xref: /freebsd/sys/kern/vfs_subr.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_mac.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bio.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/event.h>
54 #include <sys/eventhandler.h>
55 #include <sys/extattr.h>
56 #include <sys/file.h>
57 #include <sys/fcntl.h>
58 #include <sys/jail.h>
59 #include <sys/kdb.h>
60 #include <sys/kernel.h>
61 #include <sys/kthread.h>
62 #include <sys/malloc.h>
63 #include <sys/mount.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/reboot.h>
67 #include <sys/sleepqueue.h>
68 #include <sys/stat.h>
69 #include <sys/sysctl.h>
70 #include <sys/syslog.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 
74 #include <machine/stdarg.h>
75 
76 #include <security/mac/mac_framework.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_extern.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_kern.h>
85 #include <vm/uma.h>
86 
87 #ifdef DDB
88 #include <ddb/ddb.h>
89 #endif
90 
91 static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
92 
93 static void	delmntque(struct vnode *vp);
94 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
95 		    int slpflag, int slptimeo);
96 static void	syncer_shutdown(void *arg, int howto);
97 static int	vtryrecycle(struct vnode *vp);
98 static void	vbusy(struct vnode *vp);
99 static void	vinactive(struct vnode *, struct thread *);
100 static void	v_incr_usecount(struct vnode *);
101 static void	v_decr_usecount(struct vnode *);
102 static void	v_decr_useonly(struct vnode *);
103 static void	v_upgrade_usecount(struct vnode *);
104 static void	vfree(struct vnode *);
105 static void	vnlru_free(int);
106 static void	vdestroy(struct vnode *);
107 static void	vgonel(struct vnode *);
108 static void	vfs_knllock(void *arg);
109 static void	vfs_knlunlock(void *arg);
110 static int	vfs_knllocked(void *arg);
111 
112 
113 /*
114  * Enable Giant pushdown based on whether or not the vm is mpsafe in this
115  * build.  Without mpsafevm the buffer cache can not run Giant free.
116  */
117 int mpsafe_vfs = 1;
118 TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs);
119 SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0,
120     "MPSAFE VFS");
121 
122 /*
123  * Number of vnodes in existence.  Increased whenever getnewvnode()
124  * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
125  * vnode.
126  */
127 static unsigned long	numvnodes;
128 
129 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
130 
131 /*
132  * Conversion tables for conversion from vnode types to inode formats
133  * and back.
134  */
135 enum vtype iftovt_tab[16] = {
136 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
137 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
138 };
139 int vttoif_tab[10] = {
140 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
141 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
142 };
143 
144 /*
145  * List of vnodes that are ready for recycling.
146  */
147 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
148 
149 /*
150  * Free vnode target.  Free vnodes may simply be files which have been stat'd
151  * but not read.  This is somewhat common, and a small cache of such files
152  * should be kept to avoid recreation costs.
153  */
154 static u_long wantfreevnodes;
155 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
156 /* Number of vnodes in the free list. */
157 static u_long freevnodes;
158 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
159 
160 /*
161  * Various variables used for debugging the new implementation of
162  * reassignbuf().
163  * XXX these are probably of (very) limited utility now.
164  */
165 static int reassignbufcalls;
166 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
167 
168 /*
169  * Cache for the mount type id assigned to NFS.  This is used for
170  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
171  */
172 int	nfs_mount_type = -1;
173 
174 /* To keep more than one thread at a time from running vfs_getnewfsid */
175 static struct mtx mntid_mtx;
176 
177 /*
178  * Lock for any access to the following:
179  *	vnode_free_list
180  *	numvnodes
181  *	freevnodes
182  */
183 static struct mtx vnode_free_list_mtx;
184 
185 /* Publicly exported FS */
186 struct nfs_public nfs_pub;
187 
188 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
189 static uma_zone_t vnode_zone;
190 static uma_zone_t vnodepoll_zone;
191 
192 /* Set to 1 to print out reclaim of active vnodes */
193 int	prtactive;
194 
195 /*
196  * The workitem queue.
197  *
198  * It is useful to delay writes of file data and filesystem metadata
199  * for tens of seconds so that quickly created and deleted files need
200  * not waste disk bandwidth being created and removed. To realize this,
201  * we append vnodes to a "workitem" queue. When running with a soft
202  * updates implementation, most pending metadata dependencies should
203  * not wait for more than a few seconds. Thus, mounted on block devices
204  * are delayed only about a half the time that file data is delayed.
205  * Similarly, directory updates are more critical, so are only delayed
206  * about a third the time that file data is delayed. Thus, there are
207  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
208  * one each second (driven off the filesystem syncer process). The
209  * syncer_delayno variable indicates the next queue that is to be processed.
210  * Items that need to be processed soon are placed in this queue:
211  *
212  *	syncer_workitem_pending[syncer_delayno]
213  *
214  * A delay of fifteen seconds is done by placing the request fifteen
215  * entries later in the queue:
216  *
217  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
218  *
219  */
220 static int syncer_delayno;
221 static long syncer_mask;
222 LIST_HEAD(synclist, bufobj);
223 static struct synclist *syncer_workitem_pending;
224 /*
225  * The sync_mtx protects:
226  *	bo->bo_synclist
227  *	sync_vnode_count
228  *	syncer_delayno
229  *	syncer_state
230  *	syncer_workitem_pending
231  *	syncer_worklist_len
232  *	rushjob
233  */
234 static struct mtx sync_mtx;
235 
236 #define SYNCER_MAXDELAY		32
237 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
238 static int syncdelay = 30;		/* max time to delay syncing data */
239 static int filedelay = 30;		/* time to delay syncing files */
240 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
241 static int dirdelay = 29;		/* time to delay syncing directories */
242 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
243 static int metadelay = 28;		/* time to delay syncing metadata */
244 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
245 static int rushjob;		/* number of slots to run ASAP */
246 static int stat_rush_requests;	/* number of times I/O speeded up */
247 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
248 
249 /*
250  * When shutting down the syncer, run it at four times normal speed.
251  */
252 #define SYNCER_SHUTDOWN_SPEEDUP		4
253 static int sync_vnode_count;
254 static int syncer_worklist_len;
255 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
256     syncer_state;
257 
258 /*
259  * Number of vnodes we want to exist at any one time.  This is mostly used
260  * to size hash tables in vnode-related code.  It is normally not used in
261  * getnewvnode(), as wantfreevnodes is normally nonzero.)
262  *
263  * XXX desiredvnodes is historical cruft and should not exist.
264  */
265 int desiredvnodes;
266 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
267     &desiredvnodes, 0, "Maximum number of vnodes");
268 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
269     &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
270 static int vnlru_nowhere;
271 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
272     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
273 
274 /*
275  * Macros to control when a vnode is freed and recycled.  All require
276  * the vnode interlock.
277  */
278 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
279 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
280 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
281 
282 
283 /*
284  * Initialize the vnode management data structures.
285  */
286 #ifndef	MAXVNODES_MAX
287 #define	MAXVNODES_MAX	100000
288 #endif
289 static void
290 vntblinit(void *dummy __unused)
291 {
292 
293 	/*
294 	 * Desiredvnodes is a function of the physical memory size and
295 	 * the kernel's heap size.  Specifically, desiredvnodes scales
296 	 * in proportion to the physical memory size until two fifths
297 	 * of the kernel's heap size is consumed by vnodes and vm
298 	 * objects.
299 	 */
300 	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
301 	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
302 	if (desiredvnodes > MAXVNODES_MAX) {
303 		if (bootverbose)
304 			printf("Reducing kern.maxvnodes %d -> %d\n",
305 			    desiredvnodes, MAXVNODES_MAX);
306 		desiredvnodes = MAXVNODES_MAX;
307 	}
308 	wantfreevnodes = desiredvnodes / 4;
309 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
310 	TAILQ_INIT(&vnode_free_list);
311 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
312 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
313 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
314 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
315 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
316 	/*
317 	 * Initialize the filesystem syncer.
318 	 */
319 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
320 		&syncer_mask);
321 	syncer_maxdelay = syncer_mask + 1;
322 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
323 }
324 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
325 
326 
327 /*
328  * Mark a mount point as busy. Used to synchronize access and to delay
329  * unmounting. Interlock is not released on failure.
330  */
331 int
332 vfs_busy(struct mount *mp, int flags, struct mtx *interlkp,
333     struct thread *td)
334 {
335 	int lkflags;
336 
337 	MNT_ILOCK(mp);
338 	MNT_REF(mp);
339 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
340 		if (flags & LK_NOWAIT) {
341 			MNT_REL(mp);
342 			MNT_IUNLOCK(mp);
343 			return (ENOENT);
344 		}
345 		if (interlkp)
346 			mtx_unlock(interlkp);
347 		mp->mnt_kern_flag |= MNTK_MWAIT;
348 		/*
349 		 * Since all busy locks are shared except the exclusive
350 		 * lock granted when unmounting, the only place that a
351 		 * wakeup needs to be done is at the release of the
352 		 * exclusive lock at the end of dounmount.
353 		 */
354 		msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
355 		MNT_REL(mp);
356 		MNT_IUNLOCK(mp);
357 		if (interlkp)
358 			mtx_lock(interlkp);
359 		return (ENOENT);
360 	}
361 	if (interlkp)
362 		mtx_unlock(interlkp);
363 	lkflags = LK_SHARED | LK_INTERLOCK;
364 	if (lockmgr(&mp->mnt_lock, lkflags, MNT_MTX(mp), td))
365 		panic("vfs_busy: unexpected lock failure");
366 	return (0);
367 }
368 
369 /*
370  * Free a busy filesystem.
371  */
372 void
373 vfs_unbusy(struct mount *mp, struct thread *td)
374 {
375 
376 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
377 	vfs_rel(mp);
378 }
379 
380 /*
381  * Lookup a mount point by filesystem identifier.
382  */
383 struct mount *
384 vfs_getvfs(fsid_t *fsid)
385 {
386 	struct mount *mp;
387 
388 	mtx_lock(&mountlist_mtx);
389 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
390 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
391 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
392 			vfs_ref(mp);
393 			mtx_unlock(&mountlist_mtx);
394 			return (mp);
395 		}
396 	}
397 	mtx_unlock(&mountlist_mtx);
398 	return ((struct mount *) 0);
399 }
400 
401 /*
402  * Check if a user can access privileged mount options.
403  */
404 int
405 vfs_suser(struct mount *mp, struct thread *td)
406 {
407 	int error;
408 
409 	/*
410 	 * If the thread is jailed, but this is not a jail-friendly file
411 	 * system, deny immediately.
412 	 */
413 	if (jailed(td->td_ucred) && !(mp->mnt_vfc->vfc_flags & VFCF_JAIL))
414 		return (EPERM);
415 
416 	/*
417 	 * If the file system was mounted outside a jail and a jailed thread
418 	 * tries to access it, deny immediately.
419 	 */
420 	if (!jailed(mp->mnt_cred) && jailed(td->td_ucred))
421 		return (EPERM);
422 
423 	/*
424 	 * If the file system was mounted inside different jail that the jail of
425 	 * the calling thread, deny immediately.
426 	 */
427 	if (jailed(mp->mnt_cred) && jailed(td->td_ucred) &&
428 	    mp->mnt_cred->cr_prison != td->td_ucred->cr_prison) {
429 		return (EPERM);
430 	}
431 
432 	if ((mp->mnt_flag & MNT_USER) == 0 ||
433 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
434 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
435 			return (error);
436 	}
437 	return (0);
438 }
439 
440 /*
441  * Get a new unique fsid.  Try to make its val[0] unique, since this value
442  * will be used to create fake device numbers for stat().  Also try (but
443  * not so hard) make its val[0] unique mod 2^16, since some emulators only
444  * support 16-bit device numbers.  We end up with unique val[0]'s for the
445  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
446  *
447  * Keep in mind that several mounts may be running in parallel.  Starting
448  * the search one past where the previous search terminated is both a
449  * micro-optimization and a defense against returning the same fsid to
450  * different mounts.
451  */
452 void
453 vfs_getnewfsid(struct mount *mp)
454 {
455 	static u_int16_t mntid_base;
456 	struct mount *nmp;
457 	fsid_t tfsid;
458 	int mtype;
459 
460 	mtx_lock(&mntid_mtx);
461 	mtype = mp->mnt_vfc->vfc_typenum;
462 	tfsid.val[1] = mtype;
463 	mtype = (mtype & 0xFF) << 24;
464 	for (;;) {
465 		tfsid.val[0] = makedev(255,
466 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
467 		mntid_base++;
468 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
469 			break;
470 		vfs_rel(nmp);
471 	}
472 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
473 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
474 	mtx_unlock(&mntid_mtx);
475 }
476 
477 /*
478  * Knob to control the precision of file timestamps:
479  *
480  *   0 = seconds only; nanoseconds zeroed.
481  *   1 = seconds and nanoseconds, accurate within 1/HZ.
482  *   2 = seconds and nanoseconds, truncated to microseconds.
483  * >=3 = seconds and nanoseconds, maximum precision.
484  */
485 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
486 
487 static int timestamp_precision = TSP_SEC;
488 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
489     &timestamp_precision, 0, "");
490 
491 /*
492  * Get a current timestamp.
493  */
494 void
495 vfs_timestamp(struct timespec *tsp)
496 {
497 	struct timeval tv;
498 
499 	switch (timestamp_precision) {
500 	case TSP_SEC:
501 		tsp->tv_sec = time_second;
502 		tsp->tv_nsec = 0;
503 		break;
504 	case TSP_HZ:
505 		getnanotime(tsp);
506 		break;
507 	case TSP_USEC:
508 		microtime(&tv);
509 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
510 		break;
511 	case TSP_NSEC:
512 	default:
513 		nanotime(tsp);
514 		break;
515 	}
516 }
517 
518 /*
519  * Set vnode attributes to VNOVAL
520  */
521 void
522 vattr_null(struct vattr *vap)
523 {
524 
525 	vap->va_type = VNON;
526 	vap->va_size = VNOVAL;
527 	vap->va_bytes = VNOVAL;
528 	vap->va_mode = VNOVAL;
529 	vap->va_nlink = VNOVAL;
530 	vap->va_uid = VNOVAL;
531 	vap->va_gid = VNOVAL;
532 	vap->va_fsid = VNOVAL;
533 	vap->va_fileid = VNOVAL;
534 	vap->va_blocksize = VNOVAL;
535 	vap->va_rdev = VNOVAL;
536 	vap->va_atime.tv_sec = VNOVAL;
537 	vap->va_atime.tv_nsec = VNOVAL;
538 	vap->va_mtime.tv_sec = VNOVAL;
539 	vap->va_mtime.tv_nsec = VNOVAL;
540 	vap->va_ctime.tv_sec = VNOVAL;
541 	vap->va_ctime.tv_nsec = VNOVAL;
542 	vap->va_birthtime.tv_sec = VNOVAL;
543 	vap->va_birthtime.tv_nsec = VNOVAL;
544 	vap->va_flags = VNOVAL;
545 	vap->va_gen = VNOVAL;
546 	vap->va_vaflags = 0;
547 }
548 
549 /*
550  * This routine is called when we have too many vnodes.  It attempts
551  * to free <count> vnodes and will potentially free vnodes that still
552  * have VM backing store (VM backing store is typically the cause
553  * of a vnode blowout so we want to do this).  Therefore, this operation
554  * is not considered cheap.
555  *
556  * A number of conditions may prevent a vnode from being reclaimed.
557  * the buffer cache may have references on the vnode, a directory
558  * vnode may still have references due to the namei cache representing
559  * underlying files, or the vnode may be in active use.   It is not
560  * desireable to reuse such vnodes.  These conditions may cause the
561  * number of vnodes to reach some minimum value regardless of what
562  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
563  */
564 static int
565 vlrureclaim(struct mount *mp)
566 {
567 	struct thread *td;
568 	struct vnode *vp;
569 	int done;
570 	int trigger;
571 	int usevnodes;
572 	int count;
573 
574 	/*
575 	 * Calculate the trigger point, don't allow user
576 	 * screwups to blow us up.   This prevents us from
577 	 * recycling vnodes with lots of resident pages.  We
578 	 * aren't trying to free memory, we are trying to
579 	 * free vnodes.
580 	 */
581 	usevnodes = desiredvnodes;
582 	if (usevnodes <= 0)
583 		usevnodes = 1;
584 	trigger = cnt.v_page_count * 2 / usevnodes;
585 	done = 0;
586 	td = curthread;
587 	vn_start_write(NULL, &mp, V_WAIT);
588 	MNT_ILOCK(mp);
589 	count = mp->mnt_nvnodelistsize / 10 + 1;
590 	while (count != 0) {
591 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
592 		while (vp != NULL && vp->v_type == VMARKER)
593 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
594 		if (vp == NULL)
595 			break;
596 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
597 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
598 		--count;
599 		if (!VI_TRYLOCK(vp))
600 			goto next_iter;
601 		/*
602 		 * If it's been deconstructed already, it's still
603 		 * referenced, or it exceeds the trigger, skip it.
604 		 */
605 		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
606 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
607 		    vp->v_object->resident_page_count > trigger)) {
608 			VI_UNLOCK(vp);
609 			goto next_iter;
610 		}
611 		MNT_IUNLOCK(mp);
612 		vholdl(vp);
613 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
614 			vdrop(vp);
615 			goto next_iter_mntunlocked;
616 		}
617 		VI_LOCK(vp);
618 		/*
619 		 * v_usecount may have been bumped after VOP_LOCK() dropped
620 		 * the vnode interlock and before it was locked again.
621 		 *
622 		 * It is not necessary to recheck VI_DOOMED because it can
623 		 * only be set by another thread that holds both the vnode
624 		 * lock and vnode interlock.  If another thread has the
625 		 * vnode lock before we get to VOP_LOCK() and obtains the
626 		 * vnode interlock after VOP_LOCK() drops the vnode
627 		 * interlock, the other thread will be unable to drop the
628 		 * vnode lock before our VOP_LOCK() call fails.
629 		 */
630 		if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
631 		    (vp->v_object != NULL &&
632 		    vp->v_object->resident_page_count > trigger)) {
633 			VOP_UNLOCK(vp, LK_INTERLOCK);
634 			goto next_iter_mntunlocked;
635 		}
636 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
637 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
638 		vgonel(vp);
639 		VOP_UNLOCK(vp, 0);
640 		vdropl(vp);
641 		done++;
642 next_iter_mntunlocked:
643 		if ((count % 256) != 0)
644 			goto relock_mnt;
645 		goto yield;
646 next_iter:
647 		if ((count % 256) != 0)
648 			continue;
649 		MNT_IUNLOCK(mp);
650 yield:
651 		uio_yield();
652 relock_mnt:
653 		MNT_ILOCK(mp);
654 	}
655 	MNT_IUNLOCK(mp);
656 	vn_finished_write(mp);
657 	return done;
658 }
659 
660 /*
661  * Attempt to keep the free list at wantfreevnodes length.
662  */
663 static void
664 vnlru_free(int count)
665 {
666 	struct vnode *vp;
667 	int vfslocked;
668 
669 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
670 	for (; count > 0; count--) {
671 		vp = TAILQ_FIRST(&vnode_free_list);
672 		/*
673 		 * The list can be modified while the free_list_mtx
674 		 * has been dropped and vp could be NULL here.
675 		 */
676 		if (!vp)
677 			break;
678 		VNASSERT(vp->v_op != NULL, vp,
679 		    ("vnlru_free: vnode already reclaimed."));
680 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
681 		/*
682 		 * Don't recycle if we can't get the interlock.
683 		 */
684 		if (!VI_TRYLOCK(vp)) {
685 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
686 			continue;
687 		}
688 		VNASSERT(VCANRECYCLE(vp), vp,
689 		    ("vp inconsistent on freelist"));
690 		freevnodes--;
691 		vp->v_iflag &= ~VI_FREE;
692 		vholdl(vp);
693 		mtx_unlock(&vnode_free_list_mtx);
694 		VI_UNLOCK(vp);
695 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
696 		vtryrecycle(vp);
697 		VFS_UNLOCK_GIANT(vfslocked);
698 		/*
699 		 * If the recycled succeeded this vdrop will actually free
700 		 * the vnode.  If not it will simply place it back on
701 		 * the free list.
702 		 */
703 		vdrop(vp);
704 		mtx_lock(&vnode_free_list_mtx);
705 	}
706 }
707 /*
708  * Attempt to recycle vnodes in a context that is always safe to block.
709  * Calling vlrurecycle() from the bowels of filesystem code has some
710  * interesting deadlock problems.
711  */
712 static struct proc *vnlruproc;
713 static int vnlruproc_sig;
714 
715 static void
716 vnlru_proc(void)
717 {
718 	struct mount *mp, *nmp;
719 	int done;
720 	struct proc *p = vnlruproc;
721 	struct thread *td = curthread;
722 
723 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
724 	    SHUTDOWN_PRI_FIRST);
725 
726 	mtx_lock(&Giant);
727 
728 	for (;;) {
729 		kproc_suspend_check(p);
730 		mtx_lock(&vnode_free_list_mtx);
731 		if (freevnodes > wantfreevnodes)
732 			vnlru_free(freevnodes - wantfreevnodes);
733 		if (numvnodes <= desiredvnodes * 9 / 10) {
734 			vnlruproc_sig = 0;
735 			wakeup(&vnlruproc_sig);
736 			msleep(vnlruproc, &vnode_free_list_mtx,
737 			    PVFS|PDROP, "vlruwt", hz);
738 			continue;
739 		}
740 		mtx_unlock(&vnode_free_list_mtx);
741 		done = 0;
742 		mtx_lock(&mountlist_mtx);
743 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
744 			int vfsunlocked;
745 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
746 				nmp = TAILQ_NEXT(mp, mnt_list);
747 				continue;
748 			}
749 			if (!VFS_NEEDSGIANT(mp)) {
750 				mtx_unlock(&Giant);
751 				vfsunlocked = 1;
752 			} else
753 				vfsunlocked = 0;
754 			done += vlrureclaim(mp);
755 			if (vfsunlocked)
756 				mtx_lock(&Giant);
757 			mtx_lock(&mountlist_mtx);
758 			nmp = TAILQ_NEXT(mp, mnt_list);
759 			vfs_unbusy(mp, td);
760 		}
761 		mtx_unlock(&mountlist_mtx);
762 		if (done == 0) {
763 			EVENTHANDLER_INVOKE(vfs_lowvnodes, desiredvnodes / 10);
764 #if 0
765 			/* These messages are temporary debugging aids */
766 			if (vnlru_nowhere < 5)
767 				printf("vnlru process getting nowhere..\n");
768 			else if (vnlru_nowhere == 5)
769 				printf("vnlru process messages stopped.\n");
770 #endif
771 			vnlru_nowhere++;
772 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
773 		} else
774 			uio_yield();
775 	}
776 }
777 
778 static struct kproc_desc vnlru_kp = {
779 	"vnlru",
780 	vnlru_proc,
781 	&vnlruproc
782 };
783 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
784 
785 /*
786  * Routines having to do with the management of the vnode table.
787  */
788 
789 static void
790 vdestroy(struct vnode *vp)
791 {
792 	struct bufobj *bo;
793 
794 	CTR1(KTR_VFS, "vdestroy vp %p", vp);
795 	mtx_lock(&vnode_free_list_mtx);
796 	numvnodes--;
797 	mtx_unlock(&vnode_free_list_mtx);
798 	bo = &vp->v_bufobj;
799 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
800 	    ("cleaned vnode still on the free list."));
801 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
802 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
803 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
804 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
805 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
806 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
807 	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
808 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
809 	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
810 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
811 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
812 	VI_UNLOCK(vp);
813 #ifdef MAC
814 	mac_vnode_destroy(vp);
815 #endif
816 	if (vp->v_pollinfo != NULL) {
817 		knlist_destroy(&vp->v_pollinfo->vpi_selinfo.si_note);
818 		mtx_destroy(&vp->v_pollinfo->vpi_lock);
819 		uma_zfree(vnodepoll_zone, vp->v_pollinfo);
820 	}
821 #ifdef INVARIANTS
822 	/* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
823 	vp->v_op = NULL;
824 #endif
825 	lockdestroy(vp->v_vnlock);
826 	mtx_destroy(&vp->v_interlock);
827 	uma_zfree(vnode_zone, vp);
828 }
829 
830 /*
831  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
832  * before we actually vgone().  This function must be called with the vnode
833  * held to prevent the vnode from being returned to the free list midway
834  * through vgone().
835  */
836 static int
837 vtryrecycle(struct vnode *vp)
838 {
839 	struct mount *vnmp;
840 
841 	CTR1(KTR_VFS, "vtryrecycle: trying vp %p", vp);
842 	VNASSERT(vp->v_holdcnt, vp,
843 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
844 	/*
845 	 * This vnode may found and locked via some other list, if so we
846 	 * can't recycle it yet.
847 	 */
848 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
849 		return (EWOULDBLOCK);
850 	/*
851 	 * Don't recycle if its filesystem is being suspended.
852 	 */
853 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
854 		VOP_UNLOCK(vp, 0);
855 		return (EBUSY);
856 	}
857 	/*
858 	 * If we got this far, we need to acquire the interlock and see if
859 	 * anyone picked up this vnode from another list.  If not, we will
860 	 * mark it with DOOMED via vgonel() so that anyone who does find it
861 	 * will skip over it.
862 	 */
863 	VI_LOCK(vp);
864 	if (vp->v_usecount) {
865 		VOP_UNLOCK(vp, LK_INTERLOCK);
866 		vn_finished_write(vnmp);
867 		return (EBUSY);
868 	}
869 	if ((vp->v_iflag & VI_DOOMED) == 0)
870 		vgonel(vp);
871 	VOP_UNLOCK(vp, LK_INTERLOCK);
872 	vn_finished_write(vnmp);
873 	CTR1(KTR_VFS, "vtryrecycle: recycled vp %p", vp);
874 	return (0);
875 }
876 
877 /*
878  * Return the next vnode from the free list.
879  */
880 int
881 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
882     struct vnode **vpp)
883 {
884 	struct vnode *vp = NULL;
885 	struct bufobj *bo;
886 
887 	mtx_lock(&vnode_free_list_mtx);
888 	/*
889 	 * Lend our context to reclaim vnodes if they've exceeded the max.
890 	 */
891 	if (freevnodes > wantfreevnodes)
892 		vnlru_free(1);
893 	/*
894 	 * Wait for available vnodes.
895 	 */
896 	if (numvnodes > desiredvnodes) {
897 		if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
898 			/*
899 			 * File system is beeing suspended, we cannot risk a
900 			 * deadlock here, so allocate new vnode anyway.
901 			 */
902 			if (freevnodes > wantfreevnodes)
903 				vnlru_free(freevnodes - wantfreevnodes);
904 			goto alloc;
905 		}
906 		if (vnlruproc_sig == 0) {
907 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
908 			wakeup(vnlruproc);
909 		}
910 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
911 		    "vlruwk", hz);
912 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
913 		if (numvnodes > desiredvnodes) {
914 			mtx_unlock(&vnode_free_list_mtx);
915 			return (ENFILE);
916 		}
917 #endif
918 	}
919 alloc:
920 	numvnodes++;
921 	mtx_unlock(&vnode_free_list_mtx);
922 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
923 	/*
924 	 * Setup locks.
925 	 */
926 	vp->v_vnlock = &vp->v_lock;
927 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
928 	/*
929 	 * By default, don't allow shared locks unless filesystems
930 	 * opt-in.
931 	 */
932 	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
933 	/*
934 	 * Initialize bufobj.
935 	 */
936 	bo = &vp->v_bufobj;
937 	bo->__bo_vnode = vp;
938 	bo->bo_mtx = &vp->v_interlock;
939 	bo->bo_ops = &buf_ops_bio;
940 	bo->bo_private = vp;
941 	TAILQ_INIT(&bo->bo_clean.bv_hd);
942 	TAILQ_INIT(&bo->bo_dirty.bv_hd);
943 	/*
944 	 * Initialize namecache.
945 	 */
946 	LIST_INIT(&vp->v_cache_src);
947 	TAILQ_INIT(&vp->v_cache_dst);
948 	/*
949 	 * Finalize various vnode identity bits.
950 	 */
951 	vp->v_type = VNON;
952 	vp->v_tag = tag;
953 	vp->v_op = vops;
954 	v_incr_usecount(vp);
955 	vp->v_data = 0;
956 #ifdef MAC
957 	mac_vnode_init(vp);
958 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
959 		mac_vnode_associate_singlelabel(mp, vp);
960 	else if (mp == NULL)
961 		printf("NULL mp in getnewvnode()\n");
962 #endif
963 	if (mp != NULL) {
964 		bo->bo_bsize = mp->mnt_stat.f_iosize;
965 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
966 			vp->v_vflag |= VV_NOKNOTE;
967 	}
968 
969 	CTR2(KTR_VFS, "getnewvnode: mp %p vp %p", mp, vp);
970 	*vpp = vp;
971 	return (0);
972 }
973 
974 /*
975  * Delete from old mount point vnode list, if on one.
976  */
977 static void
978 delmntque(struct vnode *vp)
979 {
980 	struct mount *mp;
981 
982 	mp = vp->v_mount;
983 	if (mp == NULL)
984 		return;
985 	MNT_ILOCK(mp);
986 	vp->v_mount = NULL;
987 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
988 		("bad mount point vnode list size"));
989 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
990 	mp->mnt_nvnodelistsize--;
991 	MNT_REL(mp);
992 	MNT_IUNLOCK(mp);
993 }
994 
995 static void
996 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
997 {
998 	struct thread *td;
999 
1000 	td = curthread; /* XXX ? */
1001 	vp->v_data = NULL;
1002 	vp->v_op = &dead_vnodeops;
1003 	/* XXX non mp-safe fs may still call insmntque with vnode
1004 	   unlocked */
1005 	if (!VOP_ISLOCKED(vp, td))
1006 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1007 	vgone(vp);
1008 	vput(vp);
1009 }
1010 
1011 /*
1012  * Insert into list of vnodes for the new mount point, if available.
1013  */
1014 int
1015 insmntque1(struct vnode *vp, struct mount *mp,
1016 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1017 {
1018 
1019 	KASSERT(vp->v_mount == NULL,
1020 		("insmntque: vnode already on per mount vnode list"));
1021 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1022 	MNT_ILOCK(mp);
1023 	if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1024 	    mp->mnt_nvnodelistsize == 0) {
1025 		MNT_IUNLOCK(mp);
1026 		if (dtr != NULL)
1027 			dtr(vp, dtr_arg);
1028 		return (EBUSY);
1029 	}
1030 	vp->v_mount = mp;
1031 	MNT_REF(mp);
1032 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1033 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1034 		("neg mount point vnode list size"));
1035 	mp->mnt_nvnodelistsize++;
1036 	MNT_IUNLOCK(mp);
1037 	return (0);
1038 }
1039 
1040 int
1041 insmntque(struct vnode *vp, struct mount *mp)
1042 {
1043 
1044 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1045 }
1046 
1047 /*
1048  * Flush out and invalidate all buffers associated with a bufobj
1049  * Called with the underlying object locked.
1050  */
1051 int
1052 bufobj_invalbuf(struct bufobj *bo, int flags, struct thread *td, int slpflag,
1053     int slptimeo)
1054 {
1055 	int error;
1056 
1057 	BO_LOCK(bo);
1058 	if (flags & V_SAVE) {
1059 		error = bufobj_wwait(bo, slpflag, slptimeo);
1060 		if (error) {
1061 			BO_UNLOCK(bo);
1062 			return (error);
1063 		}
1064 		if (bo->bo_dirty.bv_cnt > 0) {
1065 			BO_UNLOCK(bo);
1066 			if ((error = BO_SYNC(bo, MNT_WAIT, td)) != 0)
1067 				return (error);
1068 			/*
1069 			 * XXX We could save a lock/unlock if this was only
1070 			 * enabled under INVARIANTS
1071 			 */
1072 			BO_LOCK(bo);
1073 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1074 				panic("vinvalbuf: dirty bufs");
1075 		}
1076 	}
1077 	/*
1078 	 * If you alter this loop please notice that interlock is dropped and
1079 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1080 	 * no race conditions occur from this.
1081 	 */
1082 	do {
1083 		error = flushbuflist(&bo->bo_clean,
1084 		    flags, bo, slpflag, slptimeo);
1085 		if (error == 0)
1086 			error = flushbuflist(&bo->bo_dirty,
1087 			    flags, bo, slpflag, slptimeo);
1088 		if (error != 0 && error != EAGAIN) {
1089 			BO_UNLOCK(bo);
1090 			return (error);
1091 		}
1092 	} while (error != 0);
1093 
1094 	/*
1095 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1096 	 * have write I/O in-progress but if there is a VM object then the
1097 	 * VM object can also have read-I/O in-progress.
1098 	 */
1099 	do {
1100 		bufobj_wwait(bo, 0, 0);
1101 		BO_UNLOCK(bo);
1102 		if (bo->bo_object != NULL) {
1103 			VM_OBJECT_LOCK(bo->bo_object);
1104 			vm_object_pip_wait(bo->bo_object, "bovlbx");
1105 			VM_OBJECT_UNLOCK(bo->bo_object);
1106 		}
1107 		BO_LOCK(bo);
1108 	} while (bo->bo_numoutput > 0);
1109 	BO_UNLOCK(bo);
1110 
1111 	/*
1112 	 * Destroy the copy in the VM cache, too.
1113 	 */
1114 	if (bo->bo_object != NULL) {
1115 		VM_OBJECT_LOCK(bo->bo_object);
1116 		vm_object_page_remove(bo->bo_object, 0, 0,
1117 			(flags & V_SAVE) ? TRUE : FALSE);
1118 		VM_OBJECT_UNLOCK(bo->bo_object);
1119 	}
1120 
1121 #ifdef INVARIANTS
1122 	BO_LOCK(bo);
1123 	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1124 	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1125 		panic("vinvalbuf: flush failed");
1126 	BO_UNLOCK(bo);
1127 #endif
1128 	return (0);
1129 }
1130 
1131 /*
1132  * Flush out and invalidate all buffers associated with a vnode.
1133  * Called with the underlying object locked.
1134  */
1135 int
1136 vinvalbuf(struct vnode *vp, int flags, struct thread *td, int slpflag,
1137     int slptimeo)
1138 {
1139 
1140 	CTR2(KTR_VFS, "vinvalbuf vp %p flags %d", vp, flags);
1141 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1142 	return (bufobj_invalbuf(&vp->v_bufobj, flags, td, slpflag, slptimeo));
1143 }
1144 
1145 /*
1146  * Flush out buffers on the specified list.
1147  *
1148  */
1149 static int
1150 flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1151     int slptimeo)
1152 {
1153 	struct buf *bp, *nbp;
1154 	int retval, error;
1155 	daddr_t lblkno;
1156 	b_xflags_t xflags;
1157 
1158 	ASSERT_BO_LOCKED(bo);
1159 
1160 	retval = 0;
1161 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1162 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1163 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1164 			continue;
1165 		}
1166 		lblkno = 0;
1167 		xflags = 0;
1168 		if (nbp != NULL) {
1169 			lblkno = nbp->b_lblkno;
1170 			xflags = nbp->b_xflags &
1171 				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1172 		}
1173 		retval = EAGAIN;
1174 		error = BUF_TIMELOCK(bp,
1175 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1176 		    "flushbuf", slpflag, slptimeo);
1177 		if (error) {
1178 			BO_LOCK(bo);
1179 			return (error != ENOLCK ? error : EAGAIN);
1180 		}
1181 		KASSERT(bp->b_bufobj == bo,
1182 		    ("bp %p wrong b_bufobj %p should be %p",
1183 		    bp, bp->b_bufobj, bo));
1184 		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1185 			BUF_UNLOCK(bp);
1186 			BO_LOCK(bo);
1187 			return (EAGAIN);
1188 		}
1189 		/*
1190 		 * XXX Since there are no node locks for NFS, I
1191 		 * believe there is a slight chance that a delayed
1192 		 * write will occur while sleeping just above, so
1193 		 * check for it.
1194 		 */
1195 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1196 		    (flags & V_SAVE)) {
1197 			bremfree(bp);
1198 			bp->b_flags |= B_ASYNC;
1199 			bwrite(bp);
1200 			BO_LOCK(bo);
1201 			return (EAGAIN);	/* XXX: why not loop ? */
1202 		}
1203 		bremfree(bp);
1204 		bp->b_flags |= (B_INVAL | B_RELBUF);
1205 		bp->b_flags &= ~B_ASYNC;
1206 		brelse(bp);
1207 		BO_LOCK(bo);
1208 		if (nbp != NULL &&
1209 		    (nbp->b_bufobj != bo ||
1210 		     nbp->b_lblkno != lblkno ||
1211 		     (nbp->b_xflags &
1212 		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1213 			break;			/* nbp invalid */
1214 	}
1215 	return (retval);
1216 }
1217 
1218 /*
1219  * Truncate a file's buffer and pages to a specified length.  This
1220  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1221  * sync activity.
1222  */
1223 int
1224 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1225     off_t length, int blksize)
1226 {
1227 	struct buf *bp, *nbp;
1228 	int anyfreed;
1229 	int trunclbn;
1230 	struct bufobj *bo;
1231 
1232 	CTR2(KTR_VFS, "vtruncbuf vp %p length %jd", vp, length);
1233 	/*
1234 	 * Round up to the *next* lbn.
1235 	 */
1236 	trunclbn = (length + blksize - 1) / blksize;
1237 
1238 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1239 restart:
1240 	VI_LOCK(vp);
1241 	bo = &vp->v_bufobj;
1242 	anyfreed = 1;
1243 	for (;anyfreed;) {
1244 		anyfreed = 0;
1245 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1246 			if (bp->b_lblkno < trunclbn)
1247 				continue;
1248 			if (BUF_LOCK(bp,
1249 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1250 			    VI_MTX(vp)) == ENOLCK)
1251 				goto restart;
1252 
1253 			bremfree(bp);
1254 			bp->b_flags |= (B_INVAL | B_RELBUF);
1255 			bp->b_flags &= ~B_ASYNC;
1256 			brelse(bp);
1257 			anyfreed = 1;
1258 
1259 			if (nbp != NULL &&
1260 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1261 			    (nbp->b_vp != vp) ||
1262 			    (nbp->b_flags & B_DELWRI))) {
1263 				goto restart;
1264 			}
1265 			VI_LOCK(vp);
1266 		}
1267 
1268 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1269 			if (bp->b_lblkno < trunclbn)
1270 				continue;
1271 			if (BUF_LOCK(bp,
1272 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1273 			    VI_MTX(vp)) == ENOLCK)
1274 				goto restart;
1275 			bremfree(bp);
1276 			bp->b_flags |= (B_INVAL | B_RELBUF);
1277 			bp->b_flags &= ~B_ASYNC;
1278 			brelse(bp);
1279 			anyfreed = 1;
1280 			if (nbp != NULL &&
1281 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1282 			    (nbp->b_vp != vp) ||
1283 			    (nbp->b_flags & B_DELWRI) == 0)) {
1284 				goto restart;
1285 			}
1286 			VI_LOCK(vp);
1287 		}
1288 	}
1289 
1290 	if (length > 0) {
1291 restartsync:
1292 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1293 			if (bp->b_lblkno > 0)
1294 				continue;
1295 			/*
1296 			 * Since we hold the vnode lock this should only
1297 			 * fail if we're racing with the buf daemon.
1298 			 */
1299 			if (BUF_LOCK(bp,
1300 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1301 			    VI_MTX(vp)) == ENOLCK) {
1302 				goto restart;
1303 			}
1304 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1305 			    ("buf(%p) on dirty queue without DELWRI", bp));
1306 
1307 			bremfree(bp);
1308 			bawrite(bp);
1309 			VI_LOCK(vp);
1310 			goto restartsync;
1311 		}
1312 	}
1313 
1314 	bufobj_wwait(bo, 0, 0);
1315 	VI_UNLOCK(vp);
1316 	vnode_pager_setsize(vp, length);
1317 
1318 	return (0);
1319 }
1320 
1321 /*
1322  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1323  * 		 a vnode.
1324  *
1325  *	NOTE: We have to deal with the special case of a background bitmap
1326  *	buffer, a situation where two buffers will have the same logical
1327  *	block offset.  We want (1) only the foreground buffer to be accessed
1328  *	in a lookup and (2) must differentiate between the foreground and
1329  *	background buffer in the splay tree algorithm because the splay
1330  *	tree cannot normally handle multiple entities with the same 'index'.
1331  *	We accomplish this by adding differentiating flags to the splay tree's
1332  *	numerical domain.
1333  */
1334 static
1335 struct buf *
1336 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1337 {
1338 	struct buf dummy;
1339 	struct buf *lefttreemax, *righttreemin, *y;
1340 
1341 	if (root == NULL)
1342 		return (NULL);
1343 	lefttreemax = righttreemin = &dummy;
1344 	for (;;) {
1345 		if (lblkno < root->b_lblkno ||
1346 		    (lblkno == root->b_lblkno &&
1347 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1348 			if ((y = root->b_left) == NULL)
1349 				break;
1350 			if (lblkno < y->b_lblkno) {
1351 				/* Rotate right. */
1352 				root->b_left = y->b_right;
1353 				y->b_right = root;
1354 				root = y;
1355 				if ((y = root->b_left) == NULL)
1356 					break;
1357 			}
1358 			/* Link into the new root's right tree. */
1359 			righttreemin->b_left = root;
1360 			righttreemin = root;
1361 		} else if (lblkno > root->b_lblkno ||
1362 		    (lblkno == root->b_lblkno &&
1363 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1364 			if ((y = root->b_right) == NULL)
1365 				break;
1366 			if (lblkno > y->b_lblkno) {
1367 				/* Rotate left. */
1368 				root->b_right = y->b_left;
1369 				y->b_left = root;
1370 				root = y;
1371 				if ((y = root->b_right) == NULL)
1372 					break;
1373 			}
1374 			/* Link into the new root's left tree. */
1375 			lefttreemax->b_right = root;
1376 			lefttreemax = root;
1377 		} else {
1378 			break;
1379 		}
1380 		root = y;
1381 	}
1382 	/* Assemble the new root. */
1383 	lefttreemax->b_right = root->b_left;
1384 	righttreemin->b_left = root->b_right;
1385 	root->b_left = dummy.b_right;
1386 	root->b_right = dummy.b_left;
1387 	return (root);
1388 }
1389 
1390 static void
1391 buf_vlist_remove(struct buf *bp)
1392 {
1393 	struct buf *root;
1394 	struct bufv *bv;
1395 
1396 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1397 	ASSERT_BO_LOCKED(bp->b_bufobj);
1398 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1399 	    (BX_VNDIRTY|BX_VNCLEAN),
1400 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1401 	if (bp->b_xflags & BX_VNDIRTY)
1402 		bv = &bp->b_bufobj->bo_dirty;
1403 	else
1404 		bv = &bp->b_bufobj->bo_clean;
1405 	if (bp != bv->bv_root) {
1406 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1407 		KASSERT(root == bp, ("splay lookup failed in remove"));
1408 	}
1409 	if (bp->b_left == NULL) {
1410 		root = bp->b_right;
1411 	} else {
1412 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1413 		root->b_right = bp->b_right;
1414 	}
1415 	bv->bv_root = root;
1416 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1417 	bv->bv_cnt--;
1418 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1419 }
1420 
1421 /*
1422  * Add the buffer to the sorted clean or dirty block list using a
1423  * splay tree algorithm.
1424  *
1425  * NOTE: xflags is passed as a constant, optimizing this inline function!
1426  */
1427 static void
1428 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1429 {
1430 	struct buf *root;
1431 	struct bufv *bv;
1432 
1433 	ASSERT_BO_LOCKED(bo);
1434 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1435 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1436 	bp->b_xflags |= xflags;
1437 	if (xflags & BX_VNDIRTY)
1438 		bv = &bo->bo_dirty;
1439 	else
1440 		bv = &bo->bo_clean;
1441 
1442 	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1443 	if (root == NULL) {
1444 		bp->b_left = NULL;
1445 		bp->b_right = NULL;
1446 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1447 	} else if (bp->b_lblkno < root->b_lblkno ||
1448 	    (bp->b_lblkno == root->b_lblkno &&
1449 	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1450 		bp->b_left = root->b_left;
1451 		bp->b_right = root;
1452 		root->b_left = NULL;
1453 		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1454 	} else {
1455 		bp->b_right = root->b_right;
1456 		bp->b_left = root;
1457 		root->b_right = NULL;
1458 		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1459 	}
1460 	bv->bv_cnt++;
1461 	bv->bv_root = bp;
1462 }
1463 
1464 /*
1465  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1466  * shadow buffers used in background bitmap writes.
1467  *
1468  * This code isn't quite efficient as it could be because we are maintaining
1469  * two sorted lists and do not know which list the block resides in.
1470  *
1471  * During a "make buildworld" the desired buffer is found at one of
1472  * the roots more than 60% of the time.  Thus, checking both roots
1473  * before performing either splay eliminates unnecessary splays on the
1474  * first tree splayed.
1475  */
1476 struct buf *
1477 gbincore(struct bufobj *bo, daddr_t lblkno)
1478 {
1479 	struct buf *bp;
1480 
1481 	ASSERT_BO_LOCKED(bo);
1482 	if ((bp = bo->bo_clean.bv_root) != NULL &&
1483 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1484 		return (bp);
1485 	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1486 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1487 		return (bp);
1488 	if ((bp = bo->bo_clean.bv_root) != NULL) {
1489 		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1490 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1491 			return (bp);
1492 	}
1493 	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1494 		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1495 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1496 			return (bp);
1497 	}
1498 	return (NULL);
1499 }
1500 
1501 /*
1502  * Associate a buffer with a vnode.
1503  */
1504 void
1505 bgetvp(struct vnode *vp, struct buf *bp)
1506 {
1507 
1508 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1509 
1510 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1511 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1512 	    ("bgetvp: bp already attached! %p", bp));
1513 
1514 	ASSERT_VI_LOCKED(vp, "bgetvp");
1515 	vholdl(vp);
1516 	if (VFS_NEEDSGIANT(vp->v_mount) ||
1517 	    vp->v_bufobj.bo_flag & BO_NEEDSGIANT)
1518 		bp->b_flags |= B_NEEDSGIANT;
1519 	bp->b_vp = vp;
1520 	bp->b_bufobj = &vp->v_bufobj;
1521 	/*
1522 	 * Insert onto list for new vnode.
1523 	 */
1524 	buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN);
1525 }
1526 
1527 /*
1528  * Disassociate a buffer from a vnode.
1529  */
1530 void
1531 brelvp(struct buf *bp)
1532 {
1533 	struct bufobj *bo;
1534 	struct vnode *vp;
1535 
1536 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1537 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1538 
1539 	/*
1540 	 * Delete from old vnode list, if on one.
1541 	 */
1542 	vp = bp->b_vp;		/* XXX */
1543 	bo = bp->b_bufobj;
1544 	BO_LOCK(bo);
1545 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1546 		buf_vlist_remove(bp);
1547 	else
1548 		panic("brelvp: Buffer %p not on queue.", bp);
1549 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1550 		bo->bo_flag &= ~BO_ONWORKLST;
1551 		mtx_lock(&sync_mtx);
1552 		LIST_REMOVE(bo, bo_synclist);
1553 		syncer_worklist_len--;
1554 		mtx_unlock(&sync_mtx);
1555 	}
1556 	bp->b_flags &= ~B_NEEDSGIANT;
1557 	bp->b_vp = NULL;
1558 	bp->b_bufobj = NULL;
1559 	vdropl(vp);
1560 }
1561 
1562 /*
1563  * Add an item to the syncer work queue.
1564  */
1565 static void
1566 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1567 {
1568 	int slot;
1569 
1570 	ASSERT_BO_LOCKED(bo);
1571 
1572 	mtx_lock(&sync_mtx);
1573 	if (bo->bo_flag & BO_ONWORKLST)
1574 		LIST_REMOVE(bo, bo_synclist);
1575 	else {
1576 		bo->bo_flag |= BO_ONWORKLST;
1577 		syncer_worklist_len++;
1578 	}
1579 
1580 	if (delay > syncer_maxdelay - 2)
1581 		delay = syncer_maxdelay - 2;
1582 	slot = (syncer_delayno + delay) & syncer_mask;
1583 
1584 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1585 	mtx_unlock(&sync_mtx);
1586 }
1587 
1588 static int
1589 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1590 {
1591 	int error, len;
1592 
1593 	mtx_lock(&sync_mtx);
1594 	len = syncer_worklist_len - sync_vnode_count;
1595 	mtx_unlock(&sync_mtx);
1596 	error = SYSCTL_OUT(req, &len, sizeof(len));
1597 	return (error);
1598 }
1599 
1600 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1601     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1602 
1603 static struct proc *updateproc;
1604 static void sched_sync(void);
1605 static struct kproc_desc up_kp = {
1606 	"syncer",
1607 	sched_sync,
1608 	&updateproc
1609 };
1610 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1611 
1612 static int
1613 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1614 {
1615 	struct vnode *vp;
1616 	struct mount *mp;
1617 	int vfslocked;
1618 
1619 	vfslocked = 0;
1620 restart:
1621 	*bo = LIST_FIRST(slp);
1622 	if (*bo == NULL) {
1623 		VFS_UNLOCK_GIANT(vfslocked);
1624 		return (0);
1625 	}
1626 	vp = (*bo)->__bo_vnode;	/* XXX */
1627 	if (VFS_NEEDSGIANT(vp->v_mount)) {
1628 		if (!vfslocked) {
1629 			vfslocked = 1;
1630 			if (mtx_trylock(&Giant) == 0) {
1631 				mtx_unlock(&sync_mtx);
1632 				mtx_lock(&Giant);
1633 				mtx_lock(&sync_mtx);
1634 				goto restart;
1635 			}
1636 		}
1637 	} else {
1638 		VFS_UNLOCK_GIANT(vfslocked);
1639 		vfslocked = 0;
1640 	}
1641 	if (VOP_ISLOCKED(vp, NULL) != 0) {
1642 		VFS_UNLOCK_GIANT(vfslocked);
1643 		return (1);
1644 	}
1645 	if (VI_TRYLOCK(vp) == 0) {
1646 		VFS_UNLOCK_GIANT(vfslocked);
1647 		return (1);
1648 	}
1649 	/*
1650 	 * We use vhold in case the vnode does not
1651 	 * successfully sync.  vhold prevents the vnode from
1652 	 * going away when we unlock the sync_mtx so that
1653 	 * we can acquire the vnode interlock.
1654 	 */
1655 	vholdl(vp);
1656 	mtx_unlock(&sync_mtx);
1657 	VI_UNLOCK(vp);
1658 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1659 		vdrop(vp);
1660 		VFS_UNLOCK_GIANT(vfslocked);
1661 		mtx_lock(&sync_mtx);
1662 		return (1);
1663 	}
1664 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1665 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1666 	VOP_UNLOCK(vp, 0);
1667 	vn_finished_write(mp);
1668 	VI_LOCK(vp);
1669 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1670 		/*
1671 		 * Put us back on the worklist.  The worklist
1672 		 * routine will remove us from our current
1673 		 * position and then add us back in at a later
1674 		 * position.
1675 		 */
1676 		vn_syncer_add_to_worklist(*bo, syncdelay);
1677 	}
1678 	vdropl(vp);
1679 	VFS_UNLOCK_GIANT(vfslocked);
1680 	mtx_lock(&sync_mtx);
1681 	return (0);
1682 }
1683 
1684 /*
1685  * System filesystem synchronizer daemon.
1686  */
1687 static void
1688 sched_sync(void)
1689 {
1690 	struct synclist *next;
1691 	struct synclist *slp;
1692 	struct bufobj *bo;
1693 	long starttime;
1694 	struct thread *td = curthread;
1695 	static int dummychan;
1696 	int last_work_seen;
1697 	int net_worklist_len;
1698 	int syncer_final_iter;
1699 	int first_printf;
1700 	int error;
1701 
1702 	last_work_seen = 0;
1703 	syncer_final_iter = 0;
1704 	first_printf = 1;
1705 	syncer_state = SYNCER_RUNNING;
1706 	starttime = time_uptime;
1707 	td->td_pflags |= TDP_NORUNNINGBUF;
1708 
1709 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1710 	    SHUTDOWN_PRI_LAST);
1711 
1712 	mtx_lock(&sync_mtx);
1713 	for (;;) {
1714 		if (syncer_state == SYNCER_FINAL_DELAY &&
1715 		    syncer_final_iter == 0) {
1716 			mtx_unlock(&sync_mtx);
1717 			kproc_suspend_check(td->td_proc);
1718 			mtx_lock(&sync_mtx);
1719 		}
1720 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1721 		if (syncer_state != SYNCER_RUNNING &&
1722 		    starttime != time_uptime) {
1723 			if (first_printf) {
1724 				printf("\nSyncing disks, vnodes remaining...");
1725 				first_printf = 0;
1726 			}
1727 			printf("%d ", net_worklist_len);
1728 		}
1729 		starttime = time_uptime;
1730 
1731 		/*
1732 		 * Push files whose dirty time has expired.  Be careful
1733 		 * of interrupt race on slp queue.
1734 		 *
1735 		 * Skip over empty worklist slots when shutting down.
1736 		 */
1737 		do {
1738 			slp = &syncer_workitem_pending[syncer_delayno];
1739 			syncer_delayno += 1;
1740 			if (syncer_delayno == syncer_maxdelay)
1741 				syncer_delayno = 0;
1742 			next = &syncer_workitem_pending[syncer_delayno];
1743 			/*
1744 			 * If the worklist has wrapped since the
1745 			 * it was emptied of all but syncer vnodes,
1746 			 * switch to the FINAL_DELAY state and run
1747 			 * for one more second.
1748 			 */
1749 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1750 			    net_worklist_len == 0 &&
1751 			    last_work_seen == syncer_delayno) {
1752 				syncer_state = SYNCER_FINAL_DELAY;
1753 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1754 			}
1755 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1756 		    syncer_worklist_len > 0);
1757 
1758 		/*
1759 		 * Keep track of the last time there was anything
1760 		 * on the worklist other than syncer vnodes.
1761 		 * Return to the SHUTTING_DOWN state if any
1762 		 * new work appears.
1763 		 */
1764 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1765 			last_work_seen = syncer_delayno;
1766 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1767 			syncer_state = SYNCER_SHUTTING_DOWN;
1768 		while (!LIST_EMPTY(slp)) {
1769 			error = sync_vnode(slp, &bo, td);
1770 			if (error == 1) {
1771 				LIST_REMOVE(bo, bo_synclist);
1772 				LIST_INSERT_HEAD(next, bo, bo_synclist);
1773 				continue;
1774 			}
1775 		}
1776 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1777 			syncer_final_iter--;
1778 		/*
1779 		 * The variable rushjob allows the kernel to speed up the
1780 		 * processing of the filesystem syncer process. A rushjob
1781 		 * value of N tells the filesystem syncer to process the next
1782 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1783 		 * is used by the soft update code to speed up the filesystem
1784 		 * syncer process when the incore state is getting so far
1785 		 * ahead of the disk that the kernel memory pool is being
1786 		 * threatened with exhaustion.
1787 		 */
1788 		if (rushjob > 0) {
1789 			rushjob -= 1;
1790 			continue;
1791 		}
1792 		/*
1793 		 * Just sleep for a short period of time between
1794 		 * iterations when shutting down to allow some I/O
1795 		 * to happen.
1796 		 *
1797 		 * If it has taken us less than a second to process the
1798 		 * current work, then wait. Otherwise start right over
1799 		 * again. We can still lose time if any single round
1800 		 * takes more than two seconds, but it does not really
1801 		 * matter as we are just trying to generally pace the
1802 		 * filesystem activity.
1803 		 */
1804 		if (syncer_state != SYNCER_RUNNING)
1805 			msleep(&dummychan, &sync_mtx, PPAUSE, "syncfnl",
1806 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1807 		else if (time_uptime == starttime)
1808 			msleep(&lbolt, &sync_mtx, PPAUSE, "syncer", 0);
1809 	}
1810 }
1811 
1812 /*
1813  * Request the syncer daemon to speed up its work.
1814  * We never push it to speed up more than half of its
1815  * normal turn time, otherwise it could take over the cpu.
1816  */
1817 int
1818 speedup_syncer(void)
1819 {
1820 	struct thread *td;
1821 	int ret = 0;
1822 
1823 	td = FIRST_THREAD_IN_PROC(updateproc);
1824 	mtx_lock(&sync_mtx);
1825 	if (rushjob < syncdelay / 2) {
1826 		rushjob += 1;
1827 		stat_rush_requests += 1;
1828 		ret = 1;
1829 	}
1830 	mtx_unlock(&sync_mtx);
1831 	sleepq_remove(td, &lbolt);
1832 	return (ret);
1833 }
1834 
1835 /*
1836  * Tell the syncer to speed up its work and run though its work
1837  * list several times, then tell it to shut down.
1838  */
1839 static void
1840 syncer_shutdown(void *arg, int howto)
1841 {
1842 	struct thread *td;
1843 
1844 	if (howto & RB_NOSYNC)
1845 		return;
1846 	td = FIRST_THREAD_IN_PROC(updateproc);
1847 	mtx_lock(&sync_mtx);
1848 	syncer_state = SYNCER_SHUTTING_DOWN;
1849 	rushjob = 0;
1850 	mtx_unlock(&sync_mtx);
1851 	sleepq_remove(td, &lbolt);
1852 	kproc_shutdown(arg, howto);
1853 }
1854 
1855 /*
1856  * Reassign a buffer from one vnode to another.
1857  * Used to assign file specific control information
1858  * (indirect blocks) to the vnode to which they belong.
1859  */
1860 void
1861 reassignbuf(struct buf *bp)
1862 {
1863 	struct vnode *vp;
1864 	struct bufobj *bo;
1865 	int delay;
1866 #ifdef INVARIANTS
1867 	struct bufv *bv;
1868 #endif
1869 
1870 	vp = bp->b_vp;
1871 	bo = bp->b_bufobj;
1872 	++reassignbufcalls;
1873 
1874 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1875 	    bp, bp->b_vp, bp->b_flags);
1876 	/*
1877 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1878 	 * is not fully linked in.
1879 	 */
1880 	if (bp->b_flags & B_PAGING)
1881 		panic("cannot reassign paging buffer");
1882 
1883 	/*
1884 	 * Delete from old vnode list, if on one.
1885 	 */
1886 	VI_LOCK(vp);
1887 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1888 		buf_vlist_remove(bp);
1889 	else
1890 		panic("reassignbuf: Buffer %p not on queue.", bp);
1891 	/*
1892 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1893 	 * of clean buffers.
1894 	 */
1895 	if (bp->b_flags & B_DELWRI) {
1896 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1897 			switch (vp->v_type) {
1898 			case VDIR:
1899 				delay = dirdelay;
1900 				break;
1901 			case VCHR:
1902 				delay = metadelay;
1903 				break;
1904 			default:
1905 				delay = filedelay;
1906 			}
1907 			vn_syncer_add_to_worklist(bo, delay);
1908 		}
1909 		buf_vlist_add(bp, bo, BX_VNDIRTY);
1910 	} else {
1911 		buf_vlist_add(bp, bo, BX_VNCLEAN);
1912 
1913 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1914 			mtx_lock(&sync_mtx);
1915 			LIST_REMOVE(bo, bo_synclist);
1916 			syncer_worklist_len--;
1917 			mtx_unlock(&sync_mtx);
1918 			bo->bo_flag &= ~BO_ONWORKLST;
1919 		}
1920 	}
1921 #ifdef INVARIANTS
1922 	bv = &bo->bo_clean;
1923 	bp = TAILQ_FIRST(&bv->bv_hd);
1924 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1925 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1926 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1927 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1928 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1929 	bv = &bo->bo_dirty;
1930 	bp = TAILQ_FIRST(&bv->bv_hd);
1931 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1932 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1933 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1934 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1935 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1936 #endif
1937 	VI_UNLOCK(vp);
1938 }
1939 
1940 /*
1941  * Increment the use and hold counts on the vnode, taking care to reference
1942  * the driver's usecount if this is a chardev.  The vholdl() will remove
1943  * the vnode from the free list if it is presently free.  Requires the
1944  * vnode interlock and returns with it held.
1945  */
1946 static void
1947 v_incr_usecount(struct vnode *vp)
1948 {
1949 
1950 	CTR3(KTR_VFS, "v_incr_usecount: vp %p holdcnt %d usecount %d\n",
1951 	    vp, vp->v_holdcnt, vp->v_usecount);
1952 	vp->v_usecount++;
1953 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1954 		dev_lock();
1955 		vp->v_rdev->si_usecount++;
1956 		dev_unlock();
1957 	}
1958 	vholdl(vp);
1959 }
1960 
1961 /*
1962  * Turn a holdcnt into a use+holdcnt such that only one call to
1963  * v_decr_usecount is needed.
1964  */
1965 static void
1966 v_upgrade_usecount(struct vnode *vp)
1967 {
1968 
1969 	CTR3(KTR_VFS, "v_upgrade_usecount: vp %p holdcnt %d usecount %d\n",
1970 	    vp, vp->v_holdcnt, vp->v_usecount);
1971 	vp->v_usecount++;
1972 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1973 		dev_lock();
1974 		vp->v_rdev->si_usecount++;
1975 		dev_unlock();
1976 	}
1977 }
1978 
1979 /*
1980  * Decrement the vnode use and hold count along with the driver's usecount
1981  * if this is a chardev.  The vdropl() below releases the vnode interlock
1982  * as it may free the vnode.
1983  */
1984 static void
1985 v_decr_usecount(struct vnode *vp)
1986 {
1987 
1988 	CTR3(KTR_VFS, "v_decr_usecount: vp %p holdcnt %d usecount %d\n",
1989 	    vp, vp->v_holdcnt, vp->v_usecount);
1990 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
1991 	VNASSERT(vp->v_usecount > 0, vp,
1992 	    ("v_decr_usecount: negative usecount"));
1993 	vp->v_usecount--;
1994 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1995 		dev_lock();
1996 		vp->v_rdev->si_usecount--;
1997 		dev_unlock();
1998 	}
1999 	vdropl(vp);
2000 }
2001 
2002 /*
2003  * Decrement only the use count and driver use count.  This is intended to
2004  * be paired with a follow on vdropl() to release the remaining hold count.
2005  * In this way we may vgone() a vnode with a 0 usecount without risk of
2006  * having it end up on a free list because the hold count is kept above 0.
2007  */
2008 static void
2009 v_decr_useonly(struct vnode *vp)
2010 {
2011 
2012 	CTR3(KTR_VFS, "v_decr_useonly: vp %p holdcnt %d usecount %d\n",
2013 	    vp, vp->v_holdcnt, vp->v_usecount);
2014 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2015 	VNASSERT(vp->v_usecount > 0, vp,
2016 	    ("v_decr_useonly: negative usecount"));
2017 	vp->v_usecount--;
2018 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2019 		dev_lock();
2020 		vp->v_rdev->si_usecount--;
2021 		dev_unlock();
2022 	}
2023 }
2024 
2025 /*
2026  * Grab a particular vnode from the free list, increment its
2027  * reference count and lock it. The vnode lock bit is set if the
2028  * vnode is being eliminated in vgone. The process is awakened
2029  * when the transition is completed, and an error returned to
2030  * indicate that the vnode is no longer usable (possibly having
2031  * been changed to a new filesystem type).
2032  */
2033 int
2034 vget(struct vnode *vp, int flags, struct thread *td)
2035 {
2036 	int oweinact;
2037 	int oldflags;
2038 	int error;
2039 
2040 	error = 0;
2041 	oldflags = flags;
2042 	oweinact = 0;
2043 	VFS_ASSERT_GIANT(vp->v_mount);
2044 	if ((flags & LK_INTERLOCK) == 0)
2045 		VI_LOCK(vp);
2046 	/*
2047 	 * If the inactive call was deferred because vput() was called
2048 	 * with a shared lock, we have to do it here before another thread
2049 	 * gets a reference to data that should be dead.
2050 	 */
2051 	if (vp->v_iflag & VI_OWEINACT) {
2052 		if (flags & LK_NOWAIT) {
2053 			VI_UNLOCK(vp);
2054 			return (EBUSY);
2055 		}
2056 		flags &= ~LK_TYPE_MASK;
2057 		flags |= LK_EXCLUSIVE;
2058 		oweinact = 1;
2059 	}
2060 	vholdl(vp);
2061 	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2062 		vdrop(vp);
2063 		return (error);
2064 	}
2065 	VI_LOCK(vp);
2066 	/* Upgrade our holdcnt to a usecount. */
2067 	v_upgrade_usecount(vp);
2068 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2069 		panic("vget: vn_lock failed to return ENOENT\n");
2070 	if (oweinact) {
2071 		if (vp->v_iflag & VI_OWEINACT)
2072 			vinactive(vp, td);
2073 		VI_UNLOCK(vp);
2074 		if ((oldflags & LK_TYPE_MASK) == 0)
2075 			VOP_UNLOCK(vp, 0);
2076 	} else
2077 		VI_UNLOCK(vp);
2078 	return (0);
2079 }
2080 
2081 /*
2082  * Increase the reference count of a vnode.
2083  */
2084 void
2085 vref(struct vnode *vp)
2086 {
2087 
2088 	VI_LOCK(vp);
2089 	v_incr_usecount(vp);
2090 	VI_UNLOCK(vp);
2091 }
2092 
2093 /*
2094  * Return reference count of a vnode.
2095  *
2096  * The results of this call are only guaranteed when some mechanism other
2097  * than the VI lock is used to stop other processes from gaining references
2098  * to the vnode.  This may be the case if the caller holds the only reference.
2099  * This is also useful when stale data is acceptable as race conditions may
2100  * be accounted for by some other means.
2101  */
2102 int
2103 vrefcnt(struct vnode *vp)
2104 {
2105 	int usecnt;
2106 
2107 	VI_LOCK(vp);
2108 	usecnt = vp->v_usecount;
2109 	VI_UNLOCK(vp);
2110 
2111 	return (usecnt);
2112 }
2113 
2114 
2115 /*
2116  * Vnode put/release.
2117  * If count drops to zero, call inactive routine and return to freelist.
2118  */
2119 void
2120 vrele(struct vnode *vp)
2121 {
2122 	struct thread *td = curthread;	/* XXX */
2123 
2124 	KASSERT(vp != NULL, ("vrele: null vp"));
2125 	VFS_ASSERT_GIANT(vp->v_mount);
2126 
2127 	VI_LOCK(vp);
2128 
2129 	/* Skip this v_writecount check if we're going to panic below. */
2130 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2131 	    ("vrele: missed vn_close"));
2132 
2133 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2134 	    vp->v_usecount == 1)) {
2135 		v_decr_usecount(vp);
2136 		return;
2137 	}
2138 	if (vp->v_usecount != 1) {
2139 #ifdef DIAGNOSTIC
2140 		vprint("vrele: negative ref count", vp);
2141 #endif
2142 		VI_UNLOCK(vp);
2143 		panic("vrele: negative ref cnt");
2144 	}
2145 	/*
2146 	 * We want to hold the vnode until the inactive finishes to
2147 	 * prevent vgone() races.  We drop the use count here and the
2148 	 * hold count below when we're done.
2149 	 */
2150 	v_decr_useonly(vp);
2151 	/*
2152 	 * We must call VOP_INACTIVE with the node locked. Mark
2153 	 * as VI_DOINGINACT to avoid recursion.
2154 	 */
2155 	vp->v_iflag |= VI_OWEINACT;
2156 	if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK) == 0) {
2157 		VI_LOCK(vp);
2158 		if (vp->v_usecount > 0)
2159 			vp->v_iflag &= ~VI_OWEINACT;
2160 		if (vp->v_iflag & VI_OWEINACT)
2161 			vinactive(vp, td);
2162 		VOP_UNLOCK(vp, 0);
2163 	} else {
2164 		VI_LOCK(vp);
2165 		if (vp->v_usecount > 0)
2166 			vp->v_iflag &= ~VI_OWEINACT;
2167 	}
2168 	vdropl(vp);
2169 }
2170 
2171 /*
2172  * Release an already locked vnode.  This give the same effects as
2173  * unlock+vrele(), but takes less time and avoids releasing and
2174  * re-aquiring the lock (as vrele() acquires the lock internally.)
2175  */
2176 void
2177 vput(struct vnode *vp)
2178 {
2179 	struct thread *td = curthread;	/* XXX */
2180 	int error;
2181 
2182 	KASSERT(vp != NULL, ("vput: null vp"));
2183 	ASSERT_VOP_LOCKED(vp, "vput");
2184 	VFS_ASSERT_GIANT(vp->v_mount);
2185 	VI_LOCK(vp);
2186 	/* Skip this v_writecount check if we're going to panic below. */
2187 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2188 	    ("vput: missed vn_close"));
2189 	error = 0;
2190 
2191 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2192 	    vp->v_usecount == 1)) {
2193 		VOP_UNLOCK(vp, 0);
2194 		v_decr_usecount(vp);
2195 		return;
2196 	}
2197 
2198 	if (vp->v_usecount != 1) {
2199 #ifdef DIAGNOSTIC
2200 		vprint("vput: negative ref count", vp);
2201 #endif
2202 		panic("vput: negative ref cnt");
2203 	}
2204 	/*
2205 	 * We want to hold the vnode until the inactive finishes to
2206 	 * prevent vgone() races.  We drop the use count here and the
2207 	 * hold count below when we're done.
2208 	 */
2209 	v_decr_useonly(vp);
2210 	vp->v_iflag |= VI_OWEINACT;
2211 	if (VOP_ISLOCKED(vp, NULL) != LK_EXCLUSIVE) {
2212 		error = VOP_LOCK(vp, LK_UPGRADE|LK_INTERLOCK|LK_NOWAIT);
2213 		VI_LOCK(vp);
2214 		if (error) {
2215 			if (vp->v_usecount > 0)
2216 				vp->v_iflag &= ~VI_OWEINACT;
2217 			goto done;
2218 		}
2219 	}
2220 	if (vp->v_usecount > 0)
2221 		vp->v_iflag &= ~VI_OWEINACT;
2222 	if (vp->v_iflag & VI_OWEINACT)
2223 		vinactive(vp, td);
2224 	VOP_UNLOCK(vp, 0);
2225 done:
2226 	vdropl(vp);
2227 }
2228 
2229 /*
2230  * Somebody doesn't want the vnode recycled.
2231  */
2232 void
2233 vhold(struct vnode *vp)
2234 {
2235 
2236 	VI_LOCK(vp);
2237 	vholdl(vp);
2238 	VI_UNLOCK(vp);
2239 }
2240 
2241 void
2242 vholdl(struct vnode *vp)
2243 {
2244 
2245 	vp->v_holdcnt++;
2246 	if (VSHOULDBUSY(vp))
2247 		vbusy(vp);
2248 }
2249 
2250 /*
2251  * Note that there is one less who cares about this vnode.  vdrop() is the
2252  * opposite of vhold().
2253  */
2254 void
2255 vdrop(struct vnode *vp)
2256 {
2257 
2258 	VI_LOCK(vp);
2259 	vdropl(vp);
2260 }
2261 
2262 /*
2263  * Drop the hold count of the vnode.  If this is the last reference to
2264  * the vnode we will free it if it has been vgone'd otherwise it is
2265  * placed on the free list.
2266  */
2267 void
2268 vdropl(struct vnode *vp)
2269 {
2270 
2271 	ASSERT_VI_LOCKED(vp, "vdropl");
2272 	if (vp->v_holdcnt <= 0)
2273 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2274 	vp->v_holdcnt--;
2275 	if (vp->v_holdcnt == 0) {
2276 		if (vp->v_iflag & VI_DOOMED) {
2277 			vdestroy(vp);
2278 			return;
2279 		} else
2280 			vfree(vp);
2281 	}
2282 	VI_UNLOCK(vp);
2283 }
2284 
2285 /*
2286  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2287  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2288  * OWEINACT tracks whether a vnode missed a call to inactive due to a
2289  * failed lock upgrade.
2290  */
2291 static void
2292 vinactive(struct vnode *vp, struct thread *td)
2293 {
2294 
2295 	ASSERT_VOP_LOCKED(vp, "vinactive");
2296 	ASSERT_VI_LOCKED(vp, "vinactive");
2297 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2298 	    ("vinactive: recursed on VI_DOINGINACT"));
2299 	vp->v_iflag |= VI_DOINGINACT;
2300 	vp->v_iflag &= ~VI_OWEINACT;
2301 	VI_UNLOCK(vp);
2302 	VOP_INACTIVE(vp, td);
2303 	VI_LOCK(vp);
2304 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2305 	    ("vinactive: lost VI_DOINGINACT"));
2306 	vp->v_iflag &= ~VI_DOINGINACT;
2307 }
2308 
2309 /*
2310  * Remove any vnodes in the vnode table belonging to mount point mp.
2311  *
2312  * If FORCECLOSE is not specified, there should not be any active ones,
2313  * return error if any are found (nb: this is a user error, not a
2314  * system error). If FORCECLOSE is specified, detach any active vnodes
2315  * that are found.
2316  *
2317  * If WRITECLOSE is set, only flush out regular file vnodes open for
2318  * writing.
2319  *
2320  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2321  *
2322  * `rootrefs' specifies the base reference count for the root vnode
2323  * of this filesystem. The root vnode is considered busy if its
2324  * v_usecount exceeds this value. On a successful return, vflush(, td)
2325  * will call vrele() on the root vnode exactly rootrefs times.
2326  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2327  * be zero.
2328  */
2329 #ifdef DIAGNOSTIC
2330 static int busyprt = 0;		/* print out busy vnodes */
2331 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2332 #endif
2333 
2334 int
2335 vflush( struct mount *mp, int rootrefs, int flags, struct thread *td)
2336 {
2337 	struct vnode *vp, *mvp, *rootvp = NULL;
2338 	struct vattr vattr;
2339 	int busy = 0, error;
2340 
2341 	CTR1(KTR_VFS, "vflush: mp %p", mp);
2342 	if (rootrefs > 0) {
2343 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2344 		    ("vflush: bad args"));
2345 		/*
2346 		 * Get the filesystem root vnode. We can vput() it
2347 		 * immediately, since with rootrefs > 0, it won't go away.
2348 		 */
2349 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0)
2350 			return (error);
2351 		vput(rootvp);
2352 
2353 	}
2354 	MNT_ILOCK(mp);
2355 loop:
2356 	MNT_VNODE_FOREACH(vp, mp, mvp) {
2357 
2358 		VI_LOCK(vp);
2359 		vholdl(vp);
2360 		MNT_IUNLOCK(mp);
2361 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2362 		if (error) {
2363 			vdrop(vp);
2364 			MNT_ILOCK(mp);
2365 			MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2366 			goto loop;
2367 		}
2368 		/*
2369 		 * Skip over a vnodes marked VV_SYSTEM.
2370 		 */
2371 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2372 			VOP_UNLOCK(vp, 0);
2373 			vdrop(vp);
2374 			MNT_ILOCK(mp);
2375 			continue;
2376 		}
2377 		/*
2378 		 * If WRITECLOSE is set, flush out unlinked but still open
2379 		 * files (even if open only for reading) and regular file
2380 		 * vnodes open for writing.
2381 		 */
2382 		if (flags & WRITECLOSE) {
2383 			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2384 			VI_LOCK(vp);
2385 
2386 			if ((vp->v_type == VNON ||
2387 			    (error == 0 && vattr.va_nlink > 0)) &&
2388 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2389 				VOP_UNLOCK(vp, 0);
2390 				vdropl(vp);
2391 				MNT_ILOCK(mp);
2392 				continue;
2393 			}
2394 		} else
2395 			VI_LOCK(vp);
2396 		/*
2397 		 * With v_usecount == 0, all we need to do is clear out the
2398 		 * vnode data structures and we are done.
2399 		 *
2400 		 * If FORCECLOSE is set, forcibly close the vnode.
2401 		 */
2402 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2403 			VNASSERT(vp->v_usecount == 0 ||
2404 			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2405 			    ("device VNODE %p is FORCECLOSED", vp));
2406 			vgonel(vp);
2407 		} else {
2408 			busy++;
2409 #ifdef DIAGNOSTIC
2410 			if (busyprt)
2411 				vprint("vflush: busy vnode", vp);
2412 #endif
2413 		}
2414 		VOP_UNLOCK(vp, 0);
2415 		vdropl(vp);
2416 		MNT_ILOCK(mp);
2417 	}
2418 	MNT_IUNLOCK(mp);
2419 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2420 		/*
2421 		 * If just the root vnode is busy, and if its refcount
2422 		 * is equal to `rootrefs', then go ahead and kill it.
2423 		 */
2424 		VI_LOCK(rootvp);
2425 		KASSERT(busy > 0, ("vflush: not busy"));
2426 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2427 		    ("vflush: usecount %d < rootrefs %d",
2428 		     rootvp->v_usecount, rootrefs));
2429 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2430 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2431 			vgone(rootvp);
2432 			VOP_UNLOCK(rootvp, 0);
2433 			busy = 0;
2434 		} else
2435 			VI_UNLOCK(rootvp);
2436 	}
2437 	if (busy)
2438 		return (EBUSY);
2439 	for (; rootrefs > 0; rootrefs--)
2440 		vrele(rootvp);
2441 	return (0);
2442 }
2443 
2444 /*
2445  * Recycle an unused vnode to the front of the free list.
2446  */
2447 int
2448 vrecycle(struct vnode *vp, struct thread *td)
2449 {
2450 	int recycled;
2451 
2452 	ASSERT_VOP_LOCKED(vp, "vrecycle");
2453 	recycled = 0;
2454 	VI_LOCK(vp);
2455 	if (vp->v_usecount == 0) {
2456 		recycled = 1;
2457 		vgonel(vp);
2458 	}
2459 	VI_UNLOCK(vp);
2460 	return (recycled);
2461 }
2462 
2463 /*
2464  * Eliminate all activity associated with a vnode
2465  * in preparation for reuse.
2466  */
2467 void
2468 vgone(struct vnode *vp)
2469 {
2470 	VI_LOCK(vp);
2471 	vgonel(vp);
2472 	VI_UNLOCK(vp);
2473 }
2474 
2475 /*
2476  * vgone, with the vp interlock held.
2477  */
2478 void
2479 vgonel(struct vnode *vp)
2480 {
2481 	struct thread *td;
2482 	int oweinact;
2483 	int active;
2484 	struct mount *mp;
2485 
2486 	CTR1(KTR_VFS, "vgonel: vp %p", vp);
2487 	ASSERT_VOP_LOCKED(vp, "vgonel");
2488 	ASSERT_VI_LOCKED(vp, "vgonel");
2489 	VNASSERT(vp->v_holdcnt, vp,
2490 	    ("vgonel: vp %p has no reference.", vp));
2491 	td = curthread;
2492 
2493 	/*
2494 	 * Don't vgonel if we're already doomed.
2495 	 */
2496 	if (vp->v_iflag & VI_DOOMED)
2497 		return;
2498 	vp->v_iflag |= VI_DOOMED;
2499 	/*
2500 	 * Check to see if the vnode is in use.  If so, we have to call
2501 	 * VOP_CLOSE() and VOP_INACTIVE().
2502 	 */
2503 	active = vp->v_usecount;
2504 	oweinact = (vp->v_iflag & VI_OWEINACT);
2505 	VI_UNLOCK(vp);
2506 	/*
2507 	 * Clean out any buffers associated with the vnode.
2508 	 * If the flush fails, just toss the buffers.
2509 	 */
2510 	mp = NULL;
2511 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2512 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2513 	if (vinvalbuf(vp, V_SAVE, td, 0, 0) != 0)
2514 		vinvalbuf(vp, 0, td, 0, 0);
2515 
2516 	/*
2517 	 * If purging an active vnode, it must be closed and
2518 	 * deactivated before being reclaimed.
2519 	 */
2520 	if (active)
2521 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2522 	if (oweinact || active) {
2523 		VI_LOCK(vp);
2524 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2525 			vinactive(vp, td);
2526 		VI_UNLOCK(vp);
2527 	}
2528 	/*
2529 	 * Reclaim the vnode.
2530 	 */
2531 	if (VOP_RECLAIM(vp, td))
2532 		panic("vgone: cannot reclaim");
2533 	if (mp != NULL)
2534 		vn_finished_secondary_write(mp);
2535 	VNASSERT(vp->v_object == NULL, vp,
2536 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2537 	/*
2538 	 * Delete from old mount point vnode list.
2539 	 */
2540 	delmntque(vp);
2541 	cache_purge(vp);
2542 	/*
2543 	 * Done with purge, reset to the standard lock and invalidate
2544 	 * the vnode.
2545 	 */
2546 	VI_LOCK(vp);
2547 	vp->v_vnlock = &vp->v_lock;
2548 	vp->v_op = &dead_vnodeops;
2549 	vp->v_tag = "none";
2550 	vp->v_type = VBAD;
2551 }
2552 
2553 /*
2554  * Calculate the total number of references to a special device.
2555  */
2556 int
2557 vcount(struct vnode *vp)
2558 {
2559 	int count;
2560 
2561 	dev_lock();
2562 	count = vp->v_rdev->si_usecount;
2563 	dev_unlock();
2564 	return (count);
2565 }
2566 
2567 /*
2568  * Same as above, but using the struct cdev *as argument
2569  */
2570 int
2571 count_dev(struct cdev *dev)
2572 {
2573 	int count;
2574 
2575 	dev_lock();
2576 	count = dev->si_usecount;
2577 	dev_unlock();
2578 	return(count);
2579 }
2580 
2581 /*
2582  * Print out a description of a vnode.
2583  */
2584 static char *typename[] =
2585 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2586  "VMARKER"};
2587 
2588 void
2589 vn_printf(struct vnode *vp, const char *fmt, ...)
2590 {
2591 	va_list ap;
2592 	char buf[256], buf2[16];
2593 	u_long flags;
2594 
2595 	va_start(ap, fmt);
2596 	vprintf(fmt, ap);
2597 	va_end(ap);
2598 	printf("%p: ", (void *)vp);
2599 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2600 	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2601 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2602 	buf[0] = '\0';
2603 	buf[1] = '\0';
2604 	if (vp->v_vflag & VV_ROOT)
2605 		strlcat(buf, "|VV_ROOT", sizeof(buf));
2606 	if (vp->v_vflag & VV_ISTTY)
2607 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2608 	if (vp->v_vflag & VV_NOSYNC)
2609 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2610 	if (vp->v_vflag & VV_CACHEDLABEL)
2611 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2612 	if (vp->v_vflag & VV_TEXT)
2613 		strlcat(buf, "|VV_TEXT", sizeof(buf));
2614 	if (vp->v_vflag & VV_COPYONWRITE)
2615 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2616 	if (vp->v_vflag & VV_SYSTEM)
2617 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2618 	if (vp->v_vflag & VV_PROCDEP)
2619 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2620 	if (vp->v_vflag & VV_NOKNOTE)
2621 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2622 	if (vp->v_vflag & VV_DELETED)
2623 		strlcat(buf, "|VV_DELETED", sizeof(buf));
2624 	if (vp->v_vflag & VV_MD)
2625 		strlcat(buf, "|VV_MD", sizeof(buf));
2626 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2627 	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2628 	    VV_NOKNOTE | VV_DELETED | VV_MD);
2629 	if (flags != 0) {
2630 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2631 		strlcat(buf, buf2, sizeof(buf));
2632 	}
2633 	if (vp->v_iflag & VI_MOUNT)
2634 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2635 	if (vp->v_iflag & VI_AGE)
2636 		strlcat(buf, "|VI_AGE", sizeof(buf));
2637 	if (vp->v_iflag & VI_DOOMED)
2638 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2639 	if (vp->v_iflag & VI_FREE)
2640 		strlcat(buf, "|VI_FREE", sizeof(buf));
2641 	if (vp->v_iflag & VI_OBJDIRTY)
2642 		strlcat(buf, "|VI_OBJDIRTY", sizeof(buf));
2643 	if (vp->v_iflag & VI_DOINGINACT)
2644 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2645 	if (vp->v_iflag & VI_OWEINACT)
2646 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2647 	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2648 	    VI_OBJDIRTY | VI_DOINGINACT | VI_OWEINACT);
2649 	if (flags != 0) {
2650 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2651 		strlcat(buf, buf2, sizeof(buf));
2652 	}
2653 	printf("    flags (%s)\n", buf + 1);
2654 	if (mtx_owned(VI_MTX(vp)))
2655 		printf(" VI_LOCKed");
2656 	if (vp->v_object != NULL)
2657 		printf("    v_object %p ref %d pages %d\n",
2658 		    vp->v_object, vp->v_object->ref_count,
2659 		    vp->v_object->resident_page_count);
2660 	printf("    ");
2661 	lockmgr_printinfo(vp->v_vnlock);
2662 	printf("\n");
2663 	if (vp->v_data != NULL)
2664 		VOP_PRINT(vp);
2665 }
2666 
2667 #ifdef DDB
2668 /*
2669  * List all of the locked vnodes in the system.
2670  * Called when debugging the kernel.
2671  */
2672 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2673 {
2674 	struct mount *mp, *nmp;
2675 	struct vnode *vp;
2676 
2677 	/*
2678 	 * Note: because this is DDB, we can't obey the locking semantics
2679 	 * for these structures, which means we could catch an inconsistent
2680 	 * state and dereference a nasty pointer.  Not much to be done
2681 	 * about that.
2682 	 */
2683 	db_printf("Locked vnodes\n");
2684 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2685 		nmp = TAILQ_NEXT(mp, mnt_list);
2686 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2687 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp, NULL))
2688 				vprint("", vp);
2689 		}
2690 		nmp = TAILQ_NEXT(mp, mnt_list);
2691 	}
2692 }
2693 
2694 /*
2695  * Show details about the given vnode.
2696  */
2697 DB_SHOW_COMMAND(vnode, db_show_vnode)
2698 {
2699 	struct vnode *vp;
2700 
2701 	if (!have_addr)
2702 		return;
2703 	vp = (struct vnode *)addr;
2704 	vn_printf(vp, "vnode ");
2705 }
2706 #endif	/* DDB */
2707 
2708 /*
2709  * Fill in a struct xvfsconf based on a struct vfsconf.
2710  */
2711 static void
2712 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2713 {
2714 
2715 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2716 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2717 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2718 	xvfsp->vfc_flags = vfsp->vfc_flags;
2719 	/*
2720 	 * These are unused in userland, we keep them
2721 	 * to not break binary compatibility.
2722 	 */
2723 	xvfsp->vfc_vfsops = NULL;
2724 	xvfsp->vfc_next = NULL;
2725 }
2726 
2727 /*
2728  * Top level filesystem related information gathering.
2729  */
2730 static int
2731 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2732 {
2733 	struct vfsconf *vfsp;
2734 	struct xvfsconf xvfsp;
2735 	int error;
2736 
2737 	error = 0;
2738 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2739 		bzero(&xvfsp, sizeof(xvfsp));
2740 		vfsconf2x(vfsp, &xvfsp);
2741 		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2742 		if (error)
2743 			break;
2744 	}
2745 	return (error);
2746 }
2747 
2748 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2749     "S,xvfsconf", "List of all configured filesystems");
2750 
2751 #ifndef BURN_BRIDGES
2752 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2753 
2754 static int
2755 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2756 {
2757 	int *name = (int *)arg1 - 1;	/* XXX */
2758 	u_int namelen = arg2 + 1;	/* XXX */
2759 	struct vfsconf *vfsp;
2760 	struct xvfsconf xvfsp;
2761 
2762 	printf("WARNING: userland calling deprecated sysctl, "
2763 	    "please rebuild world\n");
2764 
2765 #if 1 || defined(COMPAT_PRELITE2)
2766 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2767 	if (namelen == 1)
2768 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2769 #endif
2770 
2771 	switch (name[1]) {
2772 	case VFS_MAXTYPENUM:
2773 		if (namelen != 2)
2774 			return (ENOTDIR);
2775 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2776 	case VFS_CONF:
2777 		if (namelen != 3)
2778 			return (ENOTDIR);	/* overloaded */
2779 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2780 			if (vfsp->vfc_typenum == name[2])
2781 				break;
2782 		if (vfsp == NULL)
2783 			return (EOPNOTSUPP);
2784 		bzero(&xvfsp, sizeof(xvfsp));
2785 		vfsconf2x(vfsp, &xvfsp);
2786 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2787 	}
2788 	return (EOPNOTSUPP);
2789 }
2790 
2791 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
2792 	vfs_sysctl, "Generic filesystem");
2793 
2794 #if 1 || defined(COMPAT_PRELITE2)
2795 
2796 static int
2797 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2798 {
2799 	int error;
2800 	struct vfsconf *vfsp;
2801 	struct ovfsconf ovfs;
2802 
2803 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2804 		bzero(&ovfs, sizeof(ovfs));
2805 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2806 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2807 		ovfs.vfc_index = vfsp->vfc_typenum;
2808 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2809 		ovfs.vfc_flags = vfsp->vfc_flags;
2810 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2811 		if (error)
2812 			return error;
2813 	}
2814 	return 0;
2815 }
2816 
2817 #endif /* 1 || COMPAT_PRELITE2 */
2818 #endif /* !BURN_BRIDGES */
2819 
2820 #define KINFO_VNODESLOP		10
2821 #ifdef notyet
2822 /*
2823  * Dump vnode list (via sysctl).
2824  */
2825 /* ARGSUSED */
2826 static int
2827 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2828 {
2829 	struct xvnode *xvn;
2830 	struct thread *td = req->td;
2831 	struct mount *mp;
2832 	struct vnode *vp;
2833 	int error, len, n;
2834 
2835 	/*
2836 	 * Stale numvnodes access is not fatal here.
2837 	 */
2838 	req->lock = 0;
2839 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2840 	if (!req->oldptr)
2841 		/* Make an estimate */
2842 		return (SYSCTL_OUT(req, 0, len));
2843 
2844 	error = sysctl_wire_old_buffer(req, 0);
2845 	if (error != 0)
2846 		return (error);
2847 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2848 	n = 0;
2849 	mtx_lock(&mountlist_mtx);
2850 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2851 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2852 			continue;
2853 		MNT_ILOCK(mp);
2854 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2855 			if (n == len)
2856 				break;
2857 			vref(vp);
2858 			xvn[n].xv_size = sizeof *xvn;
2859 			xvn[n].xv_vnode = vp;
2860 			xvn[n].xv_id = 0;	/* XXX compat */
2861 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2862 			XV_COPY(usecount);
2863 			XV_COPY(writecount);
2864 			XV_COPY(holdcnt);
2865 			XV_COPY(mount);
2866 			XV_COPY(numoutput);
2867 			XV_COPY(type);
2868 #undef XV_COPY
2869 			xvn[n].xv_flag = vp->v_vflag;
2870 
2871 			switch (vp->v_type) {
2872 			case VREG:
2873 			case VDIR:
2874 			case VLNK:
2875 				break;
2876 			case VBLK:
2877 			case VCHR:
2878 				if (vp->v_rdev == NULL) {
2879 					vrele(vp);
2880 					continue;
2881 				}
2882 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2883 				break;
2884 			case VSOCK:
2885 				xvn[n].xv_socket = vp->v_socket;
2886 				break;
2887 			case VFIFO:
2888 				xvn[n].xv_fifo = vp->v_fifoinfo;
2889 				break;
2890 			case VNON:
2891 			case VBAD:
2892 			default:
2893 				/* shouldn't happen? */
2894 				vrele(vp);
2895 				continue;
2896 			}
2897 			vrele(vp);
2898 			++n;
2899 		}
2900 		MNT_IUNLOCK(mp);
2901 		mtx_lock(&mountlist_mtx);
2902 		vfs_unbusy(mp, td);
2903 		if (n == len)
2904 			break;
2905 	}
2906 	mtx_unlock(&mountlist_mtx);
2907 
2908 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2909 	free(xvn, M_TEMP);
2910 	return (error);
2911 }
2912 
2913 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2914 	0, 0, sysctl_vnode, "S,xvnode", "");
2915 #endif
2916 
2917 /*
2918  * Unmount all filesystems. The list is traversed in reverse order
2919  * of mounting to avoid dependencies.
2920  */
2921 void
2922 vfs_unmountall(void)
2923 {
2924 	struct mount *mp;
2925 	struct thread *td;
2926 	int error;
2927 
2928 	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
2929 	td = curthread;
2930 	/*
2931 	 * Since this only runs when rebooting, it is not interlocked.
2932 	 */
2933 	while(!TAILQ_EMPTY(&mountlist)) {
2934 		mp = TAILQ_LAST(&mountlist, mntlist);
2935 		error = dounmount(mp, MNT_FORCE, td);
2936 		if (error) {
2937 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2938 			/*
2939 			 * XXX: Due to the way in which we mount the root
2940 			 * file system off of devfs, devfs will generate a
2941 			 * "busy" warning when we try to unmount it before
2942 			 * the root.  Don't print a warning as a result in
2943 			 * order to avoid false positive errors that may
2944 			 * cause needless upset.
2945 			 */
2946 			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
2947 				printf("unmount of %s failed (",
2948 				    mp->mnt_stat.f_mntonname);
2949 				if (error == EBUSY)
2950 					printf("BUSY)\n");
2951 				else
2952 					printf("%d)\n", error);
2953 			}
2954 		} else {
2955 			/* The unmount has removed mp from the mountlist */
2956 		}
2957 	}
2958 }
2959 
2960 /*
2961  * perform msync on all vnodes under a mount point
2962  * the mount point must be locked.
2963  */
2964 void
2965 vfs_msync(struct mount *mp, int flags)
2966 {
2967 	struct vnode *vp, *mvp;
2968 	struct vm_object *obj;
2969 
2970 	MNT_ILOCK(mp);
2971 	MNT_VNODE_FOREACH(vp, mp, mvp) {
2972 		VI_LOCK(vp);
2973 		if ((vp->v_iflag & VI_OBJDIRTY) &&
2974 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2975 			MNT_IUNLOCK(mp);
2976 			if (!vget(vp,
2977 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
2978 			    curthread)) {
2979 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
2980 					vput(vp);
2981 					MNT_ILOCK(mp);
2982 					continue;
2983 				}
2984 
2985 				obj = vp->v_object;
2986 				if (obj != NULL) {
2987 					VM_OBJECT_LOCK(obj);
2988 					vm_object_page_clean(obj, 0, 0,
2989 					    flags == MNT_WAIT ?
2990 					    OBJPC_SYNC : OBJPC_NOSYNC);
2991 					VM_OBJECT_UNLOCK(obj);
2992 				}
2993 				vput(vp);
2994 			}
2995 			MNT_ILOCK(mp);
2996 		} else
2997 			VI_UNLOCK(vp);
2998 	}
2999 	MNT_IUNLOCK(mp);
3000 }
3001 
3002 /*
3003  * Mark a vnode as free, putting it up for recycling.
3004  */
3005 static void
3006 vfree(struct vnode *vp)
3007 {
3008 
3009 	CTR1(KTR_VFS, "vfree vp %p", vp);
3010 	ASSERT_VI_LOCKED(vp, "vfree");
3011 	mtx_lock(&vnode_free_list_mtx);
3012 	VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
3013 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
3014 	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
3015 	VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
3016 	    ("vfree: Freeing doomed vnode"));
3017 	if (vp->v_iflag & VI_AGE) {
3018 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3019 	} else {
3020 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3021 	}
3022 	freevnodes++;
3023 	vp->v_iflag &= ~VI_AGE;
3024 	vp->v_iflag |= VI_FREE;
3025 	mtx_unlock(&vnode_free_list_mtx);
3026 }
3027 
3028 /*
3029  * Opposite of vfree() - mark a vnode as in use.
3030  */
3031 static void
3032 vbusy(struct vnode *vp)
3033 {
3034 	CTR1(KTR_VFS, "vbusy vp %p", vp);
3035 	ASSERT_VI_LOCKED(vp, "vbusy");
3036 	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
3037 	VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
3038 
3039 	mtx_lock(&vnode_free_list_mtx);
3040 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3041 	freevnodes--;
3042 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3043 	mtx_unlock(&vnode_free_list_mtx);
3044 }
3045 
3046 /*
3047  * Initalize per-vnode helper structure to hold poll-related state.
3048  */
3049 void
3050 v_addpollinfo(struct vnode *vp)
3051 {
3052 	struct vpollinfo *vi;
3053 
3054 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3055 	if (vp->v_pollinfo != NULL) {
3056 		uma_zfree(vnodepoll_zone, vi);
3057 		return;
3058 	}
3059 	vp->v_pollinfo = vi;
3060 	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3061 	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note, vp, vfs_knllock,
3062 	    vfs_knlunlock, vfs_knllocked);
3063 }
3064 
3065 /*
3066  * Record a process's interest in events which might happen to
3067  * a vnode.  Because poll uses the historic select-style interface
3068  * internally, this routine serves as both the ``check for any
3069  * pending events'' and the ``record my interest in future events''
3070  * functions.  (These are done together, while the lock is held,
3071  * to avoid race conditions.)
3072  */
3073 int
3074 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3075 {
3076 
3077 	if (vp->v_pollinfo == NULL)
3078 		v_addpollinfo(vp);
3079 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3080 	if (vp->v_pollinfo->vpi_revents & events) {
3081 		/*
3082 		 * This leaves events we are not interested
3083 		 * in available for the other process which
3084 		 * which presumably had requested them
3085 		 * (otherwise they would never have been
3086 		 * recorded).
3087 		 */
3088 		events &= vp->v_pollinfo->vpi_revents;
3089 		vp->v_pollinfo->vpi_revents &= ~events;
3090 
3091 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3092 		return events;
3093 	}
3094 	vp->v_pollinfo->vpi_events |= events;
3095 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3096 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3097 	return 0;
3098 }
3099 
3100 /*
3101  * Routine to create and manage a filesystem syncer vnode.
3102  */
3103 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3104 static int	sync_fsync(struct  vop_fsync_args *);
3105 static int	sync_inactive(struct  vop_inactive_args *);
3106 static int	sync_reclaim(struct  vop_reclaim_args *);
3107 
3108 static struct vop_vector sync_vnodeops = {
3109 	.vop_bypass =	VOP_EOPNOTSUPP,
3110 	.vop_close =	sync_close,		/* close */
3111 	.vop_fsync =	sync_fsync,		/* fsync */
3112 	.vop_inactive =	sync_inactive,	/* inactive */
3113 	.vop_reclaim =	sync_reclaim,	/* reclaim */
3114 	.vop_lock1 =	vop_stdlock,	/* lock */
3115 	.vop_unlock =	vop_stdunlock,	/* unlock */
3116 	.vop_islocked =	vop_stdislocked,	/* islocked */
3117 };
3118 
3119 /*
3120  * Create a new filesystem syncer vnode for the specified mount point.
3121  */
3122 int
3123 vfs_allocate_syncvnode(struct mount *mp)
3124 {
3125 	struct vnode *vp;
3126 	static long start, incr, next;
3127 	int error;
3128 
3129 	/* Allocate a new vnode */
3130 	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
3131 		mp->mnt_syncer = NULL;
3132 		return (error);
3133 	}
3134 	vp->v_type = VNON;
3135 	error = insmntque(vp, mp);
3136 	if (error != 0)
3137 		panic("vfs_allocate_syncvnode: insmntque failed");
3138 	/*
3139 	 * Place the vnode onto the syncer worklist. We attempt to
3140 	 * scatter them about on the list so that they will go off
3141 	 * at evenly distributed times even if all the filesystems
3142 	 * are mounted at once.
3143 	 */
3144 	next += incr;
3145 	if (next == 0 || next > syncer_maxdelay) {
3146 		start /= 2;
3147 		incr /= 2;
3148 		if (start == 0) {
3149 			start = syncer_maxdelay / 2;
3150 			incr = syncer_maxdelay;
3151 		}
3152 		next = start;
3153 	}
3154 	VI_LOCK(vp);
3155 	vn_syncer_add_to_worklist(&vp->v_bufobj,
3156 	    syncdelay > 0 ? next % syncdelay : 0);
3157 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3158 	mtx_lock(&sync_mtx);
3159 	sync_vnode_count++;
3160 	mtx_unlock(&sync_mtx);
3161 	VI_UNLOCK(vp);
3162 	mp->mnt_syncer = vp;
3163 	return (0);
3164 }
3165 
3166 /*
3167  * Do a lazy sync of the filesystem.
3168  */
3169 static int
3170 sync_fsync(struct vop_fsync_args *ap)
3171 {
3172 	struct vnode *syncvp = ap->a_vp;
3173 	struct mount *mp = syncvp->v_mount;
3174 	struct thread *td = ap->a_td;
3175 	int error;
3176 	struct bufobj *bo;
3177 
3178 	/*
3179 	 * We only need to do something if this is a lazy evaluation.
3180 	 */
3181 	if (ap->a_waitfor != MNT_LAZY)
3182 		return (0);
3183 
3184 	/*
3185 	 * Move ourselves to the back of the sync list.
3186 	 */
3187 	bo = &syncvp->v_bufobj;
3188 	BO_LOCK(bo);
3189 	vn_syncer_add_to_worklist(bo, syncdelay);
3190 	BO_UNLOCK(bo);
3191 
3192 	/*
3193 	 * Walk the list of vnodes pushing all that are dirty and
3194 	 * not already on the sync list.
3195 	 */
3196 	mtx_lock(&mountlist_mtx);
3197 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
3198 		mtx_unlock(&mountlist_mtx);
3199 		return (0);
3200 	}
3201 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3202 		vfs_unbusy(mp, td);
3203 		return (0);
3204 	}
3205 	MNT_ILOCK(mp);
3206 	mp->mnt_noasync++;
3207 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
3208 	MNT_IUNLOCK(mp);
3209 	vfs_msync(mp, MNT_NOWAIT);
3210 	error = VFS_SYNC(mp, MNT_LAZY, td);
3211 	MNT_ILOCK(mp);
3212 	mp->mnt_noasync--;
3213 	if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
3214 		mp->mnt_kern_flag |= MNTK_ASYNC;
3215 	MNT_IUNLOCK(mp);
3216 	vn_finished_write(mp);
3217 	vfs_unbusy(mp, td);
3218 	return (error);
3219 }
3220 
3221 /*
3222  * The syncer vnode is no referenced.
3223  */
3224 static int
3225 sync_inactive(struct vop_inactive_args *ap)
3226 {
3227 
3228 	vgone(ap->a_vp);
3229 	return (0);
3230 }
3231 
3232 /*
3233  * The syncer vnode is no longer needed and is being decommissioned.
3234  *
3235  * Modifications to the worklist must be protected by sync_mtx.
3236  */
3237 static int
3238 sync_reclaim(struct vop_reclaim_args *ap)
3239 {
3240 	struct vnode *vp = ap->a_vp;
3241 	struct bufobj *bo;
3242 
3243 	VI_LOCK(vp);
3244 	bo = &vp->v_bufobj;
3245 	vp->v_mount->mnt_syncer = NULL;
3246 	if (bo->bo_flag & BO_ONWORKLST) {
3247 		mtx_lock(&sync_mtx);
3248 		LIST_REMOVE(bo, bo_synclist);
3249 		syncer_worklist_len--;
3250 		sync_vnode_count--;
3251 		mtx_unlock(&sync_mtx);
3252 		bo->bo_flag &= ~BO_ONWORKLST;
3253 	}
3254 	VI_UNLOCK(vp);
3255 
3256 	return (0);
3257 }
3258 
3259 /*
3260  * Check if vnode represents a disk device
3261  */
3262 int
3263 vn_isdisk(struct vnode *vp, int *errp)
3264 {
3265 	int error;
3266 
3267 	error = 0;
3268 	dev_lock();
3269 	if (vp->v_type != VCHR)
3270 		error = ENOTBLK;
3271 	else if (vp->v_rdev == NULL)
3272 		error = ENXIO;
3273 	else if (vp->v_rdev->si_devsw == NULL)
3274 		error = ENXIO;
3275 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3276 		error = ENOTBLK;
3277 	dev_unlock();
3278 	if (errp != NULL)
3279 		*errp = error;
3280 	return (error == 0);
3281 }
3282 
3283 /*
3284  * Common filesystem object access control check routine.  Accepts a
3285  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3286  * and optional call-by-reference privused argument allowing vaccess()
3287  * to indicate to the caller whether privilege was used to satisfy the
3288  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3289  *
3290  * The ifdef'd CAPABILITIES version is here for reference, but is not
3291  * actually used.
3292  */
3293 int
3294 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3295     mode_t acc_mode, struct ucred *cred, int *privused)
3296 {
3297 	mode_t dac_granted;
3298 	mode_t priv_granted;
3299 
3300 	/*
3301 	 * Look for a normal, non-privileged way to access the file/directory
3302 	 * as requested.  If it exists, go with that.
3303 	 */
3304 
3305 	if (privused != NULL)
3306 		*privused = 0;
3307 
3308 	dac_granted = 0;
3309 
3310 	/* Check the owner. */
3311 	if (cred->cr_uid == file_uid) {
3312 		dac_granted |= VADMIN;
3313 		if (file_mode & S_IXUSR)
3314 			dac_granted |= VEXEC;
3315 		if (file_mode & S_IRUSR)
3316 			dac_granted |= VREAD;
3317 		if (file_mode & S_IWUSR)
3318 			dac_granted |= (VWRITE | VAPPEND);
3319 
3320 		if ((acc_mode & dac_granted) == acc_mode)
3321 			return (0);
3322 
3323 		goto privcheck;
3324 	}
3325 
3326 	/* Otherwise, check the groups (first match) */
3327 	if (groupmember(file_gid, cred)) {
3328 		if (file_mode & S_IXGRP)
3329 			dac_granted |= VEXEC;
3330 		if (file_mode & S_IRGRP)
3331 			dac_granted |= VREAD;
3332 		if (file_mode & S_IWGRP)
3333 			dac_granted |= (VWRITE | VAPPEND);
3334 
3335 		if ((acc_mode & dac_granted) == acc_mode)
3336 			return (0);
3337 
3338 		goto privcheck;
3339 	}
3340 
3341 	/* Otherwise, check everyone else. */
3342 	if (file_mode & S_IXOTH)
3343 		dac_granted |= VEXEC;
3344 	if (file_mode & S_IROTH)
3345 		dac_granted |= VREAD;
3346 	if (file_mode & S_IWOTH)
3347 		dac_granted |= (VWRITE | VAPPEND);
3348 	if ((acc_mode & dac_granted) == acc_mode)
3349 		return (0);
3350 
3351 privcheck:
3352 	/*
3353 	 * Build a privilege mask to determine if the set of privileges
3354 	 * satisfies the requirements when combined with the granted mask
3355 	 * from above.  For each privilege, if the privilege is required,
3356 	 * bitwise or the request type onto the priv_granted mask.
3357 	 */
3358 	priv_granted = 0;
3359 
3360 	if (type == VDIR) {
3361 		/*
3362 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3363 		 * requests, instead of PRIV_VFS_EXEC.
3364 		 */
3365 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3366 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3367 			priv_granted |= VEXEC;
3368 	} else {
3369 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3370 		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3371 			priv_granted |= VEXEC;
3372 	}
3373 
3374 	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3375 	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3376 		priv_granted |= VREAD;
3377 
3378 	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3379 	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3380 		priv_granted |= (VWRITE | VAPPEND);
3381 
3382 	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3383 	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3384 		priv_granted |= VADMIN;
3385 
3386 	if ((acc_mode & (priv_granted | dac_granted)) == acc_mode) {
3387 		/* XXX audit: privilege used */
3388 		if (privused != NULL)
3389 			*privused = 1;
3390 		return (0);
3391 	}
3392 
3393 	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3394 }
3395 
3396 /*
3397  * Credential check based on process requesting service, and per-attribute
3398  * permissions.
3399  */
3400 int
3401 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3402     struct thread *td, int access)
3403 {
3404 
3405 	/*
3406 	 * Kernel-invoked always succeeds.
3407 	 */
3408 	if (cred == NOCRED)
3409 		return (0);
3410 
3411 	/*
3412 	 * Do not allow privileged processes in jail to directly manipulate
3413 	 * system attributes.
3414 	 */
3415 	switch (attrnamespace) {
3416 	case EXTATTR_NAMESPACE_SYSTEM:
3417 		/* Potentially should be: return (EPERM); */
3418 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3419 	case EXTATTR_NAMESPACE_USER:
3420 		return (VOP_ACCESS(vp, access, cred, td));
3421 	default:
3422 		return (EPERM);
3423 	}
3424 }
3425 
3426 #ifdef DEBUG_VFS_LOCKS
3427 /*
3428  * This only exists to supress warnings from unlocked specfs accesses.  It is
3429  * no longer ok to have an unlocked VFS.
3430  */
3431 #define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3432 
3433 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3434 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3435 
3436 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3437 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3438 
3439 int vfs_badlock_print = 1;	/* Print lock violations. */
3440 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3441 
3442 #ifdef KDB
3443 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3444 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3445 #endif
3446 
3447 static void
3448 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3449 {
3450 
3451 #ifdef KDB
3452 	if (vfs_badlock_backtrace)
3453 		kdb_backtrace();
3454 #endif
3455 	if (vfs_badlock_print)
3456 		printf("%s: %p %s\n", str, (void *)vp, msg);
3457 	if (vfs_badlock_ddb)
3458 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3459 }
3460 
3461 void
3462 assert_vi_locked(struct vnode *vp, const char *str)
3463 {
3464 
3465 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3466 		vfs_badlock("interlock is not locked but should be", str, vp);
3467 }
3468 
3469 void
3470 assert_vi_unlocked(struct vnode *vp, const char *str)
3471 {
3472 
3473 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3474 		vfs_badlock("interlock is locked but should not be", str, vp);
3475 }
3476 
3477 void
3478 assert_vop_locked(struct vnode *vp, const char *str)
3479 {
3480 
3481 	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3482 		vfs_badlock("is not locked but should be", str, vp);
3483 }
3484 
3485 void
3486 assert_vop_unlocked(struct vnode *vp, const char *str)
3487 {
3488 
3489 	if (vp && !IGNORE_LOCK(vp) &&
3490 	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3491 		vfs_badlock("is locked but should not be", str, vp);
3492 }
3493 
3494 void
3495 assert_vop_elocked(struct vnode *vp, const char *str)
3496 {
3497 
3498 	if (vp && !IGNORE_LOCK(vp) &&
3499 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3500 		vfs_badlock("is not exclusive locked but should be", str, vp);
3501 }
3502 
3503 #if 0
3504 void
3505 assert_vop_elocked_other(struct vnode *vp, const char *str)
3506 {
3507 
3508 	if (vp && !IGNORE_LOCK(vp) &&
3509 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3510 		vfs_badlock("is not exclusive locked by another thread",
3511 		    str, vp);
3512 }
3513 
3514 void
3515 assert_vop_slocked(struct vnode *vp, const char *str)
3516 {
3517 
3518 	if (vp && !IGNORE_LOCK(vp) &&
3519 	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3520 		vfs_badlock("is not locked shared but should be", str, vp);
3521 }
3522 #endif /* 0 */
3523 #endif /* DEBUG_VFS_LOCKS */
3524 
3525 void
3526 vop_rename_pre(void *ap)
3527 {
3528 	struct vop_rename_args *a = ap;
3529 
3530 #ifdef DEBUG_VFS_LOCKS
3531 	if (a->a_tvp)
3532 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3533 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3534 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3535 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3536 
3537 	/* Check the source (from). */
3538 	if (a->a_tdvp != a->a_fdvp && a->a_tvp != a->a_fdvp)
3539 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3540 	if (a->a_tvp != a->a_fvp)
3541 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
3542 
3543 	/* Check the target. */
3544 	if (a->a_tvp)
3545 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3546 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3547 #endif
3548 	if (a->a_tdvp != a->a_fdvp)
3549 		vhold(a->a_fdvp);
3550 	if (a->a_tvp != a->a_fvp)
3551 		vhold(a->a_fvp);
3552 	vhold(a->a_tdvp);
3553 	if (a->a_tvp)
3554 		vhold(a->a_tvp);
3555 }
3556 
3557 void
3558 vop_strategy_pre(void *ap)
3559 {
3560 #ifdef DEBUG_VFS_LOCKS
3561 	struct vop_strategy_args *a;
3562 	struct buf *bp;
3563 
3564 	a = ap;
3565 	bp = a->a_bp;
3566 
3567 	/*
3568 	 * Cluster ops lock their component buffers but not the IO container.
3569 	 */
3570 	if ((bp->b_flags & B_CLUSTER) != 0)
3571 		return;
3572 
3573 	if (BUF_REFCNT(bp) < 1) {
3574 		if (vfs_badlock_print)
3575 			printf(
3576 			    "VOP_STRATEGY: bp is not locked but should be\n");
3577 		if (vfs_badlock_ddb)
3578 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3579 	}
3580 #endif
3581 }
3582 
3583 void
3584 vop_lookup_pre(void *ap)
3585 {
3586 #ifdef DEBUG_VFS_LOCKS
3587 	struct vop_lookup_args *a;
3588 	struct vnode *dvp;
3589 
3590 	a = ap;
3591 	dvp = a->a_dvp;
3592 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3593 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3594 #endif
3595 }
3596 
3597 void
3598 vop_lookup_post(void *ap, int rc)
3599 {
3600 #ifdef DEBUG_VFS_LOCKS
3601 	struct vop_lookup_args *a;
3602 	struct vnode *dvp;
3603 	struct vnode *vp;
3604 
3605 	a = ap;
3606 	dvp = a->a_dvp;
3607 	vp = *(a->a_vpp);
3608 
3609 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3610 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3611 
3612 	if (!rc)
3613 		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3614 #endif
3615 }
3616 
3617 void
3618 vop_lock_pre(void *ap)
3619 {
3620 #ifdef DEBUG_VFS_LOCKS
3621 	struct vop_lock1_args *a = ap;
3622 
3623 	if ((a->a_flags & LK_INTERLOCK) == 0)
3624 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3625 	else
3626 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3627 #endif
3628 }
3629 
3630 void
3631 vop_lock_post(void *ap, int rc)
3632 {
3633 #ifdef DEBUG_VFS_LOCKS
3634 	struct vop_lock1_args *a = ap;
3635 
3636 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3637 	if (rc == 0)
3638 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3639 #endif
3640 }
3641 
3642 void
3643 vop_unlock_pre(void *ap)
3644 {
3645 #ifdef DEBUG_VFS_LOCKS
3646 	struct vop_unlock_args *a = ap;
3647 
3648 	if (a->a_flags & LK_INTERLOCK)
3649 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3650 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3651 #endif
3652 }
3653 
3654 void
3655 vop_unlock_post(void *ap, int rc)
3656 {
3657 #ifdef DEBUG_VFS_LOCKS
3658 	struct vop_unlock_args *a = ap;
3659 
3660 	if (a->a_flags & LK_INTERLOCK)
3661 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3662 #endif
3663 }
3664 
3665 void
3666 vop_create_post(void *ap, int rc)
3667 {
3668 	struct vop_create_args *a = ap;
3669 
3670 	if (!rc)
3671 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3672 }
3673 
3674 void
3675 vop_link_post(void *ap, int rc)
3676 {
3677 	struct vop_link_args *a = ap;
3678 
3679 	if (!rc) {
3680 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
3681 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
3682 	}
3683 }
3684 
3685 void
3686 vop_mkdir_post(void *ap, int rc)
3687 {
3688 	struct vop_mkdir_args *a = ap;
3689 
3690 	if (!rc)
3691 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3692 }
3693 
3694 void
3695 vop_mknod_post(void *ap, int rc)
3696 {
3697 	struct vop_mknod_args *a = ap;
3698 
3699 	if (!rc)
3700 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3701 }
3702 
3703 void
3704 vop_remove_post(void *ap, int rc)
3705 {
3706 	struct vop_remove_args *a = ap;
3707 
3708 	if (!rc) {
3709 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3710 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3711 	}
3712 }
3713 
3714 void
3715 vop_rename_post(void *ap, int rc)
3716 {
3717 	struct vop_rename_args *a = ap;
3718 
3719 	if (!rc) {
3720 		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
3721 		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
3722 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
3723 		if (a->a_tvp)
3724 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
3725 	}
3726 	if (a->a_tdvp != a->a_fdvp)
3727 		vdrop(a->a_fdvp);
3728 	if (a->a_tvp != a->a_fvp)
3729 		vdrop(a->a_fvp);
3730 	vdrop(a->a_tdvp);
3731 	if (a->a_tvp)
3732 		vdrop(a->a_tvp);
3733 }
3734 
3735 void
3736 vop_rmdir_post(void *ap, int rc)
3737 {
3738 	struct vop_rmdir_args *a = ap;
3739 
3740 	if (!rc) {
3741 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3742 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3743 	}
3744 }
3745 
3746 void
3747 vop_setattr_post(void *ap, int rc)
3748 {
3749 	struct vop_setattr_args *a = ap;
3750 
3751 	if (!rc)
3752 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
3753 }
3754 
3755 void
3756 vop_symlink_post(void *ap, int rc)
3757 {
3758 	struct vop_symlink_args *a = ap;
3759 
3760 	if (!rc)
3761 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3762 }
3763 
3764 static struct knlist fs_knlist;
3765 
3766 static void
3767 vfs_event_init(void *arg)
3768 {
3769 	knlist_init(&fs_knlist, NULL, NULL, NULL, NULL);
3770 }
3771 /* XXX - correct order? */
3772 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3773 
3774 void
3775 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3776 {
3777 
3778 	KNOTE_UNLOCKED(&fs_knlist, event);
3779 }
3780 
3781 static int	filt_fsattach(struct knote *kn);
3782 static void	filt_fsdetach(struct knote *kn);
3783 static int	filt_fsevent(struct knote *kn, long hint);
3784 
3785 struct filterops fs_filtops =
3786 	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3787 
3788 static int
3789 filt_fsattach(struct knote *kn)
3790 {
3791 
3792 	kn->kn_flags |= EV_CLEAR;
3793 	knlist_add(&fs_knlist, kn, 0);
3794 	return (0);
3795 }
3796 
3797 static void
3798 filt_fsdetach(struct knote *kn)
3799 {
3800 
3801 	knlist_remove(&fs_knlist, kn, 0);
3802 }
3803 
3804 static int
3805 filt_fsevent(struct knote *kn, long hint)
3806 {
3807 
3808 	kn->kn_fflags |= hint;
3809 	return (kn->kn_fflags != 0);
3810 }
3811 
3812 static int
3813 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
3814 {
3815 	struct vfsidctl vc;
3816 	int error;
3817 	struct mount *mp;
3818 
3819 	error = SYSCTL_IN(req, &vc, sizeof(vc));
3820 	if (error)
3821 		return (error);
3822 	if (vc.vc_vers != VFS_CTL_VERS1)
3823 		return (EINVAL);
3824 	mp = vfs_getvfs(&vc.vc_fsid);
3825 	if (mp == NULL)
3826 		return (ENOENT);
3827 	/* ensure that a specific sysctl goes to the right filesystem. */
3828 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
3829 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
3830 		vfs_rel(mp);
3831 		return (EINVAL);
3832 	}
3833 	VCTLTOREQ(&vc, req);
3834 	error = VFS_SYSCTL(mp, vc.vc_op, req);
3835 	vfs_rel(mp);
3836 	return (error);
3837 }
3838 
3839 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "",
3840     "Sysctl by fsid");
3841 
3842 /*
3843  * Function to initialize a va_filerev field sensibly.
3844  * XXX: Wouldn't a random number make a lot more sense ??
3845  */
3846 u_quad_t
3847 init_va_filerev(void)
3848 {
3849 	struct bintime bt;
3850 
3851 	getbinuptime(&bt);
3852 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
3853 }
3854 
3855 static int	filt_vfsread(struct knote *kn, long hint);
3856 static int	filt_vfswrite(struct knote *kn, long hint);
3857 static int	filt_vfsvnode(struct knote *kn, long hint);
3858 static void	filt_vfsdetach(struct knote *kn);
3859 static struct filterops vfsread_filtops =
3860 	{ 1, NULL, filt_vfsdetach, filt_vfsread };
3861 static struct filterops vfswrite_filtops =
3862 	{ 1, NULL, filt_vfsdetach, filt_vfswrite };
3863 static struct filterops vfsvnode_filtops =
3864 	{ 1, NULL, filt_vfsdetach, filt_vfsvnode };
3865 
3866 static void
3867 vfs_knllock(void *arg)
3868 {
3869 	struct vnode *vp = arg;
3870 
3871 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3872 }
3873 
3874 static void
3875 vfs_knlunlock(void *arg)
3876 {
3877 	struct vnode *vp = arg;
3878 
3879 	VOP_UNLOCK(vp, 0);
3880 }
3881 
3882 static int
3883 vfs_knllocked(void *arg)
3884 {
3885 	struct vnode *vp = arg;
3886 
3887 	return (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE);
3888 }
3889 
3890 int
3891 vfs_kqfilter(struct vop_kqfilter_args *ap)
3892 {
3893 	struct vnode *vp = ap->a_vp;
3894 	struct knote *kn = ap->a_kn;
3895 	struct knlist *knl;
3896 
3897 	switch (kn->kn_filter) {
3898 	case EVFILT_READ:
3899 		kn->kn_fop = &vfsread_filtops;
3900 		break;
3901 	case EVFILT_WRITE:
3902 		kn->kn_fop = &vfswrite_filtops;
3903 		break;
3904 	case EVFILT_VNODE:
3905 		kn->kn_fop = &vfsvnode_filtops;
3906 		break;
3907 	default:
3908 		return (EINVAL);
3909 	}
3910 
3911 	kn->kn_hook = (caddr_t)vp;
3912 
3913 	if (vp->v_pollinfo == NULL)
3914 		v_addpollinfo(vp);
3915 	if (vp->v_pollinfo == NULL)
3916 		return (ENOMEM);
3917 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
3918 	knlist_add(knl, kn, 0);
3919 
3920 	return (0);
3921 }
3922 
3923 /*
3924  * Detach knote from vnode
3925  */
3926 static void
3927 filt_vfsdetach(struct knote *kn)
3928 {
3929 	struct vnode *vp = (struct vnode *)kn->kn_hook;
3930 
3931 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
3932 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
3933 }
3934 
3935 /*ARGSUSED*/
3936 static int
3937 filt_vfsread(struct knote *kn, long hint)
3938 {
3939 	struct vnode *vp = (struct vnode *)kn->kn_hook;
3940 	struct vattr va;
3941 
3942 	/*
3943 	 * filesystem is gone, so set the EOF flag and schedule
3944 	 * the knote for deletion.
3945 	 */
3946 	if (hint == NOTE_REVOKE) {
3947 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
3948 		return (1);
3949 	}
3950 
3951 	if (VOP_GETATTR(vp, &va, curthread->td_ucred, curthread))
3952 		return (0);
3953 
3954 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
3955 	return (kn->kn_data != 0);
3956 }
3957 
3958 /*ARGSUSED*/
3959 static int
3960 filt_vfswrite(struct knote *kn, long hint)
3961 {
3962 	/*
3963 	 * filesystem is gone, so set the EOF flag and schedule
3964 	 * the knote for deletion.
3965 	 */
3966 	if (hint == NOTE_REVOKE)
3967 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
3968 
3969 	kn->kn_data = 0;
3970 	return (1);
3971 }
3972 
3973 static int
3974 filt_vfsvnode(struct knote *kn, long hint)
3975 {
3976 	if (kn->kn_sfflags & hint)
3977 		kn->kn_fflags |= hint;
3978 	if (hint == NOTE_REVOKE) {
3979 		kn->kn_flags |= EV_EOF;
3980 		return (1);
3981 	}
3982 	return (kn->kn_fflags != 0);
3983 }
3984 
3985 int
3986 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
3987 {
3988 	int error;
3989 
3990 	if (dp->d_reclen > ap->a_uio->uio_resid)
3991 		return (ENAMETOOLONG);
3992 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
3993 	if (error) {
3994 		if (ap->a_ncookies != NULL) {
3995 			if (ap->a_cookies != NULL)
3996 				free(ap->a_cookies, M_TEMP);
3997 			ap->a_cookies = NULL;
3998 			*ap->a_ncookies = 0;
3999 		}
4000 		return (error);
4001 	}
4002 	if (ap->a_ncookies == NULL)
4003 		return (0);
4004 
4005 	KASSERT(ap->a_cookies,
4006 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4007 
4008 	*ap->a_cookies = realloc(*ap->a_cookies,
4009 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4010 	(*ap->a_cookies)[*ap->a_ncookies] = off;
4011 	return (0);
4012 }
4013 
4014 /*
4015  * Mark for update the access time of the file if the filesystem
4016  * supports VA_MARK_ATIME.  This functionality is used by execve
4017  * and mmap, so we want to avoid the synchronous I/O implied by
4018  * directly setting va_atime for the sake of efficiency.
4019  */
4020 void
4021 vfs_mark_atime(struct vnode *vp, struct thread *td)
4022 {
4023 	struct vattr atimeattr;
4024 
4025 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
4026 		VATTR_NULL(&atimeattr);
4027 		atimeattr.va_vaflags |= VA_MARK_ATIME;
4028 		(void)VOP_SETATTR(vp, &atimeattr, td->td_ucred, td);
4029 	}
4030 }
4031