xref: /freebsd/sys/kern/vfs_subr.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 #include "opt_ddb.h"
43 #include "opt_watchdog.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/asan.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/capsicum.h>
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/counter.h>
54 #include <sys/dirent.h>
55 #include <sys/event.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/file.h>
59 #include <sys/fcntl.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vnode.h>
84 #include <sys/watchdog.h>
85 
86 #include <machine/stdarg.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99 
100 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
101 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
102 #endif
103 
104 #ifdef DDB
105 #include <ddb/ddb.h>
106 #endif
107 
108 static void	delmntque(struct vnode *vp);
109 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
110 		    int slpflag, int slptimeo);
111 static void	syncer_shutdown(void *arg, int howto);
112 static int	vtryrecycle(struct vnode *vp, bool isvnlru);
113 static void	v_init_counters(struct vnode *);
114 static void	vn_seqc_init(struct vnode *);
115 static void	vn_seqc_write_end_free(struct vnode *vp);
116 static void	vgonel(struct vnode *);
117 static bool	vhold_recycle_free(struct vnode *);
118 static void	vdropl_recycle(struct vnode *vp);
119 static void	vdrop_recycle(struct vnode *vp);
120 static void	vfs_knllock(void *arg);
121 static void	vfs_knlunlock(void *arg);
122 static void	vfs_knl_assert_lock(void *arg, int what);
123 static void	destroy_vpollinfo(struct vpollinfo *vi);
124 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
125 		    daddr_t startlbn, daddr_t endlbn);
126 static void	vnlru_recalc(void);
127 
128 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129     "vnode configuration and statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131     "vnode configuration");
132 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
133     "vnode statistics");
134 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
135     "vnode recycling");
136 
137 /*
138  * Number of vnodes in existence.  Increased whenever getnewvnode()
139  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
140  */
141 static u_long __exclusive_cache_line numvnodes;
142 
143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144     "Number of vnodes in existence (legacy)");
145 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
146     "Number of vnodes in existence");
147 
148 static counter_u64_t vnodes_created;
149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
150     "Number of vnodes created by getnewvnode (legacy)");
151 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
152     "Number of vnodes created by getnewvnode");
153 
154 /*
155  * Conversion tables for conversion from vnode types to inode formats
156  * and back.
157  */
158 __enum_uint8(vtype) iftovt_tab[16] = {
159 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161 };
162 int vttoif_tab[10] = {
163 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165 };
166 
167 /*
168  * List of allocates vnodes in the system.
169  */
170 static TAILQ_HEAD(freelst, vnode) vnode_list;
171 static struct vnode *vnode_list_free_marker;
172 static struct vnode *vnode_list_reclaim_marker;
173 
174 /*
175  * "Free" vnode target.  Free vnodes are rarely completely free, but are
176  * just ones that are cheap to recycle.  Usually they are for files which
177  * have been stat'd but not read; these usually have inode and namecache
178  * data attached to them.  This target is the preferred minimum size of a
179  * sub-cache consisting mostly of such files. The system balances the size
180  * of this sub-cache with its complement to try to prevent either from
181  * thrashing while the other is relatively inactive.  The targets express
182  * a preference for the best balance.
183  *
184  * "Above" this target there are 2 further targets (watermarks) related
185  * to recyling of free vnodes.  In the best-operating case, the cache is
186  * exactly full, the free list has size between vlowat and vhiwat above the
187  * free target, and recycling from it and normal use maintains this state.
188  * Sometimes the free list is below vlowat or even empty, but this state
189  * is even better for immediate use provided the cache is not full.
190  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
191  * ones) to reach one of these states.  The watermarks are currently hard-
192  * coded as 4% and 9% of the available space higher.  These and the default
193  * of 25% for wantfreevnodes are too large if the memory size is large.
194  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
195  * whenever vnlru_proc() becomes active.
196  */
197 static long wantfreevnodes;
198 static long __exclusive_cache_line freevnodes;
199 static long freevnodes_old;
200 
201 static u_long recycles_count;
202 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
203     "Number of vnodes recycled to meet vnode cache targets (legacy)");
204 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
205     &recycles_count, 0,
206     "Number of vnodes recycled to meet vnode cache targets");
207 
208 static u_long recycles_free_count;
209 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
210     &recycles_free_count, 0,
211     "Number of free vnodes recycled to meet vnode cache targets (legacy)");
212 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
213     &recycles_free_count, 0,
214     "Number of free vnodes recycled to meet vnode cache targets");
215 
216 static counter_u64_t direct_recycles_free_count;
217 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
218     &direct_recycles_free_count,
219     "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
220 
221 static counter_u64_t vnode_skipped_requeues;
222 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
223     "Number of times LRU requeue was skipped due to lock contention");
224 
225 static __read_mostly bool vnode_can_skip_requeue;
226 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
227     &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
228 
229 static u_long deferred_inact;
230 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
231     &deferred_inact, 0, "Number of times inactive processing was deferred");
232 
233 /* To keep more than one thread at a time from running vfs_getnewfsid */
234 static struct mtx mntid_mtx;
235 
236 /*
237  * Lock for any access to the following:
238  *	vnode_list
239  *	numvnodes
240  *	freevnodes
241  */
242 static struct mtx __exclusive_cache_line vnode_list_mtx;
243 
244 /* Publicly exported FS */
245 struct nfs_public nfs_pub;
246 
247 static uma_zone_t buf_trie_zone;
248 static smr_t buf_trie_smr;
249 
250 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
251 static uma_zone_t vnode_zone;
252 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
253 
254 __read_frequently smr_t vfs_smr;
255 
256 /*
257  * The workitem queue.
258  *
259  * It is useful to delay writes of file data and filesystem metadata
260  * for tens of seconds so that quickly created and deleted files need
261  * not waste disk bandwidth being created and removed. To realize this,
262  * we append vnodes to a "workitem" queue. When running with a soft
263  * updates implementation, most pending metadata dependencies should
264  * not wait for more than a few seconds. Thus, mounted on block devices
265  * are delayed only about a half the time that file data is delayed.
266  * Similarly, directory updates are more critical, so are only delayed
267  * about a third the time that file data is delayed. Thus, there are
268  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
269  * one each second (driven off the filesystem syncer process). The
270  * syncer_delayno variable indicates the next queue that is to be processed.
271  * Items that need to be processed soon are placed in this queue:
272  *
273  *	syncer_workitem_pending[syncer_delayno]
274  *
275  * A delay of fifteen seconds is done by placing the request fifteen
276  * entries later in the queue:
277  *
278  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
279  *
280  */
281 static int syncer_delayno;
282 static long syncer_mask;
283 LIST_HEAD(synclist, bufobj);
284 static struct synclist *syncer_workitem_pending;
285 /*
286  * The sync_mtx protects:
287  *	bo->bo_synclist
288  *	sync_vnode_count
289  *	syncer_delayno
290  *	syncer_state
291  *	syncer_workitem_pending
292  *	syncer_worklist_len
293  *	rushjob
294  */
295 static struct mtx sync_mtx;
296 static struct cv sync_wakeup;
297 
298 #define SYNCER_MAXDELAY		32
299 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
300 static int syncdelay = 30;		/* max time to delay syncing data */
301 static int filedelay = 30;		/* time to delay syncing files */
302 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
303     "Time to delay syncing files (in seconds)");
304 static int dirdelay = 29;		/* time to delay syncing directories */
305 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
306     "Time to delay syncing directories (in seconds)");
307 static int metadelay = 28;		/* time to delay syncing metadata */
308 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
309     "Time to delay syncing metadata (in seconds)");
310 static int rushjob;		/* number of slots to run ASAP */
311 static int stat_rush_requests;	/* number of times I/O speeded up */
312 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
313     "Number of times I/O speeded up (rush requests)");
314 
315 #define	VDBATCH_SIZE 8
316 struct vdbatch {
317 	u_int index;
318 	struct mtx lock;
319 	struct vnode *tab[VDBATCH_SIZE];
320 };
321 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
322 
323 static void	vdbatch_dequeue(struct vnode *vp);
324 
325 /*
326  * When shutting down the syncer, run it at four times normal speed.
327  */
328 #define SYNCER_SHUTDOWN_SPEEDUP		4
329 static int sync_vnode_count;
330 static int syncer_worklist_len;
331 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
332     syncer_state;
333 
334 /* Target for maximum number of vnodes. */
335 u_long desiredvnodes;
336 static u_long gapvnodes;		/* gap between wanted and desired */
337 static u_long vhiwat;		/* enough extras after expansion */
338 static u_long vlowat;		/* minimal extras before expansion */
339 static bool vstir;		/* nonzero to stir non-free vnodes */
340 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
341 
342 static u_long vnlru_read_freevnodes(void);
343 
344 /*
345  * Note that no attempt is made to sanitize these parameters.
346  */
347 static int
348 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = desiredvnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == desiredvnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	desiredvnodes = val;
362 	wantfreevnodes = desiredvnodes / 4;
363 	vnlru_recalc();
364 	mtx_unlock(&vnode_list_mtx);
365 	/*
366 	 * XXX There is no protection against multiple threads changing
367 	 * desiredvnodes at the same time. Locking above only helps vnlru and
368 	 * getnewvnode.
369 	 */
370 	vfs_hash_changesize(desiredvnodes);
371 	cache_changesize(desiredvnodes);
372 	return (0);
373 }
374 
375 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
376     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377     "LU", "Target for maximum number of vnodes (legacy)");
378 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
379     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
380     "LU", "Target for maximum number of vnodes");
381 
382 static int
383 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
384 {
385 	u_long rfreevnodes;
386 
387 	rfreevnodes = vnlru_read_freevnodes();
388 	return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
389 }
390 
391 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
392     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393     "LU", "Number of \"free\" vnodes (legacy)");
394 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
395     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
396     "LU", "Number of \"free\" vnodes");
397 
398 static int
399 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
400 {
401 	u_long val;
402 	int error;
403 
404 	val = wantfreevnodes;
405 	error = sysctl_handle_long(oidp, &val, 0, req);
406 	if (error != 0 || req->newptr == NULL)
407 		return (error);
408 
409 	if (val == wantfreevnodes)
410 		return (0);
411 	mtx_lock(&vnode_list_mtx);
412 	wantfreevnodes = val;
413 	vnlru_recalc();
414 	mtx_unlock(&vnode_list_mtx);
415 	return (0);
416 }
417 
418 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
419     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420     "LU", "Target for minimum number of \"free\" vnodes (legacy)");
421 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
422     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
423     "LU", "Target for minimum number of \"free\" vnodes");
424 
425 static int vnlru_nowhere;
426 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
427     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
428 
429 static int
430 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
431 {
432 	struct vnode *vp;
433 	struct nameidata nd;
434 	char *buf;
435 	unsigned long ndflags;
436 	int error;
437 
438 	if (req->newptr == NULL)
439 		return (EINVAL);
440 	if (req->newlen >= PATH_MAX)
441 		return (E2BIG);
442 
443 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
444 	error = SYSCTL_IN(req, buf, req->newlen);
445 	if (error != 0)
446 		goto out;
447 
448 	buf[req->newlen] = '\0';
449 
450 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
451 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
452 	if ((error = namei(&nd)) != 0)
453 		goto out;
454 	vp = nd.ni_vp;
455 
456 	if (VN_IS_DOOMED(vp)) {
457 		/*
458 		 * This vnode is being recycled.  Return != 0 to let the caller
459 		 * know that the sysctl had no effect.  Return EAGAIN because a
460 		 * subsequent call will likely succeed (since namei will create
461 		 * a new vnode if necessary)
462 		 */
463 		error = EAGAIN;
464 		goto putvnode;
465 	}
466 
467 	vgone(vp);
468 putvnode:
469 	vput(vp);
470 	NDFREE_PNBUF(&nd);
471 out:
472 	free(buf, M_TEMP);
473 	return (error);
474 }
475 
476 static int
477 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
478 {
479 	struct thread *td = curthread;
480 	struct vnode *vp;
481 	struct file *fp;
482 	int error;
483 	int fd;
484 
485 	if (req->newptr == NULL)
486 		return (EBADF);
487 
488         error = sysctl_handle_int(oidp, &fd, 0, req);
489         if (error != 0)
490                 return (error);
491 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
492 	if (error != 0)
493 		return (error);
494 	vp = fp->f_vnode;
495 
496 	error = vn_lock(vp, LK_EXCLUSIVE);
497 	if (error != 0)
498 		goto drop;
499 
500 	vgone(vp);
501 	VOP_UNLOCK(vp);
502 drop:
503 	fdrop(fp, td);
504 	return (error);
505 }
506 
507 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
508     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
510 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
511     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
512     sysctl_ftry_reclaim_vnode, "I",
513     "Try to reclaim a vnode by its file descriptor");
514 
515 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
516 #define vnsz2log 8
517 #ifndef DEBUG_LOCKS
518 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
519     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
520     "vnsz2log needs to be updated");
521 #endif
522 
523 /*
524  * Support for the bufobj clean & dirty pctrie.
525  */
526 static void *
527 buf_trie_alloc(struct pctrie *ptree)
528 {
529 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
530 }
531 
532 static void
533 buf_trie_free(struct pctrie *ptree, void *node)
534 {
535 	uma_zfree_smr(buf_trie_zone, node);
536 }
537 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
538     buf_trie_smr);
539 
540 /*
541  * Initialize the vnode management data structures.
542  *
543  * Reevaluate the following cap on the number of vnodes after the physical
544  * memory size exceeds 512GB.  In the limit, as the physical memory size
545  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
546  */
547 #ifndef	MAXVNODES_MAX
548 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
549 #endif
550 
551 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
552 
553 static struct vnode *
554 vn_alloc_marker(struct mount *mp)
555 {
556 	struct vnode *vp;
557 
558 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
559 	vp->v_type = VMARKER;
560 	vp->v_mount = mp;
561 
562 	return (vp);
563 }
564 
565 static void
566 vn_free_marker(struct vnode *vp)
567 {
568 
569 	MPASS(vp->v_type == VMARKER);
570 	free(vp, M_VNODE_MARKER);
571 }
572 
573 #ifdef KASAN
574 static int
575 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
576 {
577 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
578 	return (0);
579 }
580 
581 static void
582 vnode_dtor(void *mem, int size, void *arg __unused)
583 {
584 	size_t end1, end2, off1, off2;
585 
586 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
587 	    offsetof(struct vnode, v_dbatchcpu),
588 	    "KASAN marks require updating");
589 
590 	off1 = offsetof(struct vnode, v_vnodelist);
591 	off2 = offsetof(struct vnode, v_dbatchcpu);
592 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
593 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
594 
595 	/*
596 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
597 	 * after the vnode has been freed.  Try to get some KASAN coverage by
598 	 * marking everything except those two fields as invalid.  Because
599 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
600 	 * the same 8-byte aligned word must also be marked valid.
601 	 */
602 
603 	/* Handle the area from the start until v_vnodelist... */
604 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
605 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
606 
607 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
608 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
609 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
610 	if (off2 > off1)
611 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
612 		    off2 - off1, KASAN_UMA_FREED);
613 
614 	/* ... and finally the area from v_dbatchcpu to the end. */
615 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
616 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
617 	    KASAN_UMA_FREED);
618 }
619 #endif /* KASAN */
620 
621 /*
622  * Initialize a vnode as it first enters the zone.
623  */
624 static int
625 vnode_init(void *mem, int size, int flags)
626 {
627 	struct vnode *vp;
628 
629 	vp = mem;
630 	bzero(vp, size);
631 	/*
632 	 * Setup locks.
633 	 */
634 	vp->v_vnlock = &vp->v_lock;
635 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
636 	/*
637 	 * By default, don't allow shared locks unless filesystems opt-in.
638 	 */
639 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
640 	    LK_NOSHARE | LK_IS_VNODE);
641 	/*
642 	 * Initialize bufobj.
643 	 */
644 	bufobj_init(&vp->v_bufobj, vp);
645 	/*
646 	 * Initialize namecache.
647 	 */
648 	cache_vnode_init(vp);
649 	/*
650 	 * Initialize rangelocks.
651 	 */
652 	rangelock_init(&vp->v_rl);
653 
654 	vp->v_dbatchcpu = NOCPU;
655 
656 	vp->v_state = VSTATE_DEAD;
657 
658 	/*
659 	 * Check vhold_recycle_free for an explanation.
660 	 */
661 	vp->v_holdcnt = VHOLD_NO_SMR;
662 	vp->v_type = VNON;
663 	mtx_lock(&vnode_list_mtx);
664 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
665 	mtx_unlock(&vnode_list_mtx);
666 	return (0);
667 }
668 
669 /*
670  * Free a vnode when it is cleared from the zone.
671  */
672 static void
673 vnode_fini(void *mem, int size)
674 {
675 	struct vnode *vp;
676 	struct bufobj *bo;
677 
678 	vp = mem;
679 	vdbatch_dequeue(vp);
680 	mtx_lock(&vnode_list_mtx);
681 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
682 	mtx_unlock(&vnode_list_mtx);
683 	rangelock_destroy(&vp->v_rl);
684 	lockdestroy(vp->v_vnlock);
685 	mtx_destroy(&vp->v_interlock);
686 	bo = &vp->v_bufobj;
687 	rw_destroy(BO_LOCKPTR(bo));
688 
689 	kasan_mark(mem, size, size, 0);
690 }
691 
692 /*
693  * Provide the size of NFS nclnode and NFS fh for calculation of the
694  * vnode memory consumption.  The size is specified directly to
695  * eliminate dependency on NFS-private header.
696  *
697  * Other filesystems may use bigger or smaller (like UFS and ZFS)
698  * private inode data, but the NFS-based estimation is ample enough.
699  * Still, we care about differences in the size between 64- and 32-bit
700  * platforms.
701  *
702  * Namecache structure size is heuristically
703  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
704  */
705 #ifdef _LP64
706 #define	NFS_NCLNODE_SZ	(528 + 64)
707 #define	NC_SZ		148
708 #else
709 #define	NFS_NCLNODE_SZ	(360 + 32)
710 #define	NC_SZ		92
711 #endif
712 
713 static void
714 vntblinit(void *dummy __unused)
715 {
716 	struct vdbatch *vd;
717 	uma_ctor ctor;
718 	uma_dtor dtor;
719 	int cpu, physvnodes, virtvnodes;
720 
721 	/*
722 	 * Desiredvnodes is a function of the physical memory size and the
723 	 * kernel's heap size.  Generally speaking, it scales with the
724 	 * physical memory size.  The ratio of desiredvnodes to the physical
725 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
726 	 * Thereafter, the
727 	 * marginal ratio of desiredvnodes to the physical memory size is
728 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
729 	 * size.  The memory required by desiredvnodes vnodes and vm objects
730 	 * must not exceed 1/10th of the kernel's heap size.
731 	 */
732 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
733 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
734 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
735 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
736 	desiredvnodes = min(physvnodes, virtvnodes);
737 	if (desiredvnodes > MAXVNODES_MAX) {
738 		if (bootverbose)
739 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
740 			    desiredvnodes, MAXVNODES_MAX);
741 		desiredvnodes = MAXVNODES_MAX;
742 	}
743 	wantfreevnodes = desiredvnodes / 4;
744 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
745 	TAILQ_INIT(&vnode_list);
746 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
747 	/*
748 	 * The lock is taken to appease WITNESS.
749 	 */
750 	mtx_lock(&vnode_list_mtx);
751 	vnlru_recalc();
752 	mtx_unlock(&vnode_list_mtx);
753 	vnode_list_free_marker = vn_alloc_marker(NULL);
754 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
755 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
756 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
757 
758 #ifdef KASAN
759 	ctor = vnode_ctor;
760 	dtor = vnode_dtor;
761 #else
762 	ctor = NULL;
763 	dtor = NULL;
764 #endif
765 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
766 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
767 	uma_zone_set_smr(vnode_zone, vfs_smr);
768 
769 	/*
770 	 * Preallocate enough nodes to support one-per buf so that
771 	 * we can not fail an insert.  reassignbuf() callers can not
772 	 * tolerate the insertion failure.
773 	 */
774 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
775 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
776 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
777 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
778 	uma_prealloc(buf_trie_zone, nbuf);
779 
780 	vnodes_created = counter_u64_alloc(M_WAITOK);
781 	direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
782 	vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
783 
784 	/*
785 	 * Initialize the filesystem syncer.
786 	 */
787 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
788 	    &syncer_mask);
789 	syncer_maxdelay = syncer_mask + 1;
790 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
791 	cv_init(&sync_wakeup, "syncer");
792 
793 	CPU_FOREACH(cpu) {
794 		vd = DPCPU_ID_PTR((cpu), vd);
795 		bzero(vd, sizeof(*vd));
796 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
797 	}
798 }
799 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
800 
801 /*
802  * Mark a mount point as busy. Used to synchronize access and to delay
803  * unmounting. Eventually, mountlist_mtx is not released on failure.
804  *
805  * vfs_busy() is a custom lock, it can block the caller.
806  * vfs_busy() only sleeps if the unmount is active on the mount point.
807  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
808  * vnode belonging to mp.
809  *
810  * Lookup uses vfs_busy() to traverse mount points.
811  * root fs			var fs
812  * / vnode lock		A	/ vnode lock (/var)		D
813  * /var vnode lock	B	/log vnode lock(/var/log)	E
814  * vfs_busy lock	C	vfs_busy lock			F
815  *
816  * Within each file system, the lock order is C->A->B and F->D->E.
817  *
818  * When traversing across mounts, the system follows that lock order:
819  *
820  *        C->A->B
821  *              |
822  *              +->F->D->E
823  *
824  * The lookup() process for namei("/var") illustrates the process:
825  *  1. VOP_LOOKUP() obtains B while A is held
826  *  2. vfs_busy() obtains a shared lock on F while A and B are held
827  *  3. vput() releases lock on B
828  *  4. vput() releases lock on A
829  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
830  *  6. vfs_unbusy() releases shared lock on F
831  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
832  *     Attempt to lock A (instead of vp_crossmp) while D is held would
833  *     violate the global order, causing deadlocks.
834  *
835  * dounmount() locks B while F is drained.  Note that for stacked
836  * filesystems, D and B in the example above may be the same lock,
837  * which introdues potential lock order reversal deadlock between
838  * dounmount() and step 5 above.  These filesystems may avoid the LOR
839  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
840  * remain held until after step 5.
841  */
842 int
843 vfs_busy(struct mount *mp, int flags)
844 {
845 	struct mount_pcpu *mpcpu;
846 
847 	MPASS((flags & ~MBF_MASK) == 0);
848 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
849 
850 	if (vfs_op_thread_enter(mp, mpcpu)) {
851 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
852 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
853 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
854 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
855 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
856 		vfs_op_thread_exit(mp, mpcpu);
857 		if (flags & MBF_MNTLSTLOCK)
858 			mtx_unlock(&mountlist_mtx);
859 		return (0);
860 	}
861 
862 	MNT_ILOCK(mp);
863 	vfs_assert_mount_counters(mp);
864 	MNT_REF(mp);
865 	/*
866 	 * If mount point is currently being unmounted, sleep until the
867 	 * mount point fate is decided.  If thread doing the unmounting fails,
868 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
869 	 * that this mount point has survived the unmount attempt and vfs_busy
870 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
871 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
872 	 * about to be really destroyed.  vfs_busy needs to release its
873 	 * reference on the mount point in this case and return with ENOENT,
874 	 * telling the caller the mount it tried to busy is no longer valid.
875 	 */
876 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
877 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
878 		    ("%s: non-empty upper mount list with pending unmount",
879 		    __func__));
880 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
881 			MNT_REL(mp);
882 			MNT_IUNLOCK(mp);
883 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
884 			    __func__);
885 			return (ENOENT);
886 		}
887 		if (flags & MBF_MNTLSTLOCK)
888 			mtx_unlock(&mountlist_mtx);
889 		mp->mnt_kern_flag |= MNTK_MWAIT;
890 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
891 		if (flags & MBF_MNTLSTLOCK)
892 			mtx_lock(&mountlist_mtx);
893 		MNT_ILOCK(mp);
894 	}
895 	if (flags & MBF_MNTLSTLOCK)
896 		mtx_unlock(&mountlist_mtx);
897 	mp->mnt_lockref++;
898 	MNT_IUNLOCK(mp);
899 	return (0);
900 }
901 
902 /*
903  * Free a busy filesystem.
904  */
905 void
906 vfs_unbusy(struct mount *mp)
907 {
908 	struct mount_pcpu *mpcpu;
909 	int c;
910 
911 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
912 
913 	if (vfs_op_thread_enter(mp, mpcpu)) {
914 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
915 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
916 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
917 		vfs_op_thread_exit(mp, mpcpu);
918 		return;
919 	}
920 
921 	MNT_ILOCK(mp);
922 	vfs_assert_mount_counters(mp);
923 	MNT_REL(mp);
924 	c = --mp->mnt_lockref;
925 	if (mp->mnt_vfs_ops == 0) {
926 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
927 		MNT_IUNLOCK(mp);
928 		return;
929 	}
930 	if (c < 0)
931 		vfs_dump_mount_counters(mp);
932 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
933 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
934 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
935 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
936 		wakeup(&mp->mnt_lockref);
937 	}
938 	MNT_IUNLOCK(mp);
939 }
940 
941 /*
942  * Lookup a mount point by filesystem identifier.
943  */
944 struct mount *
945 vfs_getvfs(fsid_t *fsid)
946 {
947 	struct mount *mp;
948 
949 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
950 	mtx_lock(&mountlist_mtx);
951 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
952 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
953 			vfs_ref(mp);
954 			mtx_unlock(&mountlist_mtx);
955 			return (mp);
956 		}
957 	}
958 	mtx_unlock(&mountlist_mtx);
959 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
960 	return ((struct mount *) 0);
961 }
962 
963 /*
964  * Lookup a mount point by filesystem identifier, busying it before
965  * returning.
966  *
967  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
968  * cache for popular filesystem identifiers.  The cache is lockess, using
969  * the fact that struct mount's are never freed.  In worst case we may
970  * get pointer to unmounted or even different filesystem, so we have to
971  * check what we got, and go slow way if so.
972  */
973 struct mount *
974 vfs_busyfs(fsid_t *fsid)
975 {
976 #define	FSID_CACHE_SIZE	256
977 	typedef struct mount * volatile vmp_t;
978 	static vmp_t cache[FSID_CACHE_SIZE];
979 	struct mount *mp;
980 	int error;
981 	uint32_t hash;
982 
983 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
984 	hash = fsid->val[0] ^ fsid->val[1];
985 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
986 	mp = cache[hash];
987 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
988 		goto slow;
989 	if (vfs_busy(mp, 0) != 0) {
990 		cache[hash] = NULL;
991 		goto slow;
992 	}
993 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
994 		return (mp);
995 	else
996 	    vfs_unbusy(mp);
997 
998 slow:
999 	mtx_lock(&mountlist_mtx);
1000 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1001 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1002 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
1003 			if (error) {
1004 				cache[hash] = NULL;
1005 				mtx_unlock(&mountlist_mtx);
1006 				return (NULL);
1007 			}
1008 			cache[hash] = mp;
1009 			return (mp);
1010 		}
1011 	}
1012 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1013 	mtx_unlock(&mountlist_mtx);
1014 	return ((struct mount *) 0);
1015 }
1016 
1017 /*
1018  * Check if a user can access privileged mount options.
1019  */
1020 int
1021 vfs_suser(struct mount *mp, struct thread *td)
1022 {
1023 	int error;
1024 
1025 	if (jailed(td->td_ucred)) {
1026 		/*
1027 		 * If the jail of the calling thread lacks permission for
1028 		 * this type of file system, deny immediately.
1029 		 */
1030 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1031 			return (EPERM);
1032 
1033 		/*
1034 		 * If the file system was mounted outside the jail of the
1035 		 * calling thread, deny immediately.
1036 		 */
1037 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1038 			return (EPERM);
1039 	}
1040 
1041 	/*
1042 	 * If file system supports delegated administration, we don't check
1043 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1044 	 * by the file system itself.
1045 	 * If this is not the user that did original mount, we check for
1046 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1047 	 */
1048 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1049 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1050 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1051 			return (error);
1052 	}
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1058  * will be used to create fake device numbers for stat().  Also try (but
1059  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1060  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1061  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1062  *
1063  * Keep in mind that several mounts may be running in parallel.  Starting
1064  * the search one past where the previous search terminated is both a
1065  * micro-optimization and a defense against returning the same fsid to
1066  * different mounts.
1067  */
1068 void
1069 vfs_getnewfsid(struct mount *mp)
1070 {
1071 	static uint16_t mntid_base;
1072 	struct mount *nmp;
1073 	fsid_t tfsid;
1074 	int mtype;
1075 
1076 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1077 	mtx_lock(&mntid_mtx);
1078 	mtype = mp->mnt_vfc->vfc_typenum;
1079 	tfsid.val[1] = mtype;
1080 	mtype = (mtype & 0xFF) << 24;
1081 	for (;;) {
1082 		tfsid.val[0] = makedev(255,
1083 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1084 		mntid_base++;
1085 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1086 			break;
1087 		vfs_rel(nmp);
1088 	}
1089 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1090 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1091 	mtx_unlock(&mntid_mtx);
1092 }
1093 
1094 /*
1095  * Knob to control the precision of file timestamps:
1096  *
1097  *   0 = seconds only; nanoseconds zeroed.
1098  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1099  *   2 = seconds and nanoseconds, truncated to microseconds.
1100  * >=3 = seconds and nanoseconds, maximum precision.
1101  */
1102 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1103 
1104 static int timestamp_precision = TSP_USEC;
1105 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1106     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1107     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1108     "3+: sec + ns (max. precision))");
1109 
1110 /*
1111  * Get a current timestamp.
1112  */
1113 void
1114 vfs_timestamp(struct timespec *tsp)
1115 {
1116 	struct timeval tv;
1117 
1118 	switch (timestamp_precision) {
1119 	case TSP_SEC:
1120 		tsp->tv_sec = time_second;
1121 		tsp->tv_nsec = 0;
1122 		break;
1123 	case TSP_HZ:
1124 		getnanotime(tsp);
1125 		break;
1126 	case TSP_USEC:
1127 		microtime(&tv);
1128 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1129 		break;
1130 	case TSP_NSEC:
1131 	default:
1132 		nanotime(tsp);
1133 		break;
1134 	}
1135 }
1136 
1137 /*
1138  * Set vnode attributes to VNOVAL
1139  */
1140 void
1141 vattr_null(struct vattr *vap)
1142 {
1143 
1144 	vap->va_type = VNON;
1145 	vap->va_size = VNOVAL;
1146 	vap->va_bytes = VNOVAL;
1147 	vap->va_mode = VNOVAL;
1148 	vap->va_nlink = VNOVAL;
1149 	vap->va_uid = VNOVAL;
1150 	vap->va_gid = VNOVAL;
1151 	vap->va_fsid = VNOVAL;
1152 	vap->va_fileid = VNOVAL;
1153 	vap->va_blocksize = VNOVAL;
1154 	vap->va_rdev = VNOVAL;
1155 	vap->va_atime.tv_sec = VNOVAL;
1156 	vap->va_atime.tv_nsec = VNOVAL;
1157 	vap->va_mtime.tv_sec = VNOVAL;
1158 	vap->va_mtime.tv_nsec = VNOVAL;
1159 	vap->va_ctime.tv_sec = VNOVAL;
1160 	vap->va_ctime.tv_nsec = VNOVAL;
1161 	vap->va_birthtime.tv_sec = VNOVAL;
1162 	vap->va_birthtime.tv_nsec = VNOVAL;
1163 	vap->va_flags = VNOVAL;
1164 	vap->va_gen = VNOVAL;
1165 	vap->va_vaflags = 0;
1166 }
1167 
1168 /*
1169  * Try to reduce the total number of vnodes.
1170  *
1171  * This routine (and its user) are buggy in at least the following ways:
1172  * - all parameters were picked years ago when RAM sizes were significantly
1173  *   smaller
1174  * - it can pick vnodes based on pages used by the vm object, but filesystems
1175  *   like ZFS don't use it making the pick broken
1176  * - since ZFS has its own aging policy it gets partially combated by this one
1177  * - a dedicated method should be provided for filesystems to let them decide
1178  *   whether the vnode should be recycled
1179  *
1180  * This routine is called when we have too many vnodes.  It attempts
1181  * to free <count> vnodes and will potentially free vnodes that still
1182  * have VM backing store (VM backing store is typically the cause
1183  * of a vnode blowout so we want to do this).  Therefore, this operation
1184  * is not considered cheap.
1185  *
1186  * A number of conditions may prevent a vnode from being reclaimed.
1187  * the buffer cache may have references on the vnode, a directory
1188  * vnode may still have references due to the namei cache representing
1189  * underlying files, or the vnode may be in active use.   It is not
1190  * desirable to reuse such vnodes.  These conditions may cause the
1191  * number of vnodes to reach some minimum value regardless of what
1192  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1193  *
1194  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1195  * 			 entries if this argument is strue
1196  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1197  *			 pages.
1198  * @param target	 How many vnodes to reclaim.
1199  * @return		 The number of vnodes that were reclaimed.
1200  */
1201 static int
1202 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1203 {
1204 	struct vnode *vp, *mvp;
1205 	struct mount *mp;
1206 	struct vm_object *object;
1207 	u_long done;
1208 	bool retried;
1209 
1210 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1211 
1212 	retried = false;
1213 	done = 0;
1214 
1215 	mvp = vnode_list_reclaim_marker;
1216 restart:
1217 	vp = mvp;
1218 	while (done < target) {
1219 		vp = TAILQ_NEXT(vp, v_vnodelist);
1220 		if (__predict_false(vp == NULL))
1221 			break;
1222 
1223 		if (__predict_false(vp->v_type == VMARKER))
1224 			continue;
1225 
1226 		/*
1227 		 * If it's been deconstructed already, it's still
1228 		 * referenced, or it exceeds the trigger, skip it.
1229 		 * Also skip free vnodes.  We are trying to make space
1230 		 * for more free vnodes, not reduce their count.
1231 		 */
1232 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1233 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1234 			goto next_iter;
1235 
1236 		if (vp->v_type == VBAD || vp->v_type == VNON)
1237 			goto next_iter;
1238 
1239 		object = atomic_load_ptr(&vp->v_object);
1240 		if (object == NULL || object->resident_page_count > trigger) {
1241 			goto next_iter;
1242 		}
1243 
1244 		/*
1245 		 * Handle races against vnode allocation. Filesystems lock the
1246 		 * vnode some time after it gets returned from getnewvnode,
1247 		 * despite type and hold count being manipulated earlier.
1248 		 * Resorting to checking v_mount restores guarantees present
1249 		 * before the global list was reworked to contain all vnodes.
1250 		 */
1251 		if (!VI_TRYLOCK(vp))
1252 			goto next_iter;
1253 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1254 			VI_UNLOCK(vp);
1255 			goto next_iter;
1256 		}
1257 		if (vp->v_mount == NULL) {
1258 			VI_UNLOCK(vp);
1259 			goto next_iter;
1260 		}
1261 		vholdl(vp);
1262 		VI_UNLOCK(vp);
1263 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1264 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1265 		mtx_unlock(&vnode_list_mtx);
1266 
1267 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1268 			vdrop_recycle(vp);
1269 			goto next_iter_unlocked;
1270 		}
1271 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1272 			vdrop_recycle(vp);
1273 			vn_finished_write(mp);
1274 			goto next_iter_unlocked;
1275 		}
1276 
1277 		VI_LOCK(vp);
1278 		if (vp->v_usecount > 0 ||
1279 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1280 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1281 		    vp->v_object->resident_page_count > trigger)) {
1282 			VOP_UNLOCK(vp);
1283 			vdropl_recycle(vp);
1284 			vn_finished_write(mp);
1285 			goto next_iter_unlocked;
1286 		}
1287 		recycles_count++;
1288 		vgonel(vp);
1289 		VOP_UNLOCK(vp);
1290 		vdropl_recycle(vp);
1291 		vn_finished_write(mp);
1292 		done++;
1293 next_iter_unlocked:
1294 		maybe_yield();
1295 		mtx_lock(&vnode_list_mtx);
1296 		goto restart;
1297 next_iter:
1298 		MPASS(vp->v_type != VMARKER);
1299 		if (!should_yield())
1300 			continue;
1301 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1303 		mtx_unlock(&vnode_list_mtx);
1304 		kern_yield(PRI_USER);
1305 		mtx_lock(&vnode_list_mtx);
1306 		goto restart;
1307 	}
1308 	if (done == 0 && !retried) {
1309 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1310 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1311 		retried = true;
1312 		goto restart;
1313 	}
1314 	return (done);
1315 }
1316 
1317 static int max_free_per_call = 10000;
1318 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1319     "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1320 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1321     &max_free_per_call, 0,
1322     "limit on vnode free requests per call to the vnlru_free routine");
1323 
1324 /*
1325  * Attempt to recycle requested amount of free vnodes.
1326  */
1327 static int
1328 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1329 {
1330 	struct vnode *vp;
1331 	struct mount *mp;
1332 	int ocount;
1333 	bool retried;
1334 
1335 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1336 	if (count > max_free_per_call)
1337 		count = max_free_per_call;
1338 	if (count == 0) {
1339 		mtx_unlock(&vnode_list_mtx);
1340 		return (0);
1341 	}
1342 	ocount = count;
1343 	retried = false;
1344 	vp = mvp;
1345 	for (;;) {
1346 		vp = TAILQ_NEXT(vp, v_vnodelist);
1347 		if (__predict_false(vp == NULL)) {
1348 			/*
1349 			 * The free vnode marker can be past eligible vnodes:
1350 			 * 1. if vdbatch_process trylock failed
1351 			 * 2. if vtryrecycle failed
1352 			 *
1353 			 * If so, start the scan from scratch.
1354 			 */
1355 			if (!retried && vnlru_read_freevnodes() > 0) {
1356 				TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1357 				TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1358 				vp = mvp;
1359 				retried = true;
1360 				continue;
1361 			}
1362 
1363 			/*
1364 			 * Give up
1365 			 */
1366 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1367 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1368 			mtx_unlock(&vnode_list_mtx);
1369 			break;
1370 		}
1371 		if (__predict_false(vp->v_type == VMARKER))
1372 			continue;
1373 		if (vp->v_holdcnt > 0)
1374 			continue;
1375 		/*
1376 		 * Don't recycle if our vnode is from different type
1377 		 * of mount point.  Note that mp is type-safe, the
1378 		 * check does not reach unmapped address even if
1379 		 * vnode is reclaimed.
1380 		 */
1381 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1382 		    mp->mnt_op != mnt_op) {
1383 			continue;
1384 		}
1385 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1386 			continue;
1387 		}
1388 		if (!vhold_recycle_free(vp))
1389 			continue;
1390 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1392 		mtx_unlock(&vnode_list_mtx);
1393 		/*
1394 		 * FIXME: ignores the return value, meaning it may be nothing
1395 		 * got recycled but it claims otherwise to the caller.
1396 		 *
1397 		 * Originally the value started being ignored in 2005 with
1398 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1399 		 *
1400 		 * Respecting the value can run into significant stalls if most
1401 		 * vnodes belong to one file system and it has writes
1402 		 * suspended.  In presence of many threads and millions of
1403 		 * vnodes they keep contending on the vnode_list_mtx lock only
1404 		 * to find vnodes they can't recycle.
1405 		 *
1406 		 * The solution would be to pre-check if the vnode is likely to
1407 		 * be recycle-able, but it needs to happen with the
1408 		 * vnode_list_mtx lock held. This runs into a problem where
1409 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1410 		 * writes are frozen) can take locks which LOR against it.
1411 		 *
1412 		 * Check nullfs for one example (null_getwritemount).
1413 		 */
1414 		vtryrecycle(vp, isvnlru);
1415 		count--;
1416 		if (count == 0) {
1417 			break;
1418 		}
1419 		mtx_lock(&vnode_list_mtx);
1420 		vp = mvp;
1421 	}
1422 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1423 	return (ocount - count);
1424 }
1425 
1426 /*
1427  * XXX: returns without vnode_list_mtx locked!
1428  */
1429 static int
1430 vnlru_free_locked_direct(int count)
1431 {
1432 	int ret;
1433 
1434 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1435 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1436 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1437 	return (ret);
1438 }
1439 
1440 static int
1441 vnlru_free_locked_vnlru(int count)
1442 {
1443 	int ret;
1444 
1445 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1446 	ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1447 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1448 	return (ret);
1449 }
1450 
1451 static int
1452 vnlru_free_vnlru(int count)
1453 {
1454 
1455 	mtx_lock(&vnode_list_mtx);
1456 	return (vnlru_free_locked_vnlru(count));
1457 }
1458 
1459 void
1460 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1461 {
1462 
1463 	MPASS(mnt_op != NULL);
1464 	MPASS(mvp != NULL);
1465 	VNPASS(mvp->v_type == VMARKER, mvp);
1466 	mtx_lock(&vnode_list_mtx);
1467 	vnlru_free_impl(count, mnt_op, mvp, true);
1468 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1469 }
1470 
1471 struct vnode *
1472 vnlru_alloc_marker(void)
1473 {
1474 	struct vnode *mvp;
1475 
1476 	mvp = vn_alloc_marker(NULL);
1477 	mtx_lock(&vnode_list_mtx);
1478 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1479 	mtx_unlock(&vnode_list_mtx);
1480 	return (mvp);
1481 }
1482 
1483 void
1484 vnlru_free_marker(struct vnode *mvp)
1485 {
1486 	mtx_lock(&vnode_list_mtx);
1487 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1488 	mtx_unlock(&vnode_list_mtx);
1489 	vn_free_marker(mvp);
1490 }
1491 
1492 static void
1493 vnlru_recalc(void)
1494 {
1495 
1496 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1497 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1498 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1499 	vlowat = vhiwat / 2;
1500 }
1501 
1502 /*
1503  * Attempt to recycle vnodes in a context that is always safe to block.
1504  * Calling vlrurecycle() from the bowels of filesystem code has some
1505  * interesting deadlock problems.
1506  */
1507 static struct proc *vnlruproc;
1508 static int vnlruproc_sig;
1509 static u_long vnlruproc_kicks;
1510 
1511 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1512     "Number of times vnlru awakened due to vnode shortage");
1513 
1514 #define VNLRU_COUNT_SLOP 100
1515 
1516 /*
1517  * The main freevnodes counter is only updated when a counter local to CPU
1518  * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1519  * walked to compute a more accurate total.
1520  *
1521  * Note: the actual value at any given moment can still exceed slop, but it
1522  * should not be by significant margin in practice.
1523  */
1524 #define VNLRU_FREEVNODES_SLOP 126
1525 
1526 static void __noinline
1527 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1528 {
1529 
1530 	atomic_add_long(&freevnodes, *lfreevnodes);
1531 	*lfreevnodes = 0;
1532 	critical_exit();
1533 }
1534 
1535 static __inline void
1536 vfs_freevnodes_inc(void)
1537 {
1538 	int8_t *lfreevnodes;
1539 
1540 	critical_enter();
1541 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1542 	(*lfreevnodes)++;
1543 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1544 		vfs_freevnodes_rollup(lfreevnodes);
1545 	else
1546 		critical_exit();
1547 }
1548 
1549 static __inline void
1550 vfs_freevnodes_dec(void)
1551 {
1552 	int8_t *lfreevnodes;
1553 
1554 	critical_enter();
1555 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1556 	(*lfreevnodes)--;
1557 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1558 		vfs_freevnodes_rollup(lfreevnodes);
1559 	else
1560 		critical_exit();
1561 }
1562 
1563 static u_long
1564 vnlru_read_freevnodes(void)
1565 {
1566 	long slop, rfreevnodes, rfreevnodes_old;
1567 	int cpu;
1568 
1569 	rfreevnodes = atomic_load_long(&freevnodes);
1570 	rfreevnodes_old = atomic_load_long(&freevnodes_old);
1571 
1572 	if (rfreevnodes > rfreevnodes_old)
1573 		slop = rfreevnodes - rfreevnodes_old;
1574 	else
1575 		slop = rfreevnodes_old - rfreevnodes;
1576 	if (slop < VNLRU_FREEVNODES_SLOP)
1577 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1578 	CPU_FOREACH(cpu) {
1579 		rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1580 	}
1581 	atomic_store_long(&freevnodes_old, rfreevnodes);
1582 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1583 }
1584 
1585 static bool
1586 vnlru_under(u_long rnumvnodes, u_long limit)
1587 {
1588 	u_long rfreevnodes, space;
1589 
1590 	if (__predict_false(rnumvnodes > desiredvnodes))
1591 		return (true);
1592 
1593 	space = desiredvnodes - rnumvnodes;
1594 	if (space < limit) {
1595 		rfreevnodes = vnlru_read_freevnodes();
1596 		if (rfreevnodes > wantfreevnodes)
1597 			space += rfreevnodes - wantfreevnodes;
1598 	}
1599 	return (space < limit);
1600 }
1601 
1602 static void
1603 vnlru_kick_locked(void)
1604 {
1605 
1606 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1607 	if (vnlruproc_sig == 0) {
1608 		vnlruproc_sig = 1;
1609 		vnlruproc_kicks++;
1610 		wakeup(vnlruproc);
1611 	}
1612 }
1613 
1614 static void
1615 vnlru_kick_cond(void)
1616 {
1617 
1618 	if (vnlru_read_freevnodes() > wantfreevnodes)
1619 		return;
1620 
1621 	if (vnlruproc_sig)
1622 		return;
1623 	mtx_lock(&vnode_list_mtx);
1624 	vnlru_kick_locked();
1625 	mtx_unlock(&vnode_list_mtx);
1626 }
1627 
1628 static void
1629 vnlru_proc_sleep(void)
1630 {
1631 
1632 	if (vnlruproc_sig) {
1633 		vnlruproc_sig = 0;
1634 		wakeup(&vnlruproc_sig);
1635 	}
1636 	msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1637 }
1638 
1639 /*
1640  * A lighter version of the machinery below.
1641  *
1642  * Tries to reach goals only by recycling free vnodes and does not invoke
1643  * uma_reclaim(UMA_RECLAIM_DRAIN).
1644  *
1645  * This works around pathological behavior in vnlru in presence of tons of free
1646  * vnodes, but without having to rewrite the machinery at this time. Said
1647  * behavior boils down to continuously trying to reclaim all kinds of vnodes
1648  * (cycling through all levels of "force") when the count is transiently above
1649  * limit. This happens a lot when all vnodes are used up and vn_alloc
1650  * speculatively increments the counter.
1651  *
1652  * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1653  * 1 million files in total and 20 find(1) processes stating them in parallel
1654  * (one per each tree).
1655  *
1656  * On a kernel with only stock machinery this needs anywhere between 60 and 120
1657  * seconds to execute (time varies *wildly* between runs). With the workaround
1658  * it consistently stays around 20 seconds [it got further down with later
1659  * changes].
1660  *
1661  * That is to say the entire thing needs a fundamental redesign (most notably
1662  * to accommodate faster recycling), the above only tries to get it ouf the way.
1663  *
1664  * Return values are:
1665  * -1 -- fallback to regular vnlru loop
1666  *  0 -- do nothing, go to sleep
1667  * >0 -- recycle this many vnodes
1668  */
1669 static long
1670 vnlru_proc_light_pick(void)
1671 {
1672 	u_long rnumvnodes, rfreevnodes;
1673 
1674 	if (vstir || vnlruproc_sig == 1)
1675 		return (-1);
1676 
1677 	rnumvnodes = atomic_load_long(&numvnodes);
1678 	rfreevnodes = vnlru_read_freevnodes();
1679 
1680 	/*
1681 	 * vnode limit might have changed and now we may be at a significant
1682 	 * excess. Bail if we can't sort it out with free vnodes.
1683 	 *
1684 	 * Due to atomic updates the count can legitimately go above
1685 	 * the limit for a short period, don't bother doing anything in
1686 	 * that case.
1687 	 */
1688 	if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1689 		if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1690 		    rfreevnodes <= wantfreevnodes) {
1691 			return (-1);
1692 		}
1693 
1694 		return (rnumvnodes - desiredvnodes);
1695 	}
1696 
1697 	/*
1698 	 * Don't try to reach wantfreevnodes target if there are too few vnodes
1699 	 * to begin with.
1700 	 */
1701 	if (rnumvnodes < wantfreevnodes) {
1702 		return (0);
1703 	}
1704 
1705 	if (rfreevnodes < wantfreevnodes) {
1706 		return (-1);
1707 	}
1708 
1709 	return (0);
1710 }
1711 
1712 static bool
1713 vnlru_proc_light(void)
1714 {
1715 	long freecount;
1716 
1717 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1718 
1719 	freecount = vnlru_proc_light_pick();
1720 	if (freecount == -1)
1721 		return (false);
1722 
1723 	if (freecount != 0) {
1724 		vnlru_free_vnlru(freecount);
1725 	}
1726 
1727 	mtx_lock(&vnode_list_mtx);
1728 	vnlru_proc_sleep();
1729 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1730 	return (true);
1731 }
1732 
1733 static u_long uma_reclaim_calls;
1734 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1735     &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1736 
1737 static void
1738 vnlru_proc(void)
1739 {
1740 	u_long rnumvnodes, rfreevnodes, target;
1741 	unsigned long onumvnodes;
1742 	int done, force, trigger, usevnodes;
1743 	bool reclaim_nc_src, want_reread;
1744 
1745 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1746 	    SHUTDOWN_PRI_FIRST);
1747 
1748 	force = 0;
1749 	want_reread = false;
1750 	for (;;) {
1751 		kproc_suspend_check(vnlruproc);
1752 
1753 		if (force == 0 && vnlru_proc_light())
1754 			continue;
1755 
1756 		mtx_lock(&vnode_list_mtx);
1757 		rnumvnodes = atomic_load_long(&numvnodes);
1758 
1759 		if (want_reread) {
1760 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1761 			want_reread = false;
1762 		}
1763 
1764 		/*
1765 		 * If numvnodes is too large (due to desiredvnodes being
1766 		 * adjusted using its sysctl, or emergency growth), first
1767 		 * try to reduce it by discarding free vnodes.
1768 		 */
1769 		if (rnumvnodes > desiredvnodes + 10) {
1770 			vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1771 			mtx_lock(&vnode_list_mtx);
1772 			rnumvnodes = atomic_load_long(&numvnodes);
1773 		}
1774 		/*
1775 		 * Sleep if the vnode cache is in a good state.  This is
1776 		 * when it is not over-full and has space for about a 4%
1777 		 * or 9% expansion (by growing its size or inexcessively
1778 		 * reducing free vnode count).  Otherwise, try to reclaim
1779 		 * space for a 10% expansion.
1780 		 */
1781 		if (vstir && force == 0) {
1782 			force = 1;
1783 			vstir = false;
1784 		}
1785 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1786 			vnlru_proc_sleep();
1787 			continue;
1788 		}
1789 		rfreevnodes = vnlru_read_freevnodes();
1790 
1791 		onumvnodes = rnumvnodes;
1792 		/*
1793 		 * Calculate parameters for recycling.  These are the same
1794 		 * throughout the loop to give some semblance of fairness.
1795 		 * The trigger point is to avoid recycling vnodes with lots
1796 		 * of resident pages.  We aren't trying to free memory; we
1797 		 * are trying to recycle or at least free vnodes.
1798 		 */
1799 		if (rnumvnodes <= desiredvnodes)
1800 			usevnodes = rnumvnodes - rfreevnodes;
1801 		else
1802 			usevnodes = rnumvnodes;
1803 		if (usevnodes <= 0)
1804 			usevnodes = 1;
1805 		/*
1806 		 * The trigger value is chosen to give a conservatively
1807 		 * large value to ensure that it alone doesn't prevent
1808 		 * making progress.  The value can easily be so large that
1809 		 * it is effectively infinite in some congested and
1810 		 * misconfigured cases, and this is necessary.  Normally
1811 		 * it is about 8 to 100 (pages), which is quite large.
1812 		 */
1813 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1814 		if (force < 2)
1815 			trigger = vsmalltrigger;
1816 		reclaim_nc_src = force >= 3;
1817 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1818 		target = target / 10 + 1;
1819 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1820 		mtx_unlock(&vnode_list_mtx);
1821 		/*
1822 		 * Total number of vnodes can transiently go slightly above the
1823 		 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1824 		 * this happens.
1825 		 */
1826 		if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1827 		    numvnodes <= desiredvnodes) {
1828 			uma_reclaim_calls++;
1829 			uma_reclaim(UMA_RECLAIM_DRAIN);
1830 		}
1831 		if (done == 0) {
1832 			if (force == 0 || force == 1) {
1833 				force = 2;
1834 				continue;
1835 			}
1836 			if (force == 2) {
1837 				force = 3;
1838 				continue;
1839 			}
1840 			want_reread = true;
1841 			force = 0;
1842 			vnlru_nowhere++;
1843 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1844 		} else {
1845 			want_reread = true;
1846 			kern_yield(PRI_USER);
1847 		}
1848 	}
1849 }
1850 
1851 static struct kproc_desc vnlru_kp = {
1852 	"vnlru",
1853 	vnlru_proc,
1854 	&vnlruproc
1855 };
1856 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1857     &vnlru_kp);
1858 
1859 /*
1860  * Routines having to do with the management of the vnode table.
1861  */
1862 
1863 /*
1864  * Try to recycle a freed vnode.
1865  */
1866 static int
1867 vtryrecycle(struct vnode *vp, bool isvnlru)
1868 {
1869 	struct mount *vnmp;
1870 
1871 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1872 	VNPASS(vp->v_holdcnt > 0, vp);
1873 	/*
1874 	 * This vnode may found and locked via some other list, if so we
1875 	 * can't recycle it yet.
1876 	 */
1877 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1878 		CTR2(KTR_VFS,
1879 		    "%s: impossible to recycle, vp %p lock is already held",
1880 		    __func__, vp);
1881 		vdrop_recycle(vp);
1882 		return (EWOULDBLOCK);
1883 	}
1884 	/*
1885 	 * Don't recycle if its filesystem is being suspended.
1886 	 */
1887 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1888 		VOP_UNLOCK(vp);
1889 		CTR2(KTR_VFS,
1890 		    "%s: impossible to recycle, cannot start the write for %p",
1891 		    __func__, vp);
1892 		vdrop_recycle(vp);
1893 		return (EBUSY);
1894 	}
1895 	/*
1896 	 * If we got this far, we need to acquire the interlock and see if
1897 	 * anyone picked up this vnode from another list.  If not, we will
1898 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1899 	 * will skip over it.
1900 	 */
1901 	VI_LOCK(vp);
1902 	if (vp->v_usecount) {
1903 		VOP_UNLOCK(vp);
1904 		vdropl_recycle(vp);
1905 		vn_finished_write(vnmp);
1906 		CTR2(KTR_VFS,
1907 		    "%s: impossible to recycle, %p is already referenced",
1908 		    __func__, vp);
1909 		return (EBUSY);
1910 	}
1911 	if (!VN_IS_DOOMED(vp)) {
1912 		if (isvnlru)
1913 			recycles_free_count++;
1914 		else
1915 			counter_u64_add(direct_recycles_free_count, 1);
1916 		vgonel(vp);
1917 	}
1918 	VOP_UNLOCK(vp);
1919 	vdropl_recycle(vp);
1920 	vn_finished_write(vnmp);
1921 	return (0);
1922 }
1923 
1924 /*
1925  * Allocate a new vnode.
1926  *
1927  * The operation never returns an error. Returning an error was disabled
1928  * in r145385 (dated 2005) with the following comment:
1929  *
1930  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1931  *
1932  * Given the age of this commit (almost 15 years at the time of writing this
1933  * comment) restoring the ability to fail requires a significant audit of
1934  * all codepaths.
1935  *
1936  * The routine can try to free a vnode or stall for up to 1 second waiting for
1937  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1938  */
1939 static u_long vn_alloc_cyclecount;
1940 static u_long vn_alloc_sleeps;
1941 
1942 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1943     "Number of times vnode allocation blocked waiting on vnlru");
1944 
1945 static struct vnode * __noinline
1946 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1947 {
1948 	u_long rfreevnodes;
1949 
1950 	if (bumped) {
1951 		if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1952 			atomic_subtract_long(&numvnodes, 1);
1953 			bumped = false;
1954 		}
1955 	}
1956 
1957 	mtx_lock(&vnode_list_mtx);
1958 
1959 	if (vn_alloc_cyclecount != 0) {
1960 		rnumvnodes = atomic_load_long(&numvnodes);
1961 		if (rnumvnodes + 1 < desiredvnodes) {
1962 			vn_alloc_cyclecount = 0;
1963 			mtx_unlock(&vnode_list_mtx);
1964 			goto alloc;
1965 		}
1966 
1967 		rfreevnodes = vnlru_read_freevnodes();
1968 		if (rfreevnodes < wantfreevnodes) {
1969 			if (vn_alloc_cyclecount++ >= rfreevnodes) {
1970 				vn_alloc_cyclecount = 0;
1971 				vstir = true;
1972 			}
1973 		} else {
1974 			vn_alloc_cyclecount = 0;
1975 		}
1976 	}
1977 
1978 	/*
1979 	 * Grow the vnode cache if it will not be above its target max after
1980 	 * growing.  Otherwise, if there is at least one free vnode, try to
1981 	 * reclaim 1 item from it before growing the cache (possibly above its
1982 	 * target max if the reclamation failed or is delayed).
1983 	 */
1984 	if (vnlru_free_locked_direct(1) > 0)
1985 		goto alloc;
1986 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1987 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1988 		/*
1989 		 * Wait for space for a new vnode.
1990 		 */
1991 		if (bumped) {
1992 			atomic_subtract_long(&numvnodes, 1);
1993 			bumped = false;
1994 		}
1995 		mtx_lock(&vnode_list_mtx);
1996 		vnlru_kick_locked();
1997 		vn_alloc_sleeps++;
1998 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1999 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2000 		    vnlru_read_freevnodes() > 1)
2001 			vnlru_free_locked_direct(1);
2002 		else
2003 			mtx_unlock(&vnode_list_mtx);
2004 	}
2005 alloc:
2006 	mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2007 	if (!bumped)
2008 		atomic_add_long(&numvnodes, 1);
2009 	vnlru_kick_cond();
2010 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2011 }
2012 
2013 static struct vnode *
2014 vn_alloc(struct mount *mp)
2015 {
2016 	u_long rnumvnodes;
2017 
2018 	if (__predict_false(vn_alloc_cyclecount != 0))
2019 		return (vn_alloc_hard(mp, 0, false));
2020 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2021 	if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2022 		return (vn_alloc_hard(mp, rnumvnodes, true));
2023 	}
2024 
2025 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2026 }
2027 
2028 static void
2029 vn_free(struct vnode *vp)
2030 {
2031 
2032 	atomic_subtract_long(&numvnodes, 1);
2033 	uma_zfree_smr(vnode_zone, vp);
2034 }
2035 
2036 /*
2037  * Allocate a new vnode.
2038  */
2039 int
2040 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2041     struct vnode **vpp)
2042 {
2043 	struct vnode *vp;
2044 	struct thread *td;
2045 	struct lock_object *lo;
2046 
2047 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2048 
2049 	KASSERT(vops->registered,
2050 	    ("%s: not registered vector op %p\n", __func__, vops));
2051 	cache_validate_vop_vector(mp, vops);
2052 
2053 	td = curthread;
2054 	if (td->td_vp_reserved != NULL) {
2055 		vp = td->td_vp_reserved;
2056 		td->td_vp_reserved = NULL;
2057 	} else {
2058 		vp = vn_alloc(mp);
2059 	}
2060 	counter_u64_add(vnodes_created, 1);
2061 
2062 	vn_set_state(vp, VSTATE_UNINITIALIZED);
2063 
2064 	/*
2065 	 * Locks are given the generic name "vnode" when created.
2066 	 * Follow the historic practice of using the filesystem
2067 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2068 	 *
2069 	 * Locks live in a witness group keyed on their name. Thus,
2070 	 * when a lock is renamed, it must also move from the witness
2071 	 * group of its old name to the witness group of its new name.
2072 	 *
2073 	 * The change only needs to be made when the vnode moves
2074 	 * from one filesystem type to another. We ensure that each
2075 	 * filesystem use a single static name pointer for its tag so
2076 	 * that we can compare pointers rather than doing a strcmp().
2077 	 */
2078 	lo = &vp->v_vnlock->lock_object;
2079 #ifdef WITNESS
2080 	if (lo->lo_name != tag) {
2081 #endif
2082 		lo->lo_name = tag;
2083 #ifdef WITNESS
2084 		WITNESS_DESTROY(lo);
2085 		WITNESS_INIT(lo, tag);
2086 	}
2087 #endif
2088 	/*
2089 	 * By default, don't allow shared locks unless filesystems opt-in.
2090 	 */
2091 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2092 	/*
2093 	 * Finalize various vnode identity bits.
2094 	 */
2095 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2096 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2097 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2098 	vp->v_type = VNON;
2099 	vp->v_op = vops;
2100 	vp->v_irflag = 0;
2101 	v_init_counters(vp);
2102 	vn_seqc_init(vp);
2103 	vp->v_bufobj.bo_ops = &buf_ops_bio;
2104 #ifdef DIAGNOSTIC
2105 	if (mp == NULL && vops != &dead_vnodeops)
2106 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2107 #endif
2108 #ifdef MAC
2109 	mac_vnode_init(vp);
2110 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2111 		mac_vnode_associate_singlelabel(mp, vp);
2112 #endif
2113 	if (mp != NULL) {
2114 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2115 	}
2116 
2117 	/*
2118 	 * For the filesystems which do not use vfs_hash_insert(),
2119 	 * still initialize v_hash to have vfs_hash_index() useful.
2120 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2121 	 * its own hashing.
2122 	 */
2123 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
2124 
2125 	*vpp = vp;
2126 	return (0);
2127 }
2128 
2129 void
2130 getnewvnode_reserve(void)
2131 {
2132 	struct thread *td;
2133 
2134 	td = curthread;
2135 	MPASS(td->td_vp_reserved == NULL);
2136 	td->td_vp_reserved = vn_alloc(NULL);
2137 }
2138 
2139 void
2140 getnewvnode_drop_reserve(void)
2141 {
2142 	struct thread *td;
2143 
2144 	td = curthread;
2145 	if (td->td_vp_reserved != NULL) {
2146 		vn_free(td->td_vp_reserved);
2147 		td->td_vp_reserved = NULL;
2148 	}
2149 }
2150 
2151 static void __noinline
2152 freevnode(struct vnode *vp)
2153 {
2154 	struct bufobj *bo;
2155 
2156 	/*
2157 	 * The vnode has been marked for destruction, so free it.
2158 	 *
2159 	 * The vnode will be returned to the zone where it will
2160 	 * normally remain until it is needed for another vnode. We
2161 	 * need to cleanup (or verify that the cleanup has already
2162 	 * been done) any residual data left from its current use
2163 	 * so as not to contaminate the freshly allocated vnode.
2164 	 */
2165 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2166 	/*
2167 	 * Paired with vgone.
2168 	 */
2169 	vn_seqc_write_end_free(vp);
2170 
2171 	bo = &vp->v_bufobj;
2172 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2173 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2174 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2175 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2176 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2177 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2178 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2179 	    ("clean blk trie not empty"));
2180 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2181 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2182 	    ("dirty blk trie not empty"));
2183 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2184 	    ("Dangling rangelock waiters"));
2185 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2186 	    ("Leaked inactivation"));
2187 	VI_UNLOCK(vp);
2188 	cache_assert_no_entries(vp);
2189 
2190 #ifdef MAC
2191 	mac_vnode_destroy(vp);
2192 #endif
2193 	if (vp->v_pollinfo != NULL) {
2194 		/*
2195 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
2196 		 * here while having another vnode locked when trying to
2197 		 * satisfy a lookup and needing to recycle.
2198 		 */
2199 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2200 		destroy_vpollinfo(vp->v_pollinfo);
2201 		VOP_UNLOCK(vp);
2202 		vp->v_pollinfo = NULL;
2203 	}
2204 	vp->v_mountedhere = NULL;
2205 	vp->v_unpcb = NULL;
2206 	vp->v_rdev = NULL;
2207 	vp->v_fifoinfo = NULL;
2208 	vp->v_iflag = 0;
2209 	vp->v_vflag = 0;
2210 	bo->bo_flag = 0;
2211 	vn_free(vp);
2212 }
2213 
2214 /*
2215  * Delete from old mount point vnode list, if on one.
2216  */
2217 static void
2218 delmntque(struct vnode *vp)
2219 {
2220 	struct mount *mp;
2221 
2222 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2223 
2224 	mp = vp->v_mount;
2225 	MNT_ILOCK(mp);
2226 	VI_LOCK(vp);
2227 	vp->v_mount = NULL;
2228 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2229 		("bad mount point vnode list size"));
2230 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2231 	mp->mnt_nvnodelistsize--;
2232 	MNT_REL(mp);
2233 	MNT_IUNLOCK(mp);
2234 	/*
2235 	 * The caller expects the interlock to be still held.
2236 	 */
2237 	ASSERT_VI_LOCKED(vp, __func__);
2238 }
2239 
2240 static int
2241 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2242 {
2243 
2244 	KASSERT(vp->v_mount == NULL,
2245 		("insmntque: vnode already on per mount vnode list"));
2246 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2247 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2248 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2249 	} else {
2250 		KASSERT(!dtr,
2251 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2252 		    __func__));
2253 	}
2254 
2255 	/*
2256 	 * We acquire the vnode interlock early to ensure that the
2257 	 * vnode cannot be recycled by another process releasing a
2258 	 * holdcnt on it before we get it on both the vnode list
2259 	 * and the active vnode list. The mount mutex protects only
2260 	 * manipulation of the vnode list and the vnode freelist
2261 	 * mutex protects only manipulation of the active vnode list.
2262 	 * Hence the need to hold the vnode interlock throughout.
2263 	 */
2264 	MNT_ILOCK(mp);
2265 	VI_LOCK(vp);
2266 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2267 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2268 	    mp->mnt_nvnodelistsize == 0)) &&
2269 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2270 		VI_UNLOCK(vp);
2271 		MNT_IUNLOCK(mp);
2272 		if (dtr) {
2273 			vp->v_data = NULL;
2274 			vp->v_op = &dead_vnodeops;
2275 			vgone(vp);
2276 			vput(vp);
2277 		}
2278 		return (EBUSY);
2279 	}
2280 	vp->v_mount = mp;
2281 	MNT_REF(mp);
2282 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2283 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2284 		("neg mount point vnode list size"));
2285 	mp->mnt_nvnodelistsize++;
2286 	VI_UNLOCK(vp);
2287 	MNT_IUNLOCK(mp);
2288 	return (0);
2289 }
2290 
2291 /*
2292  * Insert into list of vnodes for the new mount point, if available.
2293  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2294  * leaves handling of the vnode to the caller.
2295  */
2296 int
2297 insmntque(struct vnode *vp, struct mount *mp)
2298 {
2299 	return (insmntque1_int(vp, mp, true));
2300 }
2301 
2302 int
2303 insmntque1(struct vnode *vp, struct mount *mp)
2304 {
2305 	return (insmntque1_int(vp, mp, false));
2306 }
2307 
2308 /*
2309  * Flush out and invalidate all buffers associated with a bufobj
2310  * Called with the underlying object locked.
2311  */
2312 int
2313 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2314 {
2315 	int error;
2316 
2317 	BO_LOCK(bo);
2318 	if (flags & V_SAVE) {
2319 		error = bufobj_wwait(bo, slpflag, slptimeo);
2320 		if (error) {
2321 			BO_UNLOCK(bo);
2322 			return (error);
2323 		}
2324 		if (bo->bo_dirty.bv_cnt > 0) {
2325 			BO_UNLOCK(bo);
2326 			do {
2327 				error = BO_SYNC(bo, MNT_WAIT);
2328 			} while (error == ERELOOKUP);
2329 			if (error != 0)
2330 				return (error);
2331 			BO_LOCK(bo);
2332 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2333 				BO_UNLOCK(bo);
2334 				return (EBUSY);
2335 			}
2336 		}
2337 	}
2338 	/*
2339 	 * If you alter this loop please notice that interlock is dropped and
2340 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2341 	 * no race conditions occur from this.
2342 	 */
2343 	do {
2344 		error = flushbuflist(&bo->bo_clean,
2345 		    flags, bo, slpflag, slptimeo);
2346 		if (error == 0 && !(flags & V_CLEANONLY))
2347 			error = flushbuflist(&bo->bo_dirty,
2348 			    flags, bo, slpflag, slptimeo);
2349 		if (error != 0 && error != EAGAIN) {
2350 			BO_UNLOCK(bo);
2351 			return (error);
2352 		}
2353 	} while (error != 0);
2354 
2355 	/*
2356 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2357 	 * have write I/O in-progress but if there is a VM object then the
2358 	 * VM object can also have read-I/O in-progress.
2359 	 */
2360 	do {
2361 		bufobj_wwait(bo, 0, 0);
2362 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2363 			BO_UNLOCK(bo);
2364 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2365 			BO_LOCK(bo);
2366 		}
2367 	} while (bo->bo_numoutput > 0);
2368 	BO_UNLOCK(bo);
2369 
2370 	/*
2371 	 * Destroy the copy in the VM cache, too.
2372 	 */
2373 	if (bo->bo_object != NULL &&
2374 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2375 		VM_OBJECT_WLOCK(bo->bo_object);
2376 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2377 		    OBJPR_CLEANONLY : 0);
2378 		VM_OBJECT_WUNLOCK(bo->bo_object);
2379 	}
2380 
2381 #ifdef INVARIANTS
2382 	BO_LOCK(bo);
2383 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2384 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2385 	    bo->bo_clean.bv_cnt > 0))
2386 		panic("vinvalbuf: flush failed");
2387 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2388 	    bo->bo_dirty.bv_cnt > 0)
2389 		panic("vinvalbuf: flush dirty failed");
2390 	BO_UNLOCK(bo);
2391 #endif
2392 	return (0);
2393 }
2394 
2395 /*
2396  * Flush out and invalidate all buffers associated with a vnode.
2397  * Called with the underlying object locked.
2398  */
2399 int
2400 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2401 {
2402 
2403 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2404 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2405 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2406 		return (0);
2407 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2408 }
2409 
2410 /*
2411  * Flush out buffers on the specified list.
2412  *
2413  */
2414 static int
2415 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2416     int slptimeo)
2417 {
2418 	struct buf *bp, *nbp;
2419 	int retval, error;
2420 	daddr_t lblkno;
2421 	b_xflags_t xflags;
2422 
2423 	ASSERT_BO_WLOCKED(bo);
2424 
2425 	retval = 0;
2426 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2427 		/*
2428 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2429 		 * do not skip any buffers. If we are flushing only V_NORMAL
2430 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2431 		 * flushing only V_ALT buffers then skip buffers not marked
2432 		 * as BX_ALTDATA.
2433 		 */
2434 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2435 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2436 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2437 			continue;
2438 		}
2439 		if (nbp != NULL) {
2440 			lblkno = nbp->b_lblkno;
2441 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2442 		}
2443 		retval = EAGAIN;
2444 		error = BUF_TIMELOCK(bp,
2445 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2446 		    "flushbuf", slpflag, slptimeo);
2447 		if (error) {
2448 			BO_LOCK(bo);
2449 			return (error != ENOLCK ? error : EAGAIN);
2450 		}
2451 		KASSERT(bp->b_bufobj == bo,
2452 		    ("bp %p wrong b_bufobj %p should be %p",
2453 		    bp, bp->b_bufobj, bo));
2454 		/*
2455 		 * XXX Since there are no node locks for NFS, I
2456 		 * believe there is a slight chance that a delayed
2457 		 * write will occur while sleeping just above, so
2458 		 * check for it.
2459 		 */
2460 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2461 		    (flags & V_SAVE)) {
2462 			bremfree(bp);
2463 			bp->b_flags |= B_ASYNC;
2464 			bwrite(bp);
2465 			BO_LOCK(bo);
2466 			return (EAGAIN);	/* XXX: why not loop ? */
2467 		}
2468 		bremfree(bp);
2469 		bp->b_flags |= (B_INVAL | B_RELBUF);
2470 		bp->b_flags &= ~B_ASYNC;
2471 		brelse(bp);
2472 		BO_LOCK(bo);
2473 		if (nbp == NULL)
2474 			break;
2475 		nbp = gbincore(bo, lblkno);
2476 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2477 		    != xflags)
2478 			break;			/* nbp invalid */
2479 	}
2480 	return (retval);
2481 }
2482 
2483 int
2484 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2485 {
2486 	struct buf *bp;
2487 	int error;
2488 	daddr_t lblkno;
2489 
2490 	ASSERT_BO_LOCKED(bo);
2491 
2492 	for (lblkno = startn;;) {
2493 again:
2494 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2495 		if (bp == NULL || bp->b_lblkno >= endn ||
2496 		    bp->b_lblkno < startn)
2497 			break;
2498 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2499 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2500 		if (error != 0) {
2501 			BO_RLOCK(bo);
2502 			if (error == ENOLCK)
2503 				goto again;
2504 			return (error);
2505 		}
2506 		KASSERT(bp->b_bufobj == bo,
2507 		    ("bp %p wrong b_bufobj %p should be %p",
2508 		    bp, bp->b_bufobj, bo));
2509 		lblkno = bp->b_lblkno + 1;
2510 		if ((bp->b_flags & B_MANAGED) == 0)
2511 			bremfree(bp);
2512 		bp->b_flags |= B_RELBUF;
2513 		/*
2514 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2515 		 * pages backing each buffer in the range are unlikely to be
2516 		 * reused.  Dirty buffers will have the hint applied once
2517 		 * they've been written.
2518 		 */
2519 		if ((bp->b_flags & B_VMIO) != 0)
2520 			bp->b_flags |= B_NOREUSE;
2521 		brelse(bp);
2522 		BO_RLOCK(bo);
2523 	}
2524 	return (0);
2525 }
2526 
2527 /*
2528  * Truncate a file's buffer and pages to a specified length.  This
2529  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2530  * sync activity.
2531  */
2532 int
2533 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2534 {
2535 	struct buf *bp, *nbp;
2536 	struct bufobj *bo;
2537 	daddr_t startlbn;
2538 
2539 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2540 	    vp, blksize, (uintmax_t)length);
2541 
2542 	/*
2543 	 * Round up to the *next* lbn.
2544 	 */
2545 	startlbn = howmany(length, blksize);
2546 
2547 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2548 
2549 	bo = &vp->v_bufobj;
2550 restart_unlocked:
2551 	BO_LOCK(bo);
2552 
2553 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2554 		;
2555 
2556 	if (length > 0) {
2557 		/*
2558 		 * Write out vnode metadata, e.g. indirect blocks.
2559 		 */
2560 restartsync:
2561 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2562 			if (bp->b_lblkno >= 0)
2563 				continue;
2564 			/*
2565 			 * Since we hold the vnode lock this should only
2566 			 * fail if we're racing with the buf daemon.
2567 			 */
2568 			if (BUF_LOCK(bp,
2569 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2570 			    BO_LOCKPTR(bo)) == ENOLCK)
2571 				goto restart_unlocked;
2572 
2573 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2574 			    ("buf(%p) on dirty queue without DELWRI", bp));
2575 
2576 			bremfree(bp);
2577 			bawrite(bp);
2578 			BO_LOCK(bo);
2579 			goto restartsync;
2580 		}
2581 	}
2582 
2583 	bufobj_wwait(bo, 0, 0);
2584 	BO_UNLOCK(bo);
2585 	vnode_pager_setsize(vp, length);
2586 
2587 	return (0);
2588 }
2589 
2590 /*
2591  * Invalidate the cached pages of a file's buffer within the range of block
2592  * numbers [startlbn, endlbn).
2593  */
2594 void
2595 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2596     int blksize)
2597 {
2598 	struct bufobj *bo;
2599 	off_t start, end;
2600 
2601 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2602 
2603 	start = blksize * startlbn;
2604 	end = blksize * endlbn;
2605 
2606 	bo = &vp->v_bufobj;
2607 	BO_LOCK(bo);
2608 	MPASS(blksize == bo->bo_bsize);
2609 
2610 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2611 		;
2612 
2613 	BO_UNLOCK(bo);
2614 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2615 }
2616 
2617 static int
2618 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2619     daddr_t startlbn, daddr_t endlbn)
2620 {
2621 	struct buf *bp, *nbp;
2622 	bool anyfreed;
2623 
2624 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2625 	ASSERT_BO_LOCKED(bo);
2626 
2627 	do {
2628 		anyfreed = false;
2629 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2630 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2631 				continue;
2632 			if (BUF_LOCK(bp,
2633 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2634 			    BO_LOCKPTR(bo)) == ENOLCK) {
2635 				BO_LOCK(bo);
2636 				return (EAGAIN);
2637 			}
2638 
2639 			bremfree(bp);
2640 			bp->b_flags |= B_INVAL | B_RELBUF;
2641 			bp->b_flags &= ~B_ASYNC;
2642 			brelse(bp);
2643 			anyfreed = true;
2644 
2645 			BO_LOCK(bo);
2646 			if (nbp != NULL &&
2647 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2648 			    nbp->b_vp != vp ||
2649 			    (nbp->b_flags & B_DELWRI) != 0))
2650 				return (EAGAIN);
2651 		}
2652 
2653 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2654 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2655 				continue;
2656 			if (BUF_LOCK(bp,
2657 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2658 			    BO_LOCKPTR(bo)) == ENOLCK) {
2659 				BO_LOCK(bo);
2660 				return (EAGAIN);
2661 			}
2662 			bremfree(bp);
2663 			bp->b_flags |= B_INVAL | B_RELBUF;
2664 			bp->b_flags &= ~B_ASYNC;
2665 			brelse(bp);
2666 			anyfreed = true;
2667 
2668 			BO_LOCK(bo);
2669 			if (nbp != NULL &&
2670 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2671 			    (nbp->b_vp != vp) ||
2672 			    (nbp->b_flags & B_DELWRI) == 0))
2673 				return (EAGAIN);
2674 		}
2675 	} while (anyfreed);
2676 	return (0);
2677 }
2678 
2679 static void
2680 buf_vlist_remove(struct buf *bp)
2681 {
2682 	struct bufv *bv;
2683 	b_xflags_t flags;
2684 
2685 	flags = bp->b_xflags;
2686 
2687 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2688 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2689 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2690 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2691 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2692 
2693 	if ((flags & BX_VNDIRTY) != 0)
2694 		bv = &bp->b_bufobj->bo_dirty;
2695 	else
2696 		bv = &bp->b_bufobj->bo_clean;
2697 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2698 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2699 	bv->bv_cnt--;
2700 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2701 }
2702 
2703 /*
2704  * Add the buffer to the sorted clean or dirty block list.  Return zero on
2705  * success, EEXIST if a buffer with this identity already exists, or another
2706  * error on allocation failure.
2707  */
2708 static inline int
2709 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2710 {
2711 	struct bufv *bv;
2712 	struct buf *n;
2713 	int error;
2714 
2715 	ASSERT_BO_WLOCKED(bo);
2716 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2717 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2718 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2719 	    ("dead bo %p", bo));
2720 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2721 	    ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2722 
2723 	if (xflags & BX_VNDIRTY)
2724 		bv = &bo->bo_dirty;
2725 	else
2726 		bv = &bo->bo_clean;
2727 
2728 	error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, &n);
2729 	if (n == NULL) {
2730 		KASSERT(error != EEXIST,
2731 		    ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2732 		    bp));
2733 	} else {
2734 		KASSERT((uint64_t)n->b_lblkno <= (uint64_t)bp->b_lblkno,
2735 		    ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2736 		    bp, n));
2737 		KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2738 		    ("buf_vlist_add: inconsistent result for existing buf: "
2739 		    "error %d bp %p n %p", error, bp, n));
2740 	}
2741 	if (error != 0)
2742 		return (error);
2743 
2744 	/* Keep the list ordered. */
2745 	if (n == NULL) {
2746 		KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2747 		    (uint64_t)bp->b_lblkno <
2748 		    (uint64_t)TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2749 		    ("buf_vlist_add: queue order: "
2750 		    "%p should be before first %p",
2751 		    bp, TAILQ_FIRST(&bv->bv_hd)));
2752 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2753 	} else {
2754 		KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2755 		    (uint64_t)bp->b_lblkno <
2756 		    (uint64_t)TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2757 		    ("buf_vlist_add: queue order: "
2758 		    "%p should be before next %p",
2759 		    bp, TAILQ_NEXT(n, b_bobufs)));
2760 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2761 	}
2762 
2763 	bv->bv_cnt++;
2764 	return (0);
2765 }
2766 
2767 /*
2768  * Add the buffer to the sorted clean or dirty block list.
2769  *
2770  * NOTE: xflags is passed as a constant, optimizing this inline function!
2771  */
2772 static void
2773 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2774 {
2775 	int error;
2776 
2777 	KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2778 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2779 	bp->b_xflags |= xflags;
2780 	error = buf_vlist_find_or_add(bp, bo, xflags);
2781 	if (error)
2782 		panic("buf_vlist_add: error=%d", error);
2783 }
2784 
2785 /*
2786  * Look up a buffer using the buffer tries.
2787  */
2788 struct buf *
2789 gbincore(struct bufobj *bo, daddr_t lblkno)
2790 {
2791 	struct buf *bp;
2792 
2793 	ASSERT_BO_LOCKED(bo);
2794 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2795 	if (bp != NULL)
2796 		return (bp);
2797 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2798 }
2799 
2800 /*
2801  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2802  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2803  * stability of the result.  Like other lockless lookups, the found buf may
2804  * already be invalid by the time this function returns.
2805  */
2806 struct buf *
2807 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2808 {
2809 	struct buf *bp;
2810 
2811 	ASSERT_BO_UNLOCKED(bo);
2812 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2813 	if (bp != NULL)
2814 		return (bp);
2815 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2816 }
2817 
2818 /*
2819  * Associate a buffer with a vnode.
2820  */
2821 int
2822 bgetvp(struct vnode *vp, struct buf *bp)
2823 {
2824 	struct bufobj *bo;
2825 	int error;
2826 
2827 	bo = &vp->v_bufobj;
2828 	ASSERT_BO_UNLOCKED(bo);
2829 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2830 
2831 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2832 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2833 	    ("bgetvp: bp already attached! %p", bp));
2834 
2835 	/*
2836 	 * Add the buf to the vnode's clean list unless we lost a race and find
2837 	 * an existing buf in either dirty or clean.
2838 	 */
2839 	bp->b_vp = vp;
2840 	bp->b_bufobj = bo;
2841 	bp->b_xflags |= BX_VNCLEAN;
2842 	error = EEXIST;
2843 	BO_LOCK(bo);
2844 	if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2845 		error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2846 	BO_UNLOCK(bo);
2847 	if (__predict_true(error == 0)) {
2848 		vhold(vp);
2849 		return (0);
2850 	}
2851 	if (error != EEXIST)
2852 		panic("bgetvp: buf_vlist_add error: %d", error);
2853 	bp->b_vp = NULL;
2854 	bp->b_bufobj = NULL;
2855 	bp->b_xflags &= ~BX_VNCLEAN;
2856 	return (error);
2857 }
2858 
2859 /*
2860  * Disassociate a buffer from a vnode.
2861  */
2862 void
2863 brelvp(struct buf *bp)
2864 {
2865 	struct bufobj *bo;
2866 	struct vnode *vp;
2867 
2868 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2869 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2870 
2871 	/*
2872 	 * Delete from old vnode list, if on one.
2873 	 */
2874 	vp = bp->b_vp;		/* XXX */
2875 	bo = bp->b_bufobj;
2876 	BO_LOCK(bo);
2877 	buf_vlist_remove(bp);
2878 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2879 		bo->bo_flag &= ~BO_ONWORKLST;
2880 		mtx_lock(&sync_mtx);
2881 		LIST_REMOVE(bo, bo_synclist);
2882 		syncer_worklist_len--;
2883 		mtx_unlock(&sync_mtx);
2884 	}
2885 	bp->b_vp = NULL;
2886 	bp->b_bufobj = NULL;
2887 	BO_UNLOCK(bo);
2888 	vdrop(vp);
2889 }
2890 
2891 /*
2892  * Add an item to the syncer work queue.
2893  */
2894 static void
2895 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2896 {
2897 	int slot;
2898 
2899 	ASSERT_BO_WLOCKED(bo);
2900 
2901 	mtx_lock(&sync_mtx);
2902 	if (bo->bo_flag & BO_ONWORKLST)
2903 		LIST_REMOVE(bo, bo_synclist);
2904 	else {
2905 		bo->bo_flag |= BO_ONWORKLST;
2906 		syncer_worklist_len++;
2907 	}
2908 
2909 	if (delay > syncer_maxdelay - 2)
2910 		delay = syncer_maxdelay - 2;
2911 	slot = (syncer_delayno + delay) & syncer_mask;
2912 
2913 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2914 	mtx_unlock(&sync_mtx);
2915 }
2916 
2917 static int
2918 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2919 {
2920 	int error, len;
2921 
2922 	mtx_lock(&sync_mtx);
2923 	len = syncer_worklist_len - sync_vnode_count;
2924 	mtx_unlock(&sync_mtx);
2925 	error = SYSCTL_OUT(req, &len, sizeof(len));
2926 	return (error);
2927 }
2928 
2929 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2930     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2931     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2932 
2933 static struct proc *updateproc;
2934 static void sched_sync(void);
2935 static struct kproc_desc up_kp = {
2936 	"syncer",
2937 	sched_sync,
2938 	&updateproc
2939 };
2940 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2941 
2942 static int
2943 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2944 {
2945 	struct vnode *vp;
2946 	struct mount *mp;
2947 
2948 	*bo = LIST_FIRST(slp);
2949 	if (*bo == NULL)
2950 		return (0);
2951 	vp = bo2vnode(*bo);
2952 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2953 		return (1);
2954 	/*
2955 	 * We use vhold in case the vnode does not
2956 	 * successfully sync.  vhold prevents the vnode from
2957 	 * going away when we unlock the sync_mtx so that
2958 	 * we can acquire the vnode interlock.
2959 	 */
2960 	vholdl(vp);
2961 	mtx_unlock(&sync_mtx);
2962 	VI_UNLOCK(vp);
2963 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2964 		vdrop(vp);
2965 		mtx_lock(&sync_mtx);
2966 		return (*bo == LIST_FIRST(slp));
2967 	}
2968 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2969 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2970 	    ("suspended mp syncing vp %p", vp));
2971 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2972 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2973 	VOP_UNLOCK(vp);
2974 	vn_finished_write(mp);
2975 	BO_LOCK(*bo);
2976 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2977 		/*
2978 		 * Put us back on the worklist.  The worklist
2979 		 * routine will remove us from our current
2980 		 * position and then add us back in at a later
2981 		 * position.
2982 		 */
2983 		vn_syncer_add_to_worklist(*bo, syncdelay);
2984 	}
2985 	BO_UNLOCK(*bo);
2986 	vdrop(vp);
2987 	mtx_lock(&sync_mtx);
2988 	return (0);
2989 }
2990 
2991 static int first_printf = 1;
2992 
2993 /*
2994  * System filesystem synchronizer daemon.
2995  */
2996 static void
2997 sched_sync(void)
2998 {
2999 	struct synclist *next, *slp;
3000 	struct bufobj *bo;
3001 	long starttime;
3002 	struct thread *td = curthread;
3003 	int last_work_seen;
3004 	int net_worklist_len;
3005 	int syncer_final_iter;
3006 	int error;
3007 
3008 	last_work_seen = 0;
3009 	syncer_final_iter = 0;
3010 	syncer_state = SYNCER_RUNNING;
3011 	starttime = time_uptime;
3012 	td->td_pflags |= TDP_NORUNNINGBUF;
3013 
3014 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3015 	    SHUTDOWN_PRI_LAST);
3016 
3017 	mtx_lock(&sync_mtx);
3018 	for (;;) {
3019 		if (syncer_state == SYNCER_FINAL_DELAY &&
3020 		    syncer_final_iter == 0) {
3021 			mtx_unlock(&sync_mtx);
3022 			kproc_suspend_check(td->td_proc);
3023 			mtx_lock(&sync_mtx);
3024 		}
3025 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
3026 		if (syncer_state != SYNCER_RUNNING &&
3027 		    starttime != time_uptime) {
3028 			if (first_printf) {
3029 				printf("\nSyncing disks, vnodes remaining... ");
3030 				first_printf = 0;
3031 			}
3032 			printf("%d ", net_worklist_len);
3033 		}
3034 		starttime = time_uptime;
3035 
3036 		/*
3037 		 * Push files whose dirty time has expired.  Be careful
3038 		 * of interrupt race on slp queue.
3039 		 *
3040 		 * Skip over empty worklist slots when shutting down.
3041 		 */
3042 		do {
3043 			slp = &syncer_workitem_pending[syncer_delayno];
3044 			syncer_delayno += 1;
3045 			if (syncer_delayno == syncer_maxdelay)
3046 				syncer_delayno = 0;
3047 			next = &syncer_workitem_pending[syncer_delayno];
3048 			/*
3049 			 * If the worklist has wrapped since the
3050 			 * it was emptied of all but syncer vnodes,
3051 			 * switch to the FINAL_DELAY state and run
3052 			 * for one more second.
3053 			 */
3054 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
3055 			    net_worklist_len == 0 &&
3056 			    last_work_seen == syncer_delayno) {
3057 				syncer_state = SYNCER_FINAL_DELAY;
3058 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3059 			}
3060 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3061 		    syncer_worklist_len > 0);
3062 
3063 		/*
3064 		 * Keep track of the last time there was anything
3065 		 * on the worklist other than syncer vnodes.
3066 		 * Return to the SHUTTING_DOWN state if any
3067 		 * new work appears.
3068 		 */
3069 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3070 			last_work_seen = syncer_delayno;
3071 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3072 			syncer_state = SYNCER_SHUTTING_DOWN;
3073 		while (!LIST_EMPTY(slp)) {
3074 			error = sync_vnode(slp, &bo, td);
3075 			if (error == 1) {
3076 				LIST_REMOVE(bo, bo_synclist);
3077 				LIST_INSERT_HEAD(next, bo, bo_synclist);
3078 				continue;
3079 			}
3080 
3081 			if (first_printf == 0) {
3082 				/*
3083 				 * Drop the sync mutex, because some watchdog
3084 				 * drivers need to sleep while patting
3085 				 */
3086 				mtx_unlock(&sync_mtx);
3087 				wdog_kern_pat(WD_LASTVAL);
3088 				mtx_lock(&sync_mtx);
3089 			}
3090 		}
3091 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3092 			syncer_final_iter--;
3093 		/*
3094 		 * The variable rushjob allows the kernel to speed up the
3095 		 * processing of the filesystem syncer process. A rushjob
3096 		 * value of N tells the filesystem syncer to process the next
3097 		 * N seconds worth of work on its queue ASAP. Currently rushjob
3098 		 * is used by the soft update code to speed up the filesystem
3099 		 * syncer process when the incore state is getting so far
3100 		 * ahead of the disk that the kernel memory pool is being
3101 		 * threatened with exhaustion.
3102 		 */
3103 		if (rushjob > 0) {
3104 			rushjob -= 1;
3105 			continue;
3106 		}
3107 		/*
3108 		 * Just sleep for a short period of time between
3109 		 * iterations when shutting down to allow some I/O
3110 		 * to happen.
3111 		 *
3112 		 * If it has taken us less than a second to process the
3113 		 * current work, then wait. Otherwise start right over
3114 		 * again. We can still lose time if any single round
3115 		 * takes more than two seconds, but it does not really
3116 		 * matter as we are just trying to generally pace the
3117 		 * filesystem activity.
3118 		 */
3119 		if (syncer_state != SYNCER_RUNNING ||
3120 		    time_uptime == starttime) {
3121 			thread_lock(td);
3122 			sched_prio(td, PPAUSE);
3123 			thread_unlock(td);
3124 		}
3125 		if (syncer_state != SYNCER_RUNNING)
3126 			cv_timedwait(&sync_wakeup, &sync_mtx,
3127 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
3128 		else if (time_uptime == starttime)
3129 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3130 	}
3131 }
3132 
3133 /*
3134  * Request the syncer daemon to speed up its work.
3135  * We never push it to speed up more than half of its
3136  * normal turn time, otherwise it could take over the cpu.
3137  */
3138 int
3139 speedup_syncer(void)
3140 {
3141 	int ret = 0;
3142 
3143 	mtx_lock(&sync_mtx);
3144 	if (rushjob < syncdelay / 2) {
3145 		rushjob += 1;
3146 		stat_rush_requests += 1;
3147 		ret = 1;
3148 	}
3149 	mtx_unlock(&sync_mtx);
3150 	cv_broadcast(&sync_wakeup);
3151 	return (ret);
3152 }
3153 
3154 /*
3155  * Tell the syncer to speed up its work and run though its work
3156  * list several times, then tell it to shut down.
3157  */
3158 static void
3159 syncer_shutdown(void *arg, int howto)
3160 {
3161 
3162 	if (howto & RB_NOSYNC)
3163 		return;
3164 	mtx_lock(&sync_mtx);
3165 	syncer_state = SYNCER_SHUTTING_DOWN;
3166 	rushjob = 0;
3167 	mtx_unlock(&sync_mtx);
3168 	cv_broadcast(&sync_wakeup);
3169 	kproc_shutdown(arg, howto);
3170 }
3171 
3172 void
3173 syncer_suspend(void)
3174 {
3175 
3176 	syncer_shutdown(updateproc, 0);
3177 }
3178 
3179 void
3180 syncer_resume(void)
3181 {
3182 
3183 	mtx_lock(&sync_mtx);
3184 	first_printf = 1;
3185 	syncer_state = SYNCER_RUNNING;
3186 	mtx_unlock(&sync_mtx);
3187 	cv_broadcast(&sync_wakeup);
3188 	kproc_resume(updateproc);
3189 }
3190 
3191 /*
3192  * Move the buffer between the clean and dirty lists of its vnode.
3193  */
3194 void
3195 reassignbuf(struct buf *bp)
3196 {
3197 	struct vnode *vp;
3198 	struct bufobj *bo;
3199 	int delay;
3200 #ifdef INVARIANTS
3201 	struct bufv *bv;
3202 #endif
3203 
3204 	vp = bp->b_vp;
3205 	bo = bp->b_bufobj;
3206 
3207 	KASSERT((bp->b_flags & B_PAGING) == 0,
3208 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
3209 
3210 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3211 	    bp, bp->b_vp, bp->b_flags);
3212 
3213 	BO_LOCK(bo);
3214 	if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3215 		/*
3216 		 * Coordinate with getblk's unlocked lookup.  Make
3217 		 * BO_NONSTERILE visible before the first reassignbuf produces
3218 		 * any side effect.  This could be outside the bo lock if we
3219 		 * used a separate atomic flag field.
3220 		 */
3221 		bo->bo_flag |= BO_NONSTERILE;
3222 		atomic_thread_fence_rel();
3223 	}
3224 	buf_vlist_remove(bp);
3225 
3226 	/*
3227 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
3228 	 * of clean buffers.
3229 	 */
3230 	if (bp->b_flags & B_DELWRI) {
3231 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3232 			switch (vp->v_type) {
3233 			case VDIR:
3234 				delay = dirdelay;
3235 				break;
3236 			case VCHR:
3237 				delay = metadelay;
3238 				break;
3239 			default:
3240 				delay = filedelay;
3241 			}
3242 			vn_syncer_add_to_worklist(bo, delay);
3243 		}
3244 		buf_vlist_add(bp, bo, BX_VNDIRTY);
3245 	} else {
3246 		buf_vlist_add(bp, bo, BX_VNCLEAN);
3247 
3248 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3249 			mtx_lock(&sync_mtx);
3250 			LIST_REMOVE(bo, bo_synclist);
3251 			syncer_worklist_len--;
3252 			mtx_unlock(&sync_mtx);
3253 			bo->bo_flag &= ~BO_ONWORKLST;
3254 		}
3255 	}
3256 #ifdef INVARIANTS
3257 	bv = &bo->bo_clean;
3258 	bp = TAILQ_FIRST(&bv->bv_hd);
3259 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3260 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3261 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3262 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3263 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3264 	bv = &bo->bo_dirty;
3265 	bp = TAILQ_FIRST(&bv->bv_hd);
3266 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3267 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3268 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
3269 	KASSERT(bp == NULL || bp->b_bufobj == bo,
3270 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3271 #endif
3272 	BO_UNLOCK(bo);
3273 }
3274 
3275 static void
3276 v_init_counters(struct vnode *vp)
3277 {
3278 
3279 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3280 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
3281 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3282 
3283 	refcount_init(&vp->v_holdcnt, 1);
3284 	refcount_init(&vp->v_usecount, 1);
3285 }
3286 
3287 /*
3288  * Get a usecount on a vnode.
3289  *
3290  * vget and vget_finish may fail to lock the vnode if they lose a race against
3291  * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3292  *
3293  * Consumers which don't guarantee liveness of the vnode can use SMR to
3294  * try to get a reference. Note this operation can fail since the vnode
3295  * may be awaiting getting freed by the time they get to it.
3296  */
3297 enum vgetstate
3298 vget_prep_smr(struct vnode *vp)
3299 {
3300 	enum vgetstate vs;
3301 
3302 	VFS_SMR_ASSERT_ENTERED();
3303 
3304 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3305 		vs = VGET_USECOUNT;
3306 	} else {
3307 		if (vhold_smr(vp))
3308 			vs = VGET_HOLDCNT;
3309 		else
3310 			vs = VGET_NONE;
3311 	}
3312 	return (vs);
3313 }
3314 
3315 enum vgetstate
3316 vget_prep(struct vnode *vp)
3317 {
3318 	enum vgetstate vs;
3319 
3320 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3321 		vs = VGET_USECOUNT;
3322 	} else {
3323 		vhold(vp);
3324 		vs = VGET_HOLDCNT;
3325 	}
3326 	return (vs);
3327 }
3328 
3329 void
3330 vget_abort(struct vnode *vp, enum vgetstate vs)
3331 {
3332 
3333 	switch (vs) {
3334 	case VGET_USECOUNT:
3335 		vrele(vp);
3336 		break;
3337 	case VGET_HOLDCNT:
3338 		vdrop(vp);
3339 		break;
3340 	default:
3341 		__assert_unreachable();
3342 	}
3343 }
3344 
3345 int
3346 vget(struct vnode *vp, int flags)
3347 {
3348 	enum vgetstate vs;
3349 
3350 	vs = vget_prep(vp);
3351 	return (vget_finish(vp, flags, vs));
3352 }
3353 
3354 int
3355 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3356 {
3357 	int error;
3358 
3359 	if ((flags & LK_INTERLOCK) != 0)
3360 		ASSERT_VI_LOCKED(vp, __func__);
3361 	else
3362 		ASSERT_VI_UNLOCKED(vp, __func__);
3363 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3364 	VNPASS(vp->v_holdcnt > 0, vp);
3365 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3366 
3367 	error = vn_lock(vp, flags);
3368 	if (__predict_false(error != 0)) {
3369 		vget_abort(vp, vs);
3370 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3371 		    vp);
3372 		return (error);
3373 	}
3374 
3375 	vget_finish_ref(vp, vs);
3376 	return (0);
3377 }
3378 
3379 void
3380 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3381 {
3382 	int old;
3383 
3384 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3385 	VNPASS(vp->v_holdcnt > 0, vp);
3386 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3387 
3388 	if (vs == VGET_USECOUNT)
3389 		return;
3390 
3391 	/*
3392 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3393 	 * the vnode around. Otherwise someone else lended their hold count and
3394 	 * we have to drop ours.
3395 	 */
3396 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3397 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3398 	if (old != 0) {
3399 #ifdef INVARIANTS
3400 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3401 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3402 #else
3403 		refcount_release(&vp->v_holdcnt);
3404 #endif
3405 	}
3406 }
3407 
3408 void
3409 vref(struct vnode *vp)
3410 {
3411 	enum vgetstate vs;
3412 
3413 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3414 	vs = vget_prep(vp);
3415 	vget_finish_ref(vp, vs);
3416 }
3417 
3418 void
3419 vrefact(struct vnode *vp)
3420 {
3421 	int old __diagused;
3422 
3423 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3424 	old = refcount_acquire(&vp->v_usecount);
3425 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3426 }
3427 
3428 void
3429 vlazy(struct vnode *vp)
3430 {
3431 	struct mount *mp;
3432 
3433 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3434 
3435 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3436 		return;
3437 	/*
3438 	 * We may get here for inactive routines after the vnode got doomed.
3439 	 */
3440 	if (VN_IS_DOOMED(vp))
3441 		return;
3442 	mp = vp->v_mount;
3443 	mtx_lock(&mp->mnt_listmtx);
3444 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3445 		vp->v_mflag |= VMP_LAZYLIST;
3446 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3447 		mp->mnt_lazyvnodelistsize++;
3448 	}
3449 	mtx_unlock(&mp->mnt_listmtx);
3450 }
3451 
3452 static void
3453 vunlazy(struct vnode *vp)
3454 {
3455 	struct mount *mp;
3456 
3457 	ASSERT_VI_LOCKED(vp, __func__);
3458 	VNPASS(!VN_IS_DOOMED(vp), vp);
3459 
3460 	mp = vp->v_mount;
3461 	mtx_lock(&mp->mnt_listmtx);
3462 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3463 	/*
3464 	 * Don't remove the vnode from the lazy list if another thread
3465 	 * has increased the hold count. It may have re-enqueued the
3466 	 * vnode to the lazy list and is now responsible for its
3467 	 * removal.
3468 	 */
3469 	if (vp->v_holdcnt == 0) {
3470 		vp->v_mflag &= ~VMP_LAZYLIST;
3471 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3472 		mp->mnt_lazyvnodelistsize--;
3473 	}
3474 	mtx_unlock(&mp->mnt_listmtx);
3475 }
3476 
3477 /*
3478  * This routine is only meant to be called from vgonel prior to dooming
3479  * the vnode.
3480  */
3481 static void
3482 vunlazy_gone(struct vnode *vp)
3483 {
3484 	struct mount *mp;
3485 
3486 	ASSERT_VOP_ELOCKED(vp, __func__);
3487 	ASSERT_VI_LOCKED(vp, __func__);
3488 	VNPASS(!VN_IS_DOOMED(vp), vp);
3489 
3490 	if (vp->v_mflag & VMP_LAZYLIST) {
3491 		mp = vp->v_mount;
3492 		mtx_lock(&mp->mnt_listmtx);
3493 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3494 		vp->v_mflag &= ~VMP_LAZYLIST;
3495 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3496 		mp->mnt_lazyvnodelistsize--;
3497 		mtx_unlock(&mp->mnt_listmtx);
3498 	}
3499 }
3500 
3501 static void
3502 vdefer_inactive(struct vnode *vp)
3503 {
3504 
3505 	ASSERT_VI_LOCKED(vp, __func__);
3506 	VNPASS(vp->v_holdcnt > 0, vp);
3507 	if (VN_IS_DOOMED(vp)) {
3508 		vdropl(vp);
3509 		return;
3510 	}
3511 	if (vp->v_iflag & VI_DEFINACT) {
3512 		VNPASS(vp->v_holdcnt > 1, vp);
3513 		vdropl(vp);
3514 		return;
3515 	}
3516 	if (vp->v_usecount > 0) {
3517 		vp->v_iflag &= ~VI_OWEINACT;
3518 		vdropl(vp);
3519 		return;
3520 	}
3521 	vlazy(vp);
3522 	vp->v_iflag |= VI_DEFINACT;
3523 	VI_UNLOCK(vp);
3524 	atomic_add_long(&deferred_inact, 1);
3525 }
3526 
3527 static void
3528 vdefer_inactive_unlocked(struct vnode *vp)
3529 {
3530 
3531 	VI_LOCK(vp);
3532 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3533 		vdropl(vp);
3534 		return;
3535 	}
3536 	vdefer_inactive(vp);
3537 }
3538 
3539 enum vput_op { VRELE, VPUT, VUNREF };
3540 
3541 /*
3542  * Handle ->v_usecount transitioning to 0.
3543  *
3544  * By releasing the last usecount we take ownership of the hold count which
3545  * provides liveness of the vnode, meaning we have to vdrop.
3546  *
3547  * For all vnodes we may need to perform inactive processing. It requires an
3548  * exclusive lock on the vnode, while it is legal to call here with only a
3549  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3550  * inactive processing gets deferred to the syncer.
3551  *
3552  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3553  * on the lock being held all the way until VOP_INACTIVE. This in particular
3554  * happens with UFS which adds half-constructed vnodes to the hash, where they
3555  * can be found by other code.
3556  */
3557 static void
3558 vput_final(struct vnode *vp, enum vput_op func)
3559 {
3560 	int error;
3561 	bool want_unlock;
3562 
3563 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3564 	VNPASS(vp->v_holdcnt > 0, vp);
3565 
3566 	VI_LOCK(vp);
3567 
3568 	/*
3569 	 * By the time we got here someone else might have transitioned
3570 	 * the count back to > 0.
3571 	 */
3572 	if (vp->v_usecount > 0)
3573 		goto out;
3574 
3575 	/*
3576 	 * If the vnode is doomed vgone already performed inactive processing
3577 	 * (if needed).
3578 	 */
3579 	if (VN_IS_DOOMED(vp))
3580 		goto out;
3581 
3582 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3583 		goto out;
3584 
3585 	if (vp->v_iflag & VI_DOINGINACT)
3586 		goto out;
3587 
3588 	/*
3589 	 * Locking operations here will drop the interlock and possibly the
3590 	 * vnode lock, opening a window where the vnode can get doomed all the
3591 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3592 	 * perform inactive.
3593 	 */
3594 	vp->v_iflag |= VI_OWEINACT;
3595 	want_unlock = false;
3596 	error = 0;
3597 	switch (func) {
3598 	case VRELE:
3599 		switch (VOP_ISLOCKED(vp)) {
3600 		case LK_EXCLUSIVE:
3601 			break;
3602 		case LK_EXCLOTHER:
3603 		case 0:
3604 			want_unlock = true;
3605 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3606 			VI_LOCK(vp);
3607 			break;
3608 		default:
3609 			/*
3610 			 * The lock has at least one sharer, but we have no way
3611 			 * to conclude whether this is us. Play it safe and
3612 			 * defer processing.
3613 			 */
3614 			error = EAGAIN;
3615 			break;
3616 		}
3617 		break;
3618 	case VPUT:
3619 		want_unlock = true;
3620 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3621 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3622 			    LK_NOWAIT);
3623 			VI_LOCK(vp);
3624 		}
3625 		break;
3626 	case VUNREF:
3627 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3628 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3629 			VI_LOCK(vp);
3630 		}
3631 		break;
3632 	}
3633 	if (error == 0) {
3634 		if (func == VUNREF) {
3635 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3636 			    ("recursive vunref"));
3637 			vp->v_vflag |= VV_UNREF;
3638 		}
3639 		for (;;) {
3640 			error = vinactive(vp);
3641 			if (want_unlock)
3642 				VOP_UNLOCK(vp);
3643 			if (error != ERELOOKUP || !want_unlock)
3644 				break;
3645 			VOP_LOCK(vp, LK_EXCLUSIVE);
3646 		}
3647 		if (func == VUNREF)
3648 			vp->v_vflag &= ~VV_UNREF;
3649 		vdropl(vp);
3650 	} else {
3651 		vdefer_inactive(vp);
3652 	}
3653 	return;
3654 out:
3655 	if (func == VPUT)
3656 		VOP_UNLOCK(vp);
3657 	vdropl(vp);
3658 }
3659 
3660 /*
3661  * Decrement ->v_usecount for a vnode.
3662  *
3663  * Releasing the last use count requires additional processing, see vput_final
3664  * above for details.
3665  *
3666  * Comment above each variant denotes lock state on entry and exit.
3667  */
3668 
3669 /*
3670  * in: any
3671  * out: same as passed in
3672  */
3673 void
3674 vrele(struct vnode *vp)
3675 {
3676 
3677 	ASSERT_VI_UNLOCKED(vp, __func__);
3678 	if (!refcount_release(&vp->v_usecount))
3679 		return;
3680 	vput_final(vp, VRELE);
3681 }
3682 
3683 /*
3684  * in: locked
3685  * out: unlocked
3686  */
3687 void
3688 vput(struct vnode *vp)
3689 {
3690 
3691 	ASSERT_VOP_LOCKED(vp, __func__);
3692 	ASSERT_VI_UNLOCKED(vp, __func__);
3693 	if (!refcount_release(&vp->v_usecount)) {
3694 		VOP_UNLOCK(vp);
3695 		return;
3696 	}
3697 	vput_final(vp, VPUT);
3698 }
3699 
3700 /*
3701  * in: locked
3702  * out: locked
3703  */
3704 void
3705 vunref(struct vnode *vp)
3706 {
3707 
3708 	ASSERT_VOP_LOCKED(vp, __func__);
3709 	ASSERT_VI_UNLOCKED(vp, __func__);
3710 	if (!refcount_release(&vp->v_usecount))
3711 		return;
3712 	vput_final(vp, VUNREF);
3713 }
3714 
3715 void
3716 vhold(struct vnode *vp)
3717 {
3718 	int old;
3719 
3720 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3721 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3722 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3723 	    ("%s: wrong hold count %d", __func__, old));
3724 	if (old == 0)
3725 		vfs_freevnodes_dec();
3726 }
3727 
3728 void
3729 vholdnz(struct vnode *vp)
3730 {
3731 
3732 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3733 #ifdef INVARIANTS
3734 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3735 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3736 	    ("%s: wrong hold count %d", __func__, old));
3737 #else
3738 	atomic_add_int(&vp->v_holdcnt, 1);
3739 #endif
3740 }
3741 
3742 /*
3743  * Grab a hold count unless the vnode is freed.
3744  *
3745  * Only use this routine if vfs smr is the only protection you have against
3746  * freeing the vnode.
3747  *
3748  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3749  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3750  * the thread which managed to set the flag.
3751  *
3752  * It may be tempting to replace the loop with:
3753  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3754  * if (count & VHOLD_NO_SMR) {
3755  *     backpedal and error out;
3756  * }
3757  *
3758  * However, while this is more performant, it hinders debugging by eliminating
3759  * the previously mentioned invariant.
3760  */
3761 bool
3762 vhold_smr(struct vnode *vp)
3763 {
3764 	int count;
3765 
3766 	VFS_SMR_ASSERT_ENTERED();
3767 
3768 	count = atomic_load_int(&vp->v_holdcnt);
3769 	for (;;) {
3770 		if (count & VHOLD_NO_SMR) {
3771 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3772 			    ("non-zero hold count with flags %d\n", count));
3773 			return (false);
3774 		}
3775 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3776 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3777 			if (count == 0)
3778 				vfs_freevnodes_dec();
3779 			return (true);
3780 		}
3781 	}
3782 }
3783 
3784 /*
3785  * Hold a free vnode for recycling.
3786  *
3787  * Note: vnode_init references this comment.
3788  *
3789  * Attempts to recycle only need the global vnode list lock and have no use for
3790  * SMR.
3791  *
3792  * However, vnodes get inserted into the global list before they get fully
3793  * initialized and stay there until UMA decides to free the memory. This in
3794  * particular means the target can be found before it becomes usable and after
3795  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3796  * VHOLD_NO_SMR.
3797  *
3798  * Note: the vnode may gain more references after we transition the count 0->1.
3799  */
3800 static bool
3801 vhold_recycle_free(struct vnode *vp)
3802 {
3803 	int count;
3804 
3805 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3806 
3807 	count = atomic_load_int(&vp->v_holdcnt);
3808 	for (;;) {
3809 		if (count & VHOLD_NO_SMR) {
3810 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3811 			    ("non-zero hold count with flags %d\n", count));
3812 			return (false);
3813 		}
3814 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3815 		if (count > 0) {
3816 			return (false);
3817 		}
3818 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3819 			vfs_freevnodes_dec();
3820 			return (true);
3821 		}
3822 	}
3823 }
3824 
3825 static void __noinline
3826 vdbatch_process(struct vdbatch *vd)
3827 {
3828 	struct vnode *vp;
3829 	int i;
3830 
3831 	mtx_assert(&vd->lock, MA_OWNED);
3832 	MPASS(curthread->td_pinned > 0);
3833 	MPASS(vd->index == VDBATCH_SIZE);
3834 
3835 	/*
3836 	 * Attempt to requeue the passed batch, but give up easily.
3837 	 *
3838 	 * Despite batching the mechanism is prone to transient *significant*
3839 	 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3840 	 * if multiple CPUs get here (one real-world example is highly parallel
3841 	 * do-nothing make , which will stat *tons* of vnodes). Since it is
3842 	 * quasi-LRU (read: not that great even if fully honoured) provide an
3843 	 * option to just dodge the problem. Parties which don't like it are
3844 	 * welcome to implement something better.
3845 	 */
3846 	if (vnode_can_skip_requeue) {
3847 		if (!mtx_trylock(&vnode_list_mtx)) {
3848 			counter_u64_add(vnode_skipped_requeues, 1);
3849 			critical_enter();
3850 			for (i = 0; i < VDBATCH_SIZE; i++) {
3851 				vp = vd->tab[i];
3852 				vd->tab[i] = NULL;
3853 				MPASS(vp->v_dbatchcpu != NOCPU);
3854 				vp->v_dbatchcpu = NOCPU;
3855 			}
3856 			vd->index = 0;
3857 			critical_exit();
3858 			return;
3859 
3860 		}
3861 		/* fallthrough to locked processing */
3862 	} else {
3863 		mtx_lock(&vnode_list_mtx);
3864 	}
3865 
3866 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3867 	critical_enter();
3868 	for (i = 0; i < VDBATCH_SIZE; i++) {
3869 		vp = vd->tab[i];
3870 		vd->tab[i] = NULL;
3871 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3872 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3873 		MPASS(vp->v_dbatchcpu != NOCPU);
3874 		vp->v_dbatchcpu = NOCPU;
3875 	}
3876 	mtx_unlock(&vnode_list_mtx);
3877 	vd->index = 0;
3878 	critical_exit();
3879 }
3880 
3881 static void
3882 vdbatch_enqueue(struct vnode *vp)
3883 {
3884 	struct vdbatch *vd;
3885 
3886 	ASSERT_VI_LOCKED(vp, __func__);
3887 	VNPASS(!VN_IS_DOOMED(vp), vp);
3888 
3889 	if (vp->v_dbatchcpu != NOCPU) {
3890 		VI_UNLOCK(vp);
3891 		return;
3892 	}
3893 
3894 	sched_pin();
3895 	vd = DPCPU_PTR(vd);
3896 	mtx_lock(&vd->lock);
3897 	MPASS(vd->index < VDBATCH_SIZE);
3898 	MPASS(vd->tab[vd->index] == NULL);
3899 	/*
3900 	 * A hack: we depend on being pinned so that we know what to put in
3901 	 * ->v_dbatchcpu.
3902 	 */
3903 	vp->v_dbatchcpu = curcpu;
3904 	vd->tab[vd->index] = vp;
3905 	vd->index++;
3906 	VI_UNLOCK(vp);
3907 	if (vd->index == VDBATCH_SIZE)
3908 		vdbatch_process(vd);
3909 	mtx_unlock(&vd->lock);
3910 	sched_unpin();
3911 }
3912 
3913 /*
3914  * This routine must only be called for vnodes which are about to be
3915  * deallocated. Supporting dequeue for arbitrary vndoes would require
3916  * validating that the locked batch matches.
3917  */
3918 static void
3919 vdbatch_dequeue(struct vnode *vp)
3920 {
3921 	struct vdbatch *vd;
3922 	int i;
3923 	short cpu;
3924 
3925 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3926 
3927 	cpu = vp->v_dbatchcpu;
3928 	if (cpu == NOCPU)
3929 		return;
3930 
3931 	vd = DPCPU_ID_PTR(cpu, vd);
3932 	mtx_lock(&vd->lock);
3933 	for (i = 0; i < vd->index; i++) {
3934 		if (vd->tab[i] != vp)
3935 			continue;
3936 		vp->v_dbatchcpu = NOCPU;
3937 		vd->index--;
3938 		vd->tab[i] = vd->tab[vd->index];
3939 		vd->tab[vd->index] = NULL;
3940 		break;
3941 	}
3942 	mtx_unlock(&vd->lock);
3943 	/*
3944 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3945 	 */
3946 	MPASS(vp->v_dbatchcpu == NOCPU);
3947 }
3948 
3949 /*
3950  * Drop the hold count of the vnode.
3951  *
3952  * It will only get freed if this is the last hold *and* it has been vgone'd.
3953  *
3954  * Because the vnode vm object keeps a hold reference on the vnode if
3955  * there is at least one resident non-cached page, the vnode cannot
3956  * leave the active list without the page cleanup done.
3957  */
3958 static void __noinline
3959 vdropl_final(struct vnode *vp)
3960 {
3961 
3962 	ASSERT_VI_LOCKED(vp, __func__);
3963 	VNPASS(VN_IS_DOOMED(vp), vp);
3964 	/*
3965 	 * Set the VHOLD_NO_SMR flag.
3966 	 *
3967 	 * We may be racing against vhold_smr. If they win we can just pretend
3968 	 * we never got this far, they will vdrop later.
3969 	 */
3970 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3971 		vfs_freevnodes_inc();
3972 		VI_UNLOCK(vp);
3973 		/*
3974 		 * We lost the aforementioned race. Any subsequent access is
3975 		 * invalid as they might have managed to vdropl on their own.
3976 		 */
3977 		return;
3978 	}
3979 	/*
3980 	 * Don't bump freevnodes as this one is going away.
3981 	 */
3982 	freevnode(vp);
3983 }
3984 
3985 void
3986 vdrop(struct vnode *vp)
3987 {
3988 
3989 	ASSERT_VI_UNLOCKED(vp, __func__);
3990 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3991 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3992 		return;
3993 	VI_LOCK(vp);
3994 	vdropl(vp);
3995 }
3996 
3997 static __always_inline void
3998 vdropl_impl(struct vnode *vp, bool enqueue)
3999 {
4000 
4001 	ASSERT_VI_LOCKED(vp, __func__);
4002 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4003 	if (!refcount_release(&vp->v_holdcnt)) {
4004 		VI_UNLOCK(vp);
4005 		return;
4006 	}
4007 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4008 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4009 	if (VN_IS_DOOMED(vp)) {
4010 		vdropl_final(vp);
4011 		return;
4012 	}
4013 
4014 	vfs_freevnodes_inc();
4015 	if (vp->v_mflag & VMP_LAZYLIST) {
4016 		vunlazy(vp);
4017 	}
4018 
4019 	if (!enqueue) {
4020 		VI_UNLOCK(vp);
4021 		return;
4022 	}
4023 
4024 	/*
4025 	 * Also unlocks the interlock. We can't assert on it as we
4026 	 * released our hold and by now the vnode might have been
4027 	 * freed.
4028 	 */
4029 	vdbatch_enqueue(vp);
4030 }
4031 
4032 void
4033 vdropl(struct vnode *vp)
4034 {
4035 
4036 	vdropl_impl(vp, true);
4037 }
4038 
4039 /*
4040  * vdrop a vnode when recycling
4041  *
4042  * This is a special case routine only to be used when recycling, differs from
4043  * regular vdrop by not requeieing the vnode on LRU.
4044  *
4045  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4046  * e.g., frozen writes on the filesystem), filling the batch and causing it to
4047  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4048  * loop which can last for as long as writes are frozen.
4049  */
4050 static void
4051 vdropl_recycle(struct vnode *vp)
4052 {
4053 
4054 	vdropl_impl(vp, false);
4055 }
4056 
4057 static void
4058 vdrop_recycle(struct vnode *vp)
4059 {
4060 
4061 	VI_LOCK(vp);
4062 	vdropl_recycle(vp);
4063 }
4064 
4065 /*
4066  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4067  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
4068  */
4069 static int
4070 vinactivef(struct vnode *vp)
4071 {
4072 	int error;
4073 
4074 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4075 	ASSERT_VI_LOCKED(vp, "vinactive");
4076 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4077 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4078 	vp->v_iflag |= VI_DOINGINACT;
4079 	vp->v_iflag &= ~VI_OWEINACT;
4080 	VI_UNLOCK(vp);
4081 
4082 	/*
4083 	 * Before moving off the active list, we must be sure that any
4084 	 * modified pages are converted into the vnode's dirty
4085 	 * buffers, since these will no longer be checked once the
4086 	 * vnode is on the inactive list.
4087 	 *
4088 	 * The write-out of the dirty pages is asynchronous.  At the
4089 	 * point that VOP_INACTIVE() is called, there could still be
4090 	 * pending I/O and dirty pages in the object.
4091 	 */
4092 	if ((vp->v_vflag & VV_NOSYNC) == 0)
4093 		vnode_pager_clean_async(vp);
4094 
4095 	error = VOP_INACTIVE(vp);
4096 	VI_LOCK(vp);
4097 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4098 	vp->v_iflag &= ~VI_DOINGINACT;
4099 	return (error);
4100 }
4101 
4102 int
4103 vinactive(struct vnode *vp)
4104 {
4105 
4106 	ASSERT_VOP_ELOCKED(vp, "vinactive");
4107 	ASSERT_VI_LOCKED(vp, "vinactive");
4108 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4109 
4110 	if ((vp->v_iflag & VI_OWEINACT) == 0)
4111 		return (0);
4112 	if (vp->v_iflag & VI_DOINGINACT)
4113 		return (0);
4114 	if (vp->v_usecount > 0) {
4115 		vp->v_iflag &= ~VI_OWEINACT;
4116 		return (0);
4117 	}
4118 	return (vinactivef(vp));
4119 }
4120 
4121 /*
4122  * Remove any vnodes in the vnode table belonging to mount point mp.
4123  *
4124  * If FORCECLOSE is not specified, there should not be any active ones,
4125  * return error if any are found (nb: this is a user error, not a
4126  * system error). If FORCECLOSE is specified, detach any active vnodes
4127  * that are found.
4128  *
4129  * If WRITECLOSE is set, only flush out regular file vnodes open for
4130  * writing.
4131  *
4132  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4133  *
4134  * `rootrefs' specifies the base reference count for the root vnode
4135  * of this filesystem. The root vnode is considered busy if its
4136  * v_usecount exceeds this value. On a successful return, vflush(, td)
4137  * will call vrele() on the root vnode exactly rootrefs times.
4138  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4139  * be zero.
4140  */
4141 #ifdef DIAGNOSTIC
4142 static int busyprt = 0;		/* print out busy vnodes */
4143 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4144 #endif
4145 
4146 int
4147 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4148 {
4149 	struct vnode *vp, *mvp, *rootvp = NULL;
4150 	struct vattr vattr;
4151 	int busy = 0, error;
4152 
4153 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4154 	    rootrefs, flags);
4155 	if (rootrefs > 0) {
4156 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4157 		    ("vflush: bad args"));
4158 		/*
4159 		 * Get the filesystem root vnode. We can vput() it
4160 		 * immediately, since with rootrefs > 0, it won't go away.
4161 		 */
4162 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4163 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4164 			    __func__, error);
4165 			return (error);
4166 		}
4167 		vput(rootvp);
4168 	}
4169 loop:
4170 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4171 		vholdl(vp);
4172 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4173 		if (error) {
4174 			vdrop(vp);
4175 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4176 			goto loop;
4177 		}
4178 		/*
4179 		 * Skip over a vnodes marked VV_SYSTEM.
4180 		 */
4181 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4182 			VOP_UNLOCK(vp);
4183 			vdrop(vp);
4184 			continue;
4185 		}
4186 		/*
4187 		 * If WRITECLOSE is set, flush out unlinked but still open
4188 		 * files (even if open only for reading) and regular file
4189 		 * vnodes open for writing.
4190 		 */
4191 		if (flags & WRITECLOSE) {
4192 			vnode_pager_clean_async(vp);
4193 			do {
4194 				error = VOP_FSYNC(vp, MNT_WAIT, td);
4195 			} while (error == ERELOOKUP);
4196 			if (error != 0) {
4197 				VOP_UNLOCK(vp);
4198 				vdrop(vp);
4199 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4200 				return (error);
4201 			}
4202 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4203 			VI_LOCK(vp);
4204 
4205 			if ((vp->v_type == VNON ||
4206 			    (error == 0 && vattr.va_nlink > 0)) &&
4207 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4208 				VOP_UNLOCK(vp);
4209 				vdropl(vp);
4210 				continue;
4211 			}
4212 		} else
4213 			VI_LOCK(vp);
4214 		/*
4215 		 * With v_usecount == 0, all we need to do is clear out the
4216 		 * vnode data structures and we are done.
4217 		 *
4218 		 * If FORCECLOSE is set, forcibly close the vnode.
4219 		 */
4220 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4221 			vgonel(vp);
4222 		} else {
4223 			busy++;
4224 #ifdef DIAGNOSTIC
4225 			if (busyprt)
4226 				vn_printf(vp, "vflush: busy vnode ");
4227 #endif
4228 		}
4229 		VOP_UNLOCK(vp);
4230 		vdropl(vp);
4231 	}
4232 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4233 		/*
4234 		 * If just the root vnode is busy, and if its refcount
4235 		 * is equal to `rootrefs', then go ahead and kill it.
4236 		 */
4237 		VI_LOCK(rootvp);
4238 		KASSERT(busy > 0, ("vflush: not busy"));
4239 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4240 		    ("vflush: usecount %d < rootrefs %d",
4241 		     rootvp->v_usecount, rootrefs));
4242 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
4243 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4244 			vgone(rootvp);
4245 			VOP_UNLOCK(rootvp);
4246 			busy = 0;
4247 		} else
4248 			VI_UNLOCK(rootvp);
4249 	}
4250 	if (busy) {
4251 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4252 		    busy);
4253 		return (EBUSY);
4254 	}
4255 	for (; rootrefs > 0; rootrefs--)
4256 		vrele(rootvp);
4257 	return (0);
4258 }
4259 
4260 /*
4261  * Recycle an unused vnode.
4262  */
4263 int
4264 vrecycle(struct vnode *vp)
4265 {
4266 	int recycled;
4267 
4268 	VI_LOCK(vp);
4269 	recycled = vrecyclel(vp);
4270 	VI_UNLOCK(vp);
4271 	return (recycled);
4272 }
4273 
4274 /*
4275  * vrecycle, with the vp interlock held.
4276  */
4277 int
4278 vrecyclel(struct vnode *vp)
4279 {
4280 	int recycled;
4281 
4282 	ASSERT_VOP_ELOCKED(vp, __func__);
4283 	ASSERT_VI_LOCKED(vp, __func__);
4284 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4285 	recycled = 0;
4286 	if (vp->v_usecount == 0) {
4287 		recycled = 1;
4288 		vgonel(vp);
4289 	}
4290 	return (recycled);
4291 }
4292 
4293 /*
4294  * Eliminate all activity associated with a vnode
4295  * in preparation for reuse.
4296  */
4297 void
4298 vgone(struct vnode *vp)
4299 {
4300 	VI_LOCK(vp);
4301 	vgonel(vp);
4302 	VI_UNLOCK(vp);
4303 }
4304 
4305 /*
4306  * Notify upper mounts about reclaimed or unlinked vnode.
4307  */
4308 void
4309 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4310 {
4311 	struct mount *mp;
4312 	struct mount_upper_node *ump;
4313 
4314 	mp = atomic_load_ptr(&vp->v_mount);
4315 	if (mp == NULL)
4316 		return;
4317 	if (TAILQ_EMPTY(&mp->mnt_notify))
4318 		return;
4319 
4320 	MNT_ILOCK(mp);
4321 	mp->mnt_upper_pending++;
4322 	KASSERT(mp->mnt_upper_pending > 0,
4323 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4324 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4325 		MNT_IUNLOCK(mp);
4326 		switch (event) {
4327 		case VFS_NOTIFY_UPPER_RECLAIM:
4328 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4329 			break;
4330 		case VFS_NOTIFY_UPPER_UNLINK:
4331 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4332 			break;
4333 		}
4334 		MNT_ILOCK(mp);
4335 	}
4336 	mp->mnt_upper_pending--;
4337 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4338 	    mp->mnt_upper_pending == 0) {
4339 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4340 		wakeup(&mp->mnt_uppers);
4341 	}
4342 	MNT_IUNLOCK(mp);
4343 }
4344 
4345 /*
4346  * vgone, with the vp interlock held.
4347  */
4348 static void
4349 vgonel(struct vnode *vp)
4350 {
4351 	struct thread *td;
4352 	struct mount *mp;
4353 	vm_object_t object;
4354 	bool active, doinginact, oweinact;
4355 
4356 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4357 	ASSERT_VI_LOCKED(vp, "vgonel");
4358 	VNASSERT(vp->v_holdcnt, vp,
4359 	    ("vgonel: vp %p has no reference.", vp));
4360 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4361 	td = curthread;
4362 
4363 	/*
4364 	 * Don't vgonel if we're already doomed.
4365 	 */
4366 	if (VN_IS_DOOMED(vp)) {
4367 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4368 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4369 		return;
4370 	}
4371 	/*
4372 	 * Paired with freevnode.
4373 	 */
4374 	vn_seqc_write_begin_locked(vp);
4375 	vunlazy_gone(vp);
4376 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4377 	vn_set_state(vp, VSTATE_DESTROYING);
4378 
4379 	/*
4380 	 * Check to see if the vnode is in use.  If so, we have to
4381 	 * call VOP_CLOSE() and VOP_INACTIVE().
4382 	 *
4383 	 * It could be that VOP_INACTIVE() requested reclamation, in
4384 	 * which case we should avoid recursion, so check
4385 	 * VI_DOINGINACT.  This is not precise but good enough.
4386 	 */
4387 	active = vp->v_usecount > 0;
4388 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4389 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4390 
4391 	/*
4392 	 * If we need to do inactive VI_OWEINACT will be set.
4393 	 */
4394 	if (vp->v_iflag & VI_DEFINACT) {
4395 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4396 		vp->v_iflag &= ~VI_DEFINACT;
4397 		vdropl(vp);
4398 	} else {
4399 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4400 		VI_UNLOCK(vp);
4401 	}
4402 	cache_purge_vgone(vp);
4403 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4404 
4405 	/*
4406 	 * If purging an active vnode, it must be closed and
4407 	 * deactivated before being reclaimed.
4408 	 */
4409 	if (active)
4410 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4411 	if (!doinginact) {
4412 		do {
4413 			if (oweinact || active) {
4414 				VI_LOCK(vp);
4415 				vinactivef(vp);
4416 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4417 				VI_UNLOCK(vp);
4418 			}
4419 		} while (oweinact);
4420 	}
4421 	if (vp->v_type == VSOCK)
4422 		vfs_unp_reclaim(vp);
4423 
4424 	/*
4425 	 * Clean out any buffers associated with the vnode.
4426 	 * If the flush fails, just toss the buffers.
4427 	 */
4428 	mp = NULL;
4429 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4430 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4431 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4432 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4433 			;
4434 	}
4435 
4436 	BO_LOCK(&vp->v_bufobj);
4437 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4438 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4439 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4440 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4441 	    ("vp %p bufobj not invalidated", vp));
4442 
4443 	/*
4444 	 * For VMIO bufobj, BO_DEAD is set later, or in
4445 	 * vm_object_terminate() after the object's page queue is
4446 	 * flushed.
4447 	 */
4448 	object = vp->v_bufobj.bo_object;
4449 	if (object == NULL)
4450 		vp->v_bufobj.bo_flag |= BO_DEAD;
4451 	BO_UNLOCK(&vp->v_bufobj);
4452 
4453 	/*
4454 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4455 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4456 	 * should not touch the object borrowed from the lower vnode
4457 	 * (the handle check).
4458 	 */
4459 	if (object != NULL && object->type == OBJT_VNODE &&
4460 	    object->handle == vp)
4461 		vnode_destroy_vobject(vp);
4462 
4463 	/*
4464 	 * Reclaim the vnode.
4465 	 */
4466 	if (VOP_RECLAIM(vp))
4467 		panic("vgone: cannot reclaim");
4468 	if (mp != NULL)
4469 		vn_finished_secondary_write(mp);
4470 	VNASSERT(vp->v_object == NULL, vp,
4471 	    ("vop_reclaim left v_object vp=%p", vp));
4472 	/*
4473 	 * Clear the advisory locks and wake up waiting threads.
4474 	 */
4475 	if (vp->v_lockf != NULL) {
4476 		(void)VOP_ADVLOCKPURGE(vp);
4477 		vp->v_lockf = NULL;
4478 	}
4479 	/*
4480 	 * Delete from old mount point vnode list.
4481 	 */
4482 	if (vp->v_mount == NULL) {
4483 		VI_LOCK(vp);
4484 	} else {
4485 		delmntque(vp);
4486 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4487 	}
4488 	/*
4489 	 * Done with purge, reset to the standard lock and invalidate
4490 	 * the vnode.
4491 	 */
4492 	vp->v_vnlock = &vp->v_lock;
4493 	vp->v_op = &dead_vnodeops;
4494 	vp->v_type = VBAD;
4495 	vn_set_state(vp, VSTATE_DEAD);
4496 }
4497 
4498 /*
4499  * Print out a description of a vnode.
4500  */
4501 static const char *const vtypename[] = {
4502 	[VNON] = "VNON",
4503 	[VREG] = "VREG",
4504 	[VDIR] = "VDIR",
4505 	[VBLK] = "VBLK",
4506 	[VCHR] = "VCHR",
4507 	[VLNK] = "VLNK",
4508 	[VSOCK] = "VSOCK",
4509 	[VFIFO] = "VFIFO",
4510 	[VBAD] = "VBAD",
4511 	[VMARKER] = "VMARKER",
4512 };
4513 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4514     "vnode type name not added to vtypename");
4515 
4516 static const char *const vstatename[] = {
4517 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4518 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4519 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4520 	[VSTATE_DEAD] = "VSTATE_DEAD",
4521 };
4522 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4523     "vnode state name not added to vstatename");
4524 
4525 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4526     "new hold count flag not added to vn_printf");
4527 
4528 void
4529 vn_printf(struct vnode *vp, const char *fmt, ...)
4530 {
4531 	va_list ap;
4532 	char buf[256], buf2[16];
4533 	u_long flags;
4534 	u_int holdcnt;
4535 	short irflag;
4536 
4537 	va_start(ap, fmt);
4538 	vprintf(fmt, ap);
4539 	va_end(ap);
4540 	printf("%p: ", (void *)vp);
4541 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4542 	    vstatename[vp->v_state], vp->v_op);
4543 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4544 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4545 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4546 	    vp->v_seqc_users);
4547 	switch (vp->v_type) {
4548 	case VDIR:
4549 		printf(" mountedhere %p\n", vp->v_mountedhere);
4550 		break;
4551 	case VCHR:
4552 		printf(" rdev %p\n", vp->v_rdev);
4553 		break;
4554 	case VSOCK:
4555 		printf(" socket %p\n", vp->v_unpcb);
4556 		break;
4557 	case VFIFO:
4558 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4559 		break;
4560 	default:
4561 		printf("\n");
4562 		break;
4563 	}
4564 	buf[0] = '\0';
4565 	buf[1] = '\0';
4566 	if (holdcnt & VHOLD_NO_SMR)
4567 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4568 	printf("    hold count flags (%s)\n", buf + 1);
4569 
4570 	buf[0] = '\0';
4571 	buf[1] = '\0';
4572 	irflag = vn_irflag_read(vp);
4573 	if (irflag & VIRF_DOOMED)
4574 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4575 	if (irflag & VIRF_PGREAD)
4576 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4577 	if (irflag & VIRF_MOUNTPOINT)
4578 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4579 	if (irflag & VIRF_TEXT_REF)
4580 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4581 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4582 	if (flags != 0) {
4583 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4584 		strlcat(buf, buf2, sizeof(buf));
4585 	}
4586 	if (vp->v_vflag & VV_ROOT)
4587 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4588 	if (vp->v_vflag & VV_ISTTY)
4589 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4590 	if (vp->v_vflag & VV_NOSYNC)
4591 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4592 	if (vp->v_vflag & VV_ETERNALDEV)
4593 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4594 	if (vp->v_vflag & VV_CACHEDLABEL)
4595 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4596 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4597 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4598 	if (vp->v_vflag & VV_COPYONWRITE)
4599 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4600 	if (vp->v_vflag & VV_SYSTEM)
4601 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4602 	if (vp->v_vflag & VV_PROCDEP)
4603 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4604 	if (vp->v_vflag & VV_DELETED)
4605 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4606 	if (vp->v_vflag & VV_MD)
4607 		strlcat(buf, "|VV_MD", sizeof(buf));
4608 	if (vp->v_vflag & VV_FORCEINSMQ)
4609 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4610 	if (vp->v_vflag & VV_READLINK)
4611 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4612 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4613 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4614 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4615 	if (flags != 0) {
4616 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4617 		strlcat(buf, buf2, sizeof(buf));
4618 	}
4619 	if (vp->v_iflag & VI_MOUNT)
4620 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4621 	if (vp->v_iflag & VI_DOINGINACT)
4622 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4623 	if (vp->v_iflag & VI_OWEINACT)
4624 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4625 	if (vp->v_iflag & VI_DEFINACT)
4626 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4627 	if (vp->v_iflag & VI_FOPENING)
4628 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4629 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4630 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4631 	if (flags != 0) {
4632 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4633 		strlcat(buf, buf2, sizeof(buf));
4634 	}
4635 	if (vp->v_mflag & VMP_LAZYLIST)
4636 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4637 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4638 	if (flags != 0) {
4639 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4640 		strlcat(buf, buf2, sizeof(buf));
4641 	}
4642 	printf("    flags (%s)", buf + 1);
4643 	if (mtx_owned(VI_MTX(vp)))
4644 		printf(" VI_LOCKed");
4645 	printf("\n");
4646 	if (vp->v_object != NULL)
4647 		printf("    v_object %p ref %d pages %d "
4648 		    "cleanbuf %d dirtybuf %d\n",
4649 		    vp->v_object, vp->v_object->ref_count,
4650 		    vp->v_object->resident_page_count,
4651 		    vp->v_bufobj.bo_clean.bv_cnt,
4652 		    vp->v_bufobj.bo_dirty.bv_cnt);
4653 	printf("    ");
4654 	lockmgr_printinfo(vp->v_vnlock);
4655 	if (vp->v_data != NULL)
4656 		VOP_PRINT(vp);
4657 }
4658 
4659 #ifdef DDB
4660 /*
4661  * List all of the locked vnodes in the system.
4662  * Called when debugging the kernel.
4663  */
4664 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4665 {
4666 	struct mount *mp;
4667 	struct vnode *vp;
4668 
4669 	/*
4670 	 * Note: because this is DDB, we can't obey the locking semantics
4671 	 * for these structures, which means we could catch an inconsistent
4672 	 * state and dereference a nasty pointer.  Not much to be done
4673 	 * about that.
4674 	 */
4675 	db_printf("Locked vnodes\n");
4676 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4677 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4678 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4679 				vn_printf(vp, "vnode ");
4680 		}
4681 	}
4682 }
4683 
4684 /*
4685  * Show details about the given vnode.
4686  */
4687 DB_SHOW_COMMAND(vnode, db_show_vnode)
4688 {
4689 	struct vnode *vp;
4690 
4691 	if (!have_addr)
4692 		return;
4693 	vp = (struct vnode *)addr;
4694 	vn_printf(vp, "vnode ");
4695 }
4696 
4697 /*
4698  * Show details about the given mount point.
4699  */
4700 DB_SHOW_COMMAND(mount, db_show_mount)
4701 {
4702 	struct mount *mp;
4703 	struct vfsopt *opt;
4704 	struct statfs *sp;
4705 	struct vnode *vp;
4706 	char buf[512];
4707 	uint64_t mflags;
4708 	u_int flags;
4709 
4710 	if (!have_addr) {
4711 		/* No address given, print short info about all mount points. */
4712 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4713 			db_printf("%p %s on %s (%s)\n", mp,
4714 			    mp->mnt_stat.f_mntfromname,
4715 			    mp->mnt_stat.f_mntonname,
4716 			    mp->mnt_stat.f_fstypename);
4717 			if (db_pager_quit)
4718 				break;
4719 		}
4720 		db_printf("\nMore info: show mount <addr>\n");
4721 		return;
4722 	}
4723 
4724 	mp = (struct mount *)addr;
4725 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4726 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4727 
4728 	buf[0] = '\0';
4729 	mflags = mp->mnt_flag;
4730 #define	MNT_FLAG(flag)	do {						\
4731 	if (mflags & (flag)) {						\
4732 		if (buf[0] != '\0')					\
4733 			strlcat(buf, ", ", sizeof(buf));		\
4734 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4735 		mflags &= ~(flag);					\
4736 	}								\
4737 } while (0)
4738 	MNT_FLAG(MNT_RDONLY);
4739 	MNT_FLAG(MNT_SYNCHRONOUS);
4740 	MNT_FLAG(MNT_NOEXEC);
4741 	MNT_FLAG(MNT_NOSUID);
4742 	MNT_FLAG(MNT_NFS4ACLS);
4743 	MNT_FLAG(MNT_UNION);
4744 	MNT_FLAG(MNT_ASYNC);
4745 	MNT_FLAG(MNT_SUIDDIR);
4746 	MNT_FLAG(MNT_SOFTDEP);
4747 	MNT_FLAG(MNT_NOSYMFOLLOW);
4748 	MNT_FLAG(MNT_GJOURNAL);
4749 	MNT_FLAG(MNT_MULTILABEL);
4750 	MNT_FLAG(MNT_ACLS);
4751 	MNT_FLAG(MNT_NOATIME);
4752 	MNT_FLAG(MNT_NOCLUSTERR);
4753 	MNT_FLAG(MNT_NOCLUSTERW);
4754 	MNT_FLAG(MNT_SUJ);
4755 	MNT_FLAG(MNT_EXRDONLY);
4756 	MNT_FLAG(MNT_EXPORTED);
4757 	MNT_FLAG(MNT_DEFEXPORTED);
4758 	MNT_FLAG(MNT_EXPORTANON);
4759 	MNT_FLAG(MNT_EXKERB);
4760 	MNT_FLAG(MNT_EXPUBLIC);
4761 	MNT_FLAG(MNT_LOCAL);
4762 	MNT_FLAG(MNT_QUOTA);
4763 	MNT_FLAG(MNT_ROOTFS);
4764 	MNT_FLAG(MNT_USER);
4765 	MNT_FLAG(MNT_IGNORE);
4766 	MNT_FLAG(MNT_UPDATE);
4767 	MNT_FLAG(MNT_DELEXPORT);
4768 	MNT_FLAG(MNT_RELOAD);
4769 	MNT_FLAG(MNT_FORCE);
4770 	MNT_FLAG(MNT_SNAPSHOT);
4771 	MNT_FLAG(MNT_BYFSID);
4772 #undef MNT_FLAG
4773 	if (mflags != 0) {
4774 		if (buf[0] != '\0')
4775 			strlcat(buf, ", ", sizeof(buf));
4776 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4777 		    "0x%016jx", mflags);
4778 	}
4779 	db_printf("    mnt_flag = %s\n", buf);
4780 
4781 	buf[0] = '\0';
4782 	flags = mp->mnt_kern_flag;
4783 #define	MNT_KERN_FLAG(flag)	do {					\
4784 	if (flags & (flag)) {						\
4785 		if (buf[0] != '\0')					\
4786 			strlcat(buf, ", ", sizeof(buf));		\
4787 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4788 		flags &= ~(flag);					\
4789 	}								\
4790 } while (0)
4791 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4792 	MNT_KERN_FLAG(MNTK_ASYNC);
4793 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4794 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4795 	MNT_KERN_FLAG(MNTK_DRAINING);
4796 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4797 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4798 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4799 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4800 	MNT_KERN_FLAG(MNTK_RECURSE);
4801 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4802 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4803 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4804 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4805 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4806 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4807 	MNT_KERN_FLAG(MNTK_NOASYNC);
4808 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4809 	MNT_KERN_FLAG(MNTK_MWAIT);
4810 	MNT_KERN_FLAG(MNTK_SUSPEND);
4811 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4812 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4813 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4814 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4815 #undef MNT_KERN_FLAG
4816 	if (flags != 0) {
4817 		if (buf[0] != '\0')
4818 			strlcat(buf, ", ", sizeof(buf));
4819 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4820 		    "0x%08x", flags);
4821 	}
4822 	db_printf("    mnt_kern_flag = %s\n", buf);
4823 
4824 	db_printf("    mnt_opt = ");
4825 	opt = TAILQ_FIRST(mp->mnt_opt);
4826 	if (opt != NULL) {
4827 		db_printf("%s", opt->name);
4828 		opt = TAILQ_NEXT(opt, link);
4829 		while (opt != NULL) {
4830 			db_printf(", %s", opt->name);
4831 			opt = TAILQ_NEXT(opt, link);
4832 		}
4833 	}
4834 	db_printf("\n");
4835 
4836 	sp = &mp->mnt_stat;
4837 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4838 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4839 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4840 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4841 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4842 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4843 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4844 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4845 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4846 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4847 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4848 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4849 
4850 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4851 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4852 	if (jailed(mp->mnt_cred))
4853 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4854 	db_printf(" }\n");
4855 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4856 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4857 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4858 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4859 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4860 	    mp->mnt_lazyvnodelistsize);
4861 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4862 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4863 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4864 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4865 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4866 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4867 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4868 	db_printf("    mnt_secondary_accwrites = %d\n",
4869 	    mp->mnt_secondary_accwrites);
4870 	db_printf("    mnt_gjprovider = %s\n",
4871 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4872 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4873 
4874 	db_printf("\n\nList of active vnodes\n");
4875 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4876 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4877 			vn_printf(vp, "vnode ");
4878 			if (db_pager_quit)
4879 				break;
4880 		}
4881 	}
4882 	db_printf("\n\nList of inactive vnodes\n");
4883 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4884 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4885 			vn_printf(vp, "vnode ");
4886 			if (db_pager_quit)
4887 				break;
4888 		}
4889 	}
4890 }
4891 #endif	/* DDB */
4892 
4893 /*
4894  * Fill in a struct xvfsconf based on a struct vfsconf.
4895  */
4896 static int
4897 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4898 {
4899 	struct xvfsconf xvfsp;
4900 
4901 	bzero(&xvfsp, sizeof(xvfsp));
4902 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4903 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4904 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4905 	xvfsp.vfc_flags = vfsp->vfc_flags;
4906 	/*
4907 	 * These are unused in userland, we keep them
4908 	 * to not break binary compatibility.
4909 	 */
4910 	xvfsp.vfc_vfsops = NULL;
4911 	xvfsp.vfc_next = NULL;
4912 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4913 }
4914 
4915 #ifdef COMPAT_FREEBSD32
4916 struct xvfsconf32 {
4917 	uint32_t	vfc_vfsops;
4918 	char		vfc_name[MFSNAMELEN];
4919 	int32_t		vfc_typenum;
4920 	int32_t		vfc_refcount;
4921 	int32_t		vfc_flags;
4922 	uint32_t	vfc_next;
4923 };
4924 
4925 static int
4926 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4927 {
4928 	struct xvfsconf32 xvfsp;
4929 
4930 	bzero(&xvfsp, sizeof(xvfsp));
4931 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4932 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4933 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4934 	xvfsp.vfc_flags = vfsp->vfc_flags;
4935 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4936 }
4937 #endif
4938 
4939 /*
4940  * Top level filesystem related information gathering.
4941  */
4942 static int
4943 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4944 {
4945 	struct vfsconf *vfsp;
4946 	int error;
4947 
4948 	error = 0;
4949 	vfsconf_slock();
4950 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4951 #ifdef COMPAT_FREEBSD32
4952 		if (req->flags & SCTL_MASK32)
4953 			error = vfsconf2x32(req, vfsp);
4954 		else
4955 #endif
4956 			error = vfsconf2x(req, vfsp);
4957 		if (error)
4958 			break;
4959 	}
4960 	vfsconf_sunlock();
4961 	return (error);
4962 }
4963 
4964 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4965     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4966     "S,xvfsconf", "List of all configured filesystems");
4967 
4968 #ifndef BURN_BRIDGES
4969 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4970 
4971 static int
4972 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4973 {
4974 	int *name = (int *)arg1 - 1;	/* XXX */
4975 	u_int namelen = arg2 + 1;	/* XXX */
4976 	struct vfsconf *vfsp;
4977 
4978 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4979 	    "please rebuild world\n");
4980 
4981 #if 1 || defined(COMPAT_PRELITE2)
4982 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4983 	if (namelen == 1)
4984 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4985 #endif
4986 
4987 	switch (name[1]) {
4988 	case VFS_MAXTYPENUM:
4989 		if (namelen != 2)
4990 			return (ENOTDIR);
4991 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4992 	case VFS_CONF:
4993 		if (namelen != 3)
4994 			return (ENOTDIR);	/* overloaded */
4995 		vfsconf_slock();
4996 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4997 			if (vfsp->vfc_typenum == name[2])
4998 				break;
4999 		}
5000 		vfsconf_sunlock();
5001 		if (vfsp == NULL)
5002 			return (EOPNOTSUPP);
5003 #ifdef COMPAT_FREEBSD32
5004 		if (req->flags & SCTL_MASK32)
5005 			return (vfsconf2x32(req, vfsp));
5006 		else
5007 #endif
5008 			return (vfsconf2x(req, vfsp));
5009 	}
5010 	return (EOPNOTSUPP);
5011 }
5012 
5013 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5014     CTLFLAG_MPSAFE, vfs_sysctl,
5015     "Generic filesystem");
5016 
5017 #if 1 || defined(COMPAT_PRELITE2)
5018 
5019 static int
5020 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5021 {
5022 	int error;
5023 	struct vfsconf *vfsp;
5024 	struct ovfsconf ovfs;
5025 
5026 	vfsconf_slock();
5027 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5028 		bzero(&ovfs, sizeof(ovfs));
5029 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
5030 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
5031 		ovfs.vfc_index = vfsp->vfc_typenum;
5032 		ovfs.vfc_refcount = vfsp->vfc_refcount;
5033 		ovfs.vfc_flags = vfsp->vfc_flags;
5034 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5035 		if (error != 0) {
5036 			vfsconf_sunlock();
5037 			return (error);
5038 		}
5039 	}
5040 	vfsconf_sunlock();
5041 	return (0);
5042 }
5043 
5044 #endif /* 1 || COMPAT_PRELITE2 */
5045 #endif /* !BURN_BRIDGES */
5046 
5047 static void
5048 unmount_or_warn(struct mount *mp)
5049 {
5050 	int error;
5051 
5052 	error = dounmount(mp, MNT_FORCE, curthread);
5053 	if (error != 0) {
5054 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5055 		if (error == EBUSY)
5056 			printf("BUSY)\n");
5057 		else
5058 			printf("%d)\n", error);
5059 	}
5060 }
5061 
5062 /*
5063  * Unmount all filesystems. The list is traversed in reverse order
5064  * of mounting to avoid dependencies.
5065  */
5066 void
5067 vfs_unmountall(void)
5068 {
5069 	struct mount *mp, *tmp;
5070 
5071 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5072 
5073 	/*
5074 	 * Since this only runs when rebooting, it is not interlocked.
5075 	 */
5076 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5077 		vfs_ref(mp);
5078 
5079 		/*
5080 		 * Forcibly unmounting "/dev" before "/" would prevent clean
5081 		 * unmount of the latter.
5082 		 */
5083 		if (mp == rootdevmp)
5084 			continue;
5085 
5086 		unmount_or_warn(mp);
5087 	}
5088 
5089 	if (rootdevmp != NULL)
5090 		unmount_or_warn(rootdevmp);
5091 }
5092 
5093 static void
5094 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5095 {
5096 
5097 	ASSERT_VI_LOCKED(vp, __func__);
5098 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5099 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
5100 		vdropl(vp);
5101 		return;
5102 	}
5103 	if (vn_lock(vp, lkflags) == 0) {
5104 		VI_LOCK(vp);
5105 		vinactive(vp);
5106 		VOP_UNLOCK(vp);
5107 		vdropl(vp);
5108 		return;
5109 	}
5110 	vdefer_inactive_unlocked(vp);
5111 }
5112 
5113 static int
5114 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5115 {
5116 
5117 	return (vp->v_iflag & VI_DEFINACT);
5118 }
5119 
5120 static void __noinline
5121 vfs_periodic_inactive(struct mount *mp, int flags)
5122 {
5123 	struct vnode *vp, *mvp;
5124 	int lkflags;
5125 
5126 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5127 	if (flags != MNT_WAIT)
5128 		lkflags |= LK_NOWAIT;
5129 
5130 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5131 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
5132 			VI_UNLOCK(vp);
5133 			continue;
5134 		}
5135 		vp->v_iflag &= ~VI_DEFINACT;
5136 		vfs_deferred_inactive(vp, lkflags);
5137 	}
5138 }
5139 
5140 static inline bool
5141 vfs_want_msync(struct vnode *vp)
5142 {
5143 	struct vm_object *obj;
5144 
5145 	/*
5146 	 * This test may be performed without any locks held.
5147 	 * We rely on vm_object's type stability.
5148 	 */
5149 	if (vp->v_vflag & VV_NOSYNC)
5150 		return (false);
5151 	obj = vp->v_object;
5152 	return (obj != NULL && vm_object_mightbedirty(obj));
5153 }
5154 
5155 static int
5156 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5157 {
5158 
5159 	if (vp->v_vflag & VV_NOSYNC)
5160 		return (false);
5161 	if (vp->v_iflag & VI_DEFINACT)
5162 		return (true);
5163 	return (vfs_want_msync(vp));
5164 }
5165 
5166 static void __noinline
5167 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5168 {
5169 	struct vnode *vp, *mvp;
5170 	int lkflags;
5171 	bool seen_defer;
5172 
5173 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5174 	if (flags != MNT_WAIT)
5175 		lkflags |= LK_NOWAIT;
5176 
5177 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5178 		seen_defer = false;
5179 		if (vp->v_iflag & VI_DEFINACT) {
5180 			vp->v_iflag &= ~VI_DEFINACT;
5181 			seen_defer = true;
5182 		}
5183 		if (!vfs_want_msync(vp)) {
5184 			if (seen_defer)
5185 				vfs_deferred_inactive(vp, lkflags);
5186 			else
5187 				VI_UNLOCK(vp);
5188 			continue;
5189 		}
5190 		if (vget(vp, lkflags) == 0) {
5191 			if ((vp->v_vflag & VV_NOSYNC) == 0) {
5192 				if (flags == MNT_WAIT)
5193 					vnode_pager_clean_sync(vp);
5194 				else
5195 					vnode_pager_clean_async(vp);
5196 			}
5197 			vput(vp);
5198 			if (seen_defer)
5199 				vdrop(vp);
5200 		} else {
5201 			if (seen_defer)
5202 				vdefer_inactive_unlocked(vp);
5203 		}
5204 	}
5205 }
5206 
5207 void
5208 vfs_periodic(struct mount *mp, int flags)
5209 {
5210 
5211 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5212 
5213 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5214 		vfs_periodic_inactive(mp, flags);
5215 	else
5216 		vfs_periodic_msync_inactive(mp, flags);
5217 }
5218 
5219 static void
5220 destroy_vpollinfo_free(struct vpollinfo *vi)
5221 {
5222 
5223 	knlist_destroy(&vi->vpi_selinfo.si_note);
5224 	mtx_destroy(&vi->vpi_lock);
5225 	free(vi, M_VNODEPOLL);
5226 }
5227 
5228 static void
5229 destroy_vpollinfo(struct vpollinfo *vi)
5230 {
5231 
5232 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
5233 	seldrain(&vi->vpi_selinfo);
5234 	destroy_vpollinfo_free(vi);
5235 }
5236 
5237 /*
5238  * Initialize per-vnode helper structure to hold poll-related state.
5239  */
5240 void
5241 v_addpollinfo(struct vnode *vp)
5242 {
5243 	struct vpollinfo *vi;
5244 
5245 	if (vp->v_pollinfo != NULL)
5246 		return;
5247 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5248 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5249 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5250 	    vfs_knlunlock, vfs_knl_assert_lock);
5251 	VI_LOCK(vp);
5252 	if (vp->v_pollinfo != NULL) {
5253 		VI_UNLOCK(vp);
5254 		destroy_vpollinfo_free(vi);
5255 		return;
5256 	}
5257 	vp->v_pollinfo = vi;
5258 	VI_UNLOCK(vp);
5259 }
5260 
5261 /*
5262  * Record a process's interest in events which might happen to
5263  * a vnode.  Because poll uses the historic select-style interface
5264  * internally, this routine serves as both the ``check for any
5265  * pending events'' and the ``record my interest in future events''
5266  * functions.  (These are done together, while the lock is held,
5267  * to avoid race conditions.)
5268  */
5269 int
5270 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5271 {
5272 
5273 	v_addpollinfo(vp);
5274 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5275 	if (vp->v_pollinfo->vpi_revents & events) {
5276 		/*
5277 		 * This leaves events we are not interested
5278 		 * in available for the other process which
5279 		 * which presumably had requested them
5280 		 * (otherwise they would never have been
5281 		 * recorded).
5282 		 */
5283 		events &= vp->v_pollinfo->vpi_revents;
5284 		vp->v_pollinfo->vpi_revents &= ~events;
5285 
5286 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5287 		return (events);
5288 	}
5289 	vp->v_pollinfo->vpi_events |= events;
5290 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5291 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5292 	return (0);
5293 }
5294 
5295 /*
5296  * Routine to create and manage a filesystem syncer vnode.
5297  */
5298 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5299 static int	sync_fsync(struct  vop_fsync_args *);
5300 static int	sync_inactive(struct  vop_inactive_args *);
5301 static int	sync_reclaim(struct  vop_reclaim_args *);
5302 
5303 static struct vop_vector sync_vnodeops = {
5304 	.vop_bypass =	VOP_EOPNOTSUPP,
5305 	.vop_close =	sync_close,
5306 	.vop_fsync =	sync_fsync,
5307 	.vop_getwritemount = vop_stdgetwritemount,
5308 	.vop_inactive =	sync_inactive,
5309 	.vop_need_inactive = vop_stdneed_inactive,
5310 	.vop_reclaim =	sync_reclaim,
5311 	.vop_lock1 =	vop_stdlock,
5312 	.vop_unlock =	vop_stdunlock,
5313 	.vop_islocked =	vop_stdislocked,
5314 	.vop_fplookup_vexec = VOP_EAGAIN,
5315 	.vop_fplookup_symlink = VOP_EAGAIN,
5316 };
5317 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5318 
5319 /*
5320  * Create a new filesystem syncer vnode for the specified mount point.
5321  */
5322 void
5323 vfs_allocate_syncvnode(struct mount *mp)
5324 {
5325 	struct vnode *vp;
5326 	struct bufobj *bo;
5327 	static long start, incr, next;
5328 	int error;
5329 
5330 	/* Allocate a new vnode */
5331 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5332 	if (error != 0)
5333 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5334 	vp->v_type = VNON;
5335 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5336 	vp->v_vflag |= VV_FORCEINSMQ;
5337 	error = insmntque1(vp, mp);
5338 	if (error != 0)
5339 		panic("vfs_allocate_syncvnode: insmntque() failed");
5340 	vp->v_vflag &= ~VV_FORCEINSMQ;
5341 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5342 	VOP_UNLOCK(vp);
5343 	/*
5344 	 * Place the vnode onto the syncer worklist. We attempt to
5345 	 * scatter them about on the list so that they will go off
5346 	 * at evenly distributed times even if all the filesystems
5347 	 * are mounted at once.
5348 	 */
5349 	next += incr;
5350 	if (next == 0 || next > syncer_maxdelay) {
5351 		start /= 2;
5352 		incr /= 2;
5353 		if (start == 0) {
5354 			start = syncer_maxdelay / 2;
5355 			incr = syncer_maxdelay;
5356 		}
5357 		next = start;
5358 	}
5359 	bo = &vp->v_bufobj;
5360 	BO_LOCK(bo);
5361 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5362 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5363 	mtx_lock(&sync_mtx);
5364 	sync_vnode_count++;
5365 	if (mp->mnt_syncer == NULL) {
5366 		mp->mnt_syncer = vp;
5367 		vp = NULL;
5368 	}
5369 	mtx_unlock(&sync_mtx);
5370 	BO_UNLOCK(bo);
5371 	if (vp != NULL) {
5372 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5373 		vgone(vp);
5374 		vput(vp);
5375 	}
5376 }
5377 
5378 void
5379 vfs_deallocate_syncvnode(struct mount *mp)
5380 {
5381 	struct vnode *vp;
5382 
5383 	mtx_lock(&sync_mtx);
5384 	vp = mp->mnt_syncer;
5385 	if (vp != NULL)
5386 		mp->mnt_syncer = NULL;
5387 	mtx_unlock(&sync_mtx);
5388 	if (vp != NULL)
5389 		vrele(vp);
5390 }
5391 
5392 /*
5393  * Do a lazy sync of the filesystem.
5394  */
5395 static int
5396 sync_fsync(struct vop_fsync_args *ap)
5397 {
5398 	struct vnode *syncvp = ap->a_vp;
5399 	struct mount *mp = syncvp->v_mount;
5400 	int error, save;
5401 	struct bufobj *bo;
5402 
5403 	/*
5404 	 * We only need to do something if this is a lazy evaluation.
5405 	 */
5406 	if (ap->a_waitfor != MNT_LAZY)
5407 		return (0);
5408 
5409 	/*
5410 	 * Move ourselves to the back of the sync list.
5411 	 */
5412 	bo = &syncvp->v_bufobj;
5413 	BO_LOCK(bo);
5414 	vn_syncer_add_to_worklist(bo, syncdelay);
5415 	BO_UNLOCK(bo);
5416 
5417 	/*
5418 	 * Walk the list of vnodes pushing all that are dirty and
5419 	 * not already on the sync list.
5420 	 */
5421 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5422 		return (0);
5423 	VOP_UNLOCK(syncvp);
5424 	save = curthread_pflags_set(TDP_SYNCIO);
5425 	/*
5426 	 * The filesystem at hand may be idle with free vnodes stored in the
5427 	 * batch.  Return them instead of letting them stay there indefinitely.
5428 	 */
5429 	vfs_periodic(mp, MNT_NOWAIT);
5430 	error = VFS_SYNC(mp, MNT_LAZY);
5431 	curthread_pflags_restore(save);
5432 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5433 	vfs_unbusy(mp);
5434 	return (error);
5435 }
5436 
5437 /*
5438  * The syncer vnode is no referenced.
5439  */
5440 static int
5441 sync_inactive(struct vop_inactive_args *ap)
5442 {
5443 
5444 	vgone(ap->a_vp);
5445 	return (0);
5446 }
5447 
5448 /*
5449  * The syncer vnode is no longer needed and is being decommissioned.
5450  *
5451  * Modifications to the worklist must be protected by sync_mtx.
5452  */
5453 static int
5454 sync_reclaim(struct vop_reclaim_args *ap)
5455 {
5456 	struct vnode *vp = ap->a_vp;
5457 	struct bufobj *bo;
5458 
5459 	bo = &vp->v_bufobj;
5460 	BO_LOCK(bo);
5461 	mtx_lock(&sync_mtx);
5462 	if (vp->v_mount->mnt_syncer == vp)
5463 		vp->v_mount->mnt_syncer = NULL;
5464 	if (bo->bo_flag & BO_ONWORKLST) {
5465 		LIST_REMOVE(bo, bo_synclist);
5466 		syncer_worklist_len--;
5467 		sync_vnode_count--;
5468 		bo->bo_flag &= ~BO_ONWORKLST;
5469 	}
5470 	mtx_unlock(&sync_mtx);
5471 	BO_UNLOCK(bo);
5472 
5473 	return (0);
5474 }
5475 
5476 int
5477 vn_need_pageq_flush(struct vnode *vp)
5478 {
5479 	struct vm_object *obj;
5480 
5481 	obj = vp->v_object;
5482 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5483 	    vm_object_mightbedirty(obj));
5484 }
5485 
5486 /*
5487  * Check if vnode represents a disk device
5488  */
5489 bool
5490 vn_isdisk_error(struct vnode *vp, int *errp)
5491 {
5492 	int error;
5493 
5494 	if (vp->v_type != VCHR) {
5495 		error = ENOTBLK;
5496 		goto out;
5497 	}
5498 	error = 0;
5499 	dev_lock();
5500 	if (vp->v_rdev == NULL)
5501 		error = ENXIO;
5502 	else if (vp->v_rdev->si_devsw == NULL)
5503 		error = ENXIO;
5504 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5505 		error = ENOTBLK;
5506 	dev_unlock();
5507 out:
5508 	*errp = error;
5509 	return (error == 0);
5510 }
5511 
5512 bool
5513 vn_isdisk(struct vnode *vp)
5514 {
5515 	int error;
5516 
5517 	return (vn_isdisk_error(vp, &error));
5518 }
5519 
5520 /*
5521  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5522  * the comment above cache_fplookup for details.
5523  */
5524 int
5525 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5526 {
5527 	int error;
5528 
5529 	VFS_SMR_ASSERT_ENTERED();
5530 
5531 	/* Check the owner. */
5532 	if (cred->cr_uid == file_uid) {
5533 		if (file_mode & S_IXUSR)
5534 			return (0);
5535 		goto out_error;
5536 	}
5537 
5538 	/* Otherwise, check the groups (first match) */
5539 	if (groupmember(file_gid, cred)) {
5540 		if (file_mode & S_IXGRP)
5541 			return (0);
5542 		goto out_error;
5543 	}
5544 
5545 	/* Otherwise, check everyone else. */
5546 	if (file_mode & S_IXOTH)
5547 		return (0);
5548 out_error:
5549 	/*
5550 	 * Permission check failed, but it is possible denial will get overwritten
5551 	 * (e.g., when root is traversing through a 700 directory owned by someone
5552 	 * else).
5553 	 *
5554 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5555 	 * modules overriding this result. It's quite unclear what semantics
5556 	 * are allowed for them to operate, thus for safety we don't call them
5557 	 * from within the SMR section. This also means if any such modules
5558 	 * are present, we have to let the regular lookup decide.
5559 	 */
5560 	error = priv_check_cred_vfs_lookup_nomac(cred);
5561 	switch (error) {
5562 	case 0:
5563 		return (0);
5564 	case EAGAIN:
5565 		/*
5566 		 * MAC modules present.
5567 		 */
5568 		return (EAGAIN);
5569 	case EPERM:
5570 		return (EACCES);
5571 	default:
5572 		return (error);
5573 	}
5574 }
5575 
5576 /*
5577  * Common filesystem object access control check routine.  Accepts a
5578  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5579  * Returns 0 on success, or an errno on failure.
5580  */
5581 int
5582 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5583     accmode_t accmode, struct ucred *cred)
5584 {
5585 	accmode_t dac_granted;
5586 	accmode_t priv_granted;
5587 
5588 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5589 	    ("invalid bit in accmode"));
5590 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5591 	    ("VAPPEND without VWRITE"));
5592 
5593 	/*
5594 	 * Look for a normal, non-privileged way to access the file/directory
5595 	 * as requested.  If it exists, go with that.
5596 	 */
5597 
5598 	dac_granted = 0;
5599 
5600 	/* Check the owner. */
5601 	if (cred->cr_uid == file_uid) {
5602 		dac_granted |= VADMIN;
5603 		if (file_mode & S_IXUSR)
5604 			dac_granted |= VEXEC;
5605 		if (file_mode & S_IRUSR)
5606 			dac_granted |= VREAD;
5607 		if (file_mode & S_IWUSR)
5608 			dac_granted |= (VWRITE | VAPPEND);
5609 
5610 		if ((accmode & dac_granted) == accmode)
5611 			return (0);
5612 
5613 		goto privcheck;
5614 	}
5615 
5616 	/* Otherwise, check the groups (first match) */
5617 	if (groupmember(file_gid, cred)) {
5618 		if (file_mode & S_IXGRP)
5619 			dac_granted |= VEXEC;
5620 		if (file_mode & S_IRGRP)
5621 			dac_granted |= VREAD;
5622 		if (file_mode & S_IWGRP)
5623 			dac_granted |= (VWRITE | VAPPEND);
5624 
5625 		if ((accmode & dac_granted) == accmode)
5626 			return (0);
5627 
5628 		goto privcheck;
5629 	}
5630 
5631 	/* Otherwise, check everyone else. */
5632 	if (file_mode & S_IXOTH)
5633 		dac_granted |= VEXEC;
5634 	if (file_mode & S_IROTH)
5635 		dac_granted |= VREAD;
5636 	if (file_mode & S_IWOTH)
5637 		dac_granted |= (VWRITE | VAPPEND);
5638 	if ((accmode & dac_granted) == accmode)
5639 		return (0);
5640 
5641 privcheck:
5642 	/*
5643 	 * Build a privilege mask to determine if the set of privileges
5644 	 * satisfies the requirements when combined with the granted mask
5645 	 * from above.  For each privilege, if the privilege is required,
5646 	 * bitwise or the request type onto the priv_granted mask.
5647 	 */
5648 	priv_granted = 0;
5649 
5650 	if (type == VDIR) {
5651 		/*
5652 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5653 		 * requests, instead of PRIV_VFS_EXEC.
5654 		 */
5655 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5656 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5657 			priv_granted |= VEXEC;
5658 	} else {
5659 		/*
5660 		 * Ensure that at least one execute bit is on. Otherwise,
5661 		 * a privileged user will always succeed, and we don't want
5662 		 * this to happen unless the file really is executable.
5663 		 */
5664 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5665 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5666 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5667 			priv_granted |= VEXEC;
5668 	}
5669 
5670 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5671 	    !priv_check_cred(cred, PRIV_VFS_READ))
5672 		priv_granted |= VREAD;
5673 
5674 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5675 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5676 		priv_granted |= (VWRITE | VAPPEND);
5677 
5678 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5679 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5680 		priv_granted |= VADMIN;
5681 
5682 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5683 		return (0);
5684 	}
5685 
5686 	return ((accmode & VADMIN) ? EPERM : EACCES);
5687 }
5688 
5689 /*
5690  * Credential check based on process requesting service, and per-attribute
5691  * permissions.
5692  */
5693 int
5694 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5695     struct thread *td, accmode_t accmode)
5696 {
5697 
5698 	/*
5699 	 * Kernel-invoked always succeeds.
5700 	 */
5701 	if (cred == NOCRED)
5702 		return (0);
5703 
5704 	/*
5705 	 * Do not allow privileged processes in jail to directly manipulate
5706 	 * system attributes.
5707 	 */
5708 	switch (attrnamespace) {
5709 	case EXTATTR_NAMESPACE_SYSTEM:
5710 		/* Potentially should be: return (EPERM); */
5711 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5712 	case EXTATTR_NAMESPACE_USER:
5713 		return (VOP_ACCESS(vp, accmode, cred, td));
5714 	default:
5715 		return (EPERM);
5716 	}
5717 }
5718 
5719 #ifdef DEBUG_VFS_LOCKS
5720 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5721 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5722     "Drop into debugger on lock violation");
5723 
5724 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5725 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5726     0, "Check for interlock across VOPs");
5727 
5728 int vfs_badlock_print = 1;	/* Print lock violations. */
5729 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5730     0, "Print lock violations");
5731 
5732 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5733 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5734     0, "Print vnode details on lock violations");
5735 
5736 #ifdef KDB
5737 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5738 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5739     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5740 #endif
5741 
5742 static void
5743 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5744 {
5745 
5746 #ifdef KDB
5747 	if (vfs_badlock_backtrace)
5748 		kdb_backtrace();
5749 #endif
5750 	if (vfs_badlock_vnode)
5751 		vn_printf(vp, "vnode ");
5752 	if (vfs_badlock_print)
5753 		printf("%s: %p %s\n", str, (void *)vp, msg);
5754 	if (vfs_badlock_ddb)
5755 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5756 }
5757 
5758 void
5759 assert_vi_locked(struct vnode *vp, const char *str)
5760 {
5761 
5762 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5763 		vfs_badlock("interlock is not locked but should be", str, vp);
5764 }
5765 
5766 void
5767 assert_vi_unlocked(struct vnode *vp, const char *str)
5768 {
5769 
5770 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5771 		vfs_badlock("interlock is locked but should not be", str, vp);
5772 }
5773 
5774 void
5775 assert_vop_locked(struct vnode *vp, const char *str)
5776 {
5777 	if (KERNEL_PANICKED() || vp == NULL)
5778 		return;
5779 
5780 #ifdef WITNESS
5781 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5782 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5783 #else
5784 	int locked = VOP_ISLOCKED(vp);
5785 	if (locked == 0 || locked == LK_EXCLOTHER)
5786 #endif
5787 		vfs_badlock("is not locked but should be", str, vp);
5788 }
5789 
5790 void
5791 assert_vop_unlocked(struct vnode *vp, const char *str)
5792 {
5793 	if (KERNEL_PANICKED() || vp == NULL)
5794 		return;
5795 
5796 #ifdef WITNESS
5797 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5798 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5799 #else
5800 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5801 #endif
5802 		vfs_badlock("is locked but should not be", str, vp);
5803 }
5804 
5805 void
5806 assert_vop_elocked(struct vnode *vp, const char *str)
5807 {
5808 	if (KERNEL_PANICKED() || vp == NULL)
5809 		return;
5810 
5811 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5812 		vfs_badlock("is not exclusive locked but should be", str, vp);
5813 }
5814 #endif /* DEBUG_VFS_LOCKS */
5815 
5816 void
5817 vop_rename_fail(struct vop_rename_args *ap)
5818 {
5819 
5820 	if (ap->a_tvp != NULL)
5821 		vput(ap->a_tvp);
5822 	if (ap->a_tdvp == ap->a_tvp)
5823 		vrele(ap->a_tdvp);
5824 	else
5825 		vput(ap->a_tdvp);
5826 	vrele(ap->a_fdvp);
5827 	vrele(ap->a_fvp);
5828 }
5829 
5830 void
5831 vop_rename_pre(void *ap)
5832 {
5833 	struct vop_rename_args *a = ap;
5834 
5835 #ifdef DEBUG_VFS_LOCKS
5836 	if (a->a_tvp)
5837 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5838 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5839 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5840 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5841 
5842 	/* Check the source (from). */
5843 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5844 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5845 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5846 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5847 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5848 
5849 	/* Check the target. */
5850 	if (a->a_tvp)
5851 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5852 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5853 #endif
5854 	/*
5855 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5856 	 * in vop_rename_post but that's not going to work out since some
5857 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5858 	 *
5859 	 * For now filesystems are expected to do the relevant calls after they
5860 	 * decide what vnodes to operate on.
5861 	 */
5862 	if (a->a_tdvp != a->a_fdvp)
5863 		vhold(a->a_fdvp);
5864 	if (a->a_tvp != a->a_fvp)
5865 		vhold(a->a_fvp);
5866 	vhold(a->a_tdvp);
5867 	if (a->a_tvp)
5868 		vhold(a->a_tvp);
5869 }
5870 
5871 #ifdef DEBUG_VFS_LOCKS
5872 void
5873 vop_fplookup_vexec_debugpre(void *ap __unused)
5874 {
5875 
5876 	VFS_SMR_ASSERT_ENTERED();
5877 }
5878 
5879 void
5880 vop_fplookup_vexec_debugpost(void *ap, int rc)
5881 {
5882 	struct vop_fplookup_vexec_args *a;
5883 	struct vnode *vp;
5884 
5885 	a = ap;
5886 	vp = a->a_vp;
5887 
5888 	VFS_SMR_ASSERT_ENTERED();
5889 	if (rc == EOPNOTSUPP)
5890 		VNPASS(VN_IS_DOOMED(vp), vp);
5891 }
5892 
5893 void
5894 vop_fplookup_symlink_debugpre(void *ap __unused)
5895 {
5896 
5897 	VFS_SMR_ASSERT_ENTERED();
5898 }
5899 
5900 void
5901 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5902 {
5903 
5904 	VFS_SMR_ASSERT_ENTERED();
5905 }
5906 
5907 static void
5908 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5909 {
5910 	if (vp->v_type == VCHR)
5911 		;
5912 	/*
5913 	 * The shared vs. exclusive locking policy for fsync()
5914 	 * is actually determined by vp's write mount as indicated
5915 	 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5916 	 * may not be the same as vp->v_mount.  However, if the
5917 	 * underlying filesystem which really handles the fsync()
5918 	 * supports shared locking, the stacked filesystem must also
5919 	 * be prepared for its VOP_FSYNC() operation to be called
5920 	 * with only a shared lock.  On the other hand, if the
5921 	 * stacked filesystem claims support for shared write
5922 	 * locking but the underlying filesystem does not, and the
5923 	 * caller incorrectly uses a shared lock, this condition
5924 	 * should still be caught when the stacked filesystem
5925 	 * invokes VOP_FSYNC() on the underlying filesystem.
5926 	 */
5927 	else if (MNT_SHARED_WRITES(vp->v_mount))
5928 		ASSERT_VOP_LOCKED(vp, name);
5929 	else
5930 		ASSERT_VOP_ELOCKED(vp, name);
5931 }
5932 
5933 void
5934 vop_fsync_debugpre(void *a)
5935 {
5936 	struct vop_fsync_args *ap;
5937 
5938 	ap = a;
5939 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5940 }
5941 
5942 void
5943 vop_fsync_debugpost(void *a, int rc __unused)
5944 {
5945 	struct vop_fsync_args *ap;
5946 
5947 	ap = a;
5948 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5949 }
5950 
5951 void
5952 vop_fdatasync_debugpre(void *a)
5953 {
5954 	struct vop_fdatasync_args *ap;
5955 
5956 	ap = a;
5957 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5958 }
5959 
5960 void
5961 vop_fdatasync_debugpost(void *a, int rc __unused)
5962 {
5963 	struct vop_fdatasync_args *ap;
5964 
5965 	ap = a;
5966 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5967 }
5968 
5969 void
5970 vop_strategy_debugpre(void *ap)
5971 {
5972 	struct vop_strategy_args *a;
5973 	struct buf *bp;
5974 
5975 	a = ap;
5976 	bp = a->a_bp;
5977 
5978 	/*
5979 	 * Cluster ops lock their component buffers but not the IO container.
5980 	 */
5981 	if ((bp->b_flags & B_CLUSTER) != 0)
5982 		return;
5983 
5984 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5985 		if (vfs_badlock_print)
5986 			printf(
5987 			    "VOP_STRATEGY: bp is not locked but should be\n");
5988 		if (vfs_badlock_ddb)
5989 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5990 	}
5991 }
5992 
5993 void
5994 vop_lock_debugpre(void *ap)
5995 {
5996 	struct vop_lock1_args *a = ap;
5997 
5998 	if ((a->a_flags & LK_INTERLOCK) == 0)
5999 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6000 	else
6001 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6002 }
6003 
6004 void
6005 vop_lock_debugpost(void *ap, int rc)
6006 {
6007 	struct vop_lock1_args *a = ap;
6008 
6009 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6010 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6011 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6012 }
6013 
6014 void
6015 vop_unlock_debugpre(void *ap)
6016 {
6017 	struct vop_unlock_args *a = ap;
6018 	struct vnode *vp = a->a_vp;
6019 
6020 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6021 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6022 }
6023 
6024 void
6025 vop_need_inactive_debugpre(void *ap)
6026 {
6027 	struct vop_need_inactive_args *a = ap;
6028 
6029 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6030 }
6031 
6032 void
6033 vop_need_inactive_debugpost(void *ap, int rc)
6034 {
6035 	struct vop_need_inactive_args *a = ap;
6036 
6037 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6038 }
6039 #endif
6040 
6041 void
6042 vop_create_pre(void *ap)
6043 {
6044 	struct vop_create_args *a;
6045 	struct vnode *dvp;
6046 
6047 	a = ap;
6048 	dvp = a->a_dvp;
6049 	vn_seqc_write_begin(dvp);
6050 }
6051 
6052 void
6053 vop_create_post(void *ap, int rc)
6054 {
6055 	struct vop_create_args *a;
6056 	struct vnode *dvp;
6057 
6058 	a = ap;
6059 	dvp = a->a_dvp;
6060 	vn_seqc_write_end(dvp);
6061 	if (!rc)
6062 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6063 }
6064 
6065 void
6066 vop_whiteout_pre(void *ap)
6067 {
6068 	struct vop_whiteout_args *a;
6069 	struct vnode *dvp;
6070 
6071 	a = ap;
6072 	dvp = a->a_dvp;
6073 	vn_seqc_write_begin(dvp);
6074 }
6075 
6076 void
6077 vop_whiteout_post(void *ap, int rc)
6078 {
6079 	struct vop_whiteout_args *a;
6080 	struct vnode *dvp;
6081 
6082 	a = ap;
6083 	dvp = a->a_dvp;
6084 	vn_seqc_write_end(dvp);
6085 }
6086 
6087 void
6088 vop_deleteextattr_pre(void *ap)
6089 {
6090 	struct vop_deleteextattr_args *a;
6091 	struct vnode *vp;
6092 
6093 	a = ap;
6094 	vp = a->a_vp;
6095 	vn_seqc_write_begin(vp);
6096 }
6097 
6098 void
6099 vop_deleteextattr_post(void *ap, int rc)
6100 {
6101 	struct vop_deleteextattr_args *a;
6102 	struct vnode *vp;
6103 
6104 	a = ap;
6105 	vp = a->a_vp;
6106 	vn_seqc_write_end(vp);
6107 	if (!rc)
6108 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6109 }
6110 
6111 void
6112 vop_link_pre(void *ap)
6113 {
6114 	struct vop_link_args *a;
6115 	struct vnode *vp, *tdvp;
6116 
6117 	a = ap;
6118 	vp = a->a_vp;
6119 	tdvp = a->a_tdvp;
6120 	vn_seqc_write_begin(vp);
6121 	vn_seqc_write_begin(tdvp);
6122 }
6123 
6124 void
6125 vop_link_post(void *ap, int rc)
6126 {
6127 	struct vop_link_args *a;
6128 	struct vnode *vp, *tdvp;
6129 
6130 	a = ap;
6131 	vp = a->a_vp;
6132 	tdvp = a->a_tdvp;
6133 	vn_seqc_write_end(vp);
6134 	vn_seqc_write_end(tdvp);
6135 	if (!rc) {
6136 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6137 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6138 	}
6139 }
6140 
6141 void
6142 vop_mkdir_pre(void *ap)
6143 {
6144 	struct vop_mkdir_args *a;
6145 	struct vnode *dvp;
6146 
6147 	a = ap;
6148 	dvp = a->a_dvp;
6149 	vn_seqc_write_begin(dvp);
6150 }
6151 
6152 void
6153 vop_mkdir_post(void *ap, int rc)
6154 {
6155 	struct vop_mkdir_args *a;
6156 	struct vnode *dvp;
6157 
6158 	a = ap;
6159 	dvp = a->a_dvp;
6160 	vn_seqc_write_end(dvp);
6161 	if (!rc)
6162 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6163 }
6164 
6165 #ifdef DEBUG_VFS_LOCKS
6166 void
6167 vop_mkdir_debugpost(void *ap, int rc)
6168 {
6169 	struct vop_mkdir_args *a;
6170 
6171 	a = ap;
6172 	if (!rc)
6173 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6174 }
6175 #endif
6176 
6177 void
6178 vop_mknod_pre(void *ap)
6179 {
6180 	struct vop_mknod_args *a;
6181 	struct vnode *dvp;
6182 
6183 	a = ap;
6184 	dvp = a->a_dvp;
6185 	vn_seqc_write_begin(dvp);
6186 }
6187 
6188 void
6189 vop_mknod_post(void *ap, int rc)
6190 {
6191 	struct vop_mknod_args *a;
6192 	struct vnode *dvp;
6193 
6194 	a = ap;
6195 	dvp = a->a_dvp;
6196 	vn_seqc_write_end(dvp);
6197 	if (!rc)
6198 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6199 }
6200 
6201 void
6202 vop_reclaim_post(void *ap, int rc)
6203 {
6204 	struct vop_reclaim_args *a;
6205 	struct vnode *vp;
6206 
6207 	a = ap;
6208 	vp = a->a_vp;
6209 	ASSERT_VOP_IN_SEQC(vp);
6210 	if (!rc)
6211 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6212 }
6213 
6214 void
6215 vop_remove_pre(void *ap)
6216 {
6217 	struct vop_remove_args *a;
6218 	struct vnode *dvp, *vp;
6219 
6220 	a = ap;
6221 	dvp = a->a_dvp;
6222 	vp = a->a_vp;
6223 	vn_seqc_write_begin(dvp);
6224 	vn_seqc_write_begin(vp);
6225 }
6226 
6227 void
6228 vop_remove_post(void *ap, int rc)
6229 {
6230 	struct vop_remove_args *a;
6231 	struct vnode *dvp, *vp;
6232 
6233 	a = ap;
6234 	dvp = a->a_dvp;
6235 	vp = a->a_vp;
6236 	vn_seqc_write_end(dvp);
6237 	vn_seqc_write_end(vp);
6238 	if (!rc) {
6239 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6240 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6241 	}
6242 }
6243 
6244 void
6245 vop_rename_post(void *ap, int rc)
6246 {
6247 	struct vop_rename_args *a = ap;
6248 	long hint;
6249 
6250 	if (!rc) {
6251 		hint = NOTE_WRITE;
6252 		if (a->a_fdvp == a->a_tdvp) {
6253 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6254 				hint |= NOTE_LINK;
6255 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6256 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6257 		} else {
6258 			hint |= NOTE_EXTEND;
6259 			if (a->a_fvp->v_type == VDIR)
6260 				hint |= NOTE_LINK;
6261 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6262 
6263 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6264 			    a->a_tvp->v_type == VDIR)
6265 				hint &= ~NOTE_LINK;
6266 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6267 		}
6268 
6269 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6270 		if (a->a_tvp)
6271 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6272 	}
6273 	if (a->a_tdvp != a->a_fdvp)
6274 		vdrop(a->a_fdvp);
6275 	if (a->a_tvp != a->a_fvp)
6276 		vdrop(a->a_fvp);
6277 	vdrop(a->a_tdvp);
6278 	if (a->a_tvp)
6279 		vdrop(a->a_tvp);
6280 }
6281 
6282 void
6283 vop_rmdir_pre(void *ap)
6284 {
6285 	struct vop_rmdir_args *a;
6286 	struct vnode *dvp, *vp;
6287 
6288 	a = ap;
6289 	dvp = a->a_dvp;
6290 	vp = a->a_vp;
6291 	vn_seqc_write_begin(dvp);
6292 	vn_seqc_write_begin(vp);
6293 }
6294 
6295 void
6296 vop_rmdir_post(void *ap, int rc)
6297 {
6298 	struct vop_rmdir_args *a;
6299 	struct vnode *dvp, *vp;
6300 
6301 	a = ap;
6302 	dvp = a->a_dvp;
6303 	vp = a->a_vp;
6304 	vn_seqc_write_end(dvp);
6305 	vn_seqc_write_end(vp);
6306 	if (!rc) {
6307 		vp->v_vflag |= VV_UNLINKED;
6308 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6309 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6310 	}
6311 }
6312 
6313 void
6314 vop_setattr_pre(void *ap)
6315 {
6316 	struct vop_setattr_args *a;
6317 	struct vnode *vp;
6318 
6319 	a = ap;
6320 	vp = a->a_vp;
6321 	vn_seqc_write_begin(vp);
6322 }
6323 
6324 void
6325 vop_setattr_post(void *ap, int rc)
6326 {
6327 	struct vop_setattr_args *a;
6328 	struct vnode *vp;
6329 
6330 	a = ap;
6331 	vp = a->a_vp;
6332 	vn_seqc_write_end(vp);
6333 	if (!rc)
6334 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6335 }
6336 
6337 void
6338 vop_setacl_pre(void *ap)
6339 {
6340 	struct vop_setacl_args *a;
6341 	struct vnode *vp;
6342 
6343 	a = ap;
6344 	vp = a->a_vp;
6345 	vn_seqc_write_begin(vp);
6346 }
6347 
6348 void
6349 vop_setacl_post(void *ap, int rc __unused)
6350 {
6351 	struct vop_setacl_args *a;
6352 	struct vnode *vp;
6353 
6354 	a = ap;
6355 	vp = a->a_vp;
6356 	vn_seqc_write_end(vp);
6357 }
6358 
6359 void
6360 vop_setextattr_pre(void *ap)
6361 {
6362 	struct vop_setextattr_args *a;
6363 	struct vnode *vp;
6364 
6365 	a = ap;
6366 	vp = a->a_vp;
6367 	vn_seqc_write_begin(vp);
6368 }
6369 
6370 void
6371 vop_setextattr_post(void *ap, int rc)
6372 {
6373 	struct vop_setextattr_args *a;
6374 	struct vnode *vp;
6375 
6376 	a = ap;
6377 	vp = a->a_vp;
6378 	vn_seqc_write_end(vp);
6379 	if (!rc)
6380 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6381 }
6382 
6383 void
6384 vop_symlink_pre(void *ap)
6385 {
6386 	struct vop_symlink_args *a;
6387 	struct vnode *dvp;
6388 
6389 	a = ap;
6390 	dvp = a->a_dvp;
6391 	vn_seqc_write_begin(dvp);
6392 }
6393 
6394 void
6395 vop_symlink_post(void *ap, int rc)
6396 {
6397 	struct vop_symlink_args *a;
6398 	struct vnode *dvp;
6399 
6400 	a = ap;
6401 	dvp = a->a_dvp;
6402 	vn_seqc_write_end(dvp);
6403 	if (!rc)
6404 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6405 }
6406 
6407 void
6408 vop_open_post(void *ap, int rc)
6409 {
6410 	struct vop_open_args *a = ap;
6411 
6412 	if (!rc)
6413 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6414 }
6415 
6416 void
6417 vop_close_post(void *ap, int rc)
6418 {
6419 	struct vop_close_args *a = ap;
6420 
6421 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6422 	    !VN_IS_DOOMED(a->a_vp))) {
6423 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6424 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6425 	}
6426 }
6427 
6428 void
6429 vop_read_post(void *ap, int rc)
6430 {
6431 	struct vop_read_args *a = ap;
6432 
6433 	if (!rc)
6434 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6435 }
6436 
6437 void
6438 vop_read_pgcache_post(void *ap, int rc)
6439 {
6440 	struct vop_read_pgcache_args *a = ap;
6441 
6442 	if (!rc)
6443 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6444 }
6445 
6446 void
6447 vop_readdir_post(void *ap, int rc)
6448 {
6449 	struct vop_readdir_args *a = ap;
6450 
6451 	if (!rc)
6452 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6453 }
6454 
6455 static struct knlist fs_knlist;
6456 
6457 static void
6458 vfs_event_init(void *arg)
6459 {
6460 	knlist_init_mtx(&fs_knlist, NULL);
6461 }
6462 /* XXX - correct order? */
6463 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6464 
6465 void
6466 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6467 {
6468 
6469 	KNOTE_UNLOCKED(&fs_knlist, event);
6470 }
6471 
6472 static int	filt_fsattach(struct knote *kn);
6473 static void	filt_fsdetach(struct knote *kn);
6474 static int	filt_fsevent(struct knote *kn, long hint);
6475 
6476 struct filterops fs_filtops = {
6477 	.f_isfd = 0,
6478 	.f_attach = filt_fsattach,
6479 	.f_detach = filt_fsdetach,
6480 	.f_event = filt_fsevent
6481 };
6482 
6483 static int
6484 filt_fsattach(struct knote *kn)
6485 {
6486 
6487 	kn->kn_flags |= EV_CLEAR;
6488 	knlist_add(&fs_knlist, kn, 0);
6489 	return (0);
6490 }
6491 
6492 static void
6493 filt_fsdetach(struct knote *kn)
6494 {
6495 
6496 	knlist_remove(&fs_knlist, kn, 0);
6497 }
6498 
6499 static int
6500 filt_fsevent(struct knote *kn, long hint)
6501 {
6502 
6503 	kn->kn_fflags |= kn->kn_sfflags & hint;
6504 
6505 	return (kn->kn_fflags != 0);
6506 }
6507 
6508 static int
6509 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6510 {
6511 	struct vfsidctl vc;
6512 	int error;
6513 	struct mount *mp;
6514 
6515 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6516 	if (error)
6517 		return (error);
6518 	if (vc.vc_vers != VFS_CTL_VERS1)
6519 		return (EINVAL);
6520 	mp = vfs_getvfs(&vc.vc_fsid);
6521 	if (mp == NULL)
6522 		return (ENOENT);
6523 	/* ensure that a specific sysctl goes to the right filesystem. */
6524 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6525 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6526 		vfs_rel(mp);
6527 		return (EINVAL);
6528 	}
6529 	VCTLTOREQ(&vc, req);
6530 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6531 	vfs_rel(mp);
6532 	return (error);
6533 }
6534 
6535 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6536     NULL, 0, sysctl_vfs_ctl, "",
6537     "Sysctl by fsid");
6538 
6539 /*
6540  * Function to initialize a va_filerev field sensibly.
6541  * XXX: Wouldn't a random number make a lot more sense ??
6542  */
6543 u_quad_t
6544 init_va_filerev(void)
6545 {
6546 	struct bintime bt;
6547 
6548 	getbinuptime(&bt);
6549 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6550 }
6551 
6552 static int	filt_vfsread(struct knote *kn, long hint);
6553 static int	filt_vfswrite(struct knote *kn, long hint);
6554 static int	filt_vfsvnode(struct knote *kn, long hint);
6555 static void	filt_vfsdetach(struct knote *kn);
6556 static struct filterops vfsread_filtops = {
6557 	.f_isfd = 1,
6558 	.f_detach = filt_vfsdetach,
6559 	.f_event = filt_vfsread
6560 };
6561 static struct filterops vfswrite_filtops = {
6562 	.f_isfd = 1,
6563 	.f_detach = filt_vfsdetach,
6564 	.f_event = filt_vfswrite
6565 };
6566 static struct filterops vfsvnode_filtops = {
6567 	.f_isfd = 1,
6568 	.f_detach = filt_vfsdetach,
6569 	.f_event = filt_vfsvnode
6570 };
6571 
6572 static void
6573 vfs_knllock(void *arg)
6574 {
6575 	struct vnode *vp = arg;
6576 
6577 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6578 }
6579 
6580 static void
6581 vfs_knlunlock(void *arg)
6582 {
6583 	struct vnode *vp = arg;
6584 
6585 	VOP_UNLOCK(vp);
6586 }
6587 
6588 static void
6589 vfs_knl_assert_lock(void *arg, int what)
6590 {
6591 #ifdef DEBUG_VFS_LOCKS
6592 	struct vnode *vp = arg;
6593 
6594 	if (what == LA_LOCKED)
6595 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6596 	else
6597 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6598 #endif
6599 }
6600 
6601 int
6602 vfs_kqfilter(struct vop_kqfilter_args *ap)
6603 {
6604 	struct vnode *vp = ap->a_vp;
6605 	struct knote *kn = ap->a_kn;
6606 	struct knlist *knl;
6607 
6608 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6609 	    kn->kn_filter != EVFILT_WRITE),
6610 	    ("READ/WRITE filter on a FIFO leaked through"));
6611 	switch (kn->kn_filter) {
6612 	case EVFILT_READ:
6613 		kn->kn_fop = &vfsread_filtops;
6614 		break;
6615 	case EVFILT_WRITE:
6616 		kn->kn_fop = &vfswrite_filtops;
6617 		break;
6618 	case EVFILT_VNODE:
6619 		kn->kn_fop = &vfsvnode_filtops;
6620 		break;
6621 	default:
6622 		return (EINVAL);
6623 	}
6624 
6625 	kn->kn_hook = (caddr_t)vp;
6626 
6627 	v_addpollinfo(vp);
6628 	if (vp->v_pollinfo == NULL)
6629 		return (ENOMEM);
6630 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6631 	vhold(vp);
6632 	knlist_add(knl, kn, 0);
6633 
6634 	return (0);
6635 }
6636 
6637 /*
6638  * Detach knote from vnode
6639  */
6640 static void
6641 filt_vfsdetach(struct knote *kn)
6642 {
6643 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6644 
6645 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6646 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6647 	vdrop(vp);
6648 }
6649 
6650 /*ARGSUSED*/
6651 static int
6652 filt_vfsread(struct knote *kn, long hint)
6653 {
6654 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6655 	off_t size;
6656 	int res;
6657 
6658 	/*
6659 	 * filesystem is gone, so set the EOF flag and schedule
6660 	 * the knote for deletion.
6661 	 */
6662 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6663 		VI_LOCK(vp);
6664 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6665 		VI_UNLOCK(vp);
6666 		return (1);
6667 	}
6668 
6669 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6670 		return (0);
6671 
6672 	VI_LOCK(vp);
6673 	kn->kn_data = size - kn->kn_fp->f_offset;
6674 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6675 	VI_UNLOCK(vp);
6676 	return (res);
6677 }
6678 
6679 /*ARGSUSED*/
6680 static int
6681 filt_vfswrite(struct knote *kn, long hint)
6682 {
6683 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6684 
6685 	VI_LOCK(vp);
6686 
6687 	/*
6688 	 * filesystem is gone, so set the EOF flag and schedule
6689 	 * the knote for deletion.
6690 	 */
6691 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6692 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6693 
6694 	kn->kn_data = 0;
6695 	VI_UNLOCK(vp);
6696 	return (1);
6697 }
6698 
6699 static int
6700 filt_vfsvnode(struct knote *kn, long hint)
6701 {
6702 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6703 	int res;
6704 
6705 	VI_LOCK(vp);
6706 	if (kn->kn_sfflags & hint)
6707 		kn->kn_fflags |= hint;
6708 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6709 		kn->kn_flags |= EV_EOF;
6710 		VI_UNLOCK(vp);
6711 		return (1);
6712 	}
6713 	res = (kn->kn_fflags != 0);
6714 	VI_UNLOCK(vp);
6715 	return (res);
6716 }
6717 
6718 int
6719 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6720 {
6721 	int error;
6722 
6723 	if (dp->d_reclen > ap->a_uio->uio_resid)
6724 		return (ENAMETOOLONG);
6725 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6726 	if (error) {
6727 		if (ap->a_ncookies != NULL) {
6728 			if (ap->a_cookies != NULL)
6729 				free(ap->a_cookies, M_TEMP);
6730 			ap->a_cookies = NULL;
6731 			*ap->a_ncookies = 0;
6732 		}
6733 		return (error);
6734 	}
6735 	if (ap->a_ncookies == NULL)
6736 		return (0);
6737 
6738 	KASSERT(ap->a_cookies,
6739 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6740 
6741 	*ap->a_cookies = realloc(*ap->a_cookies,
6742 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6743 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6744 	*ap->a_ncookies += 1;
6745 	return (0);
6746 }
6747 
6748 /*
6749  * The purpose of this routine is to remove granularity from accmode_t,
6750  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6751  * VADMIN and VAPPEND.
6752  *
6753  * If it returns 0, the caller is supposed to continue with the usual
6754  * access checks using 'accmode' as modified by this routine.  If it
6755  * returns nonzero value, the caller is supposed to return that value
6756  * as errno.
6757  *
6758  * Note that after this routine runs, accmode may be zero.
6759  */
6760 int
6761 vfs_unixify_accmode(accmode_t *accmode)
6762 {
6763 	/*
6764 	 * There is no way to specify explicit "deny" rule using
6765 	 * file mode or POSIX.1e ACLs.
6766 	 */
6767 	if (*accmode & VEXPLICIT_DENY) {
6768 		*accmode = 0;
6769 		return (0);
6770 	}
6771 
6772 	/*
6773 	 * None of these can be translated into usual access bits.
6774 	 * Also, the common case for NFSv4 ACLs is to not contain
6775 	 * either of these bits. Caller should check for VWRITE
6776 	 * on the containing directory instead.
6777 	 */
6778 	if (*accmode & (VDELETE_CHILD | VDELETE))
6779 		return (EPERM);
6780 
6781 	if (*accmode & VADMIN_PERMS) {
6782 		*accmode &= ~VADMIN_PERMS;
6783 		*accmode |= VADMIN;
6784 	}
6785 
6786 	/*
6787 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6788 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6789 	 */
6790 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6791 
6792 	return (0);
6793 }
6794 
6795 /*
6796  * Clear out a doomed vnode (if any) and replace it with a new one as long
6797  * as the fs is not being unmounted. Return the root vnode to the caller.
6798  */
6799 static int __noinline
6800 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6801 {
6802 	struct vnode *vp;
6803 	int error;
6804 
6805 restart:
6806 	if (mp->mnt_rootvnode != NULL) {
6807 		MNT_ILOCK(mp);
6808 		vp = mp->mnt_rootvnode;
6809 		if (vp != NULL) {
6810 			if (!VN_IS_DOOMED(vp)) {
6811 				vrefact(vp);
6812 				MNT_IUNLOCK(mp);
6813 				error = vn_lock(vp, flags);
6814 				if (error == 0) {
6815 					*vpp = vp;
6816 					return (0);
6817 				}
6818 				vrele(vp);
6819 				goto restart;
6820 			}
6821 			/*
6822 			 * Clear the old one.
6823 			 */
6824 			mp->mnt_rootvnode = NULL;
6825 		}
6826 		MNT_IUNLOCK(mp);
6827 		if (vp != NULL) {
6828 			vfs_op_barrier_wait(mp);
6829 			vrele(vp);
6830 		}
6831 	}
6832 	error = VFS_CACHEDROOT(mp, flags, vpp);
6833 	if (error != 0)
6834 		return (error);
6835 	if (mp->mnt_vfs_ops == 0) {
6836 		MNT_ILOCK(mp);
6837 		if (mp->mnt_vfs_ops != 0) {
6838 			MNT_IUNLOCK(mp);
6839 			return (0);
6840 		}
6841 		if (mp->mnt_rootvnode == NULL) {
6842 			vrefact(*vpp);
6843 			mp->mnt_rootvnode = *vpp;
6844 		} else {
6845 			if (mp->mnt_rootvnode != *vpp) {
6846 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6847 					panic("%s: mismatch between vnode returned "
6848 					    " by VFS_CACHEDROOT and the one cached "
6849 					    " (%p != %p)",
6850 					    __func__, *vpp, mp->mnt_rootvnode);
6851 				}
6852 			}
6853 		}
6854 		MNT_IUNLOCK(mp);
6855 	}
6856 	return (0);
6857 }
6858 
6859 int
6860 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6861 {
6862 	struct mount_pcpu *mpcpu;
6863 	struct vnode *vp;
6864 	int error;
6865 
6866 	if (!vfs_op_thread_enter(mp, mpcpu))
6867 		return (vfs_cache_root_fallback(mp, flags, vpp));
6868 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6869 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6870 		vfs_op_thread_exit(mp, mpcpu);
6871 		return (vfs_cache_root_fallback(mp, flags, vpp));
6872 	}
6873 	vrefact(vp);
6874 	vfs_op_thread_exit(mp, mpcpu);
6875 	error = vn_lock(vp, flags);
6876 	if (error != 0) {
6877 		vrele(vp);
6878 		return (vfs_cache_root_fallback(mp, flags, vpp));
6879 	}
6880 	*vpp = vp;
6881 	return (0);
6882 }
6883 
6884 struct vnode *
6885 vfs_cache_root_clear(struct mount *mp)
6886 {
6887 	struct vnode *vp;
6888 
6889 	/*
6890 	 * ops > 0 guarantees there is nobody who can see this vnode
6891 	 */
6892 	MPASS(mp->mnt_vfs_ops > 0);
6893 	vp = mp->mnt_rootvnode;
6894 	if (vp != NULL)
6895 		vn_seqc_write_begin(vp);
6896 	mp->mnt_rootvnode = NULL;
6897 	return (vp);
6898 }
6899 
6900 void
6901 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6902 {
6903 
6904 	MPASS(mp->mnt_vfs_ops > 0);
6905 	vrefact(vp);
6906 	mp->mnt_rootvnode = vp;
6907 }
6908 
6909 /*
6910  * These are helper functions for filesystems to traverse all
6911  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6912  *
6913  * This interface replaces MNT_VNODE_FOREACH.
6914  */
6915 
6916 struct vnode *
6917 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6918 {
6919 	struct vnode *vp;
6920 
6921 	maybe_yield();
6922 	MNT_ILOCK(mp);
6923 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6924 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6925 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6926 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6927 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6928 			continue;
6929 		VI_LOCK(vp);
6930 		if (VN_IS_DOOMED(vp)) {
6931 			VI_UNLOCK(vp);
6932 			continue;
6933 		}
6934 		break;
6935 	}
6936 	if (vp == NULL) {
6937 		__mnt_vnode_markerfree_all(mvp, mp);
6938 		/* MNT_IUNLOCK(mp); -- done in above function */
6939 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6940 		return (NULL);
6941 	}
6942 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6943 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6944 	MNT_IUNLOCK(mp);
6945 	return (vp);
6946 }
6947 
6948 struct vnode *
6949 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6950 {
6951 	struct vnode *vp;
6952 
6953 	*mvp = vn_alloc_marker(mp);
6954 	MNT_ILOCK(mp);
6955 	MNT_REF(mp);
6956 
6957 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6958 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6959 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6960 			continue;
6961 		VI_LOCK(vp);
6962 		if (VN_IS_DOOMED(vp)) {
6963 			VI_UNLOCK(vp);
6964 			continue;
6965 		}
6966 		break;
6967 	}
6968 	if (vp == NULL) {
6969 		MNT_REL(mp);
6970 		MNT_IUNLOCK(mp);
6971 		vn_free_marker(*mvp);
6972 		*mvp = NULL;
6973 		return (NULL);
6974 	}
6975 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6976 	MNT_IUNLOCK(mp);
6977 	return (vp);
6978 }
6979 
6980 void
6981 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6982 {
6983 
6984 	if (*mvp == NULL) {
6985 		MNT_IUNLOCK(mp);
6986 		return;
6987 	}
6988 
6989 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6990 
6991 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6992 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6993 	MNT_REL(mp);
6994 	MNT_IUNLOCK(mp);
6995 	vn_free_marker(*mvp);
6996 	*mvp = NULL;
6997 }
6998 
6999 /*
7000  * These are helper functions for filesystems to traverse their
7001  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7002  */
7003 static void
7004 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7005 {
7006 
7007 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7008 
7009 	MNT_ILOCK(mp);
7010 	MNT_REL(mp);
7011 	MNT_IUNLOCK(mp);
7012 	vn_free_marker(*mvp);
7013 	*mvp = NULL;
7014 }
7015 
7016 /*
7017  * Relock the mp mount vnode list lock with the vp vnode interlock in the
7018  * conventional lock order during mnt_vnode_next_lazy iteration.
7019  *
7020  * On entry, the mount vnode list lock is held and the vnode interlock is not.
7021  * The list lock is dropped and reacquired.  On success, both locks are held.
7022  * On failure, the mount vnode list lock is held but the vnode interlock is
7023  * not, and the procedure may have yielded.
7024  */
7025 static bool
7026 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7027     struct vnode *vp)
7028 {
7029 
7030 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7031 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7032 	    ("%s: bad marker", __func__));
7033 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7034 	    ("%s: inappropriate vnode", __func__));
7035 	ASSERT_VI_UNLOCKED(vp, __func__);
7036 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7037 
7038 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7039 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7040 
7041 	/*
7042 	 * Note we may be racing against vdrop which transitioned the hold
7043 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7044 	 * if we are the only user after we get the interlock we will just
7045 	 * vdrop.
7046 	 */
7047 	vhold(vp);
7048 	mtx_unlock(&mp->mnt_listmtx);
7049 	VI_LOCK(vp);
7050 	if (VN_IS_DOOMED(vp)) {
7051 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7052 		goto out_lost;
7053 	}
7054 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7055 	/*
7056 	 * There is nothing to do if we are the last user.
7057 	 */
7058 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
7059 		goto out_lost;
7060 	mtx_lock(&mp->mnt_listmtx);
7061 	return (true);
7062 out_lost:
7063 	vdropl(vp);
7064 	maybe_yield();
7065 	mtx_lock(&mp->mnt_listmtx);
7066 	return (false);
7067 }
7068 
7069 static struct vnode *
7070 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7071     void *cbarg)
7072 {
7073 	struct vnode *vp;
7074 
7075 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7076 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7077 restart:
7078 	vp = TAILQ_NEXT(*mvp, v_lazylist);
7079 	while (vp != NULL) {
7080 		if (vp->v_type == VMARKER) {
7081 			vp = TAILQ_NEXT(vp, v_lazylist);
7082 			continue;
7083 		}
7084 		/*
7085 		 * See if we want to process the vnode. Note we may encounter a
7086 		 * long string of vnodes we don't care about and hog the list
7087 		 * as a result. Check for it and requeue the marker.
7088 		 */
7089 		VNPASS(!VN_IS_DOOMED(vp), vp);
7090 		if (!cb(vp, cbarg)) {
7091 			if (!should_yield()) {
7092 				vp = TAILQ_NEXT(vp, v_lazylist);
7093 				continue;
7094 			}
7095 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7096 			    v_lazylist);
7097 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7098 			    v_lazylist);
7099 			mtx_unlock(&mp->mnt_listmtx);
7100 			kern_yield(PRI_USER);
7101 			mtx_lock(&mp->mnt_listmtx);
7102 			goto restart;
7103 		}
7104 		/*
7105 		 * Try-lock because this is the wrong lock order.
7106 		 */
7107 		if (!VI_TRYLOCK(vp) &&
7108 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7109 			goto restart;
7110 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7111 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7112 		    ("alien vnode on the lazy list %p %p", vp, mp));
7113 		VNPASS(vp->v_mount == mp, vp);
7114 		VNPASS(!VN_IS_DOOMED(vp), vp);
7115 		break;
7116 	}
7117 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7118 
7119 	/* Check if we are done */
7120 	if (vp == NULL) {
7121 		mtx_unlock(&mp->mnt_listmtx);
7122 		mnt_vnode_markerfree_lazy(mvp, mp);
7123 		return (NULL);
7124 	}
7125 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7126 	mtx_unlock(&mp->mnt_listmtx);
7127 	ASSERT_VI_LOCKED(vp, "lazy iter");
7128 	return (vp);
7129 }
7130 
7131 struct vnode *
7132 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7133     void *cbarg)
7134 {
7135 
7136 	maybe_yield();
7137 	mtx_lock(&mp->mnt_listmtx);
7138 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7139 }
7140 
7141 struct vnode *
7142 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7143     void *cbarg)
7144 {
7145 	struct vnode *vp;
7146 
7147 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7148 		return (NULL);
7149 
7150 	*mvp = vn_alloc_marker(mp);
7151 	MNT_ILOCK(mp);
7152 	MNT_REF(mp);
7153 	MNT_IUNLOCK(mp);
7154 
7155 	mtx_lock(&mp->mnt_listmtx);
7156 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7157 	if (vp == NULL) {
7158 		mtx_unlock(&mp->mnt_listmtx);
7159 		mnt_vnode_markerfree_lazy(mvp, mp);
7160 		return (NULL);
7161 	}
7162 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7163 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7164 }
7165 
7166 void
7167 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7168 {
7169 
7170 	if (*mvp == NULL)
7171 		return;
7172 
7173 	mtx_lock(&mp->mnt_listmtx);
7174 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7175 	mtx_unlock(&mp->mnt_listmtx);
7176 	mnt_vnode_markerfree_lazy(mvp, mp);
7177 }
7178 
7179 int
7180 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7181 {
7182 
7183 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7184 		cnp->cn_flags &= ~NOEXECCHECK;
7185 		return (0);
7186 	}
7187 
7188 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7189 }
7190 
7191 /*
7192  * Do not use this variant unless you have means other than the hold count
7193  * to prevent the vnode from getting freed.
7194  */
7195 void
7196 vn_seqc_write_begin_locked(struct vnode *vp)
7197 {
7198 
7199 	ASSERT_VI_LOCKED(vp, __func__);
7200 	VNPASS(vp->v_holdcnt > 0, vp);
7201 	VNPASS(vp->v_seqc_users >= 0, vp);
7202 	vp->v_seqc_users++;
7203 	if (vp->v_seqc_users == 1)
7204 		seqc_sleepable_write_begin(&vp->v_seqc);
7205 }
7206 
7207 void
7208 vn_seqc_write_begin(struct vnode *vp)
7209 {
7210 
7211 	VI_LOCK(vp);
7212 	vn_seqc_write_begin_locked(vp);
7213 	VI_UNLOCK(vp);
7214 }
7215 
7216 void
7217 vn_seqc_write_end_locked(struct vnode *vp)
7218 {
7219 
7220 	ASSERT_VI_LOCKED(vp, __func__);
7221 	VNPASS(vp->v_seqc_users > 0, vp);
7222 	vp->v_seqc_users--;
7223 	if (vp->v_seqc_users == 0)
7224 		seqc_sleepable_write_end(&vp->v_seqc);
7225 }
7226 
7227 void
7228 vn_seqc_write_end(struct vnode *vp)
7229 {
7230 
7231 	VI_LOCK(vp);
7232 	vn_seqc_write_end_locked(vp);
7233 	VI_UNLOCK(vp);
7234 }
7235 
7236 /*
7237  * Special case handling for allocating and freeing vnodes.
7238  *
7239  * The counter remains unchanged on free so that a doomed vnode will
7240  * keep testing as in modify as long as it is accessible with SMR.
7241  */
7242 static void
7243 vn_seqc_init(struct vnode *vp)
7244 {
7245 
7246 	vp->v_seqc = 0;
7247 	vp->v_seqc_users = 0;
7248 }
7249 
7250 static void
7251 vn_seqc_write_end_free(struct vnode *vp)
7252 {
7253 
7254 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7255 	VNPASS(vp->v_seqc_users == 1, vp);
7256 }
7257 
7258 void
7259 vn_irflag_set_locked(struct vnode *vp, short toset)
7260 {
7261 	short flags;
7262 
7263 	ASSERT_VI_LOCKED(vp, __func__);
7264 	flags = vn_irflag_read(vp);
7265 	VNASSERT((flags & toset) == 0, vp,
7266 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7267 	    __func__, flags, toset));
7268 	atomic_store_short(&vp->v_irflag, flags | toset);
7269 }
7270 
7271 void
7272 vn_irflag_set(struct vnode *vp, short toset)
7273 {
7274 
7275 	VI_LOCK(vp);
7276 	vn_irflag_set_locked(vp, toset);
7277 	VI_UNLOCK(vp);
7278 }
7279 
7280 void
7281 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7282 {
7283 	short flags;
7284 
7285 	ASSERT_VI_LOCKED(vp, __func__);
7286 	flags = vn_irflag_read(vp);
7287 	atomic_store_short(&vp->v_irflag, flags | toset);
7288 }
7289 
7290 void
7291 vn_irflag_set_cond(struct vnode *vp, short toset)
7292 {
7293 
7294 	VI_LOCK(vp);
7295 	vn_irflag_set_cond_locked(vp, toset);
7296 	VI_UNLOCK(vp);
7297 }
7298 
7299 void
7300 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7301 {
7302 	short flags;
7303 
7304 	ASSERT_VI_LOCKED(vp, __func__);
7305 	flags = vn_irflag_read(vp);
7306 	VNASSERT((flags & tounset) == tounset, vp,
7307 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7308 	    __func__, flags, tounset));
7309 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7310 }
7311 
7312 void
7313 vn_irflag_unset(struct vnode *vp, short tounset)
7314 {
7315 
7316 	VI_LOCK(vp);
7317 	vn_irflag_unset_locked(vp, tounset);
7318 	VI_UNLOCK(vp);
7319 }
7320 
7321 int
7322 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7323 {
7324 	struct vattr vattr;
7325 	int error;
7326 
7327 	ASSERT_VOP_LOCKED(vp, __func__);
7328 	error = VOP_GETATTR(vp, &vattr, cred);
7329 	if (__predict_true(error == 0)) {
7330 		if (vattr.va_size <= OFF_MAX)
7331 			*size = vattr.va_size;
7332 		else
7333 			error = EFBIG;
7334 	}
7335 	return (error);
7336 }
7337 
7338 int
7339 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7340 {
7341 	int error;
7342 
7343 	VOP_LOCK(vp, LK_SHARED);
7344 	error = vn_getsize_locked(vp, size, cred);
7345 	VOP_UNLOCK(vp);
7346 	return (error);
7347 }
7348 
7349 #ifdef INVARIANTS
7350 void
7351 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7352 {
7353 
7354 	switch (vp->v_state) {
7355 	case VSTATE_UNINITIALIZED:
7356 		switch (state) {
7357 		case VSTATE_CONSTRUCTED:
7358 		case VSTATE_DESTROYING:
7359 			return;
7360 		default:
7361 			break;
7362 		}
7363 		break;
7364 	case VSTATE_CONSTRUCTED:
7365 		ASSERT_VOP_ELOCKED(vp, __func__);
7366 		switch (state) {
7367 		case VSTATE_DESTROYING:
7368 			return;
7369 		default:
7370 			break;
7371 		}
7372 		break;
7373 	case VSTATE_DESTROYING:
7374 		ASSERT_VOP_ELOCKED(vp, __func__);
7375 		switch (state) {
7376 		case VSTATE_DEAD:
7377 			return;
7378 		default:
7379 			break;
7380 		}
7381 		break;
7382 	case VSTATE_DEAD:
7383 		switch (state) {
7384 		case VSTATE_UNINITIALIZED:
7385 			return;
7386 		default:
7387 			break;
7388 		}
7389 		break;
7390 	}
7391 
7392 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7393 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7394 }
7395 #endif
7396