAIN;
1276 		error = BUF_TIMELOCK(bp,
1277 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1278 		    "flushbuf", slpflag, slptimeo);
1279 		if (error) {
1280 			BO_LOCK(bo);
1281 			return (error != ENOLCK ? error : EAGAIN);
1282 		}
1283 		KASSERT(bp->b_bufobj == bo,
1284 		    ("bp %p wrong b_bufobj %p should be %p",
1285 		    bp, bp->b_bufobj, bo));
1286 		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1287 			BUF_UNLOCK(bp);
1288 			BO_LOCK(bo);
1289 			return (EAGAIN);
1290 		}
1291 		/*
1292 		 * XXX Since there are no node locks for NFS, I
1293 		 * believe there is a slight chance that a delayed
1294 		 * write will occur while sleeping just above, so
1295 		 * check for it.
1296 		 */
1297 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1298 		    (flags & V_SAVE)) {
1299 			BO_LOCK(bo);
1300 			bremfree(bp);
1301 			BO_UNLOCK(bo);
1302 			bp->b_flags |= B_ASYNC;
1303 			bwrite(bp);
1304 			BO_LOCK(bo);
1305 			return (EAGAIN);	/* XXX: why not loop ? */
1306 		}
1307 		BO_LOCK(bo);
1308 		bremfree(bp);
1309 		BO_UNLOCK(bo);
1310 		bp->b_flags |= (B_INVAL | B_RELBUF);
1311 		bp->b_flags &= ~B_ASYNC;
1312 		brelse(bp);
1313 		BO_LOCK(bo);
1314 		if (nbp != NULL &&
1315 		    (nbp->b_bufobj != bo ||
1316 		     nbp->b_lblkno != lblkno ||
1317 		     (nbp->b_xflags &
1318 		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1319 			break;			/* nbp invalid */
1320 	}
1321 	return (retval);
1322 }
1323 
1324 /*
1325  * Truncate a file's buffer and pages to a specified length.  This
1326  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1327  * sync activity.
1328  */
1329 int
1330 vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize)
1331 {
1332 	struct buf *bp, *nbp;
1333 	int anyfreed;
1334 	int trunclbn;
1335 	struct bufobj *bo;
1336 
1337 	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1338 	    vp, cred, blksize, (uintmax_t)length);
1339 
1340 	/*
1341 	 * Round up to the *next* lbn.
1342 	 */
1343 	trunclbn = (length + blksize - 1) / blksize;
1344 
1345 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1346 restart:
1347 	bo = &vp->v_bufobj;
1348 	BO_LOCK(bo);
1349 	anyfreed = 1;
1350 	for (;anyfreed;) {
1351 		anyfreed = 0;
1352 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1353 			if (bp->b_lblkno < trunclbn)
1354 				continue;
1355 			if (BUF_LOCK(bp,
1356 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1357 			    BO_MTX(bo)) == ENOLCK)
1358 				goto restart;
1359 
1360 			BO_LOCK(bo);
1361 			bremfree(bp);
1362 			BO_UNLOCK(bo);
1363 			bp->b_flags |= (B_INVAL | B_RELBUF);
1364 			bp->b_flags &= ~B_ASYNC;
1365 			brelse(bp);
1366 			anyfreed = 1;
1367 
1368 			BO_LOCK(bo);
1369 			if (nbp != NULL &&
1370 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1371 			    (nbp->b_vp != vp) ||
1372 			    (nbp->b_flags & B_DELWRI))) {
1373 				BO_UNLOCK(bo);
1374 				goto restart;
1375 			}
1376 		}
1377 
1378 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1379 			if (bp->b_lblkno < trunclbn)
1380 				continue;
1381 			if (BUF_LOCK(bp,
1382 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1383 			    BO_MTX(bo)) == ENOLCK)
1384 				goto restart;
1385 			BO_LOCK(bo);
1386 			bremfree(bp);
1387 			BO_UNLOCK(bo);
1388 			bp->b_flags |= (B_INVAL | B_RELBUF);
1389 			bp->b_flags &= ~B_ASYNC;
1390 			brelse(bp);
1391 			anyfreed = 1;
1392 
1393 			BO_LOCK(bo);
1394 			if (nbp != NULL &&
1395 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1396 			    (nbp->b_vp != vp) ||
1397 			    (nbp->b_flags & B_DELWRI) == 0)) {
1398 				BO_UNLOCK(bo);
1399 				goto restart;
1400 			}
1401 		}
1402 	}
1403 
1404 	if (length > 0) {
1405 restartsync:
1406 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1407 			if (bp->b_lblkno > 0)
1408 				continue;
1409 			/*
1410 			 * Since we hold the vnode lock this should only
1411 			 * fail if we're racing with the buf daemon.
1412 			 */
1413 			if (BUF_LOCK(bp,
1414 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1415 			    BO_MTX(bo)) == ENOLCK) {
1416 				goto restart;
1417 			}
1418 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1419 			    ("buf(%p) on dirty queue without DELWRI", bp));
1420 
1421 			BO_LOCK(bo);
1422 			bremfree(bp);
1423 			BO_UNLOCK(bo);
1424 			bawrite(bp);
1425 			BO_LOCK(bo);
1426 			goto restartsync;
1427 		}
1428 	}
1429 
1430 	bufobj_wwait(bo, 0, 0);
1431 	BO_UNLOCK(bo);
1432 	vnode_pager_setsize(vp, length);
1433 
1434 	return (0);
1435 }
1436 
1437 /*
1438  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1439  *		 a vnode.
1440  *
1441  *	NOTE: We have to deal with the special case of a background bitmap
1442  *	buffer, a situation where two buffers will have the same logical
1443  *	block offset.  We want (1) only the foreground buffer to be accessed
1444  *	in a lookup and (2) must differentiate between the foreground and
1445  *	background buffer in the splay tree algorithm because the splay
1446  *	tree cannot normally handle multiple entities with the same 'index'.
1447  *	We accomplish this by adding differentiating flags to the splay tree's
1448  *	numerical domain.
1449  */
1450 static
1451 struct buf *
1452 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1453 {
1454 	struct buf dummy;
1455 	struct buf *lefttreemax, *righttreemin, *y;
1456 
1457 	if (root == NULL)
1458 		return (NULL);
1459 	lefttreemax = righttreemin = &dummy;
1460 	for (;;) {
1461 		if (lblkno < root->b_lblkno ||
1462 		    (lblkno == root->b_lblkno &&
1463 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1464 			if ((y = root->b_left) == NULL)
1465 				break;
1466 			if (lblkno < y->b_lblkno) {
1467 				/* Rotate right. */
1468 				root->b_left = y->b_right;
1469 				y->b_right = root;
1470 				root = y;
1471 				if ((y = root->b_left) == NULL)
1472 					break;
1473 			}
1474 			/* Link into the new root's right tree. */
1475 			righttreemin->b_left = root;
1476 			righttreemin = root;
1477 		} else if (lblkno > root->b_lblkno ||
1478 		    (lblkno == root->b_lblkno &&
1479 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1480 			if ((y = root->b_right) == NULL)
1481 				break;
1482 			if (lblkno > y->b_lblkno) {
1483 				/* Rotate left. */
1484 				root->b_right = y->b_left;
1485 				y->b_left = root;
1486 				root = y;
1487 				if ((y = root->b_right) == NULL)
1488 					break;
1489 			}
1490 			/* Link into the new root's left tree. */
1491 			lefttreemax->b_right = root;
1492 			lefttreemax = root;
1493 		} else {
1494 			break;
1495 		}
1496 		root = y;
1497 	}
1498 	/* Assemble the new root. */
1499 	lefttreemax->b_right = root->b_left;
1500 	righttreemin->b_left = root->b_right;
1501 	root->b_left = dummy.b_right;
1502 	root->b_right = dummy.b_left;
1503 	return (root);
1504 }
1505 
1506 static void
1507 buf_vlist_remove(struct buf *bp)
1508 {
1509 	struct buf *root;
1510 	struct bufv *bv;
1511 
1512 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1513 	ASSERT_BO_LOCKED(bp->b_bufobj);
1514 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1515 	    (BX_VNDIRTY|BX_VNCLEAN),
1516 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1517 	if (bp->b_xflags & BX_VNDIRTY)
1518 		bv = &bp->b_bufobj->bo_dirty;
1519 	else
1520 		bv = &bp->b_bufobj->bo_clean;
1521 	if (bp != bv->bv_root) {
1522 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1523 		KASSERT(root == bp, ("splay lookup failed in remove"));
1524 	}
1525 	if (bp->b_left == NULL) {
1526 		root = bp->b_right;
1527 	} else {
1528 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1529 		root->b_right = bp->b_right;
1530 	}
1531 	bv->bv_root = root;
1532 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1533 	bv->bv_cnt--;
1534 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1535 }
1536 
1537 /*
1538  * Add the buffer to the sorted clean or dirty block list using a
1539  * splay tree algorithm.
1540  *
1541  * NOTE: xflags is passed as a constant, optimizing this inline function!
1542  */
1543 static void
1544 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1545 {
1546 	struct buf *root;
1547 	struct bufv *bv;
1548 
1549 	ASSERT_BO_LOCKED(bo);
1550 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1551 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1552 	bp->b_xflags |= xflags;
1553 	if (xflags & BX_VNDIRTY)
1554 		bv = &bo->bo_dirty;
1555 	else
1556 		bv = &bo->bo_clean;
1557 
1558 	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1559 	if (root == NULL) {
1560 		bp->b_left = NULL;
1561 		bp->b_right = NULL;
1562 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1563 	} else if (bp->b_lblkno < root->b_lblkno ||
1564 	    (bp->b_lblkno == root->b_lblkno &&
1565 	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1566 		bp->b_left = root->b_left;
1567 		bp->b_right = root;
1568 		root->b_left = NULL;
1569 		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1570 	} else {
1571 		bp->b_right = root->b_right;
1572 		bp->b_left = root;
1573 		root->b_right = NULL;
1574 		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1575 	}
1576 	bv->bv_cnt++;
1577 	bv->bv_root = bp;
1578 }
1579 
1580 /*
1581  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1582  * shadow buffers used in background bitmap writes.
1583  *
1584  * This code isn't quite efficient as it could be because we are maintaining
1585  * two sorted lists and do not know which list the block resides in.
1586  *
1587  * During a "make buildworld" the desired buffer is found at one of
1588  * the roots more than 60% of the time.  Thus, checking both roots
1589  * before performing either splay eliminates unnecessary splays on the
1590  * first tree splayed.
1591  */
1592 struct buf *
1593 gbincore(struct bufobj *bo, daddr_t lblkno)
1594 {
1595 	struct buf *bp;
1596 
1597 	ASSERT_BO_LOCKED(bo);
1598 	if ((bp = bo->bo_clean.bv_root) != NULL &&
1599 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1600 		return (bp);
1601 	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1602 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1603 		return (bp);
1604 	if ((bp = bo->bo_clean.bv_root) != NULL) {
1605 		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1606 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1607 			return (bp);
1608 	}
1609 	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1610 		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1611 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1612 			return (bp);
1613 	}
1614 	return (NULL);
1615 }
1616 
1617 /*
1618  * Associate a buffer with a vnode.
1619  */
1620 void
1621 bgetvp(struct vnode *vp, struct buf *bp)
1622 {
1623 	struct bufobj *bo;
1624 
1625 	bo = &vp->v_bufobj;
1626 	ASSERT_BO_LOCKED(bo);
1627 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1628 
1629 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1630 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1631 	    ("bgetvp: bp already attached! %p", bp));
1632 
1633 	vhold(vp);
1634 	if (VFS_NEEDSGIANT(vp->v_mount) || bo->bo_flag & BO_NEEDSGIANT)
1635 		bp->b_flags |= B_NEEDSGIANT;
1636 	bp->b_vp = vp;
1637 	bp->b_bufobj = bo;
1638 	/*
1639 	 * Insert onto list for new vnode.
1640 	 */
1641 	buf_vlist_add(bp, bo, BX_VNCLEAN);
1642 }
1643 
1644 /*
1645  * Disassociate a buffer from a vnode.
1646  */
1647 void
1648 brelvp(struct buf *bp)
1649 {
1650 	struct bufobj *bo;
1651 	struct vnode *vp;
1652 
1653 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1654 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1655 
1656 	/*
1657 	 * Delete from old vnode list, if on one.
1658 	 */
1659 	vp = bp->b_vp;		/* XXX */
1660 	bo = bp->b_bufobj;
1661 	BO_LOCK(bo);
1662 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1663 		buf_vlist_remove(bp);
1664 	else
1665 		panic("brelvp: Buffer %p not on queue.", bp);
1666 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1667 		bo->bo_flag &= ~BO_ONWORKLST;
1668 		mtx_lock(&sync_mtx);
1669 		LIST_REMOVE(bo, bo_synclist);
1670 		syncer_worklist_len--;
1671 		mtx_unlock(&sync_mtx);
1672 	}
1673 	bp->b_flags &= ~B_NEEDSGIANT;
1674 	bp->b_vp = NULL;
1675 	bp->b_bufobj = NULL;
1676 	BO_UNLOCK(bo);
1677 	vdrop(vp);
1678 }
1679 
1680 /*
1681  * Add an item to the syncer work queue.
1682  */
1683 static void
1684 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1685 {
1686 	int queue, slot;
1687 
1688 	ASSERT_BO_LOCKED(bo);
1689 
1690 	mtx_lock(&sync_mtx);
1691 	if (bo->bo_flag & BO_ONWORKLST)
1692 		LIST_REMOVE(bo, bo_synclist);
1693 	else {
1694 		bo->bo_flag |= BO_ONWORKLST;
1695 		syncer_worklist_len++;
1696 	}
1697 
1698 	if (delay > syncer_maxdelay - 2)
1699 		delay = syncer_maxdelay - 2;
1700 	slot = (syncer_delayno + delay) & syncer_mask;
1701 
1702 	queue = VFS_NEEDSGIANT(bo->__bo_vnode->v_mount) ? WI_GIANTQ :
1703 	    WI_MPSAFEQ;
1704 	LIST_INSERT_HEAD(&syncer_workitem_pending[queue][slot], bo,
1705 	    bo_synclist);
1706 	mtx_unlock(&sync_mtx);
1707 }
1708 
1709 static int
1710 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1711 {
1712 	int error, len;
1713 
1714 	mtx_lock(&sync_mtx);
1715 	len = syncer_worklist_len - sync_vnode_count;
1716 	mtx_unlock(&sync_mtx);
1717 	error = SYSCTL_OUT(req, &len, sizeof(len));
1718 	return (error);
1719 }
1720 
1721 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1722     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1723 
1724 static struct proc *updateproc;
1725 static void sched_sync(void);
1726 static struct kproc_desc up_kp = {
1727 	"syncer",
1728 	sched_sync,
1729 	&updateproc
1730 };
1731 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1732 
1733 static int
1734 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1735 {
1736 	struct vnode *vp;
1737 	struct mount *mp;
1738 
1739 	*bo = LIST_FIRST(slp);
1740 	if (*bo == NULL)
1741 		return (0);
1742 	vp = (*bo)->__bo_vnode;	/* XXX */
1743 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1744 		return (1);
1745 	/*
1746 	 * We use vhold in case the vnode does not
1747 	 * successfully sync.  vhold prevents the vnode from
1748 	 * going away when we unlock the sync_mtx so that
1749 	 * we can acquire the vnode interlock.
1750 	 */
1751 	vholdl(vp);
1752 	mtx_unlock(&sync_mtx);
1753 	VI_UNLOCK(vp);
1754 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1755 		vdrop(vp);
1756 		mtx_lock(&sync_mtx);
1757 		return (*bo == LIST_FIRST(slp));
1758 	}
1759 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1760 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1761 	VOP_UNLOCK(vp, 0);
1762 	vn_finished_write(mp);
1763 	BO_LOCK(*bo);
1764 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1765 		/*
1766 		 * Put us back on the worklist.  The worklist
1767 		 * routine will remove us from our current
1768 		 * position and then add us back in at a later
1769 		 * position.
1770 		 */
1771 		vn_syncer_add_to_worklist(*bo, syncdelay);
1772 	}
1773 	BO_UNLOCK(*bo);
1774 	vdrop(vp);
1775 	mtx_lock(&sync_mtx);
1776 	return (0);
1777 }
1778 
1779 /*
1780  * System filesystem synchronizer daemon.
1781  */
1782 static void
1783 sched_sync(void)
1784 {
1785 	struct synclist *gnext, *next;
1786 	struct synclist *gslp, *slp;
1787 	struct bufobj *bo;
1788 	long starttime;
1789 	struct thread *td = curthread;
1790 	int last_work_seen;
1791 	int net_worklist_len;
1792 	int syncer_final_iter;
1793 	int first_printf;
1794 	int error;
1795 
1796 	last_work_seen = 0;
1797 	syncer_final_iter = 0;
1798 	first_printf = 1;
1799 	syncer_state = SYNCER_RUNNING;
1800 	starttime = time_uptime;
1801 	td->td_pflags |= TDP_NORUNNINGBUF;
1802 
1803 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1804 	    SHUTDOWN_PRI_LAST);
1805 
1806 	mtx_lock(&sync_mtx);
1807 	for (;;) {
1808 		if (syncer_state == SYNCER_FINAL_DELAY &&
1809 		    syncer_final_iter == 0) {
1810 			mtx_unlock(&sync_mtx);
1811 			kproc_suspend_check(td->td_proc);
1812 			mtx_lock(&sync_mtx);
1813 		}
1814 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1815 		if (syncer_state != SYNCER_RUNNING &&
1816 		    starttime != time_uptime) {
1817 			if (first_printf) {
1818 				printf("\nSyncing disks, vnodes remaining...");
1819 				first_printf = 0;
1820 			}
1821 			printf("%d ", net_worklist_len);
1822 		}
1823 		starttime = time_uptime;
1824 
1825 		/*
1826 		 * Push files whose dirty time has expired.  Be careful
1827 		 * of interrupt race on slp queue.
1828 		 *
1829 		 * Skip over empty worklist slots when shutting down.
1830 		 */
1831 		do {
1832 			slp = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1833 			gslp = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1834 			syncer_delayno += 1;
1835 			if (syncer_delayno == syncer_maxdelay)
1836 				syncer_delayno = 0;
1837 			next = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1838 			gnext = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1839 			/*
1840 			 * If the worklist has wrapped since the
1841 			 * it was emptied of all but syncer vnodes,
1842 			 * switch to the FINAL_DELAY state and run
1843 			 * for one more second.
1844 			 */
1845 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1846 			    net_worklist_len == 0 &&
1847 			    last_work_seen == syncer_delayno) {
1848 				syncer_state = SYNCER_FINAL_DELAY;
1849 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1850 			}
1851 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1852 		    LIST_EMPTY(gslp) && syncer_worklist_len > 0);
1853 
1854 		/*
1855 		 * Keep track of the last time there was anything
1856 		 * on the worklist other than syncer vnodes.
1857 		 * Return to the SHUTTING_DOWN state if any
1858 		 * new work appears.
1859 		 */
1860 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1861 			last_work_seen = syncer_delayno;
1862 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1863 			syncer_state = SYNCER_SHUTTING_DOWN;
1864 		while (!LIST_EMPTY(slp)) {
1865 			error = sync_vnode(slp, &bo, td);
1866 			if (error == 1) {
1867 				LIST_REMOVE(bo, bo_synclist);
1868 				LIST_INSERT_HEAD(next, bo, bo_synclist);
1869 				continue;
1870 			}
1871 #ifdef SW_WATCHDOG
1872 			if (first_printf == 0)
1873 				wdog_kern_pat(WD_LASTVAL);
1874 #endif
1875 		}
1876 		if (!LIST_EMPTY(gslp)) {
1877 			mtx_unlock(&sync_mtx);
1878 			mtx_lock(&Giant);
1879 			mtx_lock(&sync_mtx);
1880 			while (!LIST_EMPTY(gslp)) {
1881 				error = sync_vnode(gslp, &bo, td);
1882 				if (error == 1) {
1883 					LIST_REMOVE(bo, bo_synclist);
1884 					LIST_INSERT_HEAD(gnext, bo,
1885 					    bo_synclist);
1886 					continue;
1887 				}
1888 			}
1889 			mtx_unlock(&Giant);
1890 		}
1891 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1892 			syncer_final_iter--;
1893 		/*
1894 		 * The variable rushjob allows the kernel to speed up the
1895 		 * processing of the filesystem syncer process. A rushjob
1896 		 * value of N tells the filesystem syncer to process the next
1897 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1898 		 * is used by the soft update code to speed up the filesystem
1899 		 * syncer process when the incore state is getting so far
1900 		 * ahead of the disk that the kernel memory pool is being
1901 		 * threatened with exhaustion.
1902 		 */
1903 		if (rushjob > 0) {
1904 			rushjob -= 1;
1905 			continue;
1906 		}
1907 		/*
1908 		 * Just sleep for a short period of time between
1909 		 * iterations when shutting down to allow some I/O
1910 		 * to happen.
1911 		 *
1912 		 * If it has taken us less than a second to process the
1913 		 * current work, then wait. Otherwise start right over
1914 		 * again. We can still lose time if any single round
1915 		 * takes more than two seconds, but it does not really
1916 		 * matter as we are just trying to generally pace the
1917 		 * filesystem activity.
1918 		 */
1919 		if (syncer_state != SYNCER_RUNNING ||
1920 		    time_uptime == starttime) {
1921 			thread_lock(td);
1922 			sched_prio(td, PPAUSE);
1923 			thread_unlock(td);
1924 		}
1925 		if (syncer_state != SYNCER_RUNNING)
1926 			cv_timedwait(&sync_wakeup, &sync_mtx,
1927 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1928 		else if (time_uptime == starttime)
1929 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1930 	}
1931 }
1932 
1933 /*
1934  * Request the syncer daemon to speed up its work.
1935  * We never push it to speed up more than half of its
1936  * normal turn time, otherwise it could take over the cpu.
1937  */
1938 int
1939 speedup_syncer(void)
1940 {
1941 	int ret = 0;
1942 
1943 	mtx_lock(&sync_mtx);
1944 	if (rushjob < syncdelay / 2) {
1945 		rushjob += 1;
1946 		stat_rush_requests += 1;
1947 		ret = 1;
1948 	}
1949 	mtx_unlock(&sync_mtx);
1950 	cv_broadcast(&sync_wakeup);
1951 	return (ret);
1952 }
1953 
1954 /*
1955  * Tell the syncer to speed up its work and run though its work
1956  * list several times, then tell it to shut down.
1957  */
1958 static void
1959 syncer_shutdown(void *arg, int howto)
1960 {
1961 
1962 	if (howto & RB_NOSYNC)
1963 		return;
1964 	mtx_lock(&sync_mtx);
1965 	syncer_state = SYNCER_SHUTTING_DOWN;
1966 	rushjob = 0;
1967 	mtx_unlock(&sync_mtx);
1968 	cv_broadcast(&sync_wakeup);
1969 	kproc_shutdown(arg, howto);
1970 }
1971 
1972 /*
1973  * Reassign a buffer from one vnode to another.
1974  * Used to assign file specific control information
1975  * (indirect blocks) to the vnode to which they belong.
1976  */
1977 void
1978 reassignbuf(struct buf *bp)
1979 {
1980 	struct vnode *vp;
1981 	struct bufobj *bo;
1982 	int delay;
1983 #ifdef INVARIANTS
1984 	struct bufv *bv;
1985 #endif
1986 
1987 	vp = bp->b_vp;
1988 	bo = bp->b_bufobj;
1989 	++reassignbufcalls;
1990 
1991 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1992 	    bp, bp->b_vp, bp->b_flags);
1993 	/*
1994 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1995 	 * is not fully linked in.
1996 	 */
1997 	if (bp->b_flags & B_PAGING)
1998 		panic("cannot reassign paging buffer");
1999 
2000 	/*
2001 	 * Delete from old vnode list, if on one.
2002 	 */
2003 	BO_LOCK(bo);
2004 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2005 		buf_vlist_remove(bp);
2006 	else
2007 		panic("reassignbuf: Buffer %p not on queue.", bp);
2008 	/*
2009 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2010 	 * of clean buffers.
2011 	 */
2012 	if (bp->b_flags & B_DELWRI) {
2013 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2014 			switch (vp->v_type) {
2015 			case VDIR:
2016 				delay = dirdelay;
2017 				break;
2018 			case VCHR:
2019 				delay = metadelay;
2020 				break;
2021 			default:
2022 				delay = filedelay;
2023 			}
2024 			vn_syncer_add_to_worklist(bo, delay);
2025 		}
2026 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2027 	} else {
2028 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2029 
2030 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2031 			mtx_lock(&sync_mtx);
2032 			LIST_REMOVE(bo, bo_synclist);
2033 			syncer_worklist_len--;
2034 			mtx_unlock(&sync_mtx);
2035 			bo->bo_flag &= ~BO_ONWORKLST;
2036 		}
2037 	}
2038 #ifdef INVARIANTS
2039 	bv = &bo->bo_clean;
2040 	bp = TAILQ_FIRST(&bv->bv_hd);
2041 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2042 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2043 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2044 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2045 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2046 	bv = &bo->bo_dirty;
2047 	bp = TAILQ_FIRST(&bv->bv_hd);
2048 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2049 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2050 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2051 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2052 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2053 #endif
2054 	BO_UNLOCK(bo);
2055 }
2056 
2057 /*
2058  * Increment the use and hold counts on the vnode, taking care to reference
2059  * the driver's usecount if this is a chardev.  The vholdl() will remove
2060  * the vnode from the free list if it is presently free.  Requires the
2061  * vnode interlock and returns with it held.
2062  */
2063 static void
2064 v_incr_usecount(struct vnode *vp)
2065 {
2066 
2067 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2068 	vp->v_usecount++;
2069 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2070 		dev_lock();
2071 		vp->v_rdev->si_usecount++;
2072 		dev_unlock();
2073 	}
2074 	vholdl(vp);
2075 }
2076 
2077 /*
2078  * Turn a holdcnt into a use+holdcnt such that only one call to
2079  * v_decr_usecount is needed.
2080  */
2081 static void
2082 v_upgrade_usecount(struct vnode *vp)
2083 {
2084 
2085 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2086 	vp->v_usecount++;
2087 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2088 		dev_lock();
2089 		vp->v_rdev->si_usecount++;
2090 		dev_unlock();
2091 	}
2092 }
2093 
2094 /*
2095  * Decrement the vnode use and hold count along with the driver's usecount
2096  * if this is a chardev.  The vdropl() below releases the vnode interlock
2097  * as it may free the vnode.
2098  */
2099 static void
2100 v_decr_usecount(struct vnode *vp)
2101 {
2102 
2103 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2104 	VNASSERT(vp->v_usecount > 0, vp,
2105 	    ("v_decr_usecount: negative usecount"));
2106 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2107 	vp->v_usecount--;
2108 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2109 		dev_lock();
2110 		vp->v_rdev->si_usecount--;
2111 		dev_unlock();
2112 	}
2113 	vdropl(vp);
2114 }
2115 
2116 /*
2117  * Decrement only the use count and driver use count.  This is intended to
2118  * be paired with a follow on vdropl() to release the remaining hold count.
2119  * In this way we may vgone() a vnode with a 0 usecount without risk of
2120  * having it end up on a free list because the hold count is kept above 0.
2121  */
2122 static void
2123 v_decr_useonly(struct vnode *vp)
2124 {
2125 
2126 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2127 	VNASSERT(vp->v_usecount > 0, vp,
2128 	    ("v_decr_useonly: negative usecount"));
2129 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2130 	vp->v_usecount--;
2131 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2132 		dev_lock();
2133 		vp->v_rdev->si_usecount--;
2134 		dev_unlock();
2135 	}
2136 }
2137 
2138 /*
2139  * Grab a particular vnode from the free list, increment its
2140  * reference count and lock it.  VI_DOOMED is set if the vnode
2141  * is being destroyed.  Only callers who specify LK_RETRY will
2142  * see doomed vnodes.  If inactive processing was delayed in
2143  * vput try to do it here.
2144  */
2145 int
2146 vget(struct vnode *vp, int flags, struct thread *td)
2147 {
2148 	int error;
2149 
2150 	error = 0;
2151 	VFS_ASSERT_GIANT(vp->v_mount);
2152 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2153 	    ("vget: invalid lock operation"));
2154 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2155 
2156 	if ((flags & LK_INTERLOCK) == 0)
2157 		VI_LOCK(vp);
2158 	vholdl(vp);
2159 	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2160 		vdrop(vp);
2161 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2162 		    vp);
2163 		return (error);
2164 	}
2165 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2166 		panic("vget: vn_lock failed to return ENOENT\n");
2167 	VI_LOCK(vp);
2168 	/* Upgrade our holdcnt to a usecount. */
2169 	v_upgrade_usecount(vp);
2170 	/*
2171 	 * We don't guarantee that any particular close will
2172 	 * trigger inactive processing so just make a best effort
2173 	 * here at preventing a reference to a removed file.  If
2174 	 * we don't succeed no harm is done.
2175 	 */
2176 	if (vp->v_iflag & VI_OWEINACT) {
2177 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2178 		    (flags & LK_NOWAIT) == 0)
2179 			vinactive(vp, td);
2180 		vp->v_iflag &= ~VI_OWEINACT;
2181 	}
2182 	VI_UNLOCK(vp);
2183 	return (0);
2184 }
2185 
2186 /*
2187  * Increase the reference count of a vnode.
2188  */
2189 void
2190 vref(struct vnode *vp)
2191 {
2192 
2193 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2194 	VI_LOCK(vp);
2195 	v_incr_usecount(vp);
2196 	VI_UNLOCK(vp);
2197 }
2198 
2199 /*
2200  * Return reference count of a vnode.
2201  *
2202  * The results of this call are only guaranteed when some mechanism other
2203  * than the VI lock is used to stop other processes from gaining references
2204  * to the vnode.  This may be the case if the caller holds the only reference.
2205  * This is also useful when stale data is acceptable as race conditions may
2206  * be accounted for by some other means.
2207  */
2208 int
2209 vrefcnt(struct vnode *vp)
2210 {
2211 	int usecnt;
2212 
2213 	VI_LOCK(vp);
2214 	usecnt = vp->v_usecount;
2215 	VI_UNLOCK(vp);
2216 
2217 	return (usecnt);
2218 }
2219 
2220 #define	VPUTX_VRELE	1
2221 #define	VPUTX_VPUT	2
2222 #define	VPUTX_VUNREF	3
2223 
2224 static void
2225 vputx(struct vnode *vp, int func)
2226 {
2227 	int error;
2228 
2229 	KASSERT(vp != NULL, ("vputx: null vp"));
2230 	if (func == VPUTX_VUNREF)
2231 		ASSERT_VOP_LOCKED(vp, "vunref");
2232 	else if (func == VPUTX_VPUT)
2233 		ASSERT_VOP_LOCKED(vp, "vput");
2234 	else
2235 		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2236 	VFS_ASSERT_GIANT(vp->v_mount);
2237 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2238 	VI_LOCK(vp);
2239 
2240 	/* Skip this v_writecount check if we're going to panic below. */
2241 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2242 	    ("vputx: missed vn_close"));
2243 	error = 0;
2244 
2245 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2246 	    vp->v_usecount == 1)) {
2247 		if (func == VPUTX_VPUT)
2248 			VOP_UNLOCK(vp, 0);
2249 		v_decr_usecount(vp);
2250 		return;
2251 	}
2252 
2253 	if (vp->v_usecount != 1) {
2254 		vprint("vputx: negative ref count", vp);
2255 		panic("vputx: negative ref cnt");
2256 	}
2257 	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2258 	/*
2259 	 * We want to hold the vnode until the inactive finishes to
2260 	 * prevent vgone() races.  We drop the use count here and the
2261 	 * hold count below when we're done.
2262 	 */
2263 	v_decr_useonly(vp);
2264 	/*
2265 	 * We must call VOP_INACTIVE with the node locked. Mark
2266 	 * as VI_DOINGINACT to avoid recursion.
2267 	 */
2268 	vp->v_iflag |= VI_OWEINACT;
2269 	switch (func) {
2270 	case VPUTX_VRELE:
2271 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2272 		VI_LOCK(vp);
2273 		break;
2274 	case VPUTX_VPUT:
2275 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2276 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2277 			    LK_NOWAIT);
2278 			VI_LOCK(vp);
2279 		}
2280 		break;
2281 	case VPUTX_VUNREF:
2282 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
2283 			error = EBUSY;
2284 		break;
2285 	}
2286 	if (vp->v_usecount > 0)
2287 		vp->v_iflag &= ~VI_OWEINACT;
2288 	if (error == 0) {
2289 		if (vp->v_iflag & VI_OWEINACT)
2290 			vinactive(vp, curthread);
2291 		if (func != VPUTX_VUNREF)
2292 			VOP_UNLOCK(vp, 0);
2293 	}
2294 	vdropl(vp);
2295 }
2296 
2297 /*
2298  * Vnode put/release.
2299  * If count drops to zero, call inactive routine and return to freelist.
2300  */
2301 void
2302 vrele(struct vnode *vp)
2303 {
2304 
2305 	vputx(vp, VPUTX_VRELE);
2306 }
2307 
2308 /*
2309  * Release an already locked vnode.  This give the same effects as
2310  * unlock+vrele(), but takes less time and avoids releasing and
2311  * re-aquiring the lock (as vrele() acquires the lock internally.)
2312  */
2313 void
2314 vput(struct vnode *vp)
2315 {
2316 
2317 	vputx(vp, VPUTX_VPUT);
2318 }
2319 
2320 /*
2321  * Release an exclusively locked vnode. Do not unlock the vnode lock.
2322  */
2323 void
2324 vunref(struct vnode *vp)
2325 {
2326 
2327 	vputx(vp, VPUTX_VUNREF);
2328 }
2329 
2330 /*
2331  * Somebody doesn't want the vnode recycled.
2332  */
2333 void
2334 vhold(struct vnode *vp)
2335 {
2336 
2337 	VI_LOCK(vp);
2338 	vholdl(vp);
2339 	VI_UNLOCK(vp);
2340 }
2341 
2342 /*
2343  * Increase the hold count and activate if this is the first reference.
2344  */
2345 void
2346 vholdl(struct vnode *vp)
2347 {
2348 	struct mount *mp;
2349 
2350 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2351 	vp->v_holdcnt++;
2352 	if (!VSHOULDBUSY(vp))
2353 		return;
2354 	ASSERT_VI_LOCKED(vp, "vholdl");
2355 	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
2356 	VNASSERT(vp->v_op != NULL, vp, ("vholdl: vnode already reclaimed."));
2357 	/*
2358 	 * Remove a vnode from the free list, mark it as in use,
2359 	 * and put it on the active list.
2360 	 */
2361 	mtx_lock(&vnode_free_list_mtx);
2362 	TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
2363 	freevnodes--;
2364 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
2365 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
2366 	    ("Activating already active vnode"));
2367 	vp->v_iflag |= VI_ACTIVE;
2368 	mp = vp->v_mount;
2369 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
2370 	mp->mnt_activevnodelistsize++;
2371 	mtx_unlock(&vnode_free_list_mtx);
2372 }
2373 
2374 /*
2375  * Note that there is one less who cares about this vnode.
2376  * vdrop() is the opposite of vhold().
2377  */
2378 void
2379 vdrop(struct vnode *vp)
2380 {
2381 
2382 	VI_LOCK(vp);
2383 	vdropl(vp);
2384 }
2385 
2386 /*
2387  * Drop the hold count of the vnode.  If this is the last reference to
2388  * the vnode we place it on the free list unless it has been vgone'd
2389  * (marked VI_DOOMED) in which case we will free it.
2390  */
2391 void
2392 vdropl(struct vnode *vp)
2393 {
2394 	struct bufobj *bo;
2395 	struct mount *mp;
2396 	int active;
2397 
2398 	ASSERT_VI_LOCKED(vp, "vdropl");
2399 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2400 	if (vp->v_holdcnt <= 0)
2401 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2402 	vp->v_holdcnt--;
2403 	if (vp->v_holdcnt > 0) {
2404 		VI_UNLOCK(vp);
2405 		return;
2406 	}
2407 	if ((vp->v_iflag & VI_DOOMED) == 0) {
2408 		/*
2409 		 * Mark a vnode as free: remove it from its active list
2410 		 * and put it up for recycling on the freelist.
2411 		 */
2412 		VNASSERT(vp->v_op != NULL, vp,
2413 		    ("vdropl: vnode already reclaimed."));
2414 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2415 		    ("vnode already free"));
2416 		VNASSERT(VSHOULDFREE(vp), vp,
2417 		    ("vdropl: freeing when we shouldn't"));
2418 		active = vp->v_iflag & VI_ACTIVE;
2419 		vp->v_iflag &= ~VI_ACTIVE;
2420 		mp = vp->v_mount;
2421 		mtx_lock(&vnode_free_list_mtx);
2422 		if (active) {
2423 			TAILQ_REMOVE(&mp->mnt_activevnodelist, vp,
2424 			    v_actfreelist);
2425 			mp->mnt_activevnodelistsize--;
2426 		}
2427 		if (vp->v_iflag & VI_AGE) {
2428 			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_actfreelist);
2429 		} else {
2430 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
2431 		}
2432 		freevnodes++;
2433 		vp->v_iflag &= ~VI_AGE;
2434 		vp->v_iflag |= VI_FREE;
2435 		mtx_unlock(&vnode_free_list_mtx);
2436 		VI_UNLOCK(vp);
2437 		return;
2438 	}
2439 	/*
2440 	 * The vnode has been marked for destruction, so free it.
2441 	 */
2442 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2443 	mtx_lock(&vnode_free_list_mtx);
2444 	numvnodes--;
2445 	mtx_unlock(&vnode_free_list_mtx);
2446 	bo = &vp->v_bufobj;
2447 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2448 	    ("cleaned vnode still on the free list."));
2449 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2450 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
2451 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2452 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2453 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2454 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2455 	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
2456 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2457 	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
2458 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
2459 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
2460 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
2461 	VI_UNLOCK(vp);
2462 #ifdef MAC
2463 	mac_vnode_destroy(vp);
2464 #endif
2465 	if (vp->v_pollinfo != NULL)
2466 		destroy_vpollinfo(vp->v_pollinfo);
2467 #ifdef INVARIANTS
2468 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
2469 	vp->v_op = NULL;
2470 #endif
2471 	lockdestroy(vp->v_vnlock);
2472 	mtx_destroy(&vp->v_interlock);
2473 	mtx_destroy(BO_MTX(bo));
2474 	uma_zfree(vnode_zone, vp);
2475 }
2476 
2477 /*
2478  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2479  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2480  * OWEINACT tracks whether a vnode missed a call to inactive due to a
2481  * failed lock upgrade.
2482  */
2483 void
2484 vinactive(struct vnode *vp, struct thread *td)
2485 {
2486 	struct vm_object *obj;
2487 
2488 	ASSERT_VOP_ELOCKED(vp, "vinactive");
2489 	ASSERT_VI_LOCKED(vp, "vinactive");
2490 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2491 	    ("vinactive: recursed on VI_DOINGINACT"));
2492 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2493 	vp->v_iflag |= VI_DOINGINACT;
2494 	vp->v_iflag &= ~VI_OWEINACT;
2495 	VI_UNLOCK(vp);
2496 	/*
2497 	 * Before moving off the active list, we must be sure that any
2498 	 * modified pages are on the vnode's dirty list since these will
2499 	 * no longer be checked once the vnode is on the inactive list.
2500 	 */
2501 	obj = vp->v_object;
2502 	if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
2503 		VM_OBJECT_LOCK(obj);
2504 		vm_object_page_clean(obj, 0, 0, OBJPC_NOSYNC);
2505 		VM_OBJECT_UNLOCK(obj);
2506 	}
2507 	VOP_INACTIVE(vp, td);
2508 	VI_LOCK(vp);
2509 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2510 	    ("vinactive: lost VI_DOINGINACT"));
2511 	vp->v_iflag &= ~VI_DOINGINACT;
2512 }
2513 
2514 /*
2515  * Remove any vnodes in the vnode table belonging to mount point mp.
2516  *
2517  * If FORCECLOSE is not specified, there should not be any active ones,
2518  * return error if any are found (nb: this is a user error, not a
2519  * system error). If FORCECLOSE is specified, detach any active vnodes
2520  * that are found.
2521  *
2522  * If WRITECLOSE is set, only flush out regular file vnodes open for
2523  * writing.
2524  *
2525  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2526  *
2527  * `rootrefs' specifies the base reference count for the root vnode
2528  * of this filesystem. The root vnode is considered busy if its
2529  * v_usecount exceeds this value. On a successful return, vflush(, td)
2530  * will call vrele() on the root vnode exactly rootrefs times.
2531  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2532  * be zero.
2533  */
2534 #ifdef DIAGNOSTIC
2535 static int busyprt = 0;		/* print out busy vnodes */
2536 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
2537 #endif
2538 
2539 int
2540 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
2541 {
2542 	struct vnode *vp, *mvp, *rootvp = NULL;
2543 	struct vattr vattr;
2544 	int busy = 0, error;
2545 
2546 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2547 	    rootrefs, flags);
2548 	if (rootrefs > 0) {
2549 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2550 		    ("vflush: bad args"));
2551 		/*
2552 		 * Get the filesystem root vnode. We can vput() it
2553 		 * immediately, since with rootrefs > 0, it won't go away.
2554 		 */
2555 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2556 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2557 			    __func__, error);
2558 			return (error);
2559 		}
2560 		vput(rootvp);
2561 	}
2562 loop:
2563 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2564 		vholdl(vp);
2565 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2566 		if (error) {
2567 			vdrop(vp);
2568 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2569 			goto loop;
2570 		}
2571 		/*
2572 		 * Skip over a vnodes marked VV_SYSTEM.
2573 		 */
2574 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2575 			VOP_UNLOCK(vp, 0);
2576 			vdrop(vp);
2577 			continue;
2578 		}
2579 		/*
2580 		 * If WRITECLOSE is set, flush out unlinked but still open
2581 		 * files (even if open only for reading) and regular file
2582 		 * vnodes open for writing.
2583 		 */
2584 		if (flags & WRITECLOSE) {
2585 			if (vp->v_object != NULL) {
2586 				VM_OBJECT_LOCK(vp->v_object);
2587 				vm_object_page_clean(vp->v_object, 0, 0, 0);
2588 				VM_OBJECT_UNLOCK(vp->v_object);
2589 			}
2590 			error = VOP_FSYNC(vp, MNT_WAIT, td);
2591 			if (error != 0) {
2592 				VOP_UNLOCK(vp, 0);
2593 				vdrop(vp);
2594 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2595 				return (error);
2596 			}
2597 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2598 			VI_LOCK(vp);
2599 
2600 			if ((vp->v_type == VNON ||
2601 			    (error == 0 && vattr.va_nlink > 0)) &&
2602 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2603 				VOP_UNLOCK(vp, 0);
2604 				vdropl(vp);
2605 				continue;
2606 			}
2607 		} else
2608 			VI_LOCK(vp);
2609 		/*
2610 		 * With v_usecount == 0, all we need to do is clear out the
2611 		 * vnode data structures and we are done.
2612 		 *
2613 		 * If FORCECLOSE is set, forcibly close the vnode.
2614 		 */
2615 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2616 			VNASSERT(vp->v_usecount == 0 ||
2617 			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2618 			    ("device VNODE %p is FORCECLOSED", vp));
2619 			vgonel(vp);
2620 		} else {
2621 			busy++;
2622 #ifdef DIAGNOSTIC
2623 			if (busyprt)
2624 				vprint("vflush: busy vnode", vp);
2625 #endif
2626 		}
2627 		VOP_UNLOCK(vp, 0);
2628 		vdropl(vp);
2629 	}
2630 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2631 		/*
2632 		 * If just the root vnode is busy, and if its refcount
2633 		 * is equal to `rootrefs', then go ahead and kill it.
2634 		 */
2635 		VI_LOCK(rootvp);
2636 		KASSERT(busy > 0, ("vflush: not busy"));
2637 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2638 		    ("vflush: usecount %d < rootrefs %d",
2639 		     rootvp->v_usecount, rootrefs));
2640 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2641 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2642 			vgone(rootvp);
2643 			VOP_UNLOCK(rootvp, 0);
2644 			busy = 0;
2645 		} else
2646 			VI_UNLOCK(rootvp);
2647 	}
2648 	if (busy) {
2649 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2650 		    busy);
2651 		return (EBUSY);
2652 	}
2653 	for (; rootrefs > 0; rootrefs--)
2654 		vrele(rootvp);
2655 	return (0);
2656 }
2657 
2658 /*
2659  * Recycle an unused vnode to the front of the free list.
2660  */
2661 int
2662 vrecycle(struct vnode *vp)
2663 {
2664 	int recycled;
2665 
2666 	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2667 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2668 	recycled = 0;
2669 	VI_LOCK(vp);
2670 	if (vp->v_usecount == 0) {
2671 		recycled = 1;
2672 		vgonel(vp);
2673 	}
2674 	VI_UNLOCK(vp);
2675 	return (recycled);
2676 }
2677 
2678 /*
2679  * Eliminate all activity associated with a vnode
2680  * in preparation for reuse.
2681  */
2682 void
2683 vgone(struct vnode *vp)
2684 {
2685 	VI_LOCK(vp);
2686 	vgonel(vp);
2687 	VI_UNLOCK(vp);
2688 }
2689 
2690 /*
2691  * vgone, with the vp interlock held.
2692  */
2693 void
2694 vgonel(struct vnode *vp)
2695 {
2696 	struct thread *td;
2697 	int oweinact;
2698 	int active;
2699 	struct mount *mp;
2700 
2701 	ASSERT_VOP_ELOCKED(vp, "vgonel");
2702 	ASSERT_VI_LOCKED(vp, "vgonel");
2703 	VNASSERT(vp->v_holdcnt, vp,
2704 	    ("vgonel: vp %p has no reference.", vp));
2705 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2706 	td = curthread;
2707 
2708 	/*
2709 	 * Don't vgonel if we're already doomed.
2710 	 */
2711 	if (vp->v_iflag & VI_DOOMED)
2712 		return;
2713 	vp->v_iflag |= VI_DOOMED;
2714 	/*
2715 	 * Check to see if the vnode is in use.  If so, we have to call
2716 	 * VOP_CLOSE() and VOP_INACTIVE().
2717 	 */
2718 	active = vp->v_usecount;
2719 	oweinact = (vp->v_iflag & VI_OWEINACT);
2720 	VI_UNLOCK(vp);
2721 	/*
2722 	 * Clean out any buffers associated with the vnode.
2723 	 * If the flush fails, just toss the buffers.
2724 	 */
2725 	mp = NULL;
2726 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2727 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2728 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2729 		vinvalbuf(vp, 0, 0, 0);
2730 
2731 	/*
2732 	 * If purging an active vnode, it must be closed and
2733 	 * deactivated before being reclaimed.
2734 	 */
2735 	if (active)
2736 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2737 	if (oweinact || active) {
2738 		VI_LOCK(vp);
2739 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2740 			vinactive(vp, td);
2741 		VI_UNLOCK(vp);
2742 	}
2743 	if (vp->v_type == VSOCK)
2744 		vfs_unp_reclaim(vp);
2745 	/*
2746 	 * Reclaim the vnode.
2747 	 */
2748 	if (VOP_RECLAIM(vp, td))
2749 		panic("vgone: cannot reclaim");
2750 	if (mp != NULL)
2751 		vn_finished_secondary_write(mp);
2752 	VNASSERT(vp->v_object == NULL, vp,
2753 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2754 	/*
2755 	 * Clear the advisory locks and wake up waiting threads.
2756 	 */
2757 	(void)VOP_ADVLOCKPURGE(vp);
2758 	/*
2759 	 * Delete from old mount point vnode list.
2760 	 */
2761 	delmntque(vp);
2762 	cache_purge(vp);
2763 	/*
2764 	 * Done with purge, reset to the standard lock and invalidate
2765 	 * the vnode.
2766 	 */
2767 	VI_LOCK(vp);
2768 	vp->v_vnlock = &vp->v_lock;
2769 	vp->v_op = &dead_vnodeops;
2770 	vp->v_tag = "none";
2771 	vp->v_type = VBAD;
2772 }
2773 
2774 /*
2775  * Calculate the total number of references to a special device.
2776  */
2777 int
2778 vcount(struct vnode *vp)
2779 {
2780 	int count;
2781 
2782 	dev_lock();
2783 	count = vp->v_rdev->si_usecount;
2784 	dev_unlock();
2785 	return (count);
2786 }
2787 
2788 /*
2789  * Same as above, but using the struct cdev *as argument
2790  */
2791 int
2792 count_dev(struct cdev *dev)
2793 {
2794 	int count;
2795 
2796 	dev_lock();
2797 	count = dev->si_usecount;
2798 	dev_unlock();
2799 	return(count);
2800 }
2801 
2802 /*
2803  * Print out a description of a vnode.
2804  */
2805 static char *typename[] =
2806 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2807  "VMARKER"};
2808 
2809 void
2810 vn_printf(struct vnode *vp, const char *fmt, ...)
2811 {
2812 	va_list ap;
2813 	char buf[256], buf2[16];
2814 	u_long flags;
2815 
2816 	va_start(ap, fmt);
2817 	vprintf(fmt, ap);
2818 	va_end(ap);
2819 	printf("%p: ", (void *)vp);
2820 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2821 	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2822 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2823 	buf[0] = '\0';
2824 	buf[1] = '\0';
2825 	if (vp->v_vflag & VV_ROOT)
2826 		strlcat(buf, "|VV_ROOT", sizeof(buf));
2827 	if (vp->v_vflag & VV_ISTTY)
2828 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2829 	if (vp->v_vflag & VV_NOSYNC)
2830 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2831 	if (vp->v_vflag & VV_CACHEDLABEL)
2832 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2833 	if (vp->v_vflag & VV_TEXT)
2834 		strlcat(buf, "|VV_TEXT", sizeof(buf));
2835 	if (vp->v_vflag & VV_COPYONWRITE)
2836 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2837 	if (vp->v_vflag & VV_SYSTEM)
2838 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2839 	if (vp->v_vflag & VV_PROCDEP)
2840 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2841 	if (vp->v_vflag & VV_NOKNOTE)
2842 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2843 	if (vp->v_vflag & VV_DELETED)
2844 		strlcat(buf, "|VV_DELETED", sizeof(buf));
2845 	if (vp->v_vflag & VV_MD)
2846 		strlcat(buf, "|VV_MD", sizeof(buf));
2847 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2848 	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2849 	    VV_NOKNOTE | VV_DELETED | VV_MD);
2850 	if (flags != 0) {
2851 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2852 		strlcat(buf, buf2, sizeof(buf));
2853 	}
2854 	if (vp->v_iflag & VI_MOUNT)
2855 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2856 	if (vp->v_iflag & VI_AGE)
2857 		strlcat(buf, "|VI_AGE", sizeof(buf));
2858 	if (vp->v_iflag & VI_DOOMED)
2859 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2860 	if (vp->v_iflag & VI_FREE)
2861 		strlcat(buf, "|VI_FREE", sizeof(buf));
2862 	if (vp->v_iflag & VI_DOINGINACT)
2863 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2864 	if (vp->v_iflag & VI_OWEINACT)
2865 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2866 	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2867 	    VI_DOINGINACT | VI_OWEINACT);
2868 	if (flags != 0) {
2869 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2870 		strlcat(buf, buf2, sizeof(buf));
2871 	}
2872 	printf("    flags (%s)\n", buf + 1);
2873 	if (mtx_owned(VI_MTX(vp)))
2874 		printf(" VI_LOCKed");
2875 	if (vp->v_object != NULL)
2876 		printf("    v_object %p ref %d pages %d\n",
2877 		    vp->v_object, vp->v_object->ref_count,
2878 		    vp->v_object->resident_page_count);
2879 	printf("    ");
2880 	lockmgr_printinfo(vp->v_vnlock);
2881 	if (vp->v_data != NULL)
2882 		VOP_PRINT(vp);
2883 }
2884 
2885 #ifdef DDB
2886 /*
2887  * List all of the locked vnodes in the system.
2888  * Called when debugging the kernel.
2889  */
2890 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2891 {
2892 	struct mount *mp, *nmp;
2893 	struct vnode *vp;
2894 
2895 	/*
2896 	 * Note: because this is DDB, we can't obey the locking semantics
2897 	 * for these structures, which means we could catch an inconsistent
2898 	 * state and dereference a nasty pointer.  Not much to be done
2899 	 * about that.
2900 	 */
2901 	db_printf("Locked vnodes\n");
2902 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2903 		nmp = TAILQ_NEXT(mp, mnt_list);
2904 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2905 			if (vp->v_type != VMARKER &&
2906 			    VOP_ISLOCKED(vp))
2907 				vprint("", vp);
2908 		}
2909 		nmp = TAILQ_NEXT(mp, mnt_list);
2910 	}
2911 }
2912 
2913 /*
2914  * Show details about the given vnode.
2915  */
2916 DB_SHOW_COMMAND(vnode, db_show_vnode)
2917 {
2918 	struct vnode *vp;
2919 
2920 	if (!have_addr)
2921 		return;
2922 	vp = (struct vnode *)addr;
2923 	vn_printf(vp, "vnode ");
2924 }
2925 
2926 /*
2927  * Show details about the given mount point.
2928  */
2929 DB_SHOW_COMMAND(mount, db_show_mount)
2930 {
2931 	struct mount *mp;
2932 	struct vfsopt *opt;
2933 	struct statfs *sp;
2934 	struct vnode *vp;
2935 	char buf[512];
2936 	uint64_t mflags;
2937 	u_int flags;
2938 
2939 	if (!have_addr) {
2940 		/* No address given, print short info about all mount points. */
2941 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2942 			db_printf("%p %s on %s (%s)\n", mp,
2943 			    mp->mnt_stat.f_mntfromname,
2944 			    mp->mnt_stat.f_mntonname,
2945 			    mp->mnt_stat.f_fstypename);
2946 			if (db_pager_quit)
2947 				break;
2948 		}
2949 		db_printf("\nMore info: show mount <addr>\n");
2950 		return;
2951 	}
2952 
2953 	mp = (struct mount *)addr;
2954 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
2955 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
2956 
2957 	buf[0] = '\0';
2958 	mflags = mp->mnt_flag;
2959 #define	MNT_FLAG(flag)	do {						\
2960 	if (mflags & (flag)) {						\
2961 		if (buf[0] != '\0')					\
2962 			strlcat(buf, ", ", sizeof(buf));		\
2963 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
2964 		mflags &= ~(flag);					\
2965 	}								\
2966 } while (0)
2967 	MNT_FLAG(MNT_RDONLY);
2968 	MNT_FLAG(MNT_SYNCHRONOUS);
2969 	MNT_FLAG(MNT_NOEXEC);
2970 	MNT_FLAG(MNT_NOSUID);
2971 	MNT_FLAG(MNT_UNION);
2972 	MNT_FLAG(MNT_ASYNC);
2973 	MNT_FLAG(MNT_SUIDDIR);
2974 	MNT_FLAG(MNT_SOFTDEP);
2975 	MNT_FLAG(MNT_SUJ);
2976 	MNT_FLAG(MNT_NOSYMFOLLOW);
2977 	MNT_FLAG(MNT_GJOURNAL);
2978 	MNT_FLAG(MNT_MULTILABEL);
2979 	MNT_FLAG(MNT_ACLS);
2980 	MNT_FLAG(MNT_NOATIME);
2981 	MNT_FLAG(MNT_NOCLUSTERR);
2982 	MNT_FLAG(MNT_NOCLUSTERW);
2983 	MNT_FLAG(MNT_NFS4ACLS);
2984 	MNT_FLAG(MNT_EXRDONLY);
2985 	MNT_FLAG(MNT_EXPORTED);
2986 	MNT_FLAG(MNT_DEFEXPORTED);
2987 	MNT_FLAG(MNT_EXPORTANON);
2988 	MNT_FLAG(MNT_EXKERB);
2989 	MNT_FLAG(MNT_EXPUBLIC);
2990 	MNT_FLAG(MNT_LOCAL);
2991 	MNT_FLAG(MNT_QUOTA);
2992 	MNT_FLAG(MNT_ROOTFS);
2993 	MNT_FLAG(MNT_USER);
2994 	MNT_FLAG(MNT_IGNORE);
2995 	MNT_FLAG(MNT_UPDATE);
2996 	MNT_FLAG(MNT_DELEXPORT);
2997 	MNT_FLAG(MNT_RELOAD);
2998 	MNT_FLAG(MNT_FORCE);
2999 	MNT_FLAG(MNT_SNAPSHOT);
3000 	MNT_FLAG(MNT_BYFSID);
3001 #undef MNT_FLAG
3002 	if (mflags != 0) {
3003 		if (buf[0] != '\0')
3004 			strlcat(buf, ", ", sizeof(buf));
3005 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3006 		    "0x%016jx", mflags);
3007 	}
3008 	db_printf("    mnt_flag = %s\n", buf);
3009 
3010 	buf[0] = '\0';
3011 	flags = mp->mnt_kern_flag;
3012 #define	MNT_KERN_FLAG(flag)	do {					\
3013 	if (flags & (flag)) {						\
3014 		if (buf[0] != '\0')					\
3015 			strlcat(buf, ", ", sizeof(buf));		\
3016 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3017 		flags &= ~(flag);					\
3018 	}								\
3019 } while (0)
3020 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3021 	MNT_KERN_FLAG(MNTK_ASYNC);
3022 	MNT_KERN_FLAG(MNTK_SOFTDEP);
3023 	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
3024 	MNT_KERN_FLAG(MNTK_DRAINING);
3025 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3026 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3027 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3028 	MNT_KERN_FLAG(MNTK_NOASYNC);
3029 	MNT_KERN_FLAG(MNTK_UNMOUNT);
3030 	MNT_KERN_FLAG(MNTK_MWAIT);
3031 	MNT_KERN_FLAG(MNTK_SUSPEND);
3032 	MNT_KERN_FLAG(MNTK_SUSPEND2);
3033 	MNT_KERN_FLAG(MNTK_SUSPENDED);
3034 	MNT_KERN_FLAG(MNTK_MPSAFE);
3035 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3036 	MNT_KERN_FLAG(MNTK_NOKNOTE);
3037 #undef MNT_KERN_FLAG
3038 	if (flags != 0) {
3039 		if (buf[0] != '\0')
3040 			strlcat(buf, ", ", sizeof(buf));
3041 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3042 		    "0x%08x", flags);
3043 	}
3044 	db_printf("    mnt_kern_flag = %s\n", buf);
3045 
3046 	db_printf("    mnt_opt = ");
3047 	opt = TAILQ_FIRST(mp->mnt_opt);
3048 	if (opt != NULL) {
3049 		db_printf("%s", opt->name);
3050 		opt = TAILQ_NEXT(opt, link);
3051 		while (opt != NULL) {
3052 			db_printf(", %s", opt->name);
3053 			opt = TAILQ_NEXT(opt, link);
3054 		}
3055 	}
3056 	db_printf("\n");
3057 
3058 	sp = &mp->mnt_stat;
3059 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3060 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3061 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3062 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3063 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3064 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3065 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3066 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3067 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3068 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3069 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3070 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3071 
3072 	db_printf("    mnt_cred = { uid=%u ruid=%u",
3073 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3074 	if (jailed(mp->mnt_cred))
3075 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3076 	db_printf(" }\n");
3077 	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
3078 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
3079 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
3080 	db_printf("    mnt_activevnodelistsize = %d\n",
3081 	    mp->mnt_activevnodelistsize);
3082 	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
3083 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
3084 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
3085 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
3086 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
3087 	db_printf("    mnt_secondary_accwrites = %d\n",
3088 	    mp->mnt_secondary_accwrites);
3089 	db_printf("    mnt_gjprovider = %s\n",
3090 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
3091 
3092 	db_printf("\n\nList of active vnodes\n");
3093 	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
3094 		if (vp->v_type != VMARKER) {
3095 			vn_printf(vp, "vnode ");
3096 			if (db_pager_quit)
3097 				break;
3098 		}
3099 	}
3100 	db_printf("\n\nList of inactive vnodes\n");
3101 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3102 		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
3103 			vn_printf(vp, "vnode ");
3104 			if (db_pager_quit)
3105 				break;
3106 		}
3107 	}
3108 }
3109 #endif	/* DDB */
3110 
3111 /*
3112  * Fill in a struct xvfsconf based on a struct vfsconf.
3113  */
3114 static void
3115 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
3116 {
3117 
3118 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
3119 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
3120 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
3121 	xvfsp->vfc_flags = vfsp->vfc_flags;
3122 	/*
3123 	 * These are unused in userland, we keep them
3124 	 * to not break binary compatibility.
3125 	 */
3126 	xvfsp->vfc_vfsops = NULL;
3127 	xvfsp->vfc_next = NULL;
3128 }
3129 
3130 /*
3131  * Top level filesystem related information gathering.
3132  */
3133 static int
3134 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
3135 {
3136 	struct vfsconf *vfsp;
3137 	struct xvfsconf xvfsp;
3138 	int error;
3139 
3140 	error = 0;
3141 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3142 		bzero(&xvfsp, sizeof(xvfsp));
3143 		vfsconf2x(vfsp, &xvfsp);
3144 		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
3145 		if (error)
3146 			break;
3147 	}
3148 	return (error);
3149 }
3150 
3151 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD,
3152     NULL, 0, sysctl_vfs_conflist,
3153     "S,xvfsconf", "List of all configured filesystems");
3154 
3155 #ifndef BURN_BRIDGES
3156 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3157 
3158 static int
3159 vfs_sysctl(SYSCTL_HANDLER_ARGS)
3160 {
3161 	int *name = (int *)arg1 - 1;	/* XXX */
3162 	u_int namelen = arg2 + 1;	/* XXX */
3163 	struct vfsconf *vfsp;
3164 	struct xvfsconf xvfsp;
3165 
3166 	log(LOG_WARNING, "userland calling deprecated sysctl, "
3167 	    "please rebuild world\n");
3168 
3169 #if 1 || defined(COMPAT_PRELITE2)
3170 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3171 	if (namelen == 1)
3172 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3173 #endif
3174 
3175 	switch (name[1]) {
3176 	case VFS_MAXTYPENUM:
3177 		if (namelen != 2)
3178 			return (ENOTDIR);
3179 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3180 	case VFS_CONF:
3181 		if (namelen != 3)
3182 			return (ENOTDIR);	/* overloaded */
3183 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
3184 			if (vfsp->vfc_typenum == name[2])
3185 				break;
3186 		if (vfsp == NULL)
3187 			return (EOPNOTSUPP);
3188 		bzero(&xvfsp, sizeof(xvfsp));
3189 		vfsconf2x(vfsp, &xvfsp);
3190 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3191 	}
3192 	return (EOPNOTSUPP);
3193 }
3194 
3195 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
3196     vfs_sysctl, "Generic filesystem");
3197 
3198 #if 1 || defined(COMPAT_PRELITE2)
3199 
3200 static int
3201 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3202 {
3203 	int error;
3204 	struct vfsconf *vfsp;
3205 	struct ovfsconf ovfs;
3206 
3207 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3208 		bzero(&ovfs, sizeof(ovfs));
3209 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3210 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3211 		ovfs.vfc_index = vfsp->vfc_typenum;
3212 		ovfs.vfc_refcount = vfsp->vfc_refcount;
3213 		ovfs.vfc_flags = vfsp->vfc_flags;
3214 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3215 		if (error)
3216 			return error;
3217 	}
3218 	return 0;
3219 }
3220 
3221 #endif /* 1 || COMPAT_PRELITE2 */
3222 #endif /* !BURN_BRIDGES */
3223 
3224 #define KINFO_VNODESLOP		10
3225 #ifdef notyet
3226 /*
3227  * Dump vnode list (via sysctl).
3228  */
3229 /* ARGSUSED */
3230 static int
3231 sysctl_vnode(SYSCTL_HANDLER_ARGS)
3232 {
3233 	struct xvnode *xvn;
3234 	struct mount *mp;
3235 	struct vnode *vp;
3236 	int error, len, n;
3237 
3238 	/*
3239 	 * Stale numvnodes access is not fatal here.
3240 	 */
3241 	req->lock = 0;
3242 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3243 	if (!req->oldptr)
3244 		/* Make an estimate */
3245 		return (SYSCTL_OUT(req, 0, len));
3246 
3247 	error = sysctl_wire_old_buffer(req, 0);
3248 	if (error != 0)
3249 		return (error);
3250 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3251 	n = 0;
3252 	mtx_lock(&mountlist_mtx);
3253 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3254 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3255 			continue;
3256 		MNT_ILOCK(mp);
3257 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3258 			if (n == len)
3259 				break;
3260 			vref(vp);
3261 			xvn[n].xv_size = sizeof *xvn;
3262 			xvn[n].xv_vnode = vp;
3263 			xvn[n].xv_id = 0;	/* XXX compat */
3264 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3265 			XV_COPY(usecount);
3266 			XV_COPY(writecount);
3267 			XV_COPY(holdcnt);
3268 			XV_COPY(mount);
3269 			XV_COPY(numoutput);
3270 			XV_COPY(type);
3271 #undef XV_COPY
3272 			xvn[n].xv_flag = vp->v_vflag;
3273 
3274 			switch (vp->v_type) {
3275 			case VREG:
3276 			case VDIR:
3277 			case VLNK:
3278 				break;
3279 			case VBLK:
3280 			case VCHR:
3281 				if (vp->v_rdev == NULL) {
3282 					vrele(vp);
3283 					continue;
3284 				}
3285 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3286 				break;
3287 			case VSOCK:
3288 				xvn[n].xv_socket = vp->v_socket;
3289 				break;
3290 			case VFIFO:
3291 				xvn[n].xv_fifo = vp->v_fifoinfo;
3292 				break;
3293 			case VNON:
3294 			case VBAD:
3295 			default:
3296 				/* shouldn't happen? */
3297 				vrele(vp);
3298 				continue;
3299 			}
3300 			vrele(vp);
3301 			++n;
3302 		}
3303 		MNT_IUNLOCK(mp);
3304 		mtx_lock(&mountlist_mtx);
3305 		vfs_unbusy(mp);
3306 		if (n == len)
3307 			break;
3308 	}
3309 	mtx_unlock(&mountlist_mtx);
3310 
3311 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3312 	free(xvn, M_TEMP);
3313 	return (error);
3314 }
3315 
3316 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3317     0, 0, sysctl_vnode, "S,xvnode", "");
3318 #endif
3319 
3320 /*
3321  * Unmount all filesystems. The list is traversed in reverse order
3322  * of mounting to avoid dependencies.
3323  */
3324 void
3325 vfs_unmountall(void)
3326 {
3327 	struct mount *mp;
3328 	struct thread *td;
3329 	int error;
3330 
3331 	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
3332 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3333 	td = curthread;
3334 
3335 	/*
3336 	 * Since this only runs when rebooting, it is not interlocked.
3337 	 */
3338 	while(!TAILQ_EMPTY(&mountlist)) {
3339 		mp = TAILQ_LAST(&mountlist, mntlist);
3340 		error = dounmount(mp, MNT_FORCE, td);
3341 		if (error) {
3342 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3343 			/*
3344 			 * XXX: Due to the way in which we mount the root
3345 			 * file system off of devfs, devfs will generate a
3346 			 * "busy" warning when we try to unmount it before
3347 			 * the root.  Don't print a warning as a result in
3348 			 * order to avoid false positive errors that may
3349 			 * cause needless upset.
3350 			 */
3351 			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3352 				printf("unmount of %s failed (",
3353 				    mp->mnt_stat.f_mntonname);
3354 				if (error == EBUSY)
3355 					printf("BUSY)\n");
3356 				else
3357 					printf("%d)\n", error);
3358 			}
3359 		} else {
3360 			/* The unmount has removed mp from the mountlist */
3361 		}
3362 	}
3363 }
3364 
3365 /*
3366  * perform msync on all vnodes under a mount point
3367  * the mount point must be locked.
3368  */
3369 void
3370 vfs_msync(struct mount *mp, int flags)
3371 {
3372 	struct vnode *vp, *mvp;
3373 	struct vm_object *obj;
3374 
3375 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3376 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
3377 		obj = vp->v_object;
3378 		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
3379 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3380 			if (!vget(vp,
3381 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3382 			    curthread)) {
3383 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3384 					vput(vp);
3385 					continue;
3386 				}
3387 
3388 				obj = vp->v_object;
3389 				if (obj != NULL) {
3390 					VM_OBJECT_LOCK(obj);
3391 					vm_object_page_clean(obj, 0, 0,
3392 					    flags == MNT_WAIT ?
3393 					    OBJPC_SYNC : OBJPC_NOSYNC);
3394 					VM_OBJECT_UNLOCK(obj);
3395 				}
3396 				vput(vp);
3397 			}
3398 		} else
3399 			VI_UNLOCK(vp);
3400 	}
3401 }
3402 
3403 static void
3404 destroy_vpollinfo(struct vpollinfo *vi)
3405 {
3406 	seldrain(&vi->vpi_selinfo);
3407 	knlist_destroy(&vi->vpi_selinfo.si_note);
3408 	mtx_destroy(&vi->vpi_lock);
3409 	uma_zfree(vnodepoll_zone, vi);
3410 }
3411 
3412 /*
3413  * Initalize per-vnode helper structure to hold poll-related state.
3414  */
3415 void
3416 v_addpollinfo(struct vnode *vp)
3417 {
3418 	struct vpollinfo *vi;
3419 
3420 	if (vp->v_pollinfo != NULL)
3421 		return;
3422 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3423 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3424 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3425 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3426 	VI_LOCK(vp);
3427 	if (vp->v_pollinfo != NULL) {
3428 		VI_UNLOCK(vp);
3429 		destroy_vpollinfo(vi);
3430 		return;
3431 	}
3432 	vp->v_pollinfo = vi;
3433 	VI_UNLOCK(vp);
3434 }
3435 
3436 /*
3437  * Record a process's interest in events which might happen to
3438  * a vnode.  Because poll uses the historic select-style interface
3439  * internally, this routine serves as both the ``check for any
3440  * pending events'' and the ``record my interest in future events''
3441  * functions.  (These are done together, while the lock is held,
3442  * to avoid race conditions.)
3443  */
3444 int
3445 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3446 {
3447 
3448 	v_addpollinfo(vp);
3449 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3450 	if (vp->v_pollinfo->vpi_revents & events) {
3451 		/*
3452 		 * This leaves events we are not interested
3453 		 * in available for the other process which
3454 		 * which presumably had requested them
3455 		 * (otherwise they would never have been
3456 		 * recorded).
3457 		 */
3458 		events &= vp->v_pollinfo->vpi_revents;
3459 		vp->v_pollinfo->vpi_revents &= ~events;
3460 
3461 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3462 		return (events);
3463 	}
3464 	vp->v_pollinfo->vpi_events |= events;
3465 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3466 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3467 	return (0);
3468 }
3469 
3470 /*
3471  * Routine to create and manage a filesystem syncer vnode.
3472  */
3473 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3474 static int	sync_fsync(struct  vop_fsync_args *);
3475 static int	sync_inactive(struct  vop_inactive_args *);
3476 static int	sync_reclaim(struct  vop_reclaim_args *);
3477 
3478 static struct vop_vector sync_vnodeops = {
3479 	.vop_bypass =	VOP_EOPNOTSUPP,
3480 	.vop_close =	sync_close,		/* close */
3481 	.vop_fsync =	sync_fsync,		/* fsync */
3482 	.vop_inactive =	sync_inactive,	/* inactive */
3483 	.vop_reclaim =	sync_reclaim,	/* reclaim */
3484 	.vop_lock1 =	vop_stdlock,	/* lock */
3485 	.vop_unlock =	vop_stdunlock,	/* unlock */
3486 	.vop_islocked =	vop_stdislocked,	/* islocked */
3487 };
3488 
3489 /*
3490  * Create a new filesystem syncer vnode for the specified mount point.
3491  */
3492 void
3493 vfs_allocate_syncvnode(struct mount *mp)
3494 {
3495 	struct vnode *vp;
3496 	struct bufobj *bo;
3497 	static long start, incr, next;
3498 	int error;
3499 
3500 	/* Allocate a new vnode */
3501 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
3502 	if (error != 0)
3503 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
3504 	vp->v_type = VNON;
3505 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3506 	vp->v_vflag |= VV_FORCEINSMQ;
3507 	error = insmntque(vp, mp);
3508 	if (error != 0)
3509 		panic("vfs_allocate_syncvnode: insmntque() failed");
3510 	vp->v_vflag &= ~VV_FORCEINSMQ;
3511 	VOP_UNLOCK(vp, 0);
3512 	/*
3513 	 * Place the vnode onto the syncer worklist. We attempt to
3514 	 * scatter them about on the list so that they will go off
3515 	 * at evenly distributed times even if all the filesystems
3516 	 * are mounted at once.
3517 	 */
3518 	next += incr;
3519 	if (next == 0 || next > syncer_maxdelay) {
3520 		start /= 2;
3521 		incr /= 2;
3522 		if (start == 0) {
3523 			start = syncer_maxdelay / 2;
3524 			incr = syncer_maxdelay;
3525 		}
3526 		next = start;
3527 	}
3528 	bo = &vp->v_bufobj;
3529 	BO_LOCK(bo);
3530 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3531 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3532 	mtx_lock(&sync_mtx);
3533 	sync_vnode_count++;
3534 	if (mp->mnt_syncer == NULL) {
3535 		mp->mnt_syncer = vp;
3536 		vp = NULL;
3537 	}
3538 	mtx_unlock(&sync_mtx);
3539 	BO_UNLOCK(bo);
3540 	if (vp != NULL) {
3541 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3542 		vgone(vp);
3543 		vput(vp);
3544 	}
3545 }
3546 
3547 void
3548 vfs_deallocate_syncvnode(struct mount *mp)
3549 {
3550 	struct vnode *vp;
3551 
3552 	mtx_lock(&sync_mtx);
3553 	vp = mp->mnt_syncer;
3554 	if (vp != NULL)
3555 		mp->mnt_syncer = NULL;
3556 	mtx_unlock(&sync_mtx);
3557 	if (vp != NULL)
3558 		vrele(vp);
3559 }
3560 
3561 /*
3562  * Do a lazy sync of the filesystem.
3563  */
3564 static int
3565 sync_fsync(struct vop_fsync_args *ap)
3566 {
3567 	struct vnode *syncvp = ap->a_vp;
3568 	struct mount *mp = syncvp->v_mount;
3569 	int error, save;
3570 	struct bufobj *bo;
3571 
3572 	/*
3573 	 * We only need to do something if this is a lazy evaluation.
3574 	 */
3575 	if (ap->a_waitfor != MNT_LAZY)
3576 		return (0);
3577 
3578 	/*
3579 	 * Move ourselves to the back of the sync list.
3580 	 */
3581 	bo = &syncvp->v_bufobj;
3582 	BO_LOCK(bo);
3583 	vn_syncer_add_to_worklist(bo, syncdelay);
3584 	BO_UNLOCK(bo);
3585 
3586 	/*
3587 	 * Walk the list of vnodes pushing all that are dirty and
3588 	 * not already on the sync list.
3589 	 */
3590 	mtx_lock(&mountlist_mtx);
3591 	if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) {
3592 		mtx_unlock(&mountlist_mtx);
3593 		return (0);
3594 	}
3595 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3596 		vfs_unbusy(mp);
3597 		return (0);
3598 	}
3599 	save = curthread_pflags_set(TDP_SYNCIO);
3600 	vfs_msync(mp, MNT_NOWAIT);
3601 	error = VFS_SYNC(mp, MNT_LAZY);
3602 	curthread_pflags_restore(save);
3603 	vn_finished_write(mp);
3604 	vfs_unbusy(mp);
3605 	return (error);
3606 }
3607 
3608 /*
3609  * The syncer vnode is no referenced.
3610  */
3611 static int
3612 sync_inactive(struct vop_inactive_args *ap)
3613 {
3614 
3615 	vgone(ap->a_vp);
3616 	return (0);
3617 }
3618 
3619 /*
3620  * The syncer vnode is no longer needed and is being decommissioned.
3621  *
3622  * Modifications to the worklist must be protected by sync_mtx.
3623  */
3624 static int
3625 sync_reclaim(struct vop_reclaim_args *ap)
3626 {
3627 	struct vnode *vp = ap->a_vp;
3628 	struct bufobj *bo;
3629 
3630 	bo = &vp->v_bufobj;
3631 	BO_LOCK(bo);
3632 	mtx_lock(&sync_mtx);
3633 	if (vp->v_mount->mnt_syncer == vp)
3634 		vp->v_mount->mnt_syncer = NULL;
3635 	if (bo->bo_flag & BO_ONWORKLST) {
3636 		LIST_REMOVE(bo, bo_synclist);
3637 		syncer_worklist_len--;
3638 		sync_vnode_count--;
3639 		bo->bo_flag &= ~BO_ONWORKLST;
3640 	}
3641 	mtx_unlock(&sync_mtx);
3642 	BO_UNLOCK(bo);
3643 
3644 	return (0);
3645 }
3646 
3647 /*
3648  * Check if vnode represents a disk device
3649  */
3650 int
3651 vn_isdisk(struct vnode *vp, int *errp)
3652 {
3653 	int error;
3654 
3655 	error = 0;
3656 	dev_lock();
3657 	if (vp->v_type != VCHR)
3658 		error = ENOTBLK;
3659 	else if (vp->v_rdev == NULL)
3660 		error = ENXIO;
3661 	else if (vp->v_rdev->si_devsw == NULL)
3662 		error = ENXIO;
3663 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3664 		error = ENOTBLK;
3665 	dev_unlock();
3666 	if (errp != NULL)
3667 		*errp = error;
3668 	return (error == 0);
3669 }
3670 
3671 /*
3672  * Common filesystem object access control check routine.  Accepts a
3673  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3674  * and optional call-by-reference privused argument allowing vaccess()
3675  * to indicate to the caller whether privilege was used to satisfy the
3676  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3677  */
3678 int
3679 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3680     accmode_t accmode, struct ucred *cred, int *privused)
3681 {
3682 	accmode_t dac_granted;
3683 	accmode_t priv_granted;
3684 
3685 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
3686 	    ("invalid bit in accmode"));
3687 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
3688 	    ("VAPPEND without VWRITE"));
3689 
3690 	/*
3691 	 * Look for a normal, non-privileged way to access the file/directory
3692 	 * as requested.  If it exists, go with that.
3693 	 */
3694 
3695 	if (privused != NULL)
3696 		*privused = 0;
3697 
3698 	dac_granted = 0;
3699 
3700 	/* Check the owner. */
3701 	if (cred->cr_uid == file_uid) {
3702 		dac_granted |= VADMIN;
3703 		if (file_mode & S_IXUSR)
3704 			dac_granted |= VEXEC;
3705 		if (file_mode & S_IRUSR)
3706 			dac_granted |= VREAD;
3707 		if (file_mode & S_IWUSR)
3708 			dac_granted |= (VWRITE | VAPPEND);
3709 
3710 		if ((accmode & dac_granted) == accmode)
3711 			return (0);
3712 
3713 		goto privcheck;
3714 	}
3715 
3716 	/* Otherwise, check the groups (first match) */
3717 	if (groupmember(file_gid, cred)) {
3718 		if (file_mode & S_IXGRP)
3719 			dac_granted |= VEXEC;
3720 		if (file_mode & S_IRGRP)
3721 			dac_granted |= VREAD;
3722 		if (file_mode & S_IWGRP)
3723 			dac_granted |= (VWRITE | VAPPEND);
3724 
3725 		if ((accmode & dac_granted) == accmode)
3726 			return (0);
3727 
3728 		goto privcheck;
3729 	}
3730 
3731 	/* Otherwise, check everyone else. */
3732 	if (file_mode & S_IXOTH)
3733 		dac_granted |= VEXEC;
3734 	if (file_mode & S_IROTH)
3735 		dac_granted |= VREAD;
3736 	if (file_mode & S_IWOTH)
3737 		dac_granted |= (VWRITE | VAPPEND);
3738 	if ((accmode & dac_granted) == accmode)
3739 		return (0);
3740 
3741 privcheck:
3742 	/*
3743 	 * Build a privilege mask to determine if the set of privileges
3744 	 * satisfies the requirements when combined with the granted mask
3745 	 * from above.  For each privilege, if the privilege is required,
3746 	 * bitwise or the request type onto the priv_granted mask.
3747 	 */
3748 	priv_granted = 0;
3749 
3750 	if (type == VDIR) {
3751 		/*
3752 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3753 		 * requests, instead of PRIV_VFS_EXEC.
3754 		 */
3755 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3756 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3757 			priv_granted |= VEXEC;
3758 	} else {
3759 		/*
3760 		 * Ensure that at least one execute bit is on. Otherwise,
3761 		 * a privileged user will always succeed, and we don't want
3762 		 * this to happen unless the file really is executable.
3763 		 */
3764 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3765 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
3766 		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3767 			priv_granted |= VEXEC;
3768 	}
3769 
3770 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
3771 	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3772 		priv_granted |= VREAD;
3773 
3774 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3775 	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3776 		priv_granted |= (VWRITE | VAPPEND);
3777 
3778 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3779 	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3780 		priv_granted |= VADMIN;
3781 
3782 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
3783 		/* XXX audit: privilege used */
3784 		if (privused != NULL)
3785 			*privused = 1;
3786 		return (0);
3787 	}
3788 
3789 	return ((accmode & VADMIN) ? EPERM : EACCES);
3790 }
3791 
3792 /*
3793  * Credential check based on process requesting service, and per-attribute
3794  * permissions.
3795  */
3796 int
3797 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3798     struct thread *td, accmode_t accmode)
3799 {
3800 
3801 	/*
3802 	 * Kernel-invoked always succeeds.
3803 	 */
3804 	if (cred == NOCRED)
3805 		return (0);
3806 
3807 	/*
3808 	 * Do not allow privileged processes in jail to directly manipulate
3809 	 * system attributes.
3810 	 */
3811 	switch (attrnamespace) {
3812 	case EXTATTR_NAMESPACE_SYSTEM:
3813 		/* Potentially should be: return (EPERM); */
3814 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3815 	case EXTATTR_NAMESPACE_USER:
3816 		return (VOP_ACCESS(vp, accmode, cred, td));
3817 	default:
3818 		return (EPERM);
3819 	}
3820 }
3821 
3822 #ifdef DEBUG_VFS_LOCKS
3823 /*
3824  * This only exists to supress warnings from unlocked specfs accesses.  It is
3825  * no longer ok to have an unlocked VFS.
3826  */
3827 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
3828 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
3829 
3830 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3831 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
3832     "Drop into debugger on lock violation");
3833 
3834 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3835 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
3836     0, "Check for interlock across VOPs");
3837 
3838 int vfs_badlock_print = 1;	/* Print lock violations. */
3839 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
3840     0, "Print lock violations");
3841 
3842 #ifdef KDB
3843 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3844 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
3845     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
3846 #endif
3847 
3848 static void
3849 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3850 {
3851 
3852 #ifdef KDB
3853 	if (vfs_badlock_backtrace)
3854 		kdb_backtrace();
3855 #endif
3856 	if (vfs_badlock_print)
3857 		printf("%s: %p %s\n", str, (void *)vp, msg);
3858 	if (vfs_badlock_ddb)
3859 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3860 }
3861 
3862 void
3863 assert_vi_locked(struct vnode *vp, const char *str)
3864 {
3865 
3866 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3867 		vfs_badlock("interlock is not locked but should be", str, vp);
3868 }
3869 
3870 void
3871 assert_vi_unlocked(struct vnode *vp, const char *str)
3872 {
3873 
3874 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3875 		vfs_badlock("interlock is locked but should not be", str, vp);
3876 }
3877 
3878 void
3879 assert_vop_locked(struct vnode *vp, const char *str)
3880 {
3881 
3882 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0)
3883 		vfs_badlock("is not locked but should be", str, vp);
3884 }
3885 
3886 void
3887 assert_vop_unlocked(struct vnode *vp, const char *str)
3888 {
3889 
3890 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3891 		vfs_badlock("is locked but should not be", str, vp);
3892 }
3893 
3894 void
3895 assert_vop_elocked(struct vnode *vp, const char *str)
3896 {
3897 
3898 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3899 		vfs_badlock("is not exclusive locked but should be", str, vp);
3900 }
3901 
3902 #if 0
3903 void
3904 assert_vop_elocked_other(struct vnode *vp, const char *str)
3905 {
3906 
3907 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
3908 		vfs_badlock("is not exclusive locked by another thread",
3909 		    str, vp);
3910 }
3911 
3912 void
3913 assert_vop_slocked(struct vnode *vp, const char *str)
3914 {
3915 
3916 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
3917 		vfs_badlock("is not locked shared but should be", str, vp);
3918 }
3919 #endif /* 0 */
3920 #endif /* DEBUG_VFS_LOCKS */
3921 
3922 void
3923 vop_rename_fail(struct vop_rename_args *ap)
3924 {
3925 
3926 	if (ap->a_tvp != NULL)
3927 		vput(ap->a_tvp);
3928 	if (ap->a_tdvp == ap->a_tvp)
3929 		vrele(ap->a_tdvp);
3930 	else
3931 		vput(ap->a_tdvp);
3932 	vrele(ap->a_fdvp);
3933 	vrele(ap->a_fvp);
3934 }
3935 
3936 void
3937 vop_rename_pre(void *ap)
3938 {
3939 	struct vop_rename_args *a = ap;
3940 
3941 #ifdef DEBUG_VFS_LOCKS
3942 	if (a->a_tvp)
3943 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3944 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3945 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3946 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3947 
3948 	/* Check the source (from). */
3949 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
3950 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
3951 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3952 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
3953 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
3954 
3955 	/* Check the target. */
3956 	if (a->a_tvp)
3957 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3958 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3959 #endif
3960 	if (a->a_tdvp != a->a_fdvp)
3961 		vhold(a->a_fdvp);
3962 	if (a->a_tvp != a->a_fvp)
3963 		vhold(a->a_fvp);
3964 	vhold(a->a_tdvp);
3965 	if (a->a_tvp)
3966 		vhold(a->a_tvp);
3967 }
3968 
3969 void
3970 vop_strategy_pre(void *ap)
3971 {
3972 #ifdef DEBUG_VFS_LOCKS
3973 	struct vop_strategy_args *a;
3974 	struct buf *bp;
3975 
3976 	a = ap;
3977 	bp = a->a_bp;
3978 
3979 	/*
3980 	 * Cluster ops lock their component buffers but not the IO container.
3981 	 */
3982 	if ((bp->b_flags & B_CLUSTER) != 0)
3983 		return;
3984 
3985 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
3986 		if (vfs_badlock_print)
3987 			printf(
3988 			    "VOP_STRATEGY: bp is not locked but should be\n");
3989 		if (vfs_badlock_ddb)
3990 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3991 	}
3992 #endif
3993 }
3994 
3995 void
3996 vop_lookup_pre(void *ap)
3997 {
3998 #ifdef DEBUG_VFS_LOCKS
3999 	struct vop_lookup_args *a;
4000 	struct vnode *dvp;
4001 
4002 	a = ap;
4003 	dvp = a->a_dvp;
4004 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
4005 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
4006 #endif
4007 }
4008 
4009 void
4010 vop_lookup_post(void *ap, int rc)
4011 {
4012 #ifdef DEBUG_VFS_LOCKS
4013 	struct vop_lookup_args *a;
4014 	struct vnode *dvp;
4015 	struct vnode *vp;
4016 
4017 	a = ap;
4018 	dvp = a->a_dvp;
4019 	vp = *(a->a_vpp);
4020 
4021 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
4022 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
4023 
4024 	if (!rc)
4025 		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
4026 #endif
4027 }
4028 
4029 void
4030 vop_lock_pre(void *ap)
4031 {
4032 #ifdef DEBUG_VFS_LOCKS
4033 	struct vop_lock1_args *a = ap;
4034 
4035 	if ((a->a_flags & LK_INTERLOCK) == 0)
4036 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4037 	else
4038 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4039 #endif
4040 }
4041 
4042 void
4043 vop_lock_post(void *ap, int rc)
4044 {
4045 #ifdef DEBUG_VFS_LOCKS
4046 	struct vop_lock1_args *a = ap;
4047 
4048 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4049 	if (rc == 0)
4050 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
4051 #endif
4052 }
4053 
4054 void
4055 vop_unlock_pre(void *ap)
4056 {
4057 #ifdef DEBUG_VFS_LOCKS
4058 	struct vop_unlock_args *a = ap;
4059 
4060 	if (a->a_flags & LK_INTERLOCK)
4061 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
4062 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
4063 #endif
4064 }
4065 
4066 void
4067 vop_unlock_post(void *ap, int rc)
4068 {
4069 #ifdef DEBUG_VFS_LOCKS
4070 	struct vop_unlock_args *a = ap;
4071 
4072 	if (a->a_flags & LK_INTERLOCK)
4073 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
4074 #endif
4075 }
4076 
4077 void
4078 vop_create_post(void *ap, int rc)
4079 {
4080 	struct vop_create_args *a = ap;
4081 
4082 	if (!rc)
4083 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4084 }
4085 
4086 void
4087 vop_deleteextattr_post(void *ap, int rc)
4088 {
4089 	struct vop_deleteextattr_args *a = ap;
4090 
4091 	if (!rc)
4092 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4093 }
4094 
4095 void
4096 vop_link_post(void *ap, int rc)
4097 {
4098 	struct vop_link_args *a = ap;
4099 
4100 	if (!rc) {
4101 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4102 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4103 	}
4104 }
4105 
4106 void
4107 vop_mkdir_post(void *ap, int rc)
4108 {
4109 	struct vop_mkdir_args *a = ap;
4110 
4111 	if (!rc)
4112 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4113 }
4114 
4115 void
4116 vop_mknod_post(void *ap, int rc)
4117 {
4118 	struct vop_mknod_args *a = ap;
4119 
4120 	if (!rc)
4121 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4122 }
4123 
4124 void
4125 vop_remove_post(void *ap, int rc)
4126 {
4127 	struct vop_remove_args *a = ap;
4128 
4129 	if (!rc) {
4130 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4131 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4132 	}
4133 }
4134 
4135 void
4136 vop_rename_post(void *ap, int rc)
4137 {
4138 	struct vop_rename_args *a = ap;
4139 
4140 	if (!rc) {
4141 		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
4142 		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
4143 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4144 		if (a->a_tvp)
4145 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4146 	}
4147 	if (a->a_tdvp != a->a_fdvp)
4148 		vdrop(a->a_fdvp);
4149 	if (a->a_tvp != a->a_fvp)
4150 		vdrop(a->a_fvp);
4151 	vdrop(a->a_tdvp);
4152 	if (a->a_tvp)
4153 		vdrop(a->a_tvp);
4154 }
4155 
4156 void
4157 vop_rmdir_post(void *ap, int rc)
4158 {
4159 	struct vop_rmdir_args *a = ap;
4160 
4161 	if (!rc) {
4162 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4163 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4164 	}
4165 }
4166 
4167 void
4168 vop_setattr_post(void *ap, int rc)
4169 {
4170 	struct vop_setattr_args *a = ap;
4171 
4172 	if (!rc)
4173 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4174 }
4175 
4176 void
4177 vop_setextattr_post(void *ap, int rc)
4178 {
4179 	struct vop_setextattr_args *a = ap;
4180 
4181 	if (!rc)
4182 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4183 }
4184 
4185 void
4186 vop_symlink_post(void *ap, int rc)
4187 {
4188 	struct vop_symlink_args *a = ap;
4189 
4190 	if (!rc)
4191 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4192 }
4193 
4194 static struct knlist fs_knlist;
4195 
4196 static void
4197 vfs_event_init(void *arg)
4198 {
4199 	knlist_init_mtx(&fs_knlist, NULL);
4200 }
4201 /* XXX - correct order? */
4202 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4203 
4204 void
4205 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4206 {
4207 
4208 	KNOTE_UNLOCKED(&fs_knlist, event);
4209 }
4210 
4211 static int	filt_fsattach(struct knote *kn);
4212 static void	filt_fsdetach(struct knote *kn);
4213 static int	filt_fsevent(struct knote *kn, long hint);
4214 
4215 struct filterops fs_filtops = {
4216 	.f_isfd = 0,
4217 	.f_attach = filt_fsattach,
4218 	.f_detach = filt_fsdetach,
4219 	.f_event = filt_fsevent
4220 };
4221 
4222 static int
4223 filt_fsattach(struct knote *kn)
4224 {
4225 
4226 	kn->kn_flags |= EV_CLEAR;
4227 	knlist_add(&fs_knlist, kn, 0);
4228 	return (0);
4229 }
4230 
4231 static void
4232 filt_fsdetach(struct knote *kn)
4233 {
4234 
4235 	knlist_remove(&fs_knlist, kn, 0);
4236 }
4237 
4238 static int
4239 filt_fsevent(struct knote *kn, long hint)
4240 {
4241 
4242 	kn->kn_fflags |= hint;
4243 	return (kn->kn_fflags != 0);
4244 }
4245 
4246 static int
4247 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4248 {
4249 	struct vfsidctl vc;
4250 	int error;
4251 	struct mount *mp;
4252 
4253 	error = SYSCTL_IN(req, &vc, sizeof(vc));
4254 	if (error)
4255 		return (error);
4256 	if (vc.vc_vers != VFS_CTL_VERS1)
4257 		return (EINVAL);
4258 	mp = vfs_getvfs(&vc.vc_fsid);
4259 	if (mp == NULL)
4260 		return (ENOENT);
4261 	/* ensure that a specific sysctl goes to the right filesystem. */
4262 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4263 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4264 		vfs_rel(mp);
4265 		return (EINVAL);
4266 	}
4267 	VCTLTOREQ(&vc, req);
4268 	error = VFS_SYSCTL(mp, vc.vc_op, req);
4269 	vfs_rel(mp);
4270 	return (error);
4271 }
4272 
4273 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
4274     NULL, 0, sysctl_vfs_ctl, "",
4275     "Sysctl by fsid");
4276 
4277 /*
4278  * Function to initialize a va_filerev field sensibly.
4279  * XXX: Wouldn't a random number make a lot more sense ??
4280  */
4281 u_quad_t
4282 init_va_filerev(void)
4283 {
4284 	struct bintime bt;
4285 
4286 	getbinuptime(&bt);
4287 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4288 }
4289 
4290 static int	filt_vfsread(struct knote *kn, long hint);
4291 static int	filt_vfswrite(struct knote *kn, long hint);
4292 static int	filt_vfsvnode(struct knote *kn, long hint);
4293 static void	filt_vfsdetach(struct knote *kn);
4294 static struct filterops vfsread_filtops = {
4295 	.f_isfd = 1,
4296 	.f_detach = filt_vfsdetach,
4297 	.f_event = filt_vfsread
4298 };
4299 static struct filterops vfswrite_filtops = {
4300 	.f_isfd = 1,
4301 	.f_detach = filt_vfsdetach,
4302 	.f_event = filt_vfswrite
4303 };
4304 static struct filterops vfsvnode_filtops = {
4305 	.f_isfd = 1,
4306 	.f_detach = filt_vfsdetach,
4307 	.f_event = filt_vfsvnode
4308 };
4309 
4310 static void
4311 vfs_knllock(void *arg)
4312 {
4313 	struct vnode *vp = arg;
4314 
4315 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4316 }
4317 
4318 static void
4319 vfs_knlunlock(void *arg)
4320 {
4321 	struct vnode *vp = arg;
4322 
4323 	VOP_UNLOCK(vp, 0);
4324 }
4325 
4326 static void
4327 vfs_knl_assert_locked(void *arg)
4328 {
4329 #ifdef DEBUG_VFS_LOCKS
4330 	struct vnode *vp = arg;
4331 
4332 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4333 #endif
4334 }
4335 
4336 static void
4337 vfs_knl_assert_unlocked(void *arg)
4338 {
4339 #ifdef DEBUG_VFS_LOCKS
4340 	struct vnode *vp = arg;
4341 
4342 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4343 #endif
4344 }
4345 
4346 int
4347 vfs_kqfilter(struct vop_kqfilter_args *ap)
4348 {
4349 	struct vnode *vp = ap->a_vp;
4350 	struct knote *kn = ap->a_kn;
4351 	struct knlist *knl;
4352 
4353 	switch (kn->kn_filter) {
4354 	case EVFILT_READ:
4355 		kn->kn_fop = &vfsread_filtops;
4356 		break;
4357 	case EVFILT_WRITE:
4358 		kn->kn_fop = &vfswrite_filtops;
4359 		break;
4360 	case EVFILT_VNODE:
4361 		kn->kn_fop = &vfsvnode_filtops;
4362 		break;
4363 	default:
4364 		return (EINVAL);
4365 	}
4366 
4367 	kn->kn_hook = (caddr_t)vp;
4368 
4369 	v_addpollinfo(vp);
4370 	if (vp->v_pollinfo == NULL)
4371 		return (ENOMEM);
4372 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4373 	knlist_add(knl, kn, 0);
4374 
4375 	return (0);
4376 }
4377 
4378 /*
4379  * Detach knote from vnode
4380  */
4381 static void
4382 filt_vfsdetach(struct knote *kn)
4383 {
4384 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4385 
4386 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4387 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4388 }
4389 
4390 /*ARGSUSED*/
4391 static int
4392 filt_vfsread(struct knote *kn, long hint)
4393 {
4394 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4395 	struct vattr va;
4396 	int res;
4397 
4398 	/*
4399 	 * filesystem is gone, so set the EOF flag and schedule
4400 	 * the knote for deletion.
4401 	 */
4402 	if (hint == NOTE_REVOKE) {
4403 		VI_LOCK(vp);
4404 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4405 		VI_UNLOCK(vp);
4406 		return (1);
4407 	}
4408 
4409 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4410 		return (0);
4411 
4412 	VI_LOCK(vp);
4413 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4414 	res = (kn->kn_data != 0);
4415 	VI_UNLOCK(vp);
4416 	return (res);
4417 }
4418 
4419 /*ARGSUSED*/
4420 static int
4421 filt_vfswrite(struct knote *kn, long hint)
4422 {
4423 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4424 
4425 	VI_LOCK(vp);
4426 
4427 	/*
4428 	 * filesystem is gone, so set the EOF flag and schedule
4429 	 * the knote for deletion.
4430 	 */
4431 	if (hint == NOTE_REVOKE)
4432 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4433 
4434 	kn->kn_data = 0;
4435 	VI_UNLOCK(vp);
4436 	return (1);
4437 }
4438 
4439 static int
4440 filt_vfsvnode(struct knote *kn, long hint)
4441 {
4442 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4443 	int res;
4444 
4445 	VI_LOCK(vp);
4446 	if (kn->kn_sfflags & hint)
4447 		kn->kn_fflags |= hint;
4448 	if (hint == NOTE_REVOKE) {
4449 		kn->kn_flags |= EV_EOF;
4450 		VI_UNLOCK(vp);
4451 		return (1);
4452 	}
4453 	res = (kn->kn_fflags != 0);
4454 	VI_UNLOCK(vp);
4455 	return (res);
4456 }
4457 
4458 int
4459 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4460 {
4461 	int error;
4462 
4463 	if (dp->d_reclen > ap->a_uio->uio_resid)
4464 		return (ENAMETOOLONG);
4465 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4466 	if (error) {
4467 		if (ap->a_ncookies != NULL) {
4468 			if (ap->a_cookies != NULL)
4469 				free(ap->a_cookies, M_TEMP);
4470 			ap->a_cookies = NULL;
4471 			*ap->a_ncookies = 0;
4472 		}
4473 		return (error);
4474 	}
4475 	if (ap->a_ncookies == NULL)
4476 		return (0);
4477 
4478 	KASSERT(ap->a_cookies,
4479 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4480 
4481 	*ap->a_cookies = realloc(*ap->a_cookies,
4482 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4483 	(*ap->a_cookies)[*ap->a_ncookies] = off;
4484 	return (0);
4485 }
4486 
4487 /*
4488  * Mark for update the access time of the file if the filesystem
4489  * supports VOP_MARKATIME.  This functionality is used by execve and
4490  * mmap, so we want to avoid the I/O implied by directly setting
4491  * va_atime for the sake of efficiency.
4492  */
4493 void
4494 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4495 {
4496 	struct mount *mp;
4497 
4498 	mp = vp->v_mount;
4499 	VFS_ASSERT_GIANT(mp);
4500 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4501 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4502 		(void)VOP_MARKATIME(vp);
4503 }
4504 
4505 /*
4506  * The purpose of this routine is to remove granularity from accmode_t,
4507  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4508  * VADMIN and VAPPEND.
4509  *
4510  * If it returns 0, the caller is supposed to continue with the usual
4511  * access checks using 'accmode' as modified by this routine.  If it
4512  * returns nonzero value, the caller is supposed to return that value
4513  * as errno.
4514  *
4515  * Note that after this routine runs, accmode may be zero.
4516  */
4517 int
4518 vfs_unixify_accmode(accmode_t *accmode)
4519 {
4520 	/*
4521 	 * There is no way to specify explicit "deny" rule using
4522 	 * file mode or POSIX.1e ACLs.
4523 	 */
4524 	if (*accmode & VEXPLICIT_DENY) {
4525 		*accmode = 0;
4526 		return (0);
4527 	}
4528 
4529 	/*
4530 	 * None of these can be translated into usual access bits.
4531 	 * Also, the common case for NFSv4 ACLs is to not contain
4532 	 * either of these bits. Caller should check for VWRITE
4533 	 * on the containing directory instead.
4534 	 */
4535 	if (*accmode & (VDELETE_CHILD | VDELETE))
4536 		return (EPERM);
4537 
4538 	if (*accmode & VADMIN_PERMS) {
4539 		*accmode &= ~VADMIN_PERMS;
4540 		*accmode |= VADMIN;
4541 	}
4542 
4543 	/*
4544 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4545 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4546 	 */
4547 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4548 
4549 	return (0);
4550 }
4551 
4552 /*
4553  * These are helper functions for filesystems to traverse all
4554  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
4555  *
4556  * This interface replaces MNT_VNODE_FOREACH.
4557  */
4558 
4559 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
4560 
4561 struct vnode *
4562 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
4563 {
4564 	struct vnode *vp;
4565 
4566 	if (should_yield())
4567 		kern_yield(PRI_UNCHANGED);
4568 	MNT_ILOCK(mp);
4569 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4570 	vp = TAILQ_NEXT(*mvp, v_nmntvnodes);
4571 	while (vp != NULL && (vp->v_type == VMARKER ||
4572 	    (vp->v_iflag & VI_DOOMED) != 0))
4573 		vp = TAILQ_NEXT(vp, v_nmntvnodes);
4574 
4575 	/* Check if we are done */
4576 	if (vp == NULL) {
4577 		__mnt_vnode_markerfree_all(mvp, mp);
4578 		/* MNT_IUNLOCK(mp); -- done in above function */
4579 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
4580 		return (NULL);
4581 	}
4582 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4583 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4584 	VI_LOCK(vp);
4585 	MNT_IUNLOCK(mp);
4586 	return (vp);
4587 }
4588 
4589 struct vnode *
4590 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
4591 {
4592 	struct vnode *vp;
4593 
4594 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
4595 	MNT_ILOCK(mp);
4596 	MNT_REF(mp);
4597 	(*mvp)->v_type = VMARKER;
4598 
4599 	vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
4600 	while (vp != NULL && (vp->v_type == VMARKER ||
4601 	    (vp->v_iflag & VI_DOOMED) != 0))
4602 		vp = TAILQ_NEXT(vp, v_nmntvnodes);
4603 
4604 	/* Check if we are done */
4605 	if (vp == NULL) {
4606 		MNT_REL(mp);
4607 		MNT_IUNLOCK(mp);
4608 		free(*mvp, M_VNODE_MARKER);
4609 		*mvp = NULL;
4610 		return (NULL);
4611 	}
4612 	(*mvp)->v_mount = mp;
4613 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
4614 	VI_LOCK(vp);
4615 	MNT_IUNLOCK(mp);
4616 	return (vp);
4617 }
4618 
4619 
4620 void
4621 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
4622 {
4623 
4624 	if (*mvp == NULL) {
4625 		MNT_IUNLOCK(mp);
4626 		return;
4627 	}
4628 
4629 	mtx_assert(MNT_MTX(mp), MA_OWNED);
4630 
4631 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4632 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
4633 	MNT_REL(mp);
4634 	MNT_IUNLOCK(mp);
4635 	free(*mvp, M_VNODE_MARKER);
4636 	*mvp = NULL;
4637 }
4638 
4639 /*
4640  * These are helper functions for filesystems to traverse their
4641  * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
4642  */
4643 struct vnode *
4644 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
4645 {
4646 	struct vnode *vp, *nvp;
4647 
4648 	if (should_yield())
4649 		kern_yield(PRI_UNCHANGED);
4650 	MNT_ILOCK(mp);
4651 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4652 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
4653 	while (vp != NULL) {
4654 		VI_LOCK(vp);
4655 		if (vp->v_mount == mp && vp->v_type != VMARKER &&
4656 		    (vp->v_iflag & VI_DOOMED) == 0)
4657 			break;
4658 		nvp = TAILQ_NEXT(vp, v_actfreelist);
4659 		VI_UNLOCK(vp);
4660 		vp = nvp;
4661 	}
4662 
4663 	/* Check if we are done */
4664 	if (vp == NULL) {
4665 		__mnt_vnode_markerfree_active(mvp, mp);
4666 		/* MNT_IUNLOCK(mp); -- done in above function */
4667 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
4668 		return (NULL);
4669 	}
4670 	mtx_lock(&vnode_free_list_mtx);
4671 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
4672 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
4673 	mtx_unlock(&vnode_free_list_mtx);
4674 	MNT_IUNLOCK(mp);
4675 	return (vp);
4676 }
4677 
4678 struct vnode *
4679 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
4680 {
4681 	struct vnode *vp, *nvp;
4682 
4683 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
4684 	MNT_ILOCK(mp);
4685 	MNT_REF(mp);
4686 	(*mvp)->v_type = VMARKER;
4687 
4688 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
4689 	while (vp != NULL) {
4690 		VI_LOCK(vp);
4691 		if (vp->v_mount == mp && vp->v_type != VMARKER &&
4692 		    (vp->v_iflag & VI_DOOMED) == 0)
4693 			break;
4694 		nvp = TAILQ_NEXT(vp, v_actfreelist);
4695 		VI_UNLOCK(vp);
4696 		vp = nvp;
4697 	}
4698 
4699 	/* Check if we are done */
4700 	if (vp == NULL) {
4701 		MNT_REL(mp);
4702 		MNT_IUNLOCK(mp);
4703 		free(*mvp, M_VNODE_MARKER);
4704 		*mvp = NULL;
4705 		return (NULL);
4706 	}
4707 	(*mvp)->v_mount = mp;
4708 	mtx_lock(&vnode_free_list_mtx);
4709 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
4710 	mtx_unlock(&vnode_free_list_mtx);
4711 	MNT_IUNLOCK(mp);
4712 	return (vp);
4713 }
4714 
4715 void
4716 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
4717 {
4718 
4719 	if (*mvp == NULL) {
4720 		MNT_IUNLOCK(mp);
4721 		return;
4722 	}
4723 
4724 	mtx_assert(MNT_MTX(mp), MA_OWNED);
4725 
4726 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
4727 	mtx_lock(&vnode_free_list_mtx);
4728 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
4729 	mtx_unlock(&vnode_free_list_mtx);
4730 	MNT_REL(mp);
4731 	MNT_IUNLOCK(mp);
4732 	free(*mvp, M_VNODE_MARKER);
4733 	*mvp = NULL;
4734 }
4735