xref: /freebsd/sys/kern/vfs_subr.c (revision 3b2324c3a800d7599f348c408f01908d0cef05a0)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/condvar.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/dirent.h>
57 #include <sys/event.h>
58 #include <sys/eventhandler.h>
59 #include <sys/extattr.h>
60 #include <sys/file.h>
61 #include <sys/fcntl.h>
62 #include <sys/jail.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smp.h>
78 #include <sys/stat.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/vmmeter.h>
82 #include <sys/vnode.h>
83 #include <sys/watchdog.h>
84 
85 #include <machine/stdarg.h>
86 
87 #include <security/mac/mac_framework.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_extern.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_kern.h>
96 #include <vm/uma.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 static void	delmntque(struct vnode *vp);
103 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
104 		    int slpflag, int slptimeo);
105 static void	syncer_shutdown(void *arg, int howto);
106 static int	vtryrecycle(struct vnode *vp);
107 static void	v_init_counters(struct vnode *);
108 static void	v_incr_usecount(struct vnode *);
109 static void	v_incr_usecount_locked(struct vnode *);
110 static void	v_incr_devcount(struct vnode *);
111 static void	v_decr_devcount(struct vnode *);
112 static void	vgonel(struct vnode *);
113 static void	vfs_knllock(void *arg);
114 static void	vfs_knlunlock(void *arg);
115 static void	vfs_knl_assert_locked(void *arg);
116 static void	vfs_knl_assert_unlocked(void *arg);
117 static void	vnlru_return_batches(struct vfsops *mnt_op);
118 static void	destroy_vpollinfo(struct vpollinfo *vi);
119 
120 /*
121  * These fences are intended for cases where some synchronization is
122  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
123  * and v_usecount) updates.  Access to v_iflags is generally synchronized
124  * by the interlock, but we have some internal assertions that check vnode
125  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
126  * for now.
127  */
128 #ifdef INVARIANTS
129 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
130 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
131 #else
132 #define	VNODE_REFCOUNT_FENCE_ACQ()
133 #define	VNODE_REFCOUNT_FENCE_REL()
134 #endif
135 
136 /*
137  * Number of vnodes in existence.  Increased whenever getnewvnode()
138  * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
139  */
140 static unsigned long	numvnodes;
141 
142 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
143     "Number of vnodes in existence");
144 
145 static counter_u64_t vnodes_created;
146 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
147     "Number of vnodes created by getnewvnode");
148 
149 static u_long mnt_free_list_batch = 128;
150 SYSCTL_ULONG(_vfs, OID_AUTO, mnt_free_list_batch, CTLFLAG_RW,
151     &mnt_free_list_batch, 0, "Limit of vnodes held on mnt's free list");
152 
153 /*
154  * Conversion tables for conversion from vnode types to inode formats
155  * and back.
156  */
157 enum vtype iftovt_tab[16] = {
158 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
159 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
160 };
161 int vttoif_tab[10] = {
162 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
163 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
164 };
165 
166 /*
167  * List of vnodes that are ready for recycling.
168  */
169 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
170 
171 /*
172  * "Free" vnode target.  Free vnodes are rarely completely free, but are
173  * just ones that are cheap to recycle.  Usually they are for files which
174  * have been stat'd but not read; these usually have inode and namecache
175  * data attached to them.  This target is the preferred minimum size of a
176  * sub-cache consisting mostly of such files. The system balances the size
177  * of this sub-cache with its complement to try to prevent either from
178  * thrashing while the other is relatively inactive.  The targets express
179  * a preference for the best balance.
180  *
181  * "Above" this target there are 2 further targets (watermarks) related
182  * to recyling of free vnodes.  In the best-operating case, the cache is
183  * exactly full, the free list has size between vlowat and vhiwat above the
184  * free target, and recycling from it and normal use maintains this state.
185  * Sometimes the free list is below vlowat or even empty, but this state
186  * is even better for immediate use provided the cache is not full.
187  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
188  * ones) to reach one of these states.  The watermarks are currently hard-
189  * coded as 4% and 9% of the available space higher.  These and the default
190  * of 25% for wantfreevnodes are too large if the memory size is large.
191  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
192  * whenever vnlru_proc() becomes active.
193  */
194 static u_long wantfreevnodes;
195 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
196     &wantfreevnodes, 0, "Target for minimum number of \"free\" vnodes");
197 static u_long freevnodes;
198 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
199     &freevnodes, 0, "Number of \"free\" vnodes");
200 
201 static counter_u64_t recycles_count;
202 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
203     "Number of vnodes recycled to meet vnode cache targets");
204 
205 /*
206  * Various variables used for debugging the new implementation of
207  * reassignbuf().
208  * XXX these are probably of (very) limited utility now.
209  */
210 static int reassignbufcalls;
211 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
212     "Number of calls to reassignbuf");
213 
214 static counter_u64_t free_owe_inact;
215 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact,
216     "Number of times free vnodes kept on active list due to VFS "
217     "owing inactivation");
218 
219 /* To keep more than one thread at a time from running vfs_getnewfsid */
220 static struct mtx mntid_mtx;
221 
222 /*
223  * Lock for any access to the following:
224  *	vnode_free_list
225  *	numvnodes
226  *	freevnodes
227  */
228 static struct mtx vnode_free_list_mtx;
229 
230 /* Publicly exported FS */
231 struct nfs_public nfs_pub;
232 
233 static uma_zone_t buf_trie_zone;
234 
235 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
236 static uma_zone_t vnode_zone;
237 static uma_zone_t vnodepoll_zone;
238 
239 /*
240  * The workitem queue.
241  *
242  * It is useful to delay writes of file data and filesystem metadata
243  * for tens of seconds so that quickly created and deleted files need
244  * not waste disk bandwidth being created and removed. To realize this,
245  * we append vnodes to a "workitem" queue. When running with a soft
246  * updates implementation, most pending metadata dependencies should
247  * not wait for more than a few seconds. Thus, mounted on block devices
248  * are delayed only about a half the time that file data is delayed.
249  * Similarly, directory updates are more critical, so are only delayed
250  * about a third the time that file data is delayed. Thus, there are
251  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
252  * one each second (driven off the filesystem syncer process). The
253  * syncer_delayno variable indicates the next queue that is to be processed.
254  * Items that need to be processed soon are placed in this queue:
255  *
256  *	syncer_workitem_pending[syncer_delayno]
257  *
258  * A delay of fifteen seconds is done by placing the request fifteen
259  * entries later in the queue:
260  *
261  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
262  *
263  */
264 static int syncer_delayno;
265 static long syncer_mask;
266 LIST_HEAD(synclist, bufobj);
267 static struct synclist *syncer_workitem_pending;
268 /*
269  * The sync_mtx protects:
270  *	bo->bo_synclist
271  *	sync_vnode_count
272  *	syncer_delayno
273  *	syncer_state
274  *	syncer_workitem_pending
275  *	syncer_worklist_len
276  *	rushjob
277  */
278 static struct mtx sync_mtx;
279 static struct cv sync_wakeup;
280 
281 #define SYNCER_MAXDELAY		32
282 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
283 static int syncdelay = 30;		/* max time to delay syncing data */
284 static int filedelay = 30;		/* time to delay syncing files */
285 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
286     "Time to delay syncing files (in seconds)");
287 static int dirdelay = 29;		/* time to delay syncing directories */
288 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
289     "Time to delay syncing directories (in seconds)");
290 static int metadelay = 28;		/* time to delay syncing metadata */
291 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
292     "Time to delay syncing metadata (in seconds)");
293 static int rushjob;		/* number of slots to run ASAP */
294 static int stat_rush_requests;	/* number of times I/O speeded up */
295 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
296     "Number of times I/O speeded up (rush requests)");
297 
298 /*
299  * When shutting down the syncer, run it at four times normal speed.
300  */
301 #define SYNCER_SHUTDOWN_SPEEDUP		4
302 static int sync_vnode_count;
303 static int syncer_worklist_len;
304 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
305     syncer_state;
306 
307 /* Target for maximum number of vnodes. */
308 int desiredvnodes;
309 static int gapvnodes;		/* gap between wanted and desired */
310 static int vhiwat;		/* enough extras after expansion */
311 static int vlowat;		/* minimal extras before expansion */
312 static int vstir;		/* nonzero to stir non-free vnodes */
313 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
314 
315 static int
316 sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS)
317 {
318 	int error, old_desiredvnodes;
319 
320 	old_desiredvnodes = desiredvnodes;
321 	if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0)
322 		return (error);
323 	if (old_desiredvnodes != desiredvnodes) {
324 		wantfreevnodes = desiredvnodes / 4;
325 		/* XXX locking seems to be incomplete. */
326 		vfs_hash_changesize(desiredvnodes);
327 		cache_changesize(desiredvnodes);
328 	}
329 	return (0);
330 }
331 
332 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
333     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0,
334     sysctl_update_desiredvnodes, "I", "Target for maximum number of vnodes");
335 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
336     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
337 static int vnlru_nowhere;
338 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
339     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
340 
341 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
342 static int vnsz2log;
343 
344 /*
345  * Support for the bufobj clean & dirty pctrie.
346  */
347 static void *
348 buf_trie_alloc(struct pctrie *ptree)
349 {
350 
351 	return uma_zalloc(buf_trie_zone, M_NOWAIT);
352 }
353 
354 static void
355 buf_trie_free(struct pctrie *ptree, void *node)
356 {
357 
358 	uma_zfree(buf_trie_zone, node);
359 }
360 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
361 
362 /*
363  * Initialize the vnode management data structures.
364  *
365  * Reevaluate the following cap on the number of vnodes after the physical
366  * memory size exceeds 512GB.  In the limit, as the physical memory size
367  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
368  */
369 #ifndef	MAXVNODES_MAX
370 #define	MAXVNODES_MAX	(512 * 1024 * 1024 / 64)	/* 8M */
371 #endif
372 
373 /*
374  * Initialize a vnode as it first enters the zone.
375  */
376 static int
377 vnode_init(void *mem, int size, int flags)
378 {
379 	struct vnode *vp;
380 
381 	vp = mem;
382 	bzero(vp, size);
383 	/*
384 	 * Setup locks.
385 	 */
386 	vp->v_vnlock = &vp->v_lock;
387 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
388 	/*
389 	 * By default, don't allow shared locks unless filesystems opt-in.
390 	 */
391 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
392 	    LK_NOSHARE | LK_IS_VNODE);
393 	/*
394 	 * Initialize bufobj.
395 	 */
396 	bufobj_init(&vp->v_bufobj, vp);
397 	/*
398 	 * Initialize namecache.
399 	 */
400 	LIST_INIT(&vp->v_cache_src);
401 	TAILQ_INIT(&vp->v_cache_dst);
402 	/*
403 	 * Initialize rangelocks.
404 	 */
405 	rangelock_init(&vp->v_rl);
406 	return (0);
407 }
408 
409 /*
410  * Free a vnode when it is cleared from the zone.
411  */
412 static void
413 vnode_fini(void *mem, int size)
414 {
415 	struct vnode *vp;
416 	struct bufobj *bo;
417 
418 	vp = mem;
419 	rangelock_destroy(&vp->v_rl);
420 	lockdestroy(vp->v_vnlock);
421 	mtx_destroy(&vp->v_interlock);
422 	bo = &vp->v_bufobj;
423 	rw_destroy(BO_LOCKPTR(bo));
424 }
425 
426 /*
427  * Provide the size of NFS nclnode and NFS fh for calculation of the
428  * vnode memory consumption.  The size is specified directly to
429  * eliminate dependency on NFS-private header.
430  *
431  * Other filesystems may use bigger or smaller (like UFS and ZFS)
432  * private inode data, but the NFS-based estimation is ample enough.
433  * Still, we care about differences in the size between 64- and 32-bit
434  * platforms.
435  *
436  * Namecache structure size is heuristically
437  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
438  */
439 #ifdef _LP64
440 #define	NFS_NCLNODE_SZ	(528 + 64)
441 #define	NC_SZ		148
442 #else
443 #define	NFS_NCLNODE_SZ	(360 + 32)
444 #define	NC_SZ		92
445 #endif
446 
447 static void
448 vntblinit(void *dummy __unused)
449 {
450 	u_int i;
451 	int physvnodes, virtvnodes;
452 
453 	/*
454 	 * Desiredvnodes is a function of the physical memory size and the
455 	 * kernel's heap size.  Generally speaking, it scales with the
456 	 * physical memory size.  The ratio of desiredvnodes to the physical
457 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
458 	 * Thereafter, the
459 	 * marginal ratio of desiredvnodes to the physical memory size is
460 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
461 	 * size.  The memory required by desiredvnodes vnodes and vm objects
462 	 * must not exceed 1/10th of the kernel's heap size.
463 	 */
464 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
465 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
466 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
467 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
468 	desiredvnodes = min(physvnodes, virtvnodes);
469 	if (desiredvnodes > MAXVNODES_MAX) {
470 		if (bootverbose)
471 			printf("Reducing kern.maxvnodes %d -> %d\n",
472 			    desiredvnodes, MAXVNODES_MAX);
473 		desiredvnodes = MAXVNODES_MAX;
474 	}
475 	wantfreevnodes = desiredvnodes / 4;
476 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
477 	TAILQ_INIT(&vnode_free_list);
478 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
479 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
480 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
481 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
482 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
483 	/*
484 	 * Preallocate enough nodes to support one-per buf so that
485 	 * we can not fail an insert.  reassignbuf() callers can not
486 	 * tolerate the insertion failure.
487 	 */
488 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
489 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
490 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
491 	uma_prealloc(buf_trie_zone, nbuf);
492 
493 	vnodes_created = counter_u64_alloc(M_WAITOK);
494 	recycles_count = counter_u64_alloc(M_WAITOK);
495 	free_owe_inact = counter_u64_alloc(M_WAITOK);
496 
497 	/*
498 	 * Initialize the filesystem syncer.
499 	 */
500 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
501 	    &syncer_mask);
502 	syncer_maxdelay = syncer_mask + 1;
503 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
504 	cv_init(&sync_wakeup, "syncer");
505 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
506 		vnsz2log++;
507 	vnsz2log--;
508 }
509 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
510 
511 
512 /*
513  * Mark a mount point as busy. Used to synchronize access and to delay
514  * unmounting. Eventually, mountlist_mtx is not released on failure.
515  *
516  * vfs_busy() is a custom lock, it can block the caller.
517  * vfs_busy() only sleeps if the unmount is active on the mount point.
518  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
519  * vnode belonging to mp.
520  *
521  * Lookup uses vfs_busy() to traverse mount points.
522  * root fs			var fs
523  * / vnode lock		A	/ vnode lock (/var)		D
524  * /var vnode lock	B	/log vnode lock(/var/log)	E
525  * vfs_busy lock	C	vfs_busy lock			F
526  *
527  * Within each file system, the lock order is C->A->B and F->D->E.
528  *
529  * When traversing across mounts, the system follows that lock order:
530  *
531  *        C->A->B
532  *              |
533  *              +->F->D->E
534  *
535  * The lookup() process for namei("/var") illustrates the process:
536  *  VOP_LOOKUP() obtains B while A is held
537  *  vfs_busy() obtains a shared lock on F while A and B are held
538  *  vput() releases lock on B
539  *  vput() releases lock on A
540  *  VFS_ROOT() obtains lock on D while shared lock on F is held
541  *  vfs_unbusy() releases shared lock on F
542  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
543  *    Attempt to lock A (instead of vp_crossmp) while D is held would
544  *    violate the global order, causing deadlocks.
545  *
546  * dounmount() locks B while F is drained.
547  */
548 int
549 vfs_busy(struct mount *mp, int flags)
550 {
551 
552 	MPASS((flags & ~MBF_MASK) == 0);
553 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
554 
555 	MNT_ILOCK(mp);
556 	MNT_REF(mp);
557 	/*
558 	 * If mount point is currently being unmounted, sleep until the
559 	 * mount point fate is decided.  If thread doing the unmounting fails,
560 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
561 	 * that this mount point has survived the unmount attempt and vfs_busy
562 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
563 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
564 	 * about to be really destroyed.  vfs_busy needs to release its
565 	 * reference on the mount point in this case and return with ENOENT,
566 	 * telling the caller that mount mount it tried to busy is no longer
567 	 * valid.
568 	 */
569 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
570 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
571 			MNT_REL(mp);
572 			MNT_IUNLOCK(mp);
573 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
574 			    __func__);
575 			return (ENOENT);
576 		}
577 		if (flags & MBF_MNTLSTLOCK)
578 			mtx_unlock(&mountlist_mtx);
579 		mp->mnt_kern_flag |= MNTK_MWAIT;
580 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
581 		if (flags & MBF_MNTLSTLOCK)
582 			mtx_lock(&mountlist_mtx);
583 		MNT_ILOCK(mp);
584 	}
585 	if (flags & MBF_MNTLSTLOCK)
586 		mtx_unlock(&mountlist_mtx);
587 	mp->mnt_lockref++;
588 	MNT_IUNLOCK(mp);
589 	return (0);
590 }
591 
592 /*
593  * Free a busy filesystem.
594  */
595 void
596 vfs_unbusy(struct mount *mp)
597 {
598 
599 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
600 	MNT_ILOCK(mp);
601 	MNT_REL(mp);
602 	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
603 	mp->mnt_lockref--;
604 	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
605 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
606 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
607 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
608 		wakeup(&mp->mnt_lockref);
609 	}
610 	MNT_IUNLOCK(mp);
611 }
612 
613 /*
614  * Lookup a mount point by filesystem identifier.
615  */
616 struct mount *
617 vfs_getvfs(fsid_t *fsid)
618 {
619 	struct mount *mp;
620 
621 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
622 	mtx_lock(&mountlist_mtx);
623 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
624 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
625 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
626 			vfs_ref(mp);
627 			mtx_unlock(&mountlist_mtx);
628 			return (mp);
629 		}
630 	}
631 	mtx_unlock(&mountlist_mtx);
632 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
633 	return ((struct mount *) 0);
634 }
635 
636 /*
637  * Lookup a mount point by filesystem identifier, busying it before
638  * returning.
639  *
640  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
641  * cache for popular filesystem identifiers.  The cache is lockess, using
642  * the fact that struct mount's are never freed.  In worst case we may
643  * get pointer to unmounted or even different filesystem, so we have to
644  * check what we got, and go slow way if so.
645  */
646 struct mount *
647 vfs_busyfs(fsid_t *fsid)
648 {
649 #define	FSID_CACHE_SIZE	256
650 	typedef struct mount * volatile vmp_t;
651 	static vmp_t cache[FSID_CACHE_SIZE];
652 	struct mount *mp;
653 	int error;
654 	uint32_t hash;
655 
656 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
657 	hash = fsid->val[0] ^ fsid->val[1];
658 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
659 	mp = cache[hash];
660 	if (mp == NULL ||
661 	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
662 	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
663 		goto slow;
664 	if (vfs_busy(mp, 0) != 0) {
665 		cache[hash] = NULL;
666 		goto slow;
667 	}
668 	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
669 	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
670 		return (mp);
671 	else
672 	    vfs_unbusy(mp);
673 
674 slow:
675 	mtx_lock(&mountlist_mtx);
676 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
677 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
678 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
679 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
680 			if (error) {
681 				cache[hash] = NULL;
682 				mtx_unlock(&mountlist_mtx);
683 				return (NULL);
684 			}
685 			cache[hash] = mp;
686 			return (mp);
687 		}
688 	}
689 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
690 	mtx_unlock(&mountlist_mtx);
691 	return ((struct mount *) 0);
692 }
693 
694 /*
695  * Check if a user can access privileged mount options.
696  */
697 int
698 vfs_suser(struct mount *mp, struct thread *td)
699 {
700 	int error;
701 
702 	if (jailed(td->td_ucred)) {
703 		/*
704 		 * If the jail of the calling thread lacks permission for
705 		 * this type of file system, deny immediately.
706 		 */
707 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
708 			return (EPERM);
709 
710 		/*
711 		 * If the file system was mounted outside the jail of the
712 		 * calling thread, deny immediately.
713 		 */
714 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
715 			return (EPERM);
716 	}
717 
718 	/*
719 	 * If file system supports delegated administration, we don't check
720 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
721 	 * by the file system itself.
722 	 * If this is not the user that did original mount, we check for
723 	 * the PRIV_VFS_MOUNT_OWNER privilege.
724 	 */
725 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
726 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
727 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
728 			return (error);
729 	}
730 	return (0);
731 }
732 
733 /*
734  * Get a new unique fsid.  Try to make its val[0] unique, since this value
735  * will be used to create fake device numbers for stat().  Also try (but
736  * not so hard) make its val[0] unique mod 2^16, since some emulators only
737  * support 16-bit device numbers.  We end up with unique val[0]'s for the
738  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
739  *
740  * Keep in mind that several mounts may be running in parallel.  Starting
741  * the search one past where the previous search terminated is both a
742  * micro-optimization and a defense against returning the same fsid to
743  * different mounts.
744  */
745 void
746 vfs_getnewfsid(struct mount *mp)
747 {
748 	static uint16_t mntid_base;
749 	struct mount *nmp;
750 	fsid_t tfsid;
751 	int mtype;
752 
753 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
754 	mtx_lock(&mntid_mtx);
755 	mtype = mp->mnt_vfc->vfc_typenum;
756 	tfsid.val[1] = mtype;
757 	mtype = (mtype & 0xFF) << 24;
758 	for (;;) {
759 		tfsid.val[0] = makedev(255,
760 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
761 		mntid_base++;
762 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
763 			break;
764 		vfs_rel(nmp);
765 	}
766 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
767 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
768 	mtx_unlock(&mntid_mtx);
769 }
770 
771 /*
772  * Knob to control the precision of file timestamps:
773  *
774  *   0 = seconds only; nanoseconds zeroed.
775  *   1 = seconds and nanoseconds, accurate within 1/HZ.
776  *   2 = seconds and nanoseconds, truncated to microseconds.
777  * >=3 = seconds and nanoseconds, maximum precision.
778  */
779 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
780 
781 static int timestamp_precision = TSP_USEC;
782 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
783     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
784     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
785     "3+: sec + ns (max. precision))");
786 
787 /*
788  * Get a current timestamp.
789  */
790 void
791 vfs_timestamp(struct timespec *tsp)
792 {
793 	struct timeval tv;
794 
795 	switch (timestamp_precision) {
796 	case TSP_SEC:
797 		tsp->tv_sec = time_second;
798 		tsp->tv_nsec = 0;
799 		break;
800 	case TSP_HZ:
801 		getnanotime(tsp);
802 		break;
803 	case TSP_USEC:
804 		microtime(&tv);
805 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
806 		break;
807 	case TSP_NSEC:
808 	default:
809 		nanotime(tsp);
810 		break;
811 	}
812 }
813 
814 /*
815  * Set vnode attributes to VNOVAL
816  */
817 void
818 vattr_null(struct vattr *vap)
819 {
820 
821 	vap->va_type = VNON;
822 	vap->va_size = VNOVAL;
823 	vap->va_bytes = VNOVAL;
824 	vap->va_mode = VNOVAL;
825 	vap->va_nlink = VNOVAL;
826 	vap->va_uid = VNOVAL;
827 	vap->va_gid = VNOVAL;
828 	vap->va_fsid = VNOVAL;
829 	vap->va_fileid = VNOVAL;
830 	vap->va_blocksize = VNOVAL;
831 	vap->va_rdev = VNOVAL;
832 	vap->va_atime.tv_sec = VNOVAL;
833 	vap->va_atime.tv_nsec = VNOVAL;
834 	vap->va_mtime.tv_sec = VNOVAL;
835 	vap->va_mtime.tv_nsec = VNOVAL;
836 	vap->va_ctime.tv_sec = VNOVAL;
837 	vap->va_ctime.tv_nsec = VNOVAL;
838 	vap->va_birthtime.tv_sec = VNOVAL;
839 	vap->va_birthtime.tv_nsec = VNOVAL;
840 	vap->va_flags = VNOVAL;
841 	vap->va_gen = VNOVAL;
842 	vap->va_vaflags = 0;
843 }
844 
845 /*
846  * This routine is called when we have too many vnodes.  It attempts
847  * to free <count> vnodes and will potentially free vnodes that still
848  * have VM backing store (VM backing store is typically the cause
849  * of a vnode blowout so we want to do this).  Therefore, this operation
850  * is not considered cheap.
851  *
852  * A number of conditions may prevent a vnode from being reclaimed.
853  * the buffer cache may have references on the vnode, a directory
854  * vnode may still have references due to the namei cache representing
855  * underlying files, or the vnode may be in active use.   It is not
856  * desirable to reuse such vnodes.  These conditions may cause the
857  * number of vnodes to reach some minimum value regardless of what
858  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
859  */
860 static int
861 vlrureclaim(struct mount *mp, int reclaim_nc_src, int trigger)
862 {
863 	struct vnode *vp;
864 	int count, done, target;
865 
866 	done = 0;
867 	vn_start_write(NULL, &mp, V_WAIT);
868 	MNT_ILOCK(mp);
869 	count = mp->mnt_nvnodelistsize;
870 	target = count * (int64_t)gapvnodes / imax(desiredvnodes, 1);
871 	target = target / 10 + 1;
872 	while (count != 0 && done < target) {
873 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
874 		while (vp != NULL && vp->v_type == VMARKER)
875 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
876 		if (vp == NULL)
877 			break;
878 		/*
879 		 * XXX LRU is completely broken for non-free vnodes.  First
880 		 * by calling here in mountpoint order, then by moving
881 		 * unselected vnodes to the end here, and most grossly by
882 		 * removing the vlruvp() function that was supposed to
883 		 * maintain the order.  (This function was born broken
884 		 * since syncer problems prevented it doing anything.)  The
885 		 * order is closer to LRC (C = Created).
886 		 *
887 		 * LRU reclaiming of vnodes seems to have last worked in
888 		 * FreeBSD-3 where LRU wasn't mentioned under any spelling.
889 		 * Then there was no hold count, and inactive vnodes were
890 		 * simply put on the free list in LRU order.  The separate
891 		 * lists also break LRU.  We prefer to reclaim from the
892 		 * free list for technical reasons.  This tends to thrash
893 		 * the free list to keep very unrecently used held vnodes.
894 		 * The problem is mitigated by keeping the free list large.
895 		 */
896 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
897 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
898 		--count;
899 		if (!VI_TRYLOCK(vp))
900 			goto next_iter;
901 		/*
902 		 * If it's been deconstructed already, it's still
903 		 * referenced, or it exceeds the trigger, skip it.
904 		 * Also skip free vnodes.  We are trying to make space
905 		 * to expand the free list, not reduce it.
906 		 */
907 		if (vp->v_usecount ||
908 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
909 		    ((vp->v_iflag & VI_FREE) != 0) ||
910 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
911 		    vp->v_object->resident_page_count > trigger)) {
912 			VI_UNLOCK(vp);
913 			goto next_iter;
914 		}
915 		MNT_IUNLOCK(mp);
916 		vholdl(vp);
917 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
918 			vdrop(vp);
919 			goto next_iter_mntunlocked;
920 		}
921 		VI_LOCK(vp);
922 		/*
923 		 * v_usecount may have been bumped after VOP_LOCK() dropped
924 		 * the vnode interlock and before it was locked again.
925 		 *
926 		 * It is not necessary to recheck VI_DOOMED because it can
927 		 * only be set by another thread that holds both the vnode
928 		 * lock and vnode interlock.  If another thread has the
929 		 * vnode lock before we get to VOP_LOCK() and obtains the
930 		 * vnode interlock after VOP_LOCK() drops the vnode
931 		 * interlock, the other thread will be unable to drop the
932 		 * vnode lock before our VOP_LOCK() call fails.
933 		 */
934 		if (vp->v_usecount ||
935 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
936 		    (vp->v_iflag & VI_FREE) != 0 ||
937 		    (vp->v_object != NULL &&
938 		    vp->v_object->resident_page_count > trigger)) {
939 			VOP_UNLOCK(vp, LK_INTERLOCK);
940 			vdrop(vp);
941 			goto next_iter_mntunlocked;
942 		}
943 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
944 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
945 		counter_u64_add(recycles_count, 1);
946 		vgonel(vp);
947 		VOP_UNLOCK(vp, 0);
948 		vdropl(vp);
949 		done++;
950 next_iter_mntunlocked:
951 		if (!should_yield())
952 			goto relock_mnt;
953 		goto yield;
954 next_iter:
955 		if (!should_yield())
956 			continue;
957 		MNT_IUNLOCK(mp);
958 yield:
959 		kern_yield(PRI_USER);
960 relock_mnt:
961 		MNT_ILOCK(mp);
962 	}
963 	MNT_IUNLOCK(mp);
964 	vn_finished_write(mp);
965 	return done;
966 }
967 
968 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
969 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
970     0,
971     "limit on vnode free requests per call to the vnlru_free routine");
972 
973 /*
974  * Attempt to reduce the free list by the requested amount.
975  */
976 static void
977 vnlru_free_locked(int count, struct vfsops *mnt_op)
978 {
979 	struct vnode *vp;
980 	struct mount *mp;
981 	bool tried_batches;
982 
983 	tried_batches = false;
984 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
985 	if (count > max_vnlru_free)
986 		count = max_vnlru_free;
987 	for (; count > 0; count--) {
988 		vp = TAILQ_FIRST(&vnode_free_list);
989 		/*
990 		 * The list can be modified while the free_list_mtx
991 		 * has been dropped and vp could be NULL here.
992 		 */
993 		if (vp == NULL) {
994 			if (tried_batches)
995 				break;
996 			mtx_unlock(&vnode_free_list_mtx);
997 			vnlru_return_batches(mnt_op);
998 			tried_batches = true;
999 			mtx_lock(&vnode_free_list_mtx);
1000 			continue;
1001 		}
1002 
1003 		VNASSERT(vp->v_op != NULL, vp,
1004 		    ("vnlru_free: vnode already reclaimed."));
1005 		KASSERT((vp->v_iflag & VI_FREE) != 0,
1006 		    ("Removing vnode not on freelist"));
1007 		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1008 		    ("Mangling active vnode"));
1009 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
1010 
1011 		/*
1012 		 * Don't recycle if our vnode is from different type
1013 		 * of mount point.  Note that mp is type-safe, the
1014 		 * check does not reach unmapped address even if
1015 		 * vnode is reclaimed.
1016 		 * Don't recycle if we can't get the interlock without
1017 		 * blocking.
1018 		 */
1019 		if ((mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1020 		    mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) {
1021 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
1022 			continue;
1023 		}
1024 		VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0,
1025 		    vp, ("vp inconsistent on freelist"));
1026 
1027 		/*
1028 		 * The clear of VI_FREE prevents activation of the
1029 		 * vnode.  There is no sense in putting the vnode on
1030 		 * the mount point active list, only to remove it
1031 		 * later during recycling.  Inline the relevant part
1032 		 * of vholdl(), to avoid triggering assertions or
1033 		 * activating.
1034 		 */
1035 		freevnodes--;
1036 		vp->v_iflag &= ~VI_FREE;
1037 		VNODE_REFCOUNT_FENCE_REL();
1038 		refcount_acquire(&vp->v_holdcnt);
1039 
1040 		mtx_unlock(&vnode_free_list_mtx);
1041 		VI_UNLOCK(vp);
1042 		vtryrecycle(vp);
1043 		/*
1044 		 * If the recycled succeeded this vdrop will actually free
1045 		 * the vnode.  If not it will simply place it back on
1046 		 * the free list.
1047 		 */
1048 		vdrop(vp);
1049 		mtx_lock(&vnode_free_list_mtx);
1050 	}
1051 }
1052 
1053 void
1054 vnlru_free(int count, struct vfsops *mnt_op)
1055 {
1056 
1057 	mtx_lock(&vnode_free_list_mtx);
1058 	vnlru_free_locked(count, mnt_op);
1059 	mtx_unlock(&vnode_free_list_mtx);
1060 }
1061 
1062 
1063 /* XXX some names and initialization are bad for limits and watermarks. */
1064 static int
1065 vspace(void)
1066 {
1067 	int space;
1068 
1069 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1070 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1071 	vlowat = vhiwat / 2;
1072 	if (numvnodes > desiredvnodes)
1073 		return (0);
1074 	space = desiredvnodes - numvnodes;
1075 	if (freevnodes > wantfreevnodes)
1076 		space += freevnodes - wantfreevnodes;
1077 	return (space);
1078 }
1079 
1080 static void
1081 vnlru_return_batch_locked(struct mount *mp)
1082 {
1083 	struct vnode *vp;
1084 
1085 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
1086 
1087 	if (mp->mnt_tmpfreevnodelistsize == 0)
1088 		return;
1089 
1090 	TAILQ_FOREACH(vp, &mp->mnt_tmpfreevnodelist, v_actfreelist) {
1091 		VNASSERT((vp->v_mflag & VMP_TMPMNTFREELIST) != 0, vp,
1092 		    ("vnode without VMP_TMPMNTFREELIST on mnt_tmpfreevnodelist"));
1093 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
1094 	}
1095 	mtx_lock(&vnode_free_list_mtx);
1096 	TAILQ_CONCAT(&vnode_free_list, &mp->mnt_tmpfreevnodelist, v_actfreelist);
1097 	freevnodes += mp->mnt_tmpfreevnodelistsize;
1098 	mtx_unlock(&vnode_free_list_mtx);
1099 	mp->mnt_tmpfreevnodelistsize = 0;
1100 }
1101 
1102 static void
1103 vnlru_return_batch(struct mount *mp)
1104 {
1105 
1106 	mtx_lock(&mp->mnt_listmtx);
1107 	vnlru_return_batch_locked(mp);
1108 	mtx_unlock(&mp->mnt_listmtx);
1109 }
1110 
1111 static void
1112 vnlru_return_batches(struct vfsops *mnt_op)
1113 {
1114 	struct mount *mp, *nmp;
1115 	bool need_unbusy;
1116 
1117 	mtx_lock(&mountlist_mtx);
1118 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1119 		need_unbusy = false;
1120 		if (mnt_op != NULL && mp->mnt_op != mnt_op)
1121 			goto next;
1122 		if (mp->mnt_tmpfreevnodelistsize == 0)
1123 			goto next;
1124 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) == 0) {
1125 			vnlru_return_batch(mp);
1126 			need_unbusy = true;
1127 			mtx_lock(&mountlist_mtx);
1128 		}
1129 next:
1130 		nmp = TAILQ_NEXT(mp, mnt_list);
1131 		if (need_unbusy)
1132 			vfs_unbusy(mp);
1133 	}
1134 	mtx_unlock(&mountlist_mtx);
1135 }
1136 
1137 /*
1138  * Attempt to recycle vnodes in a context that is always safe to block.
1139  * Calling vlrurecycle() from the bowels of filesystem code has some
1140  * interesting deadlock problems.
1141  */
1142 static struct proc *vnlruproc;
1143 static int vnlruproc_sig;
1144 
1145 static void
1146 vnlru_proc(void)
1147 {
1148 	struct mount *mp, *nmp;
1149 	unsigned long onumvnodes;
1150 	int done, force, reclaim_nc_src, trigger, usevnodes;
1151 
1152 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1153 	    SHUTDOWN_PRI_FIRST);
1154 
1155 	force = 0;
1156 	for (;;) {
1157 		kproc_suspend_check(vnlruproc);
1158 		mtx_lock(&vnode_free_list_mtx);
1159 		/*
1160 		 * If numvnodes is too large (due to desiredvnodes being
1161 		 * adjusted using its sysctl, or emergency growth), first
1162 		 * try to reduce it by discarding from the free list.
1163 		 */
1164 		if (numvnodes > desiredvnodes)
1165 			vnlru_free_locked(numvnodes - desiredvnodes, NULL);
1166 		/*
1167 		 * Sleep if the vnode cache is in a good state.  This is
1168 		 * when it is not over-full and has space for about a 4%
1169 		 * or 9% expansion (by growing its size or inexcessively
1170 		 * reducing its free list).  Otherwise, try to reclaim
1171 		 * space for a 10% expansion.
1172 		 */
1173 		if (vstir && force == 0) {
1174 			force = 1;
1175 			vstir = 0;
1176 		}
1177 		if (vspace() >= vlowat && force == 0) {
1178 			vnlruproc_sig = 0;
1179 			wakeup(&vnlruproc_sig);
1180 			msleep(vnlruproc, &vnode_free_list_mtx,
1181 			    PVFS|PDROP, "vlruwt", hz);
1182 			continue;
1183 		}
1184 		mtx_unlock(&vnode_free_list_mtx);
1185 		done = 0;
1186 		onumvnodes = numvnodes;
1187 		/*
1188 		 * Calculate parameters for recycling.  These are the same
1189 		 * throughout the loop to give some semblance of fairness.
1190 		 * The trigger point is to avoid recycling vnodes with lots
1191 		 * of resident pages.  We aren't trying to free memory; we
1192 		 * are trying to recycle or at least free vnodes.
1193 		 */
1194 		if (numvnodes <= desiredvnodes)
1195 			usevnodes = numvnodes - freevnodes;
1196 		else
1197 			usevnodes = numvnodes;
1198 		if (usevnodes <= 0)
1199 			usevnodes = 1;
1200 		/*
1201 		 * The trigger value is is chosen to give a conservatively
1202 		 * large value to ensure that it alone doesn't prevent
1203 		 * making progress.  The value can easily be so large that
1204 		 * it is effectively infinite in some congested and
1205 		 * misconfigured cases, and this is necessary.  Normally
1206 		 * it is about 8 to 100 (pages), which is quite large.
1207 		 */
1208 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1209 		if (force < 2)
1210 			trigger = vsmalltrigger;
1211 		reclaim_nc_src = force >= 3;
1212 		mtx_lock(&mountlist_mtx);
1213 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1214 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
1215 				nmp = TAILQ_NEXT(mp, mnt_list);
1216 				continue;
1217 			}
1218 			done += vlrureclaim(mp, reclaim_nc_src, trigger);
1219 			mtx_lock(&mountlist_mtx);
1220 			nmp = TAILQ_NEXT(mp, mnt_list);
1221 			vfs_unbusy(mp);
1222 		}
1223 		mtx_unlock(&mountlist_mtx);
1224 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1225 			uma_reclaim();
1226 		if (done == 0) {
1227 			if (force == 0 || force == 1) {
1228 				force = 2;
1229 				continue;
1230 			}
1231 			if (force == 2) {
1232 				force = 3;
1233 				continue;
1234 			}
1235 			force = 0;
1236 			vnlru_nowhere++;
1237 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1238 		} else
1239 			kern_yield(PRI_USER);
1240 		/*
1241 		 * After becoming active to expand above low water, keep
1242 		 * active until above high water.
1243 		 */
1244 		force = vspace() < vhiwat;
1245 	}
1246 }
1247 
1248 static struct kproc_desc vnlru_kp = {
1249 	"vnlru",
1250 	vnlru_proc,
1251 	&vnlruproc
1252 };
1253 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1254     &vnlru_kp);
1255 
1256 /*
1257  * Routines having to do with the management of the vnode table.
1258  */
1259 
1260 /*
1261  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1262  * before we actually vgone().  This function must be called with the vnode
1263  * held to prevent the vnode from being returned to the free list midway
1264  * through vgone().
1265  */
1266 static int
1267 vtryrecycle(struct vnode *vp)
1268 {
1269 	struct mount *vnmp;
1270 
1271 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1272 	VNASSERT(vp->v_holdcnt, vp,
1273 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1274 	/*
1275 	 * This vnode may found and locked via some other list, if so we
1276 	 * can't recycle it yet.
1277 	 */
1278 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1279 		CTR2(KTR_VFS,
1280 		    "%s: impossible to recycle, vp %p lock is already held",
1281 		    __func__, vp);
1282 		return (EWOULDBLOCK);
1283 	}
1284 	/*
1285 	 * Don't recycle if its filesystem is being suspended.
1286 	 */
1287 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1288 		VOP_UNLOCK(vp, 0);
1289 		CTR2(KTR_VFS,
1290 		    "%s: impossible to recycle, cannot start the write for %p",
1291 		    __func__, vp);
1292 		return (EBUSY);
1293 	}
1294 	/*
1295 	 * If we got this far, we need to acquire the interlock and see if
1296 	 * anyone picked up this vnode from another list.  If not, we will
1297 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1298 	 * will skip over it.
1299 	 */
1300 	VI_LOCK(vp);
1301 	if (vp->v_usecount) {
1302 		VOP_UNLOCK(vp, LK_INTERLOCK);
1303 		vn_finished_write(vnmp);
1304 		CTR2(KTR_VFS,
1305 		    "%s: impossible to recycle, %p is already referenced",
1306 		    __func__, vp);
1307 		return (EBUSY);
1308 	}
1309 	if ((vp->v_iflag & VI_DOOMED) == 0) {
1310 		counter_u64_add(recycles_count, 1);
1311 		vgonel(vp);
1312 	}
1313 	VOP_UNLOCK(vp, LK_INTERLOCK);
1314 	vn_finished_write(vnmp);
1315 	return (0);
1316 }
1317 
1318 static void
1319 vcheckspace(void)
1320 {
1321 
1322 	if (vspace() < vlowat && vnlruproc_sig == 0) {
1323 		vnlruproc_sig = 1;
1324 		wakeup(vnlruproc);
1325 	}
1326 }
1327 
1328 /*
1329  * Wait if necessary for space for a new vnode.
1330  */
1331 static int
1332 getnewvnode_wait(int suspended)
1333 {
1334 
1335 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1336 	if (numvnodes >= desiredvnodes) {
1337 		if (suspended) {
1338 			/*
1339 			 * The file system is being suspended.  We cannot
1340 			 * risk a deadlock here, so allow allocation of
1341 			 * another vnode even if this would give too many.
1342 			 */
1343 			return (0);
1344 		}
1345 		if (vnlruproc_sig == 0) {
1346 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
1347 			wakeup(vnlruproc);
1348 		}
1349 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
1350 		    "vlruwk", hz);
1351 	}
1352 	/* Post-adjust like the pre-adjust in getnewvnode(). */
1353 	if (numvnodes + 1 > desiredvnodes && freevnodes > 1)
1354 		vnlru_free_locked(1, NULL);
1355 	return (numvnodes >= desiredvnodes ? ENFILE : 0);
1356 }
1357 
1358 /*
1359  * This hack is fragile, and probably not needed any more now that the
1360  * watermark handling works.
1361  */
1362 void
1363 getnewvnode_reserve(u_int count)
1364 {
1365 	struct thread *td;
1366 
1367 	/* Pre-adjust like the pre-adjust in getnewvnode(), with any count. */
1368 	/* XXX no longer so quick, but this part is not racy. */
1369 	mtx_lock(&vnode_free_list_mtx);
1370 	if (numvnodes + count > desiredvnodes && freevnodes > wantfreevnodes)
1371 		vnlru_free_locked(ulmin(numvnodes + count - desiredvnodes,
1372 		    freevnodes - wantfreevnodes), NULL);
1373 	mtx_unlock(&vnode_free_list_mtx);
1374 
1375 	td = curthread;
1376 	/* First try to be quick and racy. */
1377 	if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) {
1378 		td->td_vp_reserv += count;
1379 		vcheckspace();	/* XXX no longer so quick, but more racy */
1380 		return;
1381 	} else
1382 		atomic_subtract_long(&numvnodes, count);
1383 
1384 	mtx_lock(&vnode_free_list_mtx);
1385 	while (count > 0) {
1386 		if (getnewvnode_wait(0) == 0) {
1387 			count--;
1388 			td->td_vp_reserv++;
1389 			atomic_add_long(&numvnodes, 1);
1390 		}
1391 	}
1392 	vcheckspace();
1393 	mtx_unlock(&vnode_free_list_mtx);
1394 }
1395 
1396 /*
1397  * This hack is fragile, especially if desiredvnodes or wantvnodes are
1398  * misconfgured or changed significantly.  Reducing desiredvnodes below
1399  * the reserved amount should cause bizarre behaviour like reducing it
1400  * below the number of active vnodes -- the system will try to reduce
1401  * numvnodes to match, but should fail, so the subtraction below should
1402  * not overflow.
1403  */
1404 void
1405 getnewvnode_drop_reserve(void)
1406 {
1407 	struct thread *td;
1408 
1409 	td = curthread;
1410 	atomic_subtract_long(&numvnodes, td->td_vp_reserv);
1411 	td->td_vp_reserv = 0;
1412 }
1413 
1414 /*
1415  * Return the next vnode from the free list.
1416  */
1417 int
1418 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1419     struct vnode **vpp)
1420 {
1421 	struct vnode *vp;
1422 	struct thread *td;
1423 	struct lock_object *lo;
1424 	static int cyclecount;
1425 	int error __unused;
1426 
1427 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1428 	vp = NULL;
1429 	td = curthread;
1430 	if (td->td_vp_reserv > 0) {
1431 		td->td_vp_reserv -= 1;
1432 		goto alloc;
1433 	}
1434 	mtx_lock(&vnode_free_list_mtx);
1435 	if (numvnodes < desiredvnodes)
1436 		cyclecount = 0;
1437 	else if (cyclecount++ >= freevnodes) {
1438 		cyclecount = 0;
1439 		vstir = 1;
1440 	}
1441 	/*
1442 	 * Grow the vnode cache if it will not be above its target max
1443 	 * after growing.  Otherwise, if the free list is nonempty, try
1444 	 * to reclaim 1 item from it before growing the cache (possibly
1445 	 * above its target max if the reclamation failed or is delayed).
1446 	 * Otherwise, wait for some space.  In all cases, schedule
1447 	 * vnlru_proc() if we are getting short of space.  The watermarks
1448 	 * should be chosen so that we never wait or even reclaim from
1449 	 * the free list to below its target minimum.
1450 	 */
1451 	if (numvnodes + 1 <= desiredvnodes)
1452 		;
1453 	else if (freevnodes > 0)
1454 		vnlru_free_locked(1, NULL);
1455 	else {
1456 		error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1457 		    MNTK_SUSPEND));
1458 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1459 		if (error != 0) {
1460 			mtx_unlock(&vnode_free_list_mtx);
1461 			return (error);
1462 		}
1463 #endif
1464 	}
1465 	vcheckspace();
1466 	atomic_add_long(&numvnodes, 1);
1467 	mtx_unlock(&vnode_free_list_mtx);
1468 alloc:
1469 	counter_u64_add(vnodes_created, 1);
1470 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK);
1471 	/*
1472 	 * Locks are given the generic name "vnode" when created.
1473 	 * Follow the historic practice of using the filesystem
1474 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1475 	 *
1476 	 * Locks live in a witness group keyed on their name. Thus,
1477 	 * when a lock is renamed, it must also move from the witness
1478 	 * group of its old name to the witness group of its new name.
1479 	 *
1480 	 * The change only needs to be made when the vnode moves
1481 	 * from one filesystem type to another. We ensure that each
1482 	 * filesystem use a single static name pointer for its tag so
1483 	 * that we can compare pointers rather than doing a strcmp().
1484 	 */
1485 	lo = &vp->v_vnlock->lock_object;
1486 	if (lo->lo_name != tag) {
1487 		lo->lo_name = tag;
1488 		WITNESS_DESTROY(lo);
1489 		WITNESS_INIT(lo, tag);
1490 	}
1491 	/*
1492 	 * By default, don't allow shared locks unless filesystems opt-in.
1493 	 */
1494 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1495 	/*
1496 	 * Finalize various vnode identity bits.
1497 	 */
1498 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1499 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1500 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1501 	vp->v_type = VNON;
1502 	vp->v_tag = tag;
1503 	vp->v_op = vops;
1504 	v_init_counters(vp);
1505 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1506 #ifdef DIAGNOSTIC
1507 	if (mp == NULL && vops != &dead_vnodeops)
1508 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1509 #endif
1510 #ifdef MAC
1511 	mac_vnode_init(vp);
1512 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1513 		mac_vnode_associate_singlelabel(mp, vp);
1514 #endif
1515 	if (mp != NULL) {
1516 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1517 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1518 			vp->v_vflag |= VV_NOKNOTE;
1519 	}
1520 
1521 	/*
1522 	 * For the filesystems which do not use vfs_hash_insert(),
1523 	 * still initialize v_hash to have vfs_hash_index() useful.
1524 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1525 	 * its own hashing.
1526 	 */
1527 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1528 
1529 	*vpp = vp;
1530 	return (0);
1531 }
1532 
1533 /*
1534  * Delete from old mount point vnode list, if on one.
1535  */
1536 static void
1537 delmntque(struct vnode *vp)
1538 {
1539 	struct mount *mp;
1540 	int active;
1541 
1542 	mp = vp->v_mount;
1543 	if (mp == NULL)
1544 		return;
1545 	MNT_ILOCK(mp);
1546 	VI_LOCK(vp);
1547 	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1548 	    ("Active vnode list size %d > Vnode list size %d",
1549 	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1550 	active = vp->v_iflag & VI_ACTIVE;
1551 	vp->v_iflag &= ~VI_ACTIVE;
1552 	if (active) {
1553 		mtx_lock(&mp->mnt_listmtx);
1554 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1555 		mp->mnt_activevnodelistsize--;
1556 		mtx_unlock(&mp->mnt_listmtx);
1557 	}
1558 	vp->v_mount = NULL;
1559 	VI_UNLOCK(vp);
1560 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1561 		("bad mount point vnode list size"));
1562 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1563 	mp->mnt_nvnodelistsize--;
1564 	MNT_REL(mp);
1565 	MNT_IUNLOCK(mp);
1566 }
1567 
1568 static void
1569 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1570 {
1571 
1572 	vp->v_data = NULL;
1573 	vp->v_op = &dead_vnodeops;
1574 	vgone(vp);
1575 	vput(vp);
1576 }
1577 
1578 /*
1579  * Insert into list of vnodes for the new mount point, if available.
1580  */
1581 int
1582 insmntque1(struct vnode *vp, struct mount *mp,
1583 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1584 {
1585 
1586 	KASSERT(vp->v_mount == NULL,
1587 		("insmntque: vnode already on per mount vnode list"));
1588 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1589 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1590 
1591 	/*
1592 	 * We acquire the vnode interlock early to ensure that the
1593 	 * vnode cannot be recycled by another process releasing a
1594 	 * holdcnt on it before we get it on both the vnode list
1595 	 * and the active vnode list. The mount mutex protects only
1596 	 * manipulation of the vnode list and the vnode freelist
1597 	 * mutex protects only manipulation of the active vnode list.
1598 	 * Hence the need to hold the vnode interlock throughout.
1599 	 */
1600 	MNT_ILOCK(mp);
1601 	VI_LOCK(vp);
1602 	if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1603 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1604 	    mp->mnt_nvnodelistsize == 0)) &&
1605 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1606 		VI_UNLOCK(vp);
1607 		MNT_IUNLOCK(mp);
1608 		if (dtr != NULL)
1609 			dtr(vp, dtr_arg);
1610 		return (EBUSY);
1611 	}
1612 	vp->v_mount = mp;
1613 	MNT_REF(mp);
1614 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1615 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1616 		("neg mount point vnode list size"));
1617 	mp->mnt_nvnodelistsize++;
1618 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1619 	    ("Activating already active vnode"));
1620 	vp->v_iflag |= VI_ACTIVE;
1621 	mtx_lock(&mp->mnt_listmtx);
1622 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1623 	mp->mnt_activevnodelistsize++;
1624 	mtx_unlock(&mp->mnt_listmtx);
1625 	VI_UNLOCK(vp);
1626 	MNT_IUNLOCK(mp);
1627 	return (0);
1628 }
1629 
1630 int
1631 insmntque(struct vnode *vp, struct mount *mp)
1632 {
1633 
1634 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1635 }
1636 
1637 /*
1638  * Flush out and invalidate all buffers associated with a bufobj
1639  * Called with the underlying object locked.
1640  */
1641 int
1642 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1643 {
1644 	int error;
1645 
1646 	BO_LOCK(bo);
1647 	if (flags & V_SAVE) {
1648 		error = bufobj_wwait(bo, slpflag, slptimeo);
1649 		if (error) {
1650 			BO_UNLOCK(bo);
1651 			return (error);
1652 		}
1653 		if (bo->bo_dirty.bv_cnt > 0) {
1654 			BO_UNLOCK(bo);
1655 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1656 				return (error);
1657 			/*
1658 			 * XXX We could save a lock/unlock if this was only
1659 			 * enabled under INVARIANTS
1660 			 */
1661 			BO_LOCK(bo);
1662 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1663 				panic("vinvalbuf: dirty bufs");
1664 		}
1665 	}
1666 	/*
1667 	 * If you alter this loop please notice that interlock is dropped and
1668 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1669 	 * no race conditions occur from this.
1670 	 */
1671 	do {
1672 		error = flushbuflist(&bo->bo_clean,
1673 		    flags, bo, slpflag, slptimeo);
1674 		if (error == 0 && !(flags & V_CLEANONLY))
1675 			error = flushbuflist(&bo->bo_dirty,
1676 			    flags, bo, slpflag, slptimeo);
1677 		if (error != 0 && error != EAGAIN) {
1678 			BO_UNLOCK(bo);
1679 			return (error);
1680 		}
1681 	} while (error != 0);
1682 
1683 	/*
1684 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1685 	 * have write I/O in-progress but if there is a VM object then the
1686 	 * VM object can also have read-I/O in-progress.
1687 	 */
1688 	do {
1689 		bufobj_wwait(bo, 0, 0);
1690 		if ((flags & V_VMIO) == 0) {
1691 			BO_UNLOCK(bo);
1692 			if (bo->bo_object != NULL) {
1693 				VM_OBJECT_WLOCK(bo->bo_object);
1694 				vm_object_pip_wait(bo->bo_object, "bovlbx");
1695 				VM_OBJECT_WUNLOCK(bo->bo_object);
1696 			}
1697 			BO_LOCK(bo);
1698 		}
1699 	} while (bo->bo_numoutput > 0);
1700 	BO_UNLOCK(bo);
1701 
1702 	/*
1703 	 * Destroy the copy in the VM cache, too.
1704 	 */
1705 	if (bo->bo_object != NULL &&
1706 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1707 		VM_OBJECT_WLOCK(bo->bo_object);
1708 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1709 		    OBJPR_CLEANONLY : 0);
1710 		VM_OBJECT_WUNLOCK(bo->bo_object);
1711 	}
1712 
1713 #ifdef INVARIANTS
1714 	BO_LOCK(bo);
1715 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
1716 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
1717 	    bo->bo_clean.bv_cnt > 0))
1718 		panic("vinvalbuf: flush failed");
1719 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
1720 	    bo->bo_dirty.bv_cnt > 0)
1721 		panic("vinvalbuf: flush dirty failed");
1722 	BO_UNLOCK(bo);
1723 #endif
1724 	return (0);
1725 }
1726 
1727 /*
1728  * Flush out and invalidate all buffers associated with a vnode.
1729  * Called with the underlying object locked.
1730  */
1731 int
1732 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1733 {
1734 
1735 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1736 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1737 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1738 		return (0);
1739 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1740 }
1741 
1742 /*
1743  * Flush out buffers on the specified list.
1744  *
1745  */
1746 static int
1747 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1748     int slptimeo)
1749 {
1750 	struct buf *bp, *nbp;
1751 	int retval, error;
1752 	daddr_t lblkno;
1753 	b_xflags_t xflags;
1754 
1755 	ASSERT_BO_WLOCKED(bo);
1756 
1757 	retval = 0;
1758 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1759 		/*
1760 		 * If we are flushing both V_NORMAL and V_ALT buffers then
1761 		 * do not skip any buffers. If we are flushing only V_NORMAL
1762 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
1763 		 * flushing only V_ALT buffers then skip buffers not marked
1764 		 * as BX_ALTDATA.
1765 		 */
1766 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
1767 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
1768 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
1769 			continue;
1770 		}
1771 		if (nbp != NULL) {
1772 			lblkno = nbp->b_lblkno;
1773 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
1774 		}
1775 		retval = EAGAIN;
1776 		error = BUF_TIMELOCK(bp,
1777 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
1778 		    "flushbuf", slpflag, slptimeo);
1779 		if (error) {
1780 			BO_LOCK(bo);
1781 			return (error != ENOLCK ? error : EAGAIN);
1782 		}
1783 		KASSERT(bp->b_bufobj == bo,
1784 		    ("bp %p wrong b_bufobj %p should be %p",
1785 		    bp, bp->b_bufobj, bo));
1786 		/*
1787 		 * XXX Since there are no node locks for NFS, I
1788 		 * believe there is a slight chance that a delayed
1789 		 * write will occur while sleeping just above, so
1790 		 * check for it.
1791 		 */
1792 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1793 		    (flags & V_SAVE)) {
1794 			bremfree(bp);
1795 			bp->b_flags |= B_ASYNC;
1796 			bwrite(bp);
1797 			BO_LOCK(bo);
1798 			return (EAGAIN);	/* XXX: why not loop ? */
1799 		}
1800 		bremfree(bp);
1801 		bp->b_flags |= (B_INVAL | B_RELBUF);
1802 		bp->b_flags &= ~B_ASYNC;
1803 		brelse(bp);
1804 		BO_LOCK(bo);
1805 		if (nbp == NULL)
1806 			break;
1807 		nbp = gbincore(bo, lblkno);
1808 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1809 		    != xflags)
1810 			break;			/* nbp invalid */
1811 	}
1812 	return (retval);
1813 }
1814 
1815 int
1816 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
1817 {
1818 	struct buf *bp;
1819 	int error;
1820 	daddr_t lblkno;
1821 
1822 	ASSERT_BO_LOCKED(bo);
1823 
1824 	for (lblkno = startn;;) {
1825 again:
1826 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
1827 		if (bp == NULL || bp->b_lblkno >= endn ||
1828 		    bp->b_lblkno < startn)
1829 			break;
1830 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
1831 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
1832 		if (error != 0) {
1833 			BO_RLOCK(bo);
1834 			if (error == ENOLCK)
1835 				goto again;
1836 			return (error);
1837 		}
1838 		KASSERT(bp->b_bufobj == bo,
1839 		    ("bp %p wrong b_bufobj %p should be %p",
1840 		    bp, bp->b_bufobj, bo));
1841 		lblkno = bp->b_lblkno + 1;
1842 		if ((bp->b_flags & B_MANAGED) == 0)
1843 			bremfree(bp);
1844 		bp->b_flags |= B_RELBUF;
1845 		/*
1846 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
1847 		 * pages backing each buffer in the range are unlikely to be
1848 		 * reused.  Dirty buffers will have the hint applied once
1849 		 * they've been written.
1850 		 */
1851 		if ((bp->b_flags & B_VMIO) != 0)
1852 			bp->b_flags |= B_NOREUSE;
1853 		brelse(bp);
1854 		BO_RLOCK(bo);
1855 	}
1856 	return (0);
1857 }
1858 
1859 /*
1860  * Truncate a file's buffer and pages to a specified length.  This
1861  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1862  * sync activity.
1863  */
1864 int
1865 vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize)
1866 {
1867 	struct buf *bp, *nbp;
1868 	int anyfreed;
1869 	daddr_t trunclbn;
1870 	struct bufobj *bo;
1871 
1872 	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1873 	    vp, cred, blksize, (uintmax_t)length);
1874 
1875 	/*
1876 	 * Round up to the *next* lbn.
1877 	 */
1878 	trunclbn = howmany(length, blksize);
1879 
1880 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1881 restart:
1882 	bo = &vp->v_bufobj;
1883 	BO_LOCK(bo);
1884 	anyfreed = 1;
1885 	for (;anyfreed;) {
1886 		anyfreed = 0;
1887 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1888 			if (bp->b_lblkno < trunclbn)
1889 				continue;
1890 			if (BUF_LOCK(bp,
1891 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1892 			    BO_LOCKPTR(bo)) == ENOLCK)
1893 				goto restart;
1894 
1895 			bremfree(bp);
1896 			bp->b_flags |= (B_INVAL | B_RELBUF);
1897 			bp->b_flags &= ~B_ASYNC;
1898 			brelse(bp);
1899 			anyfreed = 1;
1900 
1901 			BO_LOCK(bo);
1902 			if (nbp != NULL &&
1903 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1904 			    (nbp->b_vp != vp) ||
1905 			    (nbp->b_flags & B_DELWRI))) {
1906 				BO_UNLOCK(bo);
1907 				goto restart;
1908 			}
1909 		}
1910 
1911 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1912 			if (bp->b_lblkno < trunclbn)
1913 				continue;
1914 			if (BUF_LOCK(bp,
1915 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1916 			    BO_LOCKPTR(bo)) == ENOLCK)
1917 				goto restart;
1918 			bremfree(bp);
1919 			bp->b_flags |= (B_INVAL | B_RELBUF);
1920 			bp->b_flags &= ~B_ASYNC;
1921 			brelse(bp);
1922 			anyfreed = 1;
1923 
1924 			BO_LOCK(bo);
1925 			if (nbp != NULL &&
1926 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1927 			    (nbp->b_vp != vp) ||
1928 			    (nbp->b_flags & B_DELWRI) == 0)) {
1929 				BO_UNLOCK(bo);
1930 				goto restart;
1931 			}
1932 		}
1933 	}
1934 
1935 	if (length > 0) {
1936 restartsync:
1937 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1938 			if (bp->b_lblkno > 0)
1939 				continue;
1940 			/*
1941 			 * Since we hold the vnode lock this should only
1942 			 * fail if we're racing with the buf daemon.
1943 			 */
1944 			if (BUF_LOCK(bp,
1945 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1946 			    BO_LOCKPTR(bo)) == ENOLCK) {
1947 				goto restart;
1948 			}
1949 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1950 			    ("buf(%p) on dirty queue without DELWRI", bp));
1951 
1952 			bremfree(bp);
1953 			bawrite(bp);
1954 			BO_LOCK(bo);
1955 			goto restartsync;
1956 		}
1957 	}
1958 
1959 	bufobj_wwait(bo, 0, 0);
1960 	BO_UNLOCK(bo);
1961 	vnode_pager_setsize(vp, length);
1962 
1963 	return (0);
1964 }
1965 
1966 static void
1967 buf_vlist_remove(struct buf *bp)
1968 {
1969 	struct bufv *bv;
1970 
1971 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1972 	ASSERT_BO_WLOCKED(bp->b_bufobj);
1973 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1974 	    (BX_VNDIRTY|BX_VNCLEAN),
1975 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1976 	if (bp->b_xflags & BX_VNDIRTY)
1977 		bv = &bp->b_bufobj->bo_dirty;
1978 	else
1979 		bv = &bp->b_bufobj->bo_clean;
1980 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
1981 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1982 	bv->bv_cnt--;
1983 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1984 }
1985 
1986 /*
1987  * Add the buffer to the sorted clean or dirty block list.
1988  *
1989  * NOTE: xflags is passed as a constant, optimizing this inline function!
1990  */
1991 static void
1992 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1993 {
1994 	struct bufv *bv;
1995 	struct buf *n;
1996 	int error;
1997 
1998 	ASSERT_BO_WLOCKED(bo);
1999 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2000 	    ("dead bo %p", bo));
2001 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2002 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2003 	bp->b_xflags |= xflags;
2004 	if (xflags & BX_VNDIRTY)
2005 		bv = &bo->bo_dirty;
2006 	else
2007 		bv = &bo->bo_clean;
2008 
2009 	/*
2010 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2011 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2012 	 * than _ge.
2013 	 */
2014 	if (bv->bv_cnt == 0 ||
2015 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2016 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2017 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2018 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2019 	else
2020 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2021 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2022 	if (error)
2023 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2024 	bv->bv_cnt++;
2025 }
2026 
2027 /*
2028  * Look up a buffer using the buffer tries.
2029  */
2030 struct buf *
2031 gbincore(struct bufobj *bo, daddr_t lblkno)
2032 {
2033 	struct buf *bp;
2034 
2035 	ASSERT_BO_LOCKED(bo);
2036 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2037 	if (bp != NULL)
2038 		return (bp);
2039 	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
2040 }
2041 
2042 /*
2043  * Associate a buffer with a vnode.
2044  */
2045 void
2046 bgetvp(struct vnode *vp, struct buf *bp)
2047 {
2048 	struct bufobj *bo;
2049 
2050 	bo = &vp->v_bufobj;
2051 	ASSERT_BO_WLOCKED(bo);
2052 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2053 
2054 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2055 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2056 	    ("bgetvp: bp already attached! %p", bp));
2057 
2058 	vhold(vp);
2059 	bp->b_vp = vp;
2060 	bp->b_bufobj = bo;
2061 	/*
2062 	 * Insert onto list for new vnode.
2063 	 */
2064 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2065 }
2066 
2067 /*
2068  * Disassociate a buffer from a vnode.
2069  */
2070 void
2071 brelvp(struct buf *bp)
2072 {
2073 	struct bufobj *bo;
2074 	struct vnode *vp;
2075 
2076 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2077 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2078 
2079 	/*
2080 	 * Delete from old vnode list, if on one.
2081 	 */
2082 	vp = bp->b_vp;		/* XXX */
2083 	bo = bp->b_bufobj;
2084 	BO_LOCK(bo);
2085 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2086 		buf_vlist_remove(bp);
2087 	else
2088 		panic("brelvp: Buffer %p not on queue.", bp);
2089 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2090 		bo->bo_flag &= ~BO_ONWORKLST;
2091 		mtx_lock(&sync_mtx);
2092 		LIST_REMOVE(bo, bo_synclist);
2093 		syncer_worklist_len--;
2094 		mtx_unlock(&sync_mtx);
2095 	}
2096 	bp->b_vp = NULL;
2097 	bp->b_bufobj = NULL;
2098 	BO_UNLOCK(bo);
2099 	vdrop(vp);
2100 }
2101 
2102 /*
2103  * Add an item to the syncer work queue.
2104  */
2105 static void
2106 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2107 {
2108 	int slot;
2109 
2110 	ASSERT_BO_WLOCKED(bo);
2111 
2112 	mtx_lock(&sync_mtx);
2113 	if (bo->bo_flag & BO_ONWORKLST)
2114 		LIST_REMOVE(bo, bo_synclist);
2115 	else {
2116 		bo->bo_flag |= BO_ONWORKLST;
2117 		syncer_worklist_len++;
2118 	}
2119 
2120 	if (delay > syncer_maxdelay - 2)
2121 		delay = syncer_maxdelay - 2;
2122 	slot = (syncer_delayno + delay) & syncer_mask;
2123 
2124 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2125 	mtx_unlock(&sync_mtx);
2126 }
2127 
2128 static int
2129 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2130 {
2131 	int error, len;
2132 
2133 	mtx_lock(&sync_mtx);
2134 	len = syncer_worklist_len - sync_vnode_count;
2135 	mtx_unlock(&sync_mtx);
2136 	error = SYSCTL_OUT(req, &len, sizeof(len));
2137 	return (error);
2138 }
2139 
2140 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
2141     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2142 
2143 static struct proc *updateproc;
2144 static void sched_sync(void);
2145 static struct kproc_desc up_kp = {
2146 	"syncer",
2147 	sched_sync,
2148 	&updateproc
2149 };
2150 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2151 
2152 static int
2153 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2154 {
2155 	struct vnode *vp;
2156 	struct mount *mp;
2157 
2158 	*bo = LIST_FIRST(slp);
2159 	if (*bo == NULL)
2160 		return (0);
2161 	vp = bo2vnode(*bo);
2162 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2163 		return (1);
2164 	/*
2165 	 * We use vhold in case the vnode does not
2166 	 * successfully sync.  vhold prevents the vnode from
2167 	 * going away when we unlock the sync_mtx so that
2168 	 * we can acquire the vnode interlock.
2169 	 */
2170 	vholdl(vp);
2171 	mtx_unlock(&sync_mtx);
2172 	VI_UNLOCK(vp);
2173 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2174 		vdrop(vp);
2175 		mtx_lock(&sync_mtx);
2176 		return (*bo == LIST_FIRST(slp));
2177 	}
2178 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2179 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2180 	VOP_UNLOCK(vp, 0);
2181 	vn_finished_write(mp);
2182 	BO_LOCK(*bo);
2183 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2184 		/*
2185 		 * Put us back on the worklist.  The worklist
2186 		 * routine will remove us from our current
2187 		 * position and then add us back in at a later
2188 		 * position.
2189 		 */
2190 		vn_syncer_add_to_worklist(*bo, syncdelay);
2191 	}
2192 	BO_UNLOCK(*bo);
2193 	vdrop(vp);
2194 	mtx_lock(&sync_mtx);
2195 	return (0);
2196 }
2197 
2198 static int first_printf = 1;
2199 
2200 /*
2201  * System filesystem synchronizer daemon.
2202  */
2203 static void
2204 sched_sync(void)
2205 {
2206 	struct synclist *next, *slp;
2207 	struct bufobj *bo;
2208 	long starttime;
2209 	struct thread *td = curthread;
2210 	int last_work_seen;
2211 	int net_worklist_len;
2212 	int syncer_final_iter;
2213 	int error;
2214 
2215 	last_work_seen = 0;
2216 	syncer_final_iter = 0;
2217 	syncer_state = SYNCER_RUNNING;
2218 	starttime = time_uptime;
2219 	td->td_pflags |= TDP_NORUNNINGBUF;
2220 
2221 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2222 	    SHUTDOWN_PRI_LAST);
2223 
2224 	mtx_lock(&sync_mtx);
2225 	for (;;) {
2226 		if (syncer_state == SYNCER_FINAL_DELAY &&
2227 		    syncer_final_iter == 0) {
2228 			mtx_unlock(&sync_mtx);
2229 			kproc_suspend_check(td->td_proc);
2230 			mtx_lock(&sync_mtx);
2231 		}
2232 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2233 		if (syncer_state != SYNCER_RUNNING &&
2234 		    starttime != time_uptime) {
2235 			if (first_printf) {
2236 				printf("\nSyncing disks, vnodes remaining... ");
2237 				first_printf = 0;
2238 			}
2239 			printf("%d ", net_worklist_len);
2240 		}
2241 		starttime = time_uptime;
2242 
2243 		/*
2244 		 * Push files whose dirty time has expired.  Be careful
2245 		 * of interrupt race on slp queue.
2246 		 *
2247 		 * Skip over empty worklist slots when shutting down.
2248 		 */
2249 		do {
2250 			slp = &syncer_workitem_pending[syncer_delayno];
2251 			syncer_delayno += 1;
2252 			if (syncer_delayno == syncer_maxdelay)
2253 				syncer_delayno = 0;
2254 			next = &syncer_workitem_pending[syncer_delayno];
2255 			/*
2256 			 * If the worklist has wrapped since the
2257 			 * it was emptied of all but syncer vnodes,
2258 			 * switch to the FINAL_DELAY state and run
2259 			 * for one more second.
2260 			 */
2261 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2262 			    net_worklist_len == 0 &&
2263 			    last_work_seen == syncer_delayno) {
2264 				syncer_state = SYNCER_FINAL_DELAY;
2265 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2266 			}
2267 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2268 		    syncer_worklist_len > 0);
2269 
2270 		/*
2271 		 * Keep track of the last time there was anything
2272 		 * on the worklist other than syncer vnodes.
2273 		 * Return to the SHUTTING_DOWN state if any
2274 		 * new work appears.
2275 		 */
2276 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2277 			last_work_seen = syncer_delayno;
2278 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2279 			syncer_state = SYNCER_SHUTTING_DOWN;
2280 		while (!LIST_EMPTY(slp)) {
2281 			error = sync_vnode(slp, &bo, td);
2282 			if (error == 1) {
2283 				LIST_REMOVE(bo, bo_synclist);
2284 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2285 				continue;
2286 			}
2287 
2288 			if (first_printf == 0) {
2289 				/*
2290 				 * Drop the sync mutex, because some watchdog
2291 				 * drivers need to sleep while patting
2292 				 */
2293 				mtx_unlock(&sync_mtx);
2294 				wdog_kern_pat(WD_LASTVAL);
2295 				mtx_lock(&sync_mtx);
2296 			}
2297 
2298 		}
2299 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2300 			syncer_final_iter--;
2301 		/*
2302 		 * The variable rushjob allows the kernel to speed up the
2303 		 * processing of the filesystem syncer process. A rushjob
2304 		 * value of N tells the filesystem syncer to process the next
2305 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2306 		 * is used by the soft update code to speed up the filesystem
2307 		 * syncer process when the incore state is getting so far
2308 		 * ahead of the disk that the kernel memory pool is being
2309 		 * threatened with exhaustion.
2310 		 */
2311 		if (rushjob > 0) {
2312 			rushjob -= 1;
2313 			continue;
2314 		}
2315 		/*
2316 		 * Just sleep for a short period of time between
2317 		 * iterations when shutting down to allow some I/O
2318 		 * to happen.
2319 		 *
2320 		 * If it has taken us less than a second to process the
2321 		 * current work, then wait. Otherwise start right over
2322 		 * again. We can still lose time if any single round
2323 		 * takes more than two seconds, but it does not really
2324 		 * matter as we are just trying to generally pace the
2325 		 * filesystem activity.
2326 		 */
2327 		if (syncer_state != SYNCER_RUNNING ||
2328 		    time_uptime == starttime) {
2329 			thread_lock(td);
2330 			sched_prio(td, PPAUSE);
2331 			thread_unlock(td);
2332 		}
2333 		if (syncer_state != SYNCER_RUNNING)
2334 			cv_timedwait(&sync_wakeup, &sync_mtx,
2335 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2336 		else if (time_uptime == starttime)
2337 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2338 	}
2339 }
2340 
2341 /*
2342  * Request the syncer daemon to speed up its work.
2343  * We never push it to speed up more than half of its
2344  * normal turn time, otherwise it could take over the cpu.
2345  */
2346 int
2347 speedup_syncer(void)
2348 {
2349 	int ret = 0;
2350 
2351 	mtx_lock(&sync_mtx);
2352 	if (rushjob < syncdelay / 2) {
2353 		rushjob += 1;
2354 		stat_rush_requests += 1;
2355 		ret = 1;
2356 	}
2357 	mtx_unlock(&sync_mtx);
2358 	cv_broadcast(&sync_wakeup);
2359 	return (ret);
2360 }
2361 
2362 /*
2363  * Tell the syncer to speed up its work and run though its work
2364  * list several times, then tell it to shut down.
2365  */
2366 static void
2367 syncer_shutdown(void *arg, int howto)
2368 {
2369 
2370 	if (howto & RB_NOSYNC)
2371 		return;
2372 	mtx_lock(&sync_mtx);
2373 	syncer_state = SYNCER_SHUTTING_DOWN;
2374 	rushjob = 0;
2375 	mtx_unlock(&sync_mtx);
2376 	cv_broadcast(&sync_wakeup);
2377 	kproc_shutdown(arg, howto);
2378 }
2379 
2380 void
2381 syncer_suspend(void)
2382 {
2383 
2384 	syncer_shutdown(updateproc, 0);
2385 }
2386 
2387 void
2388 syncer_resume(void)
2389 {
2390 
2391 	mtx_lock(&sync_mtx);
2392 	first_printf = 1;
2393 	syncer_state = SYNCER_RUNNING;
2394 	mtx_unlock(&sync_mtx);
2395 	cv_broadcast(&sync_wakeup);
2396 	kproc_resume(updateproc);
2397 }
2398 
2399 /*
2400  * Reassign a buffer from one vnode to another.
2401  * Used to assign file specific control information
2402  * (indirect blocks) to the vnode to which they belong.
2403  */
2404 void
2405 reassignbuf(struct buf *bp)
2406 {
2407 	struct vnode *vp;
2408 	struct bufobj *bo;
2409 	int delay;
2410 #ifdef INVARIANTS
2411 	struct bufv *bv;
2412 #endif
2413 
2414 	vp = bp->b_vp;
2415 	bo = bp->b_bufobj;
2416 	++reassignbufcalls;
2417 
2418 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2419 	    bp, bp->b_vp, bp->b_flags);
2420 	/*
2421 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2422 	 * is not fully linked in.
2423 	 */
2424 	if (bp->b_flags & B_PAGING)
2425 		panic("cannot reassign paging buffer");
2426 
2427 	/*
2428 	 * Delete from old vnode list, if on one.
2429 	 */
2430 	BO_LOCK(bo);
2431 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2432 		buf_vlist_remove(bp);
2433 	else
2434 		panic("reassignbuf: Buffer %p not on queue.", bp);
2435 	/*
2436 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2437 	 * of clean buffers.
2438 	 */
2439 	if (bp->b_flags & B_DELWRI) {
2440 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2441 			switch (vp->v_type) {
2442 			case VDIR:
2443 				delay = dirdelay;
2444 				break;
2445 			case VCHR:
2446 				delay = metadelay;
2447 				break;
2448 			default:
2449 				delay = filedelay;
2450 			}
2451 			vn_syncer_add_to_worklist(bo, delay);
2452 		}
2453 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2454 	} else {
2455 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2456 
2457 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2458 			mtx_lock(&sync_mtx);
2459 			LIST_REMOVE(bo, bo_synclist);
2460 			syncer_worklist_len--;
2461 			mtx_unlock(&sync_mtx);
2462 			bo->bo_flag &= ~BO_ONWORKLST;
2463 		}
2464 	}
2465 #ifdef INVARIANTS
2466 	bv = &bo->bo_clean;
2467 	bp = TAILQ_FIRST(&bv->bv_hd);
2468 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2469 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2470 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2471 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2472 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2473 	bv = &bo->bo_dirty;
2474 	bp = TAILQ_FIRST(&bv->bv_hd);
2475 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2476 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2477 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2478 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2479 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2480 #endif
2481 	BO_UNLOCK(bo);
2482 }
2483 
2484 static void
2485 v_init_counters(struct vnode *vp)
2486 {
2487 
2488 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2489 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2490 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2491 
2492 	refcount_init(&vp->v_holdcnt, 1);
2493 	refcount_init(&vp->v_usecount, 1);
2494 }
2495 
2496 static void
2497 v_incr_usecount_locked(struct vnode *vp)
2498 {
2499 
2500 	ASSERT_VI_LOCKED(vp, __func__);
2501 	if ((vp->v_iflag & VI_OWEINACT) != 0) {
2502 		VNASSERT(vp->v_usecount == 0, vp,
2503 		    ("vnode with usecount and VI_OWEINACT set"));
2504 		vp->v_iflag &= ~VI_OWEINACT;
2505 	}
2506 	refcount_acquire(&vp->v_usecount);
2507 	v_incr_devcount(vp);
2508 }
2509 
2510 /*
2511  * Increment the use count on the vnode, taking care to reference
2512  * the driver's usecount if this is a chardev.
2513  */
2514 static void
2515 v_incr_usecount(struct vnode *vp)
2516 {
2517 
2518 	ASSERT_VI_UNLOCKED(vp, __func__);
2519 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2520 
2521 	if (vp->v_type != VCHR &&
2522 	    refcount_acquire_if_not_zero(&vp->v_usecount)) {
2523 		VNODE_REFCOUNT_FENCE_ACQ();
2524 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2525 		    ("vnode with usecount and VI_OWEINACT set"));
2526 	} else {
2527 		VI_LOCK(vp);
2528 		v_incr_usecount_locked(vp);
2529 		VI_UNLOCK(vp);
2530 	}
2531 }
2532 
2533 /*
2534  * Increment si_usecount of the associated device, if any.
2535  */
2536 static void
2537 v_incr_devcount(struct vnode *vp)
2538 {
2539 
2540 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2541 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2542 		dev_lock();
2543 		vp->v_rdev->si_usecount++;
2544 		dev_unlock();
2545 	}
2546 }
2547 
2548 /*
2549  * Decrement si_usecount of the associated device, if any.
2550  */
2551 static void
2552 v_decr_devcount(struct vnode *vp)
2553 {
2554 
2555 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2556 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2557 		dev_lock();
2558 		vp->v_rdev->si_usecount--;
2559 		dev_unlock();
2560 	}
2561 }
2562 
2563 /*
2564  * Grab a particular vnode from the free list, increment its
2565  * reference count and lock it.  VI_DOOMED is set if the vnode
2566  * is being destroyed.  Only callers who specify LK_RETRY will
2567  * see doomed vnodes.  If inactive processing was delayed in
2568  * vput try to do it here.
2569  *
2570  * Notes on lockless counter manipulation:
2571  * _vhold, vputx and other routines make various decisions based
2572  * on either holdcnt or usecount being 0. As long as either counter
2573  * is not transitioning 0->1 nor 1->0, the manipulation can be done
2574  * with atomic operations. Otherwise the interlock is taken covering
2575  * both the atomic and additional actions.
2576  */
2577 int
2578 vget(struct vnode *vp, int flags, struct thread *td)
2579 {
2580 	int error, oweinact;
2581 
2582 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2583 	    ("vget: invalid lock operation"));
2584 
2585 	if ((flags & LK_INTERLOCK) != 0)
2586 		ASSERT_VI_LOCKED(vp, __func__);
2587 	else
2588 		ASSERT_VI_UNLOCKED(vp, __func__);
2589 	if ((flags & LK_VNHELD) != 0)
2590 		VNASSERT((vp->v_holdcnt > 0), vp,
2591 		    ("vget: LK_VNHELD passed but vnode not held"));
2592 
2593 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2594 
2595 	if ((flags & LK_VNHELD) == 0)
2596 		_vhold(vp, (flags & LK_INTERLOCK) != 0);
2597 
2598 	if ((error = vn_lock(vp, flags)) != 0) {
2599 		vdrop(vp);
2600 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2601 		    vp);
2602 		return (error);
2603 	}
2604 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2605 		panic("vget: vn_lock failed to return ENOENT\n");
2606 	/*
2607 	 * We don't guarantee that any particular close will
2608 	 * trigger inactive processing so just make a best effort
2609 	 * here at preventing a reference to a removed file.  If
2610 	 * we don't succeed no harm is done.
2611 	 *
2612 	 * Upgrade our holdcnt to a usecount.
2613 	 */
2614 	if (vp->v_type == VCHR ||
2615 	    !refcount_acquire_if_not_zero(&vp->v_usecount)) {
2616 		VI_LOCK(vp);
2617 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
2618 			oweinact = 0;
2619 		} else {
2620 			oweinact = 1;
2621 			vp->v_iflag &= ~VI_OWEINACT;
2622 			VNODE_REFCOUNT_FENCE_REL();
2623 		}
2624 		refcount_acquire(&vp->v_usecount);
2625 		v_incr_devcount(vp);
2626 		if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2627 		    (flags & LK_NOWAIT) == 0)
2628 			vinactive(vp, td);
2629 		VI_UNLOCK(vp);
2630 	}
2631 	return (0);
2632 }
2633 
2634 /*
2635  * Increase the reference (use) and hold count of a vnode.
2636  * This will also remove the vnode from the free list if it is presently free.
2637  */
2638 void
2639 vref(struct vnode *vp)
2640 {
2641 
2642 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2643 	_vhold(vp, false);
2644 	v_incr_usecount(vp);
2645 }
2646 
2647 void
2648 vrefl(struct vnode *vp)
2649 {
2650 
2651 	ASSERT_VI_LOCKED(vp, __func__);
2652 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2653 	_vhold(vp, true);
2654 	v_incr_usecount_locked(vp);
2655 }
2656 
2657 void
2658 vrefact(struct vnode *vp)
2659 {
2660 
2661 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2662 	if (__predict_false(vp->v_type == VCHR)) {
2663 		VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp,
2664 		    ("%s: wrong ref counts", __func__));
2665 		vref(vp);
2666 		return;
2667 	}
2668 #ifdef INVARIANTS
2669 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
2670 	VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__));
2671 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
2672 	VNASSERT(old > 0, vp, ("%s: wrong use count", __func__));
2673 #else
2674 	refcount_acquire(&vp->v_holdcnt);
2675 	refcount_acquire(&vp->v_usecount);
2676 #endif
2677 }
2678 
2679 /*
2680  * Return reference count of a vnode.
2681  *
2682  * The results of this call are only guaranteed when some mechanism is used to
2683  * stop other processes from gaining references to the vnode.  This may be the
2684  * case if the caller holds the only reference.  This is also useful when stale
2685  * data is acceptable as race conditions may be accounted for by some other
2686  * means.
2687  */
2688 int
2689 vrefcnt(struct vnode *vp)
2690 {
2691 
2692 	return (vp->v_usecount);
2693 }
2694 
2695 #define	VPUTX_VRELE	1
2696 #define	VPUTX_VPUT	2
2697 #define	VPUTX_VUNREF	3
2698 
2699 /*
2700  * Decrement the use and hold counts for a vnode.
2701  *
2702  * See an explanation near vget() as to why atomic operation is safe.
2703  */
2704 static void
2705 vputx(struct vnode *vp, int func)
2706 {
2707 	int error;
2708 
2709 	KASSERT(vp != NULL, ("vputx: null vp"));
2710 	if (func == VPUTX_VUNREF)
2711 		ASSERT_VOP_LOCKED(vp, "vunref");
2712 	else if (func == VPUTX_VPUT)
2713 		ASSERT_VOP_LOCKED(vp, "vput");
2714 	else
2715 		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2716 	ASSERT_VI_UNLOCKED(vp, __func__);
2717 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2718 
2719 	if (vp->v_type != VCHR &&
2720 	    refcount_release_if_not_last(&vp->v_usecount)) {
2721 		if (func == VPUTX_VPUT)
2722 			VOP_UNLOCK(vp, 0);
2723 		vdrop(vp);
2724 		return;
2725 	}
2726 
2727 	VI_LOCK(vp);
2728 
2729 	/*
2730 	 * We want to hold the vnode until the inactive finishes to
2731 	 * prevent vgone() races.  We drop the use count here and the
2732 	 * hold count below when we're done.
2733 	 */
2734 	if (!refcount_release(&vp->v_usecount) ||
2735 	    (vp->v_iflag & VI_DOINGINACT)) {
2736 		if (func == VPUTX_VPUT)
2737 			VOP_UNLOCK(vp, 0);
2738 		v_decr_devcount(vp);
2739 		vdropl(vp);
2740 		return;
2741 	}
2742 
2743 	v_decr_devcount(vp);
2744 
2745 	error = 0;
2746 
2747 	if (vp->v_usecount != 0) {
2748 		vn_printf(vp, "vputx: usecount not zero for vnode ");
2749 		panic("vputx: usecount not zero");
2750 	}
2751 
2752 	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2753 
2754 	/*
2755 	 * We must call VOP_INACTIVE with the node locked. Mark
2756 	 * as VI_DOINGINACT to avoid recursion.
2757 	 */
2758 	vp->v_iflag |= VI_OWEINACT;
2759 	switch (func) {
2760 	case VPUTX_VRELE:
2761 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2762 		VI_LOCK(vp);
2763 		break;
2764 	case VPUTX_VPUT:
2765 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2766 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2767 			    LK_NOWAIT);
2768 			VI_LOCK(vp);
2769 		}
2770 		break;
2771 	case VPUTX_VUNREF:
2772 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2773 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
2774 			VI_LOCK(vp);
2775 		}
2776 		break;
2777 	}
2778 	VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp,
2779 	    ("vnode with usecount and VI_OWEINACT set"));
2780 	if (error == 0) {
2781 		if (vp->v_iflag & VI_OWEINACT)
2782 			vinactive(vp, curthread);
2783 		if (func != VPUTX_VUNREF)
2784 			VOP_UNLOCK(vp, 0);
2785 	}
2786 	vdropl(vp);
2787 }
2788 
2789 /*
2790  * Vnode put/release.
2791  * If count drops to zero, call inactive routine and return to freelist.
2792  */
2793 void
2794 vrele(struct vnode *vp)
2795 {
2796 
2797 	vputx(vp, VPUTX_VRELE);
2798 }
2799 
2800 /*
2801  * Release an already locked vnode.  This give the same effects as
2802  * unlock+vrele(), but takes less time and avoids releasing and
2803  * re-aquiring the lock (as vrele() acquires the lock internally.)
2804  */
2805 void
2806 vput(struct vnode *vp)
2807 {
2808 
2809 	vputx(vp, VPUTX_VPUT);
2810 }
2811 
2812 /*
2813  * Release an exclusively locked vnode. Do not unlock the vnode lock.
2814  */
2815 void
2816 vunref(struct vnode *vp)
2817 {
2818 
2819 	vputx(vp, VPUTX_VUNREF);
2820 }
2821 
2822 /*
2823  * Increase the hold count and activate if this is the first reference.
2824  */
2825 void
2826 _vhold(struct vnode *vp, bool locked)
2827 {
2828 	struct mount *mp;
2829 
2830 	if (locked)
2831 		ASSERT_VI_LOCKED(vp, __func__);
2832 	else
2833 		ASSERT_VI_UNLOCKED(vp, __func__);
2834 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2835 	if (!locked) {
2836 		if (refcount_acquire_if_not_zero(&vp->v_holdcnt)) {
2837 			VNODE_REFCOUNT_FENCE_ACQ();
2838 			VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2839 			    ("_vhold: vnode with holdcnt is free"));
2840 			return;
2841 		}
2842 		VI_LOCK(vp);
2843 	}
2844 	if ((vp->v_iflag & VI_FREE) == 0) {
2845 		refcount_acquire(&vp->v_holdcnt);
2846 		if (!locked)
2847 			VI_UNLOCK(vp);
2848 		return;
2849 	}
2850 	VNASSERT(vp->v_holdcnt == 0, vp,
2851 	    ("%s: wrong hold count", __func__));
2852 	VNASSERT(vp->v_op != NULL, vp,
2853 	    ("%s: vnode already reclaimed.", __func__));
2854 	/*
2855 	 * Remove a vnode from the free list, mark it as in use,
2856 	 * and put it on the active list.
2857 	 */
2858 	VNASSERT(vp->v_mount != NULL, vp,
2859 	    ("_vhold: vnode not on per mount vnode list"));
2860 	mp = vp->v_mount;
2861 	mtx_lock(&mp->mnt_listmtx);
2862 	if ((vp->v_mflag & VMP_TMPMNTFREELIST) != 0) {
2863 		TAILQ_REMOVE(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist);
2864 		mp->mnt_tmpfreevnodelistsize--;
2865 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
2866 	} else {
2867 		mtx_lock(&vnode_free_list_mtx);
2868 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
2869 		freevnodes--;
2870 		mtx_unlock(&vnode_free_list_mtx);
2871 	}
2872 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
2873 	    ("Activating already active vnode"));
2874 	vp->v_iflag &= ~VI_FREE;
2875 	vp->v_iflag |= VI_ACTIVE;
2876 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
2877 	mp->mnt_activevnodelistsize++;
2878 	mtx_unlock(&mp->mnt_listmtx);
2879 	refcount_acquire(&vp->v_holdcnt);
2880 	if (!locked)
2881 		VI_UNLOCK(vp);
2882 }
2883 
2884 /*
2885  * Drop the hold count of the vnode.  If this is the last reference to
2886  * the vnode we place it on the free list unless it has been vgone'd
2887  * (marked VI_DOOMED) in which case we will free it.
2888  *
2889  * Because the vnode vm object keeps a hold reference on the vnode if
2890  * there is at least one resident non-cached page, the vnode cannot
2891  * leave the active list without the page cleanup done.
2892  */
2893 void
2894 _vdrop(struct vnode *vp, bool locked)
2895 {
2896 	struct bufobj *bo;
2897 	struct mount *mp;
2898 	int active;
2899 
2900 	if (locked)
2901 		ASSERT_VI_LOCKED(vp, __func__);
2902 	else
2903 		ASSERT_VI_UNLOCKED(vp, __func__);
2904 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2905 	if ((int)vp->v_holdcnt <= 0)
2906 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2907 	if (!locked) {
2908 		if (refcount_release_if_not_last(&vp->v_holdcnt))
2909 			return;
2910 		VI_LOCK(vp);
2911 	}
2912 	if (refcount_release(&vp->v_holdcnt) == 0) {
2913 		VI_UNLOCK(vp);
2914 		return;
2915 	}
2916 	if ((vp->v_iflag & VI_DOOMED) == 0) {
2917 		/*
2918 		 * Mark a vnode as free: remove it from its active list
2919 		 * and put it up for recycling on the freelist.
2920 		 */
2921 		VNASSERT(vp->v_op != NULL, vp,
2922 		    ("vdropl: vnode already reclaimed."));
2923 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2924 		    ("vnode already free"));
2925 		VNASSERT(vp->v_holdcnt == 0, vp,
2926 		    ("vdropl: freeing when we shouldn't"));
2927 		active = vp->v_iflag & VI_ACTIVE;
2928 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
2929 			vp->v_iflag &= ~VI_ACTIVE;
2930 			mp = vp->v_mount;
2931 			if (mp != NULL) {
2932 				mtx_lock(&mp->mnt_listmtx);
2933 				if (active) {
2934 					TAILQ_REMOVE(&mp->mnt_activevnodelist,
2935 					    vp, v_actfreelist);
2936 					mp->mnt_activevnodelistsize--;
2937 				}
2938 				TAILQ_INSERT_TAIL(&mp->mnt_tmpfreevnodelist,
2939 				    vp, v_actfreelist);
2940 				mp->mnt_tmpfreevnodelistsize++;
2941 				vp->v_iflag |= VI_FREE;
2942 				vp->v_mflag |= VMP_TMPMNTFREELIST;
2943 				VI_UNLOCK(vp);
2944 				if (mp->mnt_tmpfreevnodelistsize >=
2945 				    mnt_free_list_batch)
2946 					vnlru_return_batch_locked(mp);
2947 				mtx_unlock(&mp->mnt_listmtx);
2948 			} else {
2949 				VNASSERT(active == 0, vp,
2950 				    ("vdropl: active vnode not on per mount "
2951 				    "vnode list"));
2952 				mtx_lock(&vnode_free_list_mtx);
2953 				TAILQ_INSERT_TAIL(&vnode_free_list, vp,
2954 				    v_actfreelist);
2955 				freevnodes++;
2956 				vp->v_iflag |= VI_FREE;
2957 				VI_UNLOCK(vp);
2958 				mtx_unlock(&vnode_free_list_mtx);
2959 			}
2960 		} else {
2961 			VI_UNLOCK(vp);
2962 			counter_u64_add(free_owe_inact, 1);
2963 		}
2964 		return;
2965 	}
2966 	/*
2967 	 * The vnode has been marked for destruction, so free it.
2968 	 *
2969 	 * The vnode will be returned to the zone where it will
2970 	 * normally remain until it is needed for another vnode. We
2971 	 * need to cleanup (or verify that the cleanup has already
2972 	 * been done) any residual data left from its current use
2973 	 * so as not to contaminate the freshly allocated vnode.
2974 	 */
2975 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2976 	atomic_subtract_long(&numvnodes, 1);
2977 	bo = &vp->v_bufobj;
2978 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2979 	    ("cleaned vnode still on the free list."));
2980 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2981 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
2982 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2983 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2984 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2985 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2986 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2987 	    ("clean blk trie not empty"));
2988 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2989 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2990 	    ("dirty blk trie not empty"));
2991 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
2992 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
2993 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
2994 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2995 	    ("Dangling rangelock waiters"));
2996 	VI_UNLOCK(vp);
2997 #ifdef MAC
2998 	mac_vnode_destroy(vp);
2999 #endif
3000 	if (vp->v_pollinfo != NULL) {
3001 		destroy_vpollinfo(vp->v_pollinfo);
3002 		vp->v_pollinfo = NULL;
3003 	}
3004 #ifdef INVARIANTS
3005 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
3006 	vp->v_op = NULL;
3007 #endif
3008 	vp->v_mountedhere = NULL;
3009 	vp->v_unpcb = NULL;
3010 	vp->v_rdev = NULL;
3011 	vp->v_fifoinfo = NULL;
3012 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
3013 	vp->v_iflag = 0;
3014 	vp->v_vflag = 0;
3015 	bo->bo_flag = 0;
3016 	uma_zfree(vnode_zone, vp);
3017 }
3018 
3019 /*
3020  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3021  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3022  * OWEINACT tracks whether a vnode missed a call to inactive due to a
3023  * failed lock upgrade.
3024  */
3025 void
3026 vinactive(struct vnode *vp, struct thread *td)
3027 {
3028 	struct vm_object *obj;
3029 
3030 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3031 	ASSERT_VI_LOCKED(vp, "vinactive");
3032 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3033 	    ("vinactive: recursed on VI_DOINGINACT"));
3034 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3035 	vp->v_iflag |= VI_DOINGINACT;
3036 	vp->v_iflag &= ~VI_OWEINACT;
3037 	VI_UNLOCK(vp);
3038 	/*
3039 	 * Before moving off the active list, we must be sure that any
3040 	 * modified pages are converted into the vnode's dirty
3041 	 * buffers, since these will no longer be checked once the
3042 	 * vnode is on the inactive list.
3043 	 *
3044 	 * The write-out of the dirty pages is asynchronous.  At the
3045 	 * point that VOP_INACTIVE() is called, there could still be
3046 	 * pending I/O and dirty pages in the object.
3047 	 */
3048 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3049 	    (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
3050 		VM_OBJECT_WLOCK(obj);
3051 		vm_object_page_clean(obj, 0, 0, 0);
3052 		VM_OBJECT_WUNLOCK(obj);
3053 	}
3054 	VOP_INACTIVE(vp, td);
3055 	VI_LOCK(vp);
3056 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3057 	    ("vinactive: lost VI_DOINGINACT"));
3058 	vp->v_iflag &= ~VI_DOINGINACT;
3059 }
3060 
3061 /*
3062  * Remove any vnodes in the vnode table belonging to mount point mp.
3063  *
3064  * If FORCECLOSE is not specified, there should not be any active ones,
3065  * return error if any are found (nb: this is a user error, not a
3066  * system error). If FORCECLOSE is specified, detach any active vnodes
3067  * that are found.
3068  *
3069  * If WRITECLOSE is set, only flush out regular file vnodes open for
3070  * writing.
3071  *
3072  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3073  *
3074  * `rootrefs' specifies the base reference count for the root vnode
3075  * of this filesystem. The root vnode is considered busy if its
3076  * v_usecount exceeds this value. On a successful return, vflush(, td)
3077  * will call vrele() on the root vnode exactly rootrefs times.
3078  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3079  * be zero.
3080  */
3081 #ifdef DIAGNOSTIC
3082 static int busyprt = 0;		/* print out busy vnodes */
3083 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3084 #endif
3085 
3086 int
3087 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3088 {
3089 	struct vnode *vp, *mvp, *rootvp = NULL;
3090 	struct vattr vattr;
3091 	int busy = 0, error;
3092 
3093 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3094 	    rootrefs, flags);
3095 	if (rootrefs > 0) {
3096 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3097 		    ("vflush: bad args"));
3098 		/*
3099 		 * Get the filesystem root vnode. We can vput() it
3100 		 * immediately, since with rootrefs > 0, it won't go away.
3101 		 */
3102 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3103 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3104 			    __func__, error);
3105 			return (error);
3106 		}
3107 		vput(rootvp);
3108 	}
3109 loop:
3110 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3111 		vholdl(vp);
3112 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3113 		if (error) {
3114 			vdrop(vp);
3115 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3116 			goto loop;
3117 		}
3118 		/*
3119 		 * Skip over a vnodes marked VV_SYSTEM.
3120 		 */
3121 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3122 			VOP_UNLOCK(vp, 0);
3123 			vdrop(vp);
3124 			continue;
3125 		}
3126 		/*
3127 		 * If WRITECLOSE is set, flush out unlinked but still open
3128 		 * files (even if open only for reading) and regular file
3129 		 * vnodes open for writing.
3130 		 */
3131 		if (flags & WRITECLOSE) {
3132 			if (vp->v_object != NULL) {
3133 				VM_OBJECT_WLOCK(vp->v_object);
3134 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3135 				VM_OBJECT_WUNLOCK(vp->v_object);
3136 			}
3137 			error = VOP_FSYNC(vp, MNT_WAIT, td);
3138 			if (error != 0) {
3139 				VOP_UNLOCK(vp, 0);
3140 				vdrop(vp);
3141 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3142 				return (error);
3143 			}
3144 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3145 			VI_LOCK(vp);
3146 
3147 			if ((vp->v_type == VNON ||
3148 			    (error == 0 && vattr.va_nlink > 0)) &&
3149 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
3150 				VOP_UNLOCK(vp, 0);
3151 				vdropl(vp);
3152 				continue;
3153 			}
3154 		} else
3155 			VI_LOCK(vp);
3156 		/*
3157 		 * With v_usecount == 0, all we need to do is clear out the
3158 		 * vnode data structures and we are done.
3159 		 *
3160 		 * If FORCECLOSE is set, forcibly close the vnode.
3161 		 */
3162 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3163 			vgonel(vp);
3164 		} else {
3165 			busy++;
3166 #ifdef DIAGNOSTIC
3167 			if (busyprt)
3168 				vn_printf(vp, "vflush: busy vnode ");
3169 #endif
3170 		}
3171 		VOP_UNLOCK(vp, 0);
3172 		vdropl(vp);
3173 	}
3174 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3175 		/*
3176 		 * If just the root vnode is busy, and if its refcount
3177 		 * is equal to `rootrefs', then go ahead and kill it.
3178 		 */
3179 		VI_LOCK(rootvp);
3180 		KASSERT(busy > 0, ("vflush: not busy"));
3181 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3182 		    ("vflush: usecount %d < rootrefs %d",
3183 		     rootvp->v_usecount, rootrefs));
3184 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3185 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3186 			vgone(rootvp);
3187 			VOP_UNLOCK(rootvp, 0);
3188 			busy = 0;
3189 		} else
3190 			VI_UNLOCK(rootvp);
3191 	}
3192 	if (busy) {
3193 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3194 		    busy);
3195 		return (EBUSY);
3196 	}
3197 	for (; rootrefs > 0; rootrefs--)
3198 		vrele(rootvp);
3199 	return (0);
3200 }
3201 
3202 /*
3203  * Recycle an unused vnode to the front of the free list.
3204  */
3205 int
3206 vrecycle(struct vnode *vp)
3207 {
3208 	int recycled;
3209 
3210 	VI_LOCK(vp);
3211 	recycled = vrecyclel(vp);
3212 	VI_UNLOCK(vp);
3213 	return (recycled);
3214 }
3215 
3216 /*
3217  * vrecycle, with the vp interlock held.
3218  */
3219 int
3220 vrecyclel(struct vnode *vp)
3221 {
3222 	int recycled;
3223 
3224 	ASSERT_VOP_ELOCKED(vp, __func__);
3225 	ASSERT_VI_LOCKED(vp, __func__);
3226 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3227 	recycled = 0;
3228 	if (vp->v_usecount == 0) {
3229 		recycled = 1;
3230 		vgonel(vp);
3231 	}
3232 	return (recycled);
3233 }
3234 
3235 /*
3236  * Eliminate all activity associated with a vnode
3237  * in preparation for reuse.
3238  */
3239 void
3240 vgone(struct vnode *vp)
3241 {
3242 	VI_LOCK(vp);
3243 	vgonel(vp);
3244 	VI_UNLOCK(vp);
3245 }
3246 
3247 static void
3248 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3249     struct vnode *lowervp __unused)
3250 {
3251 }
3252 
3253 /*
3254  * Notify upper mounts about reclaimed or unlinked vnode.
3255  */
3256 void
3257 vfs_notify_upper(struct vnode *vp, int event)
3258 {
3259 	static struct vfsops vgonel_vfsops = {
3260 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3261 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3262 	};
3263 	struct mount *mp, *ump, *mmp;
3264 
3265 	mp = vp->v_mount;
3266 	if (mp == NULL)
3267 		return;
3268 
3269 	MNT_ILOCK(mp);
3270 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3271 		goto unlock;
3272 	MNT_IUNLOCK(mp);
3273 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3274 	mmp->mnt_op = &vgonel_vfsops;
3275 	mmp->mnt_kern_flag |= MNTK_MARKER;
3276 	MNT_ILOCK(mp);
3277 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3278 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3279 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3280 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3281 			continue;
3282 		}
3283 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3284 		MNT_IUNLOCK(mp);
3285 		switch (event) {
3286 		case VFS_NOTIFY_UPPER_RECLAIM:
3287 			VFS_RECLAIM_LOWERVP(ump, vp);
3288 			break;
3289 		case VFS_NOTIFY_UPPER_UNLINK:
3290 			VFS_UNLINK_LOWERVP(ump, vp);
3291 			break;
3292 		default:
3293 			KASSERT(0, ("invalid event %d", event));
3294 			break;
3295 		}
3296 		MNT_ILOCK(mp);
3297 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3298 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3299 	}
3300 	free(mmp, M_TEMP);
3301 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3302 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3303 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3304 		wakeup(&mp->mnt_uppers);
3305 	}
3306 unlock:
3307 	MNT_IUNLOCK(mp);
3308 }
3309 
3310 /*
3311  * vgone, with the vp interlock held.
3312  */
3313 static void
3314 vgonel(struct vnode *vp)
3315 {
3316 	struct thread *td;
3317 	int oweinact;
3318 	int active;
3319 	struct mount *mp;
3320 
3321 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3322 	ASSERT_VI_LOCKED(vp, "vgonel");
3323 	VNASSERT(vp->v_holdcnt, vp,
3324 	    ("vgonel: vp %p has no reference.", vp));
3325 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3326 	td = curthread;
3327 
3328 	/*
3329 	 * Don't vgonel if we're already doomed.
3330 	 */
3331 	if (vp->v_iflag & VI_DOOMED)
3332 		return;
3333 	vp->v_iflag |= VI_DOOMED;
3334 
3335 	/*
3336 	 * Check to see if the vnode is in use.  If so, we have to call
3337 	 * VOP_CLOSE() and VOP_INACTIVE().
3338 	 */
3339 	active = vp->v_usecount;
3340 	oweinact = (vp->v_iflag & VI_OWEINACT);
3341 	VI_UNLOCK(vp);
3342 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3343 
3344 	/*
3345 	 * If purging an active vnode, it must be closed and
3346 	 * deactivated before being reclaimed.
3347 	 */
3348 	if (active)
3349 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3350 	if (oweinact || active) {
3351 		VI_LOCK(vp);
3352 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
3353 			vinactive(vp, td);
3354 		VI_UNLOCK(vp);
3355 	}
3356 	if (vp->v_type == VSOCK)
3357 		vfs_unp_reclaim(vp);
3358 
3359 	/*
3360 	 * Clean out any buffers associated with the vnode.
3361 	 * If the flush fails, just toss the buffers.
3362 	 */
3363 	mp = NULL;
3364 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3365 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3366 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3367 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3368 			;
3369 	}
3370 
3371 	BO_LOCK(&vp->v_bufobj);
3372 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3373 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3374 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3375 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3376 	    ("vp %p bufobj not invalidated", vp));
3377 
3378 	/*
3379 	 * For VMIO bufobj, BO_DEAD is set in vm_object_terminate()
3380 	 * after the object's page queue is flushed.
3381 	 */
3382 	if (vp->v_bufobj.bo_object == NULL)
3383 		vp->v_bufobj.bo_flag |= BO_DEAD;
3384 	BO_UNLOCK(&vp->v_bufobj);
3385 
3386 	/*
3387 	 * Reclaim the vnode.
3388 	 */
3389 	if (VOP_RECLAIM(vp, td))
3390 		panic("vgone: cannot reclaim");
3391 	if (mp != NULL)
3392 		vn_finished_secondary_write(mp);
3393 	VNASSERT(vp->v_object == NULL, vp,
3394 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
3395 	/*
3396 	 * Clear the advisory locks and wake up waiting threads.
3397 	 */
3398 	(void)VOP_ADVLOCKPURGE(vp);
3399 	vp->v_lockf = NULL;
3400 	/*
3401 	 * Delete from old mount point vnode list.
3402 	 */
3403 	delmntque(vp);
3404 	cache_purge(vp);
3405 	/*
3406 	 * Done with purge, reset to the standard lock and invalidate
3407 	 * the vnode.
3408 	 */
3409 	VI_LOCK(vp);
3410 	vp->v_vnlock = &vp->v_lock;
3411 	vp->v_op = &dead_vnodeops;
3412 	vp->v_tag = "none";
3413 	vp->v_type = VBAD;
3414 }
3415 
3416 /*
3417  * Calculate the total number of references to a special device.
3418  */
3419 int
3420 vcount(struct vnode *vp)
3421 {
3422 	int count;
3423 
3424 	dev_lock();
3425 	count = vp->v_rdev->si_usecount;
3426 	dev_unlock();
3427 	return (count);
3428 }
3429 
3430 /*
3431  * Same as above, but using the struct cdev *as argument
3432  */
3433 int
3434 count_dev(struct cdev *dev)
3435 {
3436 	int count;
3437 
3438 	dev_lock();
3439 	count = dev->si_usecount;
3440 	dev_unlock();
3441 	return(count);
3442 }
3443 
3444 /*
3445  * Print out a description of a vnode.
3446  */
3447 static char *typename[] =
3448 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3449  "VMARKER"};
3450 
3451 void
3452 vn_printf(struct vnode *vp, const char *fmt, ...)
3453 {
3454 	va_list ap;
3455 	char buf[256], buf2[16];
3456 	u_long flags;
3457 
3458 	va_start(ap, fmt);
3459 	vprintf(fmt, ap);
3460 	va_end(ap);
3461 	printf("%p: ", (void *)vp);
3462 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
3463 	printf("    usecount %d, writecount %d, refcount %d",
3464 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
3465 	switch (vp->v_type) {
3466 	case VDIR:
3467 		printf(" mountedhere %p\n", vp->v_mountedhere);
3468 		break;
3469 	case VCHR:
3470 		printf(" rdev %p\n", vp->v_rdev);
3471 		break;
3472 	case VSOCK:
3473 		printf(" socket %p\n", vp->v_unpcb);
3474 		break;
3475 	case VFIFO:
3476 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
3477 		break;
3478 	default:
3479 		printf("\n");
3480 		break;
3481 	}
3482 	buf[0] = '\0';
3483 	buf[1] = '\0';
3484 	if (vp->v_vflag & VV_ROOT)
3485 		strlcat(buf, "|VV_ROOT", sizeof(buf));
3486 	if (vp->v_vflag & VV_ISTTY)
3487 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
3488 	if (vp->v_vflag & VV_NOSYNC)
3489 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
3490 	if (vp->v_vflag & VV_ETERNALDEV)
3491 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
3492 	if (vp->v_vflag & VV_CACHEDLABEL)
3493 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
3494 	if (vp->v_vflag & VV_COPYONWRITE)
3495 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
3496 	if (vp->v_vflag & VV_SYSTEM)
3497 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
3498 	if (vp->v_vflag & VV_PROCDEP)
3499 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
3500 	if (vp->v_vflag & VV_NOKNOTE)
3501 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
3502 	if (vp->v_vflag & VV_DELETED)
3503 		strlcat(buf, "|VV_DELETED", sizeof(buf));
3504 	if (vp->v_vflag & VV_MD)
3505 		strlcat(buf, "|VV_MD", sizeof(buf));
3506 	if (vp->v_vflag & VV_FORCEINSMQ)
3507 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
3508 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
3509 	    VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
3510 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
3511 	if (flags != 0) {
3512 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
3513 		strlcat(buf, buf2, sizeof(buf));
3514 	}
3515 	if (vp->v_iflag & VI_MOUNT)
3516 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
3517 	if (vp->v_iflag & VI_DOOMED)
3518 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
3519 	if (vp->v_iflag & VI_FREE)
3520 		strlcat(buf, "|VI_FREE", sizeof(buf));
3521 	if (vp->v_iflag & VI_ACTIVE)
3522 		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
3523 	if (vp->v_iflag & VI_DOINGINACT)
3524 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
3525 	if (vp->v_iflag & VI_OWEINACT)
3526 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
3527 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOOMED | VI_FREE |
3528 	    VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT);
3529 	if (flags != 0) {
3530 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
3531 		strlcat(buf, buf2, sizeof(buf));
3532 	}
3533 	printf("    flags (%s)\n", buf + 1);
3534 	if (mtx_owned(VI_MTX(vp)))
3535 		printf(" VI_LOCKed");
3536 	if (vp->v_object != NULL)
3537 		printf("    v_object %p ref %d pages %d "
3538 		    "cleanbuf %d dirtybuf %d\n",
3539 		    vp->v_object, vp->v_object->ref_count,
3540 		    vp->v_object->resident_page_count,
3541 		    vp->v_bufobj.bo_clean.bv_cnt,
3542 		    vp->v_bufobj.bo_dirty.bv_cnt);
3543 	printf("    ");
3544 	lockmgr_printinfo(vp->v_vnlock);
3545 	if (vp->v_data != NULL)
3546 		VOP_PRINT(vp);
3547 }
3548 
3549 #ifdef DDB
3550 /*
3551  * List all of the locked vnodes in the system.
3552  * Called when debugging the kernel.
3553  */
3554 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
3555 {
3556 	struct mount *mp;
3557 	struct vnode *vp;
3558 
3559 	/*
3560 	 * Note: because this is DDB, we can't obey the locking semantics
3561 	 * for these structures, which means we could catch an inconsistent
3562 	 * state and dereference a nasty pointer.  Not much to be done
3563 	 * about that.
3564 	 */
3565 	db_printf("Locked vnodes\n");
3566 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3567 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3568 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
3569 				vn_printf(vp, "vnode ");
3570 		}
3571 	}
3572 }
3573 
3574 /*
3575  * Show details about the given vnode.
3576  */
3577 DB_SHOW_COMMAND(vnode, db_show_vnode)
3578 {
3579 	struct vnode *vp;
3580 
3581 	if (!have_addr)
3582 		return;
3583 	vp = (struct vnode *)addr;
3584 	vn_printf(vp, "vnode ");
3585 }
3586 
3587 /*
3588  * Show details about the given mount point.
3589  */
3590 DB_SHOW_COMMAND(mount, db_show_mount)
3591 {
3592 	struct mount *mp;
3593 	struct vfsopt *opt;
3594 	struct statfs *sp;
3595 	struct vnode *vp;
3596 	char buf[512];
3597 	uint64_t mflags;
3598 	u_int flags;
3599 
3600 	if (!have_addr) {
3601 		/* No address given, print short info about all mount points. */
3602 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3603 			db_printf("%p %s on %s (%s)\n", mp,
3604 			    mp->mnt_stat.f_mntfromname,
3605 			    mp->mnt_stat.f_mntonname,
3606 			    mp->mnt_stat.f_fstypename);
3607 			if (db_pager_quit)
3608 				break;
3609 		}
3610 		db_printf("\nMore info: show mount <addr>\n");
3611 		return;
3612 	}
3613 
3614 	mp = (struct mount *)addr;
3615 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3616 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3617 
3618 	buf[0] = '\0';
3619 	mflags = mp->mnt_flag;
3620 #define	MNT_FLAG(flag)	do {						\
3621 	if (mflags & (flag)) {						\
3622 		if (buf[0] != '\0')					\
3623 			strlcat(buf, ", ", sizeof(buf));		\
3624 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3625 		mflags &= ~(flag);					\
3626 	}								\
3627 } while (0)
3628 	MNT_FLAG(MNT_RDONLY);
3629 	MNT_FLAG(MNT_SYNCHRONOUS);
3630 	MNT_FLAG(MNT_NOEXEC);
3631 	MNT_FLAG(MNT_NOSUID);
3632 	MNT_FLAG(MNT_NFS4ACLS);
3633 	MNT_FLAG(MNT_UNION);
3634 	MNT_FLAG(MNT_ASYNC);
3635 	MNT_FLAG(MNT_SUIDDIR);
3636 	MNT_FLAG(MNT_SOFTDEP);
3637 	MNT_FLAG(MNT_NOSYMFOLLOW);
3638 	MNT_FLAG(MNT_GJOURNAL);
3639 	MNT_FLAG(MNT_MULTILABEL);
3640 	MNT_FLAG(MNT_ACLS);
3641 	MNT_FLAG(MNT_NOATIME);
3642 	MNT_FLAG(MNT_NOCLUSTERR);
3643 	MNT_FLAG(MNT_NOCLUSTERW);
3644 	MNT_FLAG(MNT_SUJ);
3645 	MNT_FLAG(MNT_EXRDONLY);
3646 	MNT_FLAG(MNT_EXPORTED);
3647 	MNT_FLAG(MNT_DEFEXPORTED);
3648 	MNT_FLAG(MNT_EXPORTANON);
3649 	MNT_FLAG(MNT_EXKERB);
3650 	MNT_FLAG(MNT_EXPUBLIC);
3651 	MNT_FLAG(MNT_LOCAL);
3652 	MNT_FLAG(MNT_QUOTA);
3653 	MNT_FLAG(MNT_ROOTFS);
3654 	MNT_FLAG(MNT_USER);
3655 	MNT_FLAG(MNT_IGNORE);
3656 	MNT_FLAG(MNT_UPDATE);
3657 	MNT_FLAG(MNT_DELEXPORT);
3658 	MNT_FLAG(MNT_RELOAD);
3659 	MNT_FLAG(MNT_FORCE);
3660 	MNT_FLAG(MNT_SNAPSHOT);
3661 	MNT_FLAG(MNT_BYFSID);
3662 #undef MNT_FLAG
3663 	if (mflags != 0) {
3664 		if (buf[0] != '\0')
3665 			strlcat(buf, ", ", sizeof(buf));
3666 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3667 		    "0x%016jx", mflags);
3668 	}
3669 	db_printf("    mnt_flag = %s\n", buf);
3670 
3671 	buf[0] = '\0';
3672 	flags = mp->mnt_kern_flag;
3673 #define	MNT_KERN_FLAG(flag)	do {					\
3674 	if (flags & (flag)) {						\
3675 		if (buf[0] != '\0')					\
3676 			strlcat(buf, ", ", sizeof(buf));		\
3677 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3678 		flags &= ~(flag);					\
3679 	}								\
3680 } while (0)
3681 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3682 	MNT_KERN_FLAG(MNTK_ASYNC);
3683 	MNT_KERN_FLAG(MNTK_SOFTDEP);
3684 	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
3685 	MNT_KERN_FLAG(MNTK_DRAINING);
3686 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3687 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3688 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3689 	MNT_KERN_FLAG(MNTK_NO_IOPF);
3690 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3691 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3692 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
3693 	MNT_KERN_FLAG(MNTK_MARKER);
3694 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
3695 	MNT_KERN_FLAG(MNTK_NOASYNC);
3696 	MNT_KERN_FLAG(MNTK_UNMOUNT);
3697 	MNT_KERN_FLAG(MNTK_MWAIT);
3698 	MNT_KERN_FLAG(MNTK_SUSPEND);
3699 	MNT_KERN_FLAG(MNTK_SUSPEND2);
3700 	MNT_KERN_FLAG(MNTK_SUSPENDED);
3701 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3702 	MNT_KERN_FLAG(MNTK_NOKNOTE);
3703 #undef MNT_KERN_FLAG
3704 	if (flags != 0) {
3705 		if (buf[0] != '\0')
3706 			strlcat(buf, ", ", sizeof(buf));
3707 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3708 		    "0x%08x", flags);
3709 	}
3710 	db_printf("    mnt_kern_flag = %s\n", buf);
3711 
3712 	db_printf("    mnt_opt = ");
3713 	opt = TAILQ_FIRST(mp->mnt_opt);
3714 	if (opt != NULL) {
3715 		db_printf("%s", opt->name);
3716 		opt = TAILQ_NEXT(opt, link);
3717 		while (opt != NULL) {
3718 			db_printf(", %s", opt->name);
3719 			opt = TAILQ_NEXT(opt, link);
3720 		}
3721 	}
3722 	db_printf("\n");
3723 
3724 	sp = &mp->mnt_stat;
3725 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3726 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3727 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3728 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3729 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3730 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3731 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3732 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3733 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3734 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3735 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3736 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3737 
3738 	db_printf("    mnt_cred = { uid=%u ruid=%u",
3739 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3740 	if (jailed(mp->mnt_cred))
3741 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3742 	db_printf(" }\n");
3743 	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
3744 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
3745 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
3746 	db_printf("    mnt_activevnodelistsize = %d\n",
3747 	    mp->mnt_activevnodelistsize);
3748 	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
3749 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
3750 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
3751 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
3752 	db_printf("    mnt_lockref = %d\n", mp->mnt_lockref);
3753 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
3754 	db_printf("    mnt_secondary_accwrites = %d\n",
3755 	    mp->mnt_secondary_accwrites);
3756 	db_printf("    mnt_gjprovider = %s\n",
3757 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
3758 
3759 	db_printf("\n\nList of active vnodes\n");
3760 	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
3761 		if (vp->v_type != VMARKER) {
3762 			vn_printf(vp, "vnode ");
3763 			if (db_pager_quit)
3764 				break;
3765 		}
3766 	}
3767 	db_printf("\n\nList of inactive vnodes\n");
3768 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3769 		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
3770 			vn_printf(vp, "vnode ");
3771 			if (db_pager_quit)
3772 				break;
3773 		}
3774 	}
3775 }
3776 #endif	/* DDB */
3777 
3778 /*
3779  * Fill in a struct xvfsconf based on a struct vfsconf.
3780  */
3781 static int
3782 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
3783 {
3784 	struct xvfsconf xvfsp;
3785 
3786 	bzero(&xvfsp, sizeof(xvfsp));
3787 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3788 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3789 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3790 	xvfsp.vfc_flags = vfsp->vfc_flags;
3791 	/*
3792 	 * These are unused in userland, we keep them
3793 	 * to not break binary compatibility.
3794 	 */
3795 	xvfsp.vfc_vfsops = NULL;
3796 	xvfsp.vfc_next = NULL;
3797 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3798 }
3799 
3800 #ifdef COMPAT_FREEBSD32
3801 struct xvfsconf32 {
3802 	uint32_t	vfc_vfsops;
3803 	char		vfc_name[MFSNAMELEN];
3804 	int32_t		vfc_typenum;
3805 	int32_t		vfc_refcount;
3806 	int32_t		vfc_flags;
3807 	uint32_t	vfc_next;
3808 };
3809 
3810 static int
3811 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
3812 {
3813 	struct xvfsconf32 xvfsp;
3814 
3815 	bzero(&xvfsp, sizeof(xvfsp));
3816 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3817 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3818 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3819 	xvfsp.vfc_flags = vfsp->vfc_flags;
3820 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3821 }
3822 #endif
3823 
3824 /*
3825  * Top level filesystem related information gathering.
3826  */
3827 static int
3828 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
3829 {
3830 	struct vfsconf *vfsp;
3831 	int error;
3832 
3833 	error = 0;
3834 	vfsconf_slock();
3835 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3836 #ifdef COMPAT_FREEBSD32
3837 		if (req->flags & SCTL_MASK32)
3838 			error = vfsconf2x32(req, vfsp);
3839 		else
3840 #endif
3841 			error = vfsconf2x(req, vfsp);
3842 		if (error)
3843 			break;
3844 	}
3845 	vfsconf_sunlock();
3846 	return (error);
3847 }
3848 
3849 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
3850     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
3851     "S,xvfsconf", "List of all configured filesystems");
3852 
3853 #ifndef BURN_BRIDGES
3854 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3855 
3856 static int
3857 vfs_sysctl(SYSCTL_HANDLER_ARGS)
3858 {
3859 	int *name = (int *)arg1 - 1;	/* XXX */
3860 	u_int namelen = arg2 + 1;	/* XXX */
3861 	struct vfsconf *vfsp;
3862 
3863 	log(LOG_WARNING, "userland calling deprecated sysctl, "
3864 	    "please rebuild world\n");
3865 
3866 #if 1 || defined(COMPAT_PRELITE2)
3867 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3868 	if (namelen == 1)
3869 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3870 #endif
3871 
3872 	switch (name[1]) {
3873 	case VFS_MAXTYPENUM:
3874 		if (namelen != 2)
3875 			return (ENOTDIR);
3876 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3877 	case VFS_CONF:
3878 		if (namelen != 3)
3879 			return (ENOTDIR);	/* overloaded */
3880 		vfsconf_slock();
3881 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3882 			if (vfsp->vfc_typenum == name[2])
3883 				break;
3884 		}
3885 		vfsconf_sunlock();
3886 		if (vfsp == NULL)
3887 			return (EOPNOTSUPP);
3888 #ifdef COMPAT_FREEBSD32
3889 		if (req->flags & SCTL_MASK32)
3890 			return (vfsconf2x32(req, vfsp));
3891 		else
3892 #endif
3893 			return (vfsconf2x(req, vfsp));
3894 	}
3895 	return (EOPNOTSUPP);
3896 }
3897 
3898 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
3899     CTLFLAG_MPSAFE, vfs_sysctl,
3900     "Generic filesystem");
3901 
3902 #if 1 || defined(COMPAT_PRELITE2)
3903 
3904 static int
3905 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3906 {
3907 	int error;
3908 	struct vfsconf *vfsp;
3909 	struct ovfsconf ovfs;
3910 
3911 	vfsconf_slock();
3912 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3913 		bzero(&ovfs, sizeof(ovfs));
3914 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3915 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3916 		ovfs.vfc_index = vfsp->vfc_typenum;
3917 		ovfs.vfc_refcount = vfsp->vfc_refcount;
3918 		ovfs.vfc_flags = vfsp->vfc_flags;
3919 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3920 		if (error != 0) {
3921 			vfsconf_sunlock();
3922 			return (error);
3923 		}
3924 	}
3925 	vfsconf_sunlock();
3926 	return (0);
3927 }
3928 
3929 #endif /* 1 || COMPAT_PRELITE2 */
3930 #endif /* !BURN_BRIDGES */
3931 
3932 #define KINFO_VNODESLOP		10
3933 #ifdef notyet
3934 /*
3935  * Dump vnode list (via sysctl).
3936  */
3937 /* ARGSUSED */
3938 static int
3939 sysctl_vnode(SYSCTL_HANDLER_ARGS)
3940 {
3941 	struct xvnode *xvn;
3942 	struct mount *mp;
3943 	struct vnode *vp;
3944 	int error, len, n;
3945 
3946 	/*
3947 	 * Stale numvnodes access is not fatal here.
3948 	 */
3949 	req->lock = 0;
3950 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3951 	if (!req->oldptr)
3952 		/* Make an estimate */
3953 		return (SYSCTL_OUT(req, 0, len));
3954 
3955 	error = sysctl_wire_old_buffer(req, 0);
3956 	if (error != 0)
3957 		return (error);
3958 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3959 	n = 0;
3960 	mtx_lock(&mountlist_mtx);
3961 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3962 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3963 			continue;
3964 		MNT_ILOCK(mp);
3965 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3966 			if (n == len)
3967 				break;
3968 			vref(vp);
3969 			xvn[n].xv_size = sizeof *xvn;
3970 			xvn[n].xv_vnode = vp;
3971 			xvn[n].xv_id = 0;	/* XXX compat */
3972 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3973 			XV_COPY(usecount);
3974 			XV_COPY(writecount);
3975 			XV_COPY(holdcnt);
3976 			XV_COPY(mount);
3977 			XV_COPY(numoutput);
3978 			XV_COPY(type);
3979 #undef XV_COPY
3980 			xvn[n].xv_flag = vp->v_vflag;
3981 
3982 			switch (vp->v_type) {
3983 			case VREG:
3984 			case VDIR:
3985 			case VLNK:
3986 				break;
3987 			case VBLK:
3988 			case VCHR:
3989 				if (vp->v_rdev == NULL) {
3990 					vrele(vp);
3991 					continue;
3992 				}
3993 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3994 				break;
3995 			case VSOCK:
3996 				xvn[n].xv_socket = vp->v_socket;
3997 				break;
3998 			case VFIFO:
3999 				xvn[n].xv_fifo = vp->v_fifoinfo;
4000 				break;
4001 			case VNON:
4002 			case VBAD:
4003 			default:
4004 				/* shouldn't happen? */
4005 				vrele(vp);
4006 				continue;
4007 			}
4008 			vrele(vp);
4009 			++n;
4010 		}
4011 		MNT_IUNLOCK(mp);
4012 		mtx_lock(&mountlist_mtx);
4013 		vfs_unbusy(mp);
4014 		if (n == len)
4015 			break;
4016 	}
4017 	mtx_unlock(&mountlist_mtx);
4018 
4019 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4020 	free(xvn, M_TEMP);
4021 	return (error);
4022 }
4023 
4024 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4025     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4026     "");
4027 #endif
4028 
4029 static void
4030 unmount_or_warn(struct mount *mp)
4031 {
4032 	int error;
4033 
4034 	error = dounmount(mp, MNT_FORCE, curthread);
4035 	if (error != 0) {
4036 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4037 		if (error == EBUSY)
4038 			printf("BUSY)\n");
4039 		else
4040 			printf("%d)\n", error);
4041 	}
4042 }
4043 
4044 /*
4045  * Unmount all filesystems. The list is traversed in reverse order
4046  * of mounting to avoid dependencies.
4047  */
4048 void
4049 vfs_unmountall(void)
4050 {
4051 	struct mount *mp, *tmp;
4052 
4053 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4054 
4055 	/*
4056 	 * Since this only runs when rebooting, it is not interlocked.
4057 	 */
4058 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4059 		vfs_ref(mp);
4060 
4061 		/*
4062 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4063 		 * unmount of the latter.
4064 		 */
4065 		if (mp == rootdevmp)
4066 			continue;
4067 
4068 		unmount_or_warn(mp);
4069 	}
4070 
4071 	if (rootdevmp != NULL)
4072 		unmount_or_warn(rootdevmp);
4073 }
4074 
4075 /*
4076  * perform msync on all vnodes under a mount point
4077  * the mount point must be locked.
4078  */
4079 void
4080 vfs_msync(struct mount *mp, int flags)
4081 {
4082 	struct vnode *vp, *mvp;
4083 	struct vm_object *obj;
4084 
4085 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4086 
4087 	vnlru_return_batch(mp);
4088 
4089 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
4090 		obj = vp->v_object;
4091 		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
4092 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
4093 			if (!vget(vp,
4094 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
4095 			    curthread)) {
4096 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
4097 					vput(vp);
4098 					continue;
4099 				}
4100 
4101 				obj = vp->v_object;
4102 				if (obj != NULL) {
4103 					VM_OBJECT_WLOCK(obj);
4104 					vm_object_page_clean(obj, 0, 0,
4105 					    flags == MNT_WAIT ?
4106 					    OBJPC_SYNC : OBJPC_NOSYNC);
4107 					VM_OBJECT_WUNLOCK(obj);
4108 				}
4109 				vput(vp);
4110 			}
4111 		} else
4112 			VI_UNLOCK(vp);
4113 	}
4114 }
4115 
4116 static void
4117 destroy_vpollinfo_free(struct vpollinfo *vi)
4118 {
4119 
4120 	knlist_destroy(&vi->vpi_selinfo.si_note);
4121 	mtx_destroy(&vi->vpi_lock);
4122 	uma_zfree(vnodepoll_zone, vi);
4123 }
4124 
4125 static void
4126 destroy_vpollinfo(struct vpollinfo *vi)
4127 {
4128 
4129 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4130 	seldrain(&vi->vpi_selinfo);
4131 	destroy_vpollinfo_free(vi);
4132 }
4133 
4134 /*
4135  * Initialize per-vnode helper structure to hold poll-related state.
4136  */
4137 void
4138 v_addpollinfo(struct vnode *vp)
4139 {
4140 	struct vpollinfo *vi;
4141 
4142 	if (vp->v_pollinfo != NULL)
4143 		return;
4144 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
4145 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4146 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4147 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
4148 	VI_LOCK(vp);
4149 	if (vp->v_pollinfo != NULL) {
4150 		VI_UNLOCK(vp);
4151 		destroy_vpollinfo_free(vi);
4152 		return;
4153 	}
4154 	vp->v_pollinfo = vi;
4155 	VI_UNLOCK(vp);
4156 }
4157 
4158 /*
4159  * Record a process's interest in events which might happen to
4160  * a vnode.  Because poll uses the historic select-style interface
4161  * internally, this routine serves as both the ``check for any
4162  * pending events'' and the ``record my interest in future events''
4163  * functions.  (These are done together, while the lock is held,
4164  * to avoid race conditions.)
4165  */
4166 int
4167 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4168 {
4169 
4170 	v_addpollinfo(vp);
4171 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4172 	if (vp->v_pollinfo->vpi_revents & events) {
4173 		/*
4174 		 * This leaves events we are not interested
4175 		 * in available for the other process which
4176 		 * which presumably had requested them
4177 		 * (otherwise they would never have been
4178 		 * recorded).
4179 		 */
4180 		events &= vp->v_pollinfo->vpi_revents;
4181 		vp->v_pollinfo->vpi_revents &= ~events;
4182 
4183 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4184 		return (events);
4185 	}
4186 	vp->v_pollinfo->vpi_events |= events;
4187 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4188 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4189 	return (0);
4190 }
4191 
4192 /*
4193  * Routine to create and manage a filesystem syncer vnode.
4194  */
4195 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4196 static int	sync_fsync(struct  vop_fsync_args *);
4197 static int	sync_inactive(struct  vop_inactive_args *);
4198 static int	sync_reclaim(struct  vop_reclaim_args *);
4199 
4200 static struct vop_vector sync_vnodeops = {
4201 	.vop_bypass =	VOP_EOPNOTSUPP,
4202 	.vop_close =	sync_close,		/* close */
4203 	.vop_fsync =	sync_fsync,		/* fsync */
4204 	.vop_inactive =	sync_inactive,	/* inactive */
4205 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4206 	.vop_lock1 =	vop_stdlock,	/* lock */
4207 	.vop_unlock =	vop_stdunlock,	/* unlock */
4208 	.vop_islocked =	vop_stdislocked,	/* islocked */
4209 };
4210 
4211 /*
4212  * Create a new filesystem syncer vnode for the specified mount point.
4213  */
4214 void
4215 vfs_allocate_syncvnode(struct mount *mp)
4216 {
4217 	struct vnode *vp;
4218 	struct bufobj *bo;
4219 	static long start, incr, next;
4220 	int error;
4221 
4222 	/* Allocate a new vnode */
4223 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4224 	if (error != 0)
4225 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4226 	vp->v_type = VNON;
4227 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4228 	vp->v_vflag |= VV_FORCEINSMQ;
4229 	error = insmntque(vp, mp);
4230 	if (error != 0)
4231 		panic("vfs_allocate_syncvnode: insmntque() failed");
4232 	vp->v_vflag &= ~VV_FORCEINSMQ;
4233 	VOP_UNLOCK(vp, 0);
4234 	/*
4235 	 * Place the vnode onto the syncer worklist. We attempt to
4236 	 * scatter them about on the list so that they will go off
4237 	 * at evenly distributed times even if all the filesystems
4238 	 * are mounted at once.
4239 	 */
4240 	next += incr;
4241 	if (next == 0 || next > syncer_maxdelay) {
4242 		start /= 2;
4243 		incr /= 2;
4244 		if (start == 0) {
4245 			start = syncer_maxdelay / 2;
4246 			incr = syncer_maxdelay;
4247 		}
4248 		next = start;
4249 	}
4250 	bo = &vp->v_bufobj;
4251 	BO_LOCK(bo);
4252 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
4253 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
4254 	mtx_lock(&sync_mtx);
4255 	sync_vnode_count++;
4256 	if (mp->mnt_syncer == NULL) {
4257 		mp->mnt_syncer = vp;
4258 		vp = NULL;
4259 	}
4260 	mtx_unlock(&sync_mtx);
4261 	BO_UNLOCK(bo);
4262 	if (vp != NULL) {
4263 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4264 		vgone(vp);
4265 		vput(vp);
4266 	}
4267 }
4268 
4269 void
4270 vfs_deallocate_syncvnode(struct mount *mp)
4271 {
4272 	struct vnode *vp;
4273 
4274 	mtx_lock(&sync_mtx);
4275 	vp = mp->mnt_syncer;
4276 	if (vp != NULL)
4277 		mp->mnt_syncer = NULL;
4278 	mtx_unlock(&sync_mtx);
4279 	if (vp != NULL)
4280 		vrele(vp);
4281 }
4282 
4283 /*
4284  * Do a lazy sync of the filesystem.
4285  */
4286 static int
4287 sync_fsync(struct vop_fsync_args *ap)
4288 {
4289 	struct vnode *syncvp = ap->a_vp;
4290 	struct mount *mp = syncvp->v_mount;
4291 	int error, save;
4292 	struct bufobj *bo;
4293 
4294 	/*
4295 	 * We only need to do something if this is a lazy evaluation.
4296 	 */
4297 	if (ap->a_waitfor != MNT_LAZY)
4298 		return (0);
4299 
4300 	/*
4301 	 * Move ourselves to the back of the sync list.
4302 	 */
4303 	bo = &syncvp->v_bufobj;
4304 	BO_LOCK(bo);
4305 	vn_syncer_add_to_worklist(bo, syncdelay);
4306 	BO_UNLOCK(bo);
4307 
4308 	/*
4309 	 * Walk the list of vnodes pushing all that are dirty and
4310 	 * not already on the sync list.
4311 	 */
4312 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
4313 		return (0);
4314 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
4315 		vfs_unbusy(mp);
4316 		return (0);
4317 	}
4318 	save = curthread_pflags_set(TDP_SYNCIO);
4319 	vfs_msync(mp, MNT_NOWAIT);
4320 	error = VFS_SYNC(mp, MNT_LAZY);
4321 	curthread_pflags_restore(save);
4322 	vn_finished_write(mp);
4323 	vfs_unbusy(mp);
4324 	return (error);
4325 }
4326 
4327 /*
4328  * The syncer vnode is no referenced.
4329  */
4330 static int
4331 sync_inactive(struct vop_inactive_args *ap)
4332 {
4333 
4334 	vgone(ap->a_vp);
4335 	return (0);
4336 }
4337 
4338 /*
4339  * The syncer vnode is no longer needed and is being decommissioned.
4340  *
4341  * Modifications to the worklist must be protected by sync_mtx.
4342  */
4343 static int
4344 sync_reclaim(struct vop_reclaim_args *ap)
4345 {
4346 	struct vnode *vp = ap->a_vp;
4347 	struct bufobj *bo;
4348 
4349 	bo = &vp->v_bufobj;
4350 	BO_LOCK(bo);
4351 	mtx_lock(&sync_mtx);
4352 	if (vp->v_mount->mnt_syncer == vp)
4353 		vp->v_mount->mnt_syncer = NULL;
4354 	if (bo->bo_flag & BO_ONWORKLST) {
4355 		LIST_REMOVE(bo, bo_synclist);
4356 		syncer_worklist_len--;
4357 		sync_vnode_count--;
4358 		bo->bo_flag &= ~BO_ONWORKLST;
4359 	}
4360 	mtx_unlock(&sync_mtx);
4361 	BO_UNLOCK(bo);
4362 
4363 	return (0);
4364 }
4365 
4366 /*
4367  * Check if vnode represents a disk device
4368  */
4369 int
4370 vn_isdisk(struct vnode *vp, int *errp)
4371 {
4372 	int error;
4373 
4374 	if (vp->v_type != VCHR) {
4375 		error = ENOTBLK;
4376 		goto out;
4377 	}
4378 	error = 0;
4379 	dev_lock();
4380 	if (vp->v_rdev == NULL)
4381 		error = ENXIO;
4382 	else if (vp->v_rdev->si_devsw == NULL)
4383 		error = ENXIO;
4384 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
4385 		error = ENOTBLK;
4386 	dev_unlock();
4387 out:
4388 	if (errp != NULL)
4389 		*errp = error;
4390 	return (error == 0);
4391 }
4392 
4393 /*
4394  * Common filesystem object access control check routine.  Accepts a
4395  * vnode's type, "mode", uid and gid, requested access mode, credentials,
4396  * and optional call-by-reference privused argument allowing vaccess()
4397  * to indicate to the caller whether privilege was used to satisfy the
4398  * request (obsoleted).  Returns 0 on success, or an errno on failure.
4399  */
4400 int
4401 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
4402     accmode_t accmode, struct ucred *cred, int *privused)
4403 {
4404 	accmode_t dac_granted;
4405 	accmode_t priv_granted;
4406 
4407 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
4408 	    ("invalid bit in accmode"));
4409 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
4410 	    ("VAPPEND without VWRITE"));
4411 
4412 	/*
4413 	 * Look for a normal, non-privileged way to access the file/directory
4414 	 * as requested.  If it exists, go with that.
4415 	 */
4416 
4417 	if (privused != NULL)
4418 		*privused = 0;
4419 
4420 	dac_granted = 0;
4421 
4422 	/* Check the owner. */
4423 	if (cred->cr_uid == file_uid) {
4424 		dac_granted |= VADMIN;
4425 		if (file_mode & S_IXUSR)
4426 			dac_granted |= VEXEC;
4427 		if (file_mode & S_IRUSR)
4428 			dac_granted |= VREAD;
4429 		if (file_mode & S_IWUSR)
4430 			dac_granted |= (VWRITE | VAPPEND);
4431 
4432 		if ((accmode & dac_granted) == accmode)
4433 			return (0);
4434 
4435 		goto privcheck;
4436 	}
4437 
4438 	/* Otherwise, check the groups (first match) */
4439 	if (groupmember(file_gid, cred)) {
4440 		if (file_mode & S_IXGRP)
4441 			dac_granted |= VEXEC;
4442 		if (file_mode & S_IRGRP)
4443 			dac_granted |= VREAD;
4444 		if (file_mode & S_IWGRP)
4445 			dac_granted |= (VWRITE | VAPPEND);
4446 
4447 		if ((accmode & dac_granted) == accmode)
4448 			return (0);
4449 
4450 		goto privcheck;
4451 	}
4452 
4453 	/* Otherwise, check everyone else. */
4454 	if (file_mode & S_IXOTH)
4455 		dac_granted |= VEXEC;
4456 	if (file_mode & S_IROTH)
4457 		dac_granted |= VREAD;
4458 	if (file_mode & S_IWOTH)
4459 		dac_granted |= (VWRITE | VAPPEND);
4460 	if ((accmode & dac_granted) == accmode)
4461 		return (0);
4462 
4463 privcheck:
4464 	/*
4465 	 * Build a privilege mask to determine if the set of privileges
4466 	 * satisfies the requirements when combined with the granted mask
4467 	 * from above.  For each privilege, if the privilege is required,
4468 	 * bitwise or the request type onto the priv_granted mask.
4469 	 */
4470 	priv_granted = 0;
4471 
4472 	if (type == VDIR) {
4473 		/*
4474 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
4475 		 * requests, instead of PRIV_VFS_EXEC.
4476 		 */
4477 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4478 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
4479 			priv_granted |= VEXEC;
4480 	} else {
4481 		/*
4482 		 * Ensure that at least one execute bit is on. Otherwise,
4483 		 * a privileged user will always succeed, and we don't want
4484 		 * this to happen unless the file really is executable.
4485 		 */
4486 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4487 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
4488 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
4489 			priv_granted |= VEXEC;
4490 	}
4491 
4492 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
4493 	    !priv_check_cred(cred, PRIV_VFS_READ))
4494 		priv_granted |= VREAD;
4495 
4496 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
4497 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
4498 		priv_granted |= (VWRITE | VAPPEND);
4499 
4500 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
4501 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
4502 		priv_granted |= VADMIN;
4503 
4504 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
4505 		/* XXX audit: privilege used */
4506 		if (privused != NULL)
4507 			*privused = 1;
4508 		return (0);
4509 	}
4510 
4511 	return ((accmode & VADMIN) ? EPERM : EACCES);
4512 }
4513 
4514 /*
4515  * Credential check based on process requesting service, and per-attribute
4516  * permissions.
4517  */
4518 int
4519 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
4520     struct thread *td, accmode_t accmode)
4521 {
4522 
4523 	/*
4524 	 * Kernel-invoked always succeeds.
4525 	 */
4526 	if (cred == NOCRED)
4527 		return (0);
4528 
4529 	/*
4530 	 * Do not allow privileged processes in jail to directly manipulate
4531 	 * system attributes.
4532 	 */
4533 	switch (attrnamespace) {
4534 	case EXTATTR_NAMESPACE_SYSTEM:
4535 		/* Potentially should be: return (EPERM); */
4536 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
4537 	case EXTATTR_NAMESPACE_USER:
4538 		return (VOP_ACCESS(vp, accmode, cred, td));
4539 	default:
4540 		return (EPERM);
4541 	}
4542 }
4543 
4544 #ifdef DEBUG_VFS_LOCKS
4545 /*
4546  * This only exists to suppress warnings from unlocked specfs accesses.  It is
4547  * no longer ok to have an unlocked VFS.
4548  */
4549 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
4550 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
4551 
4552 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
4553 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
4554     "Drop into debugger on lock violation");
4555 
4556 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
4557 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
4558     0, "Check for interlock across VOPs");
4559 
4560 int vfs_badlock_print = 1;	/* Print lock violations. */
4561 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
4562     0, "Print lock violations");
4563 
4564 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
4565 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
4566     0, "Print vnode details on lock violations");
4567 
4568 #ifdef KDB
4569 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
4570 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
4571     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
4572 #endif
4573 
4574 static void
4575 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
4576 {
4577 
4578 #ifdef KDB
4579 	if (vfs_badlock_backtrace)
4580 		kdb_backtrace();
4581 #endif
4582 	if (vfs_badlock_vnode)
4583 		vn_printf(vp, "vnode ");
4584 	if (vfs_badlock_print)
4585 		printf("%s: %p %s\n", str, (void *)vp, msg);
4586 	if (vfs_badlock_ddb)
4587 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4588 }
4589 
4590 void
4591 assert_vi_locked(struct vnode *vp, const char *str)
4592 {
4593 
4594 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
4595 		vfs_badlock("interlock is not locked but should be", str, vp);
4596 }
4597 
4598 void
4599 assert_vi_unlocked(struct vnode *vp, const char *str)
4600 {
4601 
4602 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
4603 		vfs_badlock("interlock is locked but should not be", str, vp);
4604 }
4605 
4606 void
4607 assert_vop_locked(struct vnode *vp, const char *str)
4608 {
4609 	int locked;
4610 
4611 	if (!IGNORE_LOCK(vp)) {
4612 		locked = VOP_ISLOCKED(vp);
4613 		if (locked == 0 || locked == LK_EXCLOTHER)
4614 			vfs_badlock("is not locked but should be", str, vp);
4615 	}
4616 }
4617 
4618 void
4619 assert_vop_unlocked(struct vnode *vp, const char *str)
4620 {
4621 
4622 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
4623 		vfs_badlock("is locked but should not be", str, vp);
4624 }
4625 
4626 void
4627 assert_vop_elocked(struct vnode *vp, const char *str)
4628 {
4629 
4630 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
4631 		vfs_badlock("is not exclusive locked but should be", str, vp);
4632 }
4633 #endif /* DEBUG_VFS_LOCKS */
4634 
4635 void
4636 vop_rename_fail(struct vop_rename_args *ap)
4637 {
4638 
4639 	if (ap->a_tvp != NULL)
4640 		vput(ap->a_tvp);
4641 	if (ap->a_tdvp == ap->a_tvp)
4642 		vrele(ap->a_tdvp);
4643 	else
4644 		vput(ap->a_tdvp);
4645 	vrele(ap->a_fdvp);
4646 	vrele(ap->a_fvp);
4647 }
4648 
4649 void
4650 vop_rename_pre(void *ap)
4651 {
4652 	struct vop_rename_args *a = ap;
4653 
4654 #ifdef DEBUG_VFS_LOCKS
4655 	if (a->a_tvp)
4656 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4657 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4658 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4659 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4660 
4661 	/* Check the source (from). */
4662 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4663 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4664 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4665 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4666 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4667 
4668 	/* Check the target. */
4669 	if (a->a_tvp)
4670 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4671 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4672 #endif
4673 	if (a->a_tdvp != a->a_fdvp)
4674 		vhold(a->a_fdvp);
4675 	if (a->a_tvp != a->a_fvp)
4676 		vhold(a->a_fvp);
4677 	vhold(a->a_tdvp);
4678 	if (a->a_tvp)
4679 		vhold(a->a_tvp);
4680 }
4681 
4682 #ifdef DEBUG_VFS_LOCKS
4683 void
4684 vop_strategy_pre(void *ap)
4685 {
4686 	struct vop_strategy_args *a;
4687 	struct buf *bp;
4688 
4689 	a = ap;
4690 	bp = a->a_bp;
4691 
4692 	/*
4693 	 * Cluster ops lock their component buffers but not the IO container.
4694 	 */
4695 	if ((bp->b_flags & B_CLUSTER) != 0)
4696 		return;
4697 
4698 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
4699 		if (vfs_badlock_print)
4700 			printf(
4701 			    "VOP_STRATEGY: bp is not locked but should be\n");
4702 		if (vfs_badlock_ddb)
4703 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4704 	}
4705 }
4706 
4707 void
4708 vop_lock_pre(void *ap)
4709 {
4710 	struct vop_lock1_args *a = ap;
4711 
4712 	if ((a->a_flags & LK_INTERLOCK) == 0)
4713 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4714 	else
4715 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4716 }
4717 
4718 void
4719 vop_lock_post(void *ap, int rc)
4720 {
4721 	struct vop_lock1_args *a = ap;
4722 
4723 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4724 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
4725 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
4726 }
4727 
4728 void
4729 vop_unlock_pre(void *ap)
4730 {
4731 	struct vop_unlock_args *a = ap;
4732 
4733 	if (a->a_flags & LK_INTERLOCK)
4734 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
4735 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
4736 }
4737 
4738 void
4739 vop_unlock_post(void *ap, int rc)
4740 {
4741 	struct vop_unlock_args *a = ap;
4742 
4743 	if (a->a_flags & LK_INTERLOCK)
4744 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
4745 }
4746 #endif
4747 
4748 void
4749 vop_create_post(void *ap, int rc)
4750 {
4751 	struct vop_create_args *a = ap;
4752 
4753 	if (!rc)
4754 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4755 }
4756 
4757 void
4758 vop_deleteextattr_post(void *ap, int rc)
4759 {
4760 	struct vop_deleteextattr_args *a = ap;
4761 
4762 	if (!rc)
4763 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4764 }
4765 
4766 void
4767 vop_link_post(void *ap, int rc)
4768 {
4769 	struct vop_link_args *a = ap;
4770 
4771 	if (!rc) {
4772 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4773 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4774 	}
4775 }
4776 
4777 void
4778 vop_mkdir_post(void *ap, int rc)
4779 {
4780 	struct vop_mkdir_args *a = ap;
4781 
4782 	if (!rc)
4783 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4784 }
4785 
4786 void
4787 vop_mknod_post(void *ap, int rc)
4788 {
4789 	struct vop_mknod_args *a = ap;
4790 
4791 	if (!rc)
4792 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4793 }
4794 
4795 void
4796 vop_reclaim_post(void *ap, int rc)
4797 {
4798 	struct vop_reclaim_args *a = ap;
4799 
4800 	if (!rc)
4801 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
4802 }
4803 
4804 void
4805 vop_remove_post(void *ap, int rc)
4806 {
4807 	struct vop_remove_args *a = ap;
4808 
4809 	if (!rc) {
4810 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4811 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4812 	}
4813 }
4814 
4815 void
4816 vop_rename_post(void *ap, int rc)
4817 {
4818 	struct vop_rename_args *a = ap;
4819 	long hint;
4820 
4821 	if (!rc) {
4822 		hint = NOTE_WRITE;
4823 		if (a->a_fdvp == a->a_tdvp) {
4824 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
4825 				hint |= NOTE_LINK;
4826 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
4827 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
4828 		} else {
4829 			hint |= NOTE_EXTEND;
4830 			if (a->a_fvp->v_type == VDIR)
4831 				hint |= NOTE_LINK;
4832 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
4833 
4834 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
4835 			    a->a_tvp->v_type == VDIR)
4836 				hint &= ~NOTE_LINK;
4837 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
4838 		}
4839 
4840 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4841 		if (a->a_tvp)
4842 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4843 	}
4844 	if (a->a_tdvp != a->a_fdvp)
4845 		vdrop(a->a_fdvp);
4846 	if (a->a_tvp != a->a_fvp)
4847 		vdrop(a->a_fvp);
4848 	vdrop(a->a_tdvp);
4849 	if (a->a_tvp)
4850 		vdrop(a->a_tvp);
4851 }
4852 
4853 void
4854 vop_rmdir_post(void *ap, int rc)
4855 {
4856 	struct vop_rmdir_args *a = ap;
4857 
4858 	if (!rc) {
4859 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4860 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4861 	}
4862 }
4863 
4864 void
4865 vop_setattr_post(void *ap, int rc)
4866 {
4867 	struct vop_setattr_args *a = ap;
4868 
4869 	if (!rc)
4870 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4871 }
4872 
4873 void
4874 vop_setextattr_post(void *ap, int rc)
4875 {
4876 	struct vop_setextattr_args *a = ap;
4877 
4878 	if (!rc)
4879 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4880 }
4881 
4882 void
4883 vop_symlink_post(void *ap, int rc)
4884 {
4885 	struct vop_symlink_args *a = ap;
4886 
4887 	if (!rc)
4888 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4889 }
4890 
4891 void
4892 vop_open_post(void *ap, int rc)
4893 {
4894 	struct vop_open_args *a = ap;
4895 
4896 	if (!rc)
4897 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
4898 }
4899 
4900 void
4901 vop_close_post(void *ap, int rc)
4902 {
4903 	struct vop_close_args *a = ap;
4904 
4905 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
4906 	    (a->a_vp->v_iflag & VI_DOOMED) == 0)) {
4907 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
4908 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
4909 	}
4910 }
4911 
4912 void
4913 vop_read_post(void *ap, int rc)
4914 {
4915 	struct vop_read_args *a = ap;
4916 
4917 	if (!rc)
4918 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
4919 }
4920 
4921 void
4922 vop_readdir_post(void *ap, int rc)
4923 {
4924 	struct vop_readdir_args *a = ap;
4925 
4926 	if (!rc)
4927 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
4928 }
4929 
4930 static struct knlist fs_knlist;
4931 
4932 static void
4933 vfs_event_init(void *arg)
4934 {
4935 	knlist_init_mtx(&fs_knlist, NULL);
4936 }
4937 /* XXX - correct order? */
4938 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4939 
4940 void
4941 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4942 {
4943 
4944 	KNOTE_UNLOCKED(&fs_knlist, event);
4945 }
4946 
4947 static int	filt_fsattach(struct knote *kn);
4948 static void	filt_fsdetach(struct knote *kn);
4949 static int	filt_fsevent(struct knote *kn, long hint);
4950 
4951 struct filterops fs_filtops = {
4952 	.f_isfd = 0,
4953 	.f_attach = filt_fsattach,
4954 	.f_detach = filt_fsdetach,
4955 	.f_event = filt_fsevent
4956 };
4957 
4958 static int
4959 filt_fsattach(struct knote *kn)
4960 {
4961 
4962 	kn->kn_flags |= EV_CLEAR;
4963 	knlist_add(&fs_knlist, kn, 0);
4964 	return (0);
4965 }
4966 
4967 static void
4968 filt_fsdetach(struct knote *kn)
4969 {
4970 
4971 	knlist_remove(&fs_knlist, kn, 0);
4972 }
4973 
4974 static int
4975 filt_fsevent(struct knote *kn, long hint)
4976 {
4977 
4978 	kn->kn_fflags |= hint;
4979 	return (kn->kn_fflags != 0);
4980 }
4981 
4982 static int
4983 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4984 {
4985 	struct vfsidctl vc;
4986 	int error;
4987 	struct mount *mp;
4988 
4989 	error = SYSCTL_IN(req, &vc, sizeof(vc));
4990 	if (error)
4991 		return (error);
4992 	if (vc.vc_vers != VFS_CTL_VERS1)
4993 		return (EINVAL);
4994 	mp = vfs_getvfs(&vc.vc_fsid);
4995 	if (mp == NULL)
4996 		return (ENOENT);
4997 	/* ensure that a specific sysctl goes to the right filesystem. */
4998 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4999 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
5000 		vfs_rel(mp);
5001 		return (EINVAL);
5002 	}
5003 	VCTLTOREQ(&vc, req);
5004 	error = VFS_SYSCTL(mp, vc.vc_op, req);
5005 	vfs_rel(mp);
5006 	return (error);
5007 }
5008 
5009 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
5010     NULL, 0, sysctl_vfs_ctl, "",
5011     "Sysctl by fsid");
5012 
5013 /*
5014  * Function to initialize a va_filerev field sensibly.
5015  * XXX: Wouldn't a random number make a lot more sense ??
5016  */
5017 u_quad_t
5018 init_va_filerev(void)
5019 {
5020 	struct bintime bt;
5021 
5022 	getbinuptime(&bt);
5023 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
5024 }
5025 
5026 static int	filt_vfsread(struct knote *kn, long hint);
5027 static int	filt_vfswrite(struct knote *kn, long hint);
5028 static int	filt_vfsvnode(struct knote *kn, long hint);
5029 static void	filt_vfsdetach(struct knote *kn);
5030 static struct filterops vfsread_filtops = {
5031 	.f_isfd = 1,
5032 	.f_detach = filt_vfsdetach,
5033 	.f_event = filt_vfsread
5034 };
5035 static struct filterops vfswrite_filtops = {
5036 	.f_isfd = 1,
5037 	.f_detach = filt_vfsdetach,
5038 	.f_event = filt_vfswrite
5039 };
5040 static struct filterops vfsvnode_filtops = {
5041 	.f_isfd = 1,
5042 	.f_detach = filt_vfsdetach,
5043 	.f_event = filt_vfsvnode
5044 };
5045 
5046 static void
5047 vfs_knllock(void *arg)
5048 {
5049 	struct vnode *vp = arg;
5050 
5051 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5052 }
5053 
5054 static void
5055 vfs_knlunlock(void *arg)
5056 {
5057 	struct vnode *vp = arg;
5058 
5059 	VOP_UNLOCK(vp, 0);
5060 }
5061 
5062 static void
5063 vfs_knl_assert_locked(void *arg)
5064 {
5065 #ifdef DEBUG_VFS_LOCKS
5066 	struct vnode *vp = arg;
5067 
5068 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
5069 #endif
5070 }
5071 
5072 static void
5073 vfs_knl_assert_unlocked(void *arg)
5074 {
5075 #ifdef DEBUG_VFS_LOCKS
5076 	struct vnode *vp = arg;
5077 
5078 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
5079 #endif
5080 }
5081 
5082 int
5083 vfs_kqfilter(struct vop_kqfilter_args *ap)
5084 {
5085 	struct vnode *vp = ap->a_vp;
5086 	struct knote *kn = ap->a_kn;
5087 	struct knlist *knl;
5088 
5089 	switch (kn->kn_filter) {
5090 	case EVFILT_READ:
5091 		kn->kn_fop = &vfsread_filtops;
5092 		break;
5093 	case EVFILT_WRITE:
5094 		kn->kn_fop = &vfswrite_filtops;
5095 		break;
5096 	case EVFILT_VNODE:
5097 		kn->kn_fop = &vfsvnode_filtops;
5098 		break;
5099 	default:
5100 		return (EINVAL);
5101 	}
5102 
5103 	kn->kn_hook = (caddr_t)vp;
5104 
5105 	v_addpollinfo(vp);
5106 	if (vp->v_pollinfo == NULL)
5107 		return (ENOMEM);
5108 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
5109 	vhold(vp);
5110 	knlist_add(knl, kn, 0);
5111 
5112 	return (0);
5113 }
5114 
5115 /*
5116  * Detach knote from vnode
5117  */
5118 static void
5119 filt_vfsdetach(struct knote *kn)
5120 {
5121 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5122 
5123 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
5124 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
5125 	vdrop(vp);
5126 }
5127 
5128 /*ARGSUSED*/
5129 static int
5130 filt_vfsread(struct knote *kn, long hint)
5131 {
5132 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5133 	struct vattr va;
5134 	int res;
5135 
5136 	/*
5137 	 * filesystem is gone, so set the EOF flag and schedule
5138 	 * the knote for deletion.
5139 	 */
5140 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5141 		VI_LOCK(vp);
5142 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5143 		VI_UNLOCK(vp);
5144 		return (1);
5145 	}
5146 
5147 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
5148 		return (0);
5149 
5150 	VI_LOCK(vp);
5151 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
5152 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
5153 	VI_UNLOCK(vp);
5154 	return (res);
5155 }
5156 
5157 /*ARGSUSED*/
5158 static int
5159 filt_vfswrite(struct knote *kn, long hint)
5160 {
5161 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5162 
5163 	VI_LOCK(vp);
5164 
5165 	/*
5166 	 * filesystem is gone, so set the EOF flag and schedule
5167 	 * the knote for deletion.
5168 	 */
5169 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
5170 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5171 
5172 	kn->kn_data = 0;
5173 	VI_UNLOCK(vp);
5174 	return (1);
5175 }
5176 
5177 static int
5178 filt_vfsvnode(struct knote *kn, long hint)
5179 {
5180 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5181 	int res;
5182 
5183 	VI_LOCK(vp);
5184 	if (kn->kn_sfflags & hint)
5185 		kn->kn_fflags |= hint;
5186 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5187 		kn->kn_flags |= EV_EOF;
5188 		VI_UNLOCK(vp);
5189 		return (1);
5190 	}
5191 	res = (kn->kn_fflags != 0);
5192 	VI_UNLOCK(vp);
5193 	return (res);
5194 }
5195 
5196 int
5197 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
5198 {
5199 	int error;
5200 
5201 	if (dp->d_reclen > ap->a_uio->uio_resid)
5202 		return (ENAMETOOLONG);
5203 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
5204 	if (error) {
5205 		if (ap->a_ncookies != NULL) {
5206 			if (ap->a_cookies != NULL)
5207 				free(ap->a_cookies, M_TEMP);
5208 			ap->a_cookies = NULL;
5209 			*ap->a_ncookies = 0;
5210 		}
5211 		return (error);
5212 	}
5213 	if (ap->a_ncookies == NULL)
5214 		return (0);
5215 
5216 	KASSERT(ap->a_cookies,
5217 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
5218 
5219 	*ap->a_cookies = realloc(*ap->a_cookies,
5220 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
5221 	(*ap->a_cookies)[*ap->a_ncookies] = off;
5222 	*ap->a_ncookies += 1;
5223 	return (0);
5224 }
5225 
5226 /*
5227  * Mark for update the access time of the file if the filesystem
5228  * supports VOP_MARKATIME.  This functionality is used by execve and
5229  * mmap, so we want to avoid the I/O implied by directly setting
5230  * va_atime for the sake of efficiency.
5231  */
5232 void
5233 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
5234 {
5235 	struct mount *mp;
5236 
5237 	mp = vp->v_mount;
5238 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
5239 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
5240 		(void)VOP_MARKATIME(vp);
5241 }
5242 
5243 /*
5244  * The purpose of this routine is to remove granularity from accmode_t,
5245  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
5246  * VADMIN and VAPPEND.
5247  *
5248  * If it returns 0, the caller is supposed to continue with the usual
5249  * access checks using 'accmode' as modified by this routine.  If it
5250  * returns nonzero value, the caller is supposed to return that value
5251  * as errno.
5252  *
5253  * Note that after this routine runs, accmode may be zero.
5254  */
5255 int
5256 vfs_unixify_accmode(accmode_t *accmode)
5257 {
5258 	/*
5259 	 * There is no way to specify explicit "deny" rule using
5260 	 * file mode or POSIX.1e ACLs.
5261 	 */
5262 	if (*accmode & VEXPLICIT_DENY) {
5263 		*accmode = 0;
5264 		return (0);
5265 	}
5266 
5267 	/*
5268 	 * None of these can be translated into usual access bits.
5269 	 * Also, the common case for NFSv4 ACLs is to not contain
5270 	 * either of these bits. Caller should check for VWRITE
5271 	 * on the containing directory instead.
5272 	 */
5273 	if (*accmode & (VDELETE_CHILD | VDELETE))
5274 		return (EPERM);
5275 
5276 	if (*accmode & VADMIN_PERMS) {
5277 		*accmode &= ~VADMIN_PERMS;
5278 		*accmode |= VADMIN;
5279 	}
5280 
5281 	/*
5282 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
5283 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
5284 	 */
5285 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
5286 
5287 	return (0);
5288 }
5289 
5290 /*
5291  * These are helper functions for filesystems to traverse all
5292  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
5293  *
5294  * This interface replaces MNT_VNODE_FOREACH.
5295  */
5296 
5297 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
5298 
5299 struct vnode *
5300 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
5301 {
5302 	struct vnode *vp;
5303 
5304 	if (should_yield())
5305 		kern_yield(PRI_USER);
5306 	MNT_ILOCK(mp);
5307 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5308 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
5309 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
5310 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5311 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5312 			continue;
5313 		VI_LOCK(vp);
5314 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5315 			VI_UNLOCK(vp);
5316 			continue;
5317 		}
5318 		break;
5319 	}
5320 	if (vp == NULL) {
5321 		__mnt_vnode_markerfree_all(mvp, mp);
5322 		/* MNT_IUNLOCK(mp); -- done in above function */
5323 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
5324 		return (NULL);
5325 	}
5326 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5327 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5328 	MNT_IUNLOCK(mp);
5329 	return (vp);
5330 }
5331 
5332 struct vnode *
5333 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
5334 {
5335 	struct vnode *vp;
5336 
5337 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5338 	MNT_ILOCK(mp);
5339 	MNT_REF(mp);
5340 	(*mvp)->v_mount = mp;
5341 	(*mvp)->v_type = VMARKER;
5342 
5343 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
5344 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5345 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5346 			continue;
5347 		VI_LOCK(vp);
5348 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5349 			VI_UNLOCK(vp);
5350 			continue;
5351 		}
5352 		break;
5353 	}
5354 	if (vp == NULL) {
5355 		MNT_REL(mp);
5356 		MNT_IUNLOCK(mp);
5357 		free(*mvp, M_VNODE_MARKER);
5358 		*mvp = NULL;
5359 		return (NULL);
5360 	}
5361 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5362 	MNT_IUNLOCK(mp);
5363 	return (vp);
5364 }
5365 
5366 void
5367 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
5368 {
5369 
5370 	if (*mvp == NULL) {
5371 		MNT_IUNLOCK(mp);
5372 		return;
5373 	}
5374 
5375 	mtx_assert(MNT_MTX(mp), MA_OWNED);
5376 
5377 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5378 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5379 	MNT_REL(mp);
5380 	MNT_IUNLOCK(mp);
5381 	free(*mvp, M_VNODE_MARKER);
5382 	*mvp = NULL;
5383 }
5384 
5385 /*
5386  * These are helper functions for filesystems to traverse their
5387  * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
5388  */
5389 static void
5390 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5391 {
5392 
5393 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5394 
5395 	MNT_ILOCK(mp);
5396 	MNT_REL(mp);
5397 	MNT_IUNLOCK(mp);
5398 	free(*mvp, M_VNODE_MARKER);
5399 	*mvp = NULL;
5400 }
5401 
5402 /*
5403  * Relock the mp mount vnode list lock with the vp vnode interlock in the
5404  * conventional lock order during mnt_vnode_next_active iteration.
5405  *
5406  * On entry, the mount vnode list lock is held and the vnode interlock is not.
5407  * The list lock is dropped and reacquired.  On success, both locks are held.
5408  * On failure, the mount vnode list lock is held but the vnode interlock is
5409  * not, and the procedure may have yielded.
5410  */
5411 static bool
5412 mnt_vnode_next_active_relock(struct vnode *mvp, struct mount *mp,
5413     struct vnode *vp)
5414 {
5415 	const struct vnode *tmp;
5416 	bool held, ret;
5417 
5418 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
5419 	    TAILQ_NEXT(mvp, v_actfreelist) != NULL, mvp,
5420 	    ("%s: bad marker", __func__));
5421 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
5422 	    ("%s: inappropriate vnode", __func__));
5423 	ASSERT_VI_UNLOCKED(vp, __func__);
5424 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5425 
5426 	ret = false;
5427 
5428 	TAILQ_REMOVE(&mp->mnt_activevnodelist, mvp, v_actfreelist);
5429 	TAILQ_INSERT_BEFORE(vp, mvp, v_actfreelist);
5430 
5431 	/*
5432 	 * Use a hold to prevent vp from disappearing while the mount vnode
5433 	 * list lock is dropped and reacquired.  Normally a hold would be
5434 	 * acquired with vhold(), but that might try to acquire the vnode
5435 	 * interlock, which would be a LOR with the mount vnode list lock.
5436 	 */
5437 	held = refcount_acquire_if_not_zero(&vp->v_holdcnt);
5438 	mtx_unlock(&mp->mnt_listmtx);
5439 	if (!held)
5440 		goto abort;
5441 	VI_LOCK(vp);
5442 	if (!refcount_release_if_not_last(&vp->v_holdcnt)) {
5443 		vdropl(vp);
5444 		goto abort;
5445 	}
5446 	mtx_lock(&mp->mnt_listmtx);
5447 
5448 	/*
5449 	 * Determine whether the vnode is still the next one after the marker,
5450 	 * excepting any other markers.  If the vnode has not been doomed by
5451 	 * vgone() then the hold should have ensured that it remained on the
5452 	 * active list.  If it has been doomed but is still on the active list,
5453 	 * don't abort, but rather skip over it (avoid spinning on doomed
5454 	 * vnodes).
5455 	 */
5456 	tmp = mvp;
5457 	do {
5458 		tmp = TAILQ_NEXT(tmp, v_actfreelist);
5459 	} while (tmp != NULL && tmp->v_type == VMARKER);
5460 	if (tmp != vp) {
5461 		mtx_unlock(&mp->mnt_listmtx);
5462 		VI_UNLOCK(vp);
5463 		goto abort;
5464 	}
5465 
5466 	ret = true;
5467 	goto out;
5468 abort:
5469 	maybe_yield();
5470 	mtx_lock(&mp->mnt_listmtx);
5471 out:
5472 	if (ret)
5473 		ASSERT_VI_LOCKED(vp, __func__);
5474 	else
5475 		ASSERT_VI_UNLOCKED(vp, __func__);
5476 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5477 	return (ret);
5478 }
5479 
5480 static struct vnode *
5481 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5482 {
5483 	struct vnode *vp, *nvp;
5484 
5485 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5486 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5487 restart:
5488 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
5489 	while (vp != NULL) {
5490 		if (vp->v_type == VMARKER) {
5491 			vp = TAILQ_NEXT(vp, v_actfreelist);
5492 			continue;
5493 		}
5494 		/*
5495 		 * Try-lock because this is the wrong lock order.  If that does
5496 		 * not succeed, drop the mount vnode list lock and try to
5497 		 * reacquire it and the vnode interlock in the right order.
5498 		 */
5499 		if (!VI_TRYLOCK(vp) &&
5500 		    !mnt_vnode_next_active_relock(*mvp, mp, vp))
5501 			goto restart;
5502 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
5503 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
5504 		    ("alien vnode on the active list %p %p", vp, mp));
5505 		if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0)
5506 			break;
5507 		nvp = TAILQ_NEXT(vp, v_actfreelist);
5508 		VI_UNLOCK(vp);
5509 		vp = nvp;
5510 	}
5511 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5512 
5513 	/* Check if we are done */
5514 	if (vp == NULL) {
5515 		mtx_unlock(&mp->mnt_listmtx);
5516 		mnt_vnode_markerfree_active(mvp, mp);
5517 		return (NULL);
5518 	}
5519 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
5520 	mtx_unlock(&mp->mnt_listmtx);
5521 	ASSERT_VI_LOCKED(vp, "active iter");
5522 	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
5523 	return (vp);
5524 }
5525 
5526 struct vnode *
5527 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5528 {
5529 
5530 	if (should_yield())
5531 		kern_yield(PRI_USER);
5532 	mtx_lock(&mp->mnt_listmtx);
5533 	return (mnt_vnode_next_active(mvp, mp));
5534 }
5535 
5536 struct vnode *
5537 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
5538 {
5539 	struct vnode *vp;
5540 
5541 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5542 	MNT_ILOCK(mp);
5543 	MNT_REF(mp);
5544 	MNT_IUNLOCK(mp);
5545 	(*mvp)->v_type = VMARKER;
5546 	(*mvp)->v_mount = mp;
5547 
5548 	mtx_lock(&mp->mnt_listmtx);
5549 	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
5550 	if (vp == NULL) {
5551 		mtx_unlock(&mp->mnt_listmtx);
5552 		mnt_vnode_markerfree_active(mvp, mp);
5553 		return (NULL);
5554 	}
5555 	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
5556 	return (mnt_vnode_next_active(mvp, mp));
5557 }
5558 
5559 void
5560 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5561 {
5562 
5563 	if (*mvp == NULL)
5564 		return;
5565 
5566 	mtx_lock(&mp->mnt_listmtx);
5567 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5568 	mtx_unlock(&mp->mnt_listmtx);
5569 	mnt_vnode_markerfree_active(mvp, mp);
5570 }
5571