xref: /freebsd/sys/kern/vfs_subr.c (revision 1f88aa09417f1cfb3929fd37531b1ab51213c2d6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/lockf.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/namei.h>
73 #include <sys/pctrie.h>
74 #include <sys/priv.h>
75 #include <sys/reboot.h>
76 #include <sys/refcount.h>
77 #include <sys/rwlock.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smr.h>
81 #include <sys/smp.h>
82 #include <sys/stat.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 #include <sys/watchdog.h>
88 
89 #include <machine/stdarg.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_kern.h>
100 #include <vm/uma.h>
101 
102 #ifdef DDB
103 #include <ddb/ddb.h>
104 #endif
105 
106 static void	delmntque(struct vnode *vp);
107 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 		    int slpflag, int slptimeo);
109 static void	syncer_shutdown(void *arg, int howto);
110 static int	vtryrecycle(struct vnode *vp);
111 static void	v_init_counters(struct vnode *);
112 static void	vn_seqc_init(struct vnode *);
113 static void	vn_seqc_write_end_free(struct vnode *vp);
114 static void	vgonel(struct vnode *);
115 static bool	vhold_recycle_free(struct vnode *);
116 static void	vfs_knllock(void *arg);
117 static void	vfs_knlunlock(void *arg);
118 static void	vfs_knl_assert_lock(void *arg, int what);
119 static void	destroy_vpollinfo(struct vpollinfo *vi);
120 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 		    daddr_t startlbn, daddr_t endlbn);
122 static void	vnlru_recalc(void);
123 
124 /*
125  * These fences are intended for cases where some synchronization is
126  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
127  * and v_usecount) updates.  Access to v_iflags is generally synchronized
128  * by the interlock, but we have some internal assertions that check vnode
129  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
130  * for now.
131  */
132 #ifdef INVARIANTS
133 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
134 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
135 #else
136 #define	VNODE_REFCOUNT_FENCE_ACQ()
137 #define	VNODE_REFCOUNT_FENCE_REL()
138 #endif
139 
140 /*
141  * Number of vnodes in existence.  Increased whenever getnewvnode()
142  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
143  */
144 static u_long __exclusive_cache_line numvnodes;
145 
146 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
147     "Number of vnodes in existence");
148 
149 static counter_u64_t vnodes_created;
150 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
151     "Number of vnodes created by getnewvnode");
152 
153 /*
154  * Conversion tables for conversion from vnode types to inode formats
155  * and back.
156  */
157 enum vtype iftovt_tab[16] = {
158 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
159 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
160 };
161 int vttoif_tab[10] = {
162 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
163 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
164 };
165 
166 /*
167  * List of allocates vnodes in the system.
168  */
169 static TAILQ_HEAD(freelst, vnode) vnode_list;
170 static struct vnode *vnode_list_free_marker;
171 static struct vnode *vnode_list_reclaim_marker;
172 
173 /*
174  * "Free" vnode target.  Free vnodes are rarely completely free, but are
175  * just ones that are cheap to recycle.  Usually they are for files which
176  * have been stat'd but not read; these usually have inode and namecache
177  * data attached to them.  This target is the preferred minimum size of a
178  * sub-cache consisting mostly of such files. The system balances the size
179  * of this sub-cache with its complement to try to prevent either from
180  * thrashing while the other is relatively inactive.  The targets express
181  * a preference for the best balance.
182  *
183  * "Above" this target there are 2 further targets (watermarks) related
184  * to recyling of free vnodes.  In the best-operating case, the cache is
185  * exactly full, the free list has size between vlowat and vhiwat above the
186  * free target, and recycling from it and normal use maintains this state.
187  * Sometimes the free list is below vlowat or even empty, but this state
188  * is even better for immediate use provided the cache is not full.
189  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
190  * ones) to reach one of these states.  The watermarks are currently hard-
191  * coded as 4% and 9% of the available space higher.  These and the default
192  * of 25% for wantfreevnodes are too large if the memory size is large.
193  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
194  * whenever vnlru_proc() becomes active.
195  */
196 static long wantfreevnodes;
197 static long __exclusive_cache_line freevnodes;
198 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
199     &freevnodes, 0, "Number of \"free\" vnodes");
200 static long freevnodes_old;
201 
202 static counter_u64_t recycles_count;
203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
204     "Number of vnodes recycled to meet vnode cache targets");
205 
206 static counter_u64_t recycles_free_count;
207 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
208     "Number of free vnodes recycled to meet vnode cache targets");
209 
210 static counter_u64_t deferred_inact;
211 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
212     "Number of times inactive processing was deferred");
213 
214 /* To keep more than one thread at a time from running vfs_getnewfsid */
215 static struct mtx mntid_mtx;
216 
217 /*
218  * Lock for any access to the following:
219  *	vnode_list
220  *	numvnodes
221  *	freevnodes
222  */
223 static struct mtx __exclusive_cache_line vnode_list_mtx;
224 
225 /* Publicly exported FS */
226 struct nfs_public nfs_pub;
227 
228 static uma_zone_t buf_trie_zone;
229 static smr_t buf_trie_smr;
230 
231 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
232 static uma_zone_t vnode_zone;
233 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
234 
235 __read_frequently smr_t vfs_smr;
236 
237 /*
238  * The workitem queue.
239  *
240  * It is useful to delay writes of file data and filesystem metadata
241  * for tens of seconds so that quickly created and deleted files need
242  * not waste disk bandwidth being created and removed. To realize this,
243  * we append vnodes to a "workitem" queue. When running with a soft
244  * updates implementation, most pending metadata dependencies should
245  * not wait for more than a few seconds. Thus, mounted on block devices
246  * are delayed only about a half the time that file data is delayed.
247  * Similarly, directory updates are more critical, so are only delayed
248  * about a third the time that file data is delayed. Thus, there are
249  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
250  * one each second (driven off the filesystem syncer process). The
251  * syncer_delayno variable indicates the next queue that is to be processed.
252  * Items that need to be processed soon are placed in this queue:
253  *
254  *	syncer_workitem_pending[syncer_delayno]
255  *
256  * A delay of fifteen seconds is done by placing the request fifteen
257  * entries later in the queue:
258  *
259  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
260  *
261  */
262 static int syncer_delayno;
263 static long syncer_mask;
264 LIST_HEAD(synclist, bufobj);
265 static struct synclist *syncer_workitem_pending;
266 /*
267  * The sync_mtx protects:
268  *	bo->bo_synclist
269  *	sync_vnode_count
270  *	syncer_delayno
271  *	syncer_state
272  *	syncer_workitem_pending
273  *	syncer_worklist_len
274  *	rushjob
275  */
276 static struct mtx sync_mtx;
277 static struct cv sync_wakeup;
278 
279 #define SYNCER_MAXDELAY		32
280 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
281 static int syncdelay = 30;		/* max time to delay syncing data */
282 static int filedelay = 30;		/* time to delay syncing files */
283 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
284     "Time to delay syncing files (in seconds)");
285 static int dirdelay = 29;		/* time to delay syncing directories */
286 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
287     "Time to delay syncing directories (in seconds)");
288 static int metadelay = 28;		/* time to delay syncing metadata */
289 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
290     "Time to delay syncing metadata (in seconds)");
291 static int rushjob;		/* number of slots to run ASAP */
292 static int stat_rush_requests;	/* number of times I/O speeded up */
293 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
294     "Number of times I/O speeded up (rush requests)");
295 
296 #define	VDBATCH_SIZE 8
297 struct vdbatch {
298 	u_int index;
299 	long freevnodes;
300 	struct mtx lock;
301 	struct vnode *tab[VDBATCH_SIZE];
302 };
303 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
304 
305 static void	vdbatch_dequeue(struct vnode *vp);
306 
307 /*
308  * When shutting down the syncer, run it at four times normal speed.
309  */
310 #define SYNCER_SHUTDOWN_SPEEDUP		4
311 static int sync_vnode_count;
312 static int syncer_worklist_len;
313 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
314     syncer_state;
315 
316 /* Target for maximum number of vnodes. */
317 u_long desiredvnodes;
318 static u_long gapvnodes;		/* gap between wanted and desired */
319 static u_long vhiwat;		/* enough extras after expansion */
320 static u_long vlowat;		/* minimal extras before expansion */
321 static u_long vstir;		/* nonzero to stir non-free vnodes */
322 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
323 
324 static u_long vnlru_read_freevnodes(void);
325 
326 /*
327  * Note that no attempt is made to sanitize these parameters.
328  */
329 static int
330 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
331 {
332 	u_long val;
333 	int error;
334 
335 	val = desiredvnodes;
336 	error = sysctl_handle_long(oidp, &val, 0, req);
337 	if (error != 0 || req->newptr == NULL)
338 		return (error);
339 
340 	if (val == desiredvnodes)
341 		return (0);
342 	mtx_lock(&vnode_list_mtx);
343 	desiredvnodes = val;
344 	wantfreevnodes = desiredvnodes / 4;
345 	vnlru_recalc();
346 	mtx_unlock(&vnode_list_mtx);
347 	/*
348 	 * XXX There is no protection against multiple threads changing
349 	 * desiredvnodes at the same time. Locking above only helps vnlru and
350 	 * getnewvnode.
351 	 */
352 	vfs_hash_changesize(desiredvnodes);
353 	cache_changesize(desiredvnodes);
354 	return (0);
355 }
356 
357 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
358     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
359     "LU", "Target for maximum number of vnodes");
360 
361 static int
362 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
363 {
364 	u_long val;
365 	int error;
366 
367 	val = wantfreevnodes;
368 	error = sysctl_handle_long(oidp, &val, 0, req);
369 	if (error != 0 || req->newptr == NULL)
370 		return (error);
371 
372 	if (val == wantfreevnodes)
373 		return (0);
374 	mtx_lock(&vnode_list_mtx);
375 	wantfreevnodes = val;
376 	vnlru_recalc();
377 	mtx_unlock(&vnode_list_mtx);
378 	return (0);
379 }
380 
381 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
382     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
383     "LU", "Target for minimum number of \"free\" vnodes");
384 
385 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
386     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
387 static int vnlru_nowhere;
388 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
389     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
390 
391 static int
392 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
393 {
394 	struct vnode *vp;
395 	struct nameidata nd;
396 	char *buf;
397 	unsigned long ndflags;
398 	int error;
399 
400 	if (req->newptr == NULL)
401 		return (EINVAL);
402 	if (req->newlen >= PATH_MAX)
403 		return (E2BIG);
404 
405 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
406 	error = SYSCTL_IN(req, buf, req->newlen);
407 	if (error != 0)
408 		goto out;
409 
410 	buf[req->newlen] = '\0';
411 
412 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME;
413 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
414 	if ((error = namei(&nd)) != 0)
415 		goto out;
416 	vp = nd.ni_vp;
417 
418 	if (VN_IS_DOOMED(vp)) {
419 		/*
420 		 * This vnode is being recycled.  Return != 0 to let the caller
421 		 * know that the sysctl had no effect.  Return EAGAIN because a
422 		 * subsequent call will likely succeed (since namei will create
423 		 * a new vnode if necessary)
424 		 */
425 		error = EAGAIN;
426 		goto putvnode;
427 	}
428 
429 	counter_u64_add(recycles_count, 1);
430 	vgone(vp);
431 putvnode:
432 	NDFREE(&nd, 0);
433 out:
434 	free(buf, M_TEMP);
435 	return (error);
436 }
437 
438 static int
439 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
440 {
441 	struct thread *td = curthread;
442 	struct vnode *vp;
443 	struct file *fp;
444 	int error;
445 	int fd;
446 
447 	if (req->newptr == NULL)
448 		return (EBADF);
449 
450         error = sysctl_handle_int(oidp, &fd, 0, req);
451         if (error != 0)
452                 return (error);
453 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
454 	if (error != 0)
455 		return (error);
456 	vp = fp->f_vnode;
457 
458 	error = vn_lock(vp, LK_EXCLUSIVE);
459 	if (error != 0)
460 		goto drop;
461 
462 	counter_u64_add(recycles_count, 1);
463 	vgone(vp);
464 	VOP_UNLOCK(vp);
465 drop:
466 	fdrop(fp, td);
467 	return (error);
468 }
469 
470 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
471     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
472     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
473 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
474     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
475     sysctl_ftry_reclaim_vnode, "I",
476     "Try to reclaim a vnode by its file descriptor");
477 
478 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
479 static int vnsz2log;
480 
481 /*
482  * Support for the bufobj clean & dirty pctrie.
483  */
484 static void *
485 buf_trie_alloc(struct pctrie *ptree)
486 {
487 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
488 }
489 
490 static void
491 buf_trie_free(struct pctrie *ptree, void *node)
492 {
493 	uma_zfree_smr(buf_trie_zone, node);
494 }
495 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
496     buf_trie_smr);
497 
498 /*
499  * Initialize the vnode management data structures.
500  *
501  * Reevaluate the following cap on the number of vnodes after the physical
502  * memory size exceeds 512GB.  In the limit, as the physical memory size
503  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
504  */
505 #ifndef	MAXVNODES_MAX
506 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
507 #endif
508 
509 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
510 
511 static struct vnode *
512 vn_alloc_marker(struct mount *mp)
513 {
514 	struct vnode *vp;
515 
516 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
517 	vp->v_type = VMARKER;
518 	vp->v_mount = mp;
519 
520 	return (vp);
521 }
522 
523 static void
524 vn_free_marker(struct vnode *vp)
525 {
526 
527 	MPASS(vp->v_type == VMARKER);
528 	free(vp, M_VNODE_MARKER);
529 }
530 
531 #ifdef KASAN
532 static int
533 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
534 {
535 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
536 	return (0);
537 }
538 
539 static void
540 vnode_dtor(void *mem, int size, void *arg __unused)
541 {
542 	size_t end1, end2, off1, off2;
543 
544 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
545 	    offsetof(struct vnode, v_dbatchcpu),
546 	    "KASAN marks require updating");
547 
548 	off1 = offsetof(struct vnode, v_vnodelist);
549 	off2 = offsetof(struct vnode, v_dbatchcpu);
550 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
551 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
552 
553 	/*
554 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
555 	 * after the vnode has been freed.  Try to get some KASAN coverage by
556 	 * marking everything except those two fields as invalid.  Because
557 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
558 	 * the same 8-byte aligned word must also be marked valid.
559 	 */
560 
561 	/* Handle the area from the start until v_vnodelist... */
562 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
563 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
564 
565 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
566 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
567 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
568 	if (off2 > off1)
569 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
570 		    off2 - off1, KASAN_UMA_FREED);
571 
572 	/* ... and finally the area from v_dbatchcpu to the end. */
573 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
574 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
575 	    KASAN_UMA_FREED);
576 }
577 #endif /* KASAN */
578 
579 /*
580  * Initialize a vnode as it first enters the zone.
581  */
582 static int
583 vnode_init(void *mem, int size, int flags)
584 {
585 	struct vnode *vp;
586 
587 	vp = mem;
588 	bzero(vp, size);
589 	/*
590 	 * Setup locks.
591 	 */
592 	vp->v_vnlock = &vp->v_lock;
593 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
594 	/*
595 	 * By default, don't allow shared locks unless filesystems opt-in.
596 	 */
597 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
598 	    LK_NOSHARE | LK_IS_VNODE);
599 	/*
600 	 * Initialize bufobj.
601 	 */
602 	bufobj_init(&vp->v_bufobj, vp);
603 	/*
604 	 * Initialize namecache.
605 	 */
606 	cache_vnode_init(vp);
607 	/*
608 	 * Initialize rangelocks.
609 	 */
610 	rangelock_init(&vp->v_rl);
611 
612 	vp->v_dbatchcpu = NOCPU;
613 
614 	/*
615 	 * Check vhold_recycle_free for an explanation.
616 	 */
617 	vp->v_holdcnt = VHOLD_NO_SMR;
618 	vp->v_type = VNON;
619 	mtx_lock(&vnode_list_mtx);
620 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
621 	mtx_unlock(&vnode_list_mtx);
622 	return (0);
623 }
624 
625 /*
626  * Free a vnode when it is cleared from the zone.
627  */
628 static void
629 vnode_fini(void *mem, int size)
630 {
631 	struct vnode *vp;
632 	struct bufobj *bo;
633 
634 	vp = mem;
635 	vdbatch_dequeue(vp);
636 	mtx_lock(&vnode_list_mtx);
637 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
638 	mtx_unlock(&vnode_list_mtx);
639 	rangelock_destroy(&vp->v_rl);
640 	lockdestroy(vp->v_vnlock);
641 	mtx_destroy(&vp->v_interlock);
642 	bo = &vp->v_bufobj;
643 	rw_destroy(BO_LOCKPTR(bo));
644 
645 	kasan_mark(mem, size, size, 0);
646 }
647 
648 /*
649  * Provide the size of NFS nclnode and NFS fh for calculation of the
650  * vnode memory consumption.  The size is specified directly to
651  * eliminate dependency on NFS-private header.
652  *
653  * Other filesystems may use bigger or smaller (like UFS and ZFS)
654  * private inode data, but the NFS-based estimation is ample enough.
655  * Still, we care about differences in the size between 64- and 32-bit
656  * platforms.
657  *
658  * Namecache structure size is heuristically
659  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
660  */
661 #ifdef _LP64
662 #define	NFS_NCLNODE_SZ	(528 + 64)
663 #define	NC_SZ		148
664 #else
665 #define	NFS_NCLNODE_SZ	(360 + 32)
666 #define	NC_SZ		92
667 #endif
668 
669 static void
670 vntblinit(void *dummy __unused)
671 {
672 	struct vdbatch *vd;
673 	uma_ctor ctor;
674 	uma_dtor dtor;
675 	int cpu, physvnodes, virtvnodes;
676 	u_int i;
677 
678 	/*
679 	 * Desiredvnodes is a function of the physical memory size and the
680 	 * kernel's heap size.  Generally speaking, it scales with the
681 	 * physical memory size.  The ratio of desiredvnodes to the physical
682 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
683 	 * Thereafter, the
684 	 * marginal ratio of desiredvnodes to the physical memory size is
685 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
686 	 * size.  The memory required by desiredvnodes vnodes and vm objects
687 	 * must not exceed 1/10th of the kernel's heap size.
688 	 */
689 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
690 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
691 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
692 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
693 	desiredvnodes = min(physvnodes, virtvnodes);
694 	if (desiredvnodes > MAXVNODES_MAX) {
695 		if (bootverbose)
696 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
697 			    desiredvnodes, MAXVNODES_MAX);
698 		desiredvnodes = MAXVNODES_MAX;
699 	}
700 	wantfreevnodes = desiredvnodes / 4;
701 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
702 	TAILQ_INIT(&vnode_list);
703 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
704 	/*
705 	 * The lock is taken to appease WITNESS.
706 	 */
707 	mtx_lock(&vnode_list_mtx);
708 	vnlru_recalc();
709 	mtx_unlock(&vnode_list_mtx);
710 	vnode_list_free_marker = vn_alloc_marker(NULL);
711 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
712 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
713 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
714 
715 #ifdef KASAN
716 	ctor = vnode_ctor;
717 	dtor = vnode_dtor;
718 #else
719 	ctor = NULL;
720 	dtor = NULL;
721 #endif
722 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
723 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
724 	uma_zone_set_smr(vnode_zone, vfs_smr);
725 
726 	/*
727 	 * Preallocate enough nodes to support one-per buf so that
728 	 * we can not fail an insert.  reassignbuf() callers can not
729 	 * tolerate the insertion failure.
730 	 */
731 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
732 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
733 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
734 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
735 	uma_prealloc(buf_trie_zone, nbuf);
736 
737 	vnodes_created = counter_u64_alloc(M_WAITOK);
738 	recycles_count = counter_u64_alloc(M_WAITOK);
739 	recycles_free_count = counter_u64_alloc(M_WAITOK);
740 	deferred_inact = counter_u64_alloc(M_WAITOK);
741 
742 	/*
743 	 * Initialize the filesystem syncer.
744 	 */
745 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
746 	    &syncer_mask);
747 	syncer_maxdelay = syncer_mask + 1;
748 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
749 	cv_init(&sync_wakeup, "syncer");
750 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
751 		vnsz2log++;
752 	vnsz2log--;
753 
754 	CPU_FOREACH(cpu) {
755 		vd = DPCPU_ID_PTR((cpu), vd);
756 		bzero(vd, sizeof(*vd));
757 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
758 	}
759 }
760 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
761 
762 /*
763  * Mark a mount point as busy. Used to synchronize access and to delay
764  * unmounting. Eventually, mountlist_mtx is not released on failure.
765  *
766  * vfs_busy() is a custom lock, it can block the caller.
767  * vfs_busy() only sleeps if the unmount is active on the mount point.
768  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
769  * vnode belonging to mp.
770  *
771  * Lookup uses vfs_busy() to traverse mount points.
772  * root fs			var fs
773  * / vnode lock		A	/ vnode lock (/var)		D
774  * /var vnode lock	B	/log vnode lock(/var/log)	E
775  * vfs_busy lock	C	vfs_busy lock			F
776  *
777  * Within each file system, the lock order is C->A->B and F->D->E.
778  *
779  * When traversing across mounts, the system follows that lock order:
780  *
781  *        C->A->B
782  *              |
783  *              +->F->D->E
784  *
785  * The lookup() process for namei("/var") illustrates the process:
786  *  VOP_LOOKUP() obtains B while A is held
787  *  vfs_busy() obtains a shared lock on F while A and B are held
788  *  vput() releases lock on B
789  *  vput() releases lock on A
790  *  VFS_ROOT() obtains lock on D while shared lock on F is held
791  *  vfs_unbusy() releases shared lock on F
792  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
793  *    Attempt to lock A (instead of vp_crossmp) while D is held would
794  *    violate the global order, causing deadlocks.
795  *
796  * dounmount() locks B while F is drained.
797  */
798 int
799 vfs_busy(struct mount *mp, int flags)
800 {
801 	struct mount_pcpu *mpcpu;
802 
803 	MPASS((flags & ~MBF_MASK) == 0);
804 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
805 
806 	if (vfs_op_thread_enter(mp, mpcpu)) {
807 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
808 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
809 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
810 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
811 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
812 		vfs_op_thread_exit(mp, mpcpu);
813 		if (flags & MBF_MNTLSTLOCK)
814 			mtx_unlock(&mountlist_mtx);
815 		return (0);
816 	}
817 
818 	MNT_ILOCK(mp);
819 	vfs_assert_mount_counters(mp);
820 	MNT_REF(mp);
821 	/*
822 	 * If mount point is currently being unmounted, sleep until the
823 	 * mount point fate is decided.  If thread doing the unmounting fails,
824 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
825 	 * that this mount point has survived the unmount attempt and vfs_busy
826 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
827 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
828 	 * about to be really destroyed.  vfs_busy needs to release its
829 	 * reference on the mount point in this case and return with ENOENT,
830 	 * telling the caller that mount mount it tried to busy is no longer
831 	 * valid.
832 	 */
833 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
834 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
835 		    ("%s: non-empty upper mount list with pending unmount",
836 		    __func__));
837 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
838 			MNT_REL(mp);
839 			MNT_IUNLOCK(mp);
840 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
841 			    __func__);
842 			return (ENOENT);
843 		}
844 		if (flags & MBF_MNTLSTLOCK)
845 			mtx_unlock(&mountlist_mtx);
846 		mp->mnt_kern_flag |= MNTK_MWAIT;
847 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
848 		if (flags & MBF_MNTLSTLOCK)
849 			mtx_lock(&mountlist_mtx);
850 		MNT_ILOCK(mp);
851 	}
852 	if (flags & MBF_MNTLSTLOCK)
853 		mtx_unlock(&mountlist_mtx);
854 	mp->mnt_lockref++;
855 	MNT_IUNLOCK(mp);
856 	return (0);
857 }
858 
859 /*
860  * Free a busy filesystem.
861  */
862 void
863 vfs_unbusy(struct mount *mp)
864 {
865 	struct mount_pcpu *mpcpu;
866 	int c;
867 
868 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
869 
870 	if (vfs_op_thread_enter(mp, mpcpu)) {
871 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
872 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
873 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
874 		vfs_op_thread_exit(mp, mpcpu);
875 		return;
876 	}
877 
878 	MNT_ILOCK(mp);
879 	vfs_assert_mount_counters(mp);
880 	MNT_REL(mp);
881 	c = --mp->mnt_lockref;
882 	if (mp->mnt_vfs_ops == 0) {
883 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
884 		MNT_IUNLOCK(mp);
885 		return;
886 	}
887 	if (c < 0)
888 		vfs_dump_mount_counters(mp);
889 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
890 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
891 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
892 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
893 		wakeup(&mp->mnt_lockref);
894 	}
895 	MNT_IUNLOCK(mp);
896 }
897 
898 /*
899  * Lookup a mount point by filesystem identifier.
900  */
901 struct mount *
902 vfs_getvfs(fsid_t *fsid)
903 {
904 	struct mount *mp;
905 
906 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
907 	mtx_lock(&mountlist_mtx);
908 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
909 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
910 			vfs_ref(mp);
911 			mtx_unlock(&mountlist_mtx);
912 			return (mp);
913 		}
914 	}
915 	mtx_unlock(&mountlist_mtx);
916 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
917 	return ((struct mount *) 0);
918 }
919 
920 /*
921  * Lookup a mount point by filesystem identifier, busying it before
922  * returning.
923  *
924  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
925  * cache for popular filesystem identifiers.  The cache is lockess, using
926  * the fact that struct mount's are never freed.  In worst case we may
927  * get pointer to unmounted or even different filesystem, so we have to
928  * check what we got, and go slow way if so.
929  */
930 struct mount *
931 vfs_busyfs(fsid_t *fsid)
932 {
933 #define	FSID_CACHE_SIZE	256
934 	typedef struct mount * volatile vmp_t;
935 	static vmp_t cache[FSID_CACHE_SIZE];
936 	struct mount *mp;
937 	int error;
938 	uint32_t hash;
939 
940 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
941 	hash = fsid->val[0] ^ fsid->val[1];
942 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
943 	mp = cache[hash];
944 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
945 		goto slow;
946 	if (vfs_busy(mp, 0) != 0) {
947 		cache[hash] = NULL;
948 		goto slow;
949 	}
950 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
951 		return (mp);
952 	else
953 	    vfs_unbusy(mp);
954 
955 slow:
956 	mtx_lock(&mountlist_mtx);
957 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
958 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
959 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
960 			if (error) {
961 				cache[hash] = NULL;
962 				mtx_unlock(&mountlist_mtx);
963 				return (NULL);
964 			}
965 			cache[hash] = mp;
966 			return (mp);
967 		}
968 	}
969 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
970 	mtx_unlock(&mountlist_mtx);
971 	return ((struct mount *) 0);
972 }
973 
974 /*
975  * Check if a user can access privileged mount options.
976  */
977 int
978 vfs_suser(struct mount *mp, struct thread *td)
979 {
980 	int error;
981 
982 	if (jailed(td->td_ucred)) {
983 		/*
984 		 * If the jail of the calling thread lacks permission for
985 		 * this type of file system, deny immediately.
986 		 */
987 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
988 			return (EPERM);
989 
990 		/*
991 		 * If the file system was mounted outside the jail of the
992 		 * calling thread, deny immediately.
993 		 */
994 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
995 			return (EPERM);
996 	}
997 
998 	/*
999 	 * If file system supports delegated administration, we don't check
1000 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1001 	 * by the file system itself.
1002 	 * If this is not the user that did original mount, we check for
1003 	 * the PRIV_VFS_MOUNT_OWNER privilege.
1004 	 */
1005 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1006 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1007 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1008 			return (error);
1009 	}
1010 	return (0);
1011 }
1012 
1013 /*
1014  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1015  * will be used to create fake device numbers for stat().  Also try (but
1016  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1017  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1018  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1019  *
1020  * Keep in mind that several mounts may be running in parallel.  Starting
1021  * the search one past where the previous search terminated is both a
1022  * micro-optimization and a defense against returning the same fsid to
1023  * different mounts.
1024  */
1025 void
1026 vfs_getnewfsid(struct mount *mp)
1027 {
1028 	static uint16_t mntid_base;
1029 	struct mount *nmp;
1030 	fsid_t tfsid;
1031 	int mtype;
1032 
1033 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1034 	mtx_lock(&mntid_mtx);
1035 	mtype = mp->mnt_vfc->vfc_typenum;
1036 	tfsid.val[1] = mtype;
1037 	mtype = (mtype & 0xFF) << 24;
1038 	for (;;) {
1039 		tfsid.val[0] = makedev(255,
1040 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1041 		mntid_base++;
1042 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1043 			break;
1044 		vfs_rel(nmp);
1045 	}
1046 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1047 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1048 	mtx_unlock(&mntid_mtx);
1049 }
1050 
1051 /*
1052  * Knob to control the precision of file timestamps:
1053  *
1054  *   0 = seconds only; nanoseconds zeroed.
1055  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1056  *   2 = seconds and nanoseconds, truncated to microseconds.
1057  * >=3 = seconds and nanoseconds, maximum precision.
1058  */
1059 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1060 
1061 static int timestamp_precision = TSP_USEC;
1062 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1063     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1064     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1065     "3+: sec + ns (max. precision))");
1066 
1067 /*
1068  * Get a current timestamp.
1069  */
1070 void
1071 vfs_timestamp(struct timespec *tsp)
1072 {
1073 	struct timeval tv;
1074 
1075 	switch (timestamp_precision) {
1076 	case TSP_SEC:
1077 		tsp->tv_sec = time_second;
1078 		tsp->tv_nsec = 0;
1079 		break;
1080 	case TSP_HZ:
1081 		getnanotime(tsp);
1082 		break;
1083 	case TSP_USEC:
1084 		microtime(&tv);
1085 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1086 		break;
1087 	case TSP_NSEC:
1088 	default:
1089 		nanotime(tsp);
1090 		break;
1091 	}
1092 }
1093 
1094 /*
1095  * Set vnode attributes to VNOVAL
1096  */
1097 void
1098 vattr_null(struct vattr *vap)
1099 {
1100 
1101 	vap->va_type = VNON;
1102 	vap->va_size = VNOVAL;
1103 	vap->va_bytes = VNOVAL;
1104 	vap->va_mode = VNOVAL;
1105 	vap->va_nlink = VNOVAL;
1106 	vap->va_uid = VNOVAL;
1107 	vap->va_gid = VNOVAL;
1108 	vap->va_fsid = VNOVAL;
1109 	vap->va_fileid = VNOVAL;
1110 	vap->va_blocksize = VNOVAL;
1111 	vap->va_rdev = VNOVAL;
1112 	vap->va_atime.tv_sec = VNOVAL;
1113 	vap->va_atime.tv_nsec = VNOVAL;
1114 	vap->va_mtime.tv_sec = VNOVAL;
1115 	vap->va_mtime.tv_nsec = VNOVAL;
1116 	vap->va_ctime.tv_sec = VNOVAL;
1117 	vap->va_ctime.tv_nsec = VNOVAL;
1118 	vap->va_birthtime.tv_sec = VNOVAL;
1119 	vap->va_birthtime.tv_nsec = VNOVAL;
1120 	vap->va_flags = VNOVAL;
1121 	vap->va_gen = VNOVAL;
1122 	vap->va_vaflags = 0;
1123 }
1124 
1125 /*
1126  * Try to reduce the total number of vnodes.
1127  *
1128  * This routine (and its user) are buggy in at least the following ways:
1129  * - all parameters were picked years ago when RAM sizes were significantly
1130  *   smaller
1131  * - it can pick vnodes based on pages used by the vm object, but filesystems
1132  *   like ZFS don't use it making the pick broken
1133  * - since ZFS has its own aging policy it gets partially combated by this one
1134  * - a dedicated method should be provided for filesystems to let them decide
1135  *   whether the vnode should be recycled
1136  *
1137  * This routine is called when we have too many vnodes.  It attempts
1138  * to free <count> vnodes and will potentially free vnodes that still
1139  * have VM backing store (VM backing store is typically the cause
1140  * of a vnode blowout so we want to do this).  Therefore, this operation
1141  * is not considered cheap.
1142  *
1143  * A number of conditions may prevent a vnode from being reclaimed.
1144  * the buffer cache may have references on the vnode, a directory
1145  * vnode may still have references due to the namei cache representing
1146  * underlying files, or the vnode may be in active use.   It is not
1147  * desirable to reuse such vnodes.  These conditions may cause the
1148  * number of vnodes to reach some minimum value regardless of what
1149  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1150  *
1151  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1152  * 			 entries if this argument is strue
1153  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1154  *			 pages.
1155  * @param target	 How many vnodes to reclaim.
1156  * @return		 The number of vnodes that were reclaimed.
1157  */
1158 static int
1159 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1160 {
1161 	struct vnode *vp, *mvp;
1162 	struct mount *mp;
1163 	struct vm_object *object;
1164 	u_long done;
1165 	bool retried;
1166 
1167 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1168 
1169 	retried = false;
1170 	done = 0;
1171 
1172 	mvp = vnode_list_reclaim_marker;
1173 restart:
1174 	vp = mvp;
1175 	while (done < target) {
1176 		vp = TAILQ_NEXT(vp, v_vnodelist);
1177 		if (__predict_false(vp == NULL))
1178 			break;
1179 
1180 		if (__predict_false(vp->v_type == VMARKER))
1181 			continue;
1182 
1183 		/*
1184 		 * If it's been deconstructed already, it's still
1185 		 * referenced, or it exceeds the trigger, skip it.
1186 		 * Also skip free vnodes.  We are trying to make space
1187 		 * to expand the free list, not reduce it.
1188 		 */
1189 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1190 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1191 			goto next_iter;
1192 
1193 		if (vp->v_type == VBAD || vp->v_type == VNON)
1194 			goto next_iter;
1195 
1196 		object = atomic_load_ptr(&vp->v_object);
1197 		if (object == NULL || object->resident_page_count > trigger) {
1198 			goto next_iter;
1199 		}
1200 
1201 		/*
1202 		 * Handle races against vnode allocation. Filesystems lock the
1203 		 * vnode some time after it gets returned from getnewvnode,
1204 		 * despite type and hold count being manipulated earlier.
1205 		 * Resorting to checking v_mount restores guarantees present
1206 		 * before the global list was reworked to contain all vnodes.
1207 		 */
1208 		if (!VI_TRYLOCK(vp))
1209 			goto next_iter;
1210 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1211 			VI_UNLOCK(vp);
1212 			goto next_iter;
1213 		}
1214 		if (vp->v_mount == NULL) {
1215 			VI_UNLOCK(vp);
1216 			goto next_iter;
1217 		}
1218 		vholdl(vp);
1219 		VI_UNLOCK(vp);
1220 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1221 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1222 		mtx_unlock(&vnode_list_mtx);
1223 
1224 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1225 			vdrop(vp);
1226 			goto next_iter_unlocked;
1227 		}
1228 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1229 			vdrop(vp);
1230 			vn_finished_write(mp);
1231 			goto next_iter_unlocked;
1232 		}
1233 
1234 		VI_LOCK(vp);
1235 		if (vp->v_usecount > 0 ||
1236 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1237 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1238 		    vp->v_object->resident_page_count > trigger)) {
1239 			VOP_UNLOCK(vp);
1240 			vdropl(vp);
1241 			vn_finished_write(mp);
1242 			goto next_iter_unlocked;
1243 		}
1244 		counter_u64_add(recycles_count, 1);
1245 		vgonel(vp);
1246 		VOP_UNLOCK(vp);
1247 		vdropl(vp);
1248 		vn_finished_write(mp);
1249 		done++;
1250 next_iter_unlocked:
1251 		if (should_yield())
1252 			kern_yield(PRI_USER);
1253 		mtx_lock(&vnode_list_mtx);
1254 		goto restart;
1255 next_iter:
1256 		MPASS(vp->v_type != VMARKER);
1257 		if (!should_yield())
1258 			continue;
1259 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1260 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1261 		mtx_unlock(&vnode_list_mtx);
1262 		kern_yield(PRI_USER);
1263 		mtx_lock(&vnode_list_mtx);
1264 		goto restart;
1265 	}
1266 	if (done == 0 && !retried) {
1267 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1268 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1269 		retried = true;
1270 		goto restart;
1271 	}
1272 	return (done);
1273 }
1274 
1275 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1276 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1277     0,
1278     "limit on vnode free requests per call to the vnlru_free routine");
1279 
1280 /*
1281  * Attempt to reduce the free list by the requested amount.
1282  */
1283 static int
1284 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1285 {
1286 	struct vnode *vp;
1287 	struct mount *mp;
1288 	int ocount;
1289 
1290 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1291 	if (count > max_vnlru_free)
1292 		count = max_vnlru_free;
1293 	ocount = count;
1294 	vp = mvp;
1295 	for (;;) {
1296 		if (count == 0) {
1297 			break;
1298 		}
1299 		vp = TAILQ_NEXT(vp, v_vnodelist);
1300 		if (__predict_false(vp == NULL)) {
1301 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1302 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1303 			break;
1304 		}
1305 		if (__predict_false(vp->v_type == VMARKER))
1306 			continue;
1307 		if (vp->v_holdcnt > 0)
1308 			continue;
1309 		/*
1310 		 * Don't recycle if our vnode is from different type
1311 		 * of mount point.  Note that mp is type-safe, the
1312 		 * check does not reach unmapped address even if
1313 		 * vnode is reclaimed.
1314 		 */
1315 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1316 		    mp->mnt_op != mnt_op) {
1317 			continue;
1318 		}
1319 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1320 			continue;
1321 		}
1322 		if (!vhold_recycle_free(vp))
1323 			continue;
1324 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1325 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1326 		mtx_unlock(&vnode_list_mtx);
1327 		if (vtryrecycle(vp) == 0)
1328 			count--;
1329 		mtx_lock(&vnode_list_mtx);
1330 		vp = mvp;
1331 	}
1332 	return (ocount - count);
1333 }
1334 
1335 static int
1336 vnlru_free_locked(int count)
1337 {
1338 
1339 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1340 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1341 }
1342 
1343 void
1344 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1345 {
1346 
1347 	MPASS(mnt_op != NULL);
1348 	MPASS(mvp != NULL);
1349 	VNPASS(mvp->v_type == VMARKER, mvp);
1350 	mtx_lock(&vnode_list_mtx);
1351 	vnlru_free_impl(count, mnt_op, mvp);
1352 	mtx_unlock(&vnode_list_mtx);
1353 }
1354 
1355 struct vnode *
1356 vnlru_alloc_marker(void)
1357 {
1358 	struct vnode *mvp;
1359 
1360 	mvp = vn_alloc_marker(NULL);
1361 	mtx_lock(&vnode_list_mtx);
1362 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1363 	mtx_unlock(&vnode_list_mtx);
1364 	return (mvp);
1365 }
1366 
1367 void
1368 vnlru_free_marker(struct vnode *mvp)
1369 {
1370 	mtx_lock(&vnode_list_mtx);
1371 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1372 	mtx_unlock(&vnode_list_mtx);
1373 	vn_free_marker(mvp);
1374 }
1375 
1376 static void
1377 vnlru_recalc(void)
1378 {
1379 
1380 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1381 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1382 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1383 	vlowat = vhiwat / 2;
1384 }
1385 
1386 /*
1387  * Attempt to recycle vnodes in a context that is always safe to block.
1388  * Calling vlrurecycle() from the bowels of filesystem code has some
1389  * interesting deadlock problems.
1390  */
1391 static struct proc *vnlruproc;
1392 static int vnlruproc_sig;
1393 
1394 /*
1395  * The main freevnodes counter is only updated when threads requeue their vnode
1396  * batches. CPUs are conditionally walked to compute a more accurate total.
1397  *
1398  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1399  * at any given moment can still exceed slop, but it should not be by significant
1400  * margin in practice.
1401  */
1402 #define VNLRU_FREEVNODES_SLOP 128
1403 
1404 static __inline void
1405 vfs_freevnodes_inc(void)
1406 {
1407 	struct vdbatch *vd;
1408 
1409 	critical_enter();
1410 	vd = DPCPU_PTR(vd);
1411 	vd->freevnodes++;
1412 	critical_exit();
1413 }
1414 
1415 static __inline void
1416 vfs_freevnodes_dec(void)
1417 {
1418 	struct vdbatch *vd;
1419 
1420 	critical_enter();
1421 	vd = DPCPU_PTR(vd);
1422 	vd->freevnodes--;
1423 	critical_exit();
1424 }
1425 
1426 static u_long
1427 vnlru_read_freevnodes(void)
1428 {
1429 	struct vdbatch *vd;
1430 	long slop;
1431 	int cpu;
1432 
1433 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1434 	if (freevnodes > freevnodes_old)
1435 		slop = freevnodes - freevnodes_old;
1436 	else
1437 		slop = freevnodes_old - freevnodes;
1438 	if (slop < VNLRU_FREEVNODES_SLOP)
1439 		return (freevnodes >= 0 ? freevnodes : 0);
1440 	freevnodes_old = freevnodes;
1441 	CPU_FOREACH(cpu) {
1442 		vd = DPCPU_ID_PTR((cpu), vd);
1443 		freevnodes_old += vd->freevnodes;
1444 	}
1445 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1446 }
1447 
1448 static bool
1449 vnlru_under(u_long rnumvnodes, u_long limit)
1450 {
1451 	u_long rfreevnodes, space;
1452 
1453 	if (__predict_false(rnumvnodes > desiredvnodes))
1454 		return (true);
1455 
1456 	space = desiredvnodes - rnumvnodes;
1457 	if (space < limit) {
1458 		rfreevnodes = vnlru_read_freevnodes();
1459 		if (rfreevnodes > wantfreevnodes)
1460 			space += rfreevnodes - wantfreevnodes;
1461 	}
1462 	return (space < limit);
1463 }
1464 
1465 static bool
1466 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1467 {
1468 	long rfreevnodes, space;
1469 
1470 	if (__predict_false(rnumvnodes > desiredvnodes))
1471 		return (true);
1472 
1473 	space = desiredvnodes - rnumvnodes;
1474 	if (space < limit) {
1475 		rfreevnodes = atomic_load_long(&freevnodes);
1476 		if (rfreevnodes > wantfreevnodes)
1477 			space += rfreevnodes - wantfreevnodes;
1478 	}
1479 	return (space < limit);
1480 }
1481 
1482 static void
1483 vnlru_kick(void)
1484 {
1485 
1486 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1487 	if (vnlruproc_sig == 0) {
1488 		vnlruproc_sig = 1;
1489 		wakeup(vnlruproc);
1490 	}
1491 }
1492 
1493 static void
1494 vnlru_proc(void)
1495 {
1496 	u_long rnumvnodes, rfreevnodes, target;
1497 	unsigned long onumvnodes;
1498 	int done, force, trigger, usevnodes;
1499 	bool reclaim_nc_src, want_reread;
1500 
1501 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1502 	    SHUTDOWN_PRI_FIRST);
1503 
1504 	force = 0;
1505 	want_reread = false;
1506 	for (;;) {
1507 		kproc_suspend_check(vnlruproc);
1508 		mtx_lock(&vnode_list_mtx);
1509 		rnumvnodes = atomic_load_long(&numvnodes);
1510 
1511 		if (want_reread) {
1512 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1513 			want_reread = false;
1514 		}
1515 
1516 		/*
1517 		 * If numvnodes is too large (due to desiredvnodes being
1518 		 * adjusted using its sysctl, or emergency growth), first
1519 		 * try to reduce it by discarding from the free list.
1520 		 */
1521 		if (rnumvnodes > desiredvnodes) {
1522 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1523 			rnumvnodes = atomic_load_long(&numvnodes);
1524 		}
1525 		/*
1526 		 * Sleep if the vnode cache is in a good state.  This is
1527 		 * when it is not over-full and has space for about a 4%
1528 		 * or 9% expansion (by growing its size or inexcessively
1529 		 * reducing its free list).  Otherwise, try to reclaim
1530 		 * space for a 10% expansion.
1531 		 */
1532 		if (vstir && force == 0) {
1533 			force = 1;
1534 			vstir = 0;
1535 		}
1536 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1537 			vnlruproc_sig = 0;
1538 			wakeup(&vnlruproc_sig);
1539 			msleep(vnlruproc, &vnode_list_mtx,
1540 			    PVFS|PDROP, "vlruwt", hz);
1541 			continue;
1542 		}
1543 		rfreevnodes = vnlru_read_freevnodes();
1544 
1545 		onumvnodes = rnumvnodes;
1546 		/*
1547 		 * Calculate parameters for recycling.  These are the same
1548 		 * throughout the loop to give some semblance of fairness.
1549 		 * The trigger point is to avoid recycling vnodes with lots
1550 		 * of resident pages.  We aren't trying to free memory; we
1551 		 * are trying to recycle or at least free vnodes.
1552 		 */
1553 		if (rnumvnodes <= desiredvnodes)
1554 			usevnodes = rnumvnodes - rfreevnodes;
1555 		else
1556 			usevnodes = rnumvnodes;
1557 		if (usevnodes <= 0)
1558 			usevnodes = 1;
1559 		/*
1560 		 * The trigger value is is chosen to give a conservatively
1561 		 * large value to ensure that it alone doesn't prevent
1562 		 * making progress.  The value can easily be so large that
1563 		 * it is effectively infinite in some congested and
1564 		 * misconfigured cases, and this is necessary.  Normally
1565 		 * it is about 8 to 100 (pages), which is quite large.
1566 		 */
1567 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1568 		if (force < 2)
1569 			trigger = vsmalltrigger;
1570 		reclaim_nc_src = force >= 3;
1571 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1572 		target = target / 10 + 1;
1573 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1574 		mtx_unlock(&vnode_list_mtx);
1575 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1576 			uma_reclaim(UMA_RECLAIM_DRAIN);
1577 		if (done == 0) {
1578 			if (force == 0 || force == 1) {
1579 				force = 2;
1580 				continue;
1581 			}
1582 			if (force == 2) {
1583 				force = 3;
1584 				continue;
1585 			}
1586 			want_reread = true;
1587 			force = 0;
1588 			vnlru_nowhere++;
1589 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1590 		} else {
1591 			want_reread = true;
1592 			kern_yield(PRI_USER);
1593 		}
1594 	}
1595 }
1596 
1597 static struct kproc_desc vnlru_kp = {
1598 	"vnlru",
1599 	vnlru_proc,
1600 	&vnlruproc
1601 };
1602 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1603     &vnlru_kp);
1604 
1605 /*
1606  * Routines having to do with the management of the vnode table.
1607  */
1608 
1609 /*
1610  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1611  * before we actually vgone().  This function must be called with the vnode
1612  * held to prevent the vnode from being returned to the free list midway
1613  * through vgone().
1614  */
1615 static int
1616 vtryrecycle(struct vnode *vp)
1617 {
1618 	struct mount *vnmp;
1619 
1620 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1621 	VNASSERT(vp->v_holdcnt, vp,
1622 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1623 	/*
1624 	 * This vnode may found and locked via some other list, if so we
1625 	 * can't recycle it yet.
1626 	 */
1627 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1628 		CTR2(KTR_VFS,
1629 		    "%s: impossible to recycle, vp %p lock is already held",
1630 		    __func__, vp);
1631 		vdrop(vp);
1632 		return (EWOULDBLOCK);
1633 	}
1634 	/*
1635 	 * Don't recycle if its filesystem is being suspended.
1636 	 */
1637 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1638 		VOP_UNLOCK(vp);
1639 		CTR2(KTR_VFS,
1640 		    "%s: impossible to recycle, cannot start the write for %p",
1641 		    __func__, vp);
1642 		vdrop(vp);
1643 		return (EBUSY);
1644 	}
1645 	/*
1646 	 * If we got this far, we need to acquire the interlock and see if
1647 	 * anyone picked up this vnode from another list.  If not, we will
1648 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1649 	 * will skip over it.
1650 	 */
1651 	VI_LOCK(vp);
1652 	if (vp->v_usecount) {
1653 		VOP_UNLOCK(vp);
1654 		vdropl(vp);
1655 		vn_finished_write(vnmp);
1656 		CTR2(KTR_VFS,
1657 		    "%s: impossible to recycle, %p is already referenced",
1658 		    __func__, vp);
1659 		return (EBUSY);
1660 	}
1661 	if (!VN_IS_DOOMED(vp)) {
1662 		counter_u64_add(recycles_free_count, 1);
1663 		vgonel(vp);
1664 	}
1665 	VOP_UNLOCK(vp);
1666 	vdropl(vp);
1667 	vn_finished_write(vnmp);
1668 	return (0);
1669 }
1670 
1671 /*
1672  * Allocate a new vnode.
1673  *
1674  * The operation never returns an error. Returning an error was disabled
1675  * in r145385 (dated 2005) with the following comment:
1676  *
1677  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1678  *
1679  * Given the age of this commit (almost 15 years at the time of writing this
1680  * comment) restoring the ability to fail requires a significant audit of
1681  * all codepaths.
1682  *
1683  * The routine can try to free a vnode or stall for up to 1 second waiting for
1684  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1685  */
1686 static u_long vn_alloc_cyclecount;
1687 
1688 static struct vnode * __noinline
1689 vn_alloc_hard(struct mount *mp)
1690 {
1691 	u_long rnumvnodes, rfreevnodes;
1692 
1693 	mtx_lock(&vnode_list_mtx);
1694 	rnumvnodes = atomic_load_long(&numvnodes);
1695 	if (rnumvnodes + 1 < desiredvnodes) {
1696 		vn_alloc_cyclecount = 0;
1697 		goto alloc;
1698 	}
1699 	rfreevnodes = vnlru_read_freevnodes();
1700 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1701 		vn_alloc_cyclecount = 0;
1702 		vstir = 1;
1703 	}
1704 	/*
1705 	 * Grow the vnode cache if it will not be above its target max
1706 	 * after growing.  Otherwise, if the free list is nonempty, try
1707 	 * to reclaim 1 item from it before growing the cache (possibly
1708 	 * above its target max if the reclamation failed or is delayed).
1709 	 * Otherwise, wait for some space.  In all cases, schedule
1710 	 * vnlru_proc() if we are getting short of space.  The watermarks
1711 	 * should be chosen so that we never wait or even reclaim from
1712 	 * the free list to below its target minimum.
1713 	 */
1714 	if (vnlru_free_locked(1) > 0)
1715 		goto alloc;
1716 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1717 		/*
1718 		 * Wait for space for a new vnode.
1719 		 */
1720 		vnlru_kick();
1721 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1722 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1723 		    vnlru_read_freevnodes() > 1)
1724 			vnlru_free_locked(1);
1725 	}
1726 alloc:
1727 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1728 	if (vnlru_under(rnumvnodes, vlowat))
1729 		vnlru_kick();
1730 	mtx_unlock(&vnode_list_mtx);
1731 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1732 }
1733 
1734 static struct vnode *
1735 vn_alloc(struct mount *mp)
1736 {
1737 	u_long rnumvnodes;
1738 
1739 	if (__predict_false(vn_alloc_cyclecount != 0))
1740 		return (vn_alloc_hard(mp));
1741 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1742 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1743 		atomic_subtract_long(&numvnodes, 1);
1744 		return (vn_alloc_hard(mp));
1745 	}
1746 
1747 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1748 }
1749 
1750 static void
1751 vn_free(struct vnode *vp)
1752 {
1753 
1754 	atomic_subtract_long(&numvnodes, 1);
1755 	uma_zfree_smr(vnode_zone, vp);
1756 }
1757 
1758 /*
1759  * Return the next vnode from the free list.
1760  */
1761 int
1762 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1763     struct vnode **vpp)
1764 {
1765 	struct vnode *vp;
1766 	struct thread *td;
1767 	struct lock_object *lo;
1768 
1769 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1770 
1771 	KASSERT(vops->registered,
1772 	    ("%s: not registered vector op %p\n", __func__, vops));
1773 
1774 	td = curthread;
1775 	if (td->td_vp_reserved != NULL) {
1776 		vp = td->td_vp_reserved;
1777 		td->td_vp_reserved = NULL;
1778 	} else {
1779 		vp = vn_alloc(mp);
1780 	}
1781 	counter_u64_add(vnodes_created, 1);
1782 	/*
1783 	 * Locks are given the generic name "vnode" when created.
1784 	 * Follow the historic practice of using the filesystem
1785 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1786 	 *
1787 	 * Locks live in a witness group keyed on their name. Thus,
1788 	 * when a lock is renamed, it must also move from the witness
1789 	 * group of its old name to the witness group of its new name.
1790 	 *
1791 	 * The change only needs to be made when the vnode moves
1792 	 * from one filesystem type to another. We ensure that each
1793 	 * filesystem use a single static name pointer for its tag so
1794 	 * that we can compare pointers rather than doing a strcmp().
1795 	 */
1796 	lo = &vp->v_vnlock->lock_object;
1797 #ifdef WITNESS
1798 	if (lo->lo_name != tag) {
1799 #endif
1800 		lo->lo_name = tag;
1801 #ifdef WITNESS
1802 		WITNESS_DESTROY(lo);
1803 		WITNESS_INIT(lo, tag);
1804 	}
1805 #endif
1806 	/*
1807 	 * By default, don't allow shared locks unless filesystems opt-in.
1808 	 */
1809 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1810 	/*
1811 	 * Finalize various vnode identity bits.
1812 	 */
1813 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1814 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1815 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1816 	vp->v_type = VNON;
1817 	vp->v_op = vops;
1818 	vp->v_irflag = 0;
1819 	v_init_counters(vp);
1820 	vn_seqc_init(vp);
1821 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1822 #ifdef DIAGNOSTIC
1823 	if (mp == NULL && vops != &dead_vnodeops)
1824 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1825 #endif
1826 #ifdef MAC
1827 	mac_vnode_init(vp);
1828 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1829 		mac_vnode_associate_singlelabel(mp, vp);
1830 #endif
1831 	if (mp != NULL) {
1832 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1833 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1834 			vp->v_vflag |= VV_NOKNOTE;
1835 	}
1836 
1837 	/*
1838 	 * For the filesystems which do not use vfs_hash_insert(),
1839 	 * still initialize v_hash to have vfs_hash_index() useful.
1840 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1841 	 * its own hashing.
1842 	 */
1843 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1844 
1845 	*vpp = vp;
1846 	return (0);
1847 }
1848 
1849 void
1850 getnewvnode_reserve(void)
1851 {
1852 	struct thread *td;
1853 
1854 	td = curthread;
1855 	MPASS(td->td_vp_reserved == NULL);
1856 	td->td_vp_reserved = vn_alloc(NULL);
1857 }
1858 
1859 void
1860 getnewvnode_drop_reserve(void)
1861 {
1862 	struct thread *td;
1863 
1864 	td = curthread;
1865 	if (td->td_vp_reserved != NULL) {
1866 		vn_free(td->td_vp_reserved);
1867 		td->td_vp_reserved = NULL;
1868 	}
1869 }
1870 
1871 static void __noinline
1872 freevnode(struct vnode *vp)
1873 {
1874 	struct bufobj *bo;
1875 
1876 	/*
1877 	 * The vnode has been marked for destruction, so free it.
1878 	 *
1879 	 * The vnode will be returned to the zone where it will
1880 	 * normally remain until it is needed for another vnode. We
1881 	 * need to cleanup (or verify that the cleanup has already
1882 	 * been done) any residual data left from its current use
1883 	 * so as not to contaminate the freshly allocated vnode.
1884 	 */
1885 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1886 	/*
1887 	 * Paired with vgone.
1888 	 */
1889 	vn_seqc_write_end_free(vp);
1890 
1891 	bo = &vp->v_bufobj;
1892 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1893 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1894 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1895 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1896 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1897 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1898 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1899 	    ("clean blk trie not empty"));
1900 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1901 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1902 	    ("dirty blk trie not empty"));
1903 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
1904 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
1905 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
1906 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1907 	    ("Dangling rangelock waiters"));
1908 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1909 	    ("Leaked inactivation"));
1910 	VI_UNLOCK(vp);
1911 #ifdef MAC
1912 	mac_vnode_destroy(vp);
1913 #endif
1914 	if (vp->v_pollinfo != NULL) {
1915 		destroy_vpollinfo(vp->v_pollinfo);
1916 		vp->v_pollinfo = NULL;
1917 	}
1918 	vp->v_mountedhere = NULL;
1919 	vp->v_unpcb = NULL;
1920 	vp->v_rdev = NULL;
1921 	vp->v_fifoinfo = NULL;
1922 	vp->v_iflag = 0;
1923 	vp->v_vflag = 0;
1924 	bo->bo_flag = 0;
1925 	vn_free(vp);
1926 }
1927 
1928 /*
1929  * Delete from old mount point vnode list, if on one.
1930  */
1931 static void
1932 delmntque(struct vnode *vp)
1933 {
1934 	struct mount *mp;
1935 
1936 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1937 
1938 	mp = vp->v_mount;
1939 	if (mp == NULL)
1940 		return;
1941 	MNT_ILOCK(mp);
1942 	VI_LOCK(vp);
1943 	vp->v_mount = NULL;
1944 	VI_UNLOCK(vp);
1945 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1946 		("bad mount point vnode list size"));
1947 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1948 	mp->mnt_nvnodelistsize--;
1949 	MNT_REL(mp);
1950 	MNT_IUNLOCK(mp);
1951 }
1952 
1953 static void
1954 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1955 {
1956 
1957 	vp->v_data = NULL;
1958 	vp->v_op = &dead_vnodeops;
1959 	vgone(vp);
1960 	vput(vp);
1961 }
1962 
1963 /*
1964  * Insert into list of vnodes for the new mount point, if available.
1965  */
1966 int
1967 insmntque1(struct vnode *vp, struct mount *mp,
1968 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1969 {
1970 
1971 	KASSERT(vp->v_mount == NULL,
1972 		("insmntque: vnode already on per mount vnode list"));
1973 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1974 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1975 
1976 	/*
1977 	 * We acquire the vnode interlock early to ensure that the
1978 	 * vnode cannot be recycled by another process releasing a
1979 	 * holdcnt on it before we get it on both the vnode list
1980 	 * and the active vnode list. The mount mutex protects only
1981 	 * manipulation of the vnode list and the vnode freelist
1982 	 * mutex protects only manipulation of the active vnode list.
1983 	 * Hence the need to hold the vnode interlock throughout.
1984 	 */
1985 	MNT_ILOCK(mp);
1986 	VI_LOCK(vp);
1987 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1988 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1989 	    mp->mnt_nvnodelistsize == 0)) &&
1990 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1991 		VI_UNLOCK(vp);
1992 		MNT_IUNLOCK(mp);
1993 		if (dtr != NULL)
1994 			dtr(vp, dtr_arg);
1995 		return (EBUSY);
1996 	}
1997 	vp->v_mount = mp;
1998 	MNT_REF(mp);
1999 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2000 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2001 		("neg mount point vnode list size"));
2002 	mp->mnt_nvnodelistsize++;
2003 	VI_UNLOCK(vp);
2004 	MNT_IUNLOCK(mp);
2005 	return (0);
2006 }
2007 
2008 int
2009 insmntque(struct vnode *vp, struct mount *mp)
2010 {
2011 
2012 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
2013 }
2014 
2015 /*
2016  * Flush out and invalidate all buffers associated with a bufobj
2017  * Called with the underlying object locked.
2018  */
2019 int
2020 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2021 {
2022 	int error;
2023 
2024 	BO_LOCK(bo);
2025 	if (flags & V_SAVE) {
2026 		error = bufobj_wwait(bo, slpflag, slptimeo);
2027 		if (error) {
2028 			BO_UNLOCK(bo);
2029 			return (error);
2030 		}
2031 		if (bo->bo_dirty.bv_cnt > 0) {
2032 			BO_UNLOCK(bo);
2033 			do {
2034 				error = BO_SYNC(bo, MNT_WAIT);
2035 			} while (error == ERELOOKUP);
2036 			if (error != 0)
2037 				return (error);
2038 			BO_LOCK(bo);
2039 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2040 				BO_UNLOCK(bo);
2041 				return (EBUSY);
2042 			}
2043 		}
2044 	}
2045 	/*
2046 	 * If you alter this loop please notice that interlock is dropped and
2047 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2048 	 * no race conditions occur from this.
2049 	 */
2050 	do {
2051 		error = flushbuflist(&bo->bo_clean,
2052 		    flags, bo, slpflag, slptimeo);
2053 		if (error == 0 && !(flags & V_CLEANONLY))
2054 			error = flushbuflist(&bo->bo_dirty,
2055 			    flags, bo, slpflag, slptimeo);
2056 		if (error != 0 && error != EAGAIN) {
2057 			BO_UNLOCK(bo);
2058 			return (error);
2059 		}
2060 	} while (error != 0);
2061 
2062 	/*
2063 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2064 	 * have write I/O in-progress but if there is a VM object then the
2065 	 * VM object can also have read-I/O in-progress.
2066 	 */
2067 	do {
2068 		bufobj_wwait(bo, 0, 0);
2069 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2070 			BO_UNLOCK(bo);
2071 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2072 			BO_LOCK(bo);
2073 		}
2074 	} while (bo->bo_numoutput > 0);
2075 	BO_UNLOCK(bo);
2076 
2077 	/*
2078 	 * Destroy the copy in the VM cache, too.
2079 	 */
2080 	if (bo->bo_object != NULL &&
2081 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2082 		VM_OBJECT_WLOCK(bo->bo_object);
2083 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2084 		    OBJPR_CLEANONLY : 0);
2085 		VM_OBJECT_WUNLOCK(bo->bo_object);
2086 	}
2087 
2088 #ifdef INVARIANTS
2089 	BO_LOCK(bo);
2090 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2091 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2092 	    bo->bo_clean.bv_cnt > 0))
2093 		panic("vinvalbuf: flush failed");
2094 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2095 	    bo->bo_dirty.bv_cnt > 0)
2096 		panic("vinvalbuf: flush dirty failed");
2097 	BO_UNLOCK(bo);
2098 #endif
2099 	return (0);
2100 }
2101 
2102 /*
2103  * Flush out and invalidate all buffers associated with a vnode.
2104  * Called with the underlying object locked.
2105  */
2106 int
2107 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2108 {
2109 
2110 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2111 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2112 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2113 		return (0);
2114 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2115 }
2116 
2117 /*
2118  * Flush out buffers on the specified list.
2119  *
2120  */
2121 static int
2122 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2123     int slptimeo)
2124 {
2125 	struct buf *bp, *nbp;
2126 	int retval, error;
2127 	daddr_t lblkno;
2128 	b_xflags_t xflags;
2129 
2130 	ASSERT_BO_WLOCKED(bo);
2131 
2132 	retval = 0;
2133 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2134 		/*
2135 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2136 		 * do not skip any buffers. If we are flushing only V_NORMAL
2137 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2138 		 * flushing only V_ALT buffers then skip buffers not marked
2139 		 * as BX_ALTDATA.
2140 		 */
2141 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2142 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2143 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2144 			continue;
2145 		}
2146 		if (nbp != NULL) {
2147 			lblkno = nbp->b_lblkno;
2148 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2149 		}
2150 		retval = EAGAIN;
2151 		error = BUF_TIMELOCK(bp,
2152 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2153 		    "flushbuf", slpflag, slptimeo);
2154 		if (error) {
2155 			BO_LOCK(bo);
2156 			return (error != ENOLCK ? error : EAGAIN);
2157 		}
2158 		KASSERT(bp->b_bufobj == bo,
2159 		    ("bp %p wrong b_bufobj %p should be %p",
2160 		    bp, bp->b_bufobj, bo));
2161 		/*
2162 		 * XXX Since there are no node locks for NFS, I
2163 		 * believe there is a slight chance that a delayed
2164 		 * write will occur while sleeping just above, so
2165 		 * check for it.
2166 		 */
2167 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2168 		    (flags & V_SAVE)) {
2169 			bremfree(bp);
2170 			bp->b_flags |= B_ASYNC;
2171 			bwrite(bp);
2172 			BO_LOCK(bo);
2173 			return (EAGAIN);	/* XXX: why not loop ? */
2174 		}
2175 		bremfree(bp);
2176 		bp->b_flags |= (B_INVAL | B_RELBUF);
2177 		bp->b_flags &= ~B_ASYNC;
2178 		brelse(bp);
2179 		BO_LOCK(bo);
2180 		if (nbp == NULL)
2181 			break;
2182 		nbp = gbincore(bo, lblkno);
2183 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2184 		    != xflags)
2185 			break;			/* nbp invalid */
2186 	}
2187 	return (retval);
2188 }
2189 
2190 int
2191 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2192 {
2193 	struct buf *bp;
2194 	int error;
2195 	daddr_t lblkno;
2196 
2197 	ASSERT_BO_LOCKED(bo);
2198 
2199 	for (lblkno = startn;;) {
2200 again:
2201 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2202 		if (bp == NULL || bp->b_lblkno >= endn ||
2203 		    bp->b_lblkno < startn)
2204 			break;
2205 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2206 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2207 		if (error != 0) {
2208 			BO_RLOCK(bo);
2209 			if (error == ENOLCK)
2210 				goto again;
2211 			return (error);
2212 		}
2213 		KASSERT(bp->b_bufobj == bo,
2214 		    ("bp %p wrong b_bufobj %p should be %p",
2215 		    bp, bp->b_bufobj, bo));
2216 		lblkno = bp->b_lblkno + 1;
2217 		if ((bp->b_flags & B_MANAGED) == 0)
2218 			bremfree(bp);
2219 		bp->b_flags |= B_RELBUF;
2220 		/*
2221 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2222 		 * pages backing each buffer in the range are unlikely to be
2223 		 * reused.  Dirty buffers will have the hint applied once
2224 		 * they've been written.
2225 		 */
2226 		if ((bp->b_flags & B_VMIO) != 0)
2227 			bp->b_flags |= B_NOREUSE;
2228 		brelse(bp);
2229 		BO_RLOCK(bo);
2230 	}
2231 	return (0);
2232 }
2233 
2234 /*
2235  * Truncate a file's buffer and pages to a specified length.  This
2236  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2237  * sync activity.
2238  */
2239 int
2240 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2241 {
2242 	struct buf *bp, *nbp;
2243 	struct bufobj *bo;
2244 	daddr_t startlbn;
2245 
2246 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2247 	    vp, blksize, (uintmax_t)length);
2248 
2249 	/*
2250 	 * Round up to the *next* lbn.
2251 	 */
2252 	startlbn = howmany(length, blksize);
2253 
2254 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2255 
2256 	bo = &vp->v_bufobj;
2257 restart_unlocked:
2258 	BO_LOCK(bo);
2259 
2260 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2261 		;
2262 
2263 	if (length > 0) {
2264 restartsync:
2265 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2266 			if (bp->b_lblkno > 0)
2267 				continue;
2268 			/*
2269 			 * Since we hold the vnode lock this should only
2270 			 * fail if we're racing with the buf daemon.
2271 			 */
2272 			if (BUF_LOCK(bp,
2273 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2274 			    BO_LOCKPTR(bo)) == ENOLCK)
2275 				goto restart_unlocked;
2276 
2277 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2278 			    ("buf(%p) on dirty queue without DELWRI", bp));
2279 
2280 			bremfree(bp);
2281 			bawrite(bp);
2282 			BO_LOCK(bo);
2283 			goto restartsync;
2284 		}
2285 	}
2286 
2287 	bufobj_wwait(bo, 0, 0);
2288 	BO_UNLOCK(bo);
2289 	vnode_pager_setsize(vp, length);
2290 
2291 	return (0);
2292 }
2293 
2294 /*
2295  * Invalidate the cached pages of a file's buffer within the range of block
2296  * numbers [startlbn, endlbn).
2297  */
2298 void
2299 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2300     int blksize)
2301 {
2302 	struct bufobj *bo;
2303 	off_t start, end;
2304 
2305 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2306 
2307 	start = blksize * startlbn;
2308 	end = blksize * endlbn;
2309 
2310 	bo = &vp->v_bufobj;
2311 	BO_LOCK(bo);
2312 	MPASS(blksize == bo->bo_bsize);
2313 
2314 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2315 		;
2316 
2317 	BO_UNLOCK(bo);
2318 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2319 }
2320 
2321 static int
2322 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2323     daddr_t startlbn, daddr_t endlbn)
2324 {
2325 	struct buf *bp, *nbp;
2326 	bool anyfreed;
2327 
2328 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2329 	ASSERT_BO_LOCKED(bo);
2330 
2331 	do {
2332 		anyfreed = false;
2333 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2334 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2335 				continue;
2336 			if (BUF_LOCK(bp,
2337 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2338 			    BO_LOCKPTR(bo)) == ENOLCK) {
2339 				BO_LOCK(bo);
2340 				return (EAGAIN);
2341 			}
2342 
2343 			bremfree(bp);
2344 			bp->b_flags |= B_INVAL | B_RELBUF;
2345 			bp->b_flags &= ~B_ASYNC;
2346 			brelse(bp);
2347 			anyfreed = true;
2348 
2349 			BO_LOCK(bo);
2350 			if (nbp != NULL &&
2351 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2352 			    nbp->b_vp != vp ||
2353 			    (nbp->b_flags & B_DELWRI) != 0))
2354 				return (EAGAIN);
2355 		}
2356 
2357 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2358 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2359 				continue;
2360 			if (BUF_LOCK(bp,
2361 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2362 			    BO_LOCKPTR(bo)) == ENOLCK) {
2363 				BO_LOCK(bo);
2364 				return (EAGAIN);
2365 			}
2366 			bremfree(bp);
2367 			bp->b_flags |= B_INVAL | B_RELBUF;
2368 			bp->b_flags &= ~B_ASYNC;
2369 			brelse(bp);
2370 			anyfreed = true;
2371 
2372 			BO_LOCK(bo);
2373 			if (nbp != NULL &&
2374 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2375 			    (nbp->b_vp != vp) ||
2376 			    (nbp->b_flags & B_DELWRI) == 0))
2377 				return (EAGAIN);
2378 		}
2379 	} while (anyfreed);
2380 	return (0);
2381 }
2382 
2383 static void
2384 buf_vlist_remove(struct buf *bp)
2385 {
2386 	struct bufv *bv;
2387 	b_xflags_t flags;
2388 
2389 	flags = bp->b_xflags;
2390 
2391 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2392 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2393 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2394 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2395 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2396 
2397 	if ((flags & BX_VNDIRTY) != 0)
2398 		bv = &bp->b_bufobj->bo_dirty;
2399 	else
2400 		bv = &bp->b_bufobj->bo_clean;
2401 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2402 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2403 	bv->bv_cnt--;
2404 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2405 }
2406 
2407 /*
2408  * Add the buffer to the sorted clean or dirty block list.
2409  *
2410  * NOTE: xflags is passed as a constant, optimizing this inline function!
2411  */
2412 static void
2413 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2414 {
2415 	struct bufv *bv;
2416 	struct buf *n;
2417 	int error;
2418 
2419 	ASSERT_BO_WLOCKED(bo);
2420 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2421 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2422 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2423 	    ("dead bo %p", bo));
2424 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2425 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2426 	bp->b_xflags |= xflags;
2427 	if (xflags & BX_VNDIRTY)
2428 		bv = &bo->bo_dirty;
2429 	else
2430 		bv = &bo->bo_clean;
2431 
2432 	/*
2433 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2434 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2435 	 * than _ge.
2436 	 */
2437 	if (bv->bv_cnt == 0 ||
2438 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2439 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2440 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2441 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2442 	else
2443 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2444 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2445 	if (error)
2446 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2447 	bv->bv_cnt++;
2448 }
2449 
2450 /*
2451  * Look up a buffer using the buffer tries.
2452  */
2453 struct buf *
2454 gbincore(struct bufobj *bo, daddr_t lblkno)
2455 {
2456 	struct buf *bp;
2457 
2458 	ASSERT_BO_LOCKED(bo);
2459 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2460 	if (bp != NULL)
2461 		return (bp);
2462 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2463 }
2464 
2465 /*
2466  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2467  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2468  * stability of the result.  Like other lockless lookups, the found buf may
2469  * already be invalid by the time this function returns.
2470  */
2471 struct buf *
2472 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2473 {
2474 	struct buf *bp;
2475 
2476 	ASSERT_BO_UNLOCKED(bo);
2477 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2478 	if (bp != NULL)
2479 		return (bp);
2480 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2481 }
2482 
2483 /*
2484  * Associate a buffer with a vnode.
2485  */
2486 void
2487 bgetvp(struct vnode *vp, struct buf *bp)
2488 {
2489 	struct bufobj *bo;
2490 
2491 	bo = &vp->v_bufobj;
2492 	ASSERT_BO_WLOCKED(bo);
2493 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2494 
2495 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2496 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2497 	    ("bgetvp: bp already attached! %p", bp));
2498 
2499 	vhold(vp);
2500 	bp->b_vp = vp;
2501 	bp->b_bufobj = bo;
2502 	/*
2503 	 * Insert onto list for new vnode.
2504 	 */
2505 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2506 }
2507 
2508 /*
2509  * Disassociate a buffer from a vnode.
2510  */
2511 void
2512 brelvp(struct buf *bp)
2513 {
2514 	struct bufobj *bo;
2515 	struct vnode *vp;
2516 
2517 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2518 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2519 
2520 	/*
2521 	 * Delete from old vnode list, if on one.
2522 	 */
2523 	vp = bp->b_vp;		/* XXX */
2524 	bo = bp->b_bufobj;
2525 	BO_LOCK(bo);
2526 	buf_vlist_remove(bp);
2527 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2528 		bo->bo_flag &= ~BO_ONWORKLST;
2529 		mtx_lock(&sync_mtx);
2530 		LIST_REMOVE(bo, bo_synclist);
2531 		syncer_worklist_len--;
2532 		mtx_unlock(&sync_mtx);
2533 	}
2534 	bp->b_vp = NULL;
2535 	bp->b_bufobj = NULL;
2536 	BO_UNLOCK(bo);
2537 	vdrop(vp);
2538 }
2539 
2540 /*
2541  * Add an item to the syncer work queue.
2542  */
2543 static void
2544 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2545 {
2546 	int slot;
2547 
2548 	ASSERT_BO_WLOCKED(bo);
2549 
2550 	mtx_lock(&sync_mtx);
2551 	if (bo->bo_flag & BO_ONWORKLST)
2552 		LIST_REMOVE(bo, bo_synclist);
2553 	else {
2554 		bo->bo_flag |= BO_ONWORKLST;
2555 		syncer_worklist_len++;
2556 	}
2557 
2558 	if (delay > syncer_maxdelay - 2)
2559 		delay = syncer_maxdelay - 2;
2560 	slot = (syncer_delayno + delay) & syncer_mask;
2561 
2562 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2563 	mtx_unlock(&sync_mtx);
2564 }
2565 
2566 static int
2567 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2568 {
2569 	int error, len;
2570 
2571 	mtx_lock(&sync_mtx);
2572 	len = syncer_worklist_len - sync_vnode_count;
2573 	mtx_unlock(&sync_mtx);
2574 	error = SYSCTL_OUT(req, &len, sizeof(len));
2575 	return (error);
2576 }
2577 
2578 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2579     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2580     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2581 
2582 static struct proc *updateproc;
2583 static void sched_sync(void);
2584 static struct kproc_desc up_kp = {
2585 	"syncer",
2586 	sched_sync,
2587 	&updateproc
2588 };
2589 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2590 
2591 static int
2592 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2593 {
2594 	struct vnode *vp;
2595 	struct mount *mp;
2596 
2597 	*bo = LIST_FIRST(slp);
2598 	if (*bo == NULL)
2599 		return (0);
2600 	vp = bo2vnode(*bo);
2601 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2602 		return (1);
2603 	/*
2604 	 * We use vhold in case the vnode does not
2605 	 * successfully sync.  vhold prevents the vnode from
2606 	 * going away when we unlock the sync_mtx so that
2607 	 * we can acquire the vnode interlock.
2608 	 */
2609 	vholdl(vp);
2610 	mtx_unlock(&sync_mtx);
2611 	VI_UNLOCK(vp);
2612 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2613 		vdrop(vp);
2614 		mtx_lock(&sync_mtx);
2615 		return (*bo == LIST_FIRST(slp));
2616 	}
2617 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2618 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2619 	VOP_UNLOCK(vp);
2620 	vn_finished_write(mp);
2621 	BO_LOCK(*bo);
2622 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2623 		/*
2624 		 * Put us back on the worklist.  The worklist
2625 		 * routine will remove us from our current
2626 		 * position and then add us back in at a later
2627 		 * position.
2628 		 */
2629 		vn_syncer_add_to_worklist(*bo, syncdelay);
2630 	}
2631 	BO_UNLOCK(*bo);
2632 	vdrop(vp);
2633 	mtx_lock(&sync_mtx);
2634 	return (0);
2635 }
2636 
2637 static int first_printf = 1;
2638 
2639 /*
2640  * System filesystem synchronizer daemon.
2641  */
2642 static void
2643 sched_sync(void)
2644 {
2645 	struct synclist *next, *slp;
2646 	struct bufobj *bo;
2647 	long starttime;
2648 	struct thread *td = curthread;
2649 	int last_work_seen;
2650 	int net_worklist_len;
2651 	int syncer_final_iter;
2652 	int error;
2653 
2654 	last_work_seen = 0;
2655 	syncer_final_iter = 0;
2656 	syncer_state = SYNCER_RUNNING;
2657 	starttime = time_uptime;
2658 	td->td_pflags |= TDP_NORUNNINGBUF;
2659 
2660 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2661 	    SHUTDOWN_PRI_LAST);
2662 
2663 	mtx_lock(&sync_mtx);
2664 	for (;;) {
2665 		if (syncer_state == SYNCER_FINAL_DELAY &&
2666 		    syncer_final_iter == 0) {
2667 			mtx_unlock(&sync_mtx);
2668 			kproc_suspend_check(td->td_proc);
2669 			mtx_lock(&sync_mtx);
2670 		}
2671 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2672 		if (syncer_state != SYNCER_RUNNING &&
2673 		    starttime != time_uptime) {
2674 			if (first_printf) {
2675 				printf("\nSyncing disks, vnodes remaining... ");
2676 				first_printf = 0;
2677 			}
2678 			printf("%d ", net_worklist_len);
2679 		}
2680 		starttime = time_uptime;
2681 
2682 		/*
2683 		 * Push files whose dirty time has expired.  Be careful
2684 		 * of interrupt race on slp queue.
2685 		 *
2686 		 * Skip over empty worklist slots when shutting down.
2687 		 */
2688 		do {
2689 			slp = &syncer_workitem_pending[syncer_delayno];
2690 			syncer_delayno += 1;
2691 			if (syncer_delayno == syncer_maxdelay)
2692 				syncer_delayno = 0;
2693 			next = &syncer_workitem_pending[syncer_delayno];
2694 			/*
2695 			 * If the worklist has wrapped since the
2696 			 * it was emptied of all but syncer vnodes,
2697 			 * switch to the FINAL_DELAY state and run
2698 			 * for one more second.
2699 			 */
2700 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2701 			    net_worklist_len == 0 &&
2702 			    last_work_seen == syncer_delayno) {
2703 				syncer_state = SYNCER_FINAL_DELAY;
2704 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2705 			}
2706 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2707 		    syncer_worklist_len > 0);
2708 
2709 		/*
2710 		 * Keep track of the last time there was anything
2711 		 * on the worklist other than syncer vnodes.
2712 		 * Return to the SHUTTING_DOWN state if any
2713 		 * new work appears.
2714 		 */
2715 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2716 			last_work_seen = syncer_delayno;
2717 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2718 			syncer_state = SYNCER_SHUTTING_DOWN;
2719 		while (!LIST_EMPTY(slp)) {
2720 			error = sync_vnode(slp, &bo, td);
2721 			if (error == 1) {
2722 				LIST_REMOVE(bo, bo_synclist);
2723 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2724 				continue;
2725 			}
2726 
2727 			if (first_printf == 0) {
2728 				/*
2729 				 * Drop the sync mutex, because some watchdog
2730 				 * drivers need to sleep while patting
2731 				 */
2732 				mtx_unlock(&sync_mtx);
2733 				wdog_kern_pat(WD_LASTVAL);
2734 				mtx_lock(&sync_mtx);
2735 			}
2736 		}
2737 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2738 			syncer_final_iter--;
2739 		/*
2740 		 * The variable rushjob allows the kernel to speed up the
2741 		 * processing of the filesystem syncer process. A rushjob
2742 		 * value of N tells the filesystem syncer to process the next
2743 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2744 		 * is used by the soft update code to speed up the filesystem
2745 		 * syncer process when the incore state is getting so far
2746 		 * ahead of the disk that the kernel memory pool is being
2747 		 * threatened with exhaustion.
2748 		 */
2749 		if (rushjob > 0) {
2750 			rushjob -= 1;
2751 			continue;
2752 		}
2753 		/*
2754 		 * Just sleep for a short period of time between
2755 		 * iterations when shutting down to allow some I/O
2756 		 * to happen.
2757 		 *
2758 		 * If it has taken us less than a second to process the
2759 		 * current work, then wait. Otherwise start right over
2760 		 * again. We can still lose time if any single round
2761 		 * takes more than two seconds, but it does not really
2762 		 * matter as we are just trying to generally pace the
2763 		 * filesystem activity.
2764 		 */
2765 		if (syncer_state != SYNCER_RUNNING ||
2766 		    time_uptime == starttime) {
2767 			thread_lock(td);
2768 			sched_prio(td, PPAUSE);
2769 			thread_unlock(td);
2770 		}
2771 		if (syncer_state != SYNCER_RUNNING)
2772 			cv_timedwait(&sync_wakeup, &sync_mtx,
2773 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2774 		else if (time_uptime == starttime)
2775 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2776 	}
2777 }
2778 
2779 /*
2780  * Request the syncer daemon to speed up its work.
2781  * We never push it to speed up more than half of its
2782  * normal turn time, otherwise it could take over the cpu.
2783  */
2784 int
2785 speedup_syncer(void)
2786 {
2787 	int ret = 0;
2788 
2789 	mtx_lock(&sync_mtx);
2790 	if (rushjob < syncdelay / 2) {
2791 		rushjob += 1;
2792 		stat_rush_requests += 1;
2793 		ret = 1;
2794 	}
2795 	mtx_unlock(&sync_mtx);
2796 	cv_broadcast(&sync_wakeup);
2797 	return (ret);
2798 }
2799 
2800 /*
2801  * Tell the syncer to speed up its work and run though its work
2802  * list several times, then tell it to shut down.
2803  */
2804 static void
2805 syncer_shutdown(void *arg, int howto)
2806 {
2807 
2808 	if (howto & RB_NOSYNC)
2809 		return;
2810 	mtx_lock(&sync_mtx);
2811 	syncer_state = SYNCER_SHUTTING_DOWN;
2812 	rushjob = 0;
2813 	mtx_unlock(&sync_mtx);
2814 	cv_broadcast(&sync_wakeup);
2815 	kproc_shutdown(arg, howto);
2816 }
2817 
2818 void
2819 syncer_suspend(void)
2820 {
2821 
2822 	syncer_shutdown(updateproc, 0);
2823 }
2824 
2825 void
2826 syncer_resume(void)
2827 {
2828 
2829 	mtx_lock(&sync_mtx);
2830 	first_printf = 1;
2831 	syncer_state = SYNCER_RUNNING;
2832 	mtx_unlock(&sync_mtx);
2833 	cv_broadcast(&sync_wakeup);
2834 	kproc_resume(updateproc);
2835 }
2836 
2837 /*
2838  * Move the buffer between the clean and dirty lists of its vnode.
2839  */
2840 void
2841 reassignbuf(struct buf *bp)
2842 {
2843 	struct vnode *vp;
2844 	struct bufobj *bo;
2845 	int delay;
2846 #ifdef INVARIANTS
2847 	struct bufv *bv;
2848 #endif
2849 
2850 	vp = bp->b_vp;
2851 	bo = bp->b_bufobj;
2852 
2853 	KASSERT((bp->b_flags & B_PAGING) == 0,
2854 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2855 
2856 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2857 	    bp, bp->b_vp, bp->b_flags);
2858 
2859 	BO_LOCK(bo);
2860 	buf_vlist_remove(bp);
2861 
2862 	/*
2863 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2864 	 * of clean buffers.
2865 	 */
2866 	if (bp->b_flags & B_DELWRI) {
2867 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2868 			switch (vp->v_type) {
2869 			case VDIR:
2870 				delay = dirdelay;
2871 				break;
2872 			case VCHR:
2873 				delay = metadelay;
2874 				break;
2875 			default:
2876 				delay = filedelay;
2877 			}
2878 			vn_syncer_add_to_worklist(bo, delay);
2879 		}
2880 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2881 	} else {
2882 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2883 
2884 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2885 			mtx_lock(&sync_mtx);
2886 			LIST_REMOVE(bo, bo_synclist);
2887 			syncer_worklist_len--;
2888 			mtx_unlock(&sync_mtx);
2889 			bo->bo_flag &= ~BO_ONWORKLST;
2890 		}
2891 	}
2892 #ifdef INVARIANTS
2893 	bv = &bo->bo_clean;
2894 	bp = TAILQ_FIRST(&bv->bv_hd);
2895 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2896 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2897 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2898 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2899 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2900 	bv = &bo->bo_dirty;
2901 	bp = TAILQ_FIRST(&bv->bv_hd);
2902 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2903 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2904 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2905 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2906 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2907 #endif
2908 	BO_UNLOCK(bo);
2909 }
2910 
2911 static void
2912 v_init_counters(struct vnode *vp)
2913 {
2914 
2915 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2916 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2917 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2918 
2919 	refcount_init(&vp->v_holdcnt, 1);
2920 	refcount_init(&vp->v_usecount, 1);
2921 }
2922 
2923 /*
2924  * Grab a particular vnode from the free list, increment its
2925  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2926  * is being destroyed.  Only callers who specify LK_RETRY will
2927  * see doomed vnodes.  If inactive processing was delayed in
2928  * vput try to do it here.
2929  *
2930  * usecount is manipulated using atomics without holding any locks.
2931  *
2932  * holdcnt can be manipulated using atomics without holding any locks,
2933  * except when transitioning 1<->0, in which case the interlock is held.
2934  *
2935  * Consumers which don't guarantee liveness of the vnode can use SMR to
2936  * try to get a reference. Note this operation can fail since the vnode
2937  * may be awaiting getting freed by the time they get to it.
2938  */
2939 enum vgetstate
2940 vget_prep_smr(struct vnode *vp)
2941 {
2942 	enum vgetstate vs;
2943 
2944 	VFS_SMR_ASSERT_ENTERED();
2945 
2946 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2947 		vs = VGET_USECOUNT;
2948 	} else {
2949 		if (vhold_smr(vp))
2950 			vs = VGET_HOLDCNT;
2951 		else
2952 			vs = VGET_NONE;
2953 	}
2954 	return (vs);
2955 }
2956 
2957 enum vgetstate
2958 vget_prep(struct vnode *vp)
2959 {
2960 	enum vgetstate vs;
2961 
2962 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2963 		vs = VGET_USECOUNT;
2964 	} else {
2965 		vhold(vp);
2966 		vs = VGET_HOLDCNT;
2967 	}
2968 	return (vs);
2969 }
2970 
2971 void
2972 vget_abort(struct vnode *vp, enum vgetstate vs)
2973 {
2974 
2975 	switch (vs) {
2976 	case VGET_USECOUNT:
2977 		vrele(vp);
2978 		break;
2979 	case VGET_HOLDCNT:
2980 		vdrop(vp);
2981 		break;
2982 	default:
2983 		__assert_unreachable();
2984 	}
2985 }
2986 
2987 int
2988 vget(struct vnode *vp, int flags)
2989 {
2990 	enum vgetstate vs;
2991 
2992 	vs = vget_prep(vp);
2993 	return (vget_finish(vp, flags, vs));
2994 }
2995 
2996 int
2997 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2998 {
2999 	int error;
3000 
3001 	if ((flags & LK_INTERLOCK) != 0)
3002 		ASSERT_VI_LOCKED(vp, __func__);
3003 	else
3004 		ASSERT_VI_UNLOCKED(vp, __func__);
3005 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3006 	VNPASS(vp->v_holdcnt > 0, vp);
3007 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3008 
3009 	error = vn_lock(vp, flags);
3010 	if (__predict_false(error != 0)) {
3011 		vget_abort(vp, vs);
3012 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3013 		    vp);
3014 		return (error);
3015 	}
3016 
3017 	vget_finish_ref(vp, vs);
3018 	return (0);
3019 }
3020 
3021 void
3022 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3023 {
3024 	int old;
3025 
3026 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3027 	VNPASS(vp->v_holdcnt > 0, vp);
3028 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3029 
3030 	if (vs == VGET_USECOUNT)
3031 		return;
3032 
3033 	/*
3034 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3035 	 * the vnode around. Otherwise someone else lended their hold count and
3036 	 * we have to drop ours.
3037 	 */
3038 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3039 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3040 	if (old != 0) {
3041 #ifdef INVARIANTS
3042 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3043 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3044 #else
3045 		refcount_release(&vp->v_holdcnt);
3046 #endif
3047 	}
3048 }
3049 
3050 void
3051 vref(struct vnode *vp)
3052 {
3053 	enum vgetstate vs;
3054 
3055 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3056 	vs = vget_prep(vp);
3057 	vget_finish_ref(vp, vs);
3058 }
3059 
3060 void
3061 vrefact(struct vnode *vp)
3062 {
3063 
3064 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3065 #ifdef INVARIANTS
3066 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3067 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3068 #else
3069 	refcount_acquire(&vp->v_usecount);
3070 #endif
3071 }
3072 
3073 void
3074 vlazy(struct vnode *vp)
3075 {
3076 	struct mount *mp;
3077 
3078 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3079 
3080 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3081 		return;
3082 	/*
3083 	 * We may get here for inactive routines after the vnode got doomed.
3084 	 */
3085 	if (VN_IS_DOOMED(vp))
3086 		return;
3087 	mp = vp->v_mount;
3088 	mtx_lock(&mp->mnt_listmtx);
3089 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3090 		vp->v_mflag |= VMP_LAZYLIST;
3091 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3092 		mp->mnt_lazyvnodelistsize++;
3093 	}
3094 	mtx_unlock(&mp->mnt_listmtx);
3095 }
3096 
3097 static void
3098 vunlazy(struct vnode *vp)
3099 {
3100 	struct mount *mp;
3101 
3102 	ASSERT_VI_LOCKED(vp, __func__);
3103 	VNPASS(!VN_IS_DOOMED(vp), vp);
3104 
3105 	mp = vp->v_mount;
3106 	mtx_lock(&mp->mnt_listmtx);
3107 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3108 	/*
3109 	 * Don't remove the vnode from the lazy list if another thread
3110 	 * has increased the hold count. It may have re-enqueued the
3111 	 * vnode to the lazy list and is now responsible for its
3112 	 * removal.
3113 	 */
3114 	if (vp->v_holdcnt == 0) {
3115 		vp->v_mflag &= ~VMP_LAZYLIST;
3116 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3117 		mp->mnt_lazyvnodelistsize--;
3118 	}
3119 	mtx_unlock(&mp->mnt_listmtx);
3120 }
3121 
3122 /*
3123  * This routine is only meant to be called from vgonel prior to dooming
3124  * the vnode.
3125  */
3126 static void
3127 vunlazy_gone(struct vnode *vp)
3128 {
3129 	struct mount *mp;
3130 
3131 	ASSERT_VOP_ELOCKED(vp, __func__);
3132 	ASSERT_VI_LOCKED(vp, __func__);
3133 	VNPASS(!VN_IS_DOOMED(vp), vp);
3134 
3135 	if (vp->v_mflag & VMP_LAZYLIST) {
3136 		mp = vp->v_mount;
3137 		mtx_lock(&mp->mnt_listmtx);
3138 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3139 		vp->v_mflag &= ~VMP_LAZYLIST;
3140 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3141 		mp->mnt_lazyvnodelistsize--;
3142 		mtx_unlock(&mp->mnt_listmtx);
3143 	}
3144 }
3145 
3146 static void
3147 vdefer_inactive(struct vnode *vp)
3148 {
3149 
3150 	ASSERT_VI_LOCKED(vp, __func__);
3151 	VNASSERT(vp->v_holdcnt > 0, vp,
3152 	    ("%s: vnode without hold count", __func__));
3153 	if (VN_IS_DOOMED(vp)) {
3154 		vdropl(vp);
3155 		return;
3156 	}
3157 	if (vp->v_iflag & VI_DEFINACT) {
3158 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3159 		vdropl(vp);
3160 		return;
3161 	}
3162 	if (vp->v_usecount > 0) {
3163 		vp->v_iflag &= ~VI_OWEINACT;
3164 		vdropl(vp);
3165 		return;
3166 	}
3167 	vlazy(vp);
3168 	vp->v_iflag |= VI_DEFINACT;
3169 	VI_UNLOCK(vp);
3170 	counter_u64_add(deferred_inact, 1);
3171 }
3172 
3173 static void
3174 vdefer_inactive_unlocked(struct vnode *vp)
3175 {
3176 
3177 	VI_LOCK(vp);
3178 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3179 		vdropl(vp);
3180 		return;
3181 	}
3182 	vdefer_inactive(vp);
3183 }
3184 
3185 enum vput_op { VRELE, VPUT, VUNREF };
3186 
3187 /*
3188  * Handle ->v_usecount transitioning to 0.
3189  *
3190  * By releasing the last usecount we take ownership of the hold count which
3191  * provides liveness of the vnode, meaning we have to vdrop.
3192  *
3193  * For all vnodes we may need to perform inactive processing. It requires an
3194  * exclusive lock on the vnode, while it is legal to call here with only a
3195  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3196  * inactive processing gets deferred to the syncer.
3197  *
3198  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3199  * on the lock being held all the way until VOP_INACTIVE. This in particular
3200  * happens with UFS which adds half-constructed vnodes to the hash, where they
3201  * can be found by other code.
3202  */
3203 static void
3204 vput_final(struct vnode *vp, enum vput_op func)
3205 {
3206 	int error;
3207 	bool want_unlock;
3208 
3209 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3210 	VNPASS(vp->v_holdcnt > 0, vp);
3211 
3212 	VI_LOCK(vp);
3213 
3214 	/*
3215 	 * By the time we got here someone else might have transitioned
3216 	 * the count back to > 0.
3217 	 */
3218 	if (vp->v_usecount > 0)
3219 		goto out;
3220 
3221 	/*
3222 	 * If the vnode is doomed vgone already performed inactive processing
3223 	 * (if needed).
3224 	 */
3225 	if (VN_IS_DOOMED(vp))
3226 		goto out;
3227 
3228 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3229 		goto out;
3230 
3231 	if (vp->v_iflag & VI_DOINGINACT)
3232 		goto out;
3233 
3234 	/*
3235 	 * Locking operations here will drop the interlock and possibly the
3236 	 * vnode lock, opening a window where the vnode can get doomed all the
3237 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3238 	 * perform inactive.
3239 	 */
3240 	vp->v_iflag |= VI_OWEINACT;
3241 	want_unlock = false;
3242 	error = 0;
3243 	switch (func) {
3244 	case VRELE:
3245 		switch (VOP_ISLOCKED(vp)) {
3246 		case LK_EXCLUSIVE:
3247 			break;
3248 		case LK_EXCLOTHER:
3249 		case 0:
3250 			want_unlock = true;
3251 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3252 			VI_LOCK(vp);
3253 			break;
3254 		default:
3255 			/*
3256 			 * The lock has at least one sharer, but we have no way
3257 			 * to conclude whether this is us. Play it safe and
3258 			 * defer processing.
3259 			 */
3260 			error = EAGAIN;
3261 			break;
3262 		}
3263 		break;
3264 	case VPUT:
3265 		want_unlock = true;
3266 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3267 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3268 			    LK_NOWAIT);
3269 			VI_LOCK(vp);
3270 		}
3271 		break;
3272 	case VUNREF:
3273 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3274 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3275 			VI_LOCK(vp);
3276 		}
3277 		break;
3278 	}
3279 	if (error == 0) {
3280 		if (func == VUNREF) {
3281 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3282 			    ("recursive vunref"));
3283 			vp->v_vflag |= VV_UNREF;
3284 		}
3285 		for (;;) {
3286 			error = vinactive(vp);
3287 			if (want_unlock)
3288 				VOP_UNLOCK(vp);
3289 			if (error != ERELOOKUP || !want_unlock)
3290 				break;
3291 			VOP_LOCK(vp, LK_EXCLUSIVE);
3292 		}
3293 		if (func == VUNREF)
3294 			vp->v_vflag &= ~VV_UNREF;
3295 		vdropl(vp);
3296 	} else {
3297 		vdefer_inactive(vp);
3298 	}
3299 	return;
3300 out:
3301 	if (func == VPUT)
3302 		VOP_UNLOCK(vp);
3303 	vdropl(vp);
3304 }
3305 
3306 /*
3307  * Decrement ->v_usecount for a vnode.
3308  *
3309  * Releasing the last use count requires additional processing, see vput_final
3310  * above for details.
3311  *
3312  * Comment above each variant denotes lock state on entry and exit.
3313  */
3314 
3315 /*
3316  * in: any
3317  * out: same as passed in
3318  */
3319 void
3320 vrele(struct vnode *vp)
3321 {
3322 
3323 	ASSERT_VI_UNLOCKED(vp, __func__);
3324 	if (!refcount_release(&vp->v_usecount))
3325 		return;
3326 	vput_final(vp, VRELE);
3327 }
3328 
3329 /*
3330  * in: locked
3331  * out: unlocked
3332  */
3333 void
3334 vput(struct vnode *vp)
3335 {
3336 
3337 	ASSERT_VOP_LOCKED(vp, __func__);
3338 	ASSERT_VI_UNLOCKED(vp, __func__);
3339 	if (!refcount_release(&vp->v_usecount)) {
3340 		VOP_UNLOCK(vp);
3341 		return;
3342 	}
3343 	vput_final(vp, VPUT);
3344 }
3345 
3346 /*
3347  * in: locked
3348  * out: locked
3349  */
3350 void
3351 vunref(struct vnode *vp)
3352 {
3353 
3354 	ASSERT_VOP_LOCKED(vp, __func__);
3355 	ASSERT_VI_UNLOCKED(vp, __func__);
3356 	if (!refcount_release(&vp->v_usecount))
3357 		return;
3358 	vput_final(vp, VUNREF);
3359 }
3360 
3361 void
3362 vhold(struct vnode *vp)
3363 {
3364 	int old;
3365 
3366 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3367 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3368 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3369 	    ("%s: wrong hold count %d", __func__, old));
3370 	if (old == 0)
3371 		vfs_freevnodes_dec();
3372 }
3373 
3374 void
3375 vholdnz(struct vnode *vp)
3376 {
3377 
3378 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3379 #ifdef INVARIANTS
3380 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3381 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3382 	    ("%s: wrong hold count %d", __func__, old));
3383 #else
3384 	atomic_add_int(&vp->v_holdcnt, 1);
3385 #endif
3386 }
3387 
3388 /*
3389  * Grab a hold count unless the vnode is freed.
3390  *
3391  * Only use this routine if vfs smr is the only protection you have against
3392  * freeing the vnode.
3393  *
3394  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3395  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3396  * the thread which managed to set the flag.
3397  *
3398  * It may be tempting to replace the loop with:
3399  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3400  * if (count & VHOLD_NO_SMR) {
3401  *     backpedal and error out;
3402  * }
3403  *
3404  * However, while this is more performant, it hinders debugging by eliminating
3405  * the previously mentioned invariant.
3406  */
3407 bool
3408 vhold_smr(struct vnode *vp)
3409 {
3410 	int count;
3411 
3412 	VFS_SMR_ASSERT_ENTERED();
3413 
3414 	count = atomic_load_int(&vp->v_holdcnt);
3415 	for (;;) {
3416 		if (count & VHOLD_NO_SMR) {
3417 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3418 			    ("non-zero hold count with flags %d\n", count));
3419 			return (false);
3420 		}
3421 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3422 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3423 			if (count == 0)
3424 				vfs_freevnodes_dec();
3425 			return (true);
3426 		}
3427 	}
3428 }
3429 
3430 /*
3431  * Hold a free vnode for recycling.
3432  *
3433  * Note: vnode_init references this comment.
3434  *
3435  * Attempts to recycle only need the global vnode list lock and have no use for
3436  * SMR.
3437  *
3438  * However, vnodes get inserted into the global list before they get fully
3439  * initialized and stay there until UMA decides to free the memory. This in
3440  * particular means the target can be found before it becomes usable and after
3441  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3442  * VHOLD_NO_SMR.
3443  *
3444  * Note: the vnode may gain more references after we transition the count 0->1.
3445  */
3446 static bool
3447 vhold_recycle_free(struct vnode *vp)
3448 {
3449 	int count;
3450 
3451 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3452 
3453 	count = atomic_load_int(&vp->v_holdcnt);
3454 	for (;;) {
3455 		if (count & VHOLD_NO_SMR) {
3456 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3457 			    ("non-zero hold count with flags %d\n", count));
3458 			return (false);
3459 		}
3460 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3461 		if (count > 0) {
3462 			return (false);
3463 		}
3464 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3465 			vfs_freevnodes_dec();
3466 			return (true);
3467 		}
3468 	}
3469 }
3470 
3471 static void __noinline
3472 vdbatch_process(struct vdbatch *vd)
3473 {
3474 	struct vnode *vp;
3475 	int i;
3476 
3477 	mtx_assert(&vd->lock, MA_OWNED);
3478 	MPASS(curthread->td_pinned > 0);
3479 	MPASS(vd->index == VDBATCH_SIZE);
3480 
3481 	mtx_lock(&vnode_list_mtx);
3482 	critical_enter();
3483 	freevnodes += vd->freevnodes;
3484 	for (i = 0; i < VDBATCH_SIZE; i++) {
3485 		vp = vd->tab[i];
3486 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3487 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3488 		MPASS(vp->v_dbatchcpu != NOCPU);
3489 		vp->v_dbatchcpu = NOCPU;
3490 	}
3491 	mtx_unlock(&vnode_list_mtx);
3492 	vd->freevnodes = 0;
3493 	bzero(vd->tab, sizeof(vd->tab));
3494 	vd->index = 0;
3495 	critical_exit();
3496 }
3497 
3498 static void
3499 vdbatch_enqueue(struct vnode *vp)
3500 {
3501 	struct vdbatch *vd;
3502 
3503 	ASSERT_VI_LOCKED(vp, __func__);
3504 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3505 	    ("%s: deferring requeue of a doomed vnode", __func__));
3506 
3507 	if (vp->v_dbatchcpu != NOCPU) {
3508 		VI_UNLOCK(vp);
3509 		return;
3510 	}
3511 
3512 	sched_pin();
3513 	vd = DPCPU_PTR(vd);
3514 	mtx_lock(&vd->lock);
3515 	MPASS(vd->index < VDBATCH_SIZE);
3516 	MPASS(vd->tab[vd->index] == NULL);
3517 	/*
3518 	 * A hack: we depend on being pinned so that we know what to put in
3519 	 * ->v_dbatchcpu.
3520 	 */
3521 	vp->v_dbatchcpu = curcpu;
3522 	vd->tab[vd->index] = vp;
3523 	vd->index++;
3524 	VI_UNLOCK(vp);
3525 	if (vd->index == VDBATCH_SIZE)
3526 		vdbatch_process(vd);
3527 	mtx_unlock(&vd->lock);
3528 	sched_unpin();
3529 }
3530 
3531 /*
3532  * This routine must only be called for vnodes which are about to be
3533  * deallocated. Supporting dequeue for arbitrary vndoes would require
3534  * validating that the locked batch matches.
3535  */
3536 static void
3537 vdbatch_dequeue(struct vnode *vp)
3538 {
3539 	struct vdbatch *vd;
3540 	int i;
3541 	short cpu;
3542 
3543 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3544 	    ("%s: called for a used vnode\n", __func__));
3545 
3546 	cpu = vp->v_dbatchcpu;
3547 	if (cpu == NOCPU)
3548 		return;
3549 
3550 	vd = DPCPU_ID_PTR(cpu, vd);
3551 	mtx_lock(&vd->lock);
3552 	for (i = 0; i < vd->index; i++) {
3553 		if (vd->tab[i] != vp)
3554 			continue;
3555 		vp->v_dbatchcpu = NOCPU;
3556 		vd->index--;
3557 		vd->tab[i] = vd->tab[vd->index];
3558 		vd->tab[vd->index] = NULL;
3559 		break;
3560 	}
3561 	mtx_unlock(&vd->lock);
3562 	/*
3563 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3564 	 */
3565 	MPASS(vp->v_dbatchcpu == NOCPU);
3566 }
3567 
3568 /*
3569  * Drop the hold count of the vnode.  If this is the last reference to
3570  * the vnode we place it on the free list unless it has been vgone'd
3571  * (marked VIRF_DOOMED) in which case we will free it.
3572  *
3573  * Because the vnode vm object keeps a hold reference on the vnode if
3574  * there is at least one resident non-cached page, the vnode cannot
3575  * leave the active list without the page cleanup done.
3576  */
3577 static void __noinline
3578 vdropl_final(struct vnode *vp)
3579 {
3580 
3581 	ASSERT_VI_LOCKED(vp, __func__);
3582 	VNPASS(VN_IS_DOOMED(vp), vp);
3583 	/*
3584 	 * Set the VHOLD_NO_SMR flag.
3585 	 *
3586 	 * We may be racing against vhold_smr. If they win we can just pretend
3587 	 * we never got this far, they will vdrop later.
3588 	 */
3589 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3590 		vfs_freevnodes_inc();
3591 		VI_UNLOCK(vp);
3592 		/*
3593 		 * We lost the aforementioned race. Any subsequent access is
3594 		 * invalid as they might have managed to vdropl on their own.
3595 		 */
3596 		return;
3597 	}
3598 	/*
3599 	 * Don't bump freevnodes as this one is going away.
3600 	 */
3601 	freevnode(vp);
3602 }
3603 
3604 void
3605 vdrop(struct vnode *vp)
3606 {
3607 
3608 	ASSERT_VI_UNLOCKED(vp, __func__);
3609 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3610 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3611 		return;
3612 	VI_LOCK(vp);
3613 	vdropl(vp);
3614 }
3615 
3616 void
3617 vdropl(struct vnode *vp)
3618 {
3619 
3620 	ASSERT_VI_LOCKED(vp, __func__);
3621 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3622 	if (!refcount_release(&vp->v_holdcnt)) {
3623 		VI_UNLOCK(vp);
3624 		return;
3625 	}
3626 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3627 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3628 	if (VN_IS_DOOMED(vp)) {
3629 		vdropl_final(vp);
3630 		return;
3631 	}
3632 
3633 	vfs_freevnodes_inc();
3634 	if (vp->v_mflag & VMP_LAZYLIST) {
3635 		vunlazy(vp);
3636 	}
3637 	/*
3638 	 * Also unlocks the interlock. We can't assert on it as we
3639 	 * released our hold and by now the vnode might have been
3640 	 * freed.
3641 	 */
3642 	vdbatch_enqueue(vp);
3643 }
3644 
3645 /*
3646  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3647  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3648  */
3649 static int
3650 vinactivef(struct vnode *vp)
3651 {
3652 	struct vm_object *obj;
3653 	int error;
3654 
3655 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3656 	ASSERT_VI_LOCKED(vp, "vinactive");
3657 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3658 	    ("vinactive: recursed on VI_DOINGINACT"));
3659 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3660 	vp->v_iflag |= VI_DOINGINACT;
3661 	vp->v_iflag &= ~VI_OWEINACT;
3662 	VI_UNLOCK(vp);
3663 	/*
3664 	 * Before moving off the active list, we must be sure that any
3665 	 * modified pages are converted into the vnode's dirty
3666 	 * buffers, since these will no longer be checked once the
3667 	 * vnode is on the inactive list.
3668 	 *
3669 	 * The write-out of the dirty pages is asynchronous.  At the
3670 	 * point that VOP_INACTIVE() is called, there could still be
3671 	 * pending I/O and dirty pages in the object.
3672 	 */
3673 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3674 	    vm_object_mightbedirty(obj)) {
3675 		VM_OBJECT_WLOCK(obj);
3676 		vm_object_page_clean(obj, 0, 0, 0);
3677 		VM_OBJECT_WUNLOCK(obj);
3678 	}
3679 	error = VOP_INACTIVE(vp);
3680 	VI_LOCK(vp);
3681 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3682 	    ("vinactive: lost VI_DOINGINACT"));
3683 	vp->v_iflag &= ~VI_DOINGINACT;
3684 	return (error);
3685 }
3686 
3687 int
3688 vinactive(struct vnode *vp)
3689 {
3690 
3691 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3692 	ASSERT_VI_LOCKED(vp, "vinactive");
3693 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3694 
3695 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3696 		return (0);
3697 	if (vp->v_iflag & VI_DOINGINACT)
3698 		return (0);
3699 	if (vp->v_usecount > 0) {
3700 		vp->v_iflag &= ~VI_OWEINACT;
3701 		return (0);
3702 	}
3703 	return (vinactivef(vp));
3704 }
3705 
3706 /*
3707  * Remove any vnodes in the vnode table belonging to mount point mp.
3708  *
3709  * If FORCECLOSE is not specified, there should not be any active ones,
3710  * return error if any are found (nb: this is a user error, not a
3711  * system error). If FORCECLOSE is specified, detach any active vnodes
3712  * that are found.
3713  *
3714  * If WRITECLOSE is set, only flush out regular file vnodes open for
3715  * writing.
3716  *
3717  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3718  *
3719  * `rootrefs' specifies the base reference count for the root vnode
3720  * of this filesystem. The root vnode is considered busy if its
3721  * v_usecount exceeds this value. On a successful return, vflush(, td)
3722  * will call vrele() on the root vnode exactly rootrefs times.
3723  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3724  * be zero.
3725  */
3726 #ifdef DIAGNOSTIC
3727 static int busyprt = 0;		/* print out busy vnodes */
3728 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3729 #endif
3730 
3731 int
3732 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3733 {
3734 	struct vnode *vp, *mvp, *rootvp = NULL;
3735 	struct vattr vattr;
3736 	int busy = 0, error;
3737 
3738 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3739 	    rootrefs, flags);
3740 	if (rootrefs > 0) {
3741 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3742 		    ("vflush: bad args"));
3743 		/*
3744 		 * Get the filesystem root vnode. We can vput() it
3745 		 * immediately, since with rootrefs > 0, it won't go away.
3746 		 */
3747 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3748 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3749 			    __func__, error);
3750 			return (error);
3751 		}
3752 		vput(rootvp);
3753 	}
3754 loop:
3755 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3756 		vholdl(vp);
3757 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3758 		if (error) {
3759 			vdrop(vp);
3760 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3761 			goto loop;
3762 		}
3763 		/*
3764 		 * Skip over a vnodes marked VV_SYSTEM.
3765 		 */
3766 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3767 			VOP_UNLOCK(vp);
3768 			vdrop(vp);
3769 			continue;
3770 		}
3771 		/*
3772 		 * If WRITECLOSE is set, flush out unlinked but still open
3773 		 * files (even if open only for reading) and regular file
3774 		 * vnodes open for writing.
3775 		 */
3776 		if (flags & WRITECLOSE) {
3777 			if (vp->v_object != NULL) {
3778 				VM_OBJECT_WLOCK(vp->v_object);
3779 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3780 				VM_OBJECT_WUNLOCK(vp->v_object);
3781 			}
3782 			do {
3783 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3784 			} while (error == ERELOOKUP);
3785 			if (error != 0) {
3786 				VOP_UNLOCK(vp);
3787 				vdrop(vp);
3788 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3789 				return (error);
3790 			}
3791 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3792 			VI_LOCK(vp);
3793 
3794 			if ((vp->v_type == VNON ||
3795 			    (error == 0 && vattr.va_nlink > 0)) &&
3796 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3797 				VOP_UNLOCK(vp);
3798 				vdropl(vp);
3799 				continue;
3800 			}
3801 		} else
3802 			VI_LOCK(vp);
3803 		/*
3804 		 * With v_usecount == 0, all we need to do is clear out the
3805 		 * vnode data structures and we are done.
3806 		 *
3807 		 * If FORCECLOSE is set, forcibly close the vnode.
3808 		 */
3809 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3810 			vgonel(vp);
3811 		} else {
3812 			busy++;
3813 #ifdef DIAGNOSTIC
3814 			if (busyprt)
3815 				vn_printf(vp, "vflush: busy vnode ");
3816 #endif
3817 		}
3818 		VOP_UNLOCK(vp);
3819 		vdropl(vp);
3820 	}
3821 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3822 		/*
3823 		 * If just the root vnode is busy, and if its refcount
3824 		 * is equal to `rootrefs', then go ahead and kill it.
3825 		 */
3826 		VI_LOCK(rootvp);
3827 		KASSERT(busy > 0, ("vflush: not busy"));
3828 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3829 		    ("vflush: usecount %d < rootrefs %d",
3830 		     rootvp->v_usecount, rootrefs));
3831 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3832 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3833 			vgone(rootvp);
3834 			VOP_UNLOCK(rootvp);
3835 			busy = 0;
3836 		} else
3837 			VI_UNLOCK(rootvp);
3838 	}
3839 	if (busy) {
3840 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3841 		    busy);
3842 		return (EBUSY);
3843 	}
3844 	for (; rootrefs > 0; rootrefs--)
3845 		vrele(rootvp);
3846 	return (0);
3847 }
3848 
3849 /*
3850  * Recycle an unused vnode to the front of the free list.
3851  */
3852 int
3853 vrecycle(struct vnode *vp)
3854 {
3855 	int recycled;
3856 
3857 	VI_LOCK(vp);
3858 	recycled = vrecyclel(vp);
3859 	VI_UNLOCK(vp);
3860 	return (recycled);
3861 }
3862 
3863 /*
3864  * vrecycle, with the vp interlock held.
3865  */
3866 int
3867 vrecyclel(struct vnode *vp)
3868 {
3869 	int recycled;
3870 
3871 	ASSERT_VOP_ELOCKED(vp, __func__);
3872 	ASSERT_VI_LOCKED(vp, __func__);
3873 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3874 	recycled = 0;
3875 	if (vp->v_usecount == 0) {
3876 		recycled = 1;
3877 		vgonel(vp);
3878 	}
3879 	return (recycled);
3880 }
3881 
3882 /*
3883  * Eliminate all activity associated with a vnode
3884  * in preparation for reuse.
3885  */
3886 void
3887 vgone(struct vnode *vp)
3888 {
3889 	VI_LOCK(vp);
3890 	vgonel(vp);
3891 	VI_UNLOCK(vp);
3892 }
3893 
3894 /*
3895  * Notify upper mounts about reclaimed or unlinked vnode.
3896  */
3897 void
3898 vfs_notify_upper(struct vnode *vp, int event)
3899 {
3900 	struct mount *mp;
3901 	struct mount_upper_node *ump;
3902 
3903 	mp = atomic_load_ptr(&vp->v_mount);
3904 	if (mp == NULL)
3905 		return;
3906 	if (TAILQ_EMPTY(&mp->mnt_notify))
3907 		return;
3908 
3909 	MNT_ILOCK(mp);
3910 	mp->mnt_upper_pending++;
3911 	KASSERT(mp->mnt_upper_pending > 0,
3912 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3913 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3914 		MNT_IUNLOCK(mp);
3915 		switch (event) {
3916 		case VFS_NOTIFY_UPPER_RECLAIM:
3917 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
3918 			break;
3919 		case VFS_NOTIFY_UPPER_UNLINK:
3920 			VFS_UNLINK_LOWERVP(ump->mp, vp);
3921 			break;
3922 		default:
3923 			KASSERT(0, ("invalid event %d", event));
3924 			break;
3925 		}
3926 		MNT_ILOCK(mp);
3927 	}
3928 	mp->mnt_upper_pending--;
3929 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
3930 	    mp->mnt_upper_pending == 0) {
3931 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
3932 		wakeup(&mp->mnt_uppers);
3933 	}
3934 	MNT_IUNLOCK(mp);
3935 }
3936 
3937 /*
3938  * vgone, with the vp interlock held.
3939  */
3940 static void
3941 vgonel(struct vnode *vp)
3942 {
3943 	struct thread *td;
3944 	struct mount *mp;
3945 	vm_object_t object;
3946 	bool active, doinginact, oweinact;
3947 
3948 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3949 	ASSERT_VI_LOCKED(vp, "vgonel");
3950 	VNASSERT(vp->v_holdcnt, vp,
3951 	    ("vgonel: vp %p has no reference.", vp));
3952 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3953 	td = curthread;
3954 
3955 	/*
3956 	 * Don't vgonel if we're already doomed.
3957 	 */
3958 	if (VN_IS_DOOMED(vp))
3959 		return;
3960 	/*
3961 	 * Paired with freevnode.
3962 	 */
3963 	vn_seqc_write_begin_locked(vp);
3964 	vunlazy_gone(vp);
3965 	vn_irflag_set_locked(vp, VIRF_DOOMED);
3966 
3967 	/*
3968 	 * Check to see if the vnode is in use.  If so, we have to
3969 	 * call VOP_CLOSE() and VOP_INACTIVE().
3970 	 *
3971 	 * It could be that VOP_INACTIVE() requested reclamation, in
3972 	 * which case we should avoid recursion, so check
3973 	 * VI_DOINGINACT.  This is not precise but good enough.
3974 	 */
3975 	active = vp->v_usecount > 0;
3976 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3977 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
3978 
3979 	/*
3980 	 * If we need to do inactive VI_OWEINACT will be set.
3981 	 */
3982 	if (vp->v_iflag & VI_DEFINACT) {
3983 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3984 		vp->v_iflag &= ~VI_DEFINACT;
3985 		vdropl(vp);
3986 	} else {
3987 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
3988 		VI_UNLOCK(vp);
3989 	}
3990 	cache_purge_vgone(vp);
3991 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3992 
3993 	/*
3994 	 * If purging an active vnode, it must be closed and
3995 	 * deactivated before being reclaimed.
3996 	 */
3997 	if (active)
3998 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3999 	if (!doinginact) {
4000 		do {
4001 			if (oweinact || active) {
4002 				VI_LOCK(vp);
4003 				vinactivef(vp);
4004 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4005 				VI_UNLOCK(vp);
4006 			}
4007 		} while (oweinact);
4008 	}
4009 	if (vp->v_type == VSOCK)
4010 		vfs_unp_reclaim(vp);
4011 
4012 	/*
4013 	 * Clean out any buffers associated with the vnode.
4014 	 * If the flush fails, just toss the buffers.
4015 	 */
4016 	mp = NULL;
4017 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4018 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4019 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4020 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4021 			;
4022 	}
4023 
4024 	BO_LOCK(&vp->v_bufobj);
4025 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4026 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4027 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4028 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4029 	    ("vp %p bufobj not invalidated", vp));
4030 
4031 	/*
4032 	 * For VMIO bufobj, BO_DEAD is set later, or in
4033 	 * vm_object_terminate() after the object's page queue is
4034 	 * flushed.
4035 	 */
4036 	object = vp->v_bufobj.bo_object;
4037 	if (object == NULL)
4038 		vp->v_bufobj.bo_flag |= BO_DEAD;
4039 	BO_UNLOCK(&vp->v_bufobj);
4040 
4041 	/*
4042 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4043 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4044 	 * should not touch the object borrowed from the lower vnode
4045 	 * (the handle check).
4046 	 */
4047 	if (object != NULL && object->type == OBJT_VNODE &&
4048 	    object->handle == vp)
4049 		vnode_destroy_vobject(vp);
4050 
4051 	/*
4052 	 * Reclaim the vnode.
4053 	 */
4054 	if (VOP_RECLAIM(vp))
4055 		panic("vgone: cannot reclaim");
4056 	if (mp != NULL)
4057 		vn_finished_secondary_write(mp);
4058 	VNASSERT(vp->v_object == NULL, vp,
4059 	    ("vop_reclaim left v_object vp=%p", vp));
4060 	/*
4061 	 * Clear the advisory locks and wake up waiting threads.
4062 	 */
4063 	(void)VOP_ADVLOCKPURGE(vp);
4064 	vp->v_lockf = NULL;
4065 	/*
4066 	 * Delete from old mount point vnode list.
4067 	 */
4068 	delmntque(vp);
4069 	/*
4070 	 * Done with purge, reset to the standard lock and invalidate
4071 	 * the vnode.
4072 	 */
4073 	VI_LOCK(vp);
4074 	vp->v_vnlock = &vp->v_lock;
4075 	vp->v_op = &dead_vnodeops;
4076 	vp->v_type = VBAD;
4077 }
4078 
4079 /*
4080  * Print out a description of a vnode.
4081  */
4082 static const char * const typename[] =
4083 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4084  "VMARKER"};
4085 
4086 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4087     "new hold count flag not added to vn_printf");
4088 
4089 void
4090 vn_printf(struct vnode *vp, const char *fmt, ...)
4091 {
4092 	va_list ap;
4093 	char buf[256], buf2[16];
4094 	u_long flags;
4095 	u_int holdcnt;
4096 	short irflag;
4097 
4098 	va_start(ap, fmt);
4099 	vprintf(fmt, ap);
4100 	va_end(ap);
4101 	printf("%p: ", (void *)vp);
4102 	printf("type %s\n", typename[vp->v_type]);
4103 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4104 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4105 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4106 	    vp->v_seqc_users);
4107 	switch (vp->v_type) {
4108 	case VDIR:
4109 		printf(" mountedhere %p\n", vp->v_mountedhere);
4110 		break;
4111 	case VCHR:
4112 		printf(" rdev %p\n", vp->v_rdev);
4113 		break;
4114 	case VSOCK:
4115 		printf(" socket %p\n", vp->v_unpcb);
4116 		break;
4117 	case VFIFO:
4118 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4119 		break;
4120 	default:
4121 		printf("\n");
4122 		break;
4123 	}
4124 	buf[0] = '\0';
4125 	buf[1] = '\0';
4126 	if (holdcnt & VHOLD_NO_SMR)
4127 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4128 	printf("    hold count flags (%s)\n", buf + 1);
4129 
4130 	buf[0] = '\0';
4131 	buf[1] = '\0';
4132 	irflag = vn_irflag_read(vp);
4133 	if (irflag & VIRF_DOOMED)
4134 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4135 	if (irflag & VIRF_PGREAD)
4136 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4137 	if (irflag & VIRF_MOUNTPOINT)
4138 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4139 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT);
4140 	if (flags != 0) {
4141 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4142 		strlcat(buf, buf2, sizeof(buf));
4143 	}
4144 	if (vp->v_vflag & VV_ROOT)
4145 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4146 	if (vp->v_vflag & VV_ISTTY)
4147 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4148 	if (vp->v_vflag & VV_NOSYNC)
4149 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4150 	if (vp->v_vflag & VV_ETERNALDEV)
4151 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4152 	if (vp->v_vflag & VV_CACHEDLABEL)
4153 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4154 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4155 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4156 	if (vp->v_vflag & VV_COPYONWRITE)
4157 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4158 	if (vp->v_vflag & VV_SYSTEM)
4159 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4160 	if (vp->v_vflag & VV_PROCDEP)
4161 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4162 	if (vp->v_vflag & VV_NOKNOTE)
4163 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
4164 	if (vp->v_vflag & VV_DELETED)
4165 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4166 	if (vp->v_vflag & VV_MD)
4167 		strlcat(buf, "|VV_MD", sizeof(buf));
4168 	if (vp->v_vflag & VV_FORCEINSMQ)
4169 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4170 	if (vp->v_vflag & VV_READLINK)
4171 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4172 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4173 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4174 	    VV_PROCDEP | VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ |
4175 	    VV_READLINK);
4176 	if (flags != 0) {
4177 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4178 		strlcat(buf, buf2, sizeof(buf));
4179 	}
4180 	if (vp->v_iflag & VI_TEXT_REF)
4181 		strlcat(buf, "|VI_TEXT_REF", sizeof(buf));
4182 	if (vp->v_iflag & VI_MOUNT)
4183 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4184 	if (vp->v_iflag & VI_DOINGINACT)
4185 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4186 	if (vp->v_iflag & VI_OWEINACT)
4187 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4188 	if (vp->v_iflag & VI_DEFINACT)
4189 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4190 	if (vp->v_iflag & VI_FOPENING)
4191 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4192 	flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT |
4193 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4194 	if (flags != 0) {
4195 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4196 		strlcat(buf, buf2, sizeof(buf));
4197 	}
4198 	if (vp->v_mflag & VMP_LAZYLIST)
4199 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4200 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4201 	if (flags != 0) {
4202 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4203 		strlcat(buf, buf2, sizeof(buf));
4204 	}
4205 	printf("    flags (%s)", buf + 1);
4206 	if (mtx_owned(VI_MTX(vp)))
4207 		printf(" VI_LOCKed");
4208 	printf("\n");
4209 	if (vp->v_object != NULL)
4210 		printf("    v_object %p ref %d pages %d "
4211 		    "cleanbuf %d dirtybuf %d\n",
4212 		    vp->v_object, vp->v_object->ref_count,
4213 		    vp->v_object->resident_page_count,
4214 		    vp->v_bufobj.bo_clean.bv_cnt,
4215 		    vp->v_bufobj.bo_dirty.bv_cnt);
4216 	printf("    ");
4217 	lockmgr_printinfo(vp->v_vnlock);
4218 	if (vp->v_data != NULL)
4219 		VOP_PRINT(vp);
4220 }
4221 
4222 #ifdef DDB
4223 /*
4224  * List all of the locked vnodes in the system.
4225  * Called when debugging the kernel.
4226  */
4227 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
4228 {
4229 	struct mount *mp;
4230 	struct vnode *vp;
4231 
4232 	/*
4233 	 * Note: because this is DDB, we can't obey the locking semantics
4234 	 * for these structures, which means we could catch an inconsistent
4235 	 * state and dereference a nasty pointer.  Not much to be done
4236 	 * about that.
4237 	 */
4238 	db_printf("Locked vnodes\n");
4239 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4240 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4241 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4242 				vn_printf(vp, "vnode ");
4243 		}
4244 	}
4245 }
4246 
4247 /*
4248  * Show details about the given vnode.
4249  */
4250 DB_SHOW_COMMAND(vnode, db_show_vnode)
4251 {
4252 	struct vnode *vp;
4253 
4254 	if (!have_addr)
4255 		return;
4256 	vp = (struct vnode *)addr;
4257 	vn_printf(vp, "vnode ");
4258 }
4259 
4260 /*
4261  * Show details about the given mount point.
4262  */
4263 DB_SHOW_COMMAND(mount, db_show_mount)
4264 {
4265 	struct mount *mp;
4266 	struct vfsopt *opt;
4267 	struct statfs *sp;
4268 	struct vnode *vp;
4269 	char buf[512];
4270 	uint64_t mflags;
4271 	u_int flags;
4272 
4273 	if (!have_addr) {
4274 		/* No address given, print short info about all mount points. */
4275 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4276 			db_printf("%p %s on %s (%s)\n", mp,
4277 			    mp->mnt_stat.f_mntfromname,
4278 			    mp->mnt_stat.f_mntonname,
4279 			    mp->mnt_stat.f_fstypename);
4280 			if (db_pager_quit)
4281 				break;
4282 		}
4283 		db_printf("\nMore info: show mount <addr>\n");
4284 		return;
4285 	}
4286 
4287 	mp = (struct mount *)addr;
4288 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4289 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4290 
4291 	buf[0] = '\0';
4292 	mflags = mp->mnt_flag;
4293 #define	MNT_FLAG(flag)	do {						\
4294 	if (mflags & (flag)) {						\
4295 		if (buf[0] != '\0')					\
4296 			strlcat(buf, ", ", sizeof(buf));		\
4297 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4298 		mflags &= ~(flag);					\
4299 	}								\
4300 } while (0)
4301 	MNT_FLAG(MNT_RDONLY);
4302 	MNT_FLAG(MNT_SYNCHRONOUS);
4303 	MNT_FLAG(MNT_NOEXEC);
4304 	MNT_FLAG(MNT_NOSUID);
4305 	MNT_FLAG(MNT_NFS4ACLS);
4306 	MNT_FLAG(MNT_UNION);
4307 	MNT_FLAG(MNT_ASYNC);
4308 	MNT_FLAG(MNT_SUIDDIR);
4309 	MNT_FLAG(MNT_SOFTDEP);
4310 	MNT_FLAG(MNT_NOSYMFOLLOW);
4311 	MNT_FLAG(MNT_GJOURNAL);
4312 	MNT_FLAG(MNT_MULTILABEL);
4313 	MNT_FLAG(MNT_ACLS);
4314 	MNT_FLAG(MNT_NOATIME);
4315 	MNT_FLAG(MNT_NOCLUSTERR);
4316 	MNT_FLAG(MNT_NOCLUSTERW);
4317 	MNT_FLAG(MNT_SUJ);
4318 	MNT_FLAG(MNT_EXRDONLY);
4319 	MNT_FLAG(MNT_EXPORTED);
4320 	MNT_FLAG(MNT_DEFEXPORTED);
4321 	MNT_FLAG(MNT_EXPORTANON);
4322 	MNT_FLAG(MNT_EXKERB);
4323 	MNT_FLAG(MNT_EXPUBLIC);
4324 	MNT_FLAG(MNT_LOCAL);
4325 	MNT_FLAG(MNT_QUOTA);
4326 	MNT_FLAG(MNT_ROOTFS);
4327 	MNT_FLAG(MNT_USER);
4328 	MNT_FLAG(MNT_IGNORE);
4329 	MNT_FLAG(MNT_UPDATE);
4330 	MNT_FLAG(MNT_DELEXPORT);
4331 	MNT_FLAG(MNT_RELOAD);
4332 	MNT_FLAG(MNT_FORCE);
4333 	MNT_FLAG(MNT_SNAPSHOT);
4334 	MNT_FLAG(MNT_BYFSID);
4335 #undef MNT_FLAG
4336 	if (mflags != 0) {
4337 		if (buf[0] != '\0')
4338 			strlcat(buf, ", ", sizeof(buf));
4339 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4340 		    "0x%016jx", mflags);
4341 	}
4342 	db_printf("    mnt_flag = %s\n", buf);
4343 
4344 	buf[0] = '\0';
4345 	flags = mp->mnt_kern_flag;
4346 #define	MNT_KERN_FLAG(flag)	do {					\
4347 	if (flags & (flag)) {						\
4348 		if (buf[0] != '\0')					\
4349 			strlcat(buf, ", ", sizeof(buf));		\
4350 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4351 		flags &= ~(flag);					\
4352 	}								\
4353 } while (0)
4354 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4355 	MNT_KERN_FLAG(MNTK_ASYNC);
4356 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4357 	MNT_KERN_FLAG(MNTK_DRAINING);
4358 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4359 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4360 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4361 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4362 	MNT_KERN_FLAG(MNTK_RECURSE);
4363 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4364 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4365 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4366 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4367 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4368 	MNT_KERN_FLAG(MNTK_NOASYNC);
4369 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4370 	MNT_KERN_FLAG(MNTK_MWAIT);
4371 	MNT_KERN_FLAG(MNTK_SUSPEND);
4372 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4373 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4374 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4375 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4376 #undef MNT_KERN_FLAG
4377 	if (flags != 0) {
4378 		if (buf[0] != '\0')
4379 			strlcat(buf, ", ", sizeof(buf));
4380 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4381 		    "0x%08x", flags);
4382 	}
4383 	db_printf("    mnt_kern_flag = %s\n", buf);
4384 
4385 	db_printf("    mnt_opt = ");
4386 	opt = TAILQ_FIRST(mp->mnt_opt);
4387 	if (opt != NULL) {
4388 		db_printf("%s", opt->name);
4389 		opt = TAILQ_NEXT(opt, link);
4390 		while (opt != NULL) {
4391 			db_printf(", %s", opt->name);
4392 			opt = TAILQ_NEXT(opt, link);
4393 		}
4394 	}
4395 	db_printf("\n");
4396 
4397 	sp = &mp->mnt_stat;
4398 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4399 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4400 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4401 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4402 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4403 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4404 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4405 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4406 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4407 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4408 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4409 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4410 
4411 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4412 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4413 	if (jailed(mp->mnt_cred))
4414 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4415 	db_printf(" }\n");
4416 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4417 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4418 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4419 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4420 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4421 	    mp->mnt_lazyvnodelistsize);
4422 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4423 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4424 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4425 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4426 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4427 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4428 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4429 	db_printf("    mnt_secondary_accwrites = %d\n",
4430 	    mp->mnt_secondary_accwrites);
4431 	db_printf("    mnt_gjprovider = %s\n",
4432 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4433 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4434 
4435 	db_printf("\n\nList of active vnodes\n");
4436 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4437 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4438 			vn_printf(vp, "vnode ");
4439 			if (db_pager_quit)
4440 				break;
4441 		}
4442 	}
4443 	db_printf("\n\nList of inactive vnodes\n");
4444 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4445 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4446 			vn_printf(vp, "vnode ");
4447 			if (db_pager_quit)
4448 				break;
4449 		}
4450 	}
4451 }
4452 #endif	/* DDB */
4453 
4454 /*
4455  * Fill in a struct xvfsconf based on a struct vfsconf.
4456  */
4457 static int
4458 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4459 {
4460 	struct xvfsconf xvfsp;
4461 
4462 	bzero(&xvfsp, sizeof(xvfsp));
4463 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4464 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4465 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4466 	xvfsp.vfc_flags = vfsp->vfc_flags;
4467 	/*
4468 	 * These are unused in userland, we keep them
4469 	 * to not break binary compatibility.
4470 	 */
4471 	xvfsp.vfc_vfsops = NULL;
4472 	xvfsp.vfc_next = NULL;
4473 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4474 }
4475 
4476 #ifdef COMPAT_FREEBSD32
4477 struct xvfsconf32 {
4478 	uint32_t	vfc_vfsops;
4479 	char		vfc_name[MFSNAMELEN];
4480 	int32_t		vfc_typenum;
4481 	int32_t		vfc_refcount;
4482 	int32_t		vfc_flags;
4483 	uint32_t	vfc_next;
4484 };
4485 
4486 static int
4487 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4488 {
4489 	struct xvfsconf32 xvfsp;
4490 
4491 	bzero(&xvfsp, sizeof(xvfsp));
4492 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4493 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4494 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4495 	xvfsp.vfc_flags = vfsp->vfc_flags;
4496 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4497 }
4498 #endif
4499 
4500 /*
4501  * Top level filesystem related information gathering.
4502  */
4503 static int
4504 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4505 {
4506 	struct vfsconf *vfsp;
4507 	int error;
4508 
4509 	error = 0;
4510 	vfsconf_slock();
4511 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4512 #ifdef COMPAT_FREEBSD32
4513 		if (req->flags & SCTL_MASK32)
4514 			error = vfsconf2x32(req, vfsp);
4515 		else
4516 #endif
4517 			error = vfsconf2x(req, vfsp);
4518 		if (error)
4519 			break;
4520 	}
4521 	vfsconf_sunlock();
4522 	return (error);
4523 }
4524 
4525 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4526     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4527     "S,xvfsconf", "List of all configured filesystems");
4528 
4529 #ifndef BURN_BRIDGES
4530 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4531 
4532 static int
4533 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4534 {
4535 	int *name = (int *)arg1 - 1;	/* XXX */
4536 	u_int namelen = arg2 + 1;	/* XXX */
4537 	struct vfsconf *vfsp;
4538 
4539 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4540 	    "please rebuild world\n");
4541 
4542 #if 1 || defined(COMPAT_PRELITE2)
4543 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4544 	if (namelen == 1)
4545 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4546 #endif
4547 
4548 	switch (name[1]) {
4549 	case VFS_MAXTYPENUM:
4550 		if (namelen != 2)
4551 			return (ENOTDIR);
4552 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4553 	case VFS_CONF:
4554 		if (namelen != 3)
4555 			return (ENOTDIR);	/* overloaded */
4556 		vfsconf_slock();
4557 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4558 			if (vfsp->vfc_typenum == name[2])
4559 				break;
4560 		}
4561 		vfsconf_sunlock();
4562 		if (vfsp == NULL)
4563 			return (EOPNOTSUPP);
4564 #ifdef COMPAT_FREEBSD32
4565 		if (req->flags & SCTL_MASK32)
4566 			return (vfsconf2x32(req, vfsp));
4567 		else
4568 #endif
4569 			return (vfsconf2x(req, vfsp));
4570 	}
4571 	return (EOPNOTSUPP);
4572 }
4573 
4574 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4575     CTLFLAG_MPSAFE, vfs_sysctl,
4576     "Generic filesystem");
4577 
4578 #if 1 || defined(COMPAT_PRELITE2)
4579 
4580 static int
4581 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4582 {
4583 	int error;
4584 	struct vfsconf *vfsp;
4585 	struct ovfsconf ovfs;
4586 
4587 	vfsconf_slock();
4588 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4589 		bzero(&ovfs, sizeof(ovfs));
4590 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4591 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4592 		ovfs.vfc_index = vfsp->vfc_typenum;
4593 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4594 		ovfs.vfc_flags = vfsp->vfc_flags;
4595 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4596 		if (error != 0) {
4597 			vfsconf_sunlock();
4598 			return (error);
4599 		}
4600 	}
4601 	vfsconf_sunlock();
4602 	return (0);
4603 }
4604 
4605 #endif /* 1 || COMPAT_PRELITE2 */
4606 #endif /* !BURN_BRIDGES */
4607 
4608 #define KINFO_VNODESLOP		10
4609 #ifdef notyet
4610 /*
4611  * Dump vnode list (via sysctl).
4612  */
4613 /* ARGSUSED */
4614 static int
4615 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4616 {
4617 	struct xvnode *xvn;
4618 	struct mount *mp;
4619 	struct vnode *vp;
4620 	int error, len, n;
4621 
4622 	/*
4623 	 * Stale numvnodes access is not fatal here.
4624 	 */
4625 	req->lock = 0;
4626 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4627 	if (!req->oldptr)
4628 		/* Make an estimate */
4629 		return (SYSCTL_OUT(req, 0, len));
4630 
4631 	error = sysctl_wire_old_buffer(req, 0);
4632 	if (error != 0)
4633 		return (error);
4634 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4635 	n = 0;
4636 	mtx_lock(&mountlist_mtx);
4637 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4638 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4639 			continue;
4640 		MNT_ILOCK(mp);
4641 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4642 			if (n == len)
4643 				break;
4644 			vref(vp);
4645 			xvn[n].xv_size = sizeof *xvn;
4646 			xvn[n].xv_vnode = vp;
4647 			xvn[n].xv_id = 0;	/* XXX compat */
4648 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4649 			XV_COPY(usecount);
4650 			XV_COPY(writecount);
4651 			XV_COPY(holdcnt);
4652 			XV_COPY(mount);
4653 			XV_COPY(numoutput);
4654 			XV_COPY(type);
4655 #undef XV_COPY
4656 			xvn[n].xv_flag = vp->v_vflag;
4657 
4658 			switch (vp->v_type) {
4659 			case VREG:
4660 			case VDIR:
4661 			case VLNK:
4662 				break;
4663 			case VBLK:
4664 			case VCHR:
4665 				if (vp->v_rdev == NULL) {
4666 					vrele(vp);
4667 					continue;
4668 				}
4669 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4670 				break;
4671 			case VSOCK:
4672 				xvn[n].xv_socket = vp->v_socket;
4673 				break;
4674 			case VFIFO:
4675 				xvn[n].xv_fifo = vp->v_fifoinfo;
4676 				break;
4677 			case VNON:
4678 			case VBAD:
4679 			default:
4680 				/* shouldn't happen? */
4681 				vrele(vp);
4682 				continue;
4683 			}
4684 			vrele(vp);
4685 			++n;
4686 		}
4687 		MNT_IUNLOCK(mp);
4688 		mtx_lock(&mountlist_mtx);
4689 		vfs_unbusy(mp);
4690 		if (n == len)
4691 			break;
4692 	}
4693 	mtx_unlock(&mountlist_mtx);
4694 
4695 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4696 	free(xvn, M_TEMP);
4697 	return (error);
4698 }
4699 
4700 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4701     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4702     "");
4703 #endif
4704 
4705 static void
4706 unmount_or_warn(struct mount *mp)
4707 {
4708 	int error;
4709 
4710 	error = dounmount(mp, MNT_FORCE, curthread);
4711 	if (error != 0) {
4712 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4713 		if (error == EBUSY)
4714 			printf("BUSY)\n");
4715 		else
4716 			printf("%d)\n", error);
4717 	}
4718 }
4719 
4720 /*
4721  * Unmount all filesystems. The list is traversed in reverse order
4722  * of mounting to avoid dependencies.
4723  */
4724 void
4725 vfs_unmountall(void)
4726 {
4727 	struct mount *mp, *tmp;
4728 
4729 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4730 
4731 	/*
4732 	 * Since this only runs when rebooting, it is not interlocked.
4733 	 */
4734 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4735 		vfs_ref(mp);
4736 
4737 		/*
4738 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4739 		 * unmount of the latter.
4740 		 */
4741 		if (mp == rootdevmp)
4742 			continue;
4743 
4744 		unmount_or_warn(mp);
4745 	}
4746 
4747 	if (rootdevmp != NULL)
4748 		unmount_or_warn(rootdevmp);
4749 }
4750 
4751 static void
4752 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4753 {
4754 
4755 	ASSERT_VI_LOCKED(vp, __func__);
4756 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4757 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4758 		vdropl(vp);
4759 		return;
4760 	}
4761 	if (vn_lock(vp, lkflags) == 0) {
4762 		VI_LOCK(vp);
4763 		vinactive(vp);
4764 		VOP_UNLOCK(vp);
4765 		vdropl(vp);
4766 		return;
4767 	}
4768 	vdefer_inactive_unlocked(vp);
4769 }
4770 
4771 static int
4772 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4773 {
4774 
4775 	return (vp->v_iflag & VI_DEFINACT);
4776 }
4777 
4778 static void __noinline
4779 vfs_periodic_inactive(struct mount *mp, int flags)
4780 {
4781 	struct vnode *vp, *mvp;
4782 	int lkflags;
4783 
4784 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4785 	if (flags != MNT_WAIT)
4786 		lkflags |= LK_NOWAIT;
4787 
4788 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4789 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4790 			VI_UNLOCK(vp);
4791 			continue;
4792 		}
4793 		vp->v_iflag &= ~VI_DEFINACT;
4794 		vfs_deferred_inactive(vp, lkflags);
4795 	}
4796 }
4797 
4798 static inline bool
4799 vfs_want_msync(struct vnode *vp)
4800 {
4801 	struct vm_object *obj;
4802 
4803 	/*
4804 	 * This test may be performed without any locks held.
4805 	 * We rely on vm_object's type stability.
4806 	 */
4807 	if (vp->v_vflag & VV_NOSYNC)
4808 		return (false);
4809 	obj = vp->v_object;
4810 	return (obj != NULL && vm_object_mightbedirty(obj));
4811 }
4812 
4813 static int
4814 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4815 {
4816 
4817 	if (vp->v_vflag & VV_NOSYNC)
4818 		return (false);
4819 	if (vp->v_iflag & VI_DEFINACT)
4820 		return (true);
4821 	return (vfs_want_msync(vp));
4822 }
4823 
4824 static void __noinline
4825 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4826 {
4827 	struct vnode *vp, *mvp;
4828 	struct vm_object *obj;
4829 	int lkflags, objflags;
4830 	bool seen_defer;
4831 
4832 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4833 	if (flags != MNT_WAIT) {
4834 		lkflags |= LK_NOWAIT;
4835 		objflags = OBJPC_NOSYNC;
4836 	} else {
4837 		objflags = OBJPC_SYNC;
4838 	}
4839 
4840 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4841 		seen_defer = false;
4842 		if (vp->v_iflag & VI_DEFINACT) {
4843 			vp->v_iflag &= ~VI_DEFINACT;
4844 			seen_defer = true;
4845 		}
4846 		if (!vfs_want_msync(vp)) {
4847 			if (seen_defer)
4848 				vfs_deferred_inactive(vp, lkflags);
4849 			else
4850 				VI_UNLOCK(vp);
4851 			continue;
4852 		}
4853 		if (vget(vp, lkflags) == 0) {
4854 			obj = vp->v_object;
4855 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4856 				VM_OBJECT_WLOCK(obj);
4857 				vm_object_page_clean(obj, 0, 0, objflags);
4858 				VM_OBJECT_WUNLOCK(obj);
4859 			}
4860 			vput(vp);
4861 			if (seen_defer)
4862 				vdrop(vp);
4863 		} else {
4864 			if (seen_defer)
4865 				vdefer_inactive_unlocked(vp);
4866 		}
4867 	}
4868 }
4869 
4870 void
4871 vfs_periodic(struct mount *mp, int flags)
4872 {
4873 
4874 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4875 
4876 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4877 		vfs_periodic_inactive(mp, flags);
4878 	else
4879 		vfs_periodic_msync_inactive(mp, flags);
4880 }
4881 
4882 static void
4883 destroy_vpollinfo_free(struct vpollinfo *vi)
4884 {
4885 
4886 	knlist_destroy(&vi->vpi_selinfo.si_note);
4887 	mtx_destroy(&vi->vpi_lock);
4888 	free(vi, M_VNODEPOLL);
4889 }
4890 
4891 static void
4892 destroy_vpollinfo(struct vpollinfo *vi)
4893 {
4894 
4895 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4896 	seldrain(&vi->vpi_selinfo);
4897 	destroy_vpollinfo_free(vi);
4898 }
4899 
4900 /*
4901  * Initialize per-vnode helper structure to hold poll-related state.
4902  */
4903 void
4904 v_addpollinfo(struct vnode *vp)
4905 {
4906 	struct vpollinfo *vi;
4907 
4908 	if (vp->v_pollinfo != NULL)
4909 		return;
4910 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4911 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4912 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4913 	    vfs_knlunlock, vfs_knl_assert_lock);
4914 	VI_LOCK(vp);
4915 	if (vp->v_pollinfo != NULL) {
4916 		VI_UNLOCK(vp);
4917 		destroy_vpollinfo_free(vi);
4918 		return;
4919 	}
4920 	vp->v_pollinfo = vi;
4921 	VI_UNLOCK(vp);
4922 }
4923 
4924 /*
4925  * Record a process's interest in events which might happen to
4926  * a vnode.  Because poll uses the historic select-style interface
4927  * internally, this routine serves as both the ``check for any
4928  * pending events'' and the ``record my interest in future events''
4929  * functions.  (These are done together, while the lock is held,
4930  * to avoid race conditions.)
4931  */
4932 int
4933 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4934 {
4935 
4936 	v_addpollinfo(vp);
4937 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4938 	if (vp->v_pollinfo->vpi_revents & events) {
4939 		/*
4940 		 * This leaves events we are not interested
4941 		 * in available for the other process which
4942 		 * which presumably had requested them
4943 		 * (otherwise they would never have been
4944 		 * recorded).
4945 		 */
4946 		events &= vp->v_pollinfo->vpi_revents;
4947 		vp->v_pollinfo->vpi_revents &= ~events;
4948 
4949 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4950 		return (events);
4951 	}
4952 	vp->v_pollinfo->vpi_events |= events;
4953 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4954 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4955 	return (0);
4956 }
4957 
4958 /*
4959  * Routine to create and manage a filesystem syncer vnode.
4960  */
4961 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4962 static int	sync_fsync(struct  vop_fsync_args *);
4963 static int	sync_inactive(struct  vop_inactive_args *);
4964 static int	sync_reclaim(struct  vop_reclaim_args *);
4965 
4966 static struct vop_vector sync_vnodeops = {
4967 	.vop_bypass =	VOP_EOPNOTSUPP,
4968 	.vop_close =	sync_close,		/* close */
4969 	.vop_fsync =	sync_fsync,		/* fsync */
4970 	.vop_inactive =	sync_inactive,	/* inactive */
4971 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4972 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4973 	.vop_lock1 =	vop_stdlock,	/* lock */
4974 	.vop_unlock =	vop_stdunlock,	/* unlock */
4975 	.vop_islocked =	vop_stdislocked,	/* islocked */
4976 };
4977 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4978 
4979 /*
4980  * Create a new filesystem syncer vnode for the specified mount point.
4981  */
4982 void
4983 vfs_allocate_syncvnode(struct mount *mp)
4984 {
4985 	struct vnode *vp;
4986 	struct bufobj *bo;
4987 	static long start, incr, next;
4988 	int error;
4989 
4990 	/* Allocate a new vnode */
4991 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4992 	if (error != 0)
4993 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4994 	vp->v_type = VNON;
4995 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4996 	vp->v_vflag |= VV_FORCEINSMQ;
4997 	error = insmntque(vp, mp);
4998 	if (error != 0)
4999 		panic("vfs_allocate_syncvnode: insmntque() failed");
5000 	vp->v_vflag &= ~VV_FORCEINSMQ;
5001 	VOP_UNLOCK(vp);
5002 	/*
5003 	 * Place the vnode onto the syncer worklist. We attempt to
5004 	 * scatter them about on the list so that they will go off
5005 	 * at evenly distributed times even if all the filesystems
5006 	 * are mounted at once.
5007 	 */
5008 	next += incr;
5009 	if (next == 0 || next > syncer_maxdelay) {
5010 		start /= 2;
5011 		incr /= 2;
5012 		if (start == 0) {
5013 			start = syncer_maxdelay / 2;
5014 			incr = syncer_maxdelay;
5015 		}
5016 		next = start;
5017 	}
5018 	bo = &vp->v_bufobj;
5019 	BO_LOCK(bo);
5020 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5021 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5022 	mtx_lock(&sync_mtx);
5023 	sync_vnode_count++;
5024 	if (mp->mnt_syncer == NULL) {
5025 		mp->mnt_syncer = vp;
5026 		vp = NULL;
5027 	}
5028 	mtx_unlock(&sync_mtx);
5029 	BO_UNLOCK(bo);
5030 	if (vp != NULL) {
5031 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5032 		vgone(vp);
5033 		vput(vp);
5034 	}
5035 }
5036 
5037 void
5038 vfs_deallocate_syncvnode(struct mount *mp)
5039 {
5040 	struct vnode *vp;
5041 
5042 	mtx_lock(&sync_mtx);
5043 	vp = mp->mnt_syncer;
5044 	if (vp != NULL)
5045 		mp->mnt_syncer = NULL;
5046 	mtx_unlock(&sync_mtx);
5047 	if (vp != NULL)
5048 		vrele(vp);
5049 }
5050 
5051 /*
5052  * Do a lazy sync of the filesystem.
5053  */
5054 static int
5055 sync_fsync(struct vop_fsync_args *ap)
5056 {
5057 	struct vnode *syncvp = ap->a_vp;
5058 	struct mount *mp = syncvp->v_mount;
5059 	int error, save;
5060 	struct bufobj *bo;
5061 
5062 	/*
5063 	 * We only need to do something if this is a lazy evaluation.
5064 	 */
5065 	if (ap->a_waitfor != MNT_LAZY)
5066 		return (0);
5067 
5068 	/*
5069 	 * Move ourselves to the back of the sync list.
5070 	 */
5071 	bo = &syncvp->v_bufobj;
5072 	BO_LOCK(bo);
5073 	vn_syncer_add_to_worklist(bo, syncdelay);
5074 	BO_UNLOCK(bo);
5075 
5076 	/*
5077 	 * Walk the list of vnodes pushing all that are dirty and
5078 	 * not already on the sync list.
5079 	 */
5080 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5081 		return (0);
5082 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
5083 		vfs_unbusy(mp);
5084 		return (0);
5085 	}
5086 	save = curthread_pflags_set(TDP_SYNCIO);
5087 	/*
5088 	 * The filesystem at hand may be idle with free vnodes stored in the
5089 	 * batch.  Return them instead of letting them stay there indefinitely.
5090 	 */
5091 	vfs_periodic(mp, MNT_NOWAIT);
5092 	error = VFS_SYNC(mp, MNT_LAZY);
5093 	curthread_pflags_restore(save);
5094 	vn_finished_write(mp);
5095 	vfs_unbusy(mp);
5096 	return (error);
5097 }
5098 
5099 /*
5100  * The syncer vnode is no referenced.
5101  */
5102 static int
5103 sync_inactive(struct vop_inactive_args *ap)
5104 {
5105 
5106 	vgone(ap->a_vp);
5107 	return (0);
5108 }
5109 
5110 /*
5111  * The syncer vnode is no longer needed and is being decommissioned.
5112  *
5113  * Modifications to the worklist must be protected by sync_mtx.
5114  */
5115 static int
5116 sync_reclaim(struct vop_reclaim_args *ap)
5117 {
5118 	struct vnode *vp = ap->a_vp;
5119 	struct bufobj *bo;
5120 
5121 	bo = &vp->v_bufobj;
5122 	BO_LOCK(bo);
5123 	mtx_lock(&sync_mtx);
5124 	if (vp->v_mount->mnt_syncer == vp)
5125 		vp->v_mount->mnt_syncer = NULL;
5126 	if (bo->bo_flag & BO_ONWORKLST) {
5127 		LIST_REMOVE(bo, bo_synclist);
5128 		syncer_worklist_len--;
5129 		sync_vnode_count--;
5130 		bo->bo_flag &= ~BO_ONWORKLST;
5131 	}
5132 	mtx_unlock(&sync_mtx);
5133 	BO_UNLOCK(bo);
5134 
5135 	return (0);
5136 }
5137 
5138 int
5139 vn_need_pageq_flush(struct vnode *vp)
5140 {
5141 	struct vm_object *obj;
5142 
5143 	obj = vp->v_object;
5144 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5145 	    vm_object_mightbedirty(obj));
5146 }
5147 
5148 /*
5149  * Check if vnode represents a disk device
5150  */
5151 bool
5152 vn_isdisk_error(struct vnode *vp, int *errp)
5153 {
5154 	int error;
5155 
5156 	if (vp->v_type != VCHR) {
5157 		error = ENOTBLK;
5158 		goto out;
5159 	}
5160 	error = 0;
5161 	dev_lock();
5162 	if (vp->v_rdev == NULL)
5163 		error = ENXIO;
5164 	else if (vp->v_rdev->si_devsw == NULL)
5165 		error = ENXIO;
5166 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5167 		error = ENOTBLK;
5168 	dev_unlock();
5169 out:
5170 	*errp = error;
5171 	return (error == 0);
5172 }
5173 
5174 bool
5175 vn_isdisk(struct vnode *vp)
5176 {
5177 	int error;
5178 
5179 	return (vn_isdisk_error(vp, &error));
5180 }
5181 
5182 /*
5183  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5184  * the comment above cache_fplookup for details.
5185  */
5186 int
5187 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5188 {
5189 	int error;
5190 
5191 	VFS_SMR_ASSERT_ENTERED();
5192 
5193 	/* Check the owner. */
5194 	if (cred->cr_uid == file_uid) {
5195 		if (file_mode & S_IXUSR)
5196 			return (0);
5197 		goto out_error;
5198 	}
5199 
5200 	/* Otherwise, check the groups (first match) */
5201 	if (groupmember(file_gid, cred)) {
5202 		if (file_mode & S_IXGRP)
5203 			return (0);
5204 		goto out_error;
5205 	}
5206 
5207 	/* Otherwise, check everyone else. */
5208 	if (file_mode & S_IXOTH)
5209 		return (0);
5210 out_error:
5211 	/*
5212 	 * Permission check failed, but it is possible denial will get overwritten
5213 	 * (e.g., when root is traversing through a 700 directory owned by someone
5214 	 * else).
5215 	 *
5216 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5217 	 * modules overriding this result. It's quite unclear what semantics
5218 	 * are allowed for them to operate, thus for safety we don't call them
5219 	 * from within the SMR section. This also means if any such modules
5220 	 * are present, we have to let the regular lookup decide.
5221 	 */
5222 	error = priv_check_cred_vfs_lookup_nomac(cred);
5223 	switch (error) {
5224 	case 0:
5225 		return (0);
5226 	case EAGAIN:
5227 		/*
5228 		 * MAC modules present.
5229 		 */
5230 		return (EAGAIN);
5231 	case EPERM:
5232 		return (EACCES);
5233 	default:
5234 		return (error);
5235 	}
5236 }
5237 
5238 /*
5239  * Common filesystem object access control check routine.  Accepts a
5240  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5241  * Returns 0 on success, or an errno on failure.
5242  */
5243 int
5244 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5245     accmode_t accmode, struct ucred *cred)
5246 {
5247 	accmode_t dac_granted;
5248 	accmode_t priv_granted;
5249 
5250 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5251 	    ("invalid bit in accmode"));
5252 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5253 	    ("VAPPEND without VWRITE"));
5254 
5255 	/*
5256 	 * Look for a normal, non-privileged way to access the file/directory
5257 	 * as requested.  If it exists, go with that.
5258 	 */
5259 
5260 	dac_granted = 0;
5261 
5262 	/* Check the owner. */
5263 	if (cred->cr_uid == file_uid) {
5264 		dac_granted |= VADMIN;
5265 		if (file_mode & S_IXUSR)
5266 			dac_granted |= VEXEC;
5267 		if (file_mode & S_IRUSR)
5268 			dac_granted |= VREAD;
5269 		if (file_mode & S_IWUSR)
5270 			dac_granted |= (VWRITE | VAPPEND);
5271 
5272 		if ((accmode & dac_granted) == accmode)
5273 			return (0);
5274 
5275 		goto privcheck;
5276 	}
5277 
5278 	/* Otherwise, check the groups (first match) */
5279 	if (groupmember(file_gid, cred)) {
5280 		if (file_mode & S_IXGRP)
5281 			dac_granted |= VEXEC;
5282 		if (file_mode & S_IRGRP)
5283 			dac_granted |= VREAD;
5284 		if (file_mode & S_IWGRP)
5285 			dac_granted |= (VWRITE | VAPPEND);
5286 
5287 		if ((accmode & dac_granted) == accmode)
5288 			return (0);
5289 
5290 		goto privcheck;
5291 	}
5292 
5293 	/* Otherwise, check everyone else. */
5294 	if (file_mode & S_IXOTH)
5295 		dac_granted |= VEXEC;
5296 	if (file_mode & S_IROTH)
5297 		dac_granted |= VREAD;
5298 	if (file_mode & S_IWOTH)
5299 		dac_granted |= (VWRITE | VAPPEND);
5300 	if ((accmode & dac_granted) == accmode)
5301 		return (0);
5302 
5303 privcheck:
5304 	/*
5305 	 * Build a privilege mask to determine if the set of privileges
5306 	 * satisfies the requirements when combined with the granted mask
5307 	 * from above.  For each privilege, if the privilege is required,
5308 	 * bitwise or the request type onto the priv_granted mask.
5309 	 */
5310 	priv_granted = 0;
5311 
5312 	if (type == VDIR) {
5313 		/*
5314 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5315 		 * requests, instead of PRIV_VFS_EXEC.
5316 		 */
5317 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5318 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5319 			priv_granted |= VEXEC;
5320 	} else {
5321 		/*
5322 		 * Ensure that at least one execute bit is on. Otherwise,
5323 		 * a privileged user will always succeed, and we don't want
5324 		 * this to happen unless the file really is executable.
5325 		 */
5326 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5327 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5328 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5329 			priv_granted |= VEXEC;
5330 	}
5331 
5332 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5333 	    !priv_check_cred(cred, PRIV_VFS_READ))
5334 		priv_granted |= VREAD;
5335 
5336 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5337 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5338 		priv_granted |= (VWRITE | VAPPEND);
5339 
5340 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5341 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5342 		priv_granted |= VADMIN;
5343 
5344 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5345 		return (0);
5346 	}
5347 
5348 	return ((accmode & VADMIN) ? EPERM : EACCES);
5349 }
5350 
5351 /*
5352  * Credential check based on process requesting service, and per-attribute
5353  * permissions.
5354  */
5355 int
5356 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5357     struct thread *td, accmode_t accmode)
5358 {
5359 
5360 	/*
5361 	 * Kernel-invoked always succeeds.
5362 	 */
5363 	if (cred == NOCRED)
5364 		return (0);
5365 
5366 	/*
5367 	 * Do not allow privileged processes in jail to directly manipulate
5368 	 * system attributes.
5369 	 */
5370 	switch (attrnamespace) {
5371 	case EXTATTR_NAMESPACE_SYSTEM:
5372 		/* Potentially should be: return (EPERM); */
5373 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5374 	case EXTATTR_NAMESPACE_USER:
5375 		return (VOP_ACCESS(vp, accmode, cred, td));
5376 	default:
5377 		return (EPERM);
5378 	}
5379 }
5380 
5381 #ifdef DEBUG_VFS_LOCKS
5382 /*
5383  * This only exists to suppress warnings from unlocked specfs accesses.  It is
5384  * no longer ok to have an unlocked VFS.
5385  */
5386 #define	IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL ||		\
5387 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
5388 
5389 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5390 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5391     "Drop into debugger on lock violation");
5392 
5393 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5394 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5395     0, "Check for interlock across VOPs");
5396 
5397 int vfs_badlock_print = 1;	/* Print lock violations. */
5398 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5399     0, "Print lock violations");
5400 
5401 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5402 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5403     0, "Print vnode details on lock violations");
5404 
5405 #ifdef KDB
5406 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5407 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5408     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5409 #endif
5410 
5411 static void
5412 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5413 {
5414 
5415 #ifdef KDB
5416 	if (vfs_badlock_backtrace)
5417 		kdb_backtrace();
5418 #endif
5419 	if (vfs_badlock_vnode)
5420 		vn_printf(vp, "vnode ");
5421 	if (vfs_badlock_print)
5422 		printf("%s: %p %s\n", str, (void *)vp, msg);
5423 	if (vfs_badlock_ddb)
5424 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5425 }
5426 
5427 void
5428 assert_vi_locked(struct vnode *vp, const char *str)
5429 {
5430 
5431 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5432 		vfs_badlock("interlock is not locked but should be", str, vp);
5433 }
5434 
5435 void
5436 assert_vi_unlocked(struct vnode *vp, const char *str)
5437 {
5438 
5439 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5440 		vfs_badlock("interlock is locked but should not be", str, vp);
5441 }
5442 
5443 void
5444 assert_vop_locked(struct vnode *vp, const char *str)
5445 {
5446 	int locked;
5447 
5448 	if (!IGNORE_LOCK(vp)) {
5449 		locked = VOP_ISLOCKED(vp);
5450 		if (locked == 0 || locked == LK_EXCLOTHER)
5451 			vfs_badlock("is not locked but should be", str, vp);
5452 	}
5453 }
5454 
5455 void
5456 assert_vop_unlocked(struct vnode *vp, const char *str)
5457 {
5458 
5459 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5460 		vfs_badlock("is locked but should not be", str, vp);
5461 }
5462 
5463 void
5464 assert_vop_elocked(struct vnode *vp, const char *str)
5465 {
5466 
5467 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5468 		vfs_badlock("is not exclusive locked but should be", str, vp);
5469 }
5470 #endif /* DEBUG_VFS_LOCKS */
5471 
5472 void
5473 vop_rename_fail(struct vop_rename_args *ap)
5474 {
5475 
5476 	if (ap->a_tvp != NULL)
5477 		vput(ap->a_tvp);
5478 	if (ap->a_tdvp == ap->a_tvp)
5479 		vrele(ap->a_tdvp);
5480 	else
5481 		vput(ap->a_tdvp);
5482 	vrele(ap->a_fdvp);
5483 	vrele(ap->a_fvp);
5484 }
5485 
5486 void
5487 vop_rename_pre(void *ap)
5488 {
5489 	struct vop_rename_args *a = ap;
5490 
5491 #ifdef DEBUG_VFS_LOCKS
5492 	if (a->a_tvp)
5493 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5494 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5495 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5496 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5497 
5498 	/* Check the source (from). */
5499 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5500 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5501 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5502 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5503 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5504 
5505 	/* Check the target. */
5506 	if (a->a_tvp)
5507 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5508 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5509 #endif
5510 	/*
5511 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5512 	 * in vop_rename_post but that's not going to work out since some
5513 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5514 	 *
5515 	 * For now filesystems are expected to do the relevant calls after they
5516 	 * decide what vnodes to operate on.
5517 	 */
5518 	if (a->a_tdvp != a->a_fdvp)
5519 		vhold(a->a_fdvp);
5520 	if (a->a_tvp != a->a_fvp)
5521 		vhold(a->a_fvp);
5522 	vhold(a->a_tdvp);
5523 	if (a->a_tvp)
5524 		vhold(a->a_tvp);
5525 }
5526 
5527 #ifdef DEBUG_VFS_LOCKS
5528 void
5529 vop_fplookup_vexec_debugpre(void *ap __unused)
5530 {
5531 
5532 	VFS_SMR_ASSERT_ENTERED();
5533 }
5534 
5535 void
5536 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5537 {
5538 
5539 	VFS_SMR_ASSERT_ENTERED();
5540 }
5541 
5542 void
5543 vop_fplookup_symlink_debugpre(void *ap __unused)
5544 {
5545 
5546 	VFS_SMR_ASSERT_ENTERED();
5547 }
5548 
5549 void
5550 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5551 {
5552 
5553 	VFS_SMR_ASSERT_ENTERED();
5554 }
5555 void
5556 vop_strategy_debugpre(void *ap)
5557 {
5558 	struct vop_strategy_args *a;
5559 	struct buf *bp;
5560 
5561 	a = ap;
5562 	bp = a->a_bp;
5563 
5564 	/*
5565 	 * Cluster ops lock their component buffers but not the IO container.
5566 	 */
5567 	if ((bp->b_flags & B_CLUSTER) != 0)
5568 		return;
5569 
5570 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5571 		if (vfs_badlock_print)
5572 			printf(
5573 			    "VOP_STRATEGY: bp is not locked but should be\n");
5574 		if (vfs_badlock_ddb)
5575 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5576 	}
5577 }
5578 
5579 void
5580 vop_lock_debugpre(void *ap)
5581 {
5582 	struct vop_lock1_args *a = ap;
5583 
5584 	if ((a->a_flags & LK_INTERLOCK) == 0)
5585 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5586 	else
5587 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5588 }
5589 
5590 void
5591 vop_lock_debugpost(void *ap, int rc)
5592 {
5593 	struct vop_lock1_args *a = ap;
5594 
5595 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5596 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5597 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5598 }
5599 
5600 void
5601 vop_unlock_debugpre(void *ap)
5602 {
5603 	struct vop_unlock_args *a = ap;
5604 
5605 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5606 }
5607 
5608 void
5609 vop_need_inactive_debugpre(void *ap)
5610 {
5611 	struct vop_need_inactive_args *a = ap;
5612 
5613 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5614 }
5615 
5616 void
5617 vop_need_inactive_debugpost(void *ap, int rc)
5618 {
5619 	struct vop_need_inactive_args *a = ap;
5620 
5621 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5622 }
5623 #endif
5624 
5625 void
5626 vop_create_pre(void *ap)
5627 {
5628 	struct vop_create_args *a;
5629 	struct vnode *dvp;
5630 
5631 	a = ap;
5632 	dvp = a->a_dvp;
5633 	vn_seqc_write_begin(dvp);
5634 }
5635 
5636 void
5637 vop_create_post(void *ap, int rc)
5638 {
5639 	struct vop_create_args *a;
5640 	struct vnode *dvp;
5641 
5642 	a = ap;
5643 	dvp = a->a_dvp;
5644 	vn_seqc_write_end(dvp);
5645 	if (!rc)
5646 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5647 }
5648 
5649 void
5650 vop_whiteout_pre(void *ap)
5651 {
5652 	struct vop_whiteout_args *a;
5653 	struct vnode *dvp;
5654 
5655 	a = ap;
5656 	dvp = a->a_dvp;
5657 	vn_seqc_write_begin(dvp);
5658 }
5659 
5660 void
5661 vop_whiteout_post(void *ap, int rc)
5662 {
5663 	struct vop_whiteout_args *a;
5664 	struct vnode *dvp;
5665 
5666 	a = ap;
5667 	dvp = a->a_dvp;
5668 	vn_seqc_write_end(dvp);
5669 }
5670 
5671 void
5672 vop_deleteextattr_pre(void *ap)
5673 {
5674 	struct vop_deleteextattr_args *a;
5675 	struct vnode *vp;
5676 
5677 	a = ap;
5678 	vp = a->a_vp;
5679 	vn_seqc_write_begin(vp);
5680 }
5681 
5682 void
5683 vop_deleteextattr_post(void *ap, int rc)
5684 {
5685 	struct vop_deleteextattr_args *a;
5686 	struct vnode *vp;
5687 
5688 	a = ap;
5689 	vp = a->a_vp;
5690 	vn_seqc_write_end(vp);
5691 	if (!rc)
5692 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5693 }
5694 
5695 void
5696 vop_link_pre(void *ap)
5697 {
5698 	struct vop_link_args *a;
5699 	struct vnode *vp, *tdvp;
5700 
5701 	a = ap;
5702 	vp = a->a_vp;
5703 	tdvp = a->a_tdvp;
5704 	vn_seqc_write_begin(vp);
5705 	vn_seqc_write_begin(tdvp);
5706 }
5707 
5708 void
5709 vop_link_post(void *ap, int rc)
5710 {
5711 	struct vop_link_args *a;
5712 	struct vnode *vp, *tdvp;
5713 
5714 	a = ap;
5715 	vp = a->a_vp;
5716 	tdvp = a->a_tdvp;
5717 	vn_seqc_write_end(vp);
5718 	vn_seqc_write_end(tdvp);
5719 	if (!rc) {
5720 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5721 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5722 	}
5723 }
5724 
5725 void
5726 vop_mkdir_pre(void *ap)
5727 {
5728 	struct vop_mkdir_args *a;
5729 	struct vnode *dvp;
5730 
5731 	a = ap;
5732 	dvp = a->a_dvp;
5733 	vn_seqc_write_begin(dvp);
5734 }
5735 
5736 void
5737 vop_mkdir_post(void *ap, int rc)
5738 {
5739 	struct vop_mkdir_args *a;
5740 	struct vnode *dvp;
5741 
5742 	a = ap;
5743 	dvp = a->a_dvp;
5744 	vn_seqc_write_end(dvp);
5745 	if (!rc)
5746 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5747 }
5748 
5749 #ifdef DEBUG_VFS_LOCKS
5750 void
5751 vop_mkdir_debugpost(void *ap, int rc)
5752 {
5753 	struct vop_mkdir_args *a;
5754 
5755 	a = ap;
5756 	if (!rc)
5757 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5758 }
5759 #endif
5760 
5761 void
5762 vop_mknod_pre(void *ap)
5763 {
5764 	struct vop_mknod_args *a;
5765 	struct vnode *dvp;
5766 
5767 	a = ap;
5768 	dvp = a->a_dvp;
5769 	vn_seqc_write_begin(dvp);
5770 }
5771 
5772 void
5773 vop_mknod_post(void *ap, int rc)
5774 {
5775 	struct vop_mknod_args *a;
5776 	struct vnode *dvp;
5777 
5778 	a = ap;
5779 	dvp = a->a_dvp;
5780 	vn_seqc_write_end(dvp);
5781 	if (!rc)
5782 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5783 }
5784 
5785 void
5786 vop_reclaim_post(void *ap, int rc)
5787 {
5788 	struct vop_reclaim_args *a;
5789 	struct vnode *vp;
5790 
5791 	a = ap;
5792 	vp = a->a_vp;
5793 	ASSERT_VOP_IN_SEQC(vp);
5794 	if (!rc)
5795 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5796 }
5797 
5798 void
5799 vop_remove_pre(void *ap)
5800 {
5801 	struct vop_remove_args *a;
5802 	struct vnode *dvp, *vp;
5803 
5804 	a = ap;
5805 	dvp = a->a_dvp;
5806 	vp = a->a_vp;
5807 	vn_seqc_write_begin(dvp);
5808 	vn_seqc_write_begin(vp);
5809 }
5810 
5811 void
5812 vop_remove_post(void *ap, int rc)
5813 {
5814 	struct vop_remove_args *a;
5815 	struct vnode *dvp, *vp;
5816 
5817 	a = ap;
5818 	dvp = a->a_dvp;
5819 	vp = a->a_vp;
5820 	vn_seqc_write_end(dvp);
5821 	vn_seqc_write_end(vp);
5822 	if (!rc) {
5823 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5824 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5825 	}
5826 }
5827 
5828 void
5829 vop_rename_post(void *ap, int rc)
5830 {
5831 	struct vop_rename_args *a = ap;
5832 	long hint;
5833 
5834 	if (!rc) {
5835 		hint = NOTE_WRITE;
5836 		if (a->a_fdvp == a->a_tdvp) {
5837 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5838 				hint |= NOTE_LINK;
5839 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5840 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5841 		} else {
5842 			hint |= NOTE_EXTEND;
5843 			if (a->a_fvp->v_type == VDIR)
5844 				hint |= NOTE_LINK;
5845 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5846 
5847 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5848 			    a->a_tvp->v_type == VDIR)
5849 				hint &= ~NOTE_LINK;
5850 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5851 		}
5852 
5853 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5854 		if (a->a_tvp)
5855 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5856 	}
5857 	if (a->a_tdvp != a->a_fdvp)
5858 		vdrop(a->a_fdvp);
5859 	if (a->a_tvp != a->a_fvp)
5860 		vdrop(a->a_fvp);
5861 	vdrop(a->a_tdvp);
5862 	if (a->a_tvp)
5863 		vdrop(a->a_tvp);
5864 }
5865 
5866 void
5867 vop_rmdir_pre(void *ap)
5868 {
5869 	struct vop_rmdir_args *a;
5870 	struct vnode *dvp, *vp;
5871 
5872 	a = ap;
5873 	dvp = a->a_dvp;
5874 	vp = a->a_vp;
5875 	vn_seqc_write_begin(dvp);
5876 	vn_seqc_write_begin(vp);
5877 }
5878 
5879 void
5880 vop_rmdir_post(void *ap, int rc)
5881 {
5882 	struct vop_rmdir_args *a;
5883 	struct vnode *dvp, *vp;
5884 
5885 	a = ap;
5886 	dvp = a->a_dvp;
5887 	vp = a->a_vp;
5888 	vn_seqc_write_end(dvp);
5889 	vn_seqc_write_end(vp);
5890 	if (!rc) {
5891 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5892 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5893 	}
5894 }
5895 
5896 void
5897 vop_setattr_pre(void *ap)
5898 {
5899 	struct vop_setattr_args *a;
5900 	struct vnode *vp;
5901 
5902 	a = ap;
5903 	vp = a->a_vp;
5904 	vn_seqc_write_begin(vp);
5905 }
5906 
5907 void
5908 vop_setattr_post(void *ap, int rc)
5909 {
5910 	struct vop_setattr_args *a;
5911 	struct vnode *vp;
5912 
5913 	a = ap;
5914 	vp = a->a_vp;
5915 	vn_seqc_write_end(vp);
5916 	if (!rc)
5917 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5918 }
5919 
5920 void
5921 vop_setacl_pre(void *ap)
5922 {
5923 	struct vop_setacl_args *a;
5924 	struct vnode *vp;
5925 
5926 	a = ap;
5927 	vp = a->a_vp;
5928 	vn_seqc_write_begin(vp);
5929 }
5930 
5931 void
5932 vop_setacl_post(void *ap, int rc __unused)
5933 {
5934 	struct vop_setacl_args *a;
5935 	struct vnode *vp;
5936 
5937 	a = ap;
5938 	vp = a->a_vp;
5939 	vn_seqc_write_end(vp);
5940 }
5941 
5942 void
5943 vop_setextattr_pre(void *ap)
5944 {
5945 	struct vop_setextattr_args *a;
5946 	struct vnode *vp;
5947 
5948 	a = ap;
5949 	vp = a->a_vp;
5950 	vn_seqc_write_begin(vp);
5951 }
5952 
5953 void
5954 vop_setextattr_post(void *ap, int rc)
5955 {
5956 	struct vop_setextattr_args *a;
5957 	struct vnode *vp;
5958 
5959 	a = ap;
5960 	vp = a->a_vp;
5961 	vn_seqc_write_end(vp);
5962 	if (!rc)
5963 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
5964 }
5965 
5966 void
5967 vop_symlink_pre(void *ap)
5968 {
5969 	struct vop_symlink_args *a;
5970 	struct vnode *dvp;
5971 
5972 	a = ap;
5973 	dvp = a->a_dvp;
5974 	vn_seqc_write_begin(dvp);
5975 }
5976 
5977 void
5978 vop_symlink_post(void *ap, int rc)
5979 {
5980 	struct vop_symlink_args *a;
5981 	struct vnode *dvp;
5982 
5983 	a = ap;
5984 	dvp = a->a_dvp;
5985 	vn_seqc_write_end(dvp);
5986 	if (!rc)
5987 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5988 }
5989 
5990 void
5991 vop_open_post(void *ap, int rc)
5992 {
5993 	struct vop_open_args *a = ap;
5994 
5995 	if (!rc)
5996 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
5997 }
5998 
5999 void
6000 vop_close_post(void *ap, int rc)
6001 {
6002 	struct vop_close_args *a = ap;
6003 
6004 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6005 	    !VN_IS_DOOMED(a->a_vp))) {
6006 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6007 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6008 	}
6009 }
6010 
6011 void
6012 vop_read_post(void *ap, int rc)
6013 {
6014 	struct vop_read_args *a = ap;
6015 
6016 	if (!rc)
6017 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6018 }
6019 
6020 void
6021 vop_read_pgcache_post(void *ap, int rc)
6022 {
6023 	struct vop_read_pgcache_args *a = ap;
6024 
6025 	if (!rc)
6026 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6027 }
6028 
6029 void
6030 vop_readdir_post(void *ap, int rc)
6031 {
6032 	struct vop_readdir_args *a = ap;
6033 
6034 	if (!rc)
6035 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6036 }
6037 
6038 static struct knlist fs_knlist;
6039 
6040 static void
6041 vfs_event_init(void *arg)
6042 {
6043 	knlist_init_mtx(&fs_knlist, NULL);
6044 }
6045 /* XXX - correct order? */
6046 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6047 
6048 void
6049 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6050 {
6051 
6052 	KNOTE_UNLOCKED(&fs_knlist, event);
6053 }
6054 
6055 static int	filt_fsattach(struct knote *kn);
6056 static void	filt_fsdetach(struct knote *kn);
6057 static int	filt_fsevent(struct knote *kn, long hint);
6058 
6059 struct filterops fs_filtops = {
6060 	.f_isfd = 0,
6061 	.f_attach = filt_fsattach,
6062 	.f_detach = filt_fsdetach,
6063 	.f_event = filt_fsevent
6064 };
6065 
6066 static int
6067 filt_fsattach(struct knote *kn)
6068 {
6069 
6070 	kn->kn_flags |= EV_CLEAR;
6071 	knlist_add(&fs_knlist, kn, 0);
6072 	return (0);
6073 }
6074 
6075 static void
6076 filt_fsdetach(struct knote *kn)
6077 {
6078 
6079 	knlist_remove(&fs_knlist, kn, 0);
6080 }
6081 
6082 static int
6083 filt_fsevent(struct knote *kn, long hint)
6084 {
6085 
6086 	kn->kn_fflags |= kn->kn_sfflags & hint;
6087 
6088 	return (kn->kn_fflags != 0);
6089 }
6090 
6091 static int
6092 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6093 {
6094 	struct vfsidctl vc;
6095 	int error;
6096 	struct mount *mp;
6097 
6098 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6099 	if (error)
6100 		return (error);
6101 	if (vc.vc_vers != VFS_CTL_VERS1)
6102 		return (EINVAL);
6103 	mp = vfs_getvfs(&vc.vc_fsid);
6104 	if (mp == NULL)
6105 		return (ENOENT);
6106 	/* ensure that a specific sysctl goes to the right filesystem. */
6107 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6108 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6109 		vfs_rel(mp);
6110 		return (EINVAL);
6111 	}
6112 	VCTLTOREQ(&vc, req);
6113 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6114 	vfs_rel(mp);
6115 	return (error);
6116 }
6117 
6118 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6119     NULL, 0, sysctl_vfs_ctl, "",
6120     "Sysctl by fsid");
6121 
6122 /*
6123  * Function to initialize a va_filerev field sensibly.
6124  * XXX: Wouldn't a random number make a lot more sense ??
6125  */
6126 u_quad_t
6127 init_va_filerev(void)
6128 {
6129 	struct bintime bt;
6130 
6131 	getbinuptime(&bt);
6132 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6133 }
6134 
6135 static int	filt_vfsread(struct knote *kn, long hint);
6136 static int	filt_vfswrite(struct knote *kn, long hint);
6137 static int	filt_vfsvnode(struct knote *kn, long hint);
6138 static void	filt_vfsdetach(struct knote *kn);
6139 static struct filterops vfsread_filtops = {
6140 	.f_isfd = 1,
6141 	.f_detach = filt_vfsdetach,
6142 	.f_event = filt_vfsread
6143 };
6144 static struct filterops vfswrite_filtops = {
6145 	.f_isfd = 1,
6146 	.f_detach = filt_vfsdetach,
6147 	.f_event = filt_vfswrite
6148 };
6149 static struct filterops vfsvnode_filtops = {
6150 	.f_isfd = 1,
6151 	.f_detach = filt_vfsdetach,
6152 	.f_event = filt_vfsvnode
6153 };
6154 
6155 static void
6156 vfs_knllock(void *arg)
6157 {
6158 	struct vnode *vp = arg;
6159 
6160 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6161 }
6162 
6163 static void
6164 vfs_knlunlock(void *arg)
6165 {
6166 	struct vnode *vp = arg;
6167 
6168 	VOP_UNLOCK(vp);
6169 }
6170 
6171 static void
6172 vfs_knl_assert_lock(void *arg, int what)
6173 {
6174 #ifdef DEBUG_VFS_LOCKS
6175 	struct vnode *vp = arg;
6176 
6177 	if (what == LA_LOCKED)
6178 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6179 	else
6180 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6181 #endif
6182 }
6183 
6184 int
6185 vfs_kqfilter(struct vop_kqfilter_args *ap)
6186 {
6187 	struct vnode *vp = ap->a_vp;
6188 	struct knote *kn = ap->a_kn;
6189 	struct knlist *knl;
6190 
6191 	switch (kn->kn_filter) {
6192 	case EVFILT_READ:
6193 		kn->kn_fop = &vfsread_filtops;
6194 		break;
6195 	case EVFILT_WRITE:
6196 		kn->kn_fop = &vfswrite_filtops;
6197 		break;
6198 	case EVFILT_VNODE:
6199 		kn->kn_fop = &vfsvnode_filtops;
6200 		break;
6201 	default:
6202 		return (EINVAL);
6203 	}
6204 
6205 	kn->kn_hook = (caddr_t)vp;
6206 
6207 	v_addpollinfo(vp);
6208 	if (vp->v_pollinfo == NULL)
6209 		return (ENOMEM);
6210 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6211 	vhold(vp);
6212 	knlist_add(knl, kn, 0);
6213 
6214 	return (0);
6215 }
6216 
6217 /*
6218  * Detach knote from vnode
6219  */
6220 static void
6221 filt_vfsdetach(struct knote *kn)
6222 {
6223 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6224 
6225 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6226 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6227 	vdrop(vp);
6228 }
6229 
6230 /*ARGSUSED*/
6231 static int
6232 filt_vfsread(struct knote *kn, long hint)
6233 {
6234 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6235 	struct vattr va;
6236 	int res;
6237 
6238 	/*
6239 	 * filesystem is gone, so set the EOF flag and schedule
6240 	 * the knote for deletion.
6241 	 */
6242 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6243 		VI_LOCK(vp);
6244 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6245 		VI_UNLOCK(vp);
6246 		return (1);
6247 	}
6248 
6249 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6250 		return (0);
6251 
6252 	VI_LOCK(vp);
6253 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6254 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6255 	VI_UNLOCK(vp);
6256 	return (res);
6257 }
6258 
6259 /*ARGSUSED*/
6260 static int
6261 filt_vfswrite(struct knote *kn, long hint)
6262 {
6263 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6264 
6265 	VI_LOCK(vp);
6266 
6267 	/*
6268 	 * filesystem is gone, so set the EOF flag and schedule
6269 	 * the knote for deletion.
6270 	 */
6271 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6272 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6273 
6274 	kn->kn_data = 0;
6275 	VI_UNLOCK(vp);
6276 	return (1);
6277 }
6278 
6279 static int
6280 filt_vfsvnode(struct knote *kn, long hint)
6281 {
6282 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6283 	int res;
6284 
6285 	VI_LOCK(vp);
6286 	if (kn->kn_sfflags & hint)
6287 		kn->kn_fflags |= hint;
6288 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6289 		kn->kn_flags |= EV_EOF;
6290 		VI_UNLOCK(vp);
6291 		return (1);
6292 	}
6293 	res = (kn->kn_fflags != 0);
6294 	VI_UNLOCK(vp);
6295 	return (res);
6296 }
6297 
6298 /*
6299  * Returns whether the directory is empty or not.
6300  * If it is empty, the return value is 0; otherwise
6301  * the return value is an error value (which may
6302  * be ENOTEMPTY).
6303  */
6304 int
6305 vfs_emptydir(struct vnode *vp)
6306 {
6307 	struct uio uio;
6308 	struct iovec iov;
6309 	struct dirent *dirent, *dp, *endp;
6310 	int error, eof;
6311 
6312 	error = 0;
6313 	eof = 0;
6314 
6315 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6316 
6317 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6318 	iov.iov_base = dirent;
6319 	iov.iov_len = sizeof(struct dirent);
6320 
6321 	uio.uio_iov = &iov;
6322 	uio.uio_iovcnt = 1;
6323 	uio.uio_offset = 0;
6324 	uio.uio_resid = sizeof(struct dirent);
6325 	uio.uio_segflg = UIO_SYSSPACE;
6326 	uio.uio_rw = UIO_READ;
6327 	uio.uio_td = curthread;
6328 
6329 	while (eof == 0 && error == 0) {
6330 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6331 		    NULL, NULL);
6332 		if (error != 0)
6333 			break;
6334 		endp = (void *)((uint8_t *)dirent +
6335 		    sizeof(struct dirent) - uio.uio_resid);
6336 		for (dp = dirent; dp < endp;
6337 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6338 			if (dp->d_type == DT_WHT)
6339 				continue;
6340 			if (dp->d_namlen == 0)
6341 				continue;
6342 			if (dp->d_type != DT_DIR &&
6343 			    dp->d_type != DT_UNKNOWN) {
6344 				error = ENOTEMPTY;
6345 				break;
6346 			}
6347 			if (dp->d_namlen > 2) {
6348 				error = ENOTEMPTY;
6349 				break;
6350 			}
6351 			if (dp->d_namlen == 1 &&
6352 			    dp->d_name[0] != '.') {
6353 				error = ENOTEMPTY;
6354 				break;
6355 			}
6356 			if (dp->d_namlen == 2 &&
6357 			    dp->d_name[1] != '.') {
6358 				error = ENOTEMPTY;
6359 				break;
6360 			}
6361 			uio.uio_resid = sizeof(struct dirent);
6362 		}
6363 	}
6364 	free(dirent, M_TEMP);
6365 	return (error);
6366 }
6367 
6368 int
6369 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6370 {
6371 	int error;
6372 
6373 	if (dp->d_reclen > ap->a_uio->uio_resid)
6374 		return (ENAMETOOLONG);
6375 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6376 	if (error) {
6377 		if (ap->a_ncookies != NULL) {
6378 			if (ap->a_cookies != NULL)
6379 				free(ap->a_cookies, M_TEMP);
6380 			ap->a_cookies = NULL;
6381 			*ap->a_ncookies = 0;
6382 		}
6383 		return (error);
6384 	}
6385 	if (ap->a_ncookies == NULL)
6386 		return (0);
6387 
6388 	KASSERT(ap->a_cookies,
6389 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6390 
6391 	*ap->a_cookies = realloc(*ap->a_cookies,
6392 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
6393 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6394 	*ap->a_ncookies += 1;
6395 	return (0);
6396 }
6397 
6398 /*
6399  * The purpose of this routine is to remove granularity from accmode_t,
6400  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6401  * VADMIN and VAPPEND.
6402  *
6403  * If it returns 0, the caller is supposed to continue with the usual
6404  * access checks using 'accmode' as modified by this routine.  If it
6405  * returns nonzero value, the caller is supposed to return that value
6406  * as errno.
6407  *
6408  * Note that after this routine runs, accmode may be zero.
6409  */
6410 int
6411 vfs_unixify_accmode(accmode_t *accmode)
6412 {
6413 	/*
6414 	 * There is no way to specify explicit "deny" rule using
6415 	 * file mode or POSIX.1e ACLs.
6416 	 */
6417 	if (*accmode & VEXPLICIT_DENY) {
6418 		*accmode = 0;
6419 		return (0);
6420 	}
6421 
6422 	/*
6423 	 * None of these can be translated into usual access bits.
6424 	 * Also, the common case for NFSv4 ACLs is to not contain
6425 	 * either of these bits. Caller should check for VWRITE
6426 	 * on the containing directory instead.
6427 	 */
6428 	if (*accmode & (VDELETE_CHILD | VDELETE))
6429 		return (EPERM);
6430 
6431 	if (*accmode & VADMIN_PERMS) {
6432 		*accmode &= ~VADMIN_PERMS;
6433 		*accmode |= VADMIN;
6434 	}
6435 
6436 	/*
6437 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6438 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6439 	 */
6440 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6441 
6442 	return (0);
6443 }
6444 
6445 /*
6446  * Clear out a doomed vnode (if any) and replace it with a new one as long
6447  * as the fs is not being unmounted. Return the root vnode to the caller.
6448  */
6449 static int __noinline
6450 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6451 {
6452 	struct vnode *vp;
6453 	int error;
6454 
6455 restart:
6456 	if (mp->mnt_rootvnode != NULL) {
6457 		MNT_ILOCK(mp);
6458 		vp = mp->mnt_rootvnode;
6459 		if (vp != NULL) {
6460 			if (!VN_IS_DOOMED(vp)) {
6461 				vrefact(vp);
6462 				MNT_IUNLOCK(mp);
6463 				error = vn_lock(vp, flags);
6464 				if (error == 0) {
6465 					*vpp = vp;
6466 					return (0);
6467 				}
6468 				vrele(vp);
6469 				goto restart;
6470 			}
6471 			/*
6472 			 * Clear the old one.
6473 			 */
6474 			mp->mnt_rootvnode = NULL;
6475 		}
6476 		MNT_IUNLOCK(mp);
6477 		if (vp != NULL) {
6478 			vfs_op_barrier_wait(mp);
6479 			vrele(vp);
6480 		}
6481 	}
6482 	error = VFS_CACHEDROOT(mp, flags, vpp);
6483 	if (error != 0)
6484 		return (error);
6485 	if (mp->mnt_vfs_ops == 0) {
6486 		MNT_ILOCK(mp);
6487 		if (mp->mnt_vfs_ops != 0) {
6488 			MNT_IUNLOCK(mp);
6489 			return (0);
6490 		}
6491 		if (mp->mnt_rootvnode == NULL) {
6492 			vrefact(*vpp);
6493 			mp->mnt_rootvnode = *vpp;
6494 		} else {
6495 			if (mp->mnt_rootvnode != *vpp) {
6496 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6497 					panic("%s: mismatch between vnode returned "
6498 					    " by VFS_CACHEDROOT and the one cached "
6499 					    " (%p != %p)",
6500 					    __func__, *vpp, mp->mnt_rootvnode);
6501 				}
6502 			}
6503 		}
6504 		MNT_IUNLOCK(mp);
6505 	}
6506 	return (0);
6507 }
6508 
6509 int
6510 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6511 {
6512 	struct mount_pcpu *mpcpu;
6513 	struct vnode *vp;
6514 	int error;
6515 
6516 	if (!vfs_op_thread_enter(mp, mpcpu))
6517 		return (vfs_cache_root_fallback(mp, flags, vpp));
6518 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6519 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6520 		vfs_op_thread_exit(mp, mpcpu);
6521 		return (vfs_cache_root_fallback(mp, flags, vpp));
6522 	}
6523 	vrefact(vp);
6524 	vfs_op_thread_exit(mp, mpcpu);
6525 	error = vn_lock(vp, flags);
6526 	if (error != 0) {
6527 		vrele(vp);
6528 		return (vfs_cache_root_fallback(mp, flags, vpp));
6529 	}
6530 	*vpp = vp;
6531 	return (0);
6532 }
6533 
6534 struct vnode *
6535 vfs_cache_root_clear(struct mount *mp)
6536 {
6537 	struct vnode *vp;
6538 
6539 	/*
6540 	 * ops > 0 guarantees there is nobody who can see this vnode
6541 	 */
6542 	MPASS(mp->mnt_vfs_ops > 0);
6543 	vp = mp->mnt_rootvnode;
6544 	if (vp != NULL)
6545 		vn_seqc_write_begin(vp);
6546 	mp->mnt_rootvnode = NULL;
6547 	return (vp);
6548 }
6549 
6550 void
6551 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6552 {
6553 
6554 	MPASS(mp->mnt_vfs_ops > 0);
6555 	vrefact(vp);
6556 	mp->mnt_rootvnode = vp;
6557 }
6558 
6559 /*
6560  * These are helper functions for filesystems to traverse all
6561  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6562  *
6563  * This interface replaces MNT_VNODE_FOREACH.
6564  */
6565 
6566 struct vnode *
6567 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6568 {
6569 	struct vnode *vp;
6570 
6571 	if (should_yield())
6572 		kern_yield(PRI_USER);
6573 	MNT_ILOCK(mp);
6574 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6575 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6576 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6577 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6578 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6579 			continue;
6580 		VI_LOCK(vp);
6581 		if (VN_IS_DOOMED(vp)) {
6582 			VI_UNLOCK(vp);
6583 			continue;
6584 		}
6585 		break;
6586 	}
6587 	if (vp == NULL) {
6588 		__mnt_vnode_markerfree_all(mvp, mp);
6589 		/* MNT_IUNLOCK(mp); -- done in above function */
6590 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6591 		return (NULL);
6592 	}
6593 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6594 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6595 	MNT_IUNLOCK(mp);
6596 	return (vp);
6597 }
6598 
6599 struct vnode *
6600 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6601 {
6602 	struct vnode *vp;
6603 
6604 	*mvp = vn_alloc_marker(mp);
6605 	MNT_ILOCK(mp);
6606 	MNT_REF(mp);
6607 
6608 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6609 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6610 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6611 			continue;
6612 		VI_LOCK(vp);
6613 		if (VN_IS_DOOMED(vp)) {
6614 			VI_UNLOCK(vp);
6615 			continue;
6616 		}
6617 		break;
6618 	}
6619 	if (vp == NULL) {
6620 		MNT_REL(mp);
6621 		MNT_IUNLOCK(mp);
6622 		vn_free_marker(*mvp);
6623 		*mvp = NULL;
6624 		return (NULL);
6625 	}
6626 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6627 	MNT_IUNLOCK(mp);
6628 	return (vp);
6629 }
6630 
6631 void
6632 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6633 {
6634 
6635 	if (*mvp == NULL) {
6636 		MNT_IUNLOCK(mp);
6637 		return;
6638 	}
6639 
6640 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6641 
6642 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6643 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6644 	MNT_REL(mp);
6645 	MNT_IUNLOCK(mp);
6646 	vn_free_marker(*mvp);
6647 	*mvp = NULL;
6648 }
6649 
6650 /*
6651  * These are helper functions for filesystems to traverse their
6652  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6653  */
6654 static void
6655 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6656 {
6657 
6658 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6659 
6660 	MNT_ILOCK(mp);
6661 	MNT_REL(mp);
6662 	MNT_IUNLOCK(mp);
6663 	vn_free_marker(*mvp);
6664 	*mvp = NULL;
6665 }
6666 
6667 /*
6668  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6669  * conventional lock order during mnt_vnode_next_lazy iteration.
6670  *
6671  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6672  * The list lock is dropped and reacquired.  On success, both locks are held.
6673  * On failure, the mount vnode list lock is held but the vnode interlock is
6674  * not, and the procedure may have yielded.
6675  */
6676 static bool
6677 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6678     struct vnode *vp)
6679 {
6680 
6681 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6682 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6683 	    ("%s: bad marker", __func__));
6684 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6685 	    ("%s: inappropriate vnode", __func__));
6686 	ASSERT_VI_UNLOCKED(vp, __func__);
6687 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6688 
6689 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6690 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6691 
6692 	/*
6693 	 * Note we may be racing against vdrop which transitioned the hold
6694 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6695 	 * if we are the only user after we get the interlock we will just
6696 	 * vdrop.
6697 	 */
6698 	vhold(vp);
6699 	mtx_unlock(&mp->mnt_listmtx);
6700 	VI_LOCK(vp);
6701 	if (VN_IS_DOOMED(vp)) {
6702 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6703 		goto out_lost;
6704 	}
6705 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6706 	/*
6707 	 * There is nothing to do if we are the last user.
6708 	 */
6709 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6710 		goto out_lost;
6711 	mtx_lock(&mp->mnt_listmtx);
6712 	return (true);
6713 out_lost:
6714 	vdropl(vp);
6715 	maybe_yield();
6716 	mtx_lock(&mp->mnt_listmtx);
6717 	return (false);
6718 }
6719 
6720 static struct vnode *
6721 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6722     void *cbarg)
6723 {
6724 	struct vnode *vp;
6725 
6726 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6727 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6728 restart:
6729 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6730 	while (vp != NULL) {
6731 		if (vp->v_type == VMARKER) {
6732 			vp = TAILQ_NEXT(vp, v_lazylist);
6733 			continue;
6734 		}
6735 		/*
6736 		 * See if we want to process the vnode. Note we may encounter a
6737 		 * long string of vnodes we don't care about and hog the list
6738 		 * as a result. Check for it and requeue the marker.
6739 		 */
6740 		VNPASS(!VN_IS_DOOMED(vp), vp);
6741 		if (!cb(vp, cbarg)) {
6742 			if (!should_yield()) {
6743 				vp = TAILQ_NEXT(vp, v_lazylist);
6744 				continue;
6745 			}
6746 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6747 			    v_lazylist);
6748 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6749 			    v_lazylist);
6750 			mtx_unlock(&mp->mnt_listmtx);
6751 			kern_yield(PRI_USER);
6752 			mtx_lock(&mp->mnt_listmtx);
6753 			goto restart;
6754 		}
6755 		/*
6756 		 * Try-lock because this is the wrong lock order.
6757 		 */
6758 		if (!VI_TRYLOCK(vp) &&
6759 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6760 			goto restart;
6761 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6762 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6763 		    ("alien vnode on the lazy list %p %p", vp, mp));
6764 		VNPASS(vp->v_mount == mp, vp);
6765 		VNPASS(!VN_IS_DOOMED(vp), vp);
6766 		break;
6767 	}
6768 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6769 
6770 	/* Check if we are done */
6771 	if (vp == NULL) {
6772 		mtx_unlock(&mp->mnt_listmtx);
6773 		mnt_vnode_markerfree_lazy(mvp, mp);
6774 		return (NULL);
6775 	}
6776 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6777 	mtx_unlock(&mp->mnt_listmtx);
6778 	ASSERT_VI_LOCKED(vp, "lazy iter");
6779 	return (vp);
6780 }
6781 
6782 struct vnode *
6783 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6784     void *cbarg)
6785 {
6786 
6787 	if (should_yield())
6788 		kern_yield(PRI_USER);
6789 	mtx_lock(&mp->mnt_listmtx);
6790 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6791 }
6792 
6793 struct vnode *
6794 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6795     void *cbarg)
6796 {
6797 	struct vnode *vp;
6798 
6799 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6800 		return (NULL);
6801 
6802 	*mvp = vn_alloc_marker(mp);
6803 	MNT_ILOCK(mp);
6804 	MNT_REF(mp);
6805 	MNT_IUNLOCK(mp);
6806 
6807 	mtx_lock(&mp->mnt_listmtx);
6808 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6809 	if (vp == NULL) {
6810 		mtx_unlock(&mp->mnt_listmtx);
6811 		mnt_vnode_markerfree_lazy(mvp, mp);
6812 		return (NULL);
6813 	}
6814 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6815 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6816 }
6817 
6818 void
6819 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6820 {
6821 
6822 	if (*mvp == NULL)
6823 		return;
6824 
6825 	mtx_lock(&mp->mnt_listmtx);
6826 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6827 	mtx_unlock(&mp->mnt_listmtx);
6828 	mnt_vnode_markerfree_lazy(mvp, mp);
6829 }
6830 
6831 int
6832 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6833 {
6834 
6835 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6836 		cnp->cn_flags &= ~NOEXECCHECK;
6837 		return (0);
6838 	}
6839 
6840 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread));
6841 }
6842 
6843 /*
6844  * Do not use this variant unless you have means other than the hold count
6845  * to prevent the vnode from getting freed.
6846  */
6847 void
6848 vn_seqc_write_begin_locked(struct vnode *vp)
6849 {
6850 
6851 	ASSERT_VI_LOCKED(vp, __func__);
6852 	VNPASS(vp->v_holdcnt > 0, vp);
6853 	VNPASS(vp->v_seqc_users >= 0, vp);
6854 	vp->v_seqc_users++;
6855 	if (vp->v_seqc_users == 1)
6856 		seqc_sleepable_write_begin(&vp->v_seqc);
6857 }
6858 
6859 void
6860 vn_seqc_write_begin(struct vnode *vp)
6861 {
6862 
6863 	VI_LOCK(vp);
6864 	vn_seqc_write_begin_locked(vp);
6865 	VI_UNLOCK(vp);
6866 }
6867 
6868 void
6869 vn_seqc_write_end_locked(struct vnode *vp)
6870 {
6871 
6872 	ASSERT_VI_LOCKED(vp, __func__);
6873 	VNPASS(vp->v_seqc_users > 0, vp);
6874 	vp->v_seqc_users--;
6875 	if (vp->v_seqc_users == 0)
6876 		seqc_sleepable_write_end(&vp->v_seqc);
6877 }
6878 
6879 void
6880 vn_seqc_write_end(struct vnode *vp)
6881 {
6882 
6883 	VI_LOCK(vp);
6884 	vn_seqc_write_end_locked(vp);
6885 	VI_UNLOCK(vp);
6886 }
6887 
6888 /*
6889  * Special case handling for allocating and freeing vnodes.
6890  *
6891  * The counter remains unchanged on free so that a doomed vnode will
6892  * keep testing as in modify as long as it is accessible with SMR.
6893  */
6894 static void
6895 vn_seqc_init(struct vnode *vp)
6896 {
6897 
6898 	vp->v_seqc = 0;
6899 	vp->v_seqc_users = 0;
6900 }
6901 
6902 static void
6903 vn_seqc_write_end_free(struct vnode *vp)
6904 {
6905 
6906 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
6907 	VNPASS(vp->v_seqc_users == 1, vp);
6908 }
6909 
6910 void
6911 vn_irflag_set_locked(struct vnode *vp, short toset)
6912 {
6913 	short flags;
6914 
6915 	ASSERT_VI_LOCKED(vp, __func__);
6916 	flags = vn_irflag_read(vp);
6917 	VNASSERT((flags & toset) == 0, vp,
6918 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
6919 	    __func__, flags, toset));
6920 	atomic_store_short(&vp->v_irflag, flags | toset);
6921 }
6922 
6923 void
6924 vn_irflag_set(struct vnode *vp, short toset)
6925 {
6926 
6927 	VI_LOCK(vp);
6928 	vn_irflag_set_locked(vp, toset);
6929 	VI_UNLOCK(vp);
6930 }
6931 
6932 void
6933 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
6934 {
6935 	short flags;
6936 
6937 	ASSERT_VI_LOCKED(vp, __func__);
6938 	flags = vn_irflag_read(vp);
6939 	atomic_store_short(&vp->v_irflag, flags | toset);
6940 }
6941 
6942 void
6943 vn_irflag_set_cond(struct vnode *vp, short toset)
6944 {
6945 
6946 	VI_LOCK(vp);
6947 	vn_irflag_set_cond_locked(vp, toset);
6948 	VI_UNLOCK(vp);
6949 }
6950 
6951 void
6952 vn_irflag_unset_locked(struct vnode *vp, short tounset)
6953 {
6954 	short flags;
6955 
6956 	ASSERT_VI_LOCKED(vp, __func__);
6957 	flags = vn_irflag_read(vp);
6958 	VNASSERT((flags & tounset) == tounset, vp,
6959 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
6960 	    __func__, flags, tounset));
6961 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
6962 }
6963 
6964 void
6965 vn_irflag_unset(struct vnode *vp, short tounset)
6966 {
6967 
6968 	VI_LOCK(vp);
6969 	vn_irflag_unset_locked(vp, tounset);
6970 	VI_UNLOCK(vp);
6971 }
6972