xref: /freebsd/sys/kern/vfs_subr.c (revision 2227a3e9e1a0bcba8481a8067ee8c4b9a96fdda3)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_mac.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bio.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/event.h>
54 #include <sys/eventhandler.h>
55 #include <sys/extattr.h>
56 #include <sys/file.h>
57 #include <sys/fcntl.h>
58 #include <sys/jail.h>
59 #include <sys/kdb.h>
60 #include <sys/kernel.h>
61 #include <sys/kthread.h>
62 #include <sys/lockf.h>
63 #include <sys/malloc.h>
64 #include <sys/mount.h>
65 #include <sys/namei.h>
66 #include <sys/priv.h>
67 #include <sys/reboot.h>
68 #include <sys/sleepqueue.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vmmeter.h>
73 #include <sys/vnode.h>
74 
75 #include <machine/stdarg.h>
76 
77 #include <security/mac/mac_framework.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_kern.h>
86 #include <vm/uma.h>
87 
88 #ifdef DDB
89 #include <ddb/ddb.h>
90 #endif
91 
92 #define	WI_MPSAFEQ	0
93 #define	WI_GIANTQ	1
94 
95 static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
96 
97 static void	delmntque(struct vnode *vp);
98 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
99 		    int slpflag, int slptimeo);
100 static void	syncer_shutdown(void *arg, int howto);
101 static int	vtryrecycle(struct vnode *vp);
102 static void	vbusy(struct vnode *vp);
103 static void	vinactive(struct vnode *, struct thread *);
104 static void	v_incr_usecount(struct vnode *);
105 static void	v_decr_usecount(struct vnode *);
106 static void	v_decr_useonly(struct vnode *);
107 static void	v_upgrade_usecount(struct vnode *);
108 static void	vfree(struct vnode *);
109 static void	vnlru_free(int);
110 static void	vdestroy(struct vnode *);
111 static void	vgonel(struct vnode *);
112 static void	vfs_knllock(void *arg);
113 static void	vfs_knlunlock(void *arg);
114 static int	vfs_knllocked(void *arg);
115 
116 
117 /*
118  * Enable Giant pushdown based on whether or not the vm is mpsafe in this
119  * build.  Without mpsafevm the buffer cache can not run Giant free.
120  */
121 int mpsafe_vfs = 1;
122 TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs);
123 SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0,
124     "MPSAFE VFS");
125 
126 /*
127  * Number of vnodes in existence.  Increased whenever getnewvnode()
128  * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
129  * vnode.
130  */
131 static unsigned long	numvnodes;
132 
133 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
134 
135 /*
136  * Conversion tables for conversion from vnode types to inode formats
137  * and back.
138  */
139 enum vtype iftovt_tab[16] = {
140 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
141 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
142 };
143 int vttoif_tab[10] = {
144 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
145 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
146 };
147 
148 /*
149  * List of vnodes that are ready for recycling.
150  */
151 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
152 
153 /*
154  * Free vnode target.  Free vnodes may simply be files which have been stat'd
155  * but not read.  This is somewhat common, and a small cache of such files
156  * should be kept to avoid recreation costs.
157  */
158 static u_long wantfreevnodes;
159 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
160 /* Number of vnodes in the free list. */
161 static u_long freevnodes;
162 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
163 
164 /*
165  * Various variables used for debugging the new implementation of
166  * reassignbuf().
167  * XXX these are probably of (very) limited utility now.
168  */
169 static int reassignbufcalls;
170 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
171 
172 /*
173  * Cache for the mount type id assigned to NFS.  This is used for
174  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
175  */
176 int	nfs_mount_type = -1;
177 
178 /* To keep more than one thread at a time from running vfs_getnewfsid */
179 static struct mtx mntid_mtx;
180 
181 /*
182  * Lock for any access to the following:
183  *	vnode_free_list
184  *	numvnodes
185  *	freevnodes
186  */
187 static struct mtx vnode_free_list_mtx;
188 
189 /* Publicly exported FS */
190 struct nfs_public nfs_pub;
191 
192 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
193 static uma_zone_t vnode_zone;
194 static uma_zone_t vnodepoll_zone;
195 
196 /* Set to 1 to print out reclaim of active vnodes */
197 int	prtactive;
198 
199 /*
200  * The workitem queue.
201  *
202  * It is useful to delay writes of file data and filesystem metadata
203  * for tens of seconds so that quickly created and deleted files need
204  * not waste disk bandwidth being created and removed. To realize this,
205  * we append vnodes to a "workitem" queue. When running with a soft
206  * updates implementation, most pending metadata dependencies should
207  * not wait for more than a few seconds. Thus, mounted on block devices
208  * are delayed only about a half the time that file data is delayed.
209  * Similarly, directory updates are more critical, so are only delayed
210  * about a third the time that file data is delayed. Thus, there are
211  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
212  * one each second (driven off the filesystem syncer process). The
213  * syncer_delayno variable indicates the next queue that is to be processed.
214  * Items that need to be processed soon are placed in this queue:
215  *
216  *	syncer_workitem_pending[syncer_delayno]
217  *
218  * A delay of fifteen seconds is done by placing the request fifteen
219  * entries later in the queue:
220  *
221  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
222  *
223  */
224 static int syncer_delayno;
225 static long syncer_mask;
226 LIST_HEAD(synclist, bufobj);
227 static struct synclist *syncer_workitem_pending[2];
228 /*
229  * The sync_mtx protects:
230  *	bo->bo_synclist
231  *	sync_vnode_count
232  *	syncer_delayno
233  *	syncer_state
234  *	syncer_workitem_pending
235  *	syncer_worklist_len
236  *	rushjob
237  */
238 static struct mtx sync_mtx;
239 
240 #define SYNCER_MAXDELAY		32
241 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
242 static int syncdelay = 30;		/* max time to delay syncing data */
243 static int filedelay = 30;		/* time to delay syncing files */
244 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
245 static int dirdelay = 29;		/* time to delay syncing directories */
246 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
247 static int metadelay = 28;		/* time to delay syncing metadata */
248 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
249 static int rushjob;		/* number of slots to run ASAP */
250 static int stat_rush_requests;	/* number of times I/O speeded up */
251 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
252 
253 /*
254  * When shutting down the syncer, run it at four times normal speed.
255  */
256 #define SYNCER_SHUTDOWN_SPEEDUP		4
257 static int sync_vnode_count;
258 static int syncer_worklist_len;
259 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
260     syncer_state;
261 
262 /*
263  * Number of vnodes we want to exist at any one time.  This is mostly used
264  * to size hash tables in vnode-related code.  It is normally not used in
265  * getnewvnode(), as wantfreevnodes is normally nonzero.)
266  *
267  * XXX desiredvnodes is historical cruft and should not exist.
268  */
269 int desiredvnodes;
270 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
271     &desiredvnodes, 0, "Maximum number of vnodes");
272 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
273     &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
274 static int vnlru_nowhere;
275 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
276     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
277 
278 /*
279  * Macros to control when a vnode is freed and recycled.  All require
280  * the vnode interlock.
281  */
282 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
283 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
284 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
285 
286 
287 /*
288  * Initialize the vnode management data structures.
289  */
290 #ifndef	MAXVNODES_MAX
291 #define	MAXVNODES_MAX	100000
292 #endif
293 static void
294 vntblinit(void *dummy __unused)
295 {
296 
297 	/*
298 	 * Desiredvnodes is a function of the physical memory size and
299 	 * the kernel's heap size.  Specifically, desiredvnodes scales
300 	 * in proportion to the physical memory size until two fifths
301 	 * of the kernel's heap size is consumed by vnodes and vm
302 	 * objects.
303 	 */
304 	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
305 	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
306 	if (desiredvnodes > MAXVNODES_MAX) {
307 		if (bootverbose)
308 			printf("Reducing kern.maxvnodes %d -> %d\n",
309 			    desiredvnodes, MAXVNODES_MAX);
310 		desiredvnodes = MAXVNODES_MAX;
311 	}
312 	wantfreevnodes = desiredvnodes / 4;
313 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
314 	TAILQ_INIT(&vnode_free_list);
315 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
316 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
317 	    NULL, NULL, UMA_ALIGN_PTR, 0);
318 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
319 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
320 	/*
321 	 * Initialize the filesystem syncer.
322 	 */
323 	syncer_workitem_pending[WI_MPSAFEQ] = hashinit(syncer_maxdelay, M_VNODE,
324 	    &syncer_mask);
325 	syncer_workitem_pending[WI_GIANTQ] = hashinit(syncer_maxdelay, M_VNODE,
326 	    &syncer_mask);
327 	syncer_maxdelay = syncer_mask + 1;
328 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
329 }
330 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
331 
332 
333 /*
334  * Mark a mount point as busy. Used to synchronize access and to delay
335  * unmounting. Interlock is not released on failure.
336  */
337 int
338 vfs_busy(struct mount *mp, int flags, struct mtx *interlkp,
339     struct thread *td)
340 {
341 	int lkflags;
342 
343 	MNT_ILOCK(mp);
344 	MNT_REF(mp);
345 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
346 		if (flags & LK_NOWAIT) {
347 			MNT_REL(mp);
348 			MNT_IUNLOCK(mp);
349 			return (ENOENT);
350 		}
351 		if (interlkp)
352 			mtx_unlock(interlkp);
353 		mp->mnt_kern_flag |= MNTK_MWAIT;
354 		/*
355 		 * Since all busy locks are shared except the exclusive
356 		 * lock granted when unmounting, the only place that a
357 		 * wakeup needs to be done is at the release of the
358 		 * exclusive lock at the end of dounmount.
359 		 */
360 		msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
361 		MNT_REL(mp);
362 		MNT_IUNLOCK(mp);
363 		if (interlkp)
364 			mtx_lock(interlkp);
365 		return (ENOENT);
366 	}
367 	if (interlkp)
368 		mtx_unlock(interlkp);
369 	lkflags = LK_SHARED | LK_INTERLOCK;
370 	if (lockmgr(&mp->mnt_lock, lkflags, MNT_MTX(mp)))
371 		panic("vfs_busy: unexpected lock failure");
372 	return (0);
373 }
374 
375 /*
376  * Free a busy filesystem.
377  */
378 void
379 vfs_unbusy(struct mount *mp, struct thread *td)
380 {
381 
382 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL);
383 	vfs_rel(mp);
384 }
385 
386 /*
387  * Lookup a mount point by filesystem identifier.
388  */
389 struct mount *
390 vfs_getvfs(fsid_t *fsid)
391 {
392 	struct mount *mp;
393 
394 	mtx_lock(&mountlist_mtx);
395 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
396 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
397 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
398 			vfs_ref(mp);
399 			mtx_unlock(&mountlist_mtx);
400 			return (mp);
401 		}
402 	}
403 	mtx_unlock(&mountlist_mtx);
404 	return ((struct mount *) 0);
405 }
406 
407 /*
408  * Check if a user can access privileged mount options.
409  */
410 int
411 vfs_suser(struct mount *mp, struct thread *td)
412 {
413 	int error;
414 
415 	/*
416 	 * If the thread is jailed, but this is not a jail-friendly file
417 	 * system, deny immediately.
418 	 */
419 	if (jailed(td->td_ucred) && !(mp->mnt_vfc->vfc_flags & VFCF_JAIL))
420 		return (EPERM);
421 
422 	/*
423 	 * If the file system was mounted outside a jail and a jailed thread
424 	 * tries to access it, deny immediately.
425 	 */
426 	if (!jailed(mp->mnt_cred) && jailed(td->td_ucred))
427 		return (EPERM);
428 
429 	/*
430 	 * If the file system was mounted inside different jail that the jail of
431 	 * the calling thread, deny immediately.
432 	 */
433 	if (jailed(mp->mnt_cred) && jailed(td->td_ucred) &&
434 	    mp->mnt_cred->cr_prison != td->td_ucred->cr_prison) {
435 		return (EPERM);
436 	}
437 
438 	if ((mp->mnt_flag & MNT_USER) == 0 ||
439 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
440 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
441 			return (error);
442 	}
443 	return (0);
444 }
445 
446 /*
447  * Get a new unique fsid.  Try to make its val[0] unique, since this value
448  * will be used to create fake device numbers for stat().  Also try (but
449  * not so hard) make its val[0] unique mod 2^16, since some emulators only
450  * support 16-bit device numbers.  We end up with unique val[0]'s for the
451  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
452  *
453  * Keep in mind that several mounts may be running in parallel.  Starting
454  * the search one past where the previous search terminated is both a
455  * micro-optimization and a defense against returning the same fsid to
456  * different mounts.
457  */
458 void
459 vfs_getnewfsid(struct mount *mp)
460 {
461 	static u_int16_t mntid_base;
462 	struct mount *nmp;
463 	fsid_t tfsid;
464 	int mtype;
465 
466 	mtx_lock(&mntid_mtx);
467 	mtype = mp->mnt_vfc->vfc_typenum;
468 	tfsid.val[1] = mtype;
469 	mtype = (mtype & 0xFF) << 24;
470 	for (;;) {
471 		tfsid.val[0] = makedev(255,
472 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
473 		mntid_base++;
474 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
475 			break;
476 		vfs_rel(nmp);
477 	}
478 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
479 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
480 	mtx_unlock(&mntid_mtx);
481 }
482 
483 /*
484  * Knob to control the precision of file timestamps:
485  *
486  *   0 = seconds only; nanoseconds zeroed.
487  *   1 = seconds and nanoseconds, accurate within 1/HZ.
488  *   2 = seconds and nanoseconds, truncated to microseconds.
489  * >=3 = seconds and nanoseconds, maximum precision.
490  */
491 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
492 
493 static int timestamp_precision = TSP_SEC;
494 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
495     &timestamp_precision, 0, "");
496 
497 /*
498  * Get a current timestamp.
499  */
500 void
501 vfs_timestamp(struct timespec *tsp)
502 {
503 	struct timeval tv;
504 
505 	switch (timestamp_precision) {
506 	case TSP_SEC:
507 		tsp->tv_sec = time_second;
508 		tsp->tv_nsec = 0;
509 		break;
510 	case TSP_HZ:
511 		getnanotime(tsp);
512 		break;
513 	case TSP_USEC:
514 		microtime(&tv);
515 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
516 		break;
517 	case TSP_NSEC:
518 	default:
519 		nanotime(tsp);
520 		break;
521 	}
522 }
523 
524 /*
525  * Set vnode attributes to VNOVAL
526  */
527 void
528 vattr_null(struct vattr *vap)
529 {
530 
531 	vap->va_type = VNON;
532 	vap->va_size = VNOVAL;
533 	vap->va_bytes = VNOVAL;
534 	vap->va_mode = VNOVAL;
535 	vap->va_nlink = VNOVAL;
536 	vap->va_uid = VNOVAL;
537 	vap->va_gid = VNOVAL;
538 	vap->va_fsid = VNOVAL;
539 	vap->va_fileid = VNOVAL;
540 	vap->va_blocksize = VNOVAL;
541 	vap->va_rdev = VNOVAL;
542 	vap->va_atime.tv_sec = VNOVAL;
543 	vap->va_atime.tv_nsec = VNOVAL;
544 	vap->va_mtime.tv_sec = VNOVAL;
545 	vap->va_mtime.tv_nsec = VNOVAL;
546 	vap->va_ctime.tv_sec = VNOVAL;
547 	vap->va_ctime.tv_nsec = VNOVAL;
548 	vap->va_birthtime.tv_sec = VNOVAL;
549 	vap->va_birthtime.tv_nsec = VNOVAL;
550 	vap->va_flags = VNOVAL;
551 	vap->va_gen = VNOVAL;
552 	vap->va_vaflags = 0;
553 }
554 
555 /*
556  * This routine is called when we have too many vnodes.  It attempts
557  * to free <count> vnodes and will potentially free vnodes that still
558  * have VM backing store (VM backing store is typically the cause
559  * of a vnode blowout so we want to do this).  Therefore, this operation
560  * is not considered cheap.
561  *
562  * A number of conditions may prevent a vnode from being reclaimed.
563  * the buffer cache may have references on the vnode, a directory
564  * vnode may still have references due to the namei cache representing
565  * underlying files, or the vnode may be in active use.   It is not
566  * desireable to reuse such vnodes.  These conditions may cause the
567  * number of vnodes to reach some minimum value regardless of what
568  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
569  */
570 static int
571 vlrureclaim(struct mount *mp)
572 {
573 	struct thread *td;
574 	struct vnode *vp;
575 	int done;
576 	int trigger;
577 	int usevnodes;
578 	int count;
579 
580 	/*
581 	 * Calculate the trigger point, don't allow user
582 	 * screwups to blow us up.   This prevents us from
583 	 * recycling vnodes with lots of resident pages.  We
584 	 * aren't trying to free memory, we are trying to
585 	 * free vnodes.
586 	 */
587 	usevnodes = desiredvnodes;
588 	if (usevnodes <= 0)
589 		usevnodes = 1;
590 	trigger = cnt.v_page_count * 2 / usevnodes;
591 	done = 0;
592 	td = curthread;
593 	vn_start_write(NULL, &mp, V_WAIT);
594 	MNT_ILOCK(mp);
595 	count = mp->mnt_nvnodelistsize / 10 + 1;
596 	while (count != 0) {
597 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
598 		while (vp != NULL && vp->v_type == VMARKER)
599 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
600 		if (vp == NULL)
601 			break;
602 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
603 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
604 		--count;
605 		if (!VI_TRYLOCK(vp))
606 			goto next_iter;
607 		/*
608 		 * If it's been deconstructed already, it's still
609 		 * referenced, or it exceeds the trigger, skip it.
610 		 */
611 		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
612 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
613 		    vp->v_object->resident_page_count > trigger)) {
614 			VI_UNLOCK(vp);
615 			goto next_iter;
616 		}
617 		MNT_IUNLOCK(mp);
618 		vholdl(vp);
619 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
620 			vdrop(vp);
621 			goto next_iter_mntunlocked;
622 		}
623 		VI_LOCK(vp);
624 		/*
625 		 * v_usecount may have been bumped after VOP_LOCK() dropped
626 		 * the vnode interlock and before it was locked again.
627 		 *
628 		 * It is not necessary to recheck VI_DOOMED because it can
629 		 * only be set by another thread that holds both the vnode
630 		 * lock and vnode interlock.  If another thread has the
631 		 * vnode lock before we get to VOP_LOCK() and obtains the
632 		 * vnode interlock after VOP_LOCK() drops the vnode
633 		 * interlock, the other thread will be unable to drop the
634 		 * vnode lock before our VOP_LOCK() call fails.
635 		 */
636 		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
637 		    (vp->v_object != NULL &&
638 		    vp->v_object->resident_page_count > trigger)) {
639 			VOP_UNLOCK(vp, LK_INTERLOCK);
640 			goto next_iter_mntunlocked;
641 		}
642 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
643 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
644 		vgonel(vp);
645 		VOP_UNLOCK(vp, 0);
646 		vdropl(vp);
647 		done++;
648 next_iter_mntunlocked:
649 		if ((count % 256) != 0)
650 			goto relock_mnt;
651 		goto yield;
652 next_iter:
653 		if ((count % 256) != 0)
654 			continue;
655 		MNT_IUNLOCK(mp);
656 yield:
657 		uio_yield();
658 relock_mnt:
659 		MNT_ILOCK(mp);
660 	}
661 	MNT_IUNLOCK(mp);
662 	vn_finished_write(mp);
663 	return done;
664 }
665 
666 /*
667  * Attempt to keep the free list at wantfreevnodes length.
668  */
669 static void
670 vnlru_free(int count)
671 {
672 	struct vnode *vp;
673 	int vfslocked;
674 
675 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
676 	for (; count > 0; count--) {
677 		vp = TAILQ_FIRST(&vnode_free_list);
678 		/*
679 		 * The list can be modified while the free_list_mtx
680 		 * has been dropped and vp could be NULL here.
681 		 */
682 		if (!vp)
683 			break;
684 		VNASSERT(vp->v_op != NULL, vp,
685 		    ("vnlru_free: vnode already reclaimed."));
686 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
687 		/*
688 		 * Don't recycle if we can't get the interlock.
689 		 */
690 		if (!VI_TRYLOCK(vp)) {
691 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
692 			continue;
693 		}
694 		VNASSERT(VCANRECYCLE(vp), vp,
695 		    ("vp inconsistent on freelist"));
696 		freevnodes--;
697 		vp->v_iflag &= ~VI_FREE;
698 		vholdl(vp);
699 		mtx_unlock(&vnode_free_list_mtx);
700 		VI_UNLOCK(vp);
701 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
702 		vtryrecycle(vp);
703 		VFS_UNLOCK_GIANT(vfslocked);
704 		/*
705 		 * If the recycled succeeded this vdrop will actually free
706 		 * the vnode.  If not it will simply place it back on
707 		 * the free list.
708 		 */
709 		vdrop(vp);
710 		mtx_lock(&vnode_free_list_mtx);
711 	}
712 }
713 /*
714  * Attempt to recycle vnodes in a context that is always safe to block.
715  * Calling vlrurecycle() from the bowels of filesystem code has some
716  * interesting deadlock problems.
717  */
718 static struct proc *vnlruproc;
719 static int vnlruproc_sig;
720 
721 static void
722 vnlru_proc(void)
723 {
724 	struct mount *mp, *nmp;
725 	int done;
726 	struct proc *p = vnlruproc;
727 	struct thread *td = curthread;
728 
729 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
730 	    SHUTDOWN_PRI_FIRST);
731 
732 	mtx_lock(&Giant);
733 
734 	for (;;) {
735 		kproc_suspend_check(p);
736 		mtx_lock(&vnode_free_list_mtx);
737 		if (freevnodes > wantfreevnodes)
738 			vnlru_free(freevnodes - wantfreevnodes);
739 		if (numvnodes <= desiredvnodes * 9 / 10) {
740 			vnlruproc_sig = 0;
741 			wakeup(&vnlruproc_sig);
742 			msleep(vnlruproc, &vnode_free_list_mtx,
743 			    PVFS|PDROP, "vlruwt", hz);
744 			continue;
745 		}
746 		mtx_unlock(&vnode_free_list_mtx);
747 		done = 0;
748 		mtx_lock(&mountlist_mtx);
749 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
750 			int vfsunlocked;
751 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
752 				nmp = TAILQ_NEXT(mp, mnt_list);
753 				continue;
754 			}
755 			if (!VFS_NEEDSGIANT(mp)) {
756 				mtx_unlock(&Giant);
757 				vfsunlocked = 1;
758 			} else
759 				vfsunlocked = 0;
760 			done += vlrureclaim(mp);
761 			if (vfsunlocked)
762 				mtx_lock(&Giant);
763 			mtx_lock(&mountlist_mtx);
764 			nmp = TAILQ_NEXT(mp, mnt_list);
765 			vfs_unbusy(mp, td);
766 		}
767 		mtx_unlock(&mountlist_mtx);
768 		if (done == 0) {
769 			EVENTHANDLER_INVOKE(vfs_lowvnodes, desiredvnodes / 10);
770 #if 0
771 			/* These messages are temporary debugging aids */
772 			if (vnlru_nowhere < 5)
773 				printf("vnlru process getting nowhere..\n");
774 			else if (vnlru_nowhere == 5)
775 				printf("vnlru process messages stopped.\n");
776 #endif
777 			vnlru_nowhere++;
778 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
779 		} else
780 			uio_yield();
781 	}
782 }
783 
784 static struct kproc_desc vnlru_kp = {
785 	"vnlru",
786 	vnlru_proc,
787 	&vnlruproc
788 };
789 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
790     &vnlru_kp);
791 
792 /*
793  * Routines having to do with the management of the vnode table.
794  */
795 
796 static void
797 vdestroy(struct vnode *vp)
798 {
799 	struct bufobj *bo;
800 
801 	CTR1(KTR_VFS, "vdestroy vp %p", vp);
802 	mtx_lock(&vnode_free_list_mtx);
803 	numvnodes--;
804 	mtx_unlock(&vnode_free_list_mtx);
805 	bo = &vp->v_bufobj;
806 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
807 	    ("cleaned vnode still on the free list."));
808 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
809 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
810 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
811 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
812 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
813 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
814 	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
815 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
816 	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
817 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
818 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
819 	VI_UNLOCK(vp);
820 #ifdef MAC
821 	mac_vnode_destroy(vp);
822 #endif
823 	if (vp->v_pollinfo != NULL) {
824 		knlist_destroy(&vp->v_pollinfo->vpi_selinfo.si_note);
825 		mtx_destroy(&vp->v_pollinfo->vpi_lock);
826 		uma_zfree(vnodepoll_zone, vp->v_pollinfo);
827 	}
828 #ifdef INVARIANTS
829 	/* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
830 	vp->v_op = NULL;
831 #endif
832 	lockdestroy(vp->v_vnlock);
833 	mtx_destroy(&vp->v_interlock);
834 	mtx_destroy(BO_MTX(bo));
835 	uma_zfree(vnode_zone, vp);
836 }
837 
838 /*
839  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
840  * before we actually vgone().  This function must be called with the vnode
841  * held to prevent the vnode from being returned to the free list midway
842  * through vgone().
843  */
844 static int
845 vtryrecycle(struct vnode *vp)
846 {
847 	struct mount *vnmp;
848 
849 	CTR1(KTR_VFS, "vtryrecycle: trying vp %p", vp);
850 	VNASSERT(vp->v_holdcnt, vp,
851 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
852 	/*
853 	 * This vnode may found and locked via some other list, if so we
854 	 * can't recycle it yet.
855 	 */
856 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
857 		return (EWOULDBLOCK);
858 	/*
859 	 * Don't recycle if its filesystem is being suspended.
860 	 */
861 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
862 		VOP_UNLOCK(vp, 0);
863 		return (EBUSY);
864 	}
865 	/*
866 	 * If we got this far, we need to acquire the interlock and see if
867 	 * anyone picked up this vnode from another list.  If not, we will
868 	 * mark it with DOOMED via vgonel() so that anyone who does find it
869 	 * will skip over it.
870 	 */
871 	VI_LOCK(vp);
872 	if (vp->v_usecount) {
873 		VOP_UNLOCK(vp, LK_INTERLOCK);
874 		vn_finished_write(vnmp);
875 		return (EBUSY);
876 	}
877 	if ((vp->v_iflag & VI_DOOMED) == 0)
878 		vgonel(vp);
879 	VOP_UNLOCK(vp, LK_INTERLOCK);
880 	vn_finished_write(vnmp);
881 	CTR1(KTR_VFS, "vtryrecycle: recycled vp %p", vp);
882 	return (0);
883 }
884 
885 /*
886  * Return the next vnode from the free list.
887  */
888 int
889 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
890     struct vnode **vpp)
891 {
892 	struct vnode *vp = NULL;
893 	struct bufobj *bo;
894 
895 	mtx_lock(&vnode_free_list_mtx);
896 	/*
897 	 * Lend our context to reclaim vnodes if they've exceeded the max.
898 	 */
899 	if (freevnodes > wantfreevnodes)
900 		vnlru_free(1);
901 	/*
902 	 * Wait for available vnodes.
903 	 */
904 	if (numvnodes > desiredvnodes) {
905 		if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
906 			/*
907 			 * File system is beeing suspended, we cannot risk a
908 			 * deadlock here, so allocate new vnode anyway.
909 			 */
910 			if (freevnodes > wantfreevnodes)
911 				vnlru_free(freevnodes - wantfreevnodes);
912 			goto alloc;
913 		}
914 		if (vnlruproc_sig == 0) {
915 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
916 			wakeup(vnlruproc);
917 		}
918 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
919 		    "vlruwk", hz);
920 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
921 		if (numvnodes > desiredvnodes) {
922 			mtx_unlock(&vnode_free_list_mtx);
923 			return (ENFILE);
924 		}
925 #endif
926 	}
927 alloc:
928 	numvnodes++;
929 	mtx_unlock(&vnode_free_list_mtx);
930 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
931 	/*
932 	 * Setup locks.
933 	 */
934 	vp->v_vnlock = &vp->v_lock;
935 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
936 	/*
937 	 * By default, don't allow shared locks unless filesystems
938 	 * opt-in.
939 	 */
940 	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
941 	/*
942 	 * Initialize bufobj.
943 	 */
944 	bo = &vp->v_bufobj;
945 	bo->__bo_vnode = vp;
946 	mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
947 	bo->bo_ops = &buf_ops_bio;
948 	bo->bo_private = vp;
949 	TAILQ_INIT(&bo->bo_clean.bv_hd);
950 	TAILQ_INIT(&bo->bo_dirty.bv_hd);
951 	/*
952 	 * Initialize namecache.
953 	 */
954 	LIST_INIT(&vp->v_cache_src);
955 	TAILQ_INIT(&vp->v_cache_dst);
956 	/*
957 	 * Finalize various vnode identity bits.
958 	 */
959 	vp->v_type = VNON;
960 	vp->v_tag = tag;
961 	vp->v_op = vops;
962 	v_incr_usecount(vp);
963 	vp->v_data = 0;
964 #ifdef MAC
965 	mac_vnode_init(vp);
966 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
967 		mac_vnode_associate_singlelabel(mp, vp);
968 	else if (mp == NULL)
969 		printf("NULL mp in getnewvnode()\n");
970 #endif
971 	if (mp != NULL) {
972 		bo->bo_bsize = mp->mnt_stat.f_iosize;
973 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
974 			vp->v_vflag |= VV_NOKNOTE;
975 	}
976 
977 	CTR2(KTR_VFS, "getnewvnode: mp %p vp %p", mp, vp);
978 	*vpp = vp;
979 	return (0);
980 }
981 
982 /*
983  * Delete from old mount point vnode list, if on one.
984  */
985 static void
986 delmntque(struct vnode *vp)
987 {
988 	struct mount *mp;
989 
990 	mp = vp->v_mount;
991 	if (mp == NULL)
992 		return;
993 	MNT_ILOCK(mp);
994 	vp->v_mount = NULL;
995 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
996 		("bad mount point vnode list size"));
997 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
998 	mp->mnt_nvnodelistsize--;
999 	MNT_REL(mp);
1000 	MNT_IUNLOCK(mp);
1001 }
1002 
1003 static void
1004 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1005 {
1006 
1007 	vp->v_data = NULL;
1008 	vp->v_op = &dead_vnodeops;
1009 	/* XXX non mp-safe fs may still call insmntque with vnode
1010 	   unlocked */
1011 	if (!VOP_ISLOCKED(vp))
1012 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1013 	vgone(vp);
1014 	vput(vp);
1015 }
1016 
1017 /*
1018  * Insert into list of vnodes for the new mount point, if available.
1019  */
1020 int
1021 insmntque1(struct vnode *vp, struct mount *mp,
1022 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1023 {
1024 
1025 	KASSERT(vp->v_mount == NULL,
1026 		("insmntque: vnode already on per mount vnode list"));
1027 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1028 	MNT_ILOCK(mp);
1029 	if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1030 	    mp->mnt_nvnodelistsize == 0) {
1031 		MNT_IUNLOCK(mp);
1032 		if (dtr != NULL)
1033 			dtr(vp, dtr_arg);
1034 		return (EBUSY);
1035 	}
1036 	vp->v_mount = mp;
1037 	MNT_REF(mp);
1038 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1039 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1040 		("neg mount point vnode list size"));
1041 	mp->mnt_nvnodelistsize++;
1042 	MNT_IUNLOCK(mp);
1043 	return (0);
1044 }
1045 
1046 int
1047 insmntque(struct vnode *vp, struct mount *mp)
1048 {
1049 
1050 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1051 }
1052 
1053 /*
1054  * Flush out and invalidate all buffers associated with a bufobj
1055  * Called with the underlying object locked.
1056  */
1057 int
1058 bufobj_invalbuf(struct bufobj *bo, int flags, struct thread *td, int slpflag,
1059     int slptimeo)
1060 {
1061 	int error;
1062 
1063 	BO_LOCK(bo);
1064 	if (flags & V_SAVE) {
1065 		error = bufobj_wwait(bo, slpflag, slptimeo);
1066 		if (error) {
1067 			BO_UNLOCK(bo);
1068 			return (error);
1069 		}
1070 		if (bo->bo_dirty.bv_cnt > 0) {
1071 			BO_UNLOCK(bo);
1072 			if ((error = BO_SYNC(bo, MNT_WAIT, td)) != 0)
1073 				return (error);
1074 			/*
1075 			 * XXX We could save a lock/unlock if this was only
1076 			 * enabled under INVARIANTS
1077 			 */
1078 			BO_LOCK(bo);
1079 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1080 				panic("vinvalbuf: dirty bufs");
1081 		}
1082 	}
1083 	/*
1084 	 * If you alter this loop please notice that interlock is dropped and
1085 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1086 	 * no race conditions occur from this.
1087 	 */
1088 	do {
1089 		error = flushbuflist(&bo->bo_clean,
1090 		    flags, bo, slpflag, slptimeo);
1091 		if (error == 0)
1092 			error = flushbuflist(&bo->bo_dirty,
1093 			    flags, bo, slpflag, slptimeo);
1094 		if (error != 0 && error != EAGAIN) {
1095 			BO_UNLOCK(bo);
1096 			return (error);
1097 		}
1098 	} while (error != 0);
1099 
1100 	/*
1101 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1102 	 * have write I/O in-progress but if there is a VM object then the
1103 	 * VM object can also have read-I/O in-progress.
1104 	 */
1105 	do {
1106 		bufobj_wwait(bo, 0, 0);
1107 		BO_UNLOCK(bo);
1108 		if (bo->bo_object != NULL) {
1109 			VM_OBJECT_LOCK(bo->bo_object);
1110 			vm_object_pip_wait(bo->bo_object, "bovlbx");
1111 			VM_OBJECT_UNLOCK(bo->bo_object);
1112 		}
1113 		BO_LOCK(bo);
1114 	} while (bo->bo_numoutput > 0);
1115 	BO_UNLOCK(bo);
1116 
1117 	/*
1118 	 * Destroy the copy in the VM cache, too.
1119 	 */
1120 	if (bo->bo_object != NULL) {
1121 		VM_OBJECT_LOCK(bo->bo_object);
1122 		vm_object_page_remove(bo->bo_object, 0, 0,
1123 			(flags & V_SAVE) ? TRUE : FALSE);
1124 		VM_OBJECT_UNLOCK(bo->bo_object);
1125 	}
1126 
1127 #ifdef INVARIANTS
1128 	BO_LOCK(bo);
1129 	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1130 	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1131 		panic("vinvalbuf: flush failed");
1132 	BO_UNLOCK(bo);
1133 #endif
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Flush out and invalidate all buffers associated with a vnode.
1139  * Called with the underlying object locked.
1140  */
1141 int
1142 vinvalbuf(struct vnode *vp, int flags, struct thread *td, int slpflag,
1143     int slptimeo)
1144 {
1145 
1146 	CTR2(KTR_VFS, "vinvalbuf vp %p flags %d", vp, flags);
1147 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1148 	return (bufobj_invalbuf(&vp->v_bufobj, flags, td, slpflag, slptimeo));
1149 }
1150 
1151 /*
1152  * Flush out buffers on the specified list.
1153  *
1154  */
1155 static int
1156 flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1157     int slptimeo)
1158 {
1159 	struct buf *bp, *nbp;
1160 	int retval, error;
1161 	daddr_t lblkno;
1162 	b_xflags_t xflags;
1163 
1164 	ASSERT_BO_LOCKED(bo);
1165 
1166 	retval = 0;
1167 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1168 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1169 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1170 			continue;
1171 		}
1172 		lblkno = 0;
1173 		xflags = 0;
1174 		if (nbp != NULL) {
1175 			lblkno = nbp->b_lblkno;
1176 			xflags = nbp->b_xflags &
1177 				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1178 		}
1179 		retval = EAGAIN;
1180 		error = BUF_TIMELOCK(bp,
1181 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1182 		    "flushbuf", slpflag, slptimeo);
1183 		if (error) {
1184 			BO_LOCK(bo);
1185 			return (error != ENOLCK ? error : EAGAIN);
1186 		}
1187 		KASSERT(bp->b_bufobj == bo,
1188 		    ("bp %p wrong b_bufobj %p should be %p",
1189 		    bp, bp->b_bufobj, bo));
1190 		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1191 			BUF_UNLOCK(bp);
1192 			BO_LOCK(bo);
1193 			return (EAGAIN);
1194 		}
1195 		/*
1196 		 * XXX Since there are no node locks for NFS, I
1197 		 * believe there is a slight chance that a delayed
1198 		 * write will occur while sleeping just above, so
1199 		 * check for it.
1200 		 */
1201 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1202 		    (flags & V_SAVE)) {
1203 			bremfree(bp);
1204 			bp->b_flags |= B_ASYNC;
1205 			bwrite(bp);
1206 			BO_LOCK(bo);
1207 			return (EAGAIN);	/* XXX: why not loop ? */
1208 		}
1209 		bremfree(bp);
1210 		bp->b_flags |= (B_INVAL | B_RELBUF);
1211 		bp->b_flags &= ~B_ASYNC;
1212 		brelse(bp);
1213 		BO_LOCK(bo);
1214 		if (nbp != NULL &&
1215 		    (nbp->b_bufobj != bo ||
1216 		     nbp->b_lblkno != lblkno ||
1217 		     (nbp->b_xflags &
1218 		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1219 			break;			/* nbp invalid */
1220 	}
1221 	return (retval);
1222 }
1223 
1224 /*
1225  * Truncate a file's buffer and pages to a specified length.  This
1226  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1227  * sync activity.
1228  */
1229 int
1230 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1231     off_t length, int blksize)
1232 {
1233 	struct buf *bp, *nbp;
1234 	int anyfreed;
1235 	int trunclbn;
1236 	struct bufobj *bo;
1237 
1238 	CTR2(KTR_VFS, "vtruncbuf vp %p length %jd", vp, length);
1239 	/*
1240 	 * Round up to the *next* lbn.
1241 	 */
1242 	trunclbn = (length + blksize - 1) / blksize;
1243 
1244 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1245 restart:
1246 	bo = &vp->v_bufobj;
1247 	BO_LOCK(bo);
1248 	anyfreed = 1;
1249 	for (;anyfreed;) {
1250 		anyfreed = 0;
1251 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1252 			if (bp->b_lblkno < trunclbn)
1253 				continue;
1254 			if (BUF_LOCK(bp,
1255 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1256 			    BO_MTX(bo)) == ENOLCK)
1257 				goto restart;
1258 
1259 			bremfree(bp);
1260 			bp->b_flags |= (B_INVAL | B_RELBUF);
1261 			bp->b_flags &= ~B_ASYNC;
1262 			brelse(bp);
1263 			anyfreed = 1;
1264 
1265 			if (nbp != NULL &&
1266 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1267 			    (nbp->b_vp != vp) ||
1268 			    (nbp->b_flags & B_DELWRI))) {
1269 				goto restart;
1270 			}
1271 			BO_LOCK(bo);
1272 		}
1273 
1274 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1275 			if (bp->b_lblkno < trunclbn)
1276 				continue;
1277 			if (BUF_LOCK(bp,
1278 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1279 			    BO_MTX(bo)) == ENOLCK)
1280 				goto restart;
1281 			bremfree(bp);
1282 			bp->b_flags |= (B_INVAL | B_RELBUF);
1283 			bp->b_flags &= ~B_ASYNC;
1284 			brelse(bp);
1285 			anyfreed = 1;
1286 			if (nbp != NULL &&
1287 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1288 			    (nbp->b_vp != vp) ||
1289 			    (nbp->b_flags & B_DELWRI) == 0)) {
1290 				goto restart;
1291 			}
1292 			BO_LOCK(bo);
1293 		}
1294 	}
1295 
1296 	if (length > 0) {
1297 restartsync:
1298 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1299 			if (bp->b_lblkno > 0)
1300 				continue;
1301 			/*
1302 			 * Since we hold the vnode lock this should only
1303 			 * fail if we're racing with the buf daemon.
1304 			 */
1305 			if (BUF_LOCK(bp,
1306 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1307 			    BO_MTX(bo)) == ENOLCK) {
1308 				goto restart;
1309 			}
1310 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1311 			    ("buf(%p) on dirty queue without DELWRI", bp));
1312 
1313 			bremfree(bp);
1314 			bawrite(bp);
1315 			BO_LOCK(bo);
1316 			goto restartsync;
1317 		}
1318 	}
1319 
1320 	bufobj_wwait(bo, 0, 0);
1321 	BO_UNLOCK(bo);
1322 	vnode_pager_setsize(vp, length);
1323 
1324 	return (0);
1325 }
1326 
1327 /*
1328  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1329  * 		 a vnode.
1330  *
1331  *	NOTE: We have to deal with the special case of a background bitmap
1332  *	buffer, a situation where two buffers will have the same logical
1333  *	block offset.  We want (1) only the foreground buffer to be accessed
1334  *	in a lookup and (2) must differentiate between the foreground and
1335  *	background buffer in the splay tree algorithm because the splay
1336  *	tree cannot normally handle multiple entities with the same 'index'.
1337  *	We accomplish this by adding differentiating flags to the splay tree's
1338  *	numerical domain.
1339  */
1340 static
1341 struct buf *
1342 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1343 {
1344 	struct buf dummy;
1345 	struct buf *lefttreemax, *righttreemin, *y;
1346 
1347 	if (root == NULL)
1348 		return (NULL);
1349 	lefttreemax = righttreemin = &dummy;
1350 	for (;;) {
1351 		if (lblkno < root->b_lblkno ||
1352 		    (lblkno == root->b_lblkno &&
1353 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1354 			if ((y = root->b_left) == NULL)
1355 				break;
1356 			if (lblkno < y->b_lblkno) {
1357 				/* Rotate right. */
1358 				root->b_left = y->b_right;
1359 				y->b_right = root;
1360 				root = y;
1361 				if ((y = root->b_left) == NULL)
1362 					break;
1363 			}
1364 			/* Link into the new root's right tree. */
1365 			righttreemin->b_left = root;
1366 			righttreemin = root;
1367 		} else if (lblkno > root->b_lblkno ||
1368 		    (lblkno == root->b_lblkno &&
1369 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1370 			if ((y = root->b_right) == NULL)
1371 				break;
1372 			if (lblkno > y->b_lblkno) {
1373 				/* Rotate left. */
1374 				root->b_right = y->b_left;
1375 				y->b_left = root;
1376 				root = y;
1377 				if ((y = root->b_right) == NULL)
1378 					break;
1379 			}
1380 			/* Link into the new root's left tree. */
1381 			lefttreemax->b_right = root;
1382 			lefttreemax = root;
1383 		} else {
1384 			break;
1385 		}
1386 		root = y;
1387 	}
1388 	/* Assemble the new root. */
1389 	lefttreemax->b_right = root->b_left;
1390 	righttreemin->b_left = root->b_right;
1391 	root->b_left = dummy.b_right;
1392 	root->b_right = dummy.b_left;
1393 	return (root);
1394 }
1395 
1396 static void
1397 buf_vlist_remove(struct buf *bp)
1398 {
1399 	struct buf *root;
1400 	struct bufv *bv;
1401 
1402 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1403 	ASSERT_BO_LOCKED(bp->b_bufobj);
1404 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1405 	    (BX_VNDIRTY|BX_VNCLEAN),
1406 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1407 	if (bp->b_xflags & BX_VNDIRTY)
1408 		bv = &bp->b_bufobj->bo_dirty;
1409 	else
1410 		bv = &bp->b_bufobj->bo_clean;
1411 	if (bp != bv->bv_root) {
1412 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1413 		KASSERT(root == bp, ("splay lookup failed in remove"));
1414 	}
1415 	if (bp->b_left == NULL) {
1416 		root = bp->b_right;
1417 	} else {
1418 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1419 		root->b_right = bp->b_right;
1420 	}
1421 	bv->bv_root = root;
1422 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1423 	bv->bv_cnt--;
1424 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1425 }
1426 
1427 /*
1428  * Add the buffer to the sorted clean or dirty block list using a
1429  * splay tree algorithm.
1430  *
1431  * NOTE: xflags is passed as a constant, optimizing this inline function!
1432  */
1433 static void
1434 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1435 {
1436 	struct buf *root;
1437 	struct bufv *bv;
1438 
1439 	ASSERT_BO_LOCKED(bo);
1440 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1441 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1442 	bp->b_xflags |= xflags;
1443 	if (xflags & BX_VNDIRTY)
1444 		bv = &bo->bo_dirty;
1445 	else
1446 		bv = &bo->bo_clean;
1447 
1448 	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1449 	if (root == NULL) {
1450 		bp->b_left = NULL;
1451 		bp->b_right = NULL;
1452 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1453 	} else if (bp->b_lblkno < root->b_lblkno ||
1454 	    (bp->b_lblkno == root->b_lblkno &&
1455 	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1456 		bp->b_left = root->b_left;
1457 		bp->b_right = root;
1458 		root->b_left = NULL;
1459 		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1460 	} else {
1461 		bp->b_right = root->b_right;
1462 		bp->b_left = root;
1463 		root->b_right = NULL;
1464 		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1465 	}
1466 	bv->bv_cnt++;
1467 	bv->bv_root = bp;
1468 }
1469 
1470 /*
1471  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1472  * shadow buffers used in background bitmap writes.
1473  *
1474  * This code isn't quite efficient as it could be because we are maintaining
1475  * two sorted lists and do not know which list the block resides in.
1476  *
1477  * During a "make buildworld" the desired buffer is found at one of
1478  * the roots more than 60% of the time.  Thus, checking both roots
1479  * before performing either splay eliminates unnecessary splays on the
1480  * first tree splayed.
1481  */
1482 struct buf *
1483 gbincore(struct bufobj *bo, daddr_t lblkno)
1484 {
1485 	struct buf *bp;
1486 
1487 	ASSERT_BO_LOCKED(bo);
1488 	if ((bp = bo->bo_clean.bv_root) != NULL &&
1489 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1490 		return (bp);
1491 	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1492 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1493 		return (bp);
1494 	if ((bp = bo->bo_clean.bv_root) != NULL) {
1495 		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1496 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1497 			return (bp);
1498 	}
1499 	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1500 		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1501 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1502 			return (bp);
1503 	}
1504 	return (NULL);
1505 }
1506 
1507 /*
1508  * Associate a buffer with a vnode.
1509  */
1510 void
1511 bgetvp(struct vnode *vp, struct buf *bp)
1512 {
1513 	struct bufobj *bo;
1514 
1515 	bo = &vp->v_bufobj;
1516 	ASSERT_BO_LOCKED(bo);
1517 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1518 
1519 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1520 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1521 	    ("bgetvp: bp already attached! %p", bp));
1522 
1523 	vhold(vp);
1524 	if (VFS_NEEDSGIANT(vp->v_mount) || bo->bo_flag & BO_NEEDSGIANT)
1525 		bp->b_flags |= B_NEEDSGIANT;
1526 	bp->b_vp = vp;
1527 	bp->b_bufobj = bo;
1528 	/*
1529 	 * Insert onto list for new vnode.
1530 	 */
1531 	buf_vlist_add(bp, bo, BX_VNCLEAN);
1532 }
1533 
1534 /*
1535  * Disassociate a buffer from a vnode.
1536  */
1537 void
1538 brelvp(struct buf *bp)
1539 {
1540 	struct bufobj *bo;
1541 	struct vnode *vp;
1542 
1543 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1544 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1545 
1546 	/*
1547 	 * Delete from old vnode list, if on one.
1548 	 */
1549 	vp = bp->b_vp;		/* XXX */
1550 	bo = bp->b_bufobj;
1551 	BO_LOCK(bo);
1552 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1553 		buf_vlist_remove(bp);
1554 	else
1555 		panic("brelvp: Buffer %p not on queue.", bp);
1556 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1557 		bo->bo_flag &= ~BO_ONWORKLST;
1558 		mtx_lock(&sync_mtx);
1559 		LIST_REMOVE(bo, bo_synclist);
1560 		syncer_worklist_len--;
1561 		mtx_unlock(&sync_mtx);
1562 	}
1563 	bp->b_flags &= ~B_NEEDSGIANT;
1564 	bp->b_vp = NULL;
1565 	bp->b_bufobj = NULL;
1566 	BO_UNLOCK(bo);
1567 	vdrop(vp);
1568 }
1569 
1570 /*
1571  * Add an item to the syncer work queue.
1572  */
1573 static void
1574 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1575 {
1576 	int queue, slot;
1577 
1578 	ASSERT_BO_LOCKED(bo);
1579 
1580 	mtx_lock(&sync_mtx);
1581 	if (bo->bo_flag & BO_ONWORKLST)
1582 		LIST_REMOVE(bo, bo_synclist);
1583 	else {
1584 		bo->bo_flag |= BO_ONWORKLST;
1585 		syncer_worklist_len++;
1586 	}
1587 
1588 	if (delay > syncer_maxdelay - 2)
1589 		delay = syncer_maxdelay - 2;
1590 	slot = (syncer_delayno + delay) & syncer_mask;
1591 
1592 	queue = VFS_NEEDSGIANT(bo->__bo_vnode->v_mount) ? WI_GIANTQ :
1593 	    WI_MPSAFEQ;
1594 	LIST_INSERT_HEAD(&syncer_workitem_pending[queue][slot], bo,
1595 	    bo_synclist);
1596 	mtx_unlock(&sync_mtx);
1597 }
1598 
1599 static int
1600 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1601 {
1602 	int error, len;
1603 
1604 	mtx_lock(&sync_mtx);
1605 	len = syncer_worklist_len - sync_vnode_count;
1606 	mtx_unlock(&sync_mtx);
1607 	error = SYSCTL_OUT(req, &len, sizeof(len));
1608 	return (error);
1609 }
1610 
1611 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1612     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1613 
1614 static struct proc *updateproc;
1615 static void sched_sync(void);
1616 static struct kproc_desc up_kp = {
1617 	"syncer",
1618 	sched_sync,
1619 	&updateproc
1620 };
1621 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1622 
1623 static int
1624 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1625 {
1626 	struct vnode *vp;
1627 	struct mount *mp;
1628 
1629 	*bo = LIST_FIRST(slp);
1630 	if (*bo == NULL)
1631 		return (0);
1632 	vp = (*bo)->__bo_vnode;	/* XXX */
1633 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1634 		return (1);
1635 	/*
1636 	 * We use vhold in case the vnode does not
1637 	 * successfully sync.  vhold prevents the vnode from
1638 	 * going away when we unlock the sync_mtx so that
1639 	 * we can acquire the vnode interlock.
1640 	 */
1641 	vholdl(vp);
1642 	mtx_unlock(&sync_mtx);
1643 	VI_UNLOCK(vp);
1644 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1645 		vdrop(vp);
1646 		mtx_lock(&sync_mtx);
1647 		return (*bo == LIST_FIRST(slp));
1648 	}
1649 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1650 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1651 	VOP_UNLOCK(vp, 0);
1652 	vn_finished_write(mp);
1653 	BO_LOCK(*bo);
1654 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1655 		/*
1656 		 * Put us back on the worklist.  The worklist
1657 		 * routine will remove us from our current
1658 		 * position and then add us back in at a later
1659 		 * position.
1660 		 */
1661 		vn_syncer_add_to_worklist(*bo, syncdelay);
1662 	}
1663 	BO_UNLOCK(*bo);
1664 	vdrop(vp);
1665 	mtx_lock(&sync_mtx);
1666 	return (0);
1667 }
1668 
1669 /*
1670  * System filesystem synchronizer daemon.
1671  */
1672 static void
1673 sched_sync(void)
1674 {
1675 	struct synclist *gnext, *next;
1676 	struct synclist *gslp, *slp;
1677 	struct bufobj *bo;
1678 	long starttime;
1679 	struct thread *td = curthread;
1680 	static int dummychan;
1681 	int last_work_seen;
1682 	int net_worklist_len;
1683 	int syncer_final_iter;
1684 	int first_printf;
1685 	int error;
1686 
1687 	last_work_seen = 0;
1688 	syncer_final_iter = 0;
1689 	first_printf = 1;
1690 	syncer_state = SYNCER_RUNNING;
1691 	starttime = time_uptime;
1692 	td->td_pflags |= TDP_NORUNNINGBUF;
1693 
1694 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1695 	    SHUTDOWN_PRI_LAST);
1696 
1697 	mtx_lock(&sync_mtx);
1698 	for (;;) {
1699 		if (syncer_state == SYNCER_FINAL_DELAY &&
1700 		    syncer_final_iter == 0) {
1701 			mtx_unlock(&sync_mtx);
1702 			kproc_suspend_check(td->td_proc);
1703 			mtx_lock(&sync_mtx);
1704 		}
1705 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1706 		if (syncer_state != SYNCER_RUNNING &&
1707 		    starttime != time_uptime) {
1708 			if (first_printf) {
1709 				printf("\nSyncing disks, vnodes remaining...");
1710 				first_printf = 0;
1711 			}
1712 			printf("%d ", net_worklist_len);
1713 		}
1714 		starttime = time_uptime;
1715 
1716 		/*
1717 		 * Push files whose dirty time has expired.  Be careful
1718 		 * of interrupt race on slp queue.
1719 		 *
1720 		 * Skip over empty worklist slots when shutting down.
1721 		 */
1722 		do {
1723 			slp = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1724 			gslp = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1725 			syncer_delayno += 1;
1726 			if (syncer_delayno == syncer_maxdelay)
1727 				syncer_delayno = 0;
1728 			next = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1729 			gnext = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1730 			/*
1731 			 * If the worklist has wrapped since the
1732 			 * it was emptied of all but syncer vnodes,
1733 			 * switch to the FINAL_DELAY state and run
1734 			 * for one more second.
1735 			 */
1736 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1737 			    net_worklist_len == 0 &&
1738 			    last_work_seen == syncer_delayno) {
1739 				syncer_state = SYNCER_FINAL_DELAY;
1740 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1741 			}
1742 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1743 		    LIST_EMPTY(gslp) && syncer_worklist_len > 0);
1744 
1745 		/*
1746 		 * Keep track of the last time there was anything
1747 		 * on the worklist other than syncer vnodes.
1748 		 * Return to the SHUTTING_DOWN state if any
1749 		 * new work appears.
1750 		 */
1751 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1752 			last_work_seen = syncer_delayno;
1753 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1754 			syncer_state = SYNCER_SHUTTING_DOWN;
1755 		while (!LIST_EMPTY(slp)) {
1756 			error = sync_vnode(slp, &bo, td);
1757 			if (error == 1) {
1758 				LIST_REMOVE(bo, bo_synclist);
1759 				LIST_INSERT_HEAD(next, bo, bo_synclist);
1760 				continue;
1761 			}
1762 		}
1763 		if (!LIST_EMPTY(gslp)) {
1764 			mtx_unlock(&sync_mtx);
1765 			mtx_lock(&Giant);
1766 			mtx_lock(&sync_mtx);
1767 			while (!LIST_EMPTY(gslp)) {
1768 				error = sync_vnode(gslp, &bo, td);
1769 				if (error == 1) {
1770 					LIST_REMOVE(bo, bo_synclist);
1771 					LIST_INSERT_HEAD(gnext, bo,
1772 					    bo_synclist);
1773 					continue;
1774 				}
1775 			}
1776 			mtx_unlock(&Giant);
1777 		}
1778 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1779 			syncer_final_iter--;
1780 		/*
1781 		 * The variable rushjob allows the kernel to speed up the
1782 		 * processing of the filesystem syncer process. A rushjob
1783 		 * value of N tells the filesystem syncer to process the next
1784 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1785 		 * is used by the soft update code to speed up the filesystem
1786 		 * syncer process when the incore state is getting so far
1787 		 * ahead of the disk that the kernel memory pool is being
1788 		 * threatened with exhaustion.
1789 		 */
1790 		if (rushjob > 0) {
1791 			rushjob -= 1;
1792 			continue;
1793 		}
1794 		/*
1795 		 * Just sleep for a short period of time between
1796 		 * iterations when shutting down to allow some I/O
1797 		 * to happen.
1798 		 *
1799 		 * If it has taken us less than a second to process the
1800 		 * current work, then wait. Otherwise start right over
1801 		 * again. We can still lose time if any single round
1802 		 * takes more than two seconds, but it does not really
1803 		 * matter as we are just trying to generally pace the
1804 		 * filesystem activity.
1805 		 */
1806 		if (syncer_state != SYNCER_RUNNING)
1807 			msleep(&dummychan, &sync_mtx, PPAUSE, "syncfnl",
1808 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1809 		else if (time_uptime == starttime)
1810 			msleep(&lbolt, &sync_mtx, PPAUSE, "syncer", 0);
1811 	}
1812 }
1813 
1814 /*
1815  * Request the syncer daemon to speed up its work.
1816  * We never push it to speed up more than half of its
1817  * normal turn time, otherwise it could take over the cpu.
1818  */
1819 int
1820 speedup_syncer(void)
1821 {
1822 	struct thread *td;
1823 	int ret = 0;
1824 
1825 	td = FIRST_THREAD_IN_PROC(updateproc);
1826 	mtx_lock(&sync_mtx);
1827 	if (rushjob < syncdelay / 2) {
1828 		rushjob += 1;
1829 		stat_rush_requests += 1;
1830 		ret = 1;
1831 	}
1832 	mtx_unlock(&sync_mtx);
1833 	sleepq_remove(td, &lbolt);
1834 	return (ret);
1835 }
1836 
1837 /*
1838  * Tell the syncer to speed up its work and run though its work
1839  * list several times, then tell it to shut down.
1840  */
1841 static void
1842 syncer_shutdown(void *arg, int howto)
1843 {
1844 	struct thread *td;
1845 
1846 	if (howto & RB_NOSYNC)
1847 		return;
1848 	td = FIRST_THREAD_IN_PROC(updateproc);
1849 	mtx_lock(&sync_mtx);
1850 	syncer_state = SYNCER_SHUTTING_DOWN;
1851 	rushjob = 0;
1852 	mtx_unlock(&sync_mtx);
1853 	sleepq_remove(td, &lbolt);
1854 	kproc_shutdown(arg, howto);
1855 }
1856 
1857 /*
1858  * Reassign a buffer from one vnode to another.
1859  * Used to assign file specific control information
1860  * (indirect blocks) to the vnode to which they belong.
1861  */
1862 void
1863 reassignbuf(struct buf *bp)
1864 {
1865 	struct vnode *vp;
1866 	struct bufobj *bo;
1867 	int delay;
1868 #ifdef INVARIANTS
1869 	struct bufv *bv;
1870 #endif
1871 
1872 	vp = bp->b_vp;
1873 	bo = bp->b_bufobj;
1874 	++reassignbufcalls;
1875 
1876 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1877 	    bp, bp->b_vp, bp->b_flags);
1878 	/*
1879 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1880 	 * is not fully linked in.
1881 	 */
1882 	if (bp->b_flags & B_PAGING)
1883 		panic("cannot reassign paging buffer");
1884 
1885 	/*
1886 	 * Delete from old vnode list, if on one.
1887 	 */
1888 	BO_LOCK(bo);
1889 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1890 		buf_vlist_remove(bp);
1891 	else
1892 		panic("reassignbuf: Buffer %p not on queue.", bp);
1893 	/*
1894 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1895 	 * of clean buffers.
1896 	 */
1897 	if (bp->b_flags & B_DELWRI) {
1898 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1899 			switch (vp->v_type) {
1900 			case VDIR:
1901 				delay = dirdelay;
1902 				break;
1903 			case VCHR:
1904 				delay = metadelay;
1905 				break;
1906 			default:
1907 				delay = filedelay;
1908 			}
1909 			vn_syncer_add_to_worklist(bo, delay);
1910 		}
1911 		buf_vlist_add(bp, bo, BX_VNDIRTY);
1912 	} else {
1913 		buf_vlist_add(bp, bo, BX_VNCLEAN);
1914 
1915 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1916 			mtx_lock(&sync_mtx);
1917 			LIST_REMOVE(bo, bo_synclist);
1918 			syncer_worklist_len--;
1919 			mtx_unlock(&sync_mtx);
1920 			bo->bo_flag &= ~BO_ONWORKLST;
1921 		}
1922 	}
1923 #ifdef INVARIANTS
1924 	bv = &bo->bo_clean;
1925 	bp = TAILQ_FIRST(&bv->bv_hd);
1926 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1927 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1928 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1929 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1930 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1931 	bv = &bo->bo_dirty;
1932 	bp = TAILQ_FIRST(&bv->bv_hd);
1933 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1934 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1935 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1936 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1937 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1938 #endif
1939 	BO_UNLOCK(bo);
1940 }
1941 
1942 /*
1943  * Increment the use and hold counts on the vnode, taking care to reference
1944  * the driver's usecount if this is a chardev.  The vholdl() will remove
1945  * the vnode from the free list if it is presently free.  Requires the
1946  * vnode interlock and returns with it held.
1947  */
1948 static void
1949 v_incr_usecount(struct vnode *vp)
1950 {
1951 
1952 	CTR3(KTR_VFS, "v_incr_usecount: vp %p holdcnt %d usecount %d\n",
1953 	    vp, vp->v_holdcnt, vp->v_usecount);
1954 	vp->v_usecount++;
1955 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1956 		dev_lock();
1957 		vp->v_rdev->si_usecount++;
1958 		dev_unlock();
1959 	}
1960 	vholdl(vp);
1961 }
1962 
1963 /*
1964  * Turn a holdcnt into a use+holdcnt such that only one call to
1965  * v_decr_usecount is needed.
1966  */
1967 static void
1968 v_upgrade_usecount(struct vnode *vp)
1969 {
1970 
1971 	CTR3(KTR_VFS, "v_upgrade_usecount: vp %p holdcnt %d usecount %d\n",
1972 	    vp, vp->v_holdcnt, vp->v_usecount);
1973 	vp->v_usecount++;
1974 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1975 		dev_lock();
1976 		vp->v_rdev->si_usecount++;
1977 		dev_unlock();
1978 	}
1979 }
1980 
1981 /*
1982  * Decrement the vnode use and hold count along with the driver's usecount
1983  * if this is a chardev.  The vdropl() below releases the vnode interlock
1984  * as it may free the vnode.
1985  */
1986 static void
1987 v_decr_usecount(struct vnode *vp)
1988 {
1989 
1990 	CTR3(KTR_VFS, "v_decr_usecount: vp %p holdcnt %d usecount %d\n",
1991 	    vp, vp->v_holdcnt, vp->v_usecount);
1992 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
1993 	VNASSERT(vp->v_usecount > 0, vp,
1994 	    ("v_decr_usecount: negative usecount"));
1995 	vp->v_usecount--;
1996 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1997 		dev_lock();
1998 		vp->v_rdev->si_usecount--;
1999 		dev_unlock();
2000 	}
2001 	vdropl(vp);
2002 }
2003 
2004 /*
2005  * Decrement only the use count and driver use count.  This is intended to
2006  * be paired with a follow on vdropl() to release the remaining hold count.
2007  * In this way we may vgone() a vnode with a 0 usecount without risk of
2008  * having it end up on a free list because the hold count is kept above 0.
2009  */
2010 static void
2011 v_decr_useonly(struct vnode *vp)
2012 {
2013 
2014 	CTR3(KTR_VFS, "v_decr_useonly: vp %p holdcnt %d usecount %d\n",
2015 	    vp, vp->v_holdcnt, vp->v_usecount);
2016 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2017 	VNASSERT(vp->v_usecount > 0, vp,
2018 	    ("v_decr_useonly: negative usecount"));
2019 	vp->v_usecount--;
2020 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2021 		dev_lock();
2022 		vp->v_rdev->si_usecount--;
2023 		dev_unlock();
2024 	}
2025 }
2026 
2027 /*
2028  * Grab a particular vnode from the free list, increment its
2029  * reference count and lock it.  VI_DOOMED is set if the vnode
2030  * is being destroyed.  Only callers who specify LK_RETRY will
2031  * see doomed vnodes.  If inactive processing was delayed in
2032  * vput try to do it here.
2033  */
2034 int
2035 vget(struct vnode *vp, int flags, struct thread *td)
2036 {
2037 	int error;
2038 
2039 	error = 0;
2040 	VFS_ASSERT_GIANT(vp->v_mount);
2041 	if ((flags & LK_INTERLOCK) == 0)
2042 		VI_LOCK(vp);
2043 	vholdl(vp);
2044 	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2045 		vdrop(vp);
2046 		return (error);
2047 	}
2048 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2049 		panic("vget: vn_lock failed to return ENOENT\n");
2050 	VI_LOCK(vp);
2051 	/* Upgrade our holdcnt to a usecount. */
2052 	v_upgrade_usecount(vp);
2053 	/*
2054  	 * We don't guarantee that any particular close will
2055 	 * trigger inactive processing so just make a best effort
2056 	 * here at preventing a reference to a removed file.  If
2057 	 * we don't succeed no harm is done.
2058 	 */
2059 	if (vp->v_iflag & VI_OWEINACT) {
2060 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2061 		    (flags & LK_NOWAIT) == 0)
2062 			vinactive(vp, td);
2063 		vp->v_iflag &= ~VI_OWEINACT;
2064 	}
2065 	VI_UNLOCK(vp);
2066 	return (0);
2067 }
2068 
2069 /*
2070  * Increase the reference count of a vnode.
2071  */
2072 void
2073 vref(struct vnode *vp)
2074 {
2075 
2076 	VI_LOCK(vp);
2077 	v_incr_usecount(vp);
2078 	VI_UNLOCK(vp);
2079 }
2080 
2081 /*
2082  * Return reference count of a vnode.
2083  *
2084  * The results of this call are only guaranteed when some mechanism other
2085  * than the VI lock is used to stop other processes from gaining references
2086  * to the vnode.  This may be the case if the caller holds the only reference.
2087  * This is also useful when stale data is acceptable as race conditions may
2088  * be accounted for by some other means.
2089  */
2090 int
2091 vrefcnt(struct vnode *vp)
2092 {
2093 	int usecnt;
2094 
2095 	VI_LOCK(vp);
2096 	usecnt = vp->v_usecount;
2097 	VI_UNLOCK(vp);
2098 
2099 	return (usecnt);
2100 }
2101 
2102 
2103 /*
2104  * Vnode put/release.
2105  * If count drops to zero, call inactive routine and return to freelist.
2106  */
2107 void
2108 vrele(struct vnode *vp)
2109 {
2110 	struct thread *td = curthread;	/* XXX */
2111 
2112 	KASSERT(vp != NULL, ("vrele: null vp"));
2113 	VFS_ASSERT_GIANT(vp->v_mount);
2114 
2115 	VI_LOCK(vp);
2116 
2117 	/* Skip this v_writecount check if we're going to panic below. */
2118 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2119 	    ("vrele: missed vn_close"));
2120 
2121 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2122 	    vp->v_usecount == 1)) {
2123 		v_decr_usecount(vp);
2124 		return;
2125 	}
2126 	if (vp->v_usecount != 1) {
2127 #ifdef DIAGNOSTIC
2128 		vprint("vrele: negative ref count", vp);
2129 #endif
2130 		VI_UNLOCK(vp);
2131 		panic("vrele: negative ref cnt");
2132 	}
2133 	/*
2134 	 * We want to hold the vnode until the inactive finishes to
2135 	 * prevent vgone() races.  We drop the use count here and the
2136 	 * hold count below when we're done.
2137 	 */
2138 	v_decr_useonly(vp);
2139 	/*
2140 	 * We must call VOP_INACTIVE with the node locked. Mark
2141 	 * as VI_DOINGINACT to avoid recursion.
2142 	 */
2143 	vp->v_iflag |= VI_OWEINACT;
2144 	if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK) == 0) {
2145 		VI_LOCK(vp);
2146 		if (vp->v_usecount > 0)
2147 			vp->v_iflag &= ~VI_OWEINACT;
2148 		if (vp->v_iflag & VI_OWEINACT)
2149 			vinactive(vp, td);
2150 		VOP_UNLOCK(vp, 0);
2151 	} else {
2152 		VI_LOCK(vp);
2153 		if (vp->v_usecount > 0)
2154 			vp->v_iflag &= ~VI_OWEINACT;
2155 	}
2156 	vdropl(vp);
2157 }
2158 
2159 /*
2160  * Release an already locked vnode.  This give the same effects as
2161  * unlock+vrele(), but takes less time and avoids releasing and
2162  * re-aquiring the lock (as vrele() acquires the lock internally.)
2163  */
2164 void
2165 vput(struct vnode *vp)
2166 {
2167 	struct thread *td = curthread;	/* XXX */
2168 	int error;
2169 
2170 	KASSERT(vp != NULL, ("vput: null vp"));
2171 	ASSERT_VOP_LOCKED(vp, "vput");
2172 	VFS_ASSERT_GIANT(vp->v_mount);
2173 	VI_LOCK(vp);
2174 	/* Skip this v_writecount check if we're going to panic below. */
2175 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2176 	    ("vput: missed vn_close"));
2177 	error = 0;
2178 
2179 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2180 	    vp->v_usecount == 1)) {
2181 		VOP_UNLOCK(vp, 0);
2182 		v_decr_usecount(vp);
2183 		return;
2184 	}
2185 
2186 	if (vp->v_usecount != 1) {
2187 #ifdef DIAGNOSTIC
2188 		vprint("vput: negative ref count", vp);
2189 #endif
2190 		panic("vput: negative ref cnt");
2191 	}
2192 	/*
2193 	 * We want to hold the vnode until the inactive finishes to
2194 	 * prevent vgone() races.  We drop the use count here and the
2195 	 * hold count below when we're done.
2196 	 */
2197 	v_decr_useonly(vp);
2198 	vp->v_iflag |= VI_OWEINACT;
2199 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2200 		error = VOP_LOCK(vp, LK_UPGRADE|LK_INTERLOCK|LK_NOWAIT);
2201 		VI_LOCK(vp);
2202 		if (error) {
2203 			if (vp->v_usecount > 0)
2204 				vp->v_iflag &= ~VI_OWEINACT;
2205 			goto done;
2206 		}
2207 	}
2208 	if (vp->v_usecount > 0)
2209 		vp->v_iflag &= ~VI_OWEINACT;
2210 	if (vp->v_iflag & VI_OWEINACT)
2211 		vinactive(vp, td);
2212 	VOP_UNLOCK(vp, 0);
2213 done:
2214 	vdropl(vp);
2215 }
2216 
2217 /*
2218  * Somebody doesn't want the vnode recycled.
2219  */
2220 void
2221 vhold(struct vnode *vp)
2222 {
2223 
2224 	VI_LOCK(vp);
2225 	vholdl(vp);
2226 	VI_UNLOCK(vp);
2227 }
2228 
2229 void
2230 vholdl(struct vnode *vp)
2231 {
2232 
2233 	vp->v_holdcnt++;
2234 	if (VSHOULDBUSY(vp))
2235 		vbusy(vp);
2236 }
2237 
2238 /*
2239  * Note that there is one less who cares about this vnode.  vdrop() is the
2240  * opposite of vhold().
2241  */
2242 void
2243 vdrop(struct vnode *vp)
2244 {
2245 
2246 	VI_LOCK(vp);
2247 	vdropl(vp);
2248 }
2249 
2250 /*
2251  * Drop the hold count of the vnode.  If this is the last reference to
2252  * the vnode we will free it if it has been vgone'd otherwise it is
2253  * placed on the free list.
2254  */
2255 void
2256 vdropl(struct vnode *vp)
2257 {
2258 
2259 	ASSERT_VI_LOCKED(vp, "vdropl");
2260 	if (vp->v_holdcnt <= 0)
2261 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2262 	vp->v_holdcnt--;
2263 	if (vp->v_holdcnt == 0) {
2264 		if (vp->v_iflag & VI_DOOMED) {
2265 			vdestroy(vp);
2266 			return;
2267 		} else
2268 			vfree(vp);
2269 	}
2270 	VI_UNLOCK(vp);
2271 }
2272 
2273 /*
2274  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2275  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2276  * OWEINACT tracks whether a vnode missed a call to inactive due to a
2277  * failed lock upgrade.
2278  */
2279 static void
2280 vinactive(struct vnode *vp, struct thread *td)
2281 {
2282 
2283 	ASSERT_VOP_LOCKED(vp, "vinactive");
2284 	ASSERT_VI_LOCKED(vp, "vinactive");
2285 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2286 	    ("vinactive: recursed on VI_DOINGINACT"));
2287 	vp->v_iflag |= VI_DOINGINACT;
2288 	vp->v_iflag &= ~VI_OWEINACT;
2289 	VI_UNLOCK(vp);
2290 	VOP_INACTIVE(vp, td);
2291 	VI_LOCK(vp);
2292 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2293 	    ("vinactive: lost VI_DOINGINACT"));
2294 	vp->v_iflag &= ~VI_DOINGINACT;
2295 }
2296 
2297 /*
2298  * Remove any vnodes in the vnode table belonging to mount point mp.
2299  *
2300  * If FORCECLOSE is not specified, there should not be any active ones,
2301  * return error if any are found (nb: this is a user error, not a
2302  * system error). If FORCECLOSE is specified, detach any active vnodes
2303  * that are found.
2304  *
2305  * If WRITECLOSE is set, only flush out regular file vnodes open for
2306  * writing.
2307  *
2308  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2309  *
2310  * `rootrefs' specifies the base reference count for the root vnode
2311  * of this filesystem. The root vnode is considered busy if its
2312  * v_usecount exceeds this value. On a successful return, vflush(, td)
2313  * will call vrele() on the root vnode exactly rootrefs times.
2314  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2315  * be zero.
2316  */
2317 #ifdef DIAGNOSTIC
2318 static int busyprt = 0;		/* print out busy vnodes */
2319 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2320 #endif
2321 
2322 int
2323 vflush( struct mount *mp, int rootrefs, int flags, struct thread *td)
2324 {
2325 	struct vnode *vp, *mvp, *rootvp = NULL;
2326 	struct vattr vattr;
2327 	int busy = 0, error;
2328 
2329 	CTR1(KTR_VFS, "vflush: mp %p", mp);
2330 	if (rootrefs > 0) {
2331 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2332 		    ("vflush: bad args"));
2333 		/*
2334 		 * Get the filesystem root vnode. We can vput() it
2335 		 * immediately, since with rootrefs > 0, it won't go away.
2336 		 */
2337 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0)
2338 			return (error);
2339 		vput(rootvp);
2340 
2341 	}
2342 	MNT_ILOCK(mp);
2343 loop:
2344 	MNT_VNODE_FOREACH(vp, mp, mvp) {
2345 
2346 		VI_LOCK(vp);
2347 		vholdl(vp);
2348 		MNT_IUNLOCK(mp);
2349 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2350 		if (error) {
2351 			vdrop(vp);
2352 			MNT_ILOCK(mp);
2353 			MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2354 			goto loop;
2355 		}
2356 		/*
2357 		 * Skip over a vnodes marked VV_SYSTEM.
2358 		 */
2359 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2360 			VOP_UNLOCK(vp, 0);
2361 			vdrop(vp);
2362 			MNT_ILOCK(mp);
2363 			continue;
2364 		}
2365 		/*
2366 		 * If WRITECLOSE is set, flush out unlinked but still open
2367 		 * files (even if open only for reading) and regular file
2368 		 * vnodes open for writing.
2369 		 */
2370 		if (flags & WRITECLOSE) {
2371 			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2372 			VI_LOCK(vp);
2373 
2374 			if ((vp->v_type == VNON ||
2375 			    (error == 0 && vattr.va_nlink > 0)) &&
2376 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2377 				VOP_UNLOCK(vp, 0);
2378 				vdropl(vp);
2379 				MNT_ILOCK(mp);
2380 				continue;
2381 			}
2382 		} else
2383 			VI_LOCK(vp);
2384 		/*
2385 		 * With v_usecount == 0, all we need to do is clear out the
2386 		 * vnode data structures and we are done.
2387 		 *
2388 		 * If FORCECLOSE is set, forcibly close the vnode.
2389 		 */
2390 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2391 			VNASSERT(vp->v_usecount == 0 ||
2392 			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2393 			    ("device VNODE %p is FORCECLOSED", vp));
2394 			vgonel(vp);
2395 		} else {
2396 			busy++;
2397 #ifdef DIAGNOSTIC
2398 			if (busyprt)
2399 				vprint("vflush: busy vnode", vp);
2400 #endif
2401 		}
2402 		VOP_UNLOCK(vp, 0);
2403 		vdropl(vp);
2404 		MNT_ILOCK(mp);
2405 	}
2406 	MNT_IUNLOCK(mp);
2407 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2408 		/*
2409 		 * If just the root vnode is busy, and if its refcount
2410 		 * is equal to `rootrefs', then go ahead and kill it.
2411 		 */
2412 		VI_LOCK(rootvp);
2413 		KASSERT(busy > 0, ("vflush: not busy"));
2414 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2415 		    ("vflush: usecount %d < rootrefs %d",
2416 		     rootvp->v_usecount, rootrefs));
2417 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2418 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2419 			vgone(rootvp);
2420 			VOP_UNLOCK(rootvp, 0);
2421 			busy = 0;
2422 		} else
2423 			VI_UNLOCK(rootvp);
2424 	}
2425 	if (busy)
2426 		return (EBUSY);
2427 	for (; rootrefs > 0; rootrefs--)
2428 		vrele(rootvp);
2429 	return (0);
2430 }
2431 
2432 /*
2433  * Recycle an unused vnode to the front of the free list.
2434  */
2435 int
2436 vrecycle(struct vnode *vp, struct thread *td)
2437 {
2438 	int recycled;
2439 
2440 	ASSERT_VOP_LOCKED(vp, "vrecycle");
2441 	recycled = 0;
2442 	VI_LOCK(vp);
2443 	if (vp->v_usecount == 0) {
2444 		recycled = 1;
2445 		vgonel(vp);
2446 	}
2447 	VI_UNLOCK(vp);
2448 	return (recycled);
2449 }
2450 
2451 /*
2452  * Eliminate all activity associated with a vnode
2453  * in preparation for reuse.
2454  */
2455 void
2456 vgone(struct vnode *vp)
2457 {
2458 	VI_LOCK(vp);
2459 	vgonel(vp);
2460 	VI_UNLOCK(vp);
2461 }
2462 
2463 /*
2464  * vgone, with the vp interlock held.
2465  */
2466 void
2467 vgonel(struct vnode *vp)
2468 {
2469 	struct thread *td;
2470 	int oweinact;
2471 	int active;
2472 	struct mount *mp;
2473 
2474 	CTR1(KTR_VFS, "vgonel: vp %p", vp);
2475 	ASSERT_VOP_LOCKED(vp, "vgonel");
2476 	ASSERT_VI_LOCKED(vp, "vgonel");
2477 	VNASSERT(vp->v_holdcnt, vp,
2478 	    ("vgonel: vp %p has no reference.", vp));
2479 	td = curthread;
2480 
2481 	/*
2482 	 * Don't vgonel if we're already doomed.
2483 	 */
2484 	if (vp->v_iflag & VI_DOOMED)
2485 		return;
2486 	vp->v_iflag |= VI_DOOMED;
2487 	/*
2488 	 * Check to see if the vnode is in use.  If so, we have to call
2489 	 * VOP_CLOSE() and VOP_INACTIVE().
2490 	 */
2491 	active = vp->v_usecount;
2492 	oweinact = (vp->v_iflag & VI_OWEINACT);
2493 	VI_UNLOCK(vp);
2494 	/*
2495 	 * Clean out any buffers associated with the vnode.
2496 	 * If the flush fails, just toss the buffers.
2497 	 */
2498 	mp = NULL;
2499 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2500 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2501 	if (vinvalbuf(vp, V_SAVE, td, 0, 0) != 0)
2502 		vinvalbuf(vp, 0, td, 0, 0);
2503 
2504 	/*
2505 	 * If purging an active vnode, it must be closed and
2506 	 * deactivated before being reclaimed.
2507 	 */
2508 	if (active)
2509 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2510 	if (oweinact || active) {
2511 		VI_LOCK(vp);
2512 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2513 			vinactive(vp, td);
2514 		VI_UNLOCK(vp);
2515 	}
2516 	/*
2517 	 * Reclaim the vnode.
2518 	 */
2519 	if (VOP_RECLAIM(vp, td))
2520 		panic("vgone: cannot reclaim");
2521 	if (mp != NULL)
2522 		vn_finished_secondary_write(mp);
2523 	VNASSERT(vp->v_object == NULL, vp,
2524 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2525 	/*
2526 	 * Clear the advisory locks and wake up waiting threads.
2527 	 */
2528 	lf_purgelocks(vp, &(vp->v_lockf));
2529 	/*
2530 	 * Delete from old mount point vnode list.
2531 	 */
2532 	delmntque(vp);
2533 	cache_purge(vp);
2534 	/*
2535 	 * Done with purge, reset to the standard lock and invalidate
2536 	 * the vnode.
2537 	 */
2538 	VI_LOCK(vp);
2539 	vp->v_vnlock = &vp->v_lock;
2540 	vp->v_op = &dead_vnodeops;
2541 	vp->v_tag = "none";
2542 	vp->v_type = VBAD;
2543 }
2544 
2545 /*
2546  * Calculate the total number of references to a special device.
2547  */
2548 int
2549 vcount(struct vnode *vp)
2550 {
2551 	int count;
2552 
2553 	dev_lock();
2554 	count = vp->v_rdev->si_usecount;
2555 	dev_unlock();
2556 	return (count);
2557 }
2558 
2559 /*
2560  * Same as above, but using the struct cdev *as argument
2561  */
2562 int
2563 count_dev(struct cdev *dev)
2564 {
2565 	int count;
2566 
2567 	dev_lock();
2568 	count = dev->si_usecount;
2569 	dev_unlock();
2570 	return(count);
2571 }
2572 
2573 /*
2574  * Print out a description of a vnode.
2575  */
2576 static char *typename[] =
2577 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2578  "VMARKER"};
2579 
2580 void
2581 vn_printf(struct vnode *vp, const char *fmt, ...)
2582 {
2583 	va_list ap;
2584 	char buf[256], buf2[16];
2585 	u_long flags;
2586 
2587 	va_start(ap, fmt);
2588 	vprintf(fmt, ap);
2589 	va_end(ap);
2590 	printf("%p: ", (void *)vp);
2591 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2592 	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2593 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2594 	buf[0] = '\0';
2595 	buf[1] = '\0';
2596 	if (vp->v_vflag & VV_ROOT)
2597 		strlcat(buf, "|VV_ROOT", sizeof(buf));
2598 	if (vp->v_vflag & VV_ISTTY)
2599 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2600 	if (vp->v_vflag & VV_NOSYNC)
2601 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2602 	if (vp->v_vflag & VV_CACHEDLABEL)
2603 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2604 	if (vp->v_vflag & VV_TEXT)
2605 		strlcat(buf, "|VV_TEXT", sizeof(buf));
2606 	if (vp->v_vflag & VV_COPYONWRITE)
2607 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2608 	if (vp->v_vflag & VV_SYSTEM)
2609 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2610 	if (vp->v_vflag & VV_PROCDEP)
2611 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2612 	if (vp->v_vflag & VV_NOKNOTE)
2613 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2614 	if (vp->v_vflag & VV_DELETED)
2615 		strlcat(buf, "|VV_DELETED", sizeof(buf));
2616 	if (vp->v_vflag & VV_MD)
2617 		strlcat(buf, "|VV_MD", sizeof(buf));
2618 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2619 	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2620 	    VV_NOKNOTE | VV_DELETED | VV_MD);
2621 	if (flags != 0) {
2622 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2623 		strlcat(buf, buf2, sizeof(buf));
2624 	}
2625 	if (vp->v_iflag & VI_MOUNT)
2626 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2627 	if (vp->v_iflag & VI_AGE)
2628 		strlcat(buf, "|VI_AGE", sizeof(buf));
2629 	if (vp->v_iflag & VI_DOOMED)
2630 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2631 	if (vp->v_iflag & VI_FREE)
2632 		strlcat(buf, "|VI_FREE", sizeof(buf));
2633 	if (vp->v_iflag & VI_OBJDIRTY)
2634 		strlcat(buf, "|VI_OBJDIRTY", sizeof(buf));
2635 	if (vp->v_iflag & VI_DOINGINACT)
2636 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2637 	if (vp->v_iflag & VI_OWEINACT)
2638 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2639 	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2640 	    VI_OBJDIRTY | VI_DOINGINACT | VI_OWEINACT);
2641 	if (flags != 0) {
2642 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2643 		strlcat(buf, buf2, sizeof(buf));
2644 	}
2645 	printf("    flags (%s)\n", buf + 1);
2646 	if (mtx_owned(VI_MTX(vp)))
2647 		printf(" VI_LOCKed");
2648 	if (vp->v_object != NULL)
2649 		printf("    v_object %p ref %d pages %d\n",
2650 		    vp->v_object, vp->v_object->ref_count,
2651 		    vp->v_object->resident_page_count);
2652 	printf("    ");
2653 	lockmgr_printinfo(vp->v_vnlock);
2654 	printf("\n");
2655 	if (vp->v_data != NULL)
2656 		VOP_PRINT(vp);
2657 }
2658 
2659 #ifdef DDB
2660 /*
2661  * List all of the locked vnodes in the system.
2662  * Called when debugging the kernel.
2663  */
2664 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2665 {
2666 	struct mount *mp, *nmp;
2667 	struct vnode *vp;
2668 
2669 	/*
2670 	 * Note: because this is DDB, we can't obey the locking semantics
2671 	 * for these structures, which means we could catch an inconsistent
2672 	 * state and dereference a nasty pointer.  Not much to be done
2673 	 * about that.
2674 	 */
2675 	db_printf("Locked vnodes\n");
2676 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2677 		nmp = TAILQ_NEXT(mp, mnt_list);
2678 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2679 			if (vp->v_type != VMARKER &&
2680 			    VOP_ISLOCKED(vp))
2681 				vprint("", vp);
2682 		}
2683 		nmp = TAILQ_NEXT(mp, mnt_list);
2684 	}
2685 }
2686 
2687 /*
2688  * Show details about the given vnode.
2689  */
2690 DB_SHOW_COMMAND(vnode, db_show_vnode)
2691 {
2692 	struct vnode *vp;
2693 
2694 	if (!have_addr)
2695 		return;
2696 	vp = (struct vnode *)addr;
2697 	vn_printf(vp, "vnode ");
2698 }
2699 
2700 /*
2701  * Show details about the given mount point.
2702  */
2703 DB_SHOW_COMMAND(mount, db_show_mount)
2704 {
2705 	struct mount *mp;
2706 	struct statfs *sp;
2707 	struct vnode *vp;
2708 	char buf[512];
2709 	u_int flags;
2710 
2711 	if (!have_addr) {
2712 		/* No address given, print short info about all mount points. */
2713 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2714 			db_printf("%p %s on %s (%s)\n", mp,
2715 			    mp->mnt_stat.f_mntfromname,
2716 			    mp->mnt_stat.f_mntonname,
2717 			    mp->mnt_stat.f_fstypename);
2718 			if (db_pager_quit)
2719 				break;
2720 		}
2721 		db_printf("\nMore info: show mount <addr>\n");
2722 		return;
2723 	}
2724 
2725 	mp = (struct mount *)addr;
2726 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
2727 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
2728 
2729 	buf[0] = '\0';
2730 	flags = mp->mnt_flag;
2731 #define	MNT_FLAG(flag)	do {						\
2732 	if (flags & (flag)) {						\
2733 		if (buf[0] != '\0')					\
2734 			strlcat(buf, ", ", sizeof(buf));		\
2735 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
2736 		flags &= ~(flag);					\
2737 	}								\
2738 } while (0)
2739 	MNT_FLAG(MNT_RDONLY);
2740 	MNT_FLAG(MNT_SYNCHRONOUS);
2741 	MNT_FLAG(MNT_NOEXEC);
2742 	MNT_FLAG(MNT_NOSUID);
2743 	MNT_FLAG(MNT_UNION);
2744 	MNT_FLAG(MNT_ASYNC);
2745 	MNT_FLAG(MNT_SUIDDIR);
2746 	MNT_FLAG(MNT_SOFTDEP);
2747 	MNT_FLAG(MNT_NOSYMFOLLOW);
2748 	MNT_FLAG(MNT_GJOURNAL);
2749 	MNT_FLAG(MNT_MULTILABEL);
2750 	MNT_FLAG(MNT_ACLS);
2751 	MNT_FLAG(MNT_NOATIME);
2752 	MNT_FLAG(MNT_NOCLUSTERR);
2753 	MNT_FLAG(MNT_NOCLUSTERW);
2754 	MNT_FLAG(MNT_EXRDONLY);
2755 	MNT_FLAG(MNT_EXPORTED);
2756 	MNT_FLAG(MNT_DEFEXPORTED);
2757 	MNT_FLAG(MNT_EXPORTANON);
2758 	MNT_FLAG(MNT_EXKERB);
2759 	MNT_FLAG(MNT_EXPUBLIC);
2760 	MNT_FLAG(MNT_LOCAL);
2761 	MNT_FLAG(MNT_QUOTA);
2762 	MNT_FLAG(MNT_ROOTFS);
2763 	MNT_FLAG(MNT_USER);
2764 	MNT_FLAG(MNT_IGNORE);
2765 	MNT_FLAG(MNT_UPDATE);
2766 	MNT_FLAG(MNT_DELEXPORT);
2767 	MNT_FLAG(MNT_RELOAD);
2768 	MNT_FLAG(MNT_FORCE);
2769 	MNT_FLAG(MNT_SNAPSHOT);
2770 	MNT_FLAG(MNT_BYFSID);
2771 #undef MNT_FLAG
2772 	if (flags != 0) {
2773 		if (buf[0] != '\0')
2774 			strlcat(buf, ", ", sizeof(buf));
2775 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2776 		    "0x%08x", flags);
2777 	}
2778 	db_printf("    mnt_flag = %s\n", buf);
2779 
2780 	buf[0] = '\0';
2781 	flags = mp->mnt_kern_flag;
2782 #define	MNT_KERN_FLAG(flag)	do {					\
2783 	if (flags & (flag)) {						\
2784 		if (buf[0] != '\0')					\
2785 			strlcat(buf, ", ", sizeof(buf));		\
2786 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
2787 		flags &= ~(flag);					\
2788 	}								\
2789 } while (0)
2790 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
2791 	MNT_KERN_FLAG(MNTK_ASYNC);
2792 	MNT_KERN_FLAG(MNTK_SOFTDEP);
2793 	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
2794 	MNT_KERN_FLAG(MNTK_UNMOUNT);
2795 	MNT_KERN_FLAG(MNTK_MWAIT);
2796 	MNT_KERN_FLAG(MNTK_SUSPEND);
2797 	MNT_KERN_FLAG(MNTK_SUSPEND2);
2798 	MNT_KERN_FLAG(MNTK_SUSPENDED);
2799 	MNT_KERN_FLAG(MNTK_MPSAFE);
2800 	MNT_KERN_FLAG(MNTK_NOKNOTE);
2801 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
2802 #undef MNT_KERN_FLAG
2803 	if (flags != 0) {
2804 		if (buf[0] != '\0')
2805 			strlcat(buf, ", ", sizeof(buf));
2806 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2807 		    "0x%08x", flags);
2808 	}
2809 	db_printf("    mnt_kern_flag = %s\n", buf);
2810 
2811 	sp = &mp->mnt_stat;
2812 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
2813 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
2814 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
2815 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
2816 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
2817 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
2818 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
2819 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
2820 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
2821 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
2822 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
2823 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
2824 
2825 	db_printf("    mnt_cred = { uid=%u ruid=%u",
2826 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
2827 	if (mp->mnt_cred->cr_prison != NULL)
2828 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
2829 	db_printf(" }\n");
2830 	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
2831 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
2832 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
2833 	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
2834 	db_printf("    mnt_noasync = %u\n", mp->mnt_noasync);
2835 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
2836 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
2837 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
2838 	db_printf("    mnt_markercnt = %d\n", mp->mnt_markercnt);
2839 	db_printf("    mnt_holdcnt = %d\n", mp->mnt_holdcnt);
2840 	db_printf("    mnt_holdcntwaiters = %d\n", mp->mnt_holdcntwaiters);
2841 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
2842 	db_printf("    mnt_secondary_accwrites = %d\n",
2843 	    mp->mnt_secondary_accwrites);
2844 	db_printf("    mnt_gjprovider = %s\n",
2845 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
2846 	db_printf("\n");
2847 
2848 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2849 		if (vp->v_type != VMARKER) {
2850 			vn_printf(vp, "vnode ");
2851 			if (db_pager_quit)
2852 				break;
2853 		}
2854 	}
2855 }
2856 #endif	/* DDB */
2857 
2858 /*
2859  * Fill in a struct xvfsconf based on a struct vfsconf.
2860  */
2861 static void
2862 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2863 {
2864 
2865 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2866 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2867 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2868 	xvfsp->vfc_flags = vfsp->vfc_flags;
2869 	/*
2870 	 * These are unused in userland, we keep them
2871 	 * to not break binary compatibility.
2872 	 */
2873 	xvfsp->vfc_vfsops = NULL;
2874 	xvfsp->vfc_next = NULL;
2875 }
2876 
2877 /*
2878  * Top level filesystem related information gathering.
2879  */
2880 static int
2881 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2882 {
2883 	struct vfsconf *vfsp;
2884 	struct xvfsconf xvfsp;
2885 	int error;
2886 
2887 	error = 0;
2888 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2889 		bzero(&xvfsp, sizeof(xvfsp));
2890 		vfsconf2x(vfsp, &xvfsp);
2891 		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2892 		if (error)
2893 			break;
2894 	}
2895 	return (error);
2896 }
2897 
2898 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2899     "S,xvfsconf", "List of all configured filesystems");
2900 
2901 #ifndef BURN_BRIDGES
2902 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2903 
2904 static int
2905 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2906 {
2907 	int *name = (int *)arg1 - 1;	/* XXX */
2908 	u_int namelen = arg2 + 1;	/* XXX */
2909 	struct vfsconf *vfsp;
2910 	struct xvfsconf xvfsp;
2911 
2912 	printf("WARNING: userland calling deprecated sysctl, "
2913 	    "please rebuild world\n");
2914 
2915 #if 1 || defined(COMPAT_PRELITE2)
2916 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2917 	if (namelen == 1)
2918 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2919 #endif
2920 
2921 	switch (name[1]) {
2922 	case VFS_MAXTYPENUM:
2923 		if (namelen != 2)
2924 			return (ENOTDIR);
2925 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2926 	case VFS_CONF:
2927 		if (namelen != 3)
2928 			return (ENOTDIR);	/* overloaded */
2929 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2930 			if (vfsp->vfc_typenum == name[2])
2931 				break;
2932 		if (vfsp == NULL)
2933 			return (EOPNOTSUPP);
2934 		bzero(&xvfsp, sizeof(xvfsp));
2935 		vfsconf2x(vfsp, &xvfsp);
2936 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2937 	}
2938 	return (EOPNOTSUPP);
2939 }
2940 
2941 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
2942 	vfs_sysctl, "Generic filesystem");
2943 
2944 #if 1 || defined(COMPAT_PRELITE2)
2945 
2946 static int
2947 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2948 {
2949 	int error;
2950 	struct vfsconf *vfsp;
2951 	struct ovfsconf ovfs;
2952 
2953 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2954 		bzero(&ovfs, sizeof(ovfs));
2955 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2956 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2957 		ovfs.vfc_index = vfsp->vfc_typenum;
2958 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2959 		ovfs.vfc_flags = vfsp->vfc_flags;
2960 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2961 		if (error)
2962 			return error;
2963 	}
2964 	return 0;
2965 }
2966 
2967 #endif /* 1 || COMPAT_PRELITE2 */
2968 #endif /* !BURN_BRIDGES */
2969 
2970 #define KINFO_VNODESLOP		10
2971 #ifdef notyet
2972 /*
2973  * Dump vnode list (via sysctl).
2974  */
2975 /* ARGSUSED */
2976 static int
2977 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2978 {
2979 	struct xvnode *xvn;
2980 	struct thread *td = req->td;
2981 	struct mount *mp;
2982 	struct vnode *vp;
2983 	int error, len, n;
2984 
2985 	/*
2986 	 * Stale numvnodes access is not fatal here.
2987 	 */
2988 	req->lock = 0;
2989 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2990 	if (!req->oldptr)
2991 		/* Make an estimate */
2992 		return (SYSCTL_OUT(req, 0, len));
2993 
2994 	error = sysctl_wire_old_buffer(req, 0);
2995 	if (error != 0)
2996 		return (error);
2997 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2998 	n = 0;
2999 	mtx_lock(&mountlist_mtx);
3000 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3001 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
3002 			continue;
3003 		MNT_ILOCK(mp);
3004 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3005 			if (n == len)
3006 				break;
3007 			vref(vp);
3008 			xvn[n].xv_size = sizeof *xvn;
3009 			xvn[n].xv_vnode = vp;
3010 			xvn[n].xv_id = 0;	/* XXX compat */
3011 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3012 			XV_COPY(usecount);
3013 			XV_COPY(writecount);
3014 			XV_COPY(holdcnt);
3015 			XV_COPY(mount);
3016 			XV_COPY(numoutput);
3017 			XV_COPY(type);
3018 #undef XV_COPY
3019 			xvn[n].xv_flag = vp->v_vflag;
3020 
3021 			switch (vp->v_type) {
3022 			case VREG:
3023 			case VDIR:
3024 			case VLNK:
3025 				break;
3026 			case VBLK:
3027 			case VCHR:
3028 				if (vp->v_rdev == NULL) {
3029 					vrele(vp);
3030 					continue;
3031 				}
3032 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3033 				break;
3034 			case VSOCK:
3035 				xvn[n].xv_socket = vp->v_socket;
3036 				break;
3037 			case VFIFO:
3038 				xvn[n].xv_fifo = vp->v_fifoinfo;
3039 				break;
3040 			case VNON:
3041 			case VBAD:
3042 			default:
3043 				/* shouldn't happen? */
3044 				vrele(vp);
3045 				continue;
3046 			}
3047 			vrele(vp);
3048 			++n;
3049 		}
3050 		MNT_IUNLOCK(mp);
3051 		mtx_lock(&mountlist_mtx);
3052 		vfs_unbusy(mp, td);
3053 		if (n == len)
3054 			break;
3055 	}
3056 	mtx_unlock(&mountlist_mtx);
3057 
3058 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3059 	free(xvn, M_TEMP);
3060 	return (error);
3061 }
3062 
3063 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3064 	0, 0, sysctl_vnode, "S,xvnode", "");
3065 #endif
3066 
3067 /*
3068  * Unmount all filesystems. The list is traversed in reverse order
3069  * of mounting to avoid dependencies.
3070  */
3071 void
3072 vfs_unmountall(void)
3073 {
3074 	struct mount *mp;
3075 	struct thread *td;
3076 	int error;
3077 
3078 	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
3079 	td = curthread;
3080 	/*
3081 	 * Since this only runs when rebooting, it is not interlocked.
3082 	 */
3083 	while(!TAILQ_EMPTY(&mountlist)) {
3084 		mp = TAILQ_LAST(&mountlist, mntlist);
3085 		error = dounmount(mp, MNT_FORCE, td);
3086 		if (error) {
3087 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3088 			/*
3089 			 * XXX: Due to the way in which we mount the root
3090 			 * file system off of devfs, devfs will generate a
3091 			 * "busy" warning when we try to unmount it before
3092 			 * the root.  Don't print a warning as a result in
3093 			 * order to avoid false positive errors that may
3094 			 * cause needless upset.
3095 			 */
3096 			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3097 				printf("unmount of %s failed (",
3098 				    mp->mnt_stat.f_mntonname);
3099 				if (error == EBUSY)
3100 					printf("BUSY)\n");
3101 				else
3102 					printf("%d)\n", error);
3103 			}
3104 		} else {
3105 			/* The unmount has removed mp from the mountlist */
3106 		}
3107 	}
3108 }
3109 
3110 /*
3111  * perform msync on all vnodes under a mount point
3112  * the mount point must be locked.
3113  */
3114 void
3115 vfs_msync(struct mount *mp, int flags)
3116 {
3117 	struct vnode *vp, *mvp;
3118 	struct vm_object *obj;
3119 
3120 	MNT_ILOCK(mp);
3121 	MNT_VNODE_FOREACH(vp, mp, mvp) {
3122 		VI_LOCK(vp);
3123 		if ((vp->v_iflag & VI_OBJDIRTY) &&
3124 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3125 			MNT_IUNLOCK(mp);
3126 			if (!vget(vp,
3127 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3128 			    curthread)) {
3129 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3130 					vput(vp);
3131 					MNT_ILOCK(mp);
3132 					continue;
3133 				}
3134 
3135 				obj = vp->v_object;
3136 				if (obj != NULL) {
3137 					VM_OBJECT_LOCK(obj);
3138 					vm_object_page_clean(obj, 0, 0,
3139 					    flags == MNT_WAIT ?
3140 					    OBJPC_SYNC : OBJPC_NOSYNC);
3141 					VM_OBJECT_UNLOCK(obj);
3142 				}
3143 				vput(vp);
3144 			}
3145 			MNT_ILOCK(mp);
3146 		} else
3147 			VI_UNLOCK(vp);
3148 	}
3149 	MNT_IUNLOCK(mp);
3150 }
3151 
3152 /*
3153  * Mark a vnode as free, putting it up for recycling.
3154  */
3155 static void
3156 vfree(struct vnode *vp)
3157 {
3158 
3159 	CTR1(KTR_VFS, "vfree vp %p", vp);
3160 	ASSERT_VI_LOCKED(vp, "vfree");
3161 	mtx_lock(&vnode_free_list_mtx);
3162 	VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
3163 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
3164 	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
3165 	VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
3166 	    ("vfree: Freeing doomed vnode"));
3167 	if (vp->v_iflag & VI_AGE) {
3168 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3169 	} else {
3170 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3171 	}
3172 	freevnodes++;
3173 	vp->v_iflag &= ~VI_AGE;
3174 	vp->v_iflag |= VI_FREE;
3175 	mtx_unlock(&vnode_free_list_mtx);
3176 }
3177 
3178 /*
3179  * Opposite of vfree() - mark a vnode as in use.
3180  */
3181 static void
3182 vbusy(struct vnode *vp)
3183 {
3184 	CTR1(KTR_VFS, "vbusy vp %p", vp);
3185 	ASSERT_VI_LOCKED(vp, "vbusy");
3186 	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
3187 	VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
3188 
3189 	mtx_lock(&vnode_free_list_mtx);
3190 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3191 	freevnodes--;
3192 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3193 	mtx_unlock(&vnode_free_list_mtx);
3194 }
3195 
3196 /*
3197  * Initalize per-vnode helper structure to hold poll-related state.
3198  */
3199 void
3200 v_addpollinfo(struct vnode *vp)
3201 {
3202 	struct vpollinfo *vi;
3203 
3204 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3205 	if (vp->v_pollinfo != NULL) {
3206 		uma_zfree(vnodepoll_zone, vi);
3207 		return;
3208 	}
3209 	vp->v_pollinfo = vi;
3210 	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3211 	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note, vp, vfs_knllock,
3212 	    vfs_knlunlock, vfs_knllocked);
3213 }
3214 
3215 /*
3216  * Record a process's interest in events which might happen to
3217  * a vnode.  Because poll uses the historic select-style interface
3218  * internally, this routine serves as both the ``check for any
3219  * pending events'' and the ``record my interest in future events''
3220  * functions.  (These are done together, while the lock is held,
3221  * to avoid race conditions.)
3222  */
3223 int
3224 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3225 {
3226 
3227 	if (vp->v_pollinfo == NULL)
3228 		v_addpollinfo(vp);
3229 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3230 	if (vp->v_pollinfo->vpi_revents & events) {
3231 		/*
3232 		 * This leaves events we are not interested
3233 		 * in available for the other process which
3234 		 * which presumably had requested them
3235 		 * (otherwise they would never have been
3236 		 * recorded).
3237 		 */
3238 		events &= vp->v_pollinfo->vpi_revents;
3239 		vp->v_pollinfo->vpi_revents &= ~events;
3240 
3241 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3242 		return events;
3243 	}
3244 	vp->v_pollinfo->vpi_events |= events;
3245 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3246 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3247 	return 0;
3248 }
3249 
3250 /*
3251  * Routine to create and manage a filesystem syncer vnode.
3252  */
3253 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3254 static int	sync_fsync(struct  vop_fsync_args *);
3255 static int	sync_inactive(struct  vop_inactive_args *);
3256 static int	sync_reclaim(struct  vop_reclaim_args *);
3257 
3258 static struct vop_vector sync_vnodeops = {
3259 	.vop_bypass =	VOP_EOPNOTSUPP,
3260 	.vop_close =	sync_close,		/* close */
3261 	.vop_fsync =	sync_fsync,		/* fsync */
3262 	.vop_inactive =	sync_inactive,	/* inactive */
3263 	.vop_reclaim =	sync_reclaim,	/* reclaim */
3264 	.vop_lock1 =	vop_stdlock,	/* lock */
3265 	.vop_unlock =	vop_stdunlock,	/* unlock */
3266 	.vop_islocked =	vop_stdislocked,	/* islocked */
3267 };
3268 
3269 /*
3270  * Create a new filesystem syncer vnode for the specified mount point.
3271  */
3272 int
3273 vfs_allocate_syncvnode(struct mount *mp)
3274 {
3275 	struct vnode *vp;
3276 	struct bufobj *bo;
3277 	static long start, incr, next;
3278 	int error;
3279 
3280 	/* Allocate a new vnode */
3281 	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
3282 		mp->mnt_syncer = NULL;
3283 		return (error);
3284 	}
3285 	vp->v_type = VNON;
3286 	error = insmntque(vp, mp);
3287 	if (error != 0)
3288 		panic("vfs_allocate_syncvnode: insmntque failed");
3289 	/*
3290 	 * Place the vnode onto the syncer worklist. We attempt to
3291 	 * scatter them about on the list so that they will go off
3292 	 * at evenly distributed times even if all the filesystems
3293 	 * are mounted at once.
3294 	 */
3295 	next += incr;
3296 	if (next == 0 || next > syncer_maxdelay) {
3297 		start /= 2;
3298 		incr /= 2;
3299 		if (start == 0) {
3300 			start = syncer_maxdelay / 2;
3301 			incr = syncer_maxdelay;
3302 		}
3303 		next = start;
3304 	}
3305 	bo = &vp->v_bufobj;
3306 	BO_LOCK(bo);
3307 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3308 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3309 	mtx_lock(&sync_mtx);
3310 	sync_vnode_count++;
3311 	mtx_unlock(&sync_mtx);
3312 	BO_UNLOCK(bo);
3313 	mp->mnt_syncer = vp;
3314 	return (0);
3315 }
3316 
3317 /*
3318  * Do a lazy sync of the filesystem.
3319  */
3320 static int
3321 sync_fsync(struct vop_fsync_args *ap)
3322 {
3323 	struct vnode *syncvp = ap->a_vp;
3324 	struct mount *mp = syncvp->v_mount;
3325 	struct thread *td = ap->a_td;
3326 	int error;
3327 	struct bufobj *bo;
3328 
3329 	/*
3330 	 * We only need to do something if this is a lazy evaluation.
3331 	 */
3332 	if (ap->a_waitfor != MNT_LAZY)
3333 		return (0);
3334 
3335 	/*
3336 	 * Move ourselves to the back of the sync list.
3337 	 */
3338 	bo = &syncvp->v_bufobj;
3339 	BO_LOCK(bo);
3340 	vn_syncer_add_to_worklist(bo, syncdelay);
3341 	BO_UNLOCK(bo);
3342 
3343 	/*
3344 	 * Walk the list of vnodes pushing all that are dirty and
3345 	 * not already on the sync list.
3346 	 */
3347 	mtx_lock(&mountlist_mtx);
3348 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3349 		mtx_unlock(&mountlist_mtx);
3350 		return (0);
3351 	}
3352 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3353 		vfs_unbusy(mp, td);
3354 		return (0);
3355 	}
3356 	MNT_ILOCK(mp);
3357 	mp->mnt_noasync++;
3358 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
3359 	MNT_IUNLOCK(mp);
3360 	vfs_msync(mp, MNT_NOWAIT);
3361 	error = VFS_SYNC(mp, MNT_LAZY, td);
3362 	MNT_ILOCK(mp);
3363 	mp->mnt_noasync--;
3364 	if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
3365 		mp->mnt_kern_flag |= MNTK_ASYNC;
3366 	MNT_IUNLOCK(mp);
3367 	vn_finished_write(mp);
3368 	vfs_unbusy(mp, td);
3369 	return (error);
3370 }
3371 
3372 /*
3373  * The syncer vnode is no referenced.
3374  */
3375 static int
3376 sync_inactive(struct vop_inactive_args *ap)
3377 {
3378 
3379 	vgone(ap->a_vp);
3380 	return (0);
3381 }
3382 
3383 /*
3384  * The syncer vnode is no longer needed and is being decommissioned.
3385  *
3386  * Modifications to the worklist must be protected by sync_mtx.
3387  */
3388 static int
3389 sync_reclaim(struct vop_reclaim_args *ap)
3390 {
3391 	struct vnode *vp = ap->a_vp;
3392 	struct bufobj *bo;
3393 
3394 	bo = &vp->v_bufobj;
3395 	BO_LOCK(bo);
3396 	vp->v_mount->mnt_syncer = NULL;
3397 	if (bo->bo_flag & BO_ONWORKLST) {
3398 		mtx_lock(&sync_mtx);
3399 		LIST_REMOVE(bo, bo_synclist);
3400 		syncer_worklist_len--;
3401 		sync_vnode_count--;
3402 		mtx_unlock(&sync_mtx);
3403 		bo->bo_flag &= ~BO_ONWORKLST;
3404 	}
3405 	BO_UNLOCK(bo);
3406 
3407 	return (0);
3408 }
3409 
3410 /*
3411  * Check if vnode represents a disk device
3412  */
3413 int
3414 vn_isdisk(struct vnode *vp, int *errp)
3415 {
3416 	int error;
3417 
3418 	error = 0;
3419 	dev_lock();
3420 	if (vp->v_type != VCHR)
3421 		error = ENOTBLK;
3422 	else if (vp->v_rdev == NULL)
3423 		error = ENXIO;
3424 	else if (vp->v_rdev->si_devsw == NULL)
3425 		error = ENXIO;
3426 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3427 		error = ENOTBLK;
3428 	dev_unlock();
3429 	if (errp != NULL)
3430 		*errp = error;
3431 	return (error == 0);
3432 }
3433 
3434 /*
3435  * Common filesystem object access control check routine.  Accepts a
3436  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3437  * and optional call-by-reference privused argument allowing vaccess()
3438  * to indicate to the caller whether privilege was used to satisfy the
3439  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3440  *
3441  * The ifdef'd CAPABILITIES version is here for reference, but is not
3442  * actually used.
3443  */
3444 int
3445 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3446     mode_t acc_mode, struct ucred *cred, int *privused)
3447 {
3448 	mode_t dac_granted;
3449 	mode_t priv_granted;
3450 
3451 	/*
3452 	 * Look for a normal, non-privileged way to access the file/directory
3453 	 * as requested.  If it exists, go with that.
3454 	 */
3455 
3456 	if (privused != NULL)
3457 		*privused = 0;
3458 
3459 	dac_granted = 0;
3460 
3461 	/* Check the owner. */
3462 	if (cred->cr_uid == file_uid) {
3463 		dac_granted |= VADMIN;
3464 		if (file_mode & S_IXUSR)
3465 			dac_granted |= VEXEC;
3466 		if (file_mode & S_IRUSR)
3467 			dac_granted |= VREAD;
3468 		if (file_mode & S_IWUSR)
3469 			dac_granted |= (VWRITE | VAPPEND);
3470 
3471 		if ((acc_mode & dac_granted) == acc_mode)
3472 			return (0);
3473 
3474 		goto privcheck;
3475 	}
3476 
3477 	/* Otherwise, check the groups (first match) */
3478 	if (groupmember(file_gid, cred)) {
3479 		if (file_mode & S_IXGRP)
3480 			dac_granted |= VEXEC;
3481 		if (file_mode & S_IRGRP)
3482 			dac_granted |= VREAD;
3483 		if (file_mode & S_IWGRP)
3484 			dac_granted |= (VWRITE | VAPPEND);
3485 
3486 		if ((acc_mode & dac_granted) == acc_mode)
3487 			return (0);
3488 
3489 		goto privcheck;
3490 	}
3491 
3492 	/* Otherwise, check everyone else. */
3493 	if (file_mode & S_IXOTH)
3494 		dac_granted |= VEXEC;
3495 	if (file_mode & S_IROTH)
3496 		dac_granted |= VREAD;
3497 	if (file_mode & S_IWOTH)
3498 		dac_granted |= (VWRITE | VAPPEND);
3499 	if ((acc_mode & dac_granted) == acc_mode)
3500 		return (0);
3501 
3502 privcheck:
3503 	/*
3504 	 * Build a privilege mask to determine if the set of privileges
3505 	 * satisfies the requirements when combined with the granted mask
3506 	 * from above.  For each privilege, if the privilege is required,
3507 	 * bitwise or the request type onto the priv_granted mask.
3508 	 */
3509 	priv_granted = 0;
3510 
3511 	if (type == VDIR) {
3512 		/*
3513 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3514 		 * requests, instead of PRIV_VFS_EXEC.
3515 		 */
3516 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3517 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3518 			priv_granted |= VEXEC;
3519 	} else {
3520 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3521 		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3522 			priv_granted |= VEXEC;
3523 	}
3524 
3525 	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3526 	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3527 		priv_granted |= VREAD;
3528 
3529 	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3530 	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3531 		priv_granted |= (VWRITE | VAPPEND);
3532 
3533 	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3534 	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3535 		priv_granted |= VADMIN;
3536 
3537 	if ((acc_mode & (priv_granted | dac_granted)) == acc_mode) {
3538 		/* XXX audit: privilege used */
3539 		if (privused != NULL)
3540 			*privused = 1;
3541 		return (0);
3542 	}
3543 
3544 	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3545 }
3546 
3547 /*
3548  * Credential check based on process requesting service, and per-attribute
3549  * permissions.
3550  */
3551 int
3552 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3553     struct thread *td, int access)
3554 {
3555 
3556 	/*
3557 	 * Kernel-invoked always succeeds.
3558 	 */
3559 	if (cred == NOCRED)
3560 		return (0);
3561 
3562 	/*
3563 	 * Do not allow privileged processes in jail to directly manipulate
3564 	 * system attributes.
3565 	 */
3566 	switch (attrnamespace) {
3567 	case EXTATTR_NAMESPACE_SYSTEM:
3568 		/* Potentially should be: return (EPERM); */
3569 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3570 	case EXTATTR_NAMESPACE_USER:
3571 		return (VOP_ACCESS(vp, access, cred, td));
3572 	default:
3573 		return (EPERM);
3574 	}
3575 }
3576 
3577 #ifdef DEBUG_VFS_LOCKS
3578 /*
3579  * This only exists to supress warnings from unlocked specfs accesses.  It is
3580  * no longer ok to have an unlocked VFS.
3581  */
3582 #define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3583 
3584 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3585 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3586 
3587 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3588 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3589 
3590 int vfs_badlock_print = 1;	/* Print lock violations. */
3591 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3592 
3593 #ifdef KDB
3594 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3595 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3596 #endif
3597 
3598 static void
3599 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3600 {
3601 
3602 #ifdef KDB
3603 	if (vfs_badlock_backtrace)
3604 		kdb_backtrace();
3605 #endif
3606 	if (vfs_badlock_print)
3607 		printf("%s: %p %s\n", str, (void *)vp, msg);
3608 	if (vfs_badlock_ddb)
3609 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3610 }
3611 
3612 void
3613 assert_vi_locked(struct vnode *vp, const char *str)
3614 {
3615 
3616 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3617 		vfs_badlock("interlock is not locked but should be", str, vp);
3618 }
3619 
3620 void
3621 assert_vi_unlocked(struct vnode *vp, const char *str)
3622 {
3623 
3624 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3625 		vfs_badlock("interlock is locked but should not be", str, vp);
3626 }
3627 
3628 void
3629 assert_vop_locked(struct vnode *vp, const char *str)
3630 {
3631 
3632 	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0)
3633 		vfs_badlock("is not locked but should be", str, vp);
3634 }
3635 
3636 void
3637 assert_vop_unlocked(struct vnode *vp, const char *str)
3638 {
3639 
3640 	if (vp && !IGNORE_LOCK(vp) &&
3641 	    VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3642 		vfs_badlock("is locked but should not be", str, vp);
3643 }
3644 
3645 void
3646 assert_vop_elocked(struct vnode *vp, const char *str)
3647 {
3648 
3649 	if (vp && !IGNORE_LOCK(vp) &&
3650 	    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3651 		vfs_badlock("is not exclusive locked but should be", str, vp);
3652 }
3653 
3654 #if 0
3655 void
3656 assert_vop_elocked_other(struct vnode *vp, const char *str)
3657 {
3658 
3659 	if (vp && !IGNORE_LOCK(vp) &&
3660 	    VOP_ISLOCKED(vp) != LK_EXCLOTHER)
3661 		vfs_badlock("is not exclusive locked by another thread",
3662 		    str, vp);
3663 }
3664 
3665 void
3666 assert_vop_slocked(struct vnode *vp, const char *str)
3667 {
3668 
3669 	if (vp && !IGNORE_LOCK(vp) &&
3670 	    VOP_ISLOCKED(vp) != LK_SHARED)
3671 		vfs_badlock("is not locked shared but should be", str, vp);
3672 }
3673 #endif /* 0 */
3674 #endif /* DEBUG_VFS_LOCKS */
3675 
3676 void
3677 vop_rename_pre(void *ap)
3678 {
3679 	struct vop_rename_args *a = ap;
3680 
3681 #ifdef DEBUG_VFS_LOCKS
3682 	if (a->a_tvp)
3683 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3684 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3685 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3686 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3687 
3688 	/* Check the source (from). */
3689 	if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp)
3690 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3691 	if (a->a_tvp != a->a_fvp)
3692 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
3693 
3694 	/* Check the target. */
3695 	if (a->a_tvp)
3696 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3697 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3698 #endif
3699 	if (a->a_tdvp != a->a_fdvp)
3700 		vhold(a->a_fdvp);
3701 	if (a->a_tvp != a->a_fvp)
3702 		vhold(a->a_fvp);
3703 	vhold(a->a_tdvp);
3704 	if (a->a_tvp)
3705 		vhold(a->a_tvp);
3706 }
3707 
3708 void
3709 vop_strategy_pre(void *ap)
3710 {
3711 #ifdef DEBUG_VFS_LOCKS
3712 	struct vop_strategy_args *a;
3713 	struct buf *bp;
3714 
3715 	a = ap;
3716 	bp = a->a_bp;
3717 
3718 	/*
3719 	 * Cluster ops lock their component buffers but not the IO container.
3720 	 */
3721 	if ((bp->b_flags & B_CLUSTER) != 0)
3722 		return;
3723 
3724 	if (!BUF_ISLOCKED(bp)) {
3725 		if (vfs_badlock_print)
3726 			printf(
3727 			    "VOP_STRATEGY: bp is not locked but should be\n");
3728 		if (vfs_badlock_ddb)
3729 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3730 	}
3731 #endif
3732 }
3733 
3734 void
3735 vop_lookup_pre(void *ap)
3736 {
3737 #ifdef DEBUG_VFS_LOCKS
3738 	struct vop_lookup_args *a;
3739 	struct vnode *dvp;
3740 
3741 	a = ap;
3742 	dvp = a->a_dvp;
3743 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3744 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3745 #endif
3746 }
3747 
3748 void
3749 vop_lookup_post(void *ap, int rc)
3750 {
3751 #ifdef DEBUG_VFS_LOCKS
3752 	struct vop_lookup_args *a;
3753 	struct vnode *dvp;
3754 	struct vnode *vp;
3755 
3756 	a = ap;
3757 	dvp = a->a_dvp;
3758 	vp = *(a->a_vpp);
3759 
3760 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3761 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3762 
3763 	if (!rc)
3764 		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3765 #endif
3766 }
3767 
3768 void
3769 vop_lock_pre(void *ap)
3770 {
3771 #ifdef DEBUG_VFS_LOCKS
3772 	struct vop_lock1_args *a = ap;
3773 
3774 	if ((a->a_flags & LK_INTERLOCK) == 0)
3775 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3776 	else
3777 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3778 #endif
3779 }
3780 
3781 void
3782 vop_lock_post(void *ap, int rc)
3783 {
3784 #ifdef DEBUG_VFS_LOCKS
3785 	struct vop_lock1_args *a = ap;
3786 
3787 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3788 	if (rc == 0)
3789 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3790 #endif
3791 }
3792 
3793 void
3794 vop_unlock_pre(void *ap)
3795 {
3796 #ifdef DEBUG_VFS_LOCKS
3797 	struct vop_unlock_args *a = ap;
3798 
3799 	if (a->a_flags & LK_INTERLOCK)
3800 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3801 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3802 #endif
3803 }
3804 
3805 void
3806 vop_unlock_post(void *ap, int rc)
3807 {
3808 #ifdef DEBUG_VFS_LOCKS
3809 	struct vop_unlock_args *a = ap;
3810 
3811 	if (a->a_flags & LK_INTERLOCK)
3812 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3813 #endif
3814 }
3815 
3816 void
3817 vop_create_post(void *ap, int rc)
3818 {
3819 	struct vop_create_args *a = ap;
3820 
3821 	if (!rc)
3822 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3823 }
3824 
3825 void
3826 vop_link_post(void *ap, int rc)
3827 {
3828 	struct vop_link_args *a = ap;
3829 
3830 	if (!rc) {
3831 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
3832 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
3833 	}
3834 }
3835 
3836 void
3837 vop_mkdir_post(void *ap, int rc)
3838 {
3839 	struct vop_mkdir_args *a = ap;
3840 
3841 	if (!rc)
3842 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3843 }
3844 
3845 void
3846 vop_mknod_post(void *ap, int rc)
3847 {
3848 	struct vop_mknod_args *a = ap;
3849 
3850 	if (!rc)
3851 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3852 }
3853 
3854 void
3855 vop_remove_post(void *ap, int rc)
3856 {
3857 	struct vop_remove_args *a = ap;
3858 
3859 	if (!rc) {
3860 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3861 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3862 	}
3863 }
3864 
3865 void
3866 vop_rename_post(void *ap, int rc)
3867 {
3868 	struct vop_rename_args *a = ap;
3869 
3870 	if (!rc) {
3871 		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
3872 		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
3873 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
3874 		if (a->a_tvp)
3875 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
3876 	}
3877 	if (a->a_tdvp != a->a_fdvp)
3878 		vdrop(a->a_fdvp);
3879 	if (a->a_tvp != a->a_fvp)
3880 		vdrop(a->a_fvp);
3881 	vdrop(a->a_tdvp);
3882 	if (a->a_tvp)
3883 		vdrop(a->a_tvp);
3884 }
3885 
3886 void
3887 vop_rmdir_post(void *ap, int rc)
3888 {
3889 	struct vop_rmdir_args *a = ap;
3890 
3891 	if (!rc) {
3892 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3893 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3894 	}
3895 }
3896 
3897 void
3898 vop_setattr_post(void *ap, int rc)
3899 {
3900 	struct vop_setattr_args *a = ap;
3901 
3902 	if (!rc)
3903 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
3904 }
3905 
3906 void
3907 vop_symlink_post(void *ap, int rc)
3908 {
3909 	struct vop_symlink_args *a = ap;
3910 
3911 	if (!rc)
3912 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3913 }
3914 
3915 static struct knlist fs_knlist;
3916 
3917 static void
3918 vfs_event_init(void *arg)
3919 {
3920 	knlist_init(&fs_knlist, NULL, NULL, NULL, NULL);
3921 }
3922 /* XXX - correct order? */
3923 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3924 
3925 void
3926 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3927 {
3928 
3929 	KNOTE_UNLOCKED(&fs_knlist, event);
3930 }
3931 
3932 static int	filt_fsattach(struct knote *kn);
3933 static void	filt_fsdetach(struct knote *kn);
3934 static int	filt_fsevent(struct knote *kn, long hint);
3935 
3936 struct filterops fs_filtops =
3937 	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3938 
3939 static int
3940 filt_fsattach(struct knote *kn)
3941 {
3942 
3943 	kn->kn_flags |= EV_CLEAR;
3944 	knlist_add(&fs_knlist, kn, 0);
3945 	return (0);
3946 }
3947 
3948 static void
3949 filt_fsdetach(struct knote *kn)
3950 {
3951 
3952 	knlist_remove(&fs_knlist, kn, 0);
3953 }
3954 
3955 static int
3956 filt_fsevent(struct knote *kn, long hint)
3957 {
3958 
3959 	kn->kn_fflags |= hint;
3960 	return (kn->kn_fflags != 0);
3961 }
3962 
3963 static int
3964 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
3965 {
3966 	struct vfsidctl vc;
3967 	int error;
3968 	struct mount *mp;
3969 
3970 	error = SYSCTL_IN(req, &vc, sizeof(vc));
3971 	if (error)
3972 		return (error);
3973 	if (vc.vc_vers != VFS_CTL_VERS1)
3974 		return (EINVAL);
3975 	mp = vfs_getvfs(&vc.vc_fsid);
3976 	if (mp == NULL)
3977 		return (ENOENT);
3978 	/* ensure that a specific sysctl goes to the right filesystem. */
3979 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
3980 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
3981 		vfs_rel(mp);
3982 		return (EINVAL);
3983 	}
3984 	VCTLTOREQ(&vc, req);
3985 	error = VFS_SYSCTL(mp, vc.vc_op, req);
3986 	vfs_rel(mp);
3987 	return (error);
3988 }
3989 
3990 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "",
3991     "Sysctl by fsid");
3992 
3993 /*
3994  * Function to initialize a va_filerev field sensibly.
3995  * XXX: Wouldn't a random number make a lot more sense ??
3996  */
3997 u_quad_t
3998 init_va_filerev(void)
3999 {
4000 	struct bintime bt;
4001 
4002 	getbinuptime(&bt);
4003 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4004 }
4005 
4006 static int	filt_vfsread(struct knote *kn, long hint);
4007 static int	filt_vfswrite(struct knote *kn, long hint);
4008 static int	filt_vfsvnode(struct knote *kn, long hint);
4009 static void	filt_vfsdetach(struct knote *kn);
4010 static struct filterops vfsread_filtops =
4011 	{ 1, NULL, filt_vfsdetach, filt_vfsread };
4012 static struct filterops vfswrite_filtops =
4013 	{ 1, NULL, filt_vfsdetach, filt_vfswrite };
4014 static struct filterops vfsvnode_filtops =
4015 	{ 1, NULL, filt_vfsdetach, filt_vfsvnode };
4016 
4017 static void
4018 vfs_knllock(void *arg)
4019 {
4020 	struct vnode *vp = arg;
4021 
4022 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4023 }
4024 
4025 static void
4026 vfs_knlunlock(void *arg)
4027 {
4028 	struct vnode *vp = arg;
4029 
4030 	VOP_UNLOCK(vp, 0);
4031 }
4032 
4033 static int
4034 vfs_knllocked(void *arg)
4035 {
4036 	struct vnode *vp = arg;
4037 
4038 	return (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
4039 }
4040 
4041 int
4042 vfs_kqfilter(struct vop_kqfilter_args *ap)
4043 {
4044 	struct vnode *vp = ap->a_vp;
4045 	struct knote *kn = ap->a_kn;
4046 	struct knlist *knl;
4047 
4048 	switch (kn->kn_filter) {
4049 	case EVFILT_READ:
4050 		kn->kn_fop = &vfsread_filtops;
4051 		break;
4052 	case EVFILT_WRITE:
4053 		kn->kn_fop = &vfswrite_filtops;
4054 		break;
4055 	case EVFILT_VNODE:
4056 		kn->kn_fop = &vfsvnode_filtops;
4057 		break;
4058 	default:
4059 		return (EINVAL);
4060 	}
4061 
4062 	kn->kn_hook = (caddr_t)vp;
4063 
4064 	if (vp->v_pollinfo == NULL)
4065 		v_addpollinfo(vp);
4066 	if (vp->v_pollinfo == NULL)
4067 		return (ENOMEM);
4068 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4069 	knlist_add(knl, kn, 0);
4070 
4071 	return (0);
4072 }
4073 
4074 /*
4075  * Detach knote from vnode
4076  */
4077 static void
4078 filt_vfsdetach(struct knote *kn)
4079 {
4080 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4081 
4082 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4083 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4084 }
4085 
4086 /*ARGSUSED*/
4087 static int
4088 filt_vfsread(struct knote *kn, long hint)
4089 {
4090 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4091 	struct vattr va;
4092 
4093 	/*
4094 	 * filesystem is gone, so set the EOF flag and schedule
4095 	 * the knote for deletion.
4096 	 */
4097 	if (hint == NOTE_REVOKE) {
4098 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4099 		return (1);
4100 	}
4101 
4102 	if (VOP_GETATTR(vp, &va, curthread->td_ucred, curthread))
4103 		return (0);
4104 
4105 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4106 	return (kn->kn_data != 0);
4107 }
4108 
4109 /*ARGSUSED*/
4110 static int
4111 filt_vfswrite(struct knote *kn, long hint)
4112 {
4113 	/*
4114 	 * filesystem is gone, so set the EOF flag and schedule
4115 	 * the knote for deletion.
4116 	 */
4117 	if (hint == NOTE_REVOKE)
4118 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4119 
4120 	kn->kn_data = 0;
4121 	return (1);
4122 }
4123 
4124 static int
4125 filt_vfsvnode(struct knote *kn, long hint)
4126 {
4127 	if (kn->kn_sfflags & hint)
4128 		kn->kn_fflags |= hint;
4129 	if (hint == NOTE_REVOKE) {
4130 		kn->kn_flags |= EV_EOF;
4131 		return (1);
4132 	}
4133 	return (kn->kn_fflags != 0);
4134 }
4135 
4136 int
4137 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4138 {
4139 	int error;
4140 
4141 	if (dp->d_reclen > ap->a_uio->uio_resid)
4142 		return (ENAMETOOLONG);
4143 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4144 	if (error) {
4145 		if (ap->a_ncookies != NULL) {
4146 			if (ap->a_cookies != NULL)
4147 				free(ap->a_cookies, M_TEMP);
4148 			ap->a_cookies = NULL;
4149 			*ap->a_ncookies = 0;
4150 		}
4151 		return (error);
4152 	}
4153 	if (ap->a_ncookies == NULL)
4154 		return (0);
4155 
4156 	KASSERT(ap->a_cookies,
4157 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4158 
4159 	*ap->a_cookies = realloc(*ap->a_cookies,
4160 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4161 	(*ap->a_cookies)[*ap->a_ncookies] = off;
4162 	return (0);
4163 }
4164 
4165 /*
4166  * Mark for update the access time of the file if the filesystem
4167  * supports VA_MARK_ATIME.  This functionality is used by execve
4168  * and mmap, so we want to avoid the synchronous I/O implied by
4169  * directly setting va_atime for the sake of efficiency.
4170  */
4171 void
4172 vfs_mark_atime(struct vnode *vp, struct thread *td)
4173 {
4174 	struct vattr atimeattr;
4175 
4176 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
4177 		VATTR_NULL(&atimeattr);
4178 		atimeattr.va_vaflags |= VA_MARK_ATIME;
4179 		(void)VOP_SETATTR(vp, &atimeattr, td->td_ucred, td);
4180 	}
4181 }
4182