xref: /freebsd/sys/kern/vfs_subr.c (revision 2ef9ff7dd34a78a7890ba4d6de64da34d9c10942)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/condvar.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/dirent.h>
57 #include <sys/event.h>
58 #include <sys/eventhandler.h>
59 #include <sys/extattr.h>
60 #include <sys/file.h>
61 #include <sys/fcntl.h>
62 #include <sys/jail.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/lockf.h>
68 #include <sys/malloc.h>
69 #include <sys/mount.h>
70 #include <sys/namei.h>
71 #include <sys/pctrie.h>
72 #include <sys/priv.h>
73 #include <sys/reboot.h>
74 #include <sys/refcount.h>
75 #include <sys/rwlock.h>
76 #include <sys/sched.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/sysctl.h>
81 #include <sys/syslog.h>
82 #include <sys/vmmeter.h>
83 #include <sys/vnode.h>
84 #include <sys/watchdog.h>
85 
86 #include <machine/stdarg.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/uma.h>
98 
99 #ifdef DDB
100 #include <ddb/ddb.h>
101 #endif
102 
103 static void	delmntque(struct vnode *vp);
104 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
105 		    int slpflag, int slptimeo);
106 static void	syncer_shutdown(void *arg, int howto);
107 static int	vtryrecycle(struct vnode *vp);
108 static void	v_init_counters(struct vnode *);
109 static void	v_incr_usecount(struct vnode *);
110 static void	v_incr_usecount_locked(struct vnode *);
111 static void	v_incr_devcount(struct vnode *);
112 static void	v_decr_devcount(struct vnode *);
113 static void	vgonel(struct vnode *);
114 static void	vfs_knllock(void *arg);
115 static void	vfs_knlunlock(void *arg);
116 static void	vfs_knl_assert_locked(void *arg);
117 static void	vfs_knl_assert_unlocked(void *arg);
118 static void	vnlru_return_batches(struct vfsops *mnt_op);
119 static void	destroy_vpollinfo(struct vpollinfo *vi);
120 
121 /*
122  * These fences are intended for cases where some synchronization is
123  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
124  * and v_usecount) updates.  Access to v_iflags is generally synchronized
125  * by the interlock, but we have some internal assertions that check vnode
126  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
127  * for now.
128  */
129 #ifdef INVARIANTS
130 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
131 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
132 #else
133 #define	VNODE_REFCOUNT_FENCE_ACQ()
134 #define	VNODE_REFCOUNT_FENCE_REL()
135 #endif
136 
137 /*
138  * Number of vnodes in existence.  Increased whenever getnewvnode()
139  * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
140  */
141 static unsigned long	numvnodes;
142 
143 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
144     "Number of vnodes in existence");
145 
146 static counter_u64_t vnodes_created;
147 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
148     "Number of vnodes created by getnewvnode");
149 
150 static u_long mnt_free_list_batch = 128;
151 SYSCTL_ULONG(_vfs, OID_AUTO, mnt_free_list_batch, CTLFLAG_RW,
152     &mnt_free_list_batch, 0, "Limit of vnodes held on mnt's free list");
153 
154 /*
155  * Conversion tables for conversion from vnode types to inode formats
156  * and back.
157  */
158 enum vtype iftovt_tab[16] = {
159 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
160 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
161 };
162 int vttoif_tab[10] = {
163 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
164 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
165 };
166 
167 /*
168  * List of vnodes that are ready for recycling.
169  */
170 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
171 
172 /*
173  * "Free" vnode target.  Free vnodes are rarely completely free, but are
174  * just ones that are cheap to recycle.  Usually they are for files which
175  * have been stat'd but not read; these usually have inode and namecache
176  * data attached to them.  This target is the preferred minimum size of a
177  * sub-cache consisting mostly of such files. The system balances the size
178  * of this sub-cache with its complement to try to prevent either from
179  * thrashing while the other is relatively inactive.  The targets express
180  * a preference for the best balance.
181  *
182  * "Above" this target there are 2 further targets (watermarks) related
183  * to recyling of free vnodes.  In the best-operating case, the cache is
184  * exactly full, the free list has size between vlowat and vhiwat above the
185  * free target, and recycling from it and normal use maintains this state.
186  * Sometimes the free list is below vlowat or even empty, but this state
187  * is even better for immediate use provided the cache is not full.
188  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
189  * ones) to reach one of these states.  The watermarks are currently hard-
190  * coded as 4% and 9% of the available space higher.  These and the default
191  * of 25% for wantfreevnodes are too large if the memory size is large.
192  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
193  * whenever vnlru_proc() becomes active.
194  */
195 static u_long wantfreevnodes;
196 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
197     &wantfreevnodes, 0, "Target for minimum number of \"free\" vnodes");
198 static u_long freevnodes;
199 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
200     &freevnodes, 0, "Number of \"free\" vnodes");
201 
202 static counter_u64_t recycles_count;
203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
204     "Number of vnodes recycled to meet vnode cache targets");
205 
206 /*
207  * Various variables used for debugging the new implementation of
208  * reassignbuf().
209  * XXX these are probably of (very) limited utility now.
210  */
211 static int reassignbufcalls;
212 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
213     "Number of calls to reassignbuf");
214 
215 static counter_u64_t free_owe_inact;
216 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact,
217     "Number of times free vnodes kept on active list due to VFS "
218     "owing inactivation");
219 
220 /* To keep more than one thread at a time from running vfs_getnewfsid */
221 static struct mtx mntid_mtx;
222 
223 /*
224  * Lock for any access to the following:
225  *	vnode_free_list
226  *	numvnodes
227  *	freevnodes
228  */
229 static struct mtx vnode_free_list_mtx;
230 
231 /* Publicly exported FS */
232 struct nfs_public nfs_pub;
233 
234 static uma_zone_t buf_trie_zone;
235 
236 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
237 static uma_zone_t vnode_zone;
238 static uma_zone_t vnodepoll_zone;
239 
240 /*
241  * The workitem queue.
242  *
243  * It is useful to delay writes of file data and filesystem metadata
244  * for tens of seconds so that quickly created and deleted files need
245  * not waste disk bandwidth being created and removed. To realize this,
246  * we append vnodes to a "workitem" queue. When running with a soft
247  * updates implementation, most pending metadata dependencies should
248  * not wait for more than a few seconds. Thus, mounted on block devices
249  * are delayed only about a half the time that file data is delayed.
250  * Similarly, directory updates are more critical, so are only delayed
251  * about a third the time that file data is delayed. Thus, there are
252  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
253  * one each second (driven off the filesystem syncer process). The
254  * syncer_delayno variable indicates the next queue that is to be processed.
255  * Items that need to be processed soon are placed in this queue:
256  *
257  *	syncer_workitem_pending[syncer_delayno]
258  *
259  * A delay of fifteen seconds is done by placing the request fifteen
260  * entries later in the queue:
261  *
262  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
263  *
264  */
265 static int syncer_delayno;
266 static long syncer_mask;
267 LIST_HEAD(synclist, bufobj);
268 static struct synclist *syncer_workitem_pending;
269 /*
270  * The sync_mtx protects:
271  *	bo->bo_synclist
272  *	sync_vnode_count
273  *	syncer_delayno
274  *	syncer_state
275  *	syncer_workitem_pending
276  *	syncer_worklist_len
277  *	rushjob
278  */
279 static struct mtx sync_mtx;
280 static struct cv sync_wakeup;
281 
282 #define SYNCER_MAXDELAY		32
283 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
284 static int syncdelay = 30;		/* max time to delay syncing data */
285 static int filedelay = 30;		/* time to delay syncing files */
286 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
287     "Time to delay syncing files (in seconds)");
288 static int dirdelay = 29;		/* time to delay syncing directories */
289 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
290     "Time to delay syncing directories (in seconds)");
291 static int metadelay = 28;		/* time to delay syncing metadata */
292 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
293     "Time to delay syncing metadata (in seconds)");
294 static int rushjob;		/* number of slots to run ASAP */
295 static int stat_rush_requests;	/* number of times I/O speeded up */
296 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
297     "Number of times I/O speeded up (rush requests)");
298 
299 /*
300  * When shutting down the syncer, run it at four times normal speed.
301  */
302 #define SYNCER_SHUTDOWN_SPEEDUP		4
303 static int sync_vnode_count;
304 static int syncer_worklist_len;
305 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
306     syncer_state;
307 
308 /* Target for maximum number of vnodes. */
309 int desiredvnodes;
310 static int gapvnodes;		/* gap between wanted and desired */
311 static int vhiwat;		/* enough extras after expansion */
312 static int vlowat;		/* minimal extras before expansion */
313 static int vstir;		/* nonzero to stir non-free vnodes */
314 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
315 
316 static int
317 sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS)
318 {
319 	int error, old_desiredvnodes;
320 
321 	old_desiredvnodes = desiredvnodes;
322 	if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0)
323 		return (error);
324 	if (old_desiredvnodes != desiredvnodes) {
325 		wantfreevnodes = desiredvnodes / 4;
326 		/* XXX locking seems to be incomplete. */
327 		vfs_hash_changesize(desiredvnodes);
328 		cache_changesize(desiredvnodes);
329 	}
330 	return (0);
331 }
332 
333 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
334     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0,
335     sysctl_update_desiredvnodes, "I", "Target for maximum number of vnodes");
336 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
337     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
338 static int vnlru_nowhere;
339 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
340     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
341 
342 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
343 static int vnsz2log;
344 
345 /*
346  * Support for the bufobj clean & dirty pctrie.
347  */
348 static void *
349 buf_trie_alloc(struct pctrie *ptree)
350 {
351 
352 	return uma_zalloc(buf_trie_zone, M_NOWAIT);
353 }
354 
355 static void
356 buf_trie_free(struct pctrie *ptree, void *node)
357 {
358 
359 	uma_zfree(buf_trie_zone, node);
360 }
361 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
362 
363 /*
364  * Initialize the vnode management data structures.
365  *
366  * Reevaluate the following cap on the number of vnodes after the physical
367  * memory size exceeds 512GB.  In the limit, as the physical memory size
368  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
369  */
370 #ifndef	MAXVNODES_MAX
371 #define	MAXVNODES_MAX	(512 * 1024 * 1024 / 64)	/* 8M */
372 #endif
373 
374 /*
375  * Initialize a vnode as it first enters the zone.
376  */
377 static int
378 vnode_init(void *mem, int size, int flags)
379 {
380 	struct vnode *vp;
381 
382 	vp = mem;
383 	bzero(vp, size);
384 	/*
385 	 * Setup locks.
386 	 */
387 	vp->v_vnlock = &vp->v_lock;
388 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
389 	/*
390 	 * By default, don't allow shared locks unless filesystems opt-in.
391 	 */
392 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
393 	    LK_NOSHARE | LK_IS_VNODE);
394 	/*
395 	 * Initialize bufobj.
396 	 */
397 	bufobj_init(&vp->v_bufobj, vp);
398 	/*
399 	 * Initialize namecache.
400 	 */
401 	LIST_INIT(&vp->v_cache_src);
402 	TAILQ_INIT(&vp->v_cache_dst);
403 	/*
404 	 * Initialize rangelocks.
405 	 */
406 	rangelock_init(&vp->v_rl);
407 	return (0);
408 }
409 
410 /*
411  * Free a vnode when it is cleared from the zone.
412  */
413 static void
414 vnode_fini(void *mem, int size)
415 {
416 	struct vnode *vp;
417 	struct bufobj *bo;
418 
419 	vp = mem;
420 	rangelock_destroy(&vp->v_rl);
421 	lockdestroy(vp->v_vnlock);
422 	mtx_destroy(&vp->v_interlock);
423 	bo = &vp->v_bufobj;
424 	rw_destroy(BO_LOCKPTR(bo));
425 }
426 
427 /*
428  * Provide the size of NFS nclnode and NFS fh for calculation of the
429  * vnode memory consumption.  The size is specified directly to
430  * eliminate dependency on NFS-private header.
431  *
432  * Other filesystems may use bigger or smaller (like UFS and ZFS)
433  * private inode data, but the NFS-based estimation is ample enough.
434  * Still, we care about differences in the size between 64- and 32-bit
435  * platforms.
436  *
437  * Namecache structure size is heuristically
438  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
439  */
440 #ifdef _LP64
441 #define	NFS_NCLNODE_SZ	(528 + 64)
442 #define	NC_SZ		148
443 #else
444 #define	NFS_NCLNODE_SZ	(360 + 32)
445 #define	NC_SZ		92
446 #endif
447 
448 static void
449 vntblinit(void *dummy __unused)
450 {
451 	u_int i;
452 	int physvnodes, virtvnodes;
453 
454 	/*
455 	 * Desiredvnodes is a function of the physical memory size and the
456 	 * kernel's heap size.  Generally speaking, it scales with the
457 	 * physical memory size.  The ratio of desiredvnodes to the physical
458 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
459 	 * Thereafter, the
460 	 * marginal ratio of desiredvnodes to the physical memory size is
461 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
462 	 * size.  The memory required by desiredvnodes vnodes and vm objects
463 	 * must not exceed 1/10th of the kernel's heap size.
464 	 */
465 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
466 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
467 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
468 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
469 	desiredvnodes = min(physvnodes, virtvnodes);
470 	if (desiredvnodes > MAXVNODES_MAX) {
471 		if (bootverbose)
472 			printf("Reducing kern.maxvnodes %d -> %d\n",
473 			    desiredvnodes, MAXVNODES_MAX);
474 		desiredvnodes = MAXVNODES_MAX;
475 	}
476 	wantfreevnodes = desiredvnodes / 4;
477 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
478 	TAILQ_INIT(&vnode_free_list);
479 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
480 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
481 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
482 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
483 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
484 	/*
485 	 * Preallocate enough nodes to support one-per buf so that
486 	 * we can not fail an insert.  reassignbuf() callers can not
487 	 * tolerate the insertion failure.
488 	 */
489 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
490 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
491 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
492 	uma_prealloc(buf_trie_zone, nbuf);
493 
494 	vnodes_created = counter_u64_alloc(M_WAITOK);
495 	recycles_count = counter_u64_alloc(M_WAITOK);
496 	free_owe_inact = counter_u64_alloc(M_WAITOK);
497 
498 	/*
499 	 * Initialize the filesystem syncer.
500 	 */
501 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
502 	    &syncer_mask);
503 	syncer_maxdelay = syncer_mask + 1;
504 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
505 	cv_init(&sync_wakeup, "syncer");
506 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
507 		vnsz2log++;
508 	vnsz2log--;
509 }
510 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
511 
512 
513 /*
514  * Mark a mount point as busy. Used to synchronize access and to delay
515  * unmounting. Eventually, mountlist_mtx is not released on failure.
516  *
517  * vfs_busy() is a custom lock, it can block the caller.
518  * vfs_busy() only sleeps if the unmount is active on the mount point.
519  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
520  * vnode belonging to mp.
521  *
522  * Lookup uses vfs_busy() to traverse mount points.
523  * root fs			var fs
524  * / vnode lock		A	/ vnode lock (/var)		D
525  * /var vnode lock	B	/log vnode lock(/var/log)	E
526  * vfs_busy lock	C	vfs_busy lock			F
527  *
528  * Within each file system, the lock order is C->A->B and F->D->E.
529  *
530  * When traversing across mounts, the system follows that lock order:
531  *
532  *        C->A->B
533  *              |
534  *              +->F->D->E
535  *
536  * The lookup() process for namei("/var") illustrates the process:
537  *  VOP_LOOKUP() obtains B while A is held
538  *  vfs_busy() obtains a shared lock on F while A and B are held
539  *  vput() releases lock on B
540  *  vput() releases lock on A
541  *  VFS_ROOT() obtains lock on D while shared lock on F is held
542  *  vfs_unbusy() releases shared lock on F
543  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
544  *    Attempt to lock A (instead of vp_crossmp) while D is held would
545  *    violate the global order, causing deadlocks.
546  *
547  * dounmount() locks B while F is drained.
548  */
549 int
550 vfs_busy(struct mount *mp, int flags)
551 {
552 
553 	MPASS((flags & ~MBF_MASK) == 0);
554 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
555 
556 	MNT_ILOCK(mp);
557 	MNT_REF(mp);
558 	/*
559 	 * If mount point is currently being unmounted, sleep until the
560 	 * mount point fate is decided.  If thread doing the unmounting fails,
561 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
562 	 * that this mount point has survived the unmount attempt and vfs_busy
563 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
564 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
565 	 * about to be really destroyed.  vfs_busy needs to release its
566 	 * reference on the mount point in this case and return with ENOENT,
567 	 * telling the caller that mount mount it tried to busy is no longer
568 	 * valid.
569 	 */
570 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
571 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
572 			MNT_REL(mp);
573 			MNT_IUNLOCK(mp);
574 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
575 			    __func__);
576 			return (ENOENT);
577 		}
578 		if (flags & MBF_MNTLSTLOCK)
579 			mtx_unlock(&mountlist_mtx);
580 		mp->mnt_kern_flag |= MNTK_MWAIT;
581 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
582 		if (flags & MBF_MNTLSTLOCK)
583 			mtx_lock(&mountlist_mtx);
584 		MNT_ILOCK(mp);
585 	}
586 	if (flags & MBF_MNTLSTLOCK)
587 		mtx_unlock(&mountlist_mtx);
588 	mp->mnt_lockref++;
589 	MNT_IUNLOCK(mp);
590 	return (0);
591 }
592 
593 /*
594  * Free a busy filesystem.
595  */
596 void
597 vfs_unbusy(struct mount *mp)
598 {
599 
600 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
601 	MNT_ILOCK(mp);
602 	MNT_REL(mp);
603 	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
604 	mp->mnt_lockref--;
605 	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
606 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
607 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
608 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
609 		wakeup(&mp->mnt_lockref);
610 	}
611 	MNT_IUNLOCK(mp);
612 }
613 
614 /*
615  * Lookup a mount point by filesystem identifier.
616  */
617 struct mount *
618 vfs_getvfs(fsid_t *fsid)
619 {
620 	struct mount *mp;
621 
622 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
623 	mtx_lock(&mountlist_mtx);
624 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
625 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
626 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
627 			vfs_ref(mp);
628 			mtx_unlock(&mountlist_mtx);
629 			return (mp);
630 		}
631 	}
632 	mtx_unlock(&mountlist_mtx);
633 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
634 	return ((struct mount *) 0);
635 }
636 
637 /*
638  * Lookup a mount point by filesystem identifier, busying it before
639  * returning.
640  *
641  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
642  * cache for popular filesystem identifiers.  The cache is lockess, using
643  * the fact that struct mount's are never freed.  In worst case we may
644  * get pointer to unmounted or even different filesystem, so we have to
645  * check what we got, and go slow way if so.
646  */
647 struct mount *
648 vfs_busyfs(fsid_t *fsid)
649 {
650 #define	FSID_CACHE_SIZE	256
651 	typedef struct mount * volatile vmp_t;
652 	static vmp_t cache[FSID_CACHE_SIZE];
653 	struct mount *mp;
654 	int error;
655 	uint32_t hash;
656 
657 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
658 	hash = fsid->val[0] ^ fsid->val[1];
659 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
660 	mp = cache[hash];
661 	if (mp == NULL ||
662 	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
663 	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
664 		goto slow;
665 	if (vfs_busy(mp, 0) != 0) {
666 		cache[hash] = NULL;
667 		goto slow;
668 	}
669 	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
670 	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
671 		return (mp);
672 	else
673 	    vfs_unbusy(mp);
674 
675 slow:
676 	mtx_lock(&mountlist_mtx);
677 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
678 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
679 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
680 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
681 			if (error) {
682 				cache[hash] = NULL;
683 				mtx_unlock(&mountlist_mtx);
684 				return (NULL);
685 			}
686 			cache[hash] = mp;
687 			return (mp);
688 		}
689 	}
690 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
691 	mtx_unlock(&mountlist_mtx);
692 	return ((struct mount *) 0);
693 }
694 
695 /*
696  * Check if a user can access privileged mount options.
697  */
698 int
699 vfs_suser(struct mount *mp, struct thread *td)
700 {
701 	int error;
702 
703 	if (jailed(td->td_ucred)) {
704 		/*
705 		 * If the jail of the calling thread lacks permission for
706 		 * this type of file system, deny immediately.
707 		 */
708 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
709 			return (EPERM);
710 
711 		/*
712 		 * If the file system was mounted outside the jail of the
713 		 * calling thread, deny immediately.
714 		 */
715 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
716 			return (EPERM);
717 	}
718 
719 	/*
720 	 * If file system supports delegated administration, we don't check
721 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
722 	 * by the file system itself.
723 	 * If this is not the user that did original mount, we check for
724 	 * the PRIV_VFS_MOUNT_OWNER privilege.
725 	 */
726 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
727 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
728 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
729 			return (error);
730 	}
731 	return (0);
732 }
733 
734 /*
735  * Get a new unique fsid.  Try to make its val[0] unique, since this value
736  * will be used to create fake device numbers for stat().  Also try (but
737  * not so hard) make its val[0] unique mod 2^16, since some emulators only
738  * support 16-bit device numbers.  We end up with unique val[0]'s for the
739  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
740  *
741  * Keep in mind that several mounts may be running in parallel.  Starting
742  * the search one past where the previous search terminated is both a
743  * micro-optimization and a defense against returning the same fsid to
744  * different mounts.
745  */
746 void
747 vfs_getnewfsid(struct mount *mp)
748 {
749 	static uint16_t mntid_base;
750 	struct mount *nmp;
751 	fsid_t tfsid;
752 	int mtype;
753 
754 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
755 	mtx_lock(&mntid_mtx);
756 	mtype = mp->mnt_vfc->vfc_typenum;
757 	tfsid.val[1] = mtype;
758 	mtype = (mtype & 0xFF) << 24;
759 	for (;;) {
760 		tfsid.val[0] = makedev(255,
761 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
762 		mntid_base++;
763 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
764 			break;
765 		vfs_rel(nmp);
766 	}
767 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
768 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
769 	mtx_unlock(&mntid_mtx);
770 }
771 
772 /*
773  * Knob to control the precision of file timestamps:
774  *
775  *   0 = seconds only; nanoseconds zeroed.
776  *   1 = seconds and nanoseconds, accurate within 1/HZ.
777  *   2 = seconds and nanoseconds, truncated to microseconds.
778  * >=3 = seconds and nanoseconds, maximum precision.
779  */
780 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
781 
782 static int timestamp_precision = TSP_USEC;
783 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
784     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
785     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
786     "3+: sec + ns (max. precision))");
787 
788 /*
789  * Get a current timestamp.
790  */
791 void
792 vfs_timestamp(struct timespec *tsp)
793 {
794 	struct timeval tv;
795 
796 	switch (timestamp_precision) {
797 	case TSP_SEC:
798 		tsp->tv_sec = time_second;
799 		tsp->tv_nsec = 0;
800 		break;
801 	case TSP_HZ:
802 		getnanotime(tsp);
803 		break;
804 	case TSP_USEC:
805 		microtime(&tv);
806 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
807 		break;
808 	case TSP_NSEC:
809 	default:
810 		nanotime(tsp);
811 		break;
812 	}
813 }
814 
815 /*
816  * Set vnode attributes to VNOVAL
817  */
818 void
819 vattr_null(struct vattr *vap)
820 {
821 
822 	vap->va_type = VNON;
823 	vap->va_size = VNOVAL;
824 	vap->va_bytes = VNOVAL;
825 	vap->va_mode = VNOVAL;
826 	vap->va_nlink = VNOVAL;
827 	vap->va_uid = VNOVAL;
828 	vap->va_gid = VNOVAL;
829 	vap->va_fsid = VNOVAL;
830 	vap->va_fileid = VNOVAL;
831 	vap->va_blocksize = VNOVAL;
832 	vap->va_rdev = VNOVAL;
833 	vap->va_atime.tv_sec = VNOVAL;
834 	vap->va_atime.tv_nsec = VNOVAL;
835 	vap->va_mtime.tv_sec = VNOVAL;
836 	vap->va_mtime.tv_nsec = VNOVAL;
837 	vap->va_ctime.tv_sec = VNOVAL;
838 	vap->va_ctime.tv_nsec = VNOVAL;
839 	vap->va_birthtime.tv_sec = VNOVAL;
840 	vap->va_birthtime.tv_nsec = VNOVAL;
841 	vap->va_flags = VNOVAL;
842 	vap->va_gen = VNOVAL;
843 	vap->va_vaflags = 0;
844 }
845 
846 /*
847  * This routine is called when we have too many vnodes.  It attempts
848  * to free <count> vnodes and will potentially free vnodes that still
849  * have VM backing store (VM backing store is typically the cause
850  * of a vnode blowout so we want to do this).  Therefore, this operation
851  * is not considered cheap.
852  *
853  * A number of conditions may prevent a vnode from being reclaimed.
854  * the buffer cache may have references on the vnode, a directory
855  * vnode may still have references due to the namei cache representing
856  * underlying files, or the vnode may be in active use.   It is not
857  * desirable to reuse such vnodes.  These conditions may cause the
858  * number of vnodes to reach some minimum value regardless of what
859  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
860  */
861 static int
862 vlrureclaim(struct mount *mp, int reclaim_nc_src, int trigger)
863 {
864 	struct vnode *vp;
865 	int count, done, target;
866 
867 	done = 0;
868 	vn_start_write(NULL, &mp, V_WAIT);
869 	MNT_ILOCK(mp);
870 	count = mp->mnt_nvnodelistsize;
871 	target = count * (int64_t)gapvnodes / imax(desiredvnodes, 1);
872 	target = target / 10 + 1;
873 	while (count != 0 && done < target) {
874 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
875 		while (vp != NULL && vp->v_type == VMARKER)
876 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
877 		if (vp == NULL)
878 			break;
879 		/*
880 		 * XXX LRU is completely broken for non-free vnodes.  First
881 		 * by calling here in mountpoint order, then by moving
882 		 * unselected vnodes to the end here, and most grossly by
883 		 * removing the vlruvp() function that was supposed to
884 		 * maintain the order.  (This function was born broken
885 		 * since syncer problems prevented it doing anything.)  The
886 		 * order is closer to LRC (C = Created).
887 		 *
888 		 * LRU reclaiming of vnodes seems to have last worked in
889 		 * FreeBSD-3 where LRU wasn't mentioned under any spelling.
890 		 * Then there was no hold count, and inactive vnodes were
891 		 * simply put on the free list in LRU order.  The separate
892 		 * lists also break LRU.  We prefer to reclaim from the
893 		 * free list for technical reasons.  This tends to thrash
894 		 * the free list to keep very unrecently used held vnodes.
895 		 * The problem is mitigated by keeping the free list large.
896 		 */
897 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
898 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
899 		--count;
900 		if (!VI_TRYLOCK(vp))
901 			goto next_iter;
902 		/*
903 		 * If it's been deconstructed already, it's still
904 		 * referenced, or it exceeds the trigger, skip it.
905 		 * Also skip free vnodes.  We are trying to make space
906 		 * to expand the free list, not reduce it.
907 		 */
908 		if (vp->v_usecount ||
909 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
910 		    ((vp->v_iflag & VI_FREE) != 0) ||
911 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
912 		    vp->v_object->resident_page_count > trigger)) {
913 			VI_UNLOCK(vp);
914 			goto next_iter;
915 		}
916 		MNT_IUNLOCK(mp);
917 		vholdl(vp);
918 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
919 			vdrop(vp);
920 			goto next_iter_mntunlocked;
921 		}
922 		VI_LOCK(vp);
923 		/*
924 		 * v_usecount may have been bumped after VOP_LOCK() dropped
925 		 * the vnode interlock and before it was locked again.
926 		 *
927 		 * It is not necessary to recheck VI_DOOMED because it can
928 		 * only be set by another thread that holds both the vnode
929 		 * lock and vnode interlock.  If another thread has the
930 		 * vnode lock before we get to VOP_LOCK() and obtains the
931 		 * vnode interlock after VOP_LOCK() drops the vnode
932 		 * interlock, the other thread will be unable to drop the
933 		 * vnode lock before our VOP_LOCK() call fails.
934 		 */
935 		if (vp->v_usecount ||
936 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
937 		    (vp->v_iflag & VI_FREE) != 0 ||
938 		    (vp->v_object != NULL &&
939 		    vp->v_object->resident_page_count > trigger)) {
940 			VOP_UNLOCK(vp, LK_INTERLOCK);
941 			vdrop(vp);
942 			goto next_iter_mntunlocked;
943 		}
944 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
945 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
946 		counter_u64_add(recycles_count, 1);
947 		vgonel(vp);
948 		VOP_UNLOCK(vp, 0);
949 		vdropl(vp);
950 		done++;
951 next_iter_mntunlocked:
952 		if (!should_yield())
953 			goto relock_mnt;
954 		goto yield;
955 next_iter:
956 		if (!should_yield())
957 			continue;
958 		MNT_IUNLOCK(mp);
959 yield:
960 		kern_yield(PRI_USER);
961 relock_mnt:
962 		MNT_ILOCK(mp);
963 	}
964 	MNT_IUNLOCK(mp);
965 	vn_finished_write(mp);
966 	return done;
967 }
968 
969 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
970 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
971     0,
972     "limit on vnode free requests per call to the vnlru_free routine");
973 
974 /*
975  * Attempt to reduce the free list by the requested amount.
976  */
977 static void
978 vnlru_free_locked(int count, struct vfsops *mnt_op)
979 {
980 	struct vnode *vp;
981 	struct mount *mp;
982 	bool tried_batches;
983 
984 	tried_batches = false;
985 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
986 	if (count > max_vnlru_free)
987 		count = max_vnlru_free;
988 	for (; count > 0; count--) {
989 		vp = TAILQ_FIRST(&vnode_free_list);
990 		/*
991 		 * The list can be modified while the free_list_mtx
992 		 * has been dropped and vp could be NULL here.
993 		 */
994 		if (vp == NULL) {
995 			if (tried_batches)
996 				break;
997 			mtx_unlock(&vnode_free_list_mtx);
998 			vnlru_return_batches(mnt_op);
999 			tried_batches = true;
1000 			mtx_lock(&vnode_free_list_mtx);
1001 			continue;
1002 		}
1003 
1004 		VNASSERT(vp->v_op != NULL, vp,
1005 		    ("vnlru_free: vnode already reclaimed."));
1006 		KASSERT((vp->v_iflag & VI_FREE) != 0,
1007 		    ("Removing vnode not on freelist"));
1008 		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1009 		    ("Mangling active vnode"));
1010 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
1011 
1012 		/*
1013 		 * Don't recycle if our vnode is from different type
1014 		 * of mount point.  Note that mp is type-safe, the
1015 		 * check does not reach unmapped address even if
1016 		 * vnode is reclaimed.
1017 		 * Don't recycle if we can't get the interlock without
1018 		 * blocking.
1019 		 */
1020 		if ((mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1021 		    mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) {
1022 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
1023 			continue;
1024 		}
1025 		VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0,
1026 		    vp, ("vp inconsistent on freelist"));
1027 
1028 		/*
1029 		 * The clear of VI_FREE prevents activation of the
1030 		 * vnode.  There is no sense in putting the vnode on
1031 		 * the mount point active list, only to remove it
1032 		 * later during recycling.  Inline the relevant part
1033 		 * of vholdl(), to avoid triggering assertions or
1034 		 * activating.
1035 		 */
1036 		freevnodes--;
1037 		vp->v_iflag &= ~VI_FREE;
1038 		VNODE_REFCOUNT_FENCE_REL();
1039 		refcount_acquire(&vp->v_holdcnt);
1040 
1041 		mtx_unlock(&vnode_free_list_mtx);
1042 		VI_UNLOCK(vp);
1043 		vtryrecycle(vp);
1044 		/*
1045 		 * If the recycled succeeded this vdrop will actually free
1046 		 * the vnode.  If not it will simply place it back on
1047 		 * the free list.
1048 		 */
1049 		vdrop(vp);
1050 		mtx_lock(&vnode_free_list_mtx);
1051 	}
1052 }
1053 
1054 void
1055 vnlru_free(int count, struct vfsops *mnt_op)
1056 {
1057 
1058 	mtx_lock(&vnode_free_list_mtx);
1059 	vnlru_free_locked(count, mnt_op);
1060 	mtx_unlock(&vnode_free_list_mtx);
1061 }
1062 
1063 
1064 /* XXX some names and initialization are bad for limits and watermarks. */
1065 static int
1066 vspace(void)
1067 {
1068 	int space;
1069 
1070 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1071 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1072 	vlowat = vhiwat / 2;
1073 	if (numvnodes > desiredvnodes)
1074 		return (0);
1075 	space = desiredvnodes - numvnodes;
1076 	if (freevnodes > wantfreevnodes)
1077 		space += freevnodes - wantfreevnodes;
1078 	return (space);
1079 }
1080 
1081 static void
1082 vnlru_return_batch_locked(struct mount *mp)
1083 {
1084 	struct vnode *vp;
1085 
1086 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
1087 
1088 	if (mp->mnt_tmpfreevnodelistsize == 0)
1089 		return;
1090 
1091 	TAILQ_FOREACH(vp, &mp->mnt_tmpfreevnodelist, v_actfreelist) {
1092 		VNASSERT((vp->v_mflag & VMP_TMPMNTFREELIST) != 0, vp,
1093 		    ("vnode without VMP_TMPMNTFREELIST on mnt_tmpfreevnodelist"));
1094 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
1095 	}
1096 	mtx_lock(&vnode_free_list_mtx);
1097 	TAILQ_CONCAT(&vnode_free_list, &mp->mnt_tmpfreevnodelist, v_actfreelist);
1098 	freevnodes += mp->mnt_tmpfreevnodelistsize;
1099 	mtx_unlock(&vnode_free_list_mtx);
1100 	mp->mnt_tmpfreevnodelistsize = 0;
1101 }
1102 
1103 static void
1104 vnlru_return_batch(struct mount *mp)
1105 {
1106 
1107 	mtx_lock(&mp->mnt_listmtx);
1108 	vnlru_return_batch_locked(mp);
1109 	mtx_unlock(&mp->mnt_listmtx);
1110 }
1111 
1112 static void
1113 vnlru_return_batches(struct vfsops *mnt_op)
1114 {
1115 	struct mount *mp, *nmp;
1116 	bool need_unbusy;
1117 
1118 	mtx_lock(&mountlist_mtx);
1119 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1120 		need_unbusy = false;
1121 		if (mnt_op != NULL && mp->mnt_op != mnt_op)
1122 			goto next;
1123 		if (mp->mnt_tmpfreevnodelistsize == 0)
1124 			goto next;
1125 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) == 0) {
1126 			vnlru_return_batch(mp);
1127 			need_unbusy = true;
1128 			mtx_lock(&mountlist_mtx);
1129 		}
1130 next:
1131 		nmp = TAILQ_NEXT(mp, mnt_list);
1132 		if (need_unbusy)
1133 			vfs_unbusy(mp);
1134 	}
1135 	mtx_unlock(&mountlist_mtx);
1136 }
1137 
1138 /*
1139  * Attempt to recycle vnodes in a context that is always safe to block.
1140  * Calling vlrurecycle() from the bowels of filesystem code has some
1141  * interesting deadlock problems.
1142  */
1143 static struct proc *vnlruproc;
1144 static int vnlruproc_sig;
1145 
1146 static void
1147 vnlru_proc(void)
1148 {
1149 	struct mount *mp, *nmp;
1150 	unsigned long onumvnodes;
1151 	int done, force, reclaim_nc_src, trigger, usevnodes;
1152 
1153 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1154 	    SHUTDOWN_PRI_FIRST);
1155 
1156 	force = 0;
1157 	for (;;) {
1158 		kproc_suspend_check(vnlruproc);
1159 		mtx_lock(&vnode_free_list_mtx);
1160 		/*
1161 		 * If numvnodes is too large (due to desiredvnodes being
1162 		 * adjusted using its sysctl, or emergency growth), first
1163 		 * try to reduce it by discarding from the free list.
1164 		 */
1165 		if (numvnodes > desiredvnodes)
1166 			vnlru_free_locked(numvnodes - desiredvnodes, NULL);
1167 		/*
1168 		 * Sleep if the vnode cache is in a good state.  This is
1169 		 * when it is not over-full and has space for about a 4%
1170 		 * or 9% expansion (by growing its size or inexcessively
1171 		 * reducing its free list).  Otherwise, try to reclaim
1172 		 * space for a 10% expansion.
1173 		 */
1174 		if (vstir && force == 0) {
1175 			force = 1;
1176 			vstir = 0;
1177 		}
1178 		if (vspace() >= vlowat && force == 0) {
1179 			vnlruproc_sig = 0;
1180 			wakeup(&vnlruproc_sig);
1181 			msleep(vnlruproc, &vnode_free_list_mtx,
1182 			    PVFS|PDROP, "vlruwt", hz);
1183 			continue;
1184 		}
1185 		mtx_unlock(&vnode_free_list_mtx);
1186 		done = 0;
1187 		onumvnodes = numvnodes;
1188 		/*
1189 		 * Calculate parameters for recycling.  These are the same
1190 		 * throughout the loop to give some semblance of fairness.
1191 		 * The trigger point is to avoid recycling vnodes with lots
1192 		 * of resident pages.  We aren't trying to free memory; we
1193 		 * are trying to recycle or at least free vnodes.
1194 		 */
1195 		if (numvnodes <= desiredvnodes)
1196 			usevnodes = numvnodes - freevnodes;
1197 		else
1198 			usevnodes = numvnodes;
1199 		if (usevnodes <= 0)
1200 			usevnodes = 1;
1201 		/*
1202 		 * The trigger value is is chosen to give a conservatively
1203 		 * large value to ensure that it alone doesn't prevent
1204 		 * making progress.  The value can easily be so large that
1205 		 * it is effectively infinite in some congested and
1206 		 * misconfigured cases, and this is necessary.  Normally
1207 		 * it is about 8 to 100 (pages), which is quite large.
1208 		 */
1209 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1210 		if (force < 2)
1211 			trigger = vsmalltrigger;
1212 		reclaim_nc_src = force >= 3;
1213 		mtx_lock(&mountlist_mtx);
1214 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1215 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
1216 				nmp = TAILQ_NEXT(mp, mnt_list);
1217 				continue;
1218 			}
1219 			done += vlrureclaim(mp, reclaim_nc_src, trigger);
1220 			mtx_lock(&mountlist_mtx);
1221 			nmp = TAILQ_NEXT(mp, mnt_list);
1222 			vfs_unbusy(mp);
1223 		}
1224 		mtx_unlock(&mountlist_mtx);
1225 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1226 			uma_reclaim();
1227 		if (done == 0) {
1228 			if (force == 0 || force == 1) {
1229 				force = 2;
1230 				continue;
1231 			}
1232 			if (force == 2) {
1233 				force = 3;
1234 				continue;
1235 			}
1236 			force = 0;
1237 			vnlru_nowhere++;
1238 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1239 		} else
1240 			kern_yield(PRI_USER);
1241 		/*
1242 		 * After becoming active to expand above low water, keep
1243 		 * active until above high water.
1244 		 */
1245 		force = vspace() < vhiwat;
1246 	}
1247 }
1248 
1249 static struct kproc_desc vnlru_kp = {
1250 	"vnlru",
1251 	vnlru_proc,
1252 	&vnlruproc
1253 };
1254 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1255     &vnlru_kp);
1256 
1257 /*
1258  * Routines having to do with the management of the vnode table.
1259  */
1260 
1261 /*
1262  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1263  * before we actually vgone().  This function must be called with the vnode
1264  * held to prevent the vnode from being returned to the free list midway
1265  * through vgone().
1266  */
1267 static int
1268 vtryrecycle(struct vnode *vp)
1269 {
1270 	struct mount *vnmp;
1271 
1272 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1273 	VNASSERT(vp->v_holdcnt, vp,
1274 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1275 	/*
1276 	 * This vnode may found and locked via some other list, if so we
1277 	 * can't recycle it yet.
1278 	 */
1279 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1280 		CTR2(KTR_VFS,
1281 		    "%s: impossible to recycle, vp %p lock is already held",
1282 		    __func__, vp);
1283 		return (EWOULDBLOCK);
1284 	}
1285 	/*
1286 	 * Don't recycle if its filesystem is being suspended.
1287 	 */
1288 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1289 		VOP_UNLOCK(vp, 0);
1290 		CTR2(KTR_VFS,
1291 		    "%s: impossible to recycle, cannot start the write for %p",
1292 		    __func__, vp);
1293 		return (EBUSY);
1294 	}
1295 	/*
1296 	 * If we got this far, we need to acquire the interlock and see if
1297 	 * anyone picked up this vnode from another list.  If not, we will
1298 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1299 	 * will skip over it.
1300 	 */
1301 	VI_LOCK(vp);
1302 	if (vp->v_usecount) {
1303 		VOP_UNLOCK(vp, LK_INTERLOCK);
1304 		vn_finished_write(vnmp);
1305 		CTR2(KTR_VFS,
1306 		    "%s: impossible to recycle, %p is already referenced",
1307 		    __func__, vp);
1308 		return (EBUSY);
1309 	}
1310 	if ((vp->v_iflag & VI_DOOMED) == 0) {
1311 		counter_u64_add(recycles_count, 1);
1312 		vgonel(vp);
1313 	}
1314 	VOP_UNLOCK(vp, LK_INTERLOCK);
1315 	vn_finished_write(vnmp);
1316 	return (0);
1317 }
1318 
1319 static void
1320 vcheckspace(void)
1321 {
1322 
1323 	if (vspace() < vlowat && vnlruproc_sig == 0) {
1324 		vnlruproc_sig = 1;
1325 		wakeup(vnlruproc);
1326 	}
1327 }
1328 
1329 /*
1330  * Wait if necessary for space for a new vnode.
1331  */
1332 static int
1333 getnewvnode_wait(int suspended)
1334 {
1335 
1336 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1337 	if (numvnodes >= desiredvnodes) {
1338 		if (suspended) {
1339 			/*
1340 			 * The file system is being suspended.  We cannot
1341 			 * risk a deadlock here, so allow allocation of
1342 			 * another vnode even if this would give too many.
1343 			 */
1344 			return (0);
1345 		}
1346 		if (vnlruproc_sig == 0) {
1347 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
1348 			wakeup(vnlruproc);
1349 		}
1350 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
1351 		    "vlruwk", hz);
1352 	}
1353 	/* Post-adjust like the pre-adjust in getnewvnode(). */
1354 	if (numvnodes + 1 > desiredvnodes && freevnodes > 1)
1355 		vnlru_free_locked(1, NULL);
1356 	return (numvnodes >= desiredvnodes ? ENFILE : 0);
1357 }
1358 
1359 /*
1360  * This hack is fragile, and probably not needed any more now that the
1361  * watermark handling works.
1362  */
1363 void
1364 getnewvnode_reserve(u_int count)
1365 {
1366 	struct thread *td;
1367 
1368 	/* Pre-adjust like the pre-adjust in getnewvnode(), with any count. */
1369 	/* XXX no longer so quick, but this part is not racy. */
1370 	mtx_lock(&vnode_free_list_mtx);
1371 	if (numvnodes + count > desiredvnodes && freevnodes > wantfreevnodes)
1372 		vnlru_free_locked(ulmin(numvnodes + count - desiredvnodes,
1373 		    freevnodes - wantfreevnodes), NULL);
1374 	mtx_unlock(&vnode_free_list_mtx);
1375 
1376 	td = curthread;
1377 	/* First try to be quick and racy. */
1378 	if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) {
1379 		td->td_vp_reserv += count;
1380 		vcheckspace();	/* XXX no longer so quick, but more racy */
1381 		return;
1382 	} else
1383 		atomic_subtract_long(&numvnodes, count);
1384 
1385 	mtx_lock(&vnode_free_list_mtx);
1386 	while (count > 0) {
1387 		if (getnewvnode_wait(0) == 0) {
1388 			count--;
1389 			td->td_vp_reserv++;
1390 			atomic_add_long(&numvnodes, 1);
1391 		}
1392 	}
1393 	vcheckspace();
1394 	mtx_unlock(&vnode_free_list_mtx);
1395 }
1396 
1397 /*
1398  * This hack is fragile, especially if desiredvnodes or wantvnodes are
1399  * misconfgured or changed significantly.  Reducing desiredvnodes below
1400  * the reserved amount should cause bizarre behaviour like reducing it
1401  * below the number of active vnodes -- the system will try to reduce
1402  * numvnodes to match, but should fail, so the subtraction below should
1403  * not overflow.
1404  */
1405 void
1406 getnewvnode_drop_reserve(void)
1407 {
1408 	struct thread *td;
1409 
1410 	td = curthread;
1411 	atomic_subtract_long(&numvnodes, td->td_vp_reserv);
1412 	td->td_vp_reserv = 0;
1413 }
1414 
1415 /*
1416  * Return the next vnode from the free list.
1417  */
1418 int
1419 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1420     struct vnode **vpp)
1421 {
1422 	struct vnode *vp;
1423 	struct thread *td;
1424 	struct lock_object *lo;
1425 	static int cyclecount;
1426 	int error __unused;
1427 
1428 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1429 	vp = NULL;
1430 	td = curthread;
1431 	if (td->td_vp_reserv > 0) {
1432 		td->td_vp_reserv -= 1;
1433 		goto alloc;
1434 	}
1435 	mtx_lock(&vnode_free_list_mtx);
1436 	if (numvnodes < desiredvnodes)
1437 		cyclecount = 0;
1438 	else if (cyclecount++ >= freevnodes) {
1439 		cyclecount = 0;
1440 		vstir = 1;
1441 	}
1442 	/*
1443 	 * Grow the vnode cache if it will not be above its target max
1444 	 * after growing.  Otherwise, if the free list is nonempty, try
1445 	 * to reclaim 1 item from it before growing the cache (possibly
1446 	 * above its target max if the reclamation failed or is delayed).
1447 	 * Otherwise, wait for some space.  In all cases, schedule
1448 	 * vnlru_proc() if we are getting short of space.  The watermarks
1449 	 * should be chosen so that we never wait or even reclaim from
1450 	 * the free list to below its target minimum.
1451 	 */
1452 	if (numvnodes + 1 <= desiredvnodes)
1453 		;
1454 	else if (freevnodes > 0)
1455 		vnlru_free_locked(1, NULL);
1456 	else {
1457 		error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1458 		    MNTK_SUSPEND));
1459 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1460 		if (error != 0) {
1461 			mtx_unlock(&vnode_free_list_mtx);
1462 			return (error);
1463 		}
1464 #endif
1465 	}
1466 	vcheckspace();
1467 	atomic_add_long(&numvnodes, 1);
1468 	mtx_unlock(&vnode_free_list_mtx);
1469 alloc:
1470 	counter_u64_add(vnodes_created, 1);
1471 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK);
1472 	/*
1473 	 * Locks are given the generic name "vnode" when created.
1474 	 * Follow the historic practice of using the filesystem
1475 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1476 	 *
1477 	 * Locks live in a witness group keyed on their name. Thus,
1478 	 * when a lock is renamed, it must also move from the witness
1479 	 * group of its old name to the witness group of its new name.
1480 	 *
1481 	 * The change only needs to be made when the vnode moves
1482 	 * from one filesystem type to another. We ensure that each
1483 	 * filesystem use a single static name pointer for its tag so
1484 	 * that we can compare pointers rather than doing a strcmp().
1485 	 */
1486 	lo = &vp->v_vnlock->lock_object;
1487 	if (lo->lo_name != tag) {
1488 		lo->lo_name = tag;
1489 		WITNESS_DESTROY(lo);
1490 		WITNESS_INIT(lo, tag);
1491 	}
1492 	/*
1493 	 * By default, don't allow shared locks unless filesystems opt-in.
1494 	 */
1495 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1496 	/*
1497 	 * Finalize various vnode identity bits.
1498 	 */
1499 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1500 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1501 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1502 	vp->v_type = VNON;
1503 	vp->v_tag = tag;
1504 	vp->v_op = vops;
1505 	v_init_counters(vp);
1506 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1507 #ifdef DIAGNOSTIC
1508 	if (mp == NULL && vops != &dead_vnodeops)
1509 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1510 #endif
1511 #ifdef MAC
1512 	mac_vnode_init(vp);
1513 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1514 		mac_vnode_associate_singlelabel(mp, vp);
1515 #endif
1516 	if (mp != NULL) {
1517 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1518 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1519 			vp->v_vflag |= VV_NOKNOTE;
1520 	}
1521 
1522 	/*
1523 	 * For the filesystems which do not use vfs_hash_insert(),
1524 	 * still initialize v_hash to have vfs_hash_index() useful.
1525 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1526 	 * its own hashing.
1527 	 */
1528 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1529 
1530 	*vpp = vp;
1531 	return (0);
1532 }
1533 
1534 /*
1535  * Delete from old mount point vnode list, if on one.
1536  */
1537 static void
1538 delmntque(struct vnode *vp)
1539 {
1540 	struct mount *mp;
1541 	int active;
1542 
1543 	mp = vp->v_mount;
1544 	if (mp == NULL)
1545 		return;
1546 	MNT_ILOCK(mp);
1547 	VI_LOCK(vp);
1548 	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1549 	    ("Active vnode list size %d > Vnode list size %d",
1550 	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1551 	active = vp->v_iflag & VI_ACTIVE;
1552 	vp->v_iflag &= ~VI_ACTIVE;
1553 	if (active) {
1554 		mtx_lock(&mp->mnt_listmtx);
1555 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1556 		mp->mnt_activevnodelistsize--;
1557 		mtx_unlock(&mp->mnt_listmtx);
1558 	}
1559 	vp->v_mount = NULL;
1560 	VI_UNLOCK(vp);
1561 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1562 		("bad mount point vnode list size"));
1563 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1564 	mp->mnt_nvnodelistsize--;
1565 	MNT_REL(mp);
1566 	MNT_IUNLOCK(mp);
1567 }
1568 
1569 static void
1570 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1571 {
1572 
1573 	vp->v_data = NULL;
1574 	vp->v_op = &dead_vnodeops;
1575 	vgone(vp);
1576 	vput(vp);
1577 }
1578 
1579 /*
1580  * Insert into list of vnodes for the new mount point, if available.
1581  */
1582 int
1583 insmntque1(struct vnode *vp, struct mount *mp,
1584 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1585 {
1586 
1587 	KASSERT(vp->v_mount == NULL,
1588 		("insmntque: vnode already on per mount vnode list"));
1589 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1590 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1591 
1592 	/*
1593 	 * We acquire the vnode interlock early to ensure that the
1594 	 * vnode cannot be recycled by another process releasing a
1595 	 * holdcnt on it before we get it on both the vnode list
1596 	 * and the active vnode list. The mount mutex protects only
1597 	 * manipulation of the vnode list and the vnode freelist
1598 	 * mutex protects only manipulation of the active vnode list.
1599 	 * Hence the need to hold the vnode interlock throughout.
1600 	 */
1601 	MNT_ILOCK(mp);
1602 	VI_LOCK(vp);
1603 	if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1604 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1605 	    mp->mnt_nvnodelistsize == 0)) &&
1606 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1607 		VI_UNLOCK(vp);
1608 		MNT_IUNLOCK(mp);
1609 		if (dtr != NULL)
1610 			dtr(vp, dtr_arg);
1611 		return (EBUSY);
1612 	}
1613 	vp->v_mount = mp;
1614 	MNT_REF(mp);
1615 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1616 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1617 		("neg mount point vnode list size"));
1618 	mp->mnt_nvnodelistsize++;
1619 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1620 	    ("Activating already active vnode"));
1621 	vp->v_iflag |= VI_ACTIVE;
1622 	mtx_lock(&mp->mnt_listmtx);
1623 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1624 	mp->mnt_activevnodelistsize++;
1625 	mtx_unlock(&mp->mnt_listmtx);
1626 	VI_UNLOCK(vp);
1627 	MNT_IUNLOCK(mp);
1628 	return (0);
1629 }
1630 
1631 int
1632 insmntque(struct vnode *vp, struct mount *mp)
1633 {
1634 
1635 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1636 }
1637 
1638 /*
1639  * Flush out and invalidate all buffers associated with a bufobj
1640  * Called with the underlying object locked.
1641  */
1642 int
1643 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1644 {
1645 	int error;
1646 
1647 	BO_LOCK(bo);
1648 	if (flags & V_SAVE) {
1649 		error = bufobj_wwait(bo, slpflag, slptimeo);
1650 		if (error) {
1651 			BO_UNLOCK(bo);
1652 			return (error);
1653 		}
1654 		if (bo->bo_dirty.bv_cnt > 0) {
1655 			BO_UNLOCK(bo);
1656 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1657 				return (error);
1658 			/*
1659 			 * XXX We could save a lock/unlock if this was only
1660 			 * enabled under INVARIANTS
1661 			 */
1662 			BO_LOCK(bo);
1663 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1664 				panic("vinvalbuf: dirty bufs");
1665 		}
1666 	}
1667 	/*
1668 	 * If you alter this loop please notice that interlock is dropped and
1669 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1670 	 * no race conditions occur from this.
1671 	 */
1672 	do {
1673 		error = flushbuflist(&bo->bo_clean,
1674 		    flags, bo, slpflag, slptimeo);
1675 		if (error == 0 && !(flags & V_CLEANONLY))
1676 			error = flushbuflist(&bo->bo_dirty,
1677 			    flags, bo, slpflag, slptimeo);
1678 		if (error != 0 && error != EAGAIN) {
1679 			BO_UNLOCK(bo);
1680 			return (error);
1681 		}
1682 	} while (error != 0);
1683 
1684 	/*
1685 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1686 	 * have write I/O in-progress but if there is a VM object then the
1687 	 * VM object can also have read-I/O in-progress.
1688 	 */
1689 	do {
1690 		bufobj_wwait(bo, 0, 0);
1691 		if ((flags & V_VMIO) == 0) {
1692 			BO_UNLOCK(bo);
1693 			if (bo->bo_object != NULL) {
1694 				VM_OBJECT_WLOCK(bo->bo_object);
1695 				vm_object_pip_wait(bo->bo_object, "bovlbx");
1696 				VM_OBJECT_WUNLOCK(bo->bo_object);
1697 			}
1698 			BO_LOCK(bo);
1699 		}
1700 	} while (bo->bo_numoutput > 0);
1701 	BO_UNLOCK(bo);
1702 
1703 	/*
1704 	 * Destroy the copy in the VM cache, too.
1705 	 */
1706 	if (bo->bo_object != NULL &&
1707 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1708 		VM_OBJECT_WLOCK(bo->bo_object);
1709 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1710 		    OBJPR_CLEANONLY : 0);
1711 		VM_OBJECT_WUNLOCK(bo->bo_object);
1712 	}
1713 
1714 #ifdef INVARIANTS
1715 	BO_LOCK(bo);
1716 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
1717 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
1718 	    bo->bo_clean.bv_cnt > 0))
1719 		panic("vinvalbuf: flush failed");
1720 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
1721 	    bo->bo_dirty.bv_cnt > 0)
1722 		panic("vinvalbuf: flush dirty failed");
1723 	BO_UNLOCK(bo);
1724 #endif
1725 	return (0);
1726 }
1727 
1728 /*
1729  * Flush out and invalidate all buffers associated with a vnode.
1730  * Called with the underlying object locked.
1731  */
1732 int
1733 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1734 {
1735 
1736 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1737 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1738 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1739 		return (0);
1740 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1741 }
1742 
1743 /*
1744  * Flush out buffers on the specified list.
1745  *
1746  */
1747 static int
1748 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1749     int slptimeo)
1750 {
1751 	struct buf *bp, *nbp;
1752 	int retval, error;
1753 	daddr_t lblkno;
1754 	b_xflags_t xflags;
1755 
1756 	ASSERT_BO_WLOCKED(bo);
1757 
1758 	retval = 0;
1759 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1760 		/*
1761 		 * If we are flushing both V_NORMAL and V_ALT buffers then
1762 		 * do not skip any buffers. If we are flushing only V_NORMAL
1763 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
1764 		 * flushing only V_ALT buffers then skip buffers not marked
1765 		 * as BX_ALTDATA.
1766 		 */
1767 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
1768 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
1769 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
1770 			continue;
1771 		}
1772 		if (nbp != NULL) {
1773 			lblkno = nbp->b_lblkno;
1774 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
1775 		}
1776 		retval = EAGAIN;
1777 		error = BUF_TIMELOCK(bp,
1778 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
1779 		    "flushbuf", slpflag, slptimeo);
1780 		if (error) {
1781 			BO_LOCK(bo);
1782 			return (error != ENOLCK ? error : EAGAIN);
1783 		}
1784 		KASSERT(bp->b_bufobj == bo,
1785 		    ("bp %p wrong b_bufobj %p should be %p",
1786 		    bp, bp->b_bufobj, bo));
1787 		/*
1788 		 * XXX Since there are no node locks for NFS, I
1789 		 * believe there is a slight chance that a delayed
1790 		 * write will occur while sleeping just above, so
1791 		 * check for it.
1792 		 */
1793 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1794 		    (flags & V_SAVE)) {
1795 			bremfree(bp);
1796 			bp->b_flags |= B_ASYNC;
1797 			bwrite(bp);
1798 			BO_LOCK(bo);
1799 			return (EAGAIN);	/* XXX: why not loop ? */
1800 		}
1801 		bremfree(bp);
1802 		bp->b_flags |= (B_INVAL | B_RELBUF);
1803 		bp->b_flags &= ~B_ASYNC;
1804 		brelse(bp);
1805 		BO_LOCK(bo);
1806 		if (nbp == NULL)
1807 			break;
1808 		nbp = gbincore(bo, lblkno);
1809 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1810 		    != xflags)
1811 			break;			/* nbp invalid */
1812 	}
1813 	return (retval);
1814 }
1815 
1816 int
1817 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
1818 {
1819 	struct buf *bp;
1820 	int error;
1821 	daddr_t lblkno;
1822 
1823 	ASSERT_BO_LOCKED(bo);
1824 
1825 	for (lblkno = startn;;) {
1826 again:
1827 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
1828 		if (bp == NULL || bp->b_lblkno >= endn ||
1829 		    bp->b_lblkno < startn)
1830 			break;
1831 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
1832 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
1833 		if (error != 0) {
1834 			BO_RLOCK(bo);
1835 			if (error == ENOLCK)
1836 				goto again;
1837 			return (error);
1838 		}
1839 		KASSERT(bp->b_bufobj == bo,
1840 		    ("bp %p wrong b_bufobj %p should be %p",
1841 		    bp, bp->b_bufobj, bo));
1842 		lblkno = bp->b_lblkno + 1;
1843 		if ((bp->b_flags & B_MANAGED) == 0)
1844 			bremfree(bp);
1845 		bp->b_flags |= B_RELBUF;
1846 		/*
1847 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
1848 		 * pages backing each buffer in the range are unlikely to be
1849 		 * reused.  Dirty buffers will have the hint applied once
1850 		 * they've been written.
1851 		 */
1852 		if ((bp->b_flags & B_VMIO) != 0)
1853 			bp->b_flags |= B_NOREUSE;
1854 		brelse(bp);
1855 		BO_RLOCK(bo);
1856 	}
1857 	return (0);
1858 }
1859 
1860 /*
1861  * Truncate a file's buffer and pages to a specified length.  This
1862  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1863  * sync activity.
1864  */
1865 int
1866 vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize)
1867 {
1868 	struct buf *bp, *nbp;
1869 	int anyfreed;
1870 	daddr_t trunclbn;
1871 	struct bufobj *bo;
1872 
1873 	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1874 	    vp, cred, blksize, (uintmax_t)length);
1875 
1876 	/*
1877 	 * Round up to the *next* lbn.
1878 	 */
1879 	trunclbn = howmany(length, blksize);
1880 
1881 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1882 restart:
1883 	bo = &vp->v_bufobj;
1884 	BO_LOCK(bo);
1885 	anyfreed = 1;
1886 	for (;anyfreed;) {
1887 		anyfreed = 0;
1888 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1889 			if (bp->b_lblkno < trunclbn)
1890 				continue;
1891 			if (BUF_LOCK(bp,
1892 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1893 			    BO_LOCKPTR(bo)) == ENOLCK)
1894 				goto restart;
1895 
1896 			bremfree(bp);
1897 			bp->b_flags |= (B_INVAL | B_RELBUF);
1898 			bp->b_flags &= ~B_ASYNC;
1899 			brelse(bp);
1900 			anyfreed = 1;
1901 
1902 			BO_LOCK(bo);
1903 			if (nbp != NULL &&
1904 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1905 			    (nbp->b_vp != vp) ||
1906 			    (nbp->b_flags & B_DELWRI))) {
1907 				BO_UNLOCK(bo);
1908 				goto restart;
1909 			}
1910 		}
1911 
1912 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1913 			if (bp->b_lblkno < trunclbn)
1914 				continue;
1915 			if (BUF_LOCK(bp,
1916 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1917 			    BO_LOCKPTR(bo)) == ENOLCK)
1918 				goto restart;
1919 			bremfree(bp);
1920 			bp->b_flags |= (B_INVAL | B_RELBUF);
1921 			bp->b_flags &= ~B_ASYNC;
1922 			brelse(bp);
1923 			anyfreed = 1;
1924 
1925 			BO_LOCK(bo);
1926 			if (nbp != NULL &&
1927 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1928 			    (nbp->b_vp != vp) ||
1929 			    (nbp->b_flags & B_DELWRI) == 0)) {
1930 				BO_UNLOCK(bo);
1931 				goto restart;
1932 			}
1933 		}
1934 	}
1935 
1936 	if (length > 0) {
1937 restartsync:
1938 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1939 			if (bp->b_lblkno > 0)
1940 				continue;
1941 			/*
1942 			 * Since we hold the vnode lock this should only
1943 			 * fail if we're racing with the buf daemon.
1944 			 */
1945 			if (BUF_LOCK(bp,
1946 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1947 			    BO_LOCKPTR(bo)) == ENOLCK) {
1948 				goto restart;
1949 			}
1950 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1951 			    ("buf(%p) on dirty queue without DELWRI", bp));
1952 
1953 			bremfree(bp);
1954 			bawrite(bp);
1955 			BO_LOCK(bo);
1956 			goto restartsync;
1957 		}
1958 	}
1959 
1960 	bufobj_wwait(bo, 0, 0);
1961 	BO_UNLOCK(bo);
1962 	vnode_pager_setsize(vp, length);
1963 
1964 	return (0);
1965 }
1966 
1967 static void
1968 buf_vlist_remove(struct buf *bp)
1969 {
1970 	struct bufv *bv;
1971 
1972 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1973 	ASSERT_BO_WLOCKED(bp->b_bufobj);
1974 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1975 	    (BX_VNDIRTY|BX_VNCLEAN),
1976 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1977 	if (bp->b_xflags & BX_VNDIRTY)
1978 		bv = &bp->b_bufobj->bo_dirty;
1979 	else
1980 		bv = &bp->b_bufobj->bo_clean;
1981 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
1982 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1983 	bv->bv_cnt--;
1984 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1985 }
1986 
1987 /*
1988  * Add the buffer to the sorted clean or dirty block list.
1989  *
1990  * NOTE: xflags is passed as a constant, optimizing this inline function!
1991  */
1992 static void
1993 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1994 {
1995 	struct bufv *bv;
1996 	struct buf *n;
1997 	int error;
1998 
1999 	ASSERT_BO_WLOCKED(bo);
2000 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2001 	    ("dead bo %p", bo));
2002 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2003 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2004 	bp->b_xflags |= xflags;
2005 	if (xflags & BX_VNDIRTY)
2006 		bv = &bo->bo_dirty;
2007 	else
2008 		bv = &bo->bo_clean;
2009 
2010 	/*
2011 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2012 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2013 	 * than _ge.
2014 	 */
2015 	if (bv->bv_cnt == 0 ||
2016 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2017 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2018 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2019 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2020 	else
2021 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2022 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2023 	if (error)
2024 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2025 	bv->bv_cnt++;
2026 }
2027 
2028 /*
2029  * Look up a buffer using the buffer tries.
2030  */
2031 struct buf *
2032 gbincore(struct bufobj *bo, daddr_t lblkno)
2033 {
2034 	struct buf *bp;
2035 
2036 	ASSERT_BO_LOCKED(bo);
2037 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2038 	if (bp != NULL)
2039 		return (bp);
2040 	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
2041 }
2042 
2043 /*
2044  * Associate a buffer with a vnode.
2045  */
2046 void
2047 bgetvp(struct vnode *vp, struct buf *bp)
2048 {
2049 	struct bufobj *bo;
2050 
2051 	bo = &vp->v_bufobj;
2052 	ASSERT_BO_WLOCKED(bo);
2053 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2054 
2055 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2056 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2057 	    ("bgetvp: bp already attached! %p", bp));
2058 
2059 	vhold(vp);
2060 	bp->b_vp = vp;
2061 	bp->b_bufobj = bo;
2062 	/*
2063 	 * Insert onto list for new vnode.
2064 	 */
2065 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2066 }
2067 
2068 /*
2069  * Disassociate a buffer from a vnode.
2070  */
2071 void
2072 brelvp(struct buf *bp)
2073 {
2074 	struct bufobj *bo;
2075 	struct vnode *vp;
2076 
2077 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2078 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2079 
2080 	/*
2081 	 * Delete from old vnode list, if on one.
2082 	 */
2083 	vp = bp->b_vp;		/* XXX */
2084 	bo = bp->b_bufobj;
2085 	BO_LOCK(bo);
2086 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2087 		buf_vlist_remove(bp);
2088 	else
2089 		panic("brelvp: Buffer %p not on queue.", bp);
2090 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2091 		bo->bo_flag &= ~BO_ONWORKLST;
2092 		mtx_lock(&sync_mtx);
2093 		LIST_REMOVE(bo, bo_synclist);
2094 		syncer_worklist_len--;
2095 		mtx_unlock(&sync_mtx);
2096 	}
2097 	bp->b_vp = NULL;
2098 	bp->b_bufobj = NULL;
2099 	BO_UNLOCK(bo);
2100 	vdrop(vp);
2101 }
2102 
2103 /*
2104  * Add an item to the syncer work queue.
2105  */
2106 static void
2107 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2108 {
2109 	int slot;
2110 
2111 	ASSERT_BO_WLOCKED(bo);
2112 
2113 	mtx_lock(&sync_mtx);
2114 	if (bo->bo_flag & BO_ONWORKLST)
2115 		LIST_REMOVE(bo, bo_synclist);
2116 	else {
2117 		bo->bo_flag |= BO_ONWORKLST;
2118 		syncer_worklist_len++;
2119 	}
2120 
2121 	if (delay > syncer_maxdelay - 2)
2122 		delay = syncer_maxdelay - 2;
2123 	slot = (syncer_delayno + delay) & syncer_mask;
2124 
2125 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2126 	mtx_unlock(&sync_mtx);
2127 }
2128 
2129 static int
2130 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2131 {
2132 	int error, len;
2133 
2134 	mtx_lock(&sync_mtx);
2135 	len = syncer_worklist_len - sync_vnode_count;
2136 	mtx_unlock(&sync_mtx);
2137 	error = SYSCTL_OUT(req, &len, sizeof(len));
2138 	return (error);
2139 }
2140 
2141 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
2142     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2143 
2144 static struct proc *updateproc;
2145 static void sched_sync(void);
2146 static struct kproc_desc up_kp = {
2147 	"syncer",
2148 	sched_sync,
2149 	&updateproc
2150 };
2151 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2152 
2153 static int
2154 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2155 {
2156 	struct vnode *vp;
2157 	struct mount *mp;
2158 
2159 	*bo = LIST_FIRST(slp);
2160 	if (*bo == NULL)
2161 		return (0);
2162 	vp = bo2vnode(*bo);
2163 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2164 		return (1);
2165 	/*
2166 	 * We use vhold in case the vnode does not
2167 	 * successfully sync.  vhold prevents the vnode from
2168 	 * going away when we unlock the sync_mtx so that
2169 	 * we can acquire the vnode interlock.
2170 	 */
2171 	vholdl(vp);
2172 	mtx_unlock(&sync_mtx);
2173 	VI_UNLOCK(vp);
2174 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2175 		vdrop(vp);
2176 		mtx_lock(&sync_mtx);
2177 		return (*bo == LIST_FIRST(slp));
2178 	}
2179 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2180 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2181 	VOP_UNLOCK(vp, 0);
2182 	vn_finished_write(mp);
2183 	BO_LOCK(*bo);
2184 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2185 		/*
2186 		 * Put us back on the worklist.  The worklist
2187 		 * routine will remove us from our current
2188 		 * position and then add us back in at a later
2189 		 * position.
2190 		 */
2191 		vn_syncer_add_to_worklist(*bo, syncdelay);
2192 	}
2193 	BO_UNLOCK(*bo);
2194 	vdrop(vp);
2195 	mtx_lock(&sync_mtx);
2196 	return (0);
2197 }
2198 
2199 static int first_printf = 1;
2200 
2201 /*
2202  * System filesystem synchronizer daemon.
2203  */
2204 static void
2205 sched_sync(void)
2206 {
2207 	struct synclist *next, *slp;
2208 	struct bufobj *bo;
2209 	long starttime;
2210 	struct thread *td = curthread;
2211 	int last_work_seen;
2212 	int net_worklist_len;
2213 	int syncer_final_iter;
2214 	int error;
2215 
2216 	last_work_seen = 0;
2217 	syncer_final_iter = 0;
2218 	syncer_state = SYNCER_RUNNING;
2219 	starttime = time_uptime;
2220 	td->td_pflags |= TDP_NORUNNINGBUF;
2221 
2222 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2223 	    SHUTDOWN_PRI_LAST);
2224 
2225 	mtx_lock(&sync_mtx);
2226 	for (;;) {
2227 		if (syncer_state == SYNCER_FINAL_DELAY &&
2228 		    syncer_final_iter == 0) {
2229 			mtx_unlock(&sync_mtx);
2230 			kproc_suspend_check(td->td_proc);
2231 			mtx_lock(&sync_mtx);
2232 		}
2233 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2234 		if (syncer_state != SYNCER_RUNNING &&
2235 		    starttime != time_uptime) {
2236 			if (first_printf) {
2237 				printf("\nSyncing disks, vnodes remaining... ");
2238 				first_printf = 0;
2239 			}
2240 			printf("%d ", net_worklist_len);
2241 		}
2242 		starttime = time_uptime;
2243 
2244 		/*
2245 		 * Push files whose dirty time has expired.  Be careful
2246 		 * of interrupt race on slp queue.
2247 		 *
2248 		 * Skip over empty worklist slots when shutting down.
2249 		 */
2250 		do {
2251 			slp = &syncer_workitem_pending[syncer_delayno];
2252 			syncer_delayno += 1;
2253 			if (syncer_delayno == syncer_maxdelay)
2254 				syncer_delayno = 0;
2255 			next = &syncer_workitem_pending[syncer_delayno];
2256 			/*
2257 			 * If the worklist has wrapped since the
2258 			 * it was emptied of all but syncer vnodes,
2259 			 * switch to the FINAL_DELAY state and run
2260 			 * for one more second.
2261 			 */
2262 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2263 			    net_worklist_len == 0 &&
2264 			    last_work_seen == syncer_delayno) {
2265 				syncer_state = SYNCER_FINAL_DELAY;
2266 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2267 			}
2268 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2269 		    syncer_worklist_len > 0);
2270 
2271 		/*
2272 		 * Keep track of the last time there was anything
2273 		 * on the worklist other than syncer vnodes.
2274 		 * Return to the SHUTTING_DOWN state if any
2275 		 * new work appears.
2276 		 */
2277 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2278 			last_work_seen = syncer_delayno;
2279 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2280 			syncer_state = SYNCER_SHUTTING_DOWN;
2281 		while (!LIST_EMPTY(slp)) {
2282 			error = sync_vnode(slp, &bo, td);
2283 			if (error == 1) {
2284 				LIST_REMOVE(bo, bo_synclist);
2285 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2286 				continue;
2287 			}
2288 
2289 			if (first_printf == 0) {
2290 				/*
2291 				 * Drop the sync mutex, because some watchdog
2292 				 * drivers need to sleep while patting
2293 				 */
2294 				mtx_unlock(&sync_mtx);
2295 				wdog_kern_pat(WD_LASTVAL);
2296 				mtx_lock(&sync_mtx);
2297 			}
2298 
2299 		}
2300 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2301 			syncer_final_iter--;
2302 		/*
2303 		 * The variable rushjob allows the kernel to speed up the
2304 		 * processing of the filesystem syncer process. A rushjob
2305 		 * value of N tells the filesystem syncer to process the next
2306 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2307 		 * is used by the soft update code to speed up the filesystem
2308 		 * syncer process when the incore state is getting so far
2309 		 * ahead of the disk that the kernel memory pool is being
2310 		 * threatened with exhaustion.
2311 		 */
2312 		if (rushjob > 0) {
2313 			rushjob -= 1;
2314 			continue;
2315 		}
2316 		/*
2317 		 * Just sleep for a short period of time between
2318 		 * iterations when shutting down to allow some I/O
2319 		 * to happen.
2320 		 *
2321 		 * If it has taken us less than a second to process the
2322 		 * current work, then wait. Otherwise start right over
2323 		 * again. We can still lose time if any single round
2324 		 * takes more than two seconds, but it does not really
2325 		 * matter as we are just trying to generally pace the
2326 		 * filesystem activity.
2327 		 */
2328 		if (syncer_state != SYNCER_RUNNING ||
2329 		    time_uptime == starttime) {
2330 			thread_lock(td);
2331 			sched_prio(td, PPAUSE);
2332 			thread_unlock(td);
2333 		}
2334 		if (syncer_state != SYNCER_RUNNING)
2335 			cv_timedwait(&sync_wakeup, &sync_mtx,
2336 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2337 		else if (time_uptime == starttime)
2338 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2339 	}
2340 }
2341 
2342 /*
2343  * Request the syncer daemon to speed up its work.
2344  * We never push it to speed up more than half of its
2345  * normal turn time, otherwise it could take over the cpu.
2346  */
2347 int
2348 speedup_syncer(void)
2349 {
2350 	int ret = 0;
2351 
2352 	mtx_lock(&sync_mtx);
2353 	if (rushjob < syncdelay / 2) {
2354 		rushjob += 1;
2355 		stat_rush_requests += 1;
2356 		ret = 1;
2357 	}
2358 	mtx_unlock(&sync_mtx);
2359 	cv_broadcast(&sync_wakeup);
2360 	return (ret);
2361 }
2362 
2363 /*
2364  * Tell the syncer to speed up its work and run though its work
2365  * list several times, then tell it to shut down.
2366  */
2367 static void
2368 syncer_shutdown(void *arg, int howto)
2369 {
2370 
2371 	if (howto & RB_NOSYNC)
2372 		return;
2373 	mtx_lock(&sync_mtx);
2374 	syncer_state = SYNCER_SHUTTING_DOWN;
2375 	rushjob = 0;
2376 	mtx_unlock(&sync_mtx);
2377 	cv_broadcast(&sync_wakeup);
2378 	kproc_shutdown(arg, howto);
2379 }
2380 
2381 void
2382 syncer_suspend(void)
2383 {
2384 
2385 	syncer_shutdown(updateproc, 0);
2386 }
2387 
2388 void
2389 syncer_resume(void)
2390 {
2391 
2392 	mtx_lock(&sync_mtx);
2393 	first_printf = 1;
2394 	syncer_state = SYNCER_RUNNING;
2395 	mtx_unlock(&sync_mtx);
2396 	cv_broadcast(&sync_wakeup);
2397 	kproc_resume(updateproc);
2398 }
2399 
2400 /*
2401  * Reassign a buffer from one vnode to another.
2402  * Used to assign file specific control information
2403  * (indirect blocks) to the vnode to which they belong.
2404  */
2405 void
2406 reassignbuf(struct buf *bp)
2407 {
2408 	struct vnode *vp;
2409 	struct bufobj *bo;
2410 	int delay;
2411 #ifdef INVARIANTS
2412 	struct bufv *bv;
2413 #endif
2414 
2415 	vp = bp->b_vp;
2416 	bo = bp->b_bufobj;
2417 	++reassignbufcalls;
2418 
2419 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2420 	    bp, bp->b_vp, bp->b_flags);
2421 	/*
2422 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2423 	 * is not fully linked in.
2424 	 */
2425 	if (bp->b_flags & B_PAGING)
2426 		panic("cannot reassign paging buffer");
2427 
2428 	/*
2429 	 * Delete from old vnode list, if on one.
2430 	 */
2431 	BO_LOCK(bo);
2432 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2433 		buf_vlist_remove(bp);
2434 	else
2435 		panic("reassignbuf: Buffer %p not on queue.", bp);
2436 	/*
2437 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2438 	 * of clean buffers.
2439 	 */
2440 	if (bp->b_flags & B_DELWRI) {
2441 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2442 			switch (vp->v_type) {
2443 			case VDIR:
2444 				delay = dirdelay;
2445 				break;
2446 			case VCHR:
2447 				delay = metadelay;
2448 				break;
2449 			default:
2450 				delay = filedelay;
2451 			}
2452 			vn_syncer_add_to_worklist(bo, delay);
2453 		}
2454 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2455 	} else {
2456 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2457 
2458 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2459 			mtx_lock(&sync_mtx);
2460 			LIST_REMOVE(bo, bo_synclist);
2461 			syncer_worklist_len--;
2462 			mtx_unlock(&sync_mtx);
2463 			bo->bo_flag &= ~BO_ONWORKLST;
2464 		}
2465 	}
2466 #ifdef INVARIANTS
2467 	bv = &bo->bo_clean;
2468 	bp = TAILQ_FIRST(&bv->bv_hd);
2469 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2470 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2471 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2472 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2473 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2474 	bv = &bo->bo_dirty;
2475 	bp = TAILQ_FIRST(&bv->bv_hd);
2476 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2477 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2478 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2479 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2480 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2481 #endif
2482 	BO_UNLOCK(bo);
2483 }
2484 
2485 static void
2486 v_init_counters(struct vnode *vp)
2487 {
2488 
2489 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2490 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2491 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2492 
2493 	refcount_init(&vp->v_holdcnt, 1);
2494 	refcount_init(&vp->v_usecount, 1);
2495 }
2496 
2497 static void
2498 v_incr_usecount_locked(struct vnode *vp)
2499 {
2500 
2501 	ASSERT_VI_LOCKED(vp, __func__);
2502 	if ((vp->v_iflag & VI_OWEINACT) != 0) {
2503 		VNASSERT(vp->v_usecount == 0, vp,
2504 		    ("vnode with usecount and VI_OWEINACT set"));
2505 		vp->v_iflag &= ~VI_OWEINACT;
2506 	}
2507 	refcount_acquire(&vp->v_usecount);
2508 	v_incr_devcount(vp);
2509 }
2510 
2511 /*
2512  * Increment the use count on the vnode, taking care to reference
2513  * the driver's usecount if this is a chardev.
2514  */
2515 static void
2516 v_incr_usecount(struct vnode *vp)
2517 {
2518 
2519 	ASSERT_VI_UNLOCKED(vp, __func__);
2520 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2521 
2522 	if (vp->v_type != VCHR &&
2523 	    refcount_acquire_if_not_zero(&vp->v_usecount)) {
2524 		VNODE_REFCOUNT_FENCE_ACQ();
2525 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2526 		    ("vnode with usecount and VI_OWEINACT set"));
2527 	} else {
2528 		VI_LOCK(vp);
2529 		v_incr_usecount_locked(vp);
2530 		VI_UNLOCK(vp);
2531 	}
2532 }
2533 
2534 /*
2535  * Increment si_usecount of the associated device, if any.
2536  */
2537 static void
2538 v_incr_devcount(struct vnode *vp)
2539 {
2540 
2541 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2542 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2543 		dev_lock();
2544 		vp->v_rdev->si_usecount++;
2545 		dev_unlock();
2546 	}
2547 }
2548 
2549 /*
2550  * Decrement si_usecount of the associated device, if any.
2551  */
2552 static void
2553 v_decr_devcount(struct vnode *vp)
2554 {
2555 
2556 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2557 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2558 		dev_lock();
2559 		vp->v_rdev->si_usecount--;
2560 		dev_unlock();
2561 	}
2562 }
2563 
2564 /*
2565  * Grab a particular vnode from the free list, increment its
2566  * reference count and lock it.  VI_DOOMED is set if the vnode
2567  * is being destroyed.  Only callers who specify LK_RETRY will
2568  * see doomed vnodes.  If inactive processing was delayed in
2569  * vput try to do it here.
2570  *
2571  * Notes on lockless counter manipulation:
2572  * _vhold, vputx and other routines make various decisions based
2573  * on either holdcnt or usecount being 0. As long as either counter
2574  * is not transitioning 0->1 nor 1->0, the manipulation can be done
2575  * with atomic operations. Otherwise the interlock is taken covering
2576  * both the atomic and additional actions.
2577  */
2578 int
2579 vget(struct vnode *vp, int flags, struct thread *td)
2580 {
2581 	int error, oweinact;
2582 
2583 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2584 	    ("vget: invalid lock operation"));
2585 
2586 	if ((flags & LK_INTERLOCK) != 0)
2587 		ASSERT_VI_LOCKED(vp, __func__);
2588 	else
2589 		ASSERT_VI_UNLOCKED(vp, __func__);
2590 	if ((flags & LK_VNHELD) != 0)
2591 		VNASSERT((vp->v_holdcnt > 0), vp,
2592 		    ("vget: LK_VNHELD passed but vnode not held"));
2593 
2594 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2595 
2596 	if ((flags & LK_VNHELD) == 0)
2597 		_vhold(vp, (flags & LK_INTERLOCK) != 0);
2598 
2599 	if ((error = vn_lock(vp, flags)) != 0) {
2600 		vdrop(vp);
2601 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2602 		    vp);
2603 		return (error);
2604 	}
2605 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2606 		panic("vget: vn_lock failed to return ENOENT\n");
2607 	/*
2608 	 * We don't guarantee that any particular close will
2609 	 * trigger inactive processing so just make a best effort
2610 	 * here at preventing a reference to a removed file.  If
2611 	 * we don't succeed no harm is done.
2612 	 *
2613 	 * Upgrade our holdcnt to a usecount.
2614 	 */
2615 	if (vp->v_type == VCHR ||
2616 	    !refcount_acquire_if_not_zero(&vp->v_usecount)) {
2617 		VI_LOCK(vp);
2618 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
2619 			oweinact = 0;
2620 		} else {
2621 			oweinact = 1;
2622 			vp->v_iflag &= ~VI_OWEINACT;
2623 			VNODE_REFCOUNT_FENCE_REL();
2624 		}
2625 		refcount_acquire(&vp->v_usecount);
2626 		v_incr_devcount(vp);
2627 		if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2628 		    (flags & LK_NOWAIT) == 0)
2629 			vinactive(vp, td);
2630 		VI_UNLOCK(vp);
2631 	}
2632 	return (0);
2633 }
2634 
2635 /*
2636  * Increase the reference (use) and hold count of a vnode.
2637  * This will also remove the vnode from the free list if it is presently free.
2638  */
2639 void
2640 vref(struct vnode *vp)
2641 {
2642 
2643 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2644 	_vhold(vp, false);
2645 	v_incr_usecount(vp);
2646 }
2647 
2648 void
2649 vrefl(struct vnode *vp)
2650 {
2651 
2652 	ASSERT_VI_LOCKED(vp, __func__);
2653 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2654 	_vhold(vp, true);
2655 	v_incr_usecount_locked(vp);
2656 }
2657 
2658 void
2659 vrefact(struct vnode *vp)
2660 {
2661 
2662 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2663 	if (__predict_false(vp->v_type == VCHR)) {
2664 		VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp,
2665 		    ("%s: wrong ref counts", __func__));
2666 		vref(vp);
2667 		return;
2668 	}
2669 #ifdef INVARIANTS
2670 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
2671 	VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__));
2672 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
2673 	VNASSERT(old > 0, vp, ("%s: wrong use count", __func__));
2674 #else
2675 	refcount_acquire(&vp->v_holdcnt);
2676 	refcount_acquire(&vp->v_usecount);
2677 #endif
2678 }
2679 
2680 /*
2681  * Return reference count of a vnode.
2682  *
2683  * The results of this call are only guaranteed when some mechanism is used to
2684  * stop other processes from gaining references to the vnode.  This may be the
2685  * case if the caller holds the only reference.  This is also useful when stale
2686  * data is acceptable as race conditions may be accounted for by some other
2687  * means.
2688  */
2689 int
2690 vrefcnt(struct vnode *vp)
2691 {
2692 
2693 	return (vp->v_usecount);
2694 }
2695 
2696 #define	VPUTX_VRELE	1
2697 #define	VPUTX_VPUT	2
2698 #define	VPUTX_VUNREF	3
2699 
2700 /*
2701  * Decrement the use and hold counts for a vnode.
2702  *
2703  * See an explanation near vget() as to why atomic operation is safe.
2704  */
2705 static void
2706 vputx(struct vnode *vp, int func)
2707 {
2708 	int error;
2709 
2710 	KASSERT(vp != NULL, ("vputx: null vp"));
2711 	if (func == VPUTX_VUNREF)
2712 		ASSERT_VOP_LOCKED(vp, "vunref");
2713 	else if (func == VPUTX_VPUT)
2714 		ASSERT_VOP_LOCKED(vp, "vput");
2715 	else
2716 		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2717 	ASSERT_VI_UNLOCKED(vp, __func__);
2718 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2719 
2720 	if (vp->v_type != VCHR &&
2721 	    refcount_release_if_not_last(&vp->v_usecount)) {
2722 		if (func == VPUTX_VPUT)
2723 			VOP_UNLOCK(vp, 0);
2724 		vdrop(vp);
2725 		return;
2726 	}
2727 
2728 	VI_LOCK(vp);
2729 
2730 	/*
2731 	 * We want to hold the vnode until the inactive finishes to
2732 	 * prevent vgone() races.  We drop the use count here and the
2733 	 * hold count below when we're done.
2734 	 */
2735 	if (!refcount_release(&vp->v_usecount) ||
2736 	    (vp->v_iflag & VI_DOINGINACT)) {
2737 		if (func == VPUTX_VPUT)
2738 			VOP_UNLOCK(vp, 0);
2739 		v_decr_devcount(vp);
2740 		vdropl(vp);
2741 		return;
2742 	}
2743 
2744 	v_decr_devcount(vp);
2745 
2746 	error = 0;
2747 
2748 	if (vp->v_usecount != 0) {
2749 		vn_printf(vp, "vputx: usecount not zero for vnode ");
2750 		panic("vputx: usecount not zero");
2751 	}
2752 
2753 	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2754 
2755 	/*
2756 	 * We must call VOP_INACTIVE with the node locked. Mark
2757 	 * as VI_DOINGINACT to avoid recursion.
2758 	 */
2759 	vp->v_iflag |= VI_OWEINACT;
2760 	switch (func) {
2761 	case VPUTX_VRELE:
2762 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2763 		VI_LOCK(vp);
2764 		break;
2765 	case VPUTX_VPUT:
2766 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2767 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2768 			    LK_NOWAIT);
2769 			VI_LOCK(vp);
2770 		}
2771 		break;
2772 	case VPUTX_VUNREF:
2773 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2774 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
2775 			VI_LOCK(vp);
2776 		}
2777 		break;
2778 	}
2779 	VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp,
2780 	    ("vnode with usecount and VI_OWEINACT set"));
2781 	if (error == 0) {
2782 		if (vp->v_iflag & VI_OWEINACT)
2783 			vinactive(vp, curthread);
2784 		if (func != VPUTX_VUNREF)
2785 			VOP_UNLOCK(vp, 0);
2786 	}
2787 	vdropl(vp);
2788 }
2789 
2790 /*
2791  * Vnode put/release.
2792  * If count drops to zero, call inactive routine and return to freelist.
2793  */
2794 void
2795 vrele(struct vnode *vp)
2796 {
2797 
2798 	vputx(vp, VPUTX_VRELE);
2799 }
2800 
2801 /*
2802  * Release an already locked vnode.  This give the same effects as
2803  * unlock+vrele(), but takes less time and avoids releasing and
2804  * re-aquiring the lock (as vrele() acquires the lock internally.)
2805  */
2806 void
2807 vput(struct vnode *vp)
2808 {
2809 
2810 	vputx(vp, VPUTX_VPUT);
2811 }
2812 
2813 /*
2814  * Release an exclusively locked vnode. Do not unlock the vnode lock.
2815  */
2816 void
2817 vunref(struct vnode *vp)
2818 {
2819 
2820 	vputx(vp, VPUTX_VUNREF);
2821 }
2822 
2823 /*
2824  * Increase the hold count and activate if this is the first reference.
2825  */
2826 void
2827 _vhold(struct vnode *vp, bool locked)
2828 {
2829 	struct mount *mp;
2830 
2831 	if (locked)
2832 		ASSERT_VI_LOCKED(vp, __func__);
2833 	else
2834 		ASSERT_VI_UNLOCKED(vp, __func__);
2835 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2836 	if (!locked) {
2837 		if (refcount_acquire_if_not_zero(&vp->v_holdcnt)) {
2838 			VNODE_REFCOUNT_FENCE_ACQ();
2839 			VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2840 			    ("_vhold: vnode with holdcnt is free"));
2841 			return;
2842 		}
2843 		VI_LOCK(vp);
2844 	}
2845 	if ((vp->v_iflag & VI_FREE) == 0) {
2846 		refcount_acquire(&vp->v_holdcnt);
2847 		if (!locked)
2848 			VI_UNLOCK(vp);
2849 		return;
2850 	}
2851 	VNASSERT(vp->v_holdcnt == 0, vp,
2852 	    ("%s: wrong hold count", __func__));
2853 	VNASSERT(vp->v_op != NULL, vp,
2854 	    ("%s: vnode already reclaimed.", __func__));
2855 	/*
2856 	 * Remove a vnode from the free list, mark it as in use,
2857 	 * and put it on the active list.
2858 	 */
2859 	VNASSERT(vp->v_mount != NULL, vp,
2860 	    ("_vhold: vnode not on per mount vnode list"));
2861 	mp = vp->v_mount;
2862 	mtx_lock(&mp->mnt_listmtx);
2863 	if ((vp->v_mflag & VMP_TMPMNTFREELIST) != 0) {
2864 		TAILQ_REMOVE(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist);
2865 		mp->mnt_tmpfreevnodelistsize--;
2866 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
2867 	} else {
2868 		mtx_lock(&vnode_free_list_mtx);
2869 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
2870 		freevnodes--;
2871 		mtx_unlock(&vnode_free_list_mtx);
2872 	}
2873 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
2874 	    ("Activating already active vnode"));
2875 	vp->v_iflag &= ~VI_FREE;
2876 	vp->v_iflag |= VI_ACTIVE;
2877 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
2878 	mp->mnt_activevnodelistsize++;
2879 	mtx_unlock(&mp->mnt_listmtx);
2880 	refcount_acquire(&vp->v_holdcnt);
2881 	if (!locked)
2882 		VI_UNLOCK(vp);
2883 }
2884 
2885 /*
2886  * Drop the hold count of the vnode.  If this is the last reference to
2887  * the vnode we place it on the free list unless it has been vgone'd
2888  * (marked VI_DOOMED) in which case we will free it.
2889  *
2890  * Because the vnode vm object keeps a hold reference on the vnode if
2891  * there is at least one resident non-cached page, the vnode cannot
2892  * leave the active list without the page cleanup done.
2893  */
2894 void
2895 _vdrop(struct vnode *vp, bool locked)
2896 {
2897 	struct bufobj *bo;
2898 	struct mount *mp;
2899 	int active;
2900 
2901 	if (locked)
2902 		ASSERT_VI_LOCKED(vp, __func__);
2903 	else
2904 		ASSERT_VI_UNLOCKED(vp, __func__);
2905 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2906 	if ((int)vp->v_holdcnt <= 0)
2907 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2908 	if (!locked) {
2909 		if (refcount_release_if_not_last(&vp->v_holdcnt))
2910 			return;
2911 		VI_LOCK(vp);
2912 	}
2913 	if (refcount_release(&vp->v_holdcnt) == 0) {
2914 		VI_UNLOCK(vp);
2915 		return;
2916 	}
2917 	if ((vp->v_iflag & VI_DOOMED) == 0) {
2918 		/*
2919 		 * Mark a vnode as free: remove it from its active list
2920 		 * and put it up for recycling on the freelist.
2921 		 */
2922 		VNASSERT(vp->v_op != NULL, vp,
2923 		    ("vdropl: vnode already reclaimed."));
2924 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2925 		    ("vnode already free"));
2926 		VNASSERT(vp->v_holdcnt == 0, vp,
2927 		    ("vdropl: freeing when we shouldn't"));
2928 		active = vp->v_iflag & VI_ACTIVE;
2929 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
2930 			vp->v_iflag &= ~VI_ACTIVE;
2931 			mp = vp->v_mount;
2932 			if (mp != NULL) {
2933 				mtx_lock(&mp->mnt_listmtx);
2934 				if (active) {
2935 					TAILQ_REMOVE(&mp->mnt_activevnodelist,
2936 					    vp, v_actfreelist);
2937 					mp->mnt_activevnodelistsize--;
2938 				}
2939 				TAILQ_INSERT_TAIL(&mp->mnt_tmpfreevnodelist,
2940 				    vp, v_actfreelist);
2941 				mp->mnt_tmpfreevnodelistsize++;
2942 				vp->v_iflag |= VI_FREE;
2943 				vp->v_mflag |= VMP_TMPMNTFREELIST;
2944 				VI_UNLOCK(vp);
2945 				if (mp->mnt_tmpfreevnodelistsize >=
2946 				    mnt_free_list_batch)
2947 					vnlru_return_batch_locked(mp);
2948 				mtx_unlock(&mp->mnt_listmtx);
2949 			} else {
2950 				VNASSERT(active == 0, vp,
2951 				    ("vdropl: active vnode not on per mount "
2952 				    "vnode list"));
2953 				mtx_lock(&vnode_free_list_mtx);
2954 				TAILQ_INSERT_TAIL(&vnode_free_list, vp,
2955 				    v_actfreelist);
2956 				freevnodes++;
2957 				vp->v_iflag |= VI_FREE;
2958 				VI_UNLOCK(vp);
2959 				mtx_unlock(&vnode_free_list_mtx);
2960 			}
2961 		} else {
2962 			VI_UNLOCK(vp);
2963 			counter_u64_add(free_owe_inact, 1);
2964 		}
2965 		return;
2966 	}
2967 	/*
2968 	 * The vnode has been marked for destruction, so free it.
2969 	 *
2970 	 * The vnode will be returned to the zone where it will
2971 	 * normally remain until it is needed for another vnode. We
2972 	 * need to cleanup (or verify that the cleanup has already
2973 	 * been done) any residual data left from its current use
2974 	 * so as not to contaminate the freshly allocated vnode.
2975 	 */
2976 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2977 	atomic_subtract_long(&numvnodes, 1);
2978 	bo = &vp->v_bufobj;
2979 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2980 	    ("cleaned vnode still on the free list."));
2981 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2982 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
2983 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2984 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2985 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2986 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2987 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2988 	    ("clean blk trie not empty"));
2989 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2990 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2991 	    ("dirty blk trie not empty"));
2992 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
2993 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
2994 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
2995 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2996 	    ("Dangling rangelock waiters"));
2997 	VI_UNLOCK(vp);
2998 #ifdef MAC
2999 	mac_vnode_destroy(vp);
3000 #endif
3001 	if (vp->v_pollinfo != NULL) {
3002 		destroy_vpollinfo(vp->v_pollinfo);
3003 		vp->v_pollinfo = NULL;
3004 	}
3005 #ifdef INVARIANTS
3006 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
3007 	vp->v_op = NULL;
3008 #endif
3009 	vp->v_mountedhere = NULL;
3010 	vp->v_unpcb = NULL;
3011 	vp->v_rdev = NULL;
3012 	vp->v_fifoinfo = NULL;
3013 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
3014 	vp->v_iflag = 0;
3015 	vp->v_vflag = 0;
3016 	bo->bo_flag = 0;
3017 	uma_zfree(vnode_zone, vp);
3018 }
3019 
3020 /*
3021  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3022  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3023  * OWEINACT tracks whether a vnode missed a call to inactive due to a
3024  * failed lock upgrade.
3025  */
3026 void
3027 vinactive(struct vnode *vp, struct thread *td)
3028 {
3029 	struct vm_object *obj;
3030 
3031 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3032 	ASSERT_VI_LOCKED(vp, "vinactive");
3033 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3034 	    ("vinactive: recursed on VI_DOINGINACT"));
3035 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3036 	vp->v_iflag |= VI_DOINGINACT;
3037 	vp->v_iflag &= ~VI_OWEINACT;
3038 	VI_UNLOCK(vp);
3039 	/*
3040 	 * Before moving off the active list, we must be sure that any
3041 	 * modified pages are converted into the vnode's dirty
3042 	 * buffers, since these will no longer be checked once the
3043 	 * vnode is on the inactive list.
3044 	 *
3045 	 * The write-out of the dirty pages is asynchronous.  At the
3046 	 * point that VOP_INACTIVE() is called, there could still be
3047 	 * pending I/O and dirty pages in the object.
3048 	 */
3049 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3050 	    (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
3051 		VM_OBJECT_WLOCK(obj);
3052 		vm_object_page_clean(obj, 0, 0, 0);
3053 		VM_OBJECT_WUNLOCK(obj);
3054 	}
3055 	VOP_INACTIVE(vp, td);
3056 	VI_LOCK(vp);
3057 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3058 	    ("vinactive: lost VI_DOINGINACT"));
3059 	vp->v_iflag &= ~VI_DOINGINACT;
3060 }
3061 
3062 /*
3063  * Remove any vnodes in the vnode table belonging to mount point mp.
3064  *
3065  * If FORCECLOSE is not specified, there should not be any active ones,
3066  * return error if any are found (nb: this is a user error, not a
3067  * system error). If FORCECLOSE is specified, detach any active vnodes
3068  * that are found.
3069  *
3070  * If WRITECLOSE is set, only flush out regular file vnodes open for
3071  * writing.
3072  *
3073  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3074  *
3075  * `rootrefs' specifies the base reference count for the root vnode
3076  * of this filesystem. The root vnode is considered busy if its
3077  * v_usecount exceeds this value. On a successful return, vflush(, td)
3078  * will call vrele() on the root vnode exactly rootrefs times.
3079  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3080  * be zero.
3081  */
3082 #ifdef DIAGNOSTIC
3083 static int busyprt = 0;		/* print out busy vnodes */
3084 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3085 #endif
3086 
3087 int
3088 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3089 {
3090 	struct vnode *vp, *mvp, *rootvp = NULL;
3091 	struct vattr vattr;
3092 	int busy = 0, error;
3093 
3094 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3095 	    rootrefs, flags);
3096 	if (rootrefs > 0) {
3097 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3098 		    ("vflush: bad args"));
3099 		/*
3100 		 * Get the filesystem root vnode. We can vput() it
3101 		 * immediately, since with rootrefs > 0, it won't go away.
3102 		 */
3103 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3104 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3105 			    __func__, error);
3106 			return (error);
3107 		}
3108 		vput(rootvp);
3109 	}
3110 loop:
3111 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3112 		vholdl(vp);
3113 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3114 		if (error) {
3115 			vdrop(vp);
3116 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3117 			goto loop;
3118 		}
3119 		/*
3120 		 * Skip over a vnodes marked VV_SYSTEM.
3121 		 */
3122 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3123 			VOP_UNLOCK(vp, 0);
3124 			vdrop(vp);
3125 			continue;
3126 		}
3127 		/*
3128 		 * If WRITECLOSE is set, flush out unlinked but still open
3129 		 * files (even if open only for reading) and regular file
3130 		 * vnodes open for writing.
3131 		 */
3132 		if (flags & WRITECLOSE) {
3133 			if (vp->v_object != NULL) {
3134 				VM_OBJECT_WLOCK(vp->v_object);
3135 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3136 				VM_OBJECT_WUNLOCK(vp->v_object);
3137 			}
3138 			error = VOP_FSYNC(vp, MNT_WAIT, td);
3139 			if (error != 0) {
3140 				VOP_UNLOCK(vp, 0);
3141 				vdrop(vp);
3142 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3143 				return (error);
3144 			}
3145 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3146 			VI_LOCK(vp);
3147 
3148 			if ((vp->v_type == VNON ||
3149 			    (error == 0 && vattr.va_nlink > 0)) &&
3150 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3151 				VOP_UNLOCK(vp, 0);
3152 				vdropl(vp);
3153 				continue;
3154 			}
3155 		} else
3156 			VI_LOCK(vp);
3157 		/*
3158 		 * With v_usecount == 0, all we need to do is clear out the
3159 		 * vnode data structures and we are done.
3160 		 *
3161 		 * If FORCECLOSE is set, forcibly close the vnode.
3162 		 */
3163 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3164 			vgonel(vp);
3165 		} else {
3166 			busy++;
3167 #ifdef DIAGNOSTIC
3168 			if (busyprt)
3169 				vn_printf(vp, "vflush: busy vnode ");
3170 #endif
3171 		}
3172 		VOP_UNLOCK(vp, 0);
3173 		vdropl(vp);
3174 	}
3175 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3176 		/*
3177 		 * If just the root vnode is busy, and if its refcount
3178 		 * is equal to `rootrefs', then go ahead and kill it.
3179 		 */
3180 		VI_LOCK(rootvp);
3181 		KASSERT(busy > 0, ("vflush: not busy"));
3182 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3183 		    ("vflush: usecount %d < rootrefs %d",
3184 		     rootvp->v_usecount, rootrefs));
3185 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3186 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3187 			vgone(rootvp);
3188 			VOP_UNLOCK(rootvp, 0);
3189 			busy = 0;
3190 		} else
3191 			VI_UNLOCK(rootvp);
3192 	}
3193 	if (busy) {
3194 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3195 		    busy);
3196 		return (EBUSY);
3197 	}
3198 	for (; rootrefs > 0; rootrefs--)
3199 		vrele(rootvp);
3200 	return (0);
3201 }
3202 
3203 /*
3204  * Recycle an unused vnode to the front of the free list.
3205  */
3206 int
3207 vrecycle(struct vnode *vp)
3208 {
3209 	int recycled;
3210 
3211 	VI_LOCK(vp);
3212 	recycled = vrecyclel(vp);
3213 	VI_UNLOCK(vp);
3214 	return (recycled);
3215 }
3216 
3217 /*
3218  * vrecycle, with the vp interlock held.
3219  */
3220 int
3221 vrecyclel(struct vnode *vp)
3222 {
3223 	int recycled;
3224 
3225 	ASSERT_VOP_ELOCKED(vp, __func__);
3226 	ASSERT_VI_LOCKED(vp, __func__);
3227 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3228 	recycled = 0;
3229 	if (vp->v_usecount == 0) {
3230 		recycled = 1;
3231 		vgonel(vp);
3232 	}
3233 	return (recycled);
3234 }
3235 
3236 /*
3237  * Eliminate all activity associated with a vnode
3238  * in preparation for reuse.
3239  */
3240 void
3241 vgone(struct vnode *vp)
3242 {
3243 	VI_LOCK(vp);
3244 	vgonel(vp);
3245 	VI_UNLOCK(vp);
3246 }
3247 
3248 static void
3249 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3250     struct vnode *lowervp __unused)
3251 {
3252 }
3253 
3254 /*
3255  * Notify upper mounts about reclaimed or unlinked vnode.
3256  */
3257 void
3258 vfs_notify_upper(struct vnode *vp, int event)
3259 {
3260 	static struct vfsops vgonel_vfsops = {
3261 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3262 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3263 	};
3264 	struct mount *mp, *ump, *mmp;
3265 
3266 	mp = vp->v_mount;
3267 	if (mp == NULL)
3268 		return;
3269 
3270 	MNT_ILOCK(mp);
3271 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3272 		goto unlock;
3273 	MNT_IUNLOCK(mp);
3274 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3275 	mmp->mnt_op = &vgonel_vfsops;
3276 	mmp->mnt_kern_flag |= MNTK_MARKER;
3277 	MNT_ILOCK(mp);
3278 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3279 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3280 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3281 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3282 			continue;
3283 		}
3284 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3285 		MNT_IUNLOCK(mp);
3286 		switch (event) {
3287 		case VFS_NOTIFY_UPPER_RECLAIM:
3288 			VFS_RECLAIM_LOWERVP(ump, vp);
3289 			break;
3290 		case VFS_NOTIFY_UPPER_UNLINK:
3291 			VFS_UNLINK_LOWERVP(ump, vp);
3292 			break;
3293 		default:
3294 			KASSERT(0, ("invalid event %d", event));
3295 			break;
3296 		}
3297 		MNT_ILOCK(mp);
3298 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3299 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3300 	}
3301 	free(mmp, M_TEMP);
3302 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3303 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3304 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3305 		wakeup(&mp->mnt_uppers);
3306 	}
3307 unlock:
3308 	MNT_IUNLOCK(mp);
3309 }
3310 
3311 /*
3312  * vgone, with the vp interlock held.
3313  */
3314 static void
3315 vgonel(struct vnode *vp)
3316 {
3317 	struct thread *td;
3318 	int oweinact;
3319 	int active;
3320 	struct mount *mp;
3321 
3322 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3323 	ASSERT_VI_LOCKED(vp, "vgonel");
3324 	VNASSERT(vp->v_holdcnt, vp,
3325 	    ("vgonel: vp %p has no reference.", vp));
3326 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3327 	td = curthread;
3328 
3329 	/*
3330 	 * Don't vgonel if we're already doomed.
3331 	 */
3332 	if (vp->v_iflag & VI_DOOMED)
3333 		return;
3334 	vp->v_iflag |= VI_DOOMED;
3335 
3336 	/*
3337 	 * Check to see if the vnode is in use.  If so, we have to call
3338 	 * VOP_CLOSE() and VOP_INACTIVE().
3339 	 */
3340 	active = vp->v_usecount;
3341 	oweinact = (vp->v_iflag & VI_OWEINACT);
3342 	VI_UNLOCK(vp);
3343 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3344 
3345 	/*
3346 	 * If purging an active vnode, it must be closed and
3347 	 * deactivated before being reclaimed.
3348 	 */
3349 	if (active)
3350 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3351 	if (oweinact || active) {
3352 		VI_LOCK(vp);
3353 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
3354 			vinactive(vp, td);
3355 		VI_UNLOCK(vp);
3356 	}
3357 	if (vp->v_type == VSOCK)
3358 		vfs_unp_reclaim(vp);
3359 
3360 	/*
3361 	 * Clean out any buffers associated with the vnode.
3362 	 * If the flush fails, just toss the buffers.
3363 	 */
3364 	mp = NULL;
3365 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3366 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3367 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3368 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3369 			;
3370 	}
3371 
3372 	BO_LOCK(&vp->v_bufobj);
3373 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3374 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3375 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3376 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3377 	    ("vp %p bufobj not invalidated", vp));
3378 
3379 	/*
3380 	 * For VMIO bufobj, BO_DEAD is set in vm_object_terminate()
3381 	 * after the object's page queue is flushed.
3382 	 */
3383 	if (vp->v_bufobj.bo_object == NULL)
3384 		vp->v_bufobj.bo_flag |= BO_DEAD;
3385 	BO_UNLOCK(&vp->v_bufobj);
3386 
3387 	/*
3388 	 * Reclaim the vnode.
3389 	 */
3390 	if (VOP_RECLAIM(vp, td))
3391 		panic("vgone: cannot reclaim");
3392 	if (mp != NULL)
3393 		vn_finished_secondary_write(mp);
3394 	VNASSERT(vp->v_object == NULL, vp,
3395 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
3396 	/*
3397 	 * Clear the advisory locks and wake up waiting threads.
3398 	 */
3399 	(void)VOP_ADVLOCKPURGE(vp);
3400 	vp->v_lockf = NULL;
3401 	/*
3402 	 * Delete from old mount point vnode list.
3403 	 */
3404 	delmntque(vp);
3405 	cache_purge(vp);
3406 	/*
3407 	 * Done with purge, reset to the standard lock and invalidate
3408 	 * the vnode.
3409 	 */
3410 	VI_LOCK(vp);
3411 	vp->v_vnlock = &vp->v_lock;
3412 	vp->v_op = &dead_vnodeops;
3413 	vp->v_tag = "none";
3414 	vp->v_type = VBAD;
3415 }
3416 
3417 /*
3418  * Calculate the total number of references to a special device.
3419  */
3420 int
3421 vcount(struct vnode *vp)
3422 {
3423 	int count;
3424 
3425 	dev_lock();
3426 	count = vp->v_rdev->si_usecount;
3427 	dev_unlock();
3428 	return (count);
3429 }
3430 
3431 /*
3432  * Same as above, but using the struct cdev *as argument
3433  */
3434 int
3435 count_dev(struct cdev *dev)
3436 {
3437 	int count;
3438 
3439 	dev_lock();
3440 	count = dev->si_usecount;
3441 	dev_unlock();
3442 	return(count);
3443 }
3444 
3445 /*
3446  * Print out a description of a vnode.
3447  */
3448 static char *typename[] =
3449 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3450  "VMARKER"};
3451 
3452 void
3453 vn_printf(struct vnode *vp, const char *fmt, ...)
3454 {
3455 	va_list ap;
3456 	char buf[256], buf2[16];
3457 	u_long flags;
3458 
3459 	va_start(ap, fmt);
3460 	vprintf(fmt, ap);
3461 	va_end(ap);
3462 	printf("%p: ", (void *)vp);
3463 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
3464 	printf("    usecount %d, writecount %d, refcount %d",
3465 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
3466 	switch (vp->v_type) {
3467 	case VDIR:
3468 		printf(" mountedhere %p\n", vp->v_mountedhere);
3469 		break;
3470 	case VCHR:
3471 		printf(" rdev %p\n", vp->v_rdev);
3472 		break;
3473 	case VSOCK:
3474 		printf(" socket %p\n", vp->v_unpcb);
3475 		break;
3476 	case VFIFO:
3477 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
3478 		break;
3479 	default:
3480 		printf("\n");
3481 		break;
3482 	}
3483 	buf[0] = '\0';
3484 	buf[1] = '\0';
3485 	if (vp->v_vflag & VV_ROOT)
3486 		strlcat(buf, "|VV_ROOT", sizeof(buf));
3487 	if (vp->v_vflag & VV_ISTTY)
3488 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
3489 	if (vp->v_vflag & VV_NOSYNC)
3490 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
3491 	if (vp->v_vflag & VV_ETERNALDEV)
3492 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
3493 	if (vp->v_vflag & VV_CACHEDLABEL)
3494 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
3495 	if (vp->v_vflag & VV_COPYONWRITE)
3496 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
3497 	if (vp->v_vflag & VV_SYSTEM)
3498 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
3499 	if (vp->v_vflag & VV_PROCDEP)
3500 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
3501 	if (vp->v_vflag & VV_NOKNOTE)
3502 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
3503 	if (vp->v_vflag & VV_DELETED)
3504 		strlcat(buf, "|VV_DELETED", sizeof(buf));
3505 	if (vp->v_vflag & VV_MD)
3506 		strlcat(buf, "|VV_MD", sizeof(buf));
3507 	if (vp->v_vflag & VV_FORCEINSMQ)
3508 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
3509 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
3510 	    VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
3511 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
3512 	if (flags != 0) {
3513 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
3514 		strlcat(buf, buf2, sizeof(buf));
3515 	}
3516 	if (vp->v_iflag & VI_MOUNT)
3517 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
3518 	if (vp->v_iflag & VI_DOOMED)
3519 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
3520 	if (vp->v_iflag & VI_FREE)
3521 		strlcat(buf, "|VI_FREE", sizeof(buf));
3522 	if (vp->v_iflag & VI_ACTIVE)
3523 		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
3524 	if (vp->v_iflag & VI_DOINGINACT)
3525 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
3526 	if (vp->v_iflag & VI_OWEINACT)
3527 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
3528 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOOMED | VI_FREE |
3529 	    VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT);
3530 	if (flags != 0) {
3531 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
3532 		strlcat(buf, buf2, sizeof(buf));
3533 	}
3534 	printf("    flags (%s)\n", buf + 1);
3535 	if (mtx_owned(VI_MTX(vp)))
3536 		printf(" VI_LOCKed");
3537 	if (vp->v_object != NULL)
3538 		printf("    v_object %p ref %d pages %d "
3539 		    "cleanbuf %d dirtybuf %d\n",
3540 		    vp->v_object, vp->v_object->ref_count,
3541 		    vp->v_object->resident_page_count,
3542 		    vp->v_bufobj.bo_clean.bv_cnt,
3543 		    vp->v_bufobj.bo_dirty.bv_cnt);
3544 	printf("    ");
3545 	lockmgr_printinfo(vp->v_vnlock);
3546 	if (vp->v_data != NULL)
3547 		VOP_PRINT(vp);
3548 }
3549 
3550 #ifdef DDB
3551 /*
3552  * List all of the locked vnodes in the system.
3553  * Called when debugging the kernel.
3554  */
3555 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
3556 {
3557 	struct mount *mp;
3558 	struct vnode *vp;
3559 
3560 	/*
3561 	 * Note: because this is DDB, we can't obey the locking semantics
3562 	 * for these structures, which means we could catch an inconsistent
3563 	 * state and dereference a nasty pointer.  Not much to be done
3564 	 * about that.
3565 	 */
3566 	db_printf("Locked vnodes\n");
3567 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3568 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3569 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
3570 				vn_printf(vp, "vnode ");
3571 		}
3572 	}
3573 }
3574 
3575 /*
3576  * Show details about the given vnode.
3577  */
3578 DB_SHOW_COMMAND(vnode, db_show_vnode)
3579 {
3580 	struct vnode *vp;
3581 
3582 	if (!have_addr)
3583 		return;
3584 	vp = (struct vnode *)addr;
3585 	vn_printf(vp, "vnode ");
3586 }
3587 
3588 /*
3589  * Show details about the given mount point.
3590  */
3591 DB_SHOW_COMMAND(mount, db_show_mount)
3592 {
3593 	struct mount *mp;
3594 	struct vfsopt *opt;
3595 	struct statfs *sp;
3596 	struct vnode *vp;
3597 	char buf[512];
3598 	uint64_t mflags;
3599 	u_int flags;
3600 
3601 	if (!have_addr) {
3602 		/* No address given, print short info about all mount points. */
3603 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3604 			db_printf("%p %s on %s (%s)\n", mp,
3605 			    mp->mnt_stat.f_mntfromname,
3606 			    mp->mnt_stat.f_mntonname,
3607 			    mp->mnt_stat.f_fstypename);
3608 			if (db_pager_quit)
3609 				break;
3610 		}
3611 		db_printf("\nMore info: show mount <addr>\n");
3612 		return;
3613 	}
3614 
3615 	mp = (struct mount *)addr;
3616 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3617 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3618 
3619 	buf[0] = '\0';
3620 	mflags = mp->mnt_flag;
3621 #define	MNT_FLAG(flag)	do {						\
3622 	if (mflags & (flag)) {						\
3623 		if (buf[0] != '\0')					\
3624 			strlcat(buf, ", ", sizeof(buf));		\
3625 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3626 		mflags &= ~(flag);					\
3627 	}								\
3628 } while (0)
3629 	MNT_FLAG(MNT_RDONLY);
3630 	MNT_FLAG(MNT_SYNCHRONOUS);
3631 	MNT_FLAG(MNT_NOEXEC);
3632 	MNT_FLAG(MNT_NOSUID);
3633 	MNT_FLAG(MNT_NFS4ACLS);
3634 	MNT_FLAG(MNT_UNION);
3635 	MNT_FLAG(MNT_ASYNC);
3636 	MNT_FLAG(MNT_SUIDDIR);
3637 	MNT_FLAG(MNT_SOFTDEP);
3638 	MNT_FLAG(MNT_NOSYMFOLLOW);
3639 	MNT_FLAG(MNT_GJOURNAL);
3640 	MNT_FLAG(MNT_MULTILABEL);
3641 	MNT_FLAG(MNT_ACLS);
3642 	MNT_FLAG(MNT_NOATIME);
3643 	MNT_FLAG(MNT_NOCLUSTERR);
3644 	MNT_FLAG(MNT_NOCLUSTERW);
3645 	MNT_FLAG(MNT_SUJ);
3646 	MNT_FLAG(MNT_EXRDONLY);
3647 	MNT_FLAG(MNT_EXPORTED);
3648 	MNT_FLAG(MNT_DEFEXPORTED);
3649 	MNT_FLAG(MNT_EXPORTANON);
3650 	MNT_FLAG(MNT_EXKERB);
3651 	MNT_FLAG(MNT_EXPUBLIC);
3652 	MNT_FLAG(MNT_LOCAL);
3653 	MNT_FLAG(MNT_QUOTA);
3654 	MNT_FLAG(MNT_ROOTFS);
3655 	MNT_FLAG(MNT_USER);
3656 	MNT_FLAG(MNT_IGNORE);
3657 	MNT_FLAG(MNT_UPDATE);
3658 	MNT_FLAG(MNT_DELEXPORT);
3659 	MNT_FLAG(MNT_RELOAD);
3660 	MNT_FLAG(MNT_FORCE);
3661 	MNT_FLAG(MNT_SNAPSHOT);
3662 	MNT_FLAG(MNT_BYFSID);
3663 #undef MNT_FLAG
3664 	if (mflags != 0) {
3665 		if (buf[0] != '\0')
3666 			strlcat(buf, ", ", sizeof(buf));
3667 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3668 		    "0x%016jx", mflags);
3669 	}
3670 	db_printf("    mnt_flag = %s\n", buf);
3671 
3672 	buf[0] = '\0';
3673 	flags = mp->mnt_kern_flag;
3674 #define	MNT_KERN_FLAG(flag)	do {					\
3675 	if (flags & (flag)) {						\
3676 		if (buf[0] != '\0')					\
3677 			strlcat(buf, ", ", sizeof(buf));		\
3678 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3679 		flags &= ~(flag);					\
3680 	}								\
3681 } while (0)
3682 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3683 	MNT_KERN_FLAG(MNTK_ASYNC);
3684 	MNT_KERN_FLAG(MNTK_SOFTDEP);
3685 	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
3686 	MNT_KERN_FLAG(MNTK_DRAINING);
3687 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3688 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3689 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3690 	MNT_KERN_FLAG(MNTK_NO_IOPF);
3691 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3692 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3693 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
3694 	MNT_KERN_FLAG(MNTK_MARKER);
3695 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
3696 	MNT_KERN_FLAG(MNTK_NOASYNC);
3697 	MNT_KERN_FLAG(MNTK_UNMOUNT);
3698 	MNT_KERN_FLAG(MNTK_MWAIT);
3699 	MNT_KERN_FLAG(MNTK_SUSPEND);
3700 	MNT_KERN_FLAG(MNTK_SUSPEND2);
3701 	MNT_KERN_FLAG(MNTK_SUSPENDED);
3702 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3703 	MNT_KERN_FLAG(MNTK_NOKNOTE);
3704 #undef MNT_KERN_FLAG
3705 	if (flags != 0) {
3706 		if (buf[0] != '\0')
3707 			strlcat(buf, ", ", sizeof(buf));
3708 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3709 		    "0x%08x", flags);
3710 	}
3711 	db_printf("    mnt_kern_flag = %s\n", buf);
3712 
3713 	db_printf("    mnt_opt = ");
3714 	opt = TAILQ_FIRST(mp->mnt_opt);
3715 	if (opt != NULL) {
3716 		db_printf("%s", opt->name);
3717 		opt = TAILQ_NEXT(opt, link);
3718 		while (opt != NULL) {
3719 			db_printf(", %s", opt->name);
3720 			opt = TAILQ_NEXT(opt, link);
3721 		}
3722 	}
3723 	db_printf("\n");
3724 
3725 	sp = &mp->mnt_stat;
3726 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3727 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3728 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3729 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3730 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3731 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3732 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3733 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3734 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3735 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3736 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3737 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3738 
3739 	db_printf("    mnt_cred = { uid=%u ruid=%u",
3740 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3741 	if (jailed(mp->mnt_cred))
3742 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3743 	db_printf(" }\n");
3744 	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
3745 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
3746 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
3747 	db_printf("    mnt_activevnodelistsize = %d\n",
3748 	    mp->mnt_activevnodelistsize);
3749 	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
3750 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
3751 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
3752 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
3753 	db_printf("    mnt_lockref = %d\n", mp->mnt_lockref);
3754 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
3755 	db_printf("    mnt_secondary_accwrites = %d\n",
3756 	    mp->mnt_secondary_accwrites);
3757 	db_printf("    mnt_gjprovider = %s\n",
3758 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
3759 
3760 	db_printf("\n\nList of active vnodes\n");
3761 	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
3762 		if (vp->v_type != VMARKER) {
3763 			vn_printf(vp, "vnode ");
3764 			if (db_pager_quit)
3765 				break;
3766 		}
3767 	}
3768 	db_printf("\n\nList of inactive vnodes\n");
3769 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3770 		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
3771 			vn_printf(vp, "vnode ");
3772 			if (db_pager_quit)
3773 				break;
3774 		}
3775 	}
3776 }
3777 #endif	/* DDB */
3778 
3779 /*
3780  * Fill in a struct xvfsconf based on a struct vfsconf.
3781  */
3782 static int
3783 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
3784 {
3785 	struct xvfsconf xvfsp;
3786 
3787 	bzero(&xvfsp, sizeof(xvfsp));
3788 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3789 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3790 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3791 	xvfsp.vfc_flags = vfsp->vfc_flags;
3792 	/*
3793 	 * These are unused in userland, we keep them
3794 	 * to not break binary compatibility.
3795 	 */
3796 	xvfsp.vfc_vfsops = NULL;
3797 	xvfsp.vfc_next = NULL;
3798 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3799 }
3800 
3801 #ifdef COMPAT_FREEBSD32
3802 struct xvfsconf32 {
3803 	uint32_t	vfc_vfsops;
3804 	char		vfc_name[MFSNAMELEN];
3805 	int32_t		vfc_typenum;
3806 	int32_t		vfc_refcount;
3807 	int32_t		vfc_flags;
3808 	uint32_t	vfc_next;
3809 };
3810 
3811 static int
3812 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
3813 {
3814 	struct xvfsconf32 xvfsp;
3815 
3816 	bzero(&xvfsp, sizeof(xvfsp));
3817 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3818 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3819 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3820 	xvfsp.vfc_flags = vfsp->vfc_flags;
3821 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3822 }
3823 #endif
3824 
3825 /*
3826  * Top level filesystem related information gathering.
3827  */
3828 static int
3829 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
3830 {
3831 	struct vfsconf *vfsp;
3832 	int error;
3833 
3834 	error = 0;
3835 	vfsconf_slock();
3836 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3837 #ifdef COMPAT_FREEBSD32
3838 		if (req->flags & SCTL_MASK32)
3839 			error = vfsconf2x32(req, vfsp);
3840 		else
3841 #endif
3842 			error = vfsconf2x(req, vfsp);
3843 		if (error)
3844 			break;
3845 	}
3846 	vfsconf_sunlock();
3847 	return (error);
3848 }
3849 
3850 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
3851     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
3852     "S,xvfsconf", "List of all configured filesystems");
3853 
3854 #ifndef BURN_BRIDGES
3855 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3856 
3857 static int
3858 vfs_sysctl(SYSCTL_HANDLER_ARGS)
3859 {
3860 	int *name = (int *)arg1 - 1;	/* XXX */
3861 	u_int namelen = arg2 + 1;	/* XXX */
3862 	struct vfsconf *vfsp;
3863 
3864 	log(LOG_WARNING, "userland calling deprecated sysctl, "
3865 	    "please rebuild world\n");
3866 
3867 #if 1 || defined(COMPAT_PRELITE2)
3868 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3869 	if (namelen == 1)
3870 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3871 #endif
3872 
3873 	switch (name[1]) {
3874 	case VFS_MAXTYPENUM:
3875 		if (namelen != 2)
3876 			return (ENOTDIR);
3877 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3878 	case VFS_CONF:
3879 		if (namelen != 3)
3880 			return (ENOTDIR);	/* overloaded */
3881 		vfsconf_slock();
3882 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3883 			if (vfsp->vfc_typenum == name[2])
3884 				break;
3885 		}
3886 		vfsconf_sunlock();
3887 		if (vfsp == NULL)
3888 			return (EOPNOTSUPP);
3889 #ifdef COMPAT_FREEBSD32
3890 		if (req->flags & SCTL_MASK32)
3891 			return (vfsconf2x32(req, vfsp));
3892 		else
3893 #endif
3894 			return (vfsconf2x(req, vfsp));
3895 	}
3896 	return (EOPNOTSUPP);
3897 }
3898 
3899 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
3900     CTLFLAG_MPSAFE, vfs_sysctl,
3901     "Generic filesystem");
3902 
3903 #if 1 || defined(COMPAT_PRELITE2)
3904 
3905 static int
3906 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3907 {
3908 	int error;
3909 	struct vfsconf *vfsp;
3910 	struct ovfsconf ovfs;
3911 
3912 	vfsconf_slock();
3913 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3914 		bzero(&ovfs, sizeof(ovfs));
3915 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3916 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3917 		ovfs.vfc_index = vfsp->vfc_typenum;
3918 		ovfs.vfc_refcount = vfsp->vfc_refcount;
3919 		ovfs.vfc_flags = vfsp->vfc_flags;
3920 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3921 		if (error != 0) {
3922 			vfsconf_sunlock();
3923 			return (error);
3924 		}
3925 	}
3926 	vfsconf_sunlock();
3927 	return (0);
3928 }
3929 
3930 #endif /* 1 || COMPAT_PRELITE2 */
3931 #endif /* !BURN_BRIDGES */
3932 
3933 #define KINFO_VNODESLOP		10
3934 #ifdef notyet
3935 /*
3936  * Dump vnode list (via sysctl).
3937  */
3938 /* ARGSUSED */
3939 static int
3940 sysctl_vnode(SYSCTL_HANDLER_ARGS)
3941 {
3942 	struct xvnode *xvn;
3943 	struct mount *mp;
3944 	struct vnode *vp;
3945 	int error, len, n;
3946 
3947 	/*
3948 	 * Stale numvnodes access is not fatal here.
3949 	 */
3950 	req->lock = 0;
3951 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3952 	if (!req->oldptr)
3953 		/* Make an estimate */
3954 		return (SYSCTL_OUT(req, 0, len));
3955 
3956 	error = sysctl_wire_old_buffer(req, 0);
3957 	if (error != 0)
3958 		return (error);
3959 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3960 	n = 0;
3961 	mtx_lock(&mountlist_mtx);
3962 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3963 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3964 			continue;
3965 		MNT_ILOCK(mp);
3966 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3967 			if (n == len)
3968 				break;
3969 			vref(vp);
3970 			xvn[n].xv_size = sizeof *xvn;
3971 			xvn[n].xv_vnode = vp;
3972 			xvn[n].xv_id = 0;	/* XXX compat */
3973 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3974 			XV_COPY(usecount);
3975 			XV_COPY(writecount);
3976 			XV_COPY(holdcnt);
3977 			XV_COPY(mount);
3978 			XV_COPY(numoutput);
3979 			XV_COPY(type);
3980 #undef XV_COPY
3981 			xvn[n].xv_flag = vp->v_vflag;
3982 
3983 			switch (vp->v_type) {
3984 			case VREG:
3985 			case VDIR:
3986 			case VLNK:
3987 				break;
3988 			case VBLK:
3989 			case VCHR:
3990 				if (vp->v_rdev == NULL) {
3991 					vrele(vp);
3992 					continue;
3993 				}
3994 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3995 				break;
3996 			case VSOCK:
3997 				xvn[n].xv_socket = vp->v_socket;
3998 				break;
3999 			case VFIFO:
4000 				xvn[n].xv_fifo = vp->v_fifoinfo;
4001 				break;
4002 			case VNON:
4003 			case VBAD:
4004 			default:
4005 				/* shouldn't happen? */
4006 				vrele(vp);
4007 				continue;
4008 			}
4009 			vrele(vp);
4010 			++n;
4011 		}
4012 		MNT_IUNLOCK(mp);
4013 		mtx_lock(&mountlist_mtx);
4014 		vfs_unbusy(mp);
4015 		if (n == len)
4016 			break;
4017 	}
4018 	mtx_unlock(&mountlist_mtx);
4019 
4020 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4021 	free(xvn, M_TEMP);
4022 	return (error);
4023 }
4024 
4025 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4026     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4027     "");
4028 #endif
4029 
4030 static void
4031 unmount_or_warn(struct mount *mp)
4032 {
4033 	int error;
4034 
4035 	error = dounmount(mp, MNT_FORCE, curthread);
4036 	if (error != 0) {
4037 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4038 		if (error == EBUSY)
4039 			printf("BUSY)\n");
4040 		else
4041 			printf("%d)\n", error);
4042 	}
4043 }
4044 
4045 /*
4046  * Unmount all filesystems. The list is traversed in reverse order
4047  * of mounting to avoid dependencies.
4048  */
4049 void
4050 vfs_unmountall(void)
4051 {
4052 	struct mount *mp, *tmp;
4053 
4054 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4055 
4056 	/*
4057 	 * Since this only runs when rebooting, it is not interlocked.
4058 	 */
4059 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4060 		vfs_ref(mp);
4061 
4062 		/*
4063 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4064 		 * unmount of the latter.
4065 		 */
4066 		if (mp == rootdevmp)
4067 			continue;
4068 
4069 		unmount_or_warn(mp);
4070 	}
4071 
4072 	if (rootdevmp != NULL)
4073 		unmount_or_warn(rootdevmp);
4074 }
4075 
4076 /*
4077  * perform msync on all vnodes under a mount point
4078  * the mount point must be locked.
4079  */
4080 void
4081 vfs_msync(struct mount *mp, int flags)
4082 {
4083 	struct vnode *vp, *mvp;
4084 	struct vm_object *obj;
4085 
4086 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4087 
4088 	vnlru_return_batch(mp);
4089 
4090 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
4091 		obj = vp->v_object;
4092 		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
4093 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
4094 			if (!vget(vp,
4095 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
4096 			    curthread)) {
4097 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
4098 					vput(vp);
4099 					continue;
4100 				}
4101 
4102 				obj = vp->v_object;
4103 				if (obj != NULL) {
4104 					VM_OBJECT_WLOCK(obj);
4105 					vm_object_page_clean(obj, 0, 0,
4106 					    flags == MNT_WAIT ?
4107 					    OBJPC_SYNC : OBJPC_NOSYNC);
4108 					VM_OBJECT_WUNLOCK(obj);
4109 				}
4110 				vput(vp);
4111 			}
4112 		} else
4113 			VI_UNLOCK(vp);
4114 	}
4115 }
4116 
4117 static void
4118 destroy_vpollinfo_free(struct vpollinfo *vi)
4119 {
4120 
4121 	knlist_destroy(&vi->vpi_selinfo.si_note);
4122 	mtx_destroy(&vi->vpi_lock);
4123 	uma_zfree(vnodepoll_zone, vi);
4124 }
4125 
4126 static void
4127 destroy_vpollinfo(struct vpollinfo *vi)
4128 {
4129 
4130 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4131 	seldrain(&vi->vpi_selinfo);
4132 	destroy_vpollinfo_free(vi);
4133 }
4134 
4135 /*
4136  * Initialize per-vnode helper structure to hold poll-related state.
4137  */
4138 void
4139 v_addpollinfo(struct vnode *vp)
4140 {
4141 	struct vpollinfo *vi;
4142 
4143 	if (vp->v_pollinfo != NULL)
4144 		return;
4145 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
4146 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4147 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4148 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
4149 	VI_LOCK(vp);
4150 	if (vp->v_pollinfo != NULL) {
4151 		VI_UNLOCK(vp);
4152 		destroy_vpollinfo_free(vi);
4153 		return;
4154 	}
4155 	vp->v_pollinfo = vi;
4156 	VI_UNLOCK(vp);
4157 }
4158 
4159 /*
4160  * Record a process's interest in events which might happen to
4161  * a vnode.  Because poll uses the historic select-style interface
4162  * internally, this routine serves as both the ``check for any
4163  * pending events'' and the ``record my interest in future events''
4164  * functions.  (These are done together, while the lock is held,
4165  * to avoid race conditions.)
4166  */
4167 int
4168 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4169 {
4170 
4171 	v_addpollinfo(vp);
4172 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4173 	if (vp->v_pollinfo->vpi_revents & events) {
4174 		/*
4175 		 * This leaves events we are not interested
4176 		 * in available for the other process which
4177 		 * which presumably had requested them
4178 		 * (otherwise they would never have been
4179 		 * recorded).
4180 		 */
4181 		events &= vp->v_pollinfo->vpi_revents;
4182 		vp->v_pollinfo->vpi_revents &= ~events;
4183 
4184 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4185 		return (events);
4186 	}
4187 	vp->v_pollinfo->vpi_events |= events;
4188 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4189 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4190 	return (0);
4191 }
4192 
4193 /*
4194  * Routine to create and manage a filesystem syncer vnode.
4195  */
4196 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4197 static int	sync_fsync(struct  vop_fsync_args *);
4198 static int	sync_inactive(struct  vop_inactive_args *);
4199 static int	sync_reclaim(struct  vop_reclaim_args *);
4200 
4201 static struct vop_vector sync_vnodeops = {
4202 	.vop_bypass =	VOP_EOPNOTSUPP,
4203 	.vop_close =	sync_close,		/* close */
4204 	.vop_fsync =	sync_fsync,		/* fsync */
4205 	.vop_inactive =	sync_inactive,	/* inactive */
4206 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4207 	.vop_lock1 =	vop_stdlock,	/* lock */
4208 	.vop_unlock =	vop_stdunlock,	/* unlock */
4209 	.vop_islocked =	vop_stdislocked,	/* islocked */
4210 };
4211 
4212 /*
4213  * Create a new filesystem syncer vnode for the specified mount point.
4214  */
4215 void
4216 vfs_allocate_syncvnode(struct mount *mp)
4217 {
4218 	struct vnode *vp;
4219 	struct bufobj *bo;
4220 	static long start, incr, next;
4221 	int error;
4222 
4223 	/* Allocate a new vnode */
4224 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4225 	if (error != 0)
4226 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4227 	vp->v_type = VNON;
4228 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4229 	vp->v_vflag |= VV_FORCEINSMQ;
4230 	error = insmntque(vp, mp);
4231 	if (error != 0)
4232 		panic("vfs_allocate_syncvnode: insmntque() failed");
4233 	vp->v_vflag &= ~VV_FORCEINSMQ;
4234 	VOP_UNLOCK(vp, 0);
4235 	/*
4236 	 * Place the vnode onto the syncer worklist. We attempt to
4237 	 * scatter them about on the list so that they will go off
4238 	 * at evenly distributed times even if all the filesystems
4239 	 * are mounted at once.
4240 	 */
4241 	next += incr;
4242 	if (next == 0 || next > syncer_maxdelay) {
4243 		start /= 2;
4244 		incr /= 2;
4245 		if (start == 0) {
4246 			start = syncer_maxdelay / 2;
4247 			incr = syncer_maxdelay;
4248 		}
4249 		next = start;
4250 	}
4251 	bo = &vp->v_bufobj;
4252 	BO_LOCK(bo);
4253 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
4254 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
4255 	mtx_lock(&sync_mtx);
4256 	sync_vnode_count++;
4257 	if (mp->mnt_syncer == NULL) {
4258 		mp->mnt_syncer = vp;
4259 		vp = NULL;
4260 	}
4261 	mtx_unlock(&sync_mtx);
4262 	BO_UNLOCK(bo);
4263 	if (vp != NULL) {
4264 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4265 		vgone(vp);
4266 		vput(vp);
4267 	}
4268 }
4269 
4270 void
4271 vfs_deallocate_syncvnode(struct mount *mp)
4272 {
4273 	struct vnode *vp;
4274 
4275 	mtx_lock(&sync_mtx);
4276 	vp = mp->mnt_syncer;
4277 	if (vp != NULL)
4278 		mp->mnt_syncer = NULL;
4279 	mtx_unlock(&sync_mtx);
4280 	if (vp != NULL)
4281 		vrele(vp);
4282 }
4283 
4284 /*
4285  * Do a lazy sync of the filesystem.
4286  */
4287 static int
4288 sync_fsync(struct vop_fsync_args *ap)
4289 {
4290 	struct vnode *syncvp = ap->a_vp;
4291 	struct mount *mp = syncvp->v_mount;
4292 	int error, save;
4293 	struct bufobj *bo;
4294 
4295 	/*
4296 	 * We only need to do something if this is a lazy evaluation.
4297 	 */
4298 	if (ap->a_waitfor != MNT_LAZY)
4299 		return (0);
4300 
4301 	/*
4302 	 * Move ourselves to the back of the sync list.
4303 	 */
4304 	bo = &syncvp->v_bufobj;
4305 	BO_LOCK(bo);
4306 	vn_syncer_add_to_worklist(bo, syncdelay);
4307 	BO_UNLOCK(bo);
4308 
4309 	/*
4310 	 * Walk the list of vnodes pushing all that are dirty and
4311 	 * not already on the sync list.
4312 	 */
4313 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
4314 		return (0);
4315 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
4316 		vfs_unbusy(mp);
4317 		return (0);
4318 	}
4319 	save = curthread_pflags_set(TDP_SYNCIO);
4320 	vfs_msync(mp, MNT_NOWAIT);
4321 	error = VFS_SYNC(mp, MNT_LAZY);
4322 	curthread_pflags_restore(save);
4323 	vn_finished_write(mp);
4324 	vfs_unbusy(mp);
4325 	return (error);
4326 }
4327 
4328 /*
4329  * The syncer vnode is no referenced.
4330  */
4331 static int
4332 sync_inactive(struct vop_inactive_args *ap)
4333 {
4334 
4335 	vgone(ap->a_vp);
4336 	return (0);
4337 }
4338 
4339 /*
4340  * The syncer vnode is no longer needed and is being decommissioned.
4341  *
4342  * Modifications to the worklist must be protected by sync_mtx.
4343  */
4344 static int
4345 sync_reclaim(struct vop_reclaim_args *ap)
4346 {
4347 	struct vnode *vp = ap->a_vp;
4348 	struct bufobj *bo;
4349 
4350 	bo = &vp->v_bufobj;
4351 	BO_LOCK(bo);
4352 	mtx_lock(&sync_mtx);
4353 	if (vp->v_mount->mnt_syncer == vp)
4354 		vp->v_mount->mnt_syncer = NULL;
4355 	if (bo->bo_flag & BO_ONWORKLST) {
4356 		LIST_REMOVE(bo, bo_synclist);
4357 		syncer_worklist_len--;
4358 		sync_vnode_count--;
4359 		bo->bo_flag &= ~BO_ONWORKLST;
4360 	}
4361 	mtx_unlock(&sync_mtx);
4362 	BO_UNLOCK(bo);
4363 
4364 	return (0);
4365 }
4366 
4367 /*
4368  * Check if vnode represents a disk device
4369  */
4370 int
4371 vn_isdisk(struct vnode *vp, int *errp)
4372 {
4373 	int error;
4374 
4375 	if (vp->v_type != VCHR) {
4376 		error = ENOTBLK;
4377 		goto out;
4378 	}
4379 	error = 0;
4380 	dev_lock();
4381 	if (vp->v_rdev == NULL)
4382 		error = ENXIO;
4383 	else if (vp->v_rdev->si_devsw == NULL)
4384 		error = ENXIO;
4385 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
4386 		error = ENOTBLK;
4387 	dev_unlock();
4388 out:
4389 	if (errp != NULL)
4390 		*errp = error;
4391 	return (error == 0);
4392 }
4393 
4394 /*
4395  * Common filesystem object access control check routine.  Accepts a
4396  * vnode's type, "mode", uid and gid, requested access mode, credentials,
4397  * and optional call-by-reference privused argument allowing vaccess()
4398  * to indicate to the caller whether privilege was used to satisfy the
4399  * request (obsoleted).  Returns 0 on success, or an errno on failure.
4400  */
4401 int
4402 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
4403     accmode_t accmode, struct ucred *cred, int *privused)
4404 {
4405 	accmode_t dac_granted;
4406 	accmode_t priv_granted;
4407 
4408 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
4409 	    ("invalid bit in accmode"));
4410 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
4411 	    ("VAPPEND without VWRITE"));
4412 
4413 	/*
4414 	 * Look for a normal, non-privileged way to access the file/directory
4415 	 * as requested.  If it exists, go with that.
4416 	 */
4417 
4418 	if (privused != NULL)
4419 		*privused = 0;
4420 
4421 	dac_granted = 0;
4422 
4423 	/* Check the owner. */
4424 	if (cred->cr_uid == file_uid) {
4425 		dac_granted |= VADMIN;
4426 		if (file_mode & S_IXUSR)
4427 			dac_granted |= VEXEC;
4428 		if (file_mode & S_IRUSR)
4429 			dac_granted |= VREAD;
4430 		if (file_mode & S_IWUSR)
4431 			dac_granted |= (VWRITE | VAPPEND);
4432 
4433 		if ((accmode & dac_granted) == accmode)
4434 			return (0);
4435 
4436 		goto privcheck;
4437 	}
4438 
4439 	/* Otherwise, check the groups (first match) */
4440 	if (groupmember(file_gid, cred)) {
4441 		if (file_mode & S_IXGRP)
4442 			dac_granted |= VEXEC;
4443 		if (file_mode & S_IRGRP)
4444 			dac_granted |= VREAD;
4445 		if (file_mode & S_IWGRP)
4446 			dac_granted |= (VWRITE | VAPPEND);
4447 
4448 		if ((accmode & dac_granted) == accmode)
4449 			return (0);
4450 
4451 		goto privcheck;
4452 	}
4453 
4454 	/* Otherwise, check everyone else. */
4455 	if (file_mode & S_IXOTH)
4456 		dac_granted |= VEXEC;
4457 	if (file_mode & S_IROTH)
4458 		dac_granted |= VREAD;
4459 	if (file_mode & S_IWOTH)
4460 		dac_granted |= (VWRITE | VAPPEND);
4461 	if ((accmode & dac_granted) == accmode)
4462 		return (0);
4463 
4464 privcheck:
4465 	/*
4466 	 * Build a privilege mask to determine if the set of privileges
4467 	 * satisfies the requirements when combined with the granted mask
4468 	 * from above.  For each privilege, if the privilege is required,
4469 	 * bitwise or the request type onto the priv_granted mask.
4470 	 */
4471 	priv_granted = 0;
4472 
4473 	if (type == VDIR) {
4474 		/*
4475 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
4476 		 * requests, instead of PRIV_VFS_EXEC.
4477 		 */
4478 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4479 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
4480 			priv_granted |= VEXEC;
4481 	} else {
4482 		/*
4483 		 * Ensure that at least one execute bit is on. Otherwise,
4484 		 * a privileged user will always succeed, and we don't want
4485 		 * this to happen unless the file really is executable.
4486 		 */
4487 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4488 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
4489 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
4490 			priv_granted |= VEXEC;
4491 	}
4492 
4493 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
4494 	    !priv_check_cred(cred, PRIV_VFS_READ))
4495 		priv_granted |= VREAD;
4496 
4497 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
4498 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
4499 		priv_granted |= (VWRITE | VAPPEND);
4500 
4501 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
4502 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
4503 		priv_granted |= VADMIN;
4504 
4505 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
4506 		/* XXX audit: privilege used */
4507 		if (privused != NULL)
4508 			*privused = 1;
4509 		return (0);
4510 	}
4511 
4512 	return ((accmode & VADMIN) ? EPERM : EACCES);
4513 }
4514 
4515 /*
4516  * Credential check based on process requesting service, and per-attribute
4517  * permissions.
4518  */
4519 int
4520 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
4521     struct thread *td, accmode_t accmode)
4522 {
4523 
4524 	/*
4525 	 * Kernel-invoked always succeeds.
4526 	 */
4527 	if (cred == NOCRED)
4528 		return (0);
4529 
4530 	/*
4531 	 * Do not allow privileged processes in jail to directly manipulate
4532 	 * system attributes.
4533 	 */
4534 	switch (attrnamespace) {
4535 	case EXTATTR_NAMESPACE_SYSTEM:
4536 		/* Potentially should be: return (EPERM); */
4537 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
4538 	case EXTATTR_NAMESPACE_USER:
4539 		return (VOP_ACCESS(vp, accmode, cred, td));
4540 	default:
4541 		return (EPERM);
4542 	}
4543 }
4544 
4545 #ifdef DEBUG_VFS_LOCKS
4546 /*
4547  * This only exists to suppress warnings from unlocked specfs accesses.  It is
4548  * no longer ok to have an unlocked VFS.
4549  */
4550 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
4551 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
4552 
4553 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
4554 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
4555     "Drop into debugger on lock violation");
4556 
4557 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
4558 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
4559     0, "Check for interlock across VOPs");
4560 
4561 int vfs_badlock_print = 1;	/* Print lock violations. */
4562 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
4563     0, "Print lock violations");
4564 
4565 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
4566 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
4567     0, "Print vnode details on lock violations");
4568 
4569 #ifdef KDB
4570 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
4571 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
4572     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
4573 #endif
4574 
4575 static void
4576 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
4577 {
4578 
4579 #ifdef KDB
4580 	if (vfs_badlock_backtrace)
4581 		kdb_backtrace();
4582 #endif
4583 	if (vfs_badlock_vnode)
4584 		vn_printf(vp, "vnode ");
4585 	if (vfs_badlock_print)
4586 		printf("%s: %p %s\n", str, (void *)vp, msg);
4587 	if (vfs_badlock_ddb)
4588 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4589 }
4590 
4591 void
4592 assert_vi_locked(struct vnode *vp, const char *str)
4593 {
4594 
4595 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
4596 		vfs_badlock("interlock is not locked but should be", str, vp);
4597 }
4598 
4599 void
4600 assert_vi_unlocked(struct vnode *vp, const char *str)
4601 {
4602 
4603 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
4604 		vfs_badlock("interlock is locked but should not be", str, vp);
4605 }
4606 
4607 void
4608 assert_vop_locked(struct vnode *vp, const char *str)
4609 {
4610 	int locked;
4611 
4612 	if (!IGNORE_LOCK(vp)) {
4613 		locked = VOP_ISLOCKED(vp);
4614 		if (locked == 0 || locked == LK_EXCLOTHER)
4615 			vfs_badlock("is not locked but should be", str, vp);
4616 	}
4617 }
4618 
4619 void
4620 assert_vop_unlocked(struct vnode *vp, const char *str)
4621 {
4622 
4623 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
4624 		vfs_badlock("is locked but should not be", str, vp);
4625 }
4626 
4627 void
4628 assert_vop_elocked(struct vnode *vp, const char *str)
4629 {
4630 
4631 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
4632 		vfs_badlock("is not exclusive locked but should be", str, vp);
4633 }
4634 #endif /* DEBUG_VFS_LOCKS */
4635 
4636 void
4637 vop_rename_fail(struct vop_rename_args *ap)
4638 {
4639 
4640 	if (ap->a_tvp != NULL)
4641 		vput(ap->a_tvp);
4642 	if (ap->a_tdvp == ap->a_tvp)
4643 		vrele(ap->a_tdvp);
4644 	else
4645 		vput(ap->a_tdvp);
4646 	vrele(ap->a_fdvp);
4647 	vrele(ap->a_fvp);
4648 }
4649 
4650 void
4651 vop_rename_pre(void *ap)
4652 {
4653 	struct vop_rename_args *a = ap;
4654 
4655 #ifdef DEBUG_VFS_LOCKS
4656 	if (a->a_tvp)
4657 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4658 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4659 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4660 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4661 
4662 	/* Check the source (from). */
4663 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4664 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4665 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4666 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4667 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4668 
4669 	/* Check the target. */
4670 	if (a->a_tvp)
4671 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4672 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4673 #endif
4674 	if (a->a_tdvp != a->a_fdvp)
4675 		vhold(a->a_fdvp);
4676 	if (a->a_tvp != a->a_fvp)
4677 		vhold(a->a_fvp);
4678 	vhold(a->a_tdvp);
4679 	if (a->a_tvp)
4680 		vhold(a->a_tvp);
4681 }
4682 
4683 #ifdef DEBUG_VFS_LOCKS
4684 void
4685 vop_strategy_pre(void *ap)
4686 {
4687 	struct vop_strategy_args *a;
4688 	struct buf *bp;
4689 
4690 	a = ap;
4691 	bp = a->a_bp;
4692 
4693 	/*
4694 	 * Cluster ops lock their component buffers but not the IO container.
4695 	 */
4696 	if ((bp->b_flags & B_CLUSTER) != 0)
4697 		return;
4698 
4699 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
4700 		if (vfs_badlock_print)
4701 			printf(
4702 			    "VOP_STRATEGY: bp is not locked but should be\n");
4703 		if (vfs_badlock_ddb)
4704 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4705 	}
4706 }
4707 
4708 void
4709 vop_lock_pre(void *ap)
4710 {
4711 	struct vop_lock1_args *a = ap;
4712 
4713 	if ((a->a_flags & LK_INTERLOCK) == 0)
4714 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4715 	else
4716 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4717 }
4718 
4719 void
4720 vop_lock_post(void *ap, int rc)
4721 {
4722 	struct vop_lock1_args *a = ap;
4723 
4724 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4725 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
4726 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
4727 }
4728 
4729 void
4730 vop_unlock_pre(void *ap)
4731 {
4732 	struct vop_unlock_args *a = ap;
4733 
4734 	if (a->a_flags & LK_INTERLOCK)
4735 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
4736 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
4737 }
4738 
4739 void
4740 vop_unlock_post(void *ap, int rc)
4741 {
4742 	struct vop_unlock_args *a = ap;
4743 
4744 	if (a->a_flags & LK_INTERLOCK)
4745 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
4746 }
4747 #endif
4748 
4749 void
4750 vop_create_post(void *ap, int rc)
4751 {
4752 	struct vop_create_args *a = ap;
4753 
4754 	if (!rc)
4755 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4756 }
4757 
4758 void
4759 vop_deleteextattr_post(void *ap, int rc)
4760 {
4761 	struct vop_deleteextattr_args *a = ap;
4762 
4763 	if (!rc)
4764 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4765 }
4766 
4767 void
4768 vop_link_post(void *ap, int rc)
4769 {
4770 	struct vop_link_args *a = ap;
4771 
4772 	if (!rc) {
4773 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4774 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4775 	}
4776 }
4777 
4778 void
4779 vop_mkdir_post(void *ap, int rc)
4780 {
4781 	struct vop_mkdir_args *a = ap;
4782 
4783 	if (!rc)
4784 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4785 }
4786 
4787 void
4788 vop_mknod_post(void *ap, int rc)
4789 {
4790 	struct vop_mknod_args *a = ap;
4791 
4792 	if (!rc)
4793 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4794 }
4795 
4796 void
4797 vop_reclaim_post(void *ap, int rc)
4798 {
4799 	struct vop_reclaim_args *a = ap;
4800 
4801 	if (!rc)
4802 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
4803 }
4804 
4805 void
4806 vop_remove_post(void *ap, int rc)
4807 {
4808 	struct vop_remove_args *a = ap;
4809 
4810 	if (!rc) {
4811 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4812 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4813 	}
4814 }
4815 
4816 void
4817 vop_rename_post(void *ap, int rc)
4818 {
4819 	struct vop_rename_args *a = ap;
4820 	long hint;
4821 
4822 	if (!rc) {
4823 		hint = NOTE_WRITE;
4824 		if (a->a_fdvp == a->a_tdvp) {
4825 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
4826 				hint |= NOTE_LINK;
4827 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
4828 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
4829 		} else {
4830 			hint |= NOTE_EXTEND;
4831 			if (a->a_fvp->v_type == VDIR)
4832 				hint |= NOTE_LINK;
4833 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
4834 
4835 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
4836 			    a->a_tvp->v_type == VDIR)
4837 				hint &= ~NOTE_LINK;
4838 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
4839 		}
4840 
4841 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4842 		if (a->a_tvp)
4843 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4844 	}
4845 	if (a->a_tdvp != a->a_fdvp)
4846 		vdrop(a->a_fdvp);
4847 	if (a->a_tvp != a->a_fvp)
4848 		vdrop(a->a_fvp);
4849 	vdrop(a->a_tdvp);
4850 	if (a->a_tvp)
4851 		vdrop(a->a_tvp);
4852 }
4853 
4854 void
4855 vop_rmdir_post(void *ap, int rc)
4856 {
4857 	struct vop_rmdir_args *a = ap;
4858 
4859 	if (!rc) {
4860 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4861 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4862 	}
4863 }
4864 
4865 void
4866 vop_setattr_post(void *ap, int rc)
4867 {
4868 	struct vop_setattr_args *a = ap;
4869 
4870 	if (!rc)
4871 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4872 }
4873 
4874 void
4875 vop_setextattr_post(void *ap, int rc)
4876 {
4877 	struct vop_setextattr_args *a = ap;
4878 
4879 	if (!rc)
4880 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4881 }
4882 
4883 void
4884 vop_symlink_post(void *ap, int rc)
4885 {
4886 	struct vop_symlink_args *a = ap;
4887 
4888 	if (!rc)
4889 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4890 }
4891 
4892 void
4893 vop_open_post(void *ap, int rc)
4894 {
4895 	struct vop_open_args *a = ap;
4896 
4897 	if (!rc)
4898 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
4899 }
4900 
4901 void
4902 vop_close_post(void *ap, int rc)
4903 {
4904 	struct vop_close_args *a = ap;
4905 
4906 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
4907 	    (a->a_vp->v_iflag & VI_DOOMED) == 0)) {
4908 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
4909 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
4910 	}
4911 }
4912 
4913 void
4914 vop_read_post(void *ap, int rc)
4915 {
4916 	struct vop_read_args *a = ap;
4917 
4918 	if (!rc)
4919 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
4920 }
4921 
4922 void
4923 vop_readdir_post(void *ap, int rc)
4924 {
4925 	struct vop_readdir_args *a = ap;
4926 
4927 	if (!rc)
4928 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
4929 }
4930 
4931 static struct knlist fs_knlist;
4932 
4933 static void
4934 vfs_event_init(void *arg)
4935 {
4936 	knlist_init_mtx(&fs_knlist, NULL);
4937 }
4938 /* XXX - correct order? */
4939 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4940 
4941 void
4942 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4943 {
4944 
4945 	KNOTE_UNLOCKED(&fs_knlist, event);
4946 }
4947 
4948 static int	filt_fsattach(struct knote *kn);
4949 static void	filt_fsdetach(struct knote *kn);
4950 static int	filt_fsevent(struct knote *kn, long hint);
4951 
4952 struct filterops fs_filtops = {
4953 	.f_isfd = 0,
4954 	.f_attach = filt_fsattach,
4955 	.f_detach = filt_fsdetach,
4956 	.f_event = filt_fsevent
4957 };
4958 
4959 static int
4960 filt_fsattach(struct knote *kn)
4961 {
4962 
4963 	kn->kn_flags |= EV_CLEAR;
4964 	knlist_add(&fs_knlist, kn, 0);
4965 	return (0);
4966 }
4967 
4968 static void
4969 filt_fsdetach(struct knote *kn)
4970 {
4971 
4972 	knlist_remove(&fs_knlist, kn, 0);
4973 }
4974 
4975 static int
4976 filt_fsevent(struct knote *kn, long hint)
4977 {
4978 
4979 	kn->kn_fflags |= hint;
4980 	return (kn->kn_fflags != 0);
4981 }
4982 
4983 static int
4984 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4985 {
4986 	struct vfsidctl vc;
4987 	int error;
4988 	struct mount *mp;
4989 
4990 	error = SYSCTL_IN(req, &vc, sizeof(vc));
4991 	if (error)
4992 		return (error);
4993 	if (vc.vc_vers != VFS_CTL_VERS1)
4994 		return (EINVAL);
4995 	mp = vfs_getvfs(&vc.vc_fsid);
4996 	if (mp == NULL)
4997 		return (ENOENT);
4998 	/* ensure that a specific sysctl goes to the right filesystem. */
4999 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
5000 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
5001 		vfs_rel(mp);
5002 		return (EINVAL);
5003 	}
5004 	VCTLTOREQ(&vc, req);
5005 	error = VFS_SYSCTL(mp, vc.vc_op, req);
5006 	vfs_rel(mp);
5007 	return (error);
5008 }
5009 
5010 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
5011     NULL, 0, sysctl_vfs_ctl, "",
5012     "Sysctl by fsid");
5013 
5014 /*
5015  * Function to initialize a va_filerev field sensibly.
5016  * XXX: Wouldn't a random number make a lot more sense ??
5017  */
5018 u_quad_t
5019 init_va_filerev(void)
5020 {
5021 	struct bintime bt;
5022 
5023 	getbinuptime(&bt);
5024 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
5025 }
5026 
5027 static int	filt_vfsread(struct knote *kn, long hint);
5028 static int	filt_vfswrite(struct knote *kn, long hint);
5029 static int	filt_vfsvnode(struct knote *kn, long hint);
5030 static void	filt_vfsdetach(struct knote *kn);
5031 static struct filterops vfsread_filtops = {
5032 	.f_isfd = 1,
5033 	.f_detach = filt_vfsdetach,
5034 	.f_event = filt_vfsread
5035 };
5036 static struct filterops vfswrite_filtops = {
5037 	.f_isfd = 1,
5038 	.f_detach = filt_vfsdetach,
5039 	.f_event = filt_vfswrite
5040 };
5041 static struct filterops vfsvnode_filtops = {
5042 	.f_isfd = 1,
5043 	.f_detach = filt_vfsdetach,
5044 	.f_event = filt_vfsvnode
5045 };
5046 
5047 static void
5048 vfs_knllock(void *arg)
5049 {
5050 	struct vnode *vp = arg;
5051 
5052 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5053 }
5054 
5055 static void
5056 vfs_knlunlock(void *arg)
5057 {
5058 	struct vnode *vp = arg;
5059 
5060 	VOP_UNLOCK(vp, 0);
5061 }
5062 
5063 static void
5064 vfs_knl_assert_locked(void *arg)
5065 {
5066 #ifdef DEBUG_VFS_LOCKS
5067 	struct vnode *vp = arg;
5068 
5069 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
5070 #endif
5071 }
5072 
5073 static void
5074 vfs_knl_assert_unlocked(void *arg)
5075 {
5076 #ifdef DEBUG_VFS_LOCKS
5077 	struct vnode *vp = arg;
5078 
5079 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
5080 #endif
5081 }
5082 
5083 int
5084 vfs_kqfilter(struct vop_kqfilter_args *ap)
5085 {
5086 	struct vnode *vp = ap->a_vp;
5087 	struct knote *kn = ap->a_kn;
5088 	struct knlist *knl;
5089 
5090 	switch (kn->kn_filter) {
5091 	case EVFILT_READ:
5092 		kn->kn_fop = &vfsread_filtops;
5093 		break;
5094 	case EVFILT_WRITE:
5095 		kn->kn_fop = &vfswrite_filtops;
5096 		break;
5097 	case EVFILT_VNODE:
5098 		kn->kn_fop = &vfsvnode_filtops;
5099 		break;
5100 	default:
5101 		return (EINVAL);
5102 	}
5103 
5104 	kn->kn_hook = (caddr_t)vp;
5105 
5106 	v_addpollinfo(vp);
5107 	if (vp->v_pollinfo == NULL)
5108 		return (ENOMEM);
5109 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
5110 	vhold(vp);
5111 	knlist_add(knl, kn, 0);
5112 
5113 	return (0);
5114 }
5115 
5116 /*
5117  * Detach knote from vnode
5118  */
5119 static void
5120 filt_vfsdetach(struct knote *kn)
5121 {
5122 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5123 
5124 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
5125 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
5126 	vdrop(vp);
5127 }
5128 
5129 /*ARGSUSED*/
5130 static int
5131 filt_vfsread(struct knote *kn, long hint)
5132 {
5133 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5134 	struct vattr va;
5135 	int res;
5136 
5137 	/*
5138 	 * filesystem is gone, so set the EOF flag and schedule
5139 	 * the knote for deletion.
5140 	 */
5141 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5142 		VI_LOCK(vp);
5143 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5144 		VI_UNLOCK(vp);
5145 		return (1);
5146 	}
5147 
5148 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
5149 		return (0);
5150 
5151 	VI_LOCK(vp);
5152 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
5153 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
5154 	VI_UNLOCK(vp);
5155 	return (res);
5156 }
5157 
5158 /*ARGSUSED*/
5159 static int
5160 filt_vfswrite(struct knote *kn, long hint)
5161 {
5162 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5163 
5164 	VI_LOCK(vp);
5165 
5166 	/*
5167 	 * filesystem is gone, so set the EOF flag and schedule
5168 	 * the knote for deletion.
5169 	 */
5170 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
5171 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5172 
5173 	kn->kn_data = 0;
5174 	VI_UNLOCK(vp);
5175 	return (1);
5176 }
5177 
5178 static int
5179 filt_vfsvnode(struct knote *kn, long hint)
5180 {
5181 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5182 	int res;
5183 
5184 	VI_LOCK(vp);
5185 	if (kn->kn_sfflags & hint)
5186 		kn->kn_fflags |= hint;
5187 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5188 		kn->kn_flags |= EV_EOF;
5189 		VI_UNLOCK(vp);
5190 		return (1);
5191 	}
5192 	res = (kn->kn_fflags != 0);
5193 	VI_UNLOCK(vp);
5194 	return (res);
5195 }
5196 
5197 int
5198 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
5199 {
5200 	int error;
5201 
5202 	if (dp->d_reclen > ap->a_uio->uio_resid)
5203 		return (ENAMETOOLONG);
5204 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
5205 	if (error) {
5206 		if (ap->a_ncookies != NULL) {
5207 			if (ap->a_cookies != NULL)
5208 				free(ap->a_cookies, M_TEMP);
5209 			ap->a_cookies = NULL;
5210 			*ap->a_ncookies = 0;
5211 		}
5212 		return (error);
5213 	}
5214 	if (ap->a_ncookies == NULL)
5215 		return (0);
5216 
5217 	KASSERT(ap->a_cookies,
5218 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
5219 
5220 	*ap->a_cookies = realloc(*ap->a_cookies,
5221 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
5222 	(*ap->a_cookies)[*ap->a_ncookies] = off;
5223 	*ap->a_ncookies += 1;
5224 	return (0);
5225 }
5226 
5227 /*
5228  * Mark for update the access time of the file if the filesystem
5229  * supports VOP_MARKATIME.  This functionality is used by execve and
5230  * mmap, so we want to avoid the I/O implied by directly setting
5231  * va_atime for the sake of efficiency.
5232  */
5233 void
5234 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
5235 {
5236 	struct mount *mp;
5237 
5238 	mp = vp->v_mount;
5239 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
5240 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
5241 		(void)VOP_MARKATIME(vp);
5242 }
5243 
5244 /*
5245  * The purpose of this routine is to remove granularity from accmode_t,
5246  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
5247  * VADMIN and VAPPEND.
5248  *
5249  * If it returns 0, the caller is supposed to continue with the usual
5250  * access checks using 'accmode' as modified by this routine.  If it
5251  * returns nonzero value, the caller is supposed to return that value
5252  * as errno.
5253  *
5254  * Note that after this routine runs, accmode may be zero.
5255  */
5256 int
5257 vfs_unixify_accmode(accmode_t *accmode)
5258 {
5259 	/*
5260 	 * There is no way to specify explicit "deny" rule using
5261 	 * file mode or POSIX.1e ACLs.
5262 	 */
5263 	if (*accmode & VEXPLICIT_DENY) {
5264 		*accmode = 0;
5265 		return (0);
5266 	}
5267 
5268 	/*
5269 	 * None of these can be translated into usual access bits.
5270 	 * Also, the common case for NFSv4 ACLs is to not contain
5271 	 * either of these bits. Caller should check for VWRITE
5272 	 * on the containing directory instead.
5273 	 */
5274 	if (*accmode & (VDELETE_CHILD | VDELETE))
5275 		return (EPERM);
5276 
5277 	if (*accmode & VADMIN_PERMS) {
5278 		*accmode &= ~VADMIN_PERMS;
5279 		*accmode |= VADMIN;
5280 	}
5281 
5282 	/*
5283 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
5284 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
5285 	 */
5286 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
5287 
5288 	return (0);
5289 }
5290 
5291 /*
5292  * These are helper functions for filesystems to traverse all
5293  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
5294  *
5295  * This interface replaces MNT_VNODE_FOREACH.
5296  */
5297 
5298 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
5299 
5300 struct vnode *
5301 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
5302 {
5303 	struct vnode *vp;
5304 
5305 	if (should_yield())
5306 		kern_yield(PRI_USER);
5307 	MNT_ILOCK(mp);
5308 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5309 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
5310 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
5311 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5312 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5313 			continue;
5314 		VI_LOCK(vp);
5315 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5316 			VI_UNLOCK(vp);
5317 			continue;
5318 		}
5319 		break;
5320 	}
5321 	if (vp == NULL) {
5322 		__mnt_vnode_markerfree_all(mvp, mp);
5323 		/* MNT_IUNLOCK(mp); -- done in above function */
5324 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
5325 		return (NULL);
5326 	}
5327 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5328 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5329 	MNT_IUNLOCK(mp);
5330 	return (vp);
5331 }
5332 
5333 struct vnode *
5334 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
5335 {
5336 	struct vnode *vp;
5337 
5338 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5339 	MNT_ILOCK(mp);
5340 	MNT_REF(mp);
5341 	(*mvp)->v_mount = mp;
5342 	(*mvp)->v_type = VMARKER;
5343 
5344 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
5345 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5346 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5347 			continue;
5348 		VI_LOCK(vp);
5349 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5350 			VI_UNLOCK(vp);
5351 			continue;
5352 		}
5353 		break;
5354 	}
5355 	if (vp == NULL) {
5356 		MNT_REL(mp);
5357 		MNT_IUNLOCK(mp);
5358 		free(*mvp, M_VNODE_MARKER);
5359 		*mvp = NULL;
5360 		return (NULL);
5361 	}
5362 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5363 	MNT_IUNLOCK(mp);
5364 	return (vp);
5365 }
5366 
5367 void
5368 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
5369 {
5370 
5371 	if (*mvp == NULL) {
5372 		MNT_IUNLOCK(mp);
5373 		return;
5374 	}
5375 
5376 	mtx_assert(MNT_MTX(mp), MA_OWNED);
5377 
5378 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5379 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5380 	MNT_REL(mp);
5381 	MNT_IUNLOCK(mp);
5382 	free(*mvp, M_VNODE_MARKER);
5383 	*mvp = NULL;
5384 }
5385 
5386 /*
5387  * These are helper functions for filesystems to traverse their
5388  * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
5389  */
5390 static void
5391 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5392 {
5393 
5394 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5395 
5396 	MNT_ILOCK(mp);
5397 	MNT_REL(mp);
5398 	MNT_IUNLOCK(mp);
5399 	free(*mvp, M_VNODE_MARKER);
5400 	*mvp = NULL;
5401 }
5402 
5403 /*
5404  * Relock the mp mount vnode list lock with the vp vnode interlock in the
5405  * conventional lock order during mnt_vnode_next_active iteration.
5406  *
5407  * On entry, the mount vnode list lock is held and the vnode interlock is not.
5408  * The list lock is dropped and reacquired.  On success, both locks are held.
5409  * On failure, the mount vnode list lock is held but the vnode interlock is
5410  * not, and the procedure may have yielded.
5411  */
5412 static bool
5413 mnt_vnode_next_active_relock(struct vnode *mvp, struct mount *mp,
5414     struct vnode *vp)
5415 {
5416 	const struct vnode *tmp;
5417 	bool held, ret;
5418 
5419 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
5420 	    TAILQ_NEXT(mvp, v_actfreelist) != NULL, mvp,
5421 	    ("%s: bad marker", __func__));
5422 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
5423 	    ("%s: inappropriate vnode", __func__));
5424 	ASSERT_VI_UNLOCKED(vp, __func__);
5425 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5426 
5427 	ret = false;
5428 
5429 	TAILQ_REMOVE(&mp->mnt_activevnodelist, mvp, v_actfreelist);
5430 	TAILQ_INSERT_BEFORE(vp, mvp, v_actfreelist);
5431 
5432 	/*
5433 	 * Use a hold to prevent vp from disappearing while the mount vnode
5434 	 * list lock is dropped and reacquired.  Normally a hold would be
5435 	 * acquired with vhold(), but that might try to acquire the vnode
5436 	 * interlock, which would be a LOR with the mount vnode list lock.
5437 	 */
5438 	held = refcount_acquire_if_not_zero(&vp->v_holdcnt);
5439 	mtx_unlock(&mp->mnt_listmtx);
5440 	if (!held)
5441 		goto abort;
5442 	VI_LOCK(vp);
5443 	if (!refcount_release_if_not_last(&vp->v_holdcnt)) {
5444 		vdropl(vp);
5445 		goto abort;
5446 	}
5447 	mtx_lock(&mp->mnt_listmtx);
5448 
5449 	/*
5450 	 * Determine whether the vnode is still the next one after the marker,
5451 	 * excepting any other markers.  If the vnode has not been doomed by
5452 	 * vgone() then the hold should have ensured that it remained on the
5453 	 * active list.  If it has been doomed but is still on the active list,
5454 	 * don't abort, but rather skip over it (avoid spinning on doomed
5455 	 * vnodes).
5456 	 */
5457 	tmp = mvp;
5458 	do {
5459 		tmp = TAILQ_NEXT(tmp, v_actfreelist);
5460 	} while (tmp != NULL && tmp->v_type == VMARKER);
5461 	if (tmp != vp) {
5462 		mtx_unlock(&mp->mnt_listmtx);
5463 		VI_UNLOCK(vp);
5464 		goto abort;
5465 	}
5466 
5467 	ret = true;
5468 	goto out;
5469 abort:
5470 	maybe_yield();
5471 	mtx_lock(&mp->mnt_listmtx);
5472 out:
5473 	if (ret)
5474 		ASSERT_VI_LOCKED(vp, __func__);
5475 	else
5476 		ASSERT_VI_UNLOCKED(vp, __func__);
5477 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5478 	return (ret);
5479 }
5480 
5481 static struct vnode *
5482 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5483 {
5484 	struct vnode *vp, *nvp;
5485 
5486 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5487 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5488 restart:
5489 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
5490 	while (vp != NULL) {
5491 		if (vp->v_type == VMARKER) {
5492 			vp = TAILQ_NEXT(vp, v_actfreelist);
5493 			continue;
5494 		}
5495 		/*
5496 		 * Try-lock because this is the wrong lock order.  If that does
5497 		 * not succeed, drop the mount vnode list lock and try to
5498 		 * reacquire it and the vnode interlock in the right order.
5499 		 */
5500 		if (!VI_TRYLOCK(vp) &&
5501 		    !mnt_vnode_next_active_relock(*mvp, mp, vp))
5502 			goto restart;
5503 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
5504 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
5505 		    ("alien vnode on the active list %p %p", vp, mp));
5506 		if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0)
5507 			break;
5508 		nvp = TAILQ_NEXT(vp, v_actfreelist);
5509 		VI_UNLOCK(vp);
5510 		vp = nvp;
5511 	}
5512 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5513 
5514 	/* Check if we are done */
5515 	if (vp == NULL) {
5516 		mtx_unlock(&mp->mnt_listmtx);
5517 		mnt_vnode_markerfree_active(mvp, mp);
5518 		return (NULL);
5519 	}
5520 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
5521 	mtx_unlock(&mp->mnt_listmtx);
5522 	ASSERT_VI_LOCKED(vp, "active iter");
5523 	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
5524 	return (vp);
5525 }
5526 
5527 struct vnode *
5528 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5529 {
5530 
5531 	if (should_yield())
5532 		kern_yield(PRI_USER);
5533 	mtx_lock(&mp->mnt_listmtx);
5534 	return (mnt_vnode_next_active(mvp, mp));
5535 }
5536 
5537 struct vnode *
5538 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
5539 {
5540 	struct vnode *vp;
5541 
5542 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5543 	MNT_ILOCK(mp);
5544 	MNT_REF(mp);
5545 	MNT_IUNLOCK(mp);
5546 	(*mvp)->v_type = VMARKER;
5547 	(*mvp)->v_mount = mp;
5548 
5549 	mtx_lock(&mp->mnt_listmtx);
5550 	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
5551 	if (vp == NULL) {
5552 		mtx_unlock(&mp->mnt_listmtx);
5553 		mnt_vnode_markerfree_active(mvp, mp);
5554 		return (NULL);
5555 	}
5556 	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
5557 	return (mnt_vnode_next_active(mvp, mp));
5558 }
5559 
5560 void
5561 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5562 {
5563 
5564 	if (*mvp == NULL)
5565 		return;
5566 
5567 	mtx_lock(&mp->mnt_listmtx);
5568 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5569 	mtx_unlock(&mp->mnt_listmtx);
5570 	mnt_vnode_markerfree_active(mvp, mp);
5571 }
5572