xref: /freebsd/sys/kern/vfs_subr.c (revision 1d386b48a555f61cb7325543adbbb5c3f3407a66)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 #include "opt_ddb.h"
45 #include "opt_watchdog.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/asan.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/capsicum.h>
53 #include <sys/condvar.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/dirent.h>
57 #include <sys/event.h>
58 #include <sys/eventhandler.h>
59 #include <sys/extattr.h>
60 #include <sys/file.h>
61 #include <sys/fcntl.h>
62 #include <sys/jail.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/limits.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smr.h>
80 #include <sys/smp.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/syslog.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87 
88 #include <machine/stdarg.h>
89 
90 #include <security/mac/mac_framework.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_extern.h>
95 #include <vm/pmap.h>
96 #include <vm/vm_map.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_kern.h>
99 #include <vm/uma.h>
100 
101 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS))
102 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS
103 #endif
104 
105 #ifdef DDB
106 #include <ddb/ddb.h>
107 #endif
108 
109 static void	delmntque(struct vnode *vp);
110 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
111 		    int slpflag, int slptimeo);
112 static void	syncer_shutdown(void *arg, int howto);
113 static int	vtryrecycle(struct vnode *vp);
114 static void	v_init_counters(struct vnode *);
115 static void	vn_seqc_init(struct vnode *);
116 static void	vn_seqc_write_end_free(struct vnode *vp);
117 static void	vgonel(struct vnode *);
118 static bool	vhold_recycle_free(struct vnode *);
119 static void	vdropl_recycle(struct vnode *vp);
120 static void	vdrop_recycle(struct vnode *vp);
121 static void	vfs_knllock(void *arg);
122 static void	vfs_knlunlock(void *arg);
123 static void	vfs_knl_assert_lock(void *arg, int what);
124 static void	destroy_vpollinfo(struct vpollinfo *vi);
125 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
126 		    daddr_t startlbn, daddr_t endlbn);
127 static void	vnlru_recalc(void);
128 
129 /*
130  * Number of vnodes in existence.  Increased whenever getnewvnode()
131  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
132  */
133 static u_long __exclusive_cache_line numvnodes;
134 
135 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
136     "Number of vnodes in existence");
137 
138 static counter_u64_t vnodes_created;
139 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
140     "Number of vnodes created by getnewvnode");
141 
142 /*
143  * Conversion tables for conversion from vnode types to inode formats
144  * and back.
145  */
146 __enum_uint8(vtype) iftovt_tab[16] = {
147 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
148 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
149 };
150 int vttoif_tab[10] = {
151 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
152 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
153 };
154 
155 /*
156  * List of allocates vnodes in the system.
157  */
158 static TAILQ_HEAD(freelst, vnode) vnode_list;
159 static struct vnode *vnode_list_free_marker;
160 static struct vnode *vnode_list_reclaim_marker;
161 
162 /*
163  * "Free" vnode target.  Free vnodes are rarely completely free, but are
164  * just ones that are cheap to recycle.  Usually they are for files which
165  * have been stat'd but not read; these usually have inode and namecache
166  * data attached to them.  This target is the preferred minimum size of a
167  * sub-cache consisting mostly of such files. The system balances the size
168  * of this sub-cache with its complement to try to prevent either from
169  * thrashing while the other is relatively inactive.  The targets express
170  * a preference for the best balance.
171  *
172  * "Above" this target there are 2 further targets (watermarks) related
173  * to recyling of free vnodes.  In the best-operating case, the cache is
174  * exactly full, the free list has size between vlowat and vhiwat above the
175  * free target, and recycling from it and normal use maintains this state.
176  * Sometimes the free list is below vlowat or even empty, but this state
177  * is even better for immediate use provided the cache is not full.
178  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
179  * ones) to reach one of these states.  The watermarks are currently hard-
180  * coded as 4% and 9% of the available space higher.  These and the default
181  * of 25% for wantfreevnodes are too large if the memory size is large.
182  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
183  * whenever vnlru_proc() becomes active.
184  */
185 static long wantfreevnodes;
186 static long __exclusive_cache_line freevnodes;
187 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
188     &freevnodes, 0, "Number of \"free\" vnodes");
189 static long freevnodes_old;
190 
191 static counter_u64_t recycles_count;
192 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
193     "Number of vnodes recycled to meet vnode cache targets");
194 
195 static counter_u64_t recycles_free_count;
196 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
197     "Number of free vnodes recycled to meet vnode cache targets");
198 
199 static u_long deferred_inact;
200 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
201     &deferred_inact, 0, "Number of times inactive processing was deferred");
202 
203 /* To keep more than one thread at a time from running vfs_getnewfsid */
204 static struct mtx mntid_mtx;
205 
206 /*
207  * Lock for any access to the following:
208  *	vnode_list
209  *	numvnodes
210  *	freevnodes
211  */
212 static struct mtx __exclusive_cache_line vnode_list_mtx;
213 
214 /* Publicly exported FS */
215 struct nfs_public nfs_pub;
216 
217 static uma_zone_t buf_trie_zone;
218 static smr_t buf_trie_smr;
219 
220 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
221 static uma_zone_t vnode_zone;
222 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
223 
224 __read_frequently smr_t vfs_smr;
225 
226 /*
227  * The workitem queue.
228  *
229  * It is useful to delay writes of file data and filesystem metadata
230  * for tens of seconds so that quickly created and deleted files need
231  * not waste disk bandwidth being created and removed. To realize this,
232  * we append vnodes to a "workitem" queue. When running with a soft
233  * updates implementation, most pending metadata dependencies should
234  * not wait for more than a few seconds. Thus, mounted on block devices
235  * are delayed only about a half the time that file data is delayed.
236  * Similarly, directory updates are more critical, so are only delayed
237  * about a third the time that file data is delayed. Thus, there are
238  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
239  * one each second (driven off the filesystem syncer process). The
240  * syncer_delayno variable indicates the next queue that is to be processed.
241  * Items that need to be processed soon are placed in this queue:
242  *
243  *	syncer_workitem_pending[syncer_delayno]
244  *
245  * A delay of fifteen seconds is done by placing the request fifteen
246  * entries later in the queue:
247  *
248  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
249  *
250  */
251 static int syncer_delayno;
252 static long syncer_mask;
253 LIST_HEAD(synclist, bufobj);
254 static struct synclist *syncer_workitem_pending;
255 /*
256  * The sync_mtx protects:
257  *	bo->bo_synclist
258  *	sync_vnode_count
259  *	syncer_delayno
260  *	syncer_state
261  *	syncer_workitem_pending
262  *	syncer_worklist_len
263  *	rushjob
264  */
265 static struct mtx sync_mtx;
266 static struct cv sync_wakeup;
267 
268 #define SYNCER_MAXDELAY		32
269 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
270 static int syncdelay = 30;		/* max time to delay syncing data */
271 static int filedelay = 30;		/* time to delay syncing files */
272 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
273     "Time to delay syncing files (in seconds)");
274 static int dirdelay = 29;		/* time to delay syncing directories */
275 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
276     "Time to delay syncing directories (in seconds)");
277 static int metadelay = 28;		/* time to delay syncing metadata */
278 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
279     "Time to delay syncing metadata (in seconds)");
280 static int rushjob;		/* number of slots to run ASAP */
281 static int stat_rush_requests;	/* number of times I/O speeded up */
282 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
283     "Number of times I/O speeded up (rush requests)");
284 
285 #define	VDBATCH_SIZE 8
286 struct vdbatch {
287 	u_int index;
288 	struct mtx lock;
289 	struct vnode *tab[VDBATCH_SIZE];
290 };
291 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
292 
293 static void	vdbatch_dequeue(struct vnode *vp);
294 
295 /*
296  * When shutting down the syncer, run it at four times normal speed.
297  */
298 #define SYNCER_SHUTDOWN_SPEEDUP		4
299 static int sync_vnode_count;
300 static int syncer_worklist_len;
301 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
302     syncer_state;
303 
304 /* Target for maximum number of vnodes. */
305 u_long desiredvnodes;
306 static u_long gapvnodes;		/* gap between wanted and desired */
307 static u_long vhiwat;		/* enough extras after expansion */
308 static u_long vlowat;		/* minimal extras before expansion */
309 static u_long vstir;		/* nonzero to stir non-free vnodes */
310 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
311 
312 static u_long vnlru_read_freevnodes(void);
313 
314 /*
315  * Note that no attempt is made to sanitize these parameters.
316  */
317 static int
318 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
319 {
320 	u_long val;
321 	int error;
322 
323 	val = desiredvnodes;
324 	error = sysctl_handle_long(oidp, &val, 0, req);
325 	if (error != 0 || req->newptr == NULL)
326 		return (error);
327 
328 	if (val == desiredvnodes)
329 		return (0);
330 	mtx_lock(&vnode_list_mtx);
331 	desiredvnodes = val;
332 	wantfreevnodes = desiredvnodes / 4;
333 	vnlru_recalc();
334 	mtx_unlock(&vnode_list_mtx);
335 	/*
336 	 * XXX There is no protection against multiple threads changing
337 	 * desiredvnodes at the same time. Locking above only helps vnlru and
338 	 * getnewvnode.
339 	 */
340 	vfs_hash_changesize(desiredvnodes);
341 	cache_changesize(desiredvnodes);
342 	return (0);
343 }
344 
345 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
346     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
347     "LU", "Target for maximum number of vnodes");
348 
349 static int
350 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
351 {
352 	u_long val;
353 	int error;
354 
355 	val = wantfreevnodes;
356 	error = sysctl_handle_long(oidp, &val, 0, req);
357 	if (error != 0 || req->newptr == NULL)
358 		return (error);
359 
360 	if (val == wantfreevnodes)
361 		return (0);
362 	mtx_lock(&vnode_list_mtx);
363 	wantfreevnodes = val;
364 	vnlru_recalc();
365 	mtx_unlock(&vnode_list_mtx);
366 	return (0);
367 }
368 
369 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
370     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
371     "LU", "Target for minimum number of \"free\" vnodes");
372 
373 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
374     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
375 static int vnlru_nowhere;
376 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW | CTLFLAG_STATS,
377     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
378 
379 static int
380 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
381 {
382 	struct vnode *vp;
383 	struct nameidata nd;
384 	char *buf;
385 	unsigned long ndflags;
386 	int error;
387 
388 	if (req->newptr == NULL)
389 		return (EINVAL);
390 	if (req->newlen >= PATH_MAX)
391 		return (E2BIG);
392 
393 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
394 	error = SYSCTL_IN(req, buf, req->newlen);
395 	if (error != 0)
396 		goto out;
397 
398 	buf[req->newlen] = '\0';
399 
400 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
401 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
402 	if ((error = namei(&nd)) != 0)
403 		goto out;
404 	vp = nd.ni_vp;
405 
406 	if (VN_IS_DOOMED(vp)) {
407 		/*
408 		 * This vnode is being recycled.  Return != 0 to let the caller
409 		 * know that the sysctl had no effect.  Return EAGAIN because a
410 		 * subsequent call will likely succeed (since namei will create
411 		 * a new vnode if necessary)
412 		 */
413 		error = EAGAIN;
414 		goto putvnode;
415 	}
416 
417 	counter_u64_add(recycles_count, 1);
418 	vgone(vp);
419 putvnode:
420 	vput(vp);
421 	NDFREE_PNBUF(&nd);
422 out:
423 	free(buf, M_TEMP);
424 	return (error);
425 }
426 
427 static int
428 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
429 {
430 	struct thread *td = curthread;
431 	struct vnode *vp;
432 	struct file *fp;
433 	int error;
434 	int fd;
435 
436 	if (req->newptr == NULL)
437 		return (EBADF);
438 
439         error = sysctl_handle_int(oidp, &fd, 0, req);
440         if (error != 0)
441                 return (error);
442 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
443 	if (error != 0)
444 		return (error);
445 	vp = fp->f_vnode;
446 
447 	error = vn_lock(vp, LK_EXCLUSIVE);
448 	if (error != 0)
449 		goto drop;
450 
451 	counter_u64_add(recycles_count, 1);
452 	vgone(vp);
453 	VOP_UNLOCK(vp);
454 drop:
455 	fdrop(fp, td);
456 	return (error);
457 }
458 
459 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
460     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
461     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
462 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
463     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
464     sysctl_ftry_reclaim_vnode, "I",
465     "Try to reclaim a vnode by its file descriptor");
466 
467 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
468 #define vnsz2log 8
469 #ifndef DEBUG_LOCKS
470 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
471     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
472     "vnsz2log needs to be updated");
473 #endif
474 
475 /*
476  * Support for the bufobj clean & dirty pctrie.
477  */
478 static void *
479 buf_trie_alloc(struct pctrie *ptree)
480 {
481 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
482 }
483 
484 static void
485 buf_trie_free(struct pctrie *ptree, void *node)
486 {
487 	uma_zfree_smr(buf_trie_zone, node);
488 }
489 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
490     buf_trie_smr);
491 
492 /*
493  * Initialize the vnode management data structures.
494  *
495  * Reevaluate the following cap on the number of vnodes after the physical
496  * memory size exceeds 512GB.  In the limit, as the physical memory size
497  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
498  */
499 #ifndef	MAXVNODES_MAX
500 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
501 #endif
502 
503 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
504 
505 static struct vnode *
506 vn_alloc_marker(struct mount *mp)
507 {
508 	struct vnode *vp;
509 
510 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
511 	vp->v_type = VMARKER;
512 	vp->v_mount = mp;
513 
514 	return (vp);
515 }
516 
517 static void
518 vn_free_marker(struct vnode *vp)
519 {
520 
521 	MPASS(vp->v_type == VMARKER);
522 	free(vp, M_VNODE_MARKER);
523 }
524 
525 #ifdef KASAN
526 static int
527 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
528 {
529 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
530 	return (0);
531 }
532 
533 static void
534 vnode_dtor(void *mem, int size, void *arg __unused)
535 {
536 	size_t end1, end2, off1, off2;
537 
538 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
539 	    offsetof(struct vnode, v_dbatchcpu),
540 	    "KASAN marks require updating");
541 
542 	off1 = offsetof(struct vnode, v_vnodelist);
543 	off2 = offsetof(struct vnode, v_dbatchcpu);
544 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
545 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
546 
547 	/*
548 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
549 	 * after the vnode has been freed.  Try to get some KASAN coverage by
550 	 * marking everything except those two fields as invalid.  Because
551 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
552 	 * the same 8-byte aligned word must also be marked valid.
553 	 */
554 
555 	/* Handle the area from the start until v_vnodelist... */
556 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
557 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
558 
559 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
560 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
561 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
562 	if (off2 > off1)
563 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
564 		    off2 - off1, KASAN_UMA_FREED);
565 
566 	/* ... and finally the area from v_dbatchcpu to the end. */
567 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
568 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
569 	    KASAN_UMA_FREED);
570 }
571 #endif /* KASAN */
572 
573 /*
574  * Initialize a vnode as it first enters the zone.
575  */
576 static int
577 vnode_init(void *mem, int size, int flags)
578 {
579 	struct vnode *vp;
580 
581 	vp = mem;
582 	bzero(vp, size);
583 	/*
584 	 * Setup locks.
585 	 */
586 	vp->v_vnlock = &vp->v_lock;
587 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
588 	/*
589 	 * By default, don't allow shared locks unless filesystems opt-in.
590 	 */
591 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
592 	    LK_NOSHARE | LK_IS_VNODE);
593 	/*
594 	 * Initialize bufobj.
595 	 */
596 	bufobj_init(&vp->v_bufobj, vp);
597 	/*
598 	 * Initialize namecache.
599 	 */
600 	cache_vnode_init(vp);
601 	/*
602 	 * Initialize rangelocks.
603 	 */
604 	rangelock_init(&vp->v_rl);
605 
606 	vp->v_dbatchcpu = NOCPU;
607 
608 	vp->v_state = VSTATE_DEAD;
609 
610 	/*
611 	 * Check vhold_recycle_free for an explanation.
612 	 */
613 	vp->v_holdcnt = VHOLD_NO_SMR;
614 	vp->v_type = VNON;
615 	mtx_lock(&vnode_list_mtx);
616 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
617 	mtx_unlock(&vnode_list_mtx);
618 	return (0);
619 }
620 
621 /*
622  * Free a vnode when it is cleared from the zone.
623  */
624 static void
625 vnode_fini(void *mem, int size)
626 {
627 	struct vnode *vp;
628 	struct bufobj *bo;
629 
630 	vp = mem;
631 	vdbatch_dequeue(vp);
632 	mtx_lock(&vnode_list_mtx);
633 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
634 	mtx_unlock(&vnode_list_mtx);
635 	rangelock_destroy(&vp->v_rl);
636 	lockdestroy(vp->v_vnlock);
637 	mtx_destroy(&vp->v_interlock);
638 	bo = &vp->v_bufobj;
639 	rw_destroy(BO_LOCKPTR(bo));
640 
641 	kasan_mark(mem, size, size, 0);
642 }
643 
644 /*
645  * Provide the size of NFS nclnode and NFS fh for calculation of the
646  * vnode memory consumption.  The size is specified directly to
647  * eliminate dependency on NFS-private header.
648  *
649  * Other filesystems may use bigger or smaller (like UFS and ZFS)
650  * private inode data, but the NFS-based estimation is ample enough.
651  * Still, we care about differences in the size between 64- and 32-bit
652  * platforms.
653  *
654  * Namecache structure size is heuristically
655  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
656  */
657 #ifdef _LP64
658 #define	NFS_NCLNODE_SZ	(528 + 64)
659 #define	NC_SZ		148
660 #else
661 #define	NFS_NCLNODE_SZ	(360 + 32)
662 #define	NC_SZ		92
663 #endif
664 
665 static void
666 vntblinit(void *dummy __unused)
667 {
668 	struct vdbatch *vd;
669 	uma_ctor ctor;
670 	uma_dtor dtor;
671 	int cpu, physvnodes, virtvnodes;
672 
673 	/*
674 	 * Desiredvnodes is a function of the physical memory size and the
675 	 * kernel's heap size.  Generally speaking, it scales with the
676 	 * physical memory size.  The ratio of desiredvnodes to the physical
677 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
678 	 * Thereafter, the
679 	 * marginal ratio of desiredvnodes to the physical memory size is
680 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
681 	 * size.  The memory required by desiredvnodes vnodes and vm objects
682 	 * must not exceed 1/10th of the kernel's heap size.
683 	 */
684 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
685 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
686 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
687 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
688 	desiredvnodes = min(physvnodes, virtvnodes);
689 	if (desiredvnodes > MAXVNODES_MAX) {
690 		if (bootverbose)
691 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
692 			    desiredvnodes, MAXVNODES_MAX);
693 		desiredvnodes = MAXVNODES_MAX;
694 	}
695 	wantfreevnodes = desiredvnodes / 4;
696 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
697 	TAILQ_INIT(&vnode_list);
698 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
699 	/*
700 	 * The lock is taken to appease WITNESS.
701 	 */
702 	mtx_lock(&vnode_list_mtx);
703 	vnlru_recalc();
704 	mtx_unlock(&vnode_list_mtx);
705 	vnode_list_free_marker = vn_alloc_marker(NULL);
706 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
707 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
708 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
709 
710 #ifdef KASAN
711 	ctor = vnode_ctor;
712 	dtor = vnode_dtor;
713 #else
714 	ctor = NULL;
715 	dtor = NULL;
716 #endif
717 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
718 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
719 	uma_zone_set_smr(vnode_zone, vfs_smr);
720 
721 	/*
722 	 * Preallocate enough nodes to support one-per buf so that
723 	 * we can not fail an insert.  reassignbuf() callers can not
724 	 * tolerate the insertion failure.
725 	 */
726 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
727 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
728 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
729 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
730 	uma_prealloc(buf_trie_zone, nbuf);
731 
732 	vnodes_created = counter_u64_alloc(M_WAITOK);
733 	recycles_count = counter_u64_alloc(M_WAITOK);
734 	recycles_free_count = counter_u64_alloc(M_WAITOK);
735 
736 	/*
737 	 * Initialize the filesystem syncer.
738 	 */
739 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
740 	    &syncer_mask);
741 	syncer_maxdelay = syncer_mask + 1;
742 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
743 	cv_init(&sync_wakeup, "syncer");
744 
745 	CPU_FOREACH(cpu) {
746 		vd = DPCPU_ID_PTR((cpu), vd);
747 		bzero(vd, sizeof(*vd));
748 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
749 	}
750 }
751 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
752 
753 /*
754  * Mark a mount point as busy. Used to synchronize access and to delay
755  * unmounting. Eventually, mountlist_mtx is not released on failure.
756  *
757  * vfs_busy() is a custom lock, it can block the caller.
758  * vfs_busy() only sleeps if the unmount is active on the mount point.
759  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
760  * vnode belonging to mp.
761  *
762  * Lookup uses vfs_busy() to traverse mount points.
763  * root fs			var fs
764  * / vnode lock		A	/ vnode lock (/var)		D
765  * /var vnode lock	B	/log vnode lock(/var/log)	E
766  * vfs_busy lock	C	vfs_busy lock			F
767  *
768  * Within each file system, the lock order is C->A->B and F->D->E.
769  *
770  * When traversing across mounts, the system follows that lock order:
771  *
772  *        C->A->B
773  *              |
774  *              +->F->D->E
775  *
776  * The lookup() process for namei("/var") illustrates the process:
777  *  1. VOP_LOOKUP() obtains B while A is held
778  *  2. vfs_busy() obtains a shared lock on F while A and B are held
779  *  3. vput() releases lock on B
780  *  4. vput() releases lock on A
781  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
782  *  6. vfs_unbusy() releases shared lock on F
783  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
784  *     Attempt to lock A (instead of vp_crossmp) while D is held would
785  *     violate the global order, causing deadlocks.
786  *
787  * dounmount() locks B while F is drained.  Note that for stacked
788  * filesystems, D and B in the example above may be the same lock,
789  * which introdues potential lock order reversal deadlock between
790  * dounmount() and step 5 above.  These filesystems may avoid the LOR
791  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
792  * remain held until after step 5.
793  */
794 int
795 vfs_busy(struct mount *mp, int flags)
796 {
797 	struct mount_pcpu *mpcpu;
798 
799 	MPASS((flags & ~MBF_MASK) == 0);
800 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
801 
802 	if (vfs_op_thread_enter(mp, mpcpu)) {
803 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
804 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
805 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
806 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
807 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
808 		vfs_op_thread_exit(mp, mpcpu);
809 		if (flags & MBF_MNTLSTLOCK)
810 			mtx_unlock(&mountlist_mtx);
811 		return (0);
812 	}
813 
814 	MNT_ILOCK(mp);
815 	vfs_assert_mount_counters(mp);
816 	MNT_REF(mp);
817 	/*
818 	 * If mount point is currently being unmounted, sleep until the
819 	 * mount point fate is decided.  If thread doing the unmounting fails,
820 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
821 	 * that this mount point has survived the unmount attempt and vfs_busy
822 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
823 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
824 	 * about to be really destroyed.  vfs_busy needs to release its
825 	 * reference on the mount point in this case and return with ENOENT,
826 	 * telling the caller the mount it tried to busy is no longer valid.
827 	 */
828 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
829 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
830 		    ("%s: non-empty upper mount list with pending unmount",
831 		    __func__));
832 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
833 			MNT_REL(mp);
834 			MNT_IUNLOCK(mp);
835 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
836 			    __func__);
837 			return (ENOENT);
838 		}
839 		if (flags & MBF_MNTLSTLOCK)
840 			mtx_unlock(&mountlist_mtx);
841 		mp->mnt_kern_flag |= MNTK_MWAIT;
842 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
843 		if (flags & MBF_MNTLSTLOCK)
844 			mtx_lock(&mountlist_mtx);
845 		MNT_ILOCK(mp);
846 	}
847 	if (flags & MBF_MNTLSTLOCK)
848 		mtx_unlock(&mountlist_mtx);
849 	mp->mnt_lockref++;
850 	MNT_IUNLOCK(mp);
851 	return (0);
852 }
853 
854 /*
855  * Free a busy filesystem.
856  */
857 void
858 vfs_unbusy(struct mount *mp)
859 {
860 	struct mount_pcpu *mpcpu;
861 	int c;
862 
863 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
864 
865 	if (vfs_op_thread_enter(mp, mpcpu)) {
866 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
867 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
868 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
869 		vfs_op_thread_exit(mp, mpcpu);
870 		return;
871 	}
872 
873 	MNT_ILOCK(mp);
874 	vfs_assert_mount_counters(mp);
875 	MNT_REL(mp);
876 	c = --mp->mnt_lockref;
877 	if (mp->mnt_vfs_ops == 0) {
878 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
879 		MNT_IUNLOCK(mp);
880 		return;
881 	}
882 	if (c < 0)
883 		vfs_dump_mount_counters(mp);
884 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
885 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
886 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
887 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
888 		wakeup(&mp->mnt_lockref);
889 	}
890 	MNT_IUNLOCK(mp);
891 }
892 
893 /*
894  * Lookup a mount point by filesystem identifier.
895  */
896 struct mount *
897 vfs_getvfs(fsid_t *fsid)
898 {
899 	struct mount *mp;
900 
901 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
902 	mtx_lock(&mountlist_mtx);
903 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
904 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
905 			vfs_ref(mp);
906 			mtx_unlock(&mountlist_mtx);
907 			return (mp);
908 		}
909 	}
910 	mtx_unlock(&mountlist_mtx);
911 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
912 	return ((struct mount *) 0);
913 }
914 
915 /*
916  * Lookup a mount point by filesystem identifier, busying it before
917  * returning.
918  *
919  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
920  * cache for popular filesystem identifiers.  The cache is lockess, using
921  * the fact that struct mount's are never freed.  In worst case we may
922  * get pointer to unmounted or even different filesystem, so we have to
923  * check what we got, and go slow way if so.
924  */
925 struct mount *
926 vfs_busyfs(fsid_t *fsid)
927 {
928 #define	FSID_CACHE_SIZE	256
929 	typedef struct mount * volatile vmp_t;
930 	static vmp_t cache[FSID_CACHE_SIZE];
931 	struct mount *mp;
932 	int error;
933 	uint32_t hash;
934 
935 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
936 	hash = fsid->val[0] ^ fsid->val[1];
937 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
938 	mp = cache[hash];
939 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
940 		goto slow;
941 	if (vfs_busy(mp, 0) != 0) {
942 		cache[hash] = NULL;
943 		goto slow;
944 	}
945 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
946 		return (mp);
947 	else
948 	    vfs_unbusy(mp);
949 
950 slow:
951 	mtx_lock(&mountlist_mtx);
952 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
953 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
954 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
955 			if (error) {
956 				cache[hash] = NULL;
957 				mtx_unlock(&mountlist_mtx);
958 				return (NULL);
959 			}
960 			cache[hash] = mp;
961 			return (mp);
962 		}
963 	}
964 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
965 	mtx_unlock(&mountlist_mtx);
966 	return ((struct mount *) 0);
967 }
968 
969 /*
970  * Check if a user can access privileged mount options.
971  */
972 int
973 vfs_suser(struct mount *mp, struct thread *td)
974 {
975 	int error;
976 
977 	if (jailed(td->td_ucred)) {
978 		/*
979 		 * If the jail of the calling thread lacks permission for
980 		 * this type of file system, deny immediately.
981 		 */
982 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
983 			return (EPERM);
984 
985 		/*
986 		 * If the file system was mounted outside the jail of the
987 		 * calling thread, deny immediately.
988 		 */
989 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
990 			return (EPERM);
991 	}
992 
993 	/*
994 	 * If file system supports delegated administration, we don't check
995 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
996 	 * by the file system itself.
997 	 * If this is not the user that did original mount, we check for
998 	 * the PRIV_VFS_MOUNT_OWNER privilege.
999 	 */
1000 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1001 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1002 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1003 			return (error);
1004 	}
1005 	return (0);
1006 }
1007 
1008 /*
1009  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1010  * will be used to create fake device numbers for stat().  Also try (but
1011  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1012  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1013  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1014  *
1015  * Keep in mind that several mounts may be running in parallel.  Starting
1016  * the search one past where the previous search terminated is both a
1017  * micro-optimization and a defense against returning the same fsid to
1018  * different mounts.
1019  */
1020 void
1021 vfs_getnewfsid(struct mount *mp)
1022 {
1023 	static uint16_t mntid_base;
1024 	struct mount *nmp;
1025 	fsid_t tfsid;
1026 	int mtype;
1027 
1028 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1029 	mtx_lock(&mntid_mtx);
1030 	mtype = mp->mnt_vfc->vfc_typenum;
1031 	tfsid.val[1] = mtype;
1032 	mtype = (mtype & 0xFF) << 24;
1033 	for (;;) {
1034 		tfsid.val[0] = makedev(255,
1035 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1036 		mntid_base++;
1037 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1038 			break;
1039 		vfs_rel(nmp);
1040 	}
1041 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1042 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1043 	mtx_unlock(&mntid_mtx);
1044 }
1045 
1046 /*
1047  * Knob to control the precision of file timestamps:
1048  *
1049  *   0 = seconds only; nanoseconds zeroed.
1050  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1051  *   2 = seconds and nanoseconds, truncated to microseconds.
1052  * >=3 = seconds and nanoseconds, maximum precision.
1053  */
1054 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1055 
1056 static int timestamp_precision = TSP_USEC;
1057 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1058     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1059     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1060     "3+: sec + ns (max. precision))");
1061 
1062 /*
1063  * Get a current timestamp.
1064  */
1065 void
1066 vfs_timestamp(struct timespec *tsp)
1067 {
1068 	struct timeval tv;
1069 
1070 	switch (timestamp_precision) {
1071 	case TSP_SEC:
1072 		tsp->tv_sec = time_second;
1073 		tsp->tv_nsec = 0;
1074 		break;
1075 	case TSP_HZ:
1076 		getnanotime(tsp);
1077 		break;
1078 	case TSP_USEC:
1079 		microtime(&tv);
1080 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1081 		break;
1082 	case TSP_NSEC:
1083 	default:
1084 		nanotime(tsp);
1085 		break;
1086 	}
1087 }
1088 
1089 /*
1090  * Set vnode attributes to VNOVAL
1091  */
1092 void
1093 vattr_null(struct vattr *vap)
1094 {
1095 
1096 	vap->va_type = VNON;
1097 	vap->va_size = VNOVAL;
1098 	vap->va_bytes = VNOVAL;
1099 	vap->va_mode = VNOVAL;
1100 	vap->va_nlink = VNOVAL;
1101 	vap->va_uid = VNOVAL;
1102 	vap->va_gid = VNOVAL;
1103 	vap->va_fsid = VNOVAL;
1104 	vap->va_fileid = VNOVAL;
1105 	vap->va_blocksize = VNOVAL;
1106 	vap->va_rdev = VNOVAL;
1107 	vap->va_atime.tv_sec = VNOVAL;
1108 	vap->va_atime.tv_nsec = VNOVAL;
1109 	vap->va_mtime.tv_sec = VNOVAL;
1110 	vap->va_mtime.tv_nsec = VNOVAL;
1111 	vap->va_ctime.tv_sec = VNOVAL;
1112 	vap->va_ctime.tv_nsec = VNOVAL;
1113 	vap->va_birthtime.tv_sec = VNOVAL;
1114 	vap->va_birthtime.tv_nsec = VNOVAL;
1115 	vap->va_flags = VNOVAL;
1116 	vap->va_gen = VNOVAL;
1117 	vap->va_vaflags = 0;
1118 }
1119 
1120 /*
1121  * Try to reduce the total number of vnodes.
1122  *
1123  * This routine (and its user) are buggy in at least the following ways:
1124  * - all parameters were picked years ago when RAM sizes were significantly
1125  *   smaller
1126  * - it can pick vnodes based on pages used by the vm object, but filesystems
1127  *   like ZFS don't use it making the pick broken
1128  * - since ZFS has its own aging policy it gets partially combated by this one
1129  * - a dedicated method should be provided for filesystems to let them decide
1130  *   whether the vnode should be recycled
1131  *
1132  * This routine is called when we have too many vnodes.  It attempts
1133  * to free <count> vnodes and will potentially free vnodes that still
1134  * have VM backing store (VM backing store is typically the cause
1135  * of a vnode blowout so we want to do this).  Therefore, this operation
1136  * is not considered cheap.
1137  *
1138  * A number of conditions may prevent a vnode from being reclaimed.
1139  * the buffer cache may have references on the vnode, a directory
1140  * vnode may still have references due to the namei cache representing
1141  * underlying files, or the vnode may be in active use.   It is not
1142  * desirable to reuse such vnodes.  These conditions may cause the
1143  * number of vnodes to reach some minimum value regardless of what
1144  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1145  *
1146  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1147  * 			 entries if this argument is strue
1148  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1149  *			 pages.
1150  * @param target	 How many vnodes to reclaim.
1151  * @return		 The number of vnodes that were reclaimed.
1152  */
1153 static int
1154 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1155 {
1156 	struct vnode *vp, *mvp;
1157 	struct mount *mp;
1158 	struct vm_object *object;
1159 	u_long done;
1160 	bool retried;
1161 
1162 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1163 
1164 	retried = false;
1165 	done = 0;
1166 
1167 	mvp = vnode_list_reclaim_marker;
1168 restart:
1169 	vp = mvp;
1170 	while (done < target) {
1171 		vp = TAILQ_NEXT(vp, v_vnodelist);
1172 		if (__predict_false(vp == NULL))
1173 			break;
1174 
1175 		if (__predict_false(vp->v_type == VMARKER))
1176 			continue;
1177 
1178 		/*
1179 		 * If it's been deconstructed already, it's still
1180 		 * referenced, or it exceeds the trigger, skip it.
1181 		 * Also skip free vnodes.  We are trying to make space
1182 		 * to expand the free list, not reduce it.
1183 		 */
1184 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1185 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1186 			goto next_iter;
1187 
1188 		if (vp->v_type == VBAD || vp->v_type == VNON)
1189 			goto next_iter;
1190 
1191 		object = atomic_load_ptr(&vp->v_object);
1192 		if (object == NULL || object->resident_page_count > trigger) {
1193 			goto next_iter;
1194 		}
1195 
1196 		/*
1197 		 * Handle races against vnode allocation. Filesystems lock the
1198 		 * vnode some time after it gets returned from getnewvnode,
1199 		 * despite type and hold count being manipulated earlier.
1200 		 * Resorting to checking v_mount restores guarantees present
1201 		 * before the global list was reworked to contain all vnodes.
1202 		 */
1203 		if (!VI_TRYLOCK(vp))
1204 			goto next_iter;
1205 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1206 			VI_UNLOCK(vp);
1207 			goto next_iter;
1208 		}
1209 		if (vp->v_mount == NULL) {
1210 			VI_UNLOCK(vp);
1211 			goto next_iter;
1212 		}
1213 		vholdl(vp);
1214 		VI_UNLOCK(vp);
1215 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1216 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1217 		mtx_unlock(&vnode_list_mtx);
1218 
1219 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1220 			vdrop_recycle(vp);
1221 			goto next_iter_unlocked;
1222 		}
1223 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1224 			vdrop_recycle(vp);
1225 			vn_finished_write(mp);
1226 			goto next_iter_unlocked;
1227 		}
1228 
1229 		VI_LOCK(vp);
1230 		if (vp->v_usecount > 0 ||
1231 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1232 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1233 		    vp->v_object->resident_page_count > trigger)) {
1234 			VOP_UNLOCK(vp);
1235 			vdropl_recycle(vp);
1236 			vn_finished_write(mp);
1237 			goto next_iter_unlocked;
1238 		}
1239 		counter_u64_add(recycles_count, 1);
1240 		vgonel(vp);
1241 		VOP_UNLOCK(vp);
1242 		vdropl_recycle(vp);
1243 		vn_finished_write(mp);
1244 		done++;
1245 next_iter_unlocked:
1246 		maybe_yield();
1247 		mtx_lock(&vnode_list_mtx);
1248 		goto restart;
1249 next_iter:
1250 		MPASS(vp->v_type != VMARKER);
1251 		if (!should_yield())
1252 			continue;
1253 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1254 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1255 		mtx_unlock(&vnode_list_mtx);
1256 		kern_yield(PRI_USER);
1257 		mtx_lock(&vnode_list_mtx);
1258 		goto restart;
1259 	}
1260 	if (done == 0 && !retried) {
1261 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1262 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1263 		retried = true;
1264 		goto restart;
1265 	}
1266 	return (done);
1267 }
1268 
1269 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1270 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1271     0,
1272     "limit on vnode free requests per call to the vnlru_free routine");
1273 
1274 /*
1275  * Attempt to reduce the free list by the requested amount.
1276  */
1277 static int
1278 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1279 {
1280 	struct vnode *vp;
1281 	struct mount *mp;
1282 	int ocount;
1283 
1284 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1285 	if (count > max_vnlru_free)
1286 		count = max_vnlru_free;
1287 	ocount = count;
1288 	vp = mvp;
1289 	for (;;) {
1290 		if (count == 0) {
1291 			break;
1292 		}
1293 		vp = TAILQ_NEXT(vp, v_vnodelist);
1294 		if (__predict_false(vp == NULL)) {
1295 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1296 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1297 			break;
1298 		}
1299 		if (__predict_false(vp->v_type == VMARKER))
1300 			continue;
1301 		if (vp->v_holdcnt > 0)
1302 			continue;
1303 		/*
1304 		 * Don't recycle if our vnode is from different type
1305 		 * of mount point.  Note that mp is type-safe, the
1306 		 * check does not reach unmapped address even if
1307 		 * vnode is reclaimed.
1308 		 */
1309 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1310 		    mp->mnt_op != mnt_op) {
1311 			continue;
1312 		}
1313 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1314 			continue;
1315 		}
1316 		if (!vhold_recycle_free(vp))
1317 			continue;
1318 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1319 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1320 		mtx_unlock(&vnode_list_mtx);
1321 		/*
1322 		 * FIXME: ignores the return value, meaning it may be nothing
1323 		 * got recycled but it claims otherwise to the caller.
1324 		 *
1325 		 * Originally the value started being ignored in 2005 with
1326 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1327 		 *
1328 		 * Respecting the value can run into significant stalls if most
1329 		 * vnodes belong to one file system and it has writes
1330 		 * suspended.  In presence of many threads and millions of
1331 		 * vnodes they keep contending on the vnode_list_mtx lock only
1332 		 * to find vnodes they can't recycle.
1333 		 *
1334 		 * The solution would be to pre-check if the vnode is likely to
1335 		 * be recycle-able, but it needs to happen with the
1336 		 * vnode_list_mtx lock held. This runs into a problem where
1337 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1338 		 * writes are frozen) can take locks which LOR against it.
1339 		 *
1340 		 * Check nullfs for one example (null_getwritemount).
1341 		 */
1342 		vtryrecycle(vp);
1343 		count--;
1344 		mtx_lock(&vnode_list_mtx);
1345 		vp = mvp;
1346 	}
1347 	return (ocount - count);
1348 }
1349 
1350 static int
1351 vnlru_free_locked(int count)
1352 {
1353 
1354 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1355 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1356 }
1357 
1358 void
1359 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1360 {
1361 
1362 	MPASS(mnt_op != NULL);
1363 	MPASS(mvp != NULL);
1364 	VNPASS(mvp->v_type == VMARKER, mvp);
1365 	mtx_lock(&vnode_list_mtx);
1366 	vnlru_free_impl(count, mnt_op, mvp);
1367 	mtx_unlock(&vnode_list_mtx);
1368 }
1369 
1370 struct vnode *
1371 vnlru_alloc_marker(void)
1372 {
1373 	struct vnode *mvp;
1374 
1375 	mvp = vn_alloc_marker(NULL);
1376 	mtx_lock(&vnode_list_mtx);
1377 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1378 	mtx_unlock(&vnode_list_mtx);
1379 	return (mvp);
1380 }
1381 
1382 void
1383 vnlru_free_marker(struct vnode *mvp)
1384 {
1385 	mtx_lock(&vnode_list_mtx);
1386 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1387 	mtx_unlock(&vnode_list_mtx);
1388 	vn_free_marker(mvp);
1389 }
1390 
1391 static void
1392 vnlru_recalc(void)
1393 {
1394 
1395 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1396 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1397 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1398 	vlowat = vhiwat / 2;
1399 }
1400 
1401 /*
1402  * Attempt to recycle vnodes in a context that is always safe to block.
1403  * Calling vlrurecycle() from the bowels of filesystem code has some
1404  * interesting deadlock problems.
1405  */
1406 static struct proc *vnlruproc;
1407 static int vnlruproc_sig;
1408 
1409 /*
1410  * The main freevnodes counter is only updated when threads requeue their vnode
1411  * batches. CPUs are conditionally walked to compute a more accurate total.
1412  *
1413  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1414  * at any given moment can still exceed slop, but it should not be by significant
1415  * margin in practice.
1416  */
1417 #define VNLRU_FREEVNODES_SLOP 126
1418 
1419 static void __noinline
1420 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1421 {
1422 
1423 	atomic_add_long(&freevnodes, *lfreevnodes);
1424 	*lfreevnodes = 0;
1425 	critical_exit();
1426 }
1427 
1428 static __inline void
1429 vfs_freevnodes_inc(void)
1430 {
1431 	int8_t *lfreevnodes;
1432 
1433 	critical_enter();
1434 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1435 	(*lfreevnodes)++;
1436 	if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1437 		vfs_freevnodes_rollup(lfreevnodes);
1438 	else
1439 		critical_exit();
1440 }
1441 
1442 static __inline void
1443 vfs_freevnodes_dec(void)
1444 {
1445 	int8_t *lfreevnodes;
1446 
1447 	critical_enter();
1448 	lfreevnodes = PCPU_PTR(vfs_freevnodes);
1449 	(*lfreevnodes)--;
1450 	if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1451 		vfs_freevnodes_rollup(lfreevnodes);
1452 	else
1453 		critical_exit();
1454 }
1455 
1456 static u_long
1457 vnlru_read_freevnodes(void)
1458 {
1459 	long slop, rfreevnodes;
1460 	int cpu;
1461 
1462 	rfreevnodes = atomic_load_long(&freevnodes);
1463 
1464 	if (rfreevnodes > freevnodes_old)
1465 		slop = rfreevnodes - freevnodes_old;
1466 	else
1467 		slop = freevnodes_old - rfreevnodes;
1468 	if (slop < VNLRU_FREEVNODES_SLOP)
1469 		return (rfreevnodes >= 0 ? rfreevnodes : 0);
1470 	freevnodes_old = rfreevnodes;
1471 	CPU_FOREACH(cpu) {
1472 		freevnodes_old += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1473 	}
1474 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1475 }
1476 
1477 static bool
1478 vnlru_under(u_long rnumvnodes, u_long limit)
1479 {
1480 	u_long rfreevnodes, space;
1481 
1482 	if (__predict_false(rnumvnodes > desiredvnodes))
1483 		return (true);
1484 
1485 	space = desiredvnodes - rnumvnodes;
1486 	if (space < limit) {
1487 		rfreevnodes = vnlru_read_freevnodes();
1488 		if (rfreevnodes > wantfreevnodes)
1489 			space += rfreevnodes - wantfreevnodes;
1490 	}
1491 	return (space < limit);
1492 }
1493 
1494 static bool
1495 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1496 {
1497 	long rfreevnodes, space;
1498 
1499 	if (__predict_false(rnumvnodes > desiredvnodes))
1500 		return (true);
1501 
1502 	space = desiredvnodes - rnumvnodes;
1503 	if (space < limit) {
1504 		rfreevnodes = atomic_load_long(&freevnodes);
1505 		if (rfreevnodes > wantfreevnodes)
1506 			space += rfreevnodes - wantfreevnodes;
1507 	}
1508 	return (space < limit);
1509 }
1510 
1511 static void
1512 vnlru_kick(void)
1513 {
1514 
1515 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1516 	if (vnlruproc_sig == 0) {
1517 		vnlruproc_sig = 1;
1518 		wakeup(vnlruproc);
1519 	}
1520 }
1521 
1522 static void
1523 vnlru_proc(void)
1524 {
1525 	u_long rnumvnodes, rfreevnodes, target;
1526 	unsigned long onumvnodes;
1527 	int done, force, trigger, usevnodes;
1528 	bool reclaim_nc_src, want_reread;
1529 
1530 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1531 	    SHUTDOWN_PRI_FIRST);
1532 
1533 	force = 0;
1534 	want_reread = false;
1535 	for (;;) {
1536 		kproc_suspend_check(vnlruproc);
1537 		mtx_lock(&vnode_list_mtx);
1538 		rnumvnodes = atomic_load_long(&numvnodes);
1539 
1540 		if (want_reread) {
1541 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1542 			want_reread = false;
1543 		}
1544 
1545 		/*
1546 		 * If numvnodes is too large (due to desiredvnodes being
1547 		 * adjusted using its sysctl, or emergency growth), first
1548 		 * try to reduce it by discarding from the free list.
1549 		 */
1550 		if (rnumvnodes > desiredvnodes) {
1551 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1552 			rnumvnodes = atomic_load_long(&numvnodes);
1553 		}
1554 		/*
1555 		 * Sleep if the vnode cache is in a good state.  This is
1556 		 * when it is not over-full and has space for about a 4%
1557 		 * or 9% expansion (by growing its size or inexcessively
1558 		 * reducing its free list).  Otherwise, try to reclaim
1559 		 * space for a 10% expansion.
1560 		 */
1561 		if (vstir && force == 0) {
1562 			force = 1;
1563 			vstir = 0;
1564 		}
1565 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1566 			vnlruproc_sig = 0;
1567 			wakeup(&vnlruproc_sig);
1568 			msleep(vnlruproc, &vnode_list_mtx,
1569 			    PVFS|PDROP, "vlruwt", hz);
1570 			continue;
1571 		}
1572 		rfreevnodes = vnlru_read_freevnodes();
1573 
1574 		onumvnodes = rnumvnodes;
1575 		/*
1576 		 * Calculate parameters for recycling.  These are the same
1577 		 * throughout the loop to give some semblance of fairness.
1578 		 * The trigger point is to avoid recycling vnodes with lots
1579 		 * of resident pages.  We aren't trying to free memory; we
1580 		 * are trying to recycle or at least free vnodes.
1581 		 */
1582 		if (rnumvnodes <= desiredvnodes)
1583 			usevnodes = rnumvnodes - rfreevnodes;
1584 		else
1585 			usevnodes = rnumvnodes;
1586 		if (usevnodes <= 0)
1587 			usevnodes = 1;
1588 		/*
1589 		 * The trigger value is chosen to give a conservatively
1590 		 * large value to ensure that it alone doesn't prevent
1591 		 * making progress.  The value can easily be so large that
1592 		 * it is effectively infinite in some congested and
1593 		 * misconfigured cases, and this is necessary.  Normally
1594 		 * it is about 8 to 100 (pages), which is quite large.
1595 		 */
1596 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1597 		if (force < 2)
1598 			trigger = vsmalltrigger;
1599 		reclaim_nc_src = force >= 3;
1600 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1601 		target = target / 10 + 1;
1602 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1603 		mtx_unlock(&vnode_list_mtx);
1604 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1605 			uma_reclaim(UMA_RECLAIM_DRAIN);
1606 		if (done == 0) {
1607 			if (force == 0 || force == 1) {
1608 				force = 2;
1609 				continue;
1610 			}
1611 			if (force == 2) {
1612 				force = 3;
1613 				continue;
1614 			}
1615 			want_reread = true;
1616 			force = 0;
1617 			vnlru_nowhere++;
1618 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1619 		} else {
1620 			want_reread = true;
1621 			kern_yield(PRI_USER);
1622 		}
1623 	}
1624 }
1625 
1626 static struct kproc_desc vnlru_kp = {
1627 	"vnlru",
1628 	vnlru_proc,
1629 	&vnlruproc
1630 };
1631 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1632     &vnlru_kp);
1633 
1634 /*
1635  * Routines having to do with the management of the vnode table.
1636  */
1637 
1638 /*
1639  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1640  * before we actually vgone().  This function must be called with the vnode
1641  * held to prevent the vnode from being returned to the free list midway
1642  * through vgone().
1643  */
1644 static int
1645 vtryrecycle(struct vnode *vp)
1646 {
1647 	struct mount *vnmp;
1648 
1649 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1650 	VNPASS(vp->v_holdcnt > 0, vp);
1651 	/*
1652 	 * This vnode may found and locked via some other list, if so we
1653 	 * can't recycle it yet.
1654 	 */
1655 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1656 		CTR2(KTR_VFS,
1657 		    "%s: impossible to recycle, vp %p lock is already held",
1658 		    __func__, vp);
1659 		vdrop_recycle(vp);
1660 		return (EWOULDBLOCK);
1661 	}
1662 	/*
1663 	 * Don't recycle if its filesystem is being suspended.
1664 	 */
1665 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1666 		VOP_UNLOCK(vp);
1667 		CTR2(KTR_VFS,
1668 		    "%s: impossible to recycle, cannot start the write for %p",
1669 		    __func__, vp);
1670 		vdrop_recycle(vp);
1671 		return (EBUSY);
1672 	}
1673 	/*
1674 	 * If we got this far, we need to acquire the interlock and see if
1675 	 * anyone picked up this vnode from another list.  If not, we will
1676 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1677 	 * will skip over it.
1678 	 */
1679 	VI_LOCK(vp);
1680 	if (vp->v_usecount) {
1681 		VOP_UNLOCK(vp);
1682 		vdropl_recycle(vp);
1683 		vn_finished_write(vnmp);
1684 		CTR2(KTR_VFS,
1685 		    "%s: impossible to recycle, %p is already referenced",
1686 		    __func__, vp);
1687 		return (EBUSY);
1688 	}
1689 	if (!VN_IS_DOOMED(vp)) {
1690 		counter_u64_add(recycles_free_count, 1);
1691 		vgonel(vp);
1692 	}
1693 	VOP_UNLOCK(vp);
1694 	vdropl_recycle(vp);
1695 	vn_finished_write(vnmp);
1696 	return (0);
1697 }
1698 
1699 /*
1700  * Allocate a new vnode.
1701  *
1702  * The operation never returns an error. Returning an error was disabled
1703  * in r145385 (dated 2005) with the following comment:
1704  *
1705  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1706  *
1707  * Given the age of this commit (almost 15 years at the time of writing this
1708  * comment) restoring the ability to fail requires a significant audit of
1709  * all codepaths.
1710  *
1711  * The routine can try to free a vnode or stall for up to 1 second waiting for
1712  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1713  */
1714 static u_long vn_alloc_cyclecount;
1715 
1716 static struct vnode * __noinline
1717 vn_alloc_hard(struct mount *mp)
1718 {
1719 	u_long rnumvnodes, rfreevnodes;
1720 
1721 	mtx_lock(&vnode_list_mtx);
1722 	rnumvnodes = atomic_load_long(&numvnodes);
1723 	if (rnumvnodes + 1 < desiredvnodes) {
1724 		vn_alloc_cyclecount = 0;
1725 		goto alloc;
1726 	}
1727 	rfreevnodes = vnlru_read_freevnodes();
1728 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1729 		vn_alloc_cyclecount = 0;
1730 		vstir = 1;
1731 	}
1732 	/*
1733 	 * Grow the vnode cache if it will not be above its target max
1734 	 * after growing.  Otherwise, if the free list is nonempty, try
1735 	 * to reclaim 1 item from it before growing the cache (possibly
1736 	 * above its target max if the reclamation failed or is delayed).
1737 	 * Otherwise, wait for some space.  In all cases, schedule
1738 	 * vnlru_proc() if we are getting short of space.  The watermarks
1739 	 * should be chosen so that we never wait or even reclaim from
1740 	 * the free list to below its target minimum.
1741 	 */
1742 	if (vnlru_free_locked(1) > 0)
1743 		goto alloc;
1744 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1745 		/*
1746 		 * Wait for space for a new vnode.
1747 		 */
1748 		vnlru_kick();
1749 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1750 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1751 		    vnlru_read_freevnodes() > 1)
1752 			vnlru_free_locked(1);
1753 	}
1754 alloc:
1755 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1756 	if (vnlru_under(rnumvnodes, vlowat))
1757 		vnlru_kick();
1758 	mtx_unlock(&vnode_list_mtx);
1759 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1760 }
1761 
1762 static struct vnode *
1763 vn_alloc(struct mount *mp)
1764 {
1765 	u_long rnumvnodes;
1766 
1767 	if (__predict_false(vn_alloc_cyclecount != 0))
1768 		return (vn_alloc_hard(mp));
1769 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1770 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1771 		atomic_subtract_long(&numvnodes, 1);
1772 		return (vn_alloc_hard(mp));
1773 	}
1774 
1775 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1776 }
1777 
1778 static void
1779 vn_free(struct vnode *vp)
1780 {
1781 
1782 	atomic_subtract_long(&numvnodes, 1);
1783 	uma_zfree_smr(vnode_zone, vp);
1784 }
1785 
1786 /*
1787  * Return the next vnode from the free list.
1788  */
1789 int
1790 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1791     struct vnode **vpp)
1792 {
1793 	struct vnode *vp;
1794 	struct thread *td;
1795 	struct lock_object *lo;
1796 
1797 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1798 
1799 	KASSERT(vops->registered,
1800 	    ("%s: not registered vector op %p\n", __func__, vops));
1801 	cache_validate_vop_vector(mp, vops);
1802 
1803 	td = curthread;
1804 	if (td->td_vp_reserved != NULL) {
1805 		vp = td->td_vp_reserved;
1806 		td->td_vp_reserved = NULL;
1807 	} else {
1808 		vp = vn_alloc(mp);
1809 	}
1810 	counter_u64_add(vnodes_created, 1);
1811 
1812 	vn_set_state(vp, VSTATE_UNINITIALIZED);
1813 
1814 	/*
1815 	 * Locks are given the generic name "vnode" when created.
1816 	 * Follow the historic practice of using the filesystem
1817 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1818 	 *
1819 	 * Locks live in a witness group keyed on their name. Thus,
1820 	 * when a lock is renamed, it must also move from the witness
1821 	 * group of its old name to the witness group of its new name.
1822 	 *
1823 	 * The change only needs to be made when the vnode moves
1824 	 * from one filesystem type to another. We ensure that each
1825 	 * filesystem use a single static name pointer for its tag so
1826 	 * that we can compare pointers rather than doing a strcmp().
1827 	 */
1828 	lo = &vp->v_vnlock->lock_object;
1829 #ifdef WITNESS
1830 	if (lo->lo_name != tag) {
1831 #endif
1832 		lo->lo_name = tag;
1833 #ifdef WITNESS
1834 		WITNESS_DESTROY(lo);
1835 		WITNESS_INIT(lo, tag);
1836 	}
1837 #endif
1838 	/*
1839 	 * By default, don't allow shared locks unless filesystems opt-in.
1840 	 */
1841 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1842 	/*
1843 	 * Finalize various vnode identity bits.
1844 	 */
1845 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1846 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1847 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1848 	vp->v_type = VNON;
1849 	vp->v_op = vops;
1850 	vp->v_irflag = 0;
1851 	v_init_counters(vp);
1852 	vn_seqc_init(vp);
1853 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1854 #ifdef DIAGNOSTIC
1855 	if (mp == NULL && vops != &dead_vnodeops)
1856 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1857 #endif
1858 #ifdef MAC
1859 	mac_vnode_init(vp);
1860 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1861 		mac_vnode_associate_singlelabel(mp, vp);
1862 #endif
1863 	if (mp != NULL) {
1864 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1865 	}
1866 
1867 	/*
1868 	 * For the filesystems which do not use vfs_hash_insert(),
1869 	 * still initialize v_hash to have vfs_hash_index() useful.
1870 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1871 	 * its own hashing.
1872 	 */
1873 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1874 
1875 	*vpp = vp;
1876 	return (0);
1877 }
1878 
1879 void
1880 getnewvnode_reserve(void)
1881 {
1882 	struct thread *td;
1883 
1884 	td = curthread;
1885 	MPASS(td->td_vp_reserved == NULL);
1886 	td->td_vp_reserved = vn_alloc(NULL);
1887 }
1888 
1889 void
1890 getnewvnode_drop_reserve(void)
1891 {
1892 	struct thread *td;
1893 
1894 	td = curthread;
1895 	if (td->td_vp_reserved != NULL) {
1896 		vn_free(td->td_vp_reserved);
1897 		td->td_vp_reserved = NULL;
1898 	}
1899 }
1900 
1901 static void __noinline
1902 freevnode(struct vnode *vp)
1903 {
1904 	struct bufobj *bo;
1905 
1906 	/*
1907 	 * The vnode has been marked for destruction, so free it.
1908 	 *
1909 	 * The vnode will be returned to the zone where it will
1910 	 * normally remain until it is needed for another vnode. We
1911 	 * need to cleanup (or verify that the cleanup has already
1912 	 * been done) any residual data left from its current use
1913 	 * so as not to contaminate the freshly allocated vnode.
1914 	 */
1915 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1916 	/*
1917 	 * Paired with vgone.
1918 	 */
1919 	vn_seqc_write_end_free(vp);
1920 
1921 	bo = &vp->v_bufobj;
1922 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1923 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1924 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1925 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1926 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1927 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1928 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1929 	    ("clean blk trie not empty"));
1930 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1931 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1932 	    ("dirty blk trie not empty"));
1933 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1934 	    ("Dangling rangelock waiters"));
1935 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1936 	    ("Leaked inactivation"));
1937 	VI_UNLOCK(vp);
1938 	cache_assert_no_entries(vp);
1939 
1940 #ifdef MAC
1941 	mac_vnode_destroy(vp);
1942 #endif
1943 	if (vp->v_pollinfo != NULL) {
1944 		/*
1945 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
1946 		 * here while having another vnode locked when trying to
1947 		 * satisfy a lookup and needing to recycle.
1948 		 */
1949 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
1950 		destroy_vpollinfo(vp->v_pollinfo);
1951 		VOP_UNLOCK(vp);
1952 		vp->v_pollinfo = NULL;
1953 	}
1954 	vp->v_mountedhere = NULL;
1955 	vp->v_unpcb = NULL;
1956 	vp->v_rdev = NULL;
1957 	vp->v_fifoinfo = NULL;
1958 	vp->v_iflag = 0;
1959 	vp->v_vflag = 0;
1960 	bo->bo_flag = 0;
1961 	vn_free(vp);
1962 }
1963 
1964 /*
1965  * Delete from old mount point vnode list, if on one.
1966  */
1967 static void
1968 delmntque(struct vnode *vp)
1969 {
1970 	struct mount *mp;
1971 
1972 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1973 
1974 	mp = vp->v_mount;
1975 	MNT_ILOCK(mp);
1976 	VI_LOCK(vp);
1977 	vp->v_mount = NULL;
1978 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1979 		("bad mount point vnode list size"));
1980 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1981 	mp->mnt_nvnodelistsize--;
1982 	MNT_REL(mp);
1983 	MNT_IUNLOCK(mp);
1984 	/*
1985 	 * The caller expects the interlock to be still held.
1986 	 */
1987 	ASSERT_VI_LOCKED(vp, __func__);
1988 }
1989 
1990 static int
1991 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
1992 {
1993 
1994 	KASSERT(vp->v_mount == NULL,
1995 		("insmntque: vnode already on per mount vnode list"));
1996 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1997 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
1998 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1999 	} else {
2000 		KASSERT(!dtr,
2001 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2002 		    __func__));
2003 	}
2004 
2005 	/*
2006 	 * We acquire the vnode interlock early to ensure that the
2007 	 * vnode cannot be recycled by another process releasing a
2008 	 * holdcnt on it before we get it on both the vnode list
2009 	 * and the active vnode list. The mount mutex protects only
2010 	 * manipulation of the vnode list and the vnode freelist
2011 	 * mutex protects only manipulation of the active vnode list.
2012 	 * Hence the need to hold the vnode interlock throughout.
2013 	 */
2014 	MNT_ILOCK(mp);
2015 	VI_LOCK(vp);
2016 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2017 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2018 	    mp->mnt_nvnodelistsize == 0)) &&
2019 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2020 		VI_UNLOCK(vp);
2021 		MNT_IUNLOCK(mp);
2022 		if (dtr) {
2023 			vp->v_data = NULL;
2024 			vp->v_op = &dead_vnodeops;
2025 			vgone(vp);
2026 			vput(vp);
2027 		}
2028 		return (EBUSY);
2029 	}
2030 	vp->v_mount = mp;
2031 	MNT_REF(mp);
2032 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2033 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2034 		("neg mount point vnode list size"));
2035 	mp->mnt_nvnodelistsize++;
2036 	VI_UNLOCK(vp);
2037 	MNT_IUNLOCK(mp);
2038 	return (0);
2039 }
2040 
2041 /*
2042  * Insert into list of vnodes for the new mount point, if available.
2043  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2044  * leaves handling of the vnode to the caller.
2045  */
2046 int
2047 insmntque(struct vnode *vp, struct mount *mp)
2048 {
2049 	return (insmntque1_int(vp, mp, true));
2050 }
2051 
2052 int
2053 insmntque1(struct vnode *vp, struct mount *mp)
2054 {
2055 	return (insmntque1_int(vp, mp, false));
2056 }
2057 
2058 /*
2059  * Flush out and invalidate all buffers associated with a bufobj
2060  * Called with the underlying object locked.
2061  */
2062 int
2063 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2064 {
2065 	int error;
2066 
2067 	BO_LOCK(bo);
2068 	if (flags & V_SAVE) {
2069 		error = bufobj_wwait(bo, slpflag, slptimeo);
2070 		if (error) {
2071 			BO_UNLOCK(bo);
2072 			return (error);
2073 		}
2074 		if (bo->bo_dirty.bv_cnt > 0) {
2075 			BO_UNLOCK(bo);
2076 			do {
2077 				error = BO_SYNC(bo, MNT_WAIT);
2078 			} while (error == ERELOOKUP);
2079 			if (error != 0)
2080 				return (error);
2081 			BO_LOCK(bo);
2082 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2083 				BO_UNLOCK(bo);
2084 				return (EBUSY);
2085 			}
2086 		}
2087 	}
2088 	/*
2089 	 * If you alter this loop please notice that interlock is dropped and
2090 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2091 	 * no race conditions occur from this.
2092 	 */
2093 	do {
2094 		error = flushbuflist(&bo->bo_clean,
2095 		    flags, bo, slpflag, slptimeo);
2096 		if (error == 0 && !(flags & V_CLEANONLY))
2097 			error = flushbuflist(&bo->bo_dirty,
2098 			    flags, bo, slpflag, slptimeo);
2099 		if (error != 0 && error != EAGAIN) {
2100 			BO_UNLOCK(bo);
2101 			return (error);
2102 		}
2103 	} while (error != 0);
2104 
2105 	/*
2106 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2107 	 * have write I/O in-progress but if there is a VM object then the
2108 	 * VM object can also have read-I/O in-progress.
2109 	 */
2110 	do {
2111 		bufobj_wwait(bo, 0, 0);
2112 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2113 			BO_UNLOCK(bo);
2114 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2115 			BO_LOCK(bo);
2116 		}
2117 	} while (bo->bo_numoutput > 0);
2118 	BO_UNLOCK(bo);
2119 
2120 	/*
2121 	 * Destroy the copy in the VM cache, too.
2122 	 */
2123 	if (bo->bo_object != NULL &&
2124 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2125 		VM_OBJECT_WLOCK(bo->bo_object);
2126 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2127 		    OBJPR_CLEANONLY : 0);
2128 		VM_OBJECT_WUNLOCK(bo->bo_object);
2129 	}
2130 
2131 #ifdef INVARIANTS
2132 	BO_LOCK(bo);
2133 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2134 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2135 	    bo->bo_clean.bv_cnt > 0))
2136 		panic("vinvalbuf: flush failed");
2137 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2138 	    bo->bo_dirty.bv_cnt > 0)
2139 		panic("vinvalbuf: flush dirty failed");
2140 	BO_UNLOCK(bo);
2141 #endif
2142 	return (0);
2143 }
2144 
2145 /*
2146  * Flush out and invalidate all buffers associated with a vnode.
2147  * Called with the underlying object locked.
2148  */
2149 int
2150 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2151 {
2152 
2153 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2154 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2155 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2156 		return (0);
2157 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2158 }
2159 
2160 /*
2161  * Flush out buffers on the specified list.
2162  *
2163  */
2164 static int
2165 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2166     int slptimeo)
2167 {
2168 	struct buf *bp, *nbp;
2169 	int retval, error;
2170 	daddr_t lblkno;
2171 	b_xflags_t xflags;
2172 
2173 	ASSERT_BO_WLOCKED(bo);
2174 
2175 	retval = 0;
2176 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2177 		/*
2178 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2179 		 * do not skip any buffers. If we are flushing only V_NORMAL
2180 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2181 		 * flushing only V_ALT buffers then skip buffers not marked
2182 		 * as BX_ALTDATA.
2183 		 */
2184 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2185 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2186 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2187 			continue;
2188 		}
2189 		if (nbp != NULL) {
2190 			lblkno = nbp->b_lblkno;
2191 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2192 		}
2193 		retval = EAGAIN;
2194 		error = BUF_TIMELOCK(bp,
2195 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2196 		    "flushbuf", slpflag, slptimeo);
2197 		if (error) {
2198 			BO_LOCK(bo);
2199 			return (error != ENOLCK ? error : EAGAIN);
2200 		}
2201 		KASSERT(bp->b_bufobj == bo,
2202 		    ("bp %p wrong b_bufobj %p should be %p",
2203 		    bp, bp->b_bufobj, bo));
2204 		/*
2205 		 * XXX Since there are no node locks for NFS, I
2206 		 * believe there is a slight chance that a delayed
2207 		 * write will occur while sleeping just above, so
2208 		 * check for it.
2209 		 */
2210 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2211 		    (flags & V_SAVE)) {
2212 			bremfree(bp);
2213 			bp->b_flags |= B_ASYNC;
2214 			bwrite(bp);
2215 			BO_LOCK(bo);
2216 			return (EAGAIN);	/* XXX: why not loop ? */
2217 		}
2218 		bremfree(bp);
2219 		bp->b_flags |= (B_INVAL | B_RELBUF);
2220 		bp->b_flags &= ~B_ASYNC;
2221 		brelse(bp);
2222 		BO_LOCK(bo);
2223 		if (nbp == NULL)
2224 			break;
2225 		nbp = gbincore(bo, lblkno);
2226 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2227 		    != xflags)
2228 			break;			/* nbp invalid */
2229 	}
2230 	return (retval);
2231 }
2232 
2233 int
2234 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2235 {
2236 	struct buf *bp;
2237 	int error;
2238 	daddr_t lblkno;
2239 
2240 	ASSERT_BO_LOCKED(bo);
2241 
2242 	for (lblkno = startn;;) {
2243 again:
2244 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2245 		if (bp == NULL || bp->b_lblkno >= endn ||
2246 		    bp->b_lblkno < startn)
2247 			break;
2248 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2249 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2250 		if (error != 0) {
2251 			BO_RLOCK(bo);
2252 			if (error == ENOLCK)
2253 				goto again;
2254 			return (error);
2255 		}
2256 		KASSERT(bp->b_bufobj == bo,
2257 		    ("bp %p wrong b_bufobj %p should be %p",
2258 		    bp, bp->b_bufobj, bo));
2259 		lblkno = bp->b_lblkno + 1;
2260 		if ((bp->b_flags & B_MANAGED) == 0)
2261 			bremfree(bp);
2262 		bp->b_flags |= B_RELBUF;
2263 		/*
2264 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2265 		 * pages backing each buffer in the range are unlikely to be
2266 		 * reused.  Dirty buffers will have the hint applied once
2267 		 * they've been written.
2268 		 */
2269 		if ((bp->b_flags & B_VMIO) != 0)
2270 			bp->b_flags |= B_NOREUSE;
2271 		brelse(bp);
2272 		BO_RLOCK(bo);
2273 	}
2274 	return (0);
2275 }
2276 
2277 /*
2278  * Truncate a file's buffer and pages to a specified length.  This
2279  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2280  * sync activity.
2281  */
2282 int
2283 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2284 {
2285 	struct buf *bp, *nbp;
2286 	struct bufobj *bo;
2287 	daddr_t startlbn;
2288 
2289 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2290 	    vp, blksize, (uintmax_t)length);
2291 
2292 	/*
2293 	 * Round up to the *next* lbn.
2294 	 */
2295 	startlbn = howmany(length, blksize);
2296 
2297 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2298 
2299 	bo = &vp->v_bufobj;
2300 restart_unlocked:
2301 	BO_LOCK(bo);
2302 
2303 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2304 		;
2305 
2306 	if (length > 0) {
2307 restartsync:
2308 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2309 			if (bp->b_lblkno > 0)
2310 				continue;
2311 			/*
2312 			 * Since we hold the vnode lock this should only
2313 			 * fail if we're racing with the buf daemon.
2314 			 */
2315 			if (BUF_LOCK(bp,
2316 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2317 			    BO_LOCKPTR(bo)) == ENOLCK)
2318 				goto restart_unlocked;
2319 
2320 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2321 			    ("buf(%p) on dirty queue without DELWRI", bp));
2322 
2323 			bremfree(bp);
2324 			bawrite(bp);
2325 			BO_LOCK(bo);
2326 			goto restartsync;
2327 		}
2328 	}
2329 
2330 	bufobj_wwait(bo, 0, 0);
2331 	BO_UNLOCK(bo);
2332 	vnode_pager_setsize(vp, length);
2333 
2334 	return (0);
2335 }
2336 
2337 /*
2338  * Invalidate the cached pages of a file's buffer within the range of block
2339  * numbers [startlbn, endlbn).
2340  */
2341 void
2342 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2343     int blksize)
2344 {
2345 	struct bufobj *bo;
2346 	off_t start, end;
2347 
2348 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2349 
2350 	start = blksize * startlbn;
2351 	end = blksize * endlbn;
2352 
2353 	bo = &vp->v_bufobj;
2354 	BO_LOCK(bo);
2355 	MPASS(blksize == bo->bo_bsize);
2356 
2357 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2358 		;
2359 
2360 	BO_UNLOCK(bo);
2361 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2362 }
2363 
2364 static int
2365 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2366     daddr_t startlbn, daddr_t endlbn)
2367 {
2368 	struct buf *bp, *nbp;
2369 	bool anyfreed;
2370 
2371 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2372 	ASSERT_BO_LOCKED(bo);
2373 
2374 	do {
2375 		anyfreed = false;
2376 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2377 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2378 				continue;
2379 			if (BUF_LOCK(bp,
2380 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2381 			    BO_LOCKPTR(bo)) == ENOLCK) {
2382 				BO_LOCK(bo);
2383 				return (EAGAIN);
2384 			}
2385 
2386 			bremfree(bp);
2387 			bp->b_flags |= B_INVAL | B_RELBUF;
2388 			bp->b_flags &= ~B_ASYNC;
2389 			brelse(bp);
2390 			anyfreed = true;
2391 
2392 			BO_LOCK(bo);
2393 			if (nbp != NULL &&
2394 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2395 			    nbp->b_vp != vp ||
2396 			    (nbp->b_flags & B_DELWRI) != 0))
2397 				return (EAGAIN);
2398 		}
2399 
2400 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2401 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2402 				continue;
2403 			if (BUF_LOCK(bp,
2404 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2405 			    BO_LOCKPTR(bo)) == ENOLCK) {
2406 				BO_LOCK(bo);
2407 				return (EAGAIN);
2408 			}
2409 			bremfree(bp);
2410 			bp->b_flags |= B_INVAL | B_RELBUF;
2411 			bp->b_flags &= ~B_ASYNC;
2412 			brelse(bp);
2413 			anyfreed = true;
2414 
2415 			BO_LOCK(bo);
2416 			if (nbp != NULL &&
2417 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2418 			    (nbp->b_vp != vp) ||
2419 			    (nbp->b_flags & B_DELWRI) == 0))
2420 				return (EAGAIN);
2421 		}
2422 	} while (anyfreed);
2423 	return (0);
2424 }
2425 
2426 static void
2427 buf_vlist_remove(struct buf *bp)
2428 {
2429 	struct bufv *bv;
2430 	b_xflags_t flags;
2431 
2432 	flags = bp->b_xflags;
2433 
2434 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2435 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2436 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2437 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2438 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2439 
2440 	if ((flags & BX_VNDIRTY) != 0)
2441 		bv = &bp->b_bufobj->bo_dirty;
2442 	else
2443 		bv = &bp->b_bufobj->bo_clean;
2444 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2445 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2446 	bv->bv_cnt--;
2447 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2448 }
2449 
2450 /*
2451  * Add the buffer to the sorted clean or dirty block list.
2452  *
2453  * NOTE: xflags is passed as a constant, optimizing this inline function!
2454  */
2455 static void
2456 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2457 {
2458 	struct bufv *bv;
2459 	struct buf *n;
2460 	int error;
2461 
2462 	ASSERT_BO_WLOCKED(bo);
2463 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2464 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2465 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2466 	    ("dead bo %p", bo));
2467 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2468 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2469 	bp->b_xflags |= xflags;
2470 	if (xflags & BX_VNDIRTY)
2471 		bv = &bo->bo_dirty;
2472 	else
2473 		bv = &bo->bo_clean;
2474 
2475 	/*
2476 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2477 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2478 	 * than _ge.
2479 	 */
2480 	if (bv->bv_cnt == 0 ||
2481 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2482 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2483 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2484 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2485 	else
2486 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2487 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2488 	if (error)
2489 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2490 	bv->bv_cnt++;
2491 }
2492 
2493 /*
2494  * Look up a buffer using the buffer tries.
2495  */
2496 struct buf *
2497 gbincore(struct bufobj *bo, daddr_t lblkno)
2498 {
2499 	struct buf *bp;
2500 
2501 	ASSERT_BO_LOCKED(bo);
2502 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2503 	if (bp != NULL)
2504 		return (bp);
2505 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2506 }
2507 
2508 /*
2509  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2510  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2511  * stability of the result.  Like other lockless lookups, the found buf may
2512  * already be invalid by the time this function returns.
2513  */
2514 struct buf *
2515 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2516 {
2517 	struct buf *bp;
2518 
2519 	ASSERT_BO_UNLOCKED(bo);
2520 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2521 	if (bp != NULL)
2522 		return (bp);
2523 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2524 }
2525 
2526 /*
2527  * Associate a buffer with a vnode.
2528  */
2529 void
2530 bgetvp(struct vnode *vp, struct buf *bp)
2531 {
2532 	struct bufobj *bo;
2533 
2534 	bo = &vp->v_bufobj;
2535 	ASSERT_BO_WLOCKED(bo);
2536 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2537 
2538 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2539 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2540 	    ("bgetvp: bp already attached! %p", bp));
2541 
2542 	vhold(vp);
2543 	bp->b_vp = vp;
2544 	bp->b_bufobj = bo;
2545 	/*
2546 	 * Insert onto list for new vnode.
2547 	 */
2548 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2549 }
2550 
2551 /*
2552  * Disassociate a buffer from a vnode.
2553  */
2554 void
2555 brelvp(struct buf *bp)
2556 {
2557 	struct bufobj *bo;
2558 	struct vnode *vp;
2559 
2560 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2561 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2562 
2563 	/*
2564 	 * Delete from old vnode list, if on one.
2565 	 */
2566 	vp = bp->b_vp;		/* XXX */
2567 	bo = bp->b_bufobj;
2568 	BO_LOCK(bo);
2569 	buf_vlist_remove(bp);
2570 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2571 		bo->bo_flag &= ~BO_ONWORKLST;
2572 		mtx_lock(&sync_mtx);
2573 		LIST_REMOVE(bo, bo_synclist);
2574 		syncer_worklist_len--;
2575 		mtx_unlock(&sync_mtx);
2576 	}
2577 	bp->b_vp = NULL;
2578 	bp->b_bufobj = NULL;
2579 	BO_UNLOCK(bo);
2580 	vdrop(vp);
2581 }
2582 
2583 /*
2584  * Add an item to the syncer work queue.
2585  */
2586 static void
2587 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2588 {
2589 	int slot;
2590 
2591 	ASSERT_BO_WLOCKED(bo);
2592 
2593 	mtx_lock(&sync_mtx);
2594 	if (bo->bo_flag & BO_ONWORKLST)
2595 		LIST_REMOVE(bo, bo_synclist);
2596 	else {
2597 		bo->bo_flag |= BO_ONWORKLST;
2598 		syncer_worklist_len++;
2599 	}
2600 
2601 	if (delay > syncer_maxdelay - 2)
2602 		delay = syncer_maxdelay - 2;
2603 	slot = (syncer_delayno + delay) & syncer_mask;
2604 
2605 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2606 	mtx_unlock(&sync_mtx);
2607 }
2608 
2609 static int
2610 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2611 {
2612 	int error, len;
2613 
2614 	mtx_lock(&sync_mtx);
2615 	len = syncer_worklist_len - sync_vnode_count;
2616 	mtx_unlock(&sync_mtx);
2617 	error = SYSCTL_OUT(req, &len, sizeof(len));
2618 	return (error);
2619 }
2620 
2621 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2622     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2623     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2624 
2625 static struct proc *updateproc;
2626 static void sched_sync(void);
2627 static struct kproc_desc up_kp = {
2628 	"syncer",
2629 	sched_sync,
2630 	&updateproc
2631 };
2632 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2633 
2634 static int
2635 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2636 {
2637 	struct vnode *vp;
2638 	struct mount *mp;
2639 
2640 	*bo = LIST_FIRST(slp);
2641 	if (*bo == NULL)
2642 		return (0);
2643 	vp = bo2vnode(*bo);
2644 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2645 		return (1);
2646 	/*
2647 	 * We use vhold in case the vnode does not
2648 	 * successfully sync.  vhold prevents the vnode from
2649 	 * going away when we unlock the sync_mtx so that
2650 	 * we can acquire the vnode interlock.
2651 	 */
2652 	vholdl(vp);
2653 	mtx_unlock(&sync_mtx);
2654 	VI_UNLOCK(vp);
2655 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2656 		vdrop(vp);
2657 		mtx_lock(&sync_mtx);
2658 		return (*bo == LIST_FIRST(slp));
2659 	}
2660 	MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2661 	    (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2662 	    ("suspended mp syncing vp %p", vp));
2663 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2664 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2665 	VOP_UNLOCK(vp);
2666 	vn_finished_write(mp);
2667 	BO_LOCK(*bo);
2668 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2669 		/*
2670 		 * Put us back on the worklist.  The worklist
2671 		 * routine will remove us from our current
2672 		 * position and then add us back in at a later
2673 		 * position.
2674 		 */
2675 		vn_syncer_add_to_worklist(*bo, syncdelay);
2676 	}
2677 	BO_UNLOCK(*bo);
2678 	vdrop(vp);
2679 	mtx_lock(&sync_mtx);
2680 	return (0);
2681 }
2682 
2683 static int first_printf = 1;
2684 
2685 /*
2686  * System filesystem synchronizer daemon.
2687  */
2688 static void
2689 sched_sync(void)
2690 {
2691 	struct synclist *next, *slp;
2692 	struct bufobj *bo;
2693 	long starttime;
2694 	struct thread *td = curthread;
2695 	int last_work_seen;
2696 	int net_worklist_len;
2697 	int syncer_final_iter;
2698 	int error;
2699 
2700 	last_work_seen = 0;
2701 	syncer_final_iter = 0;
2702 	syncer_state = SYNCER_RUNNING;
2703 	starttime = time_uptime;
2704 	td->td_pflags |= TDP_NORUNNINGBUF;
2705 
2706 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2707 	    SHUTDOWN_PRI_LAST);
2708 
2709 	mtx_lock(&sync_mtx);
2710 	for (;;) {
2711 		if (syncer_state == SYNCER_FINAL_DELAY &&
2712 		    syncer_final_iter == 0) {
2713 			mtx_unlock(&sync_mtx);
2714 			kproc_suspend_check(td->td_proc);
2715 			mtx_lock(&sync_mtx);
2716 		}
2717 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2718 		if (syncer_state != SYNCER_RUNNING &&
2719 		    starttime != time_uptime) {
2720 			if (first_printf) {
2721 				printf("\nSyncing disks, vnodes remaining... ");
2722 				first_printf = 0;
2723 			}
2724 			printf("%d ", net_worklist_len);
2725 		}
2726 		starttime = time_uptime;
2727 
2728 		/*
2729 		 * Push files whose dirty time has expired.  Be careful
2730 		 * of interrupt race on slp queue.
2731 		 *
2732 		 * Skip over empty worklist slots when shutting down.
2733 		 */
2734 		do {
2735 			slp = &syncer_workitem_pending[syncer_delayno];
2736 			syncer_delayno += 1;
2737 			if (syncer_delayno == syncer_maxdelay)
2738 				syncer_delayno = 0;
2739 			next = &syncer_workitem_pending[syncer_delayno];
2740 			/*
2741 			 * If the worklist has wrapped since the
2742 			 * it was emptied of all but syncer vnodes,
2743 			 * switch to the FINAL_DELAY state and run
2744 			 * for one more second.
2745 			 */
2746 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2747 			    net_worklist_len == 0 &&
2748 			    last_work_seen == syncer_delayno) {
2749 				syncer_state = SYNCER_FINAL_DELAY;
2750 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2751 			}
2752 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2753 		    syncer_worklist_len > 0);
2754 
2755 		/*
2756 		 * Keep track of the last time there was anything
2757 		 * on the worklist other than syncer vnodes.
2758 		 * Return to the SHUTTING_DOWN state if any
2759 		 * new work appears.
2760 		 */
2761 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2762 			last_work_seen = syncer_delayno;
2763 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2764 			syncer_state = SYNCER_SHUTTING_DOWN;
2765 		while (!LIST_EMPTY(slp)) {
2766 			error = sync_vnode(slp, &bo, td);
2767 			if (error == 1) {
2768 				LIST_REMOVE(bo, bo_synclist);
2769 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2770 				continue;
2771 			}
2772 
2773 			if (first_printf == 0) {
2774 				/*
2775 				 * Drop the sync mutex, because some watchdog
2776 				 * drivers need to sleep while patting
2777 				 */
2778 				mtx_unlock(&sync_mtx);
2779 				wdog_kern_pat(WD_LASTVAL);
2780 				mtx_lock(&sync_mtx);
2781 			}
2782 		}
2783 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2784 			syncer_final_iter--;
2785 		/*
2786 		 * The variable rushjob allows the kernel to speed up the
2787 		 * processing of the filesystem syncer process. A rushjob
2788 		 * value of N tells the filesystem syncer to process the next
2789 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2790 		 * is used by the soft update code to speed up the filesystem
2791 		 * syncer process when the incore state is getting so far
2792 		 * ahead of the disk that the kernel memory pool is being
2793 		 * threatened with exhaustion.
2794 		 */
2795 		if (rushjob > 0) {
2796 			rushjob -= 1;
2797 			continue;
2798 		}
2799 		/*
2800 		 * Just sleep for a short period of time between
2801 		 * iterations when shutting down to allow some I/O
2802 		 * to happen.
2803 		 *
2804 		 * If it has taken us less than a second to process the
2805 		 * current work, then wait. Otherwise start right over
2806 		 * again. We can still lose time if any single round
2807 		 * takes more than two seconds, but it does not really
2808 		 * matter as we are just trying to generally pace the
2809 		 * filesystem activity.
2810 		 */
2811 		if (syncer_state != SYNCER_RUNNING ||
2812 		    time_uptime == starttime) {
2813 			thread_lock(td);
2814 			sched_prio(td, PPAUSE);
2815 			thread_unlock(td);
2816 		}
2817 		if (syncer_state != SYNCER_RUNNING)
2818 			cv_timedwait(&sync_wakeup, &sync_mtx,
2819 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2820 		else if (time_uptime == starttime)
2821 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2822 	}
2823 }
2824 
2825 /*
2826  * Request the syncer daemon to speed up its work.
2827  * We never push it to speed up more than half of its
2828  * normal turn time, otherwise it could take over the cpu.
2829  */
2830 int
2831 speedup_syncer(void)
2832 {
2833 	int ret = 0;
2834 
2835 	mtx_lock(&sync_mtx);
2836 	if (rushjob < syncdelay / 2) {
2837 		rushjob += 1;
2838 		stat_rush_requests += 1;
2839 		ret = 1;
2840 	}
2841 	mtx_unlock(&sync_mtx);
2842 	cv_broadcast(&sync_wakeup);
2843 	return (ret);
2844 }
2845 
2846 /*
2847  * Tell the syncer to speed up its work and run though its work
2848  * list several times, then tell it to shut down.
2849  */
2850 static void
2851 syncer_shutdown(void *arg, int howto)
2852 {
2853 
2854 	if (howto & RB_NOSYNC)
2855 		return;
2856 	mtx_lock(&sync_mtx);
2857 	syncer_state = SYNCER_SHUTTING_DOWN;
2858 	rushjob = 0;
2859 	mtx_unlock(&sync_mtx);
2860 	cv_broadcast(&sync_wakeup);
2861 	kproc_shutdown(arg, howto);
2862 }
2863 
2864 void
2865 syncer_suspend(void)
2866 {
2867 
2868 	syncer_shutdown(updateproc, 0);
2869 }
2870 
2871 void
2872 syncer_resume(void)
2873 {
2874 
2875 	mtx_lock(&sync_mtx);
2876 	first_printf = 1;
2877 	syncer_state = SYNCER_RUNNING;
2878 	mtx_unlock(&sync_mtx);
2879 	cv_broadcast(&sync_wakeup);
2880 	kproc_resume(updateproc);
2881 }
2882 
2883 /*
2884  * Move the buffer between the clean and dirty lists of its vnode.
2885  */
2886 void
2887 reassignbuf(struct buf *bp)
2888 {
2889 	struct vnode *vp;
2890 	struct bufobj *bo;
2891 	int delay;
2892 #ifdef INVARIANTS
2893 	struct bufv *bv;
2894 #endif
2895 
2896 	vp = bp->b_vp;
2897 	bo = bp->b_bufobj;
2898 
2899 	KASSERT((bp->b_flags & B_PAGING) == 0,
2900 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2901 
2902 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2903 	    bp, bp->b_vp, bp->b_flags);
2904 
2905 	BO_LOCK(bo);
2906 	buf_vlist_remove(bp);
2907 
2908 	/*
2909 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2910 	 * of clean buffers.
2911 	 */
2912 	if (bp->b_flags & B_DELWRI) {
2913 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2914 			switch (vp->v_type) {
2915 			case VDIR:
2916 				delay = dirdelay;
2917 				break;
2918 			case VCHR:
2919 				delay = metadelay;
2920 				break;
2921 			default:
2922 				delay = filedelay;
2923 			}
2924 			vn_syncer_add_to_worklist(bo, delay);
2925 		}
2926 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2927 	} else {
2928 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2929 
2930 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2931 			mtx_lock(&sync_mtx);
2932 			LIST_REMOVE(bo, bo_synclist);
2933 			syncer_worklist_len--;
2934 			mtx_unlock(&sync_mtx);
2935 			bo->bo_flag &= ~BO_ONWORKLST;
2936 		}
2937 	}
2938 #ifdef INVARIANTS
2939 	bv = &bo->bo_clean;
2940 	bp = TAILQ_FIRST(&bv->bv_hd);
2941 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2942 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2943 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2944 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2945 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2946 	bv = &bo->bo_dirty;
2947 	bp = TAILQ_FIRST(&bv->bv_hd);
2948 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2949 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2950 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2951 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2952 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2953 #endif
2954 	BO_UNLOCK(bo);
2955 }
2956 
2957 static void
2958 v_init_counters(struct vnode *vp)
2959 {
2960 
2961 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2962 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2963 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2964 
2965 	refcount_init(&vp->v_holdcnt, 1);
2966 	refcount_init(&vp->v_usecount, 1);
2967 }
2968 
2969 /*
2970  * Grab a particular vnode from the free list, increment its
2971  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2972  * is being destroyed.  Only callers who specify LK_RETRY will
2973  * see doomed vnodes.  If inactive processing was delayed in
2974  * vput try to do it here.
2975  *
2976  * usecount is manipulated using atomics without holding any locks.
2977  *
2978  * holdcnt can be manipulated using atomics without holding any locks,
2979  * except when transitioning 1<->0, in which case the interlock is held.
2980  *
2981  * Consumers which don't guarantee liveness of the vnode can use SMR to
2982  * try to get a reference. Note this operation can fail since the vnode
2983  * may be awaiting getting freed by the time they get to it.
2984  */
2985 enum vgetstate
2986 vget_prep_smr(struct vnode *vp)
2987 {
2988 	enum vgetstate vs;
2989 
2990 	VFS_SMR_ASSERT_ENTERED();
2991 
2992 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2993 		vs = VGET_USECOUNT;
2994 	} else {
2995 		if (vhold_smr(vp))
2996 			vs = VGET_HOLDCNT;
2997 		else
2998 			vs = VGET_NONE;
2999 	}
3000 	return (vs);
3001 }
3002 
3003 enum vgetstate
3004 vget_prep(struct vnode *vp)
3005 {
3006 	enum vgetstate vs;
3007 
3008 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3009 		vs = VGET_USECOUNT;
3010 	} else {
3011 		vhold(vp);
3012 		vs = VGET_HOLDCNT;
3013 	}
3014 	return (vs);
3015 }
3016 
3017 void
3018 vget_abort(struct vnode *vp, enum vgetstate vs)
3019 {
3020 
3021 	switch (vs) {
3022 	case VGET_USECOUNT:
3023 		vrele(vp);
3024 		break;
3025 	case VGET_HOLDCNT:
3026 		vdrop(vp);
3027 		break;
3028 	default:
3029 		__assert_unreachable();
3030 	}
3031 }
3032 
3033 int
3034 vget(struct vnode *vp, int flags)
3035 {
3036 	enum vgetstate vs;
3037 
3038 	vs = vget_prep(vp);
3039 	return (vget_finish(vp, flags, vs));
3040 }
3041 
3042 int
3043 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3044 {
3045 	int error;
3046 
3047 	if ((flags & LK_INTERLOCK) != 0)
3048 		ASSERT_VI_LOCKED(vp, __func__);
3049 	else
3050 		ASSERT_VI_UNLOCKED(vp, __func__);
3051 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3052 	VNPASS(vp->v_holdcnt > 0, vp);
3053 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3054 
3055 	error = vn_lock(vp, flags);
3056 	if (__predict_false(error != 0)) {
3057 		vget_abort(vp, vs);
3058 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3059 		    vp);
3060 		return (error);
3061 	}
3062 
3063 	vget_finish_ref(vp, vs);
3064 	return (0);
3065 }
3066 
3067 void
3068 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3069 {
3070 	int old;
3071 
3072 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3073 	VNPASS(vp->v_holdcnt > 0, vp);
3074 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3075 
3076 	if (vs == VGET_USECOUNT)
3077 		return;
3078 
3079 	/*
3080 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3081 	 * the vnode around. Otherwise someone else lended their hold count and
3082 	 * we have to drop ours.
3083 	 */
3084 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3085 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3086 	if (old != 0) {
3087 #ifdef INVARIANTS
3088 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3089 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3090 #else
3091 		refcount_release(&vp->v_holdcnt);
3092 #endif
3093 	}
3094 }
3095 
3096 void
3097 vref(struct vnode *vp)
3098 {
3099 	enum vgetstate vs;
3100 
3101 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3102 	vs = vget_prep(vp);
3103 	vget_finish_ref(vp, vs);
3104 }
3105 
3106 void
3107 vrefact(struct vnode *vp)
3108 {
3109 
3110 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3111 #ifdef INVARIANTS
3112 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3113 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3114 #else
3115 	refcount_acquire(&vp->v_usecount);
3116 #endif
3117 }
3118 
3119 void
3120 vlazy(struct vnode *vp)
3121 {
3122 	struct mount *mp;
3123 
3124 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3125 
3126 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3127 		return;
3128 	/*
3129 	 * We may get here for inactive routines after the vnode got doomed.
3130 	 */
3131 	if (VN_IS_DOOMED(vp))
3132 		return;
3133 	mp = vp->v_mount;
3134 	mtx_lock(&mp->mnt_listmtx);
3135 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3136 		vp->v_mflag |= VMP_LAZYLIST;
3137 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3138 		mp->mnt_lazyvnodelistsize++;
3139 	}
3140 	mtx_unlock(&mp->mnt_listmtx);
3141 }
3142 
3143 static void
3144 vunlazy(struct vnode *vp)
3145 {
3146 	struct mount *mp;
3147 
3148 	ASSERT_VI_LOCKED(vp, __func__);
3149 	VNPASS(!VN_IS_DOOMED(vp), vp);
3150 
3151 	mp = vp->v_mount;
3152 	mtx_lock(&mp->mnt_listmtx);
3153 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3154 	/*
3155 	 * Don't remove the vnode from the lazy list if another thread
3156 	 * has increased the hold count. It may have re-enqueued the
3157 	 * vnode to the lazy list and is now responsible for its
3158 	 * removal.
3159 	 */
3160 	if (vp->v_holdcnt == 0) {
3161 		vp->v_mflag &= ~VMP_LAZYLIST;
3162 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3163 		mp->mnt_lazyvnodelistsize--;
3164 	}
3165 	mtx_unlock(&mp->mnt_listmtx);
3166 }
3167 
3168 /*
3169  * This routine is only meant to be called from vgonel prior to dooming
3170  * the vnode.
3171  */
3172 static void
3173 vunlazy_gone(struct vnode *vp)
3174 {
3175 	struct mount *mp;
3176 
3177 	ASSERT_VOP_ELOCKED(vp, __func__);
3178 	ASSERT_VI_LOCKED(vp, __func__);
3179 	VNPASS(!VN_IS_DOOMED(vp), vp);
3180 
3181 	if (vp->v_mflag & VMP_LAZYLIST) {
3182 		mp = vp->v_mount;
3183 		mtx_lock(&mp->mnt_listmtx);
3184 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3185 		vp->v_mflag &= ~VMP_LAZYLIST;
3186 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3187 		mp->mnt_lazyvnodelistsize--;
3188 		mtx_unlock(&mp->mnt_listmtx);
3189 	}
3190 }
3191 
3192 static void
3193 vdefer_inactive(struct vnode *vp)
3194 {
3195 
3196 	ASSERT_VI_LOCKED(vp, __func__);
3197 	VNPASS(vp->v_holdcnt > 0, vp);
3198 	if (VN_IS_DOOMED(vp)) {
3199 		vdropl(vp);
3200 		return;
3201 	}
3202 	if (vp->v_iflag & VI_DEFINACT) {
3203 		VNPASS(vp->v_holdcnt > 1, vp);
3204 		vdropl(vp);
3205 		return;
3206 	}
3207 	if (vp->v_usecount > 0) {
3208 		vp->v_iflag &= ~VI_OWEINACT;
3209 		vdropl(vp);
3210 		return;
3211 	}
3212 	vlazy(vp);
3213 	vp->v_iflag |= VI_DEFINACT;
3214 	VI_UNLOCK(vp);
3215 	atomic_add_long(&deferred_inact, 1);
3216 }
3217 
3218 static void
3219 vdefer_inactive_unlocked(struct vnode *vp)
3220 {
3221 
3222 	VI_LOCK(vp);
3223 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3224 		vdropl(vp);
3225 		return;
3226 	}
3227 	vdefer_inactive(vp);
3228 }
3229 
3230 enum vput_op { VRELE, VPUT, VUNREF };
3231 
3232 /*
3233  * Handle ->v_usecount transitioning to 0.
3234  *
3235  * By releasing the last usecount we take ownership of the hold count which
3236  * provides liveness of the vnode, meaning we have to vdrop.
3237  *
3238  * For all vnodes we may need to perform inactive processing. It requires an
3239  * exclusive lock on the vnode, while it is legal to call here with only a
3240  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3241  * inactive processing gets deferred to the syncer.
3242  *
3243  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3244  * on the lock being held all the way until VOP_INACTIVE. This in particular
3245  * happens with UFS which adds half-constructed vnodes to the hash, where they
3246  * can be found by other code.
3247  */
3248 static void
3249 vput_final(struct vnode *vp, enum vput_op func)
3250 {
3251 	int error;
3252 	bool want_unlock;
3253 
3254 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3255 	VNPASS(vp->v_holdcnt > 0, vp);
3256 
3257 	VI_LOCK(vp);
3258 
3259 	/*
3260 	 * By the time we got here someone else might have transitioned
3261 	 * the count back to > 0.
3262 	 */
3263 	if (vp->v_usecount > 0)
3264 		goto out;
3265 
3266 	/*
3267 	 * If the vnode is doomed vgone already performed inactive processing
3268 	 * (if needed).
3269 	 */
3270 	if (VN_IS_DOOMED(vp))
3271 		goto out;
3272 
3273 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3274 		goto out;
3275 
3276 	if (vp->v_iflag & VI_DOINGINACT)
3277 		goto out;
3278 
3279 	/*
3280 	 * Locking operations here will drop the interlock and possibly the
3281 	 * vnode lock, opening a window where the vnode can get doomed all the
3282 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3283 	 * perform inactive.
3284 	 */
3285 	vp->v_iflag |= VI_OWEINACT;
3286 	want_unlock = false;
3287 	error = 0;
3288 	switch (func) {
3289 	case VRELE:
3290 		switch (VOP_ISLOCKED(vp)) {
3291 		case LK_EXCLUSIVE:
3292 			break;
3293 		case LK_EXCLOTHER:
3294 		case 0:
3295 			want_unlock = true;
3296 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3297 			VI_LOCK(vp);
3298 			break;
3299 		default:
3300 			/*
3301 			 * The lock has at least one sharer, but we have no way
3302 			 * to conclude whether this is us. Play it safe and
3303 			 * defer processing.
3304 			 */
3305 			error = EAGAIN;
3306 			break;
3307 		}
3308 		break;
3309 	case VPUT:
3310 		want_unlock = true;
3311 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3312 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3313 			    LK_NOWAIT);
3314 			VI_LOCK(vp);
3315 		}
3316 		break;
3317 	case VUNREF:
3318 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3319 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3320 			VI_LOCK(vp);
3321 		}
3322 		break;
3323 	}
3324 	if (error == 0) {
3325 		if (func == VUNREF) {
3326 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3327 			    ("recursive vunref"));
3328 			vp->v_vflag |= VV_UNREF;
3329 		}
3330 		for (;;) {
3331 			error = vinactive(vp);
3332 			if (want_unlock)
3333 				VOP_UNLOCK(vp);
3334 			if (error != ERELOOKUP || !want_unlock)
3335 				break;
3336 			VOP_LOCK(vp, LK_EXCLUSIVE);
3337 		}
3338 		if (func == VUNREF)
3339 			vp->v_vflag &= ~VV_UNREF;
3340 		vdropl(vp);
3341 	} else {
3342 		vdefer_inactive(vp);
3343 	}
3344 	return;
3345 out:
3346 	if (func == VPUT)
3347 		VOP_UNLOCK(vp);
3348 	vdropl(vp);
3349 }
3350 
3351 /*
3352  * Decrement ->v_usecount for a vnode.
3353  *
3354  * Releasing the last use count requires additional processing, see vput_final
3355  * above for details.
3356  *
3357  * Comment above each variant denotes lock state on entry and exit.
3358  */
3359 
3360 /*
3361  * in: any
3362  * out: same as passed in
3363  */
3364 void
3365 vrele(struct vnode *vp)
3366 {
3367 
3368 	ASSERT_VI_UNLOCKED(vp, __func__);
3369 	if (!refcount_release(&vp->v_usecount))
3370 		return;
3371 	vput_final(vp, VRELE);
3372 }
3373 
3374 /*
3375  * in: locked
3376  * out: unlocked
3377  */
3378 void
3379 vput(struct vnode *vp)
3380 {
3381 
3382 	ASSERT_VOP_LOCKED(vp, __func__);
3383 	ASSERT_VI_UNLOCKED(vp, __func__);
3384 	if (!refcount_release(&vp->v_usecount)) {
3385 		VOP_UNLOCK(vp);
3386 		return;
3387 	}
3388 	vput_final(vp, VPUT);
3389 }
3390 
3391 /*
3392  * in: locked
3393  * out: locked
3394  */
3395 void
3396 vunref(struct vnode *vp)
3397 {
3398 
3399 	ASSERT_VOP_LOCKED(vp, __func__);
3400 	ASSERT_VI_UNLOCKED(vp, __func__);
3401 	if (!refcount_release(&vp->v_usecount))
3402 		return;
3403 	vput_final(vp, VUNREF);
3404 }
3405 
3406 void
3407 vhold(struct vnode *vp)
3408 {
3409 	int old;
3410 
3411 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3412 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3413 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3414 	    ("%s: wrong hold count %d", __func__, old));
3415 	if (old == 0)
3416 		vfs_freevnodes_dec();
3417 }
3418 
3419 void
3420 vholdnz(struct vnode *vp)
3421 {
3422 
3423 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3424 #ifdef INVARIANTS
3425 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3426 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3427 	    ("%s: wrong hold count %d", __func__, old));
3428 #else
3429 	atomic_add_int(&vp->v_holdcnt, 1);
3430 #endif
3431 }
3432 
3433 /*
3434  * Grab a hold count unless the vnode is freed.
3435  *
3436  * Only use this routine if vfs smr is the only protection you have against
3437  * freeing the vnode.
3438  *
3439  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3440  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3441  * the thread which managed to set the flag.
3442  *
3443  * It may be tempting to replace the loop with:
3444  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3445  * if (count & VHOLD_NO_SMR) {
3446  *     backpedal and error out;
3447  * }
3448  *
3449  * However, while this is more performant, it hinders debugging by eliminating
3450  * the previously mentioned invariant.
3451  */
3452 bool
3453 vhold_smr(struct vnode *vp)
3454 {
3455 	int count;
3456 
3457 	VFS_SMR_ASSERT_ENTERED();
3458 
3459 	count = atomic_load_int(&vp->v_holdcnt);
3460 	for (;;) {
3461 		if (count & VHOLD_NO_SMR) {
3462 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3463 			    ("non-zero hold count with flags %d\n", count));
3464 			return (false);
3465 		}
3466 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3467 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3468 			if (count == 0)
3469 				vfs_freevnodes_dec();
3470 			return (true);
3471 		}
3472 	}
3473 }
3474 
3475 /*
3476  * Hold a free vnode for recycling.
3477  *
3478  * Note: vnode_init references this comment.
3479  *
3480  * Attempts to recycle only need the global vnode list lock and have no use for
3481  * SMR.
3482  *
3483  * However, vnodes get inserted into the global list before they get fully
3484  * initialized and stay there until UMA decides to free the memory. This in
3485  * particular means the target can be found before it becomes usable and after
3486  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3487  * VHOLD_NO_SMR.
3488  *
3489  * Note: the vnode may gain more references after we transition the count 0->1.
3490  */
3491 static bool
3492 vhold_recycle_free(struct vnode *vp)
3493 {
3494 	int count;
3495 
3496 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3497 
3498 	count = atomic_load_int(&vp->v_holdcnt);
3499 	for (;;) {
3500 		if (count & VHOLD_NO_SMR) {
3501 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3502 			    ("non-zero hold count with flags %d\n", count));
3503 			return (false);
3504 		}
3505 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3506 		if (count > 0) {
3507 			return (false);
3508 		}
3509 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3510 			vfs_freevnodes_dec();
3511 			return (true);
3512 		}
3513 	}
3514 }
3515 
3516 static void __noinline
3517 vdbatch_process(struct vdbatch *vd)
3518 {
3519 	struct vnode *vp;
3520 	int i;
3521 
3522 	mtx_assert(&vd->lock, MA_OWNED);
3523 	MPASS(curthread->td_pinned > 0);
3524 	MPASS(vd->index == VDBATCH_SIZE);
3525 
3526 	critical_enter();
3527 	if (mtx_trylock(&vnode_list_mtx)) {
3528 		for (i = 0; i < VDBATCH_SIZE; i++) {
3529 			vp = vd->tab[i];
3530 			vd->tab[i] = NULL;
3531 			TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3532 			TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3533 			MPASS(vp->v_dbatchcpu != NOCPU);
3534 			vp->v_dbatchcpu = NOCPU;
3535 		}
3536 		mtx_unlock(&vnode_list_mtx);
3537 	} else {
3538 		for (i = 0; i < VDBATCH_SIZE; i++) {
3539 			vp = vd->tab[i];
3540 			vd->tab[i] = NULL;
3541 			MPASS(vp->v_dbatchcpu != NOCPU);
3542 			vp->v_dbatchcpu = NOCPU;
3543 		}
3544 	}
3545 	vd->index = 0;
3546 	critical_exit();
3547 }
3548 
3549 static void
3550 vdbatch_enqueue(struct vnode *vp)
3551 {
3552 	struct vdbatch *vd;
3553 
3554 	ASSERT_VI_LOCKED(vp, __func__);
3555 	VNPASS(!VN_IS_DOOMED(vp), vp);
3556 
3557 	if (vp->v_dbatchcpu != NOCPU) {
3558 		VI_UNLOCK(vp);
3559 		return;
3560 	}
3561 
3562 	sched_pin();
3563 	vd = DPCPU_PTR(vd);
3564 	mtx_lock(&vd->lock);
3565 	MPASS(vd->index < VDBATCH_SIZE);
3566 	MPASS(vd->tab[vd->index] == NULL);
3567 	/*
3568 	 * A hack: we depend on being pinned so that we know what to put in
3569 	 * ->v_dbatchcpu.
3570 	 */
3571 	vp->v_dbatchcpu = curcpu;
3572 	vd->tab[vd->index] = vp;
3573 	vd->index++;
3574 	VI_UNLOCK(vp);
3575 	if (vd->index == VDBATCH_SIZE)
3576 		vdbatch_process(vd);
3577 	mtx_unlock(&vd->lock);
3578 	sched_unpin();
3579 }
3580 
3581 /*
3582  * This routine must only be called for vnodes which are about to be
3583  * deallocated. Supporting dequeue for arbitrary vndoes would require
3584  * validating that the locked batch matches.
3585  */
3586 static void
3587 vdbatch_dequeue(struct vnode *vp)
3588 {
3589 	struct vdbatch *vd;
3590 	int i;
3591 	short cpu;
3592 
3593 	VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3594 
3595 	cpu = vp->v_dbatchcpu;
3596 	if (cpu == NOCPU)
3597 		return;
3598 
3599 	vd = DPCPU_ID_PTR(cpu, vd);
3600 	mtx_lock(&vd->lock);
3601 	for (i = 0; i < vd->index; i++) {
3602 		if (vd->tab[i] != vp)
3603 			continue;
3604 		vp->v_dbatchcpu = NOCPU;
3605 		vd->index--;
3606 		vd->tab[i] = vd->tab[vd->index];
3607 		vd->tab[vd->index] = NULL;
3608 		break;
3609 	}
3610 	mtx_unlock(&vd->lock);
3611 	/*
3612 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3613 	 */
3614 	MPASS(vp->v_dbatchcpu == NOCPU);
3615 }
3616 
3617 /*
3618  * Drop the hold count of the vnode.  If this is the last reference to
3619  * the vnode we place it on the free list unless it has been vgone'd
3620  * (marked VIRF_DOOMED) in which case we will free it.
3621  *
3622  * Because the vnode vm object keeps a hold reference on the vnode if
3623  * there is at least one resident non-cached page, the vnode cannot
3624  * leave the active list without the page cleanup done.
3625  */
3626 static void __noinline
3627 vdropl_final(struct vnode *vp)
3628 {
3629 
3630 	ASSERT_VI_LOCKED(vp, __func__);
3631 	VNPASS(VN_IS_DOOMED(vp), vp);
3632 	/*
3633 	 * Set the VHOLD_NO_SMR flag.
3634 	 *
3635 	 * We may be racing against vhold_smr. If they win we can just pretend
3636 	 * we never got this far, they will vdrop later.
3637 	 */
3638 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3639 		vfs_freevnodes_inc();
3640 		VI_UNLOCK(vp);
3641 		/*
3642 		 * We lost the aforementioned race. Any subsequent access is
3643 		 * invalid as they might have managed to vdropl on their own.
3644 		 */
3645 		return;
3646 	}
3647 	/*
3648 	 * Don't bump freevnodes as this one is going away.
3649 	 */
3650 	freevnode(vp);
3651 }
3652 
3653 void
3654 vdrop(struct vnode *vp)
3655 {
3656 
3657 	ASSERT_VI_UNLOCKED(vp, __func__);
3658 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3659 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3660 		return;
3661 	VI_LOCK(vp);
3662 	vdropl(vp);
3663 }
3664 
3665 static void __always_inline
3666 vdropl_impl(struct vnode *vp, bool enqueue)
3667 {
3668 
3669 	ASSERT_VI_LOCKED(vp, __func__);
3670 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3671 	if (!refcount_release(&vp->v_holdcnt)) {
3672 		VI_UNLOCK(vp);
3673 		return;
3674 	}
3675 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3676 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3677 	if (VN_IS_DOOMED(vp)) {
3678 		vdropl_final(vp);
3679 		return;
3680 	}
3681 
3682 	vfs_freevnodes_inc();
3683 	if (vp->v_mflag & VMP_LAZYLIST) {
3684 		vunlazy(vp);
3685 	}
3686 
3687 	if (!enqueue) {
3688 		VI_UNLOCK(vp);
3689 		return;
3690 	}
3691 
3692 	/*
3693 	 * Also unlocks the interlock. We can't assert on it as we
3694 	 * released our hold and by now the vnode might have been
3695 	 * freed.
3696 	 */
3697 	vdbatch_enqueue(vp);
3698 }
3699 
3700 void
3701 vdropl(struct vnode *vp)
3702 {
3703 
3704 	vdropl_impl(vp, true);
3705 }
3706 
3707 /*
3708  * vdrop a vnode when recycling
3709  *
3710  * This is a special case routine only to be used when recycling, differs from
3711  * regular vdrop by not requeieing the vnode on LRU.
3712  *
3713  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3714  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3715  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3716  * loop which can last for as long as writes are frozen.
3717  */
3718 static void
3719 vdropl_recycle(struct vnode *vp)
3720 {
3721 
3722 	vdropl_impl(vp, false);
3723 }
3724 
3725 static void
3726 vdrop_recycle(struct vnode *vp)
3727 {
3728 
3729 	VI_LOCK(vp);
3730 	vdropl_recycle(vp);
3731 }
3732 
3733 /*
3734  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3735  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3736  */
3737 static int
3738 vinactivef(struct vnode *vp)
3739 {
3740 	struct vm_object *obj;
3741 	int error;
3742 
3743 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3744 	ASSERT_VI_LOCKED(vp, "vinactive");
3745 	VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
3746 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3747 	vp->v_iflag |= VI_DOINGINACT;
3748 	vp->v_iflag &= ~VI_OWEINACT;
3749 	VI_UNLOCK(vp);
3750 	/*
3751 	 * Before moving off the active list, we must be sure that any
3752 	 * modified pages are converted into the vnode's dirty
3753 	 * buffers, since these will no longer be checked once the
3754 	 * vnode is on the inactive list.
3755 	 *
3756 	 * The write-out of the dirty pages is asynchronous.  At the
3757 	 * point that VOP_INACTIVE() is called, there could still be
3758 	 * pending I/O and dirty pages in the object.
3759 	 */
3760 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3761 	    vm_object_mightbedirty(obj)) {
3762 		VM_OBJECT_WLOCK(obj);
3763 		vm_object_page_clean(obj, 0, 0, 0);
3764 		VM_OBJECT_WUNLOCK(obj);
3765 	}
3766 	error = VOP_INACTIVE(vp);
3767 	VI_LOCK(vp);
3768 	VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
3769 	vp->v_iflag &= ~VI_DOINGINACT;
3770 	return (error);
3771 }
3772 
3773 int
3774 vinactive(struct vnode *vp)
3775 {
3776 
3777 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3778 	ASSERT_VI_LOCKED(vp, "vinactive");
3779 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3780 
3781 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3782 		return (0);
3783 	if (vp->v_iflag & VI_DOINGINACT)
3784 		return (0);
3785 	if (vp->v_usecount > 0) {
3786 		vp->v_iflag &= ~VI_OWEINACT;
3787 		return (0);
3788 	}
3789 	return (vinactivef(vp));
3790 }
3791 
3792 /*
3793  * Remove any vnodes in the vnode table belonging to mount point mp.
3794  *
3795  * If FORCECLOSE is not specified, there should not be any active ones,
3796  * return error if any are found (nb: this is a user error, not a
3797  * system error). If FORCECLOSE is specified, detach any active vnodes
3798  * that are found.
3799  *
3800  * If WRITECLOSE is set, only flush out regular file vnodes open for
3801  * writing.
3802  *
3803  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3804  *
3805  * `rootrefs' specifies the base reference count for the root vnode
3806  * of this filesystem. The root vnode is considered busy if its
3807  * v_usecount exceeds this value. On a successful return, vflush(, td)
3808  * will call vrele() on the root vnode exactly rootrefs times.
3809  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3810  * be zero.
3811  */
3812 #ifdef DIAGNOSTIC
3813 static int busyprt = 0;		/* print out busy vnodes */
3814 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3815 #endif
3816 
3817 int
3818 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3819 {
3820 	struct vnode *vp, *mvp, *rootvp = NULL;
3821 	struct vattr vattr;
3822 	int busy = 0, error;
3823 
3824 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3825 	    rootrefs, flags);
3826 	if (rootrefs > 0) {
3827 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3828 		    ("vflush: bad args"));
3829 		/*
3830 		 * Get the filesystem root vnode. We can vput() it
3831 		 * immediately, since with rootrefs > 0, it won't go away.
3832 		 */
3833 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3834 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3835 			    __func__, error);
3836 			return (error);
3837 		}
3838 		vput(rootvp);
3839 	}
3840 loop:
3841 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3842 		vholdl(vp);
3843 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3844 		if (error) {
3845 			vdrop(vp);
3846 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3847 			goto loop;
3848 		}
3849 		/*
3850 		 * Skip over a vnodes marked VV_SYSTEM.
3851 		 */
3852 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3853 			VOP_UNLOCK(vp);
3854 			vdrop(vp);
3855 			continue;
3856 		}
3857 		/*
3858 		 * If WRITECLOSE is set, flush out unlinked but still open
3859 		 * files (even if open only for reading) and regular file
3860 		 * vnodes open for writing.
3861 		 */
3862 		if (flags & WRITECLOSE) {
3863 			if (vp->v_object != NULL) {
3864 				VM_OBJECT_WLOCK(vp->v_object);
3865 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3866 				VM_OBJECT_WUNLOCK(vp->v_object);
3867 			}
3868 			do {
3869 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3870 			} while (error == ERELOOKUP);
3871 			if (error != 0) {
3872 				VOP_UNLOCK(vp);
3873 				vdrop(vp);
3874 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3875 				return (error);
3876 			}
3877 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3878 			VI_LOCK(vp);
3879 
3880 			if ((vp->v_type == VNON ||
3881 			    (error == 0 && vattr.va_nlink > 0)) &&
3882 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3883 				VOP_UNLOCK(vp);
3884 				vdropl(vp);
3885 				continue;
3886 			}
3887 		} else
3888 			VI_LOCK(vp);
3889 		/*
3890 		 * With v_usecount == 0, all we need to do is clear out the
3891 		 * vnode data structures and we are done.
3892 		 *
3893 		 * If FORCECLOSE is set, forcibly close the vnode.
3894 		 */
3895 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3896 			vgonel(vp);
3897 		} else {
3898 			busy++;
3899 #ifdef DIAGNOSTIC
3900 			if (busyprt)
3901 				vn_printf(vp, "vflush: busy vnode ");
3902 #endif
3903 		}
3904 		VOP_UNLOCK(vp);
3905 		vdropl(vp);
3906 	}
3907 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3908 		/*
3909 		 * If just the root vnode is busy, and if its refcount
3910 		 * is equal to `rootrefs', then go ahead and kill it.
3911 		 */
3912 		VI_LOCK(rootvp);
3913 		KASSERT(busy > 0, ("vflush: not busy"));
3914 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3915 		    ("vflush: usecount %d < rootrefs %d",
3916 		     rootvp->v_usecount, rootrefs));
3917 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3918 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3919 			vgone(rootvp);
3920 			VOP_UNLOCK(rootvp);
3921 			busy = 0;
3922 		} else
3923 			VI_UNLOCK(rootvp);
3924 	}
3925 	if (busy) {
3926 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3927 		    busy);
3928 		return (EBUSY);
3929 	}
3930 	for (; rootrefs > 0; rootrefs--)
3931 		vrele(rootvp);
3932 	return (0);
3933 }
3934 
3935 /*
3936  * Recycle an unused vnode to the front of the free list.
3937  */
3938 int
3939 vrecycle(struct vnode *vp)
3940 {
3941 	int recycled;
3942 
3943 	VI_LOCK(vp);
3944 	recycled = vrecyclel(vp);
3945 	VI_UNLOCK(vp);
3946 	return (recycled);
3947 }
3948 
3949 /*
3950  * vrecycle, with the vp interlock held.
3951  */
3952 int
3953 vrecyclel(struct vnode *vp)
3954 {
3955 	int recycled;
3956 
3957 	ASSERT_VOP_ELOCKED(vp, __func__);
3958 	ASSERT_VI_LOCKED(vp, __func__);
3959 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3960 	recycled = 0;
3961 	if (vp->v_usecount == 0) {
3962 		recycled = 1;
3963 		vgonel(vp);
3964 	}
3965 	return (recycled);
3966 }
3967 
3968 /*
3969  * Eliminate all activity associated with a vnode
3970  * in preparation for reuse.
3971  */
3972 void
3973 vgone(struct vnode *vp)
3974 {
3975 	VI_LOCK(vp);
3976 	vgonel(vp);
3977 	VI_UNLOCK(vp);
3978 }
3979 
3980 /*
3981  * Notify upper mounts about reclaimed or unlinked vnode.
3982  */
3983 void
3984 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
3985 {
3986 	struct mount *mp;
3987 	struct mount_upper_node *ump;
3988 
3989 	mp = atomic_load_ptr(&vp->v_mount);
3990 	if (mp == NULL)
3991 		return;
3992 	if (TAILQ_EMPTY(&mp->mnt_notify))
3993 		return;
3994 
3995 	MNT_ILOCK(mp);
3996 	mp->mnt_upper_pending++;
3997 	KASSERT(mp->mnt_upper_pending > 0,
3998 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3999 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4000 		MNT_IUNLOCK(mp);
4001 		switch (event) {
4002 		case VFS_NOTIFY_UPPER_RECLAIM:
4003 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
4004 			break;
4005 		case VFS_NOTIFY_UPPER_UNLINK:
4006 			VFS_UNLINK_LOWERVP(ump->mp, vp);
4007 			break;
4008 		}
4009 		MNT_ILOCK(mp);
4010 	}
4011 	mp->mnt_upper_pending--;
4012 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4013 	    mp->mnt_upper_pending == 0) {
4014 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4015 		wakeup(&mp->mnt_uppers);
4016 	}
4017 	MNT_IUNLOCK(mp);
4018 }
4019 
4020 /*
4021  * vgone, with the vp interlock held.
4022  */
4023 static void
4024 vgonel(struct vnode *vp)
4025 {
4026 	struct thread *td;
4027 	struct mount *mp;
4028 	vm_object_t object;
4029 	bool active, doinginact, oweinact;
4030 
4031 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4032 	ASSERT_VI_LOCKED(vp, "vgonel");
4033 	VNASSERT(vp->v_holdcnt, vp,
4034 	    ("vgonel: vp %p has no reference.", vp));
4035 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4036 	td = curthread;
4037 
4038 	/*
4039 	 * Don't vgonel if we're already doomed.
4040 	 */
4041 	if (VN_IS_DOOMED(vp)) {
4042 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4043 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4044 		return;
4045 	}
4046 	/*
4047 	 * Paired with freevnode.
4048 	 */
4049 	vn_seqc_write_begin_locked(vp);
4050 	vunlazy_gone(vp);
4051 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4052 	vn_set_state(vp, VSTATE_DESTROYING);
4053 
4054 	/*
4055 	 * Check to see if the vnode is in use.  If so, we have to
4056 	 * call VOP_CLOSE() and VOP_INACTIVE().
4057 	 *
4058 	 * It could be that VOP_INACTIVE() requested reclamation, in
4059 	 * which case we should avoid recursion, so check
4060 	 * VI_DOINGINACT.  This is not precise but good enough.
4061 	 */
4062 	active = vp->v_usecount > 0;
4063 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4064 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4065 
4066 	/*
4067 	 * If we need to do inactive VI_OWEINACT will be set.
4068 	 */
4069 	if (vp->v_iflag & VI_DEFINACT) {
4070 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4071 		vp->v_iflag &= ~VI_DEFINACT;
4072 		vdropl(vp);
4073 	} else {
4074 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4075 		VI_UNLOCK(vp);
4076 	}
4077 	cache_purge_vgone(vp);
4078 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4079 
4080 	/*
4081 	 * If purging an active vnode, it must be closed and
4082 	 * deactivated before being reclaimed.
4083 	 */
4084 	if (active)
4085 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4086 	if (!doinginact) {
4087 		do {
4088 			if (oweinact || active) {
4089 				VI_LOCK(vp);
4090 				vinactivef(vp);
4091 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4092 				VI_UNLOCK(vp);
4093 			}
4094 		} while (oweinact);
4095 	}
4096 	if (vp->v_type == VSOCK)
4097 		vfs_unp_reclaim(vp);
4098 
4099 	/*
4100 	 * Clean out any buffers associated with the vnode.
4101 	 * If the flush fails, just toss the buffers.
4102 	 */
4103 	mp = NULL;
4104 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4105 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4106 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4107 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4108 			;
4109 	}
4110 
4111 	BO_LOCK(&vp->v_bufobj);
4112 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4113 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4114 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4115 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4116 	    ("vp %p bufobj not invalidated", vp));
4117 
4118 	/*
4119 	 * For VMIO bufobj, BO_DEAD is set later, or in
4120 	 * vm_object_terminate() after the object's page queue is
4121 	 * flushed.
4122 	 */
4123 	object = vp->v_bufobj.bo_object;
4124 	if (object == NULL)
4125 		vp->v_bufobj.bo_flag |= BO_DEAD;
4126 	BO_UNLOCK(&vp->v_bufobj);
4127 
4128 	/*
4129 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4130 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4131 	 * should not touch the object borrowed from the lower vnode
4132 	 * (the handle check).
4133 	 */
4134 	if (object != NULL && object->type == OBJT_VNODE &&
4135 	    object->handle == vp)
4136 		vnode_destroy_vobject(vp);
4137 
4138 	/*
4139 	 * Reclaim the vnode.
4140 	 */
4141 	if (VOP_RECLAIM(vp))
4142 		panic("vgone: cannot reclaim");
4143 	if (mp != NULL)
4144 		vn_finished_secondary_write(mp);
4145 	VNASSERT(vp->v_object == NULL, vp,
4146 	    ("vop_reclaim left v_object vp=%p", vp));
4147 	/*
4148 	 * Clear the advisory locks and wake up waiting threads.
4149 	 */
4150 	if (vp->v_lockf != NULL) {
4151 		(void)VOP_ADVLOCKPURGE(vp);
4152 		vp->v_lockf = NULL;
4153 	}
4154 	/*
4155 	 * Delete from old mount point vnode list.
4156 	 */
4157 	if (vp->v_mount == NULL) {
4158 		VI_LOCK(vp);
4159 	} else {
4160 		delmntque(vp);
4161 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4162 	}
4163 	/*
4164 	 * Done with purge, reset to the standard lock and invalidate
4165 	 * the vnode.
4166 	 */
4167 	vp->v_vnlock = &vp->v_lock;
4168 	vp->v_op = &dead_vnodeops;
4169 	vp->v_type = VBAD;
4170 	vn_set_state(vp, VSTATE_DEAD);
4171 }
4172 
4173 /*
4174  * Print out a description of a vnode.
4175  */
4176 static const char *const vtypename[] = {
4177 	[VNON] = "VNON",
4178 	[VREG] = "VREG",
4179 	[VDIR] = "VDIR",
4180 	[VBLK] = "VBLK",
4181 	[VCHR] = "VCHR",
4182 	[VLNK] = "VLNK",
4183 	[VSOCK] = "VSOCK",
4184 	[VFIFO] = "VFIFO",
4185 	[VBAD] = "VBAD",
4186 	[VMARKER] = "VMARKER",
4187 };
4188 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4189     "vnode type name not added to vtypename");
4190 
4191 static const char *const vstatename[] = {
4192 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4193 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4194 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4195 	[VSTATE_DEAD] = "VSTATE_DEAD",
4196 };
4197 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4198     "vnode state name not added to vstatename");
4199 
4200 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4201     "new hold count flag not added to vn_printf");
4202 
4203 void
4204 vn_printf(struct vnode *vp, const char *fmt, ...)
4205 {
4206 	va_list ap;
4207 	char buf[256], buf2[16];
4208 	u_long flags;
4209 	u_int holdcnt;
4210 	short irflag;
4211 
4212 	va_start(ap, fmt);
4213 	vprintf(fmt, ap);
4214 	va_end(ap);
4215 	printf("%p: ", (void *)vp);
4216 	printf("type %s state %s op %p\n", vtypename[vp->v_type],
4217 	    vstatename[vp->v_state], vp->v_op);
4218 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4219 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4220 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4221 	    vp->v_seqc_users);
4222 	switch (vp->v_type) {
4223 	case VDIR:
4224 		printf(" mountedhere %p\n", vp->v_mountedhere);
4225 		break;
4226 	case VCHR:
4227 		printf(" rdev %p\n", vp->v_rdev);
4228 		break;
4229 	case VSOCK:
4230 		printf(" socket %p\n", vp->v_unpcb);
4231 		break;
4232 	case VFIFO:
4233 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4234 		break;
4235 	default:
4236 		printf("\n");
4237 		break;
4238 	}
4239 	buf[0] = '\0';
4240 	buf[1] = '\0';
4241 	if (holdcnt & VHOLD_NO_SMR)
4242 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4243 	printf("    hold count flags (%s)\n", buf + 1);
4244 
4245 	buf[0] = '\0';
4246 	buf[1] = '\0';
4247 	irflag = vn_irflag_read(vp);
4248 	if (irflag & VIRF_DOOMED)
4249 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4250 	if (irflag & VIRF_PGREAD)
4251 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4252 	if (irflag & VIRF_MOUNTPOINT)
4253 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4254 	if (irflag & VIRF_TEXT_REF)
4255 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4256 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4257 	if (flags != 0) {
4258 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4259 		strlcat(buf, buf2, sizeof(buf));
4260 	}
4261 	if (vp->v_vflag & VV_ROOT)
4262 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4263 	if (vp->v_vflag & VV_ISTTY)
4264 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4265 	if (vp->v_vflag & VV_NOSYNC)
4266 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4267 	if (vp->v_vflag & VV_ETERNALDEV)
4268 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4269 	if (vp->v_vflag & VV_CACHEDLABEL)
4270 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4271 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4272 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4273 	if (vp->v_vflag & VV_COPYONWRITE)
4274 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4275 	if (vp->v_vflag & VV_SYSTEM)
4276 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4277 	if (vp->v_vflag & VV_PROCDEP)
4278 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4279 	if (vp->v_vflag & VV_DELETED)
4280 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4281 	if (vp->v_vflag & VV_MD)
4282 		strlcat(buf, "|VV_MD", sizeof(buf));
4283 	if (vp->v_vflag & VV_FORCEINSMQ)
4284 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4285 	if (vp->v_vflag & VV_READLINK)
4286 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4287 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4288 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4289 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4290 	if (flags != 0) {
4291 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4292 		strlcat(buf, buf2, sizeof(buf));
4293 	}
4294 	if (vp->v_iflag & VI_MOUNT)
4295 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4296 	if (vp->v_iflag & VI_DOINGINACT)
4297 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4298 	if (vp->v_iflag & VI_OWEINACT)
4299 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4300 	if (vp->v_iflag & VI_DEFINACT)
4301 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4302 	if (vp->v_iflag & VI_FOPENING)
4303 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4304 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4305 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4306 	if (flags != 0) {
4307 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4308 		strlcat(buf, buf2, sizeof(buf));
4309 	}
4310 	if (vp->v_mflag & VMP_LAZYLIST)
4311 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4312 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4313 	if (flags != 0) {
4314 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4315 		strlcat(buf, buf2, sizeof(buf));
4316 	}
4317 	printf("    flags (%s)", buf + 1);
4318 	if (mtx_owned(VI_MTX(vp)))
4319 		printf(" VI_LOCKed");
4320 	printf("\n");
4321 	if (vp->v_object != NULL)
4322 		printf("    v_object %p ref %d pages %d "
4323 		    "cleanbuf %d dirtybuf %d\n",
4324 		    vp->v_object, vp->v_object->ref_count,
4325 		    vp->v_object->resident_page_count,
4326 		    vp->v_bufobj.bo_clean.bv_cnt,
4327 		    vp->v_bufobj.bo_dirty.bv_cnt);
4328 	printf("    ");
4329 	lockmgr_printinfo(vp->v_vnlock);
4330 	if (vp->v_data != NULL)
4331 		VOP_PRINT(vp);
4332 }
4333 
4334 #ifdef DDB
4335 /*
4336  * List all of the locked vnodes in the system.
4337  * Called when debugging the kernel.
4338  */
4339 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4340 {
4341 	struct mount *mp;
4342 	struct vnode *vp;
4343 
4344 	/*
4345 	 * Note: because this is DDB, we can't obey the locking semantics
4346 	 * for these structures, which means we could catch an inconsistent
4347 	 * state and dereference a nasty pointer.  Not much to be done
4348 	 * about that.
4349 	 */
4350 	db_printf("Locked vnodes\n");
4351 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4352 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4353 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4354 				vn_printf(vp, "vnode ");
4355 		}
4356 	}
4357 }
4358 
4359 /*
4360  * Show details about the given vnode.
4361  */
4362 DB_SHOW_COMMAND(vnode, db_show_vnode)
4363 {
4364 	struct vnode *vp;
4365 
4366 	if (!have_addr)
4367 		return;
4368 	vp = (struct vnode *)addr;
4369 	vn_printf(vp, "vnode ");
4370 }
4371 
4372 /*
4373  * Show details about the given mount point.
4374  */
4375 DB_SHOW_COMMAND(mount, db_show_mount)
4376 {
4377 	struct mount *mp;
4378 	struct vfsopt *opt;
4379 	struct statfs *sp;
4380 	struct vnode *vp;
4381 	char buf[512];
4382 	uint64_t mflags;
4383 	u_int flags;
4384 
4385 	if (!have_addr) {
4386 		/* No address given, print short info about all mount points. */
4387 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4388 			db_printf("%p %s on %s (%s)\n", mp,
4389 			    mp->mnt_stat.f_mntfromname,
4390 			    mp->mnt_stat.f_mntonname,
4391 			    mp->mnt_stat.f_fstypename);
4392 			if (db_pager_quit)
4393 				break;
4394 		}
4395 		db_printf("\nMore info: show mount <addr>\n");
4396 		return;
4397 	}
4398 
4399 	mp = (struct mount *)addr;
4400 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4401 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4402 
4403 	buf[0] = '\0';
4404 	mflags = mp->mnt_flag;
4405 #define	MNT_FLAG(flag)	do {						\
4406 	if (mflags & (flag)) {						\
4407 		if (buf[0] != '\0')					\
4408 			strlcat(buf, ", ", sizeof(buf));		\
4409 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4410 		mflags &= ~(flag);					\
4411 	}								\
4412 } while (0)
4413 	MNT_FLAG(MNT_RDONLY);
4414 	MNT_FLAG(MNT_SYNCHRONOUS);
4415 	MNT_FLAG(MNT_NOEXEC);
4416 	MNT_FLAG(MNT_NOSUID);
4417 	MNT_FLAG(MNT_NFS4ACLS);
4418 	MNT_FLAG(MNT_UNION);
4419 	MNT_FLAG(MNT_ASYNC);
4420 	MNT_FLAG(MNT_SUIDDIR);
4421 	MNT_FLAG(MNT_SOFTDEP);
4422 	MNT_FLAG(MNT_NOSYMFOLLOW);
4423 	MNT_FLAG(MNT_GJOURNAL);
4424 	MNT_FLAG(MNT_MULTILABEL);
4425 	MNT_FLAG(MNT_ACLS);
4426 	MNT_FLAG(MNT_NOATIME);
4427 	MNT_FLAG(MNT_NOCLUSTERR);
4428 	MNT_FLAG(MNT_NOCLUSTERW);
4429 	MNT_FLAG(MNT_SUJ);
4430 	MNT_FLAG(MNT_EXRDONLY);
4431 	MNT_FLAG(MNT_EXPORTED);
4432 	MNT_FLAG(MNT_DEFEXPORTED);
4433 	MNT_FLAG(MNT_EXPORTANON);
4434 	MNT_FLAG(MNT_EXKERB);
4435 	MNT_FLAG(MNT_EXPUBLIC);
4436 	MNT_FLAG(MNT_LOCAL);
4437 	MNT_FLAG(MNT_QUOTA);
4438 	MNT_FLAG(MNT_ROOTFS);
4439 	MNT_FLAG(MNT_USER);
4440 	MNT_FLAG(MNT_IGNORE);
4441 	MNT_FLAG(MNT_UPDATE);
4442 	MNT_FLAG(MNT_DELEXPORT);
4443 	MNT_FLAG(MNT_RELOAD);
4444 	MNT_FLAG(MNT_FORCE);
4445 	MNT_FLAG(MNT_SNAPSHOT);
4446 	MNT_FLAG(MNT_BYFSID);
4447 #undef MNT_FLAG
4448 	if (mflags != 0) {
4449 		if (buf[0] != '\0')
4450 			strlcat(buf, ", ", sizeof(buf));
4451 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4452 		    "0x%016jx", mflags);
4453 	}
4454 	db_printf("    mnt_flag = %s\n", buf);
4455 
4456 	buf[0] = '\0';
4457 	flags = mp->mnt_kern_flag;
4458 #define	MNT_KERN_FLAG(flag)	do {					\
4459 	if (flags & (flag)) {						\
4460 		if (buf[0] != '\0')					\
4461 			strlcat(buf, ", ", sizeof(buf));		\
4462 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4463 		flags &= ~(flag);					\
4464 	}								\
4465 } while (0)
4466 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4467 	MNT_KERN_FLAG(MNTK_ASYNC);
4468 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4469 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4470 	MNT_KERN_FLAG(MNTK_DRAINING);
4471 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4472 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4473 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4474 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4475 	MNT_KERN_FLAG(MNTK_RECURSE);
4476 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4477 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4478 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4479 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4480 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4481 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4482 	MNT_KERN_FLAG(MNTK_NOASYNC);
4483 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4484 	MNT_KERN_FLAG(MNTK_MWAIT);
4485 	MNT_KERN_FLAG(MNTK_SUSPEND);
4486 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4487 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4488 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4489 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4490 #undef MNT_KERN_FLAG
4491 	if (flags != 0) {
4492 		if (buf[0] != '\0')
4493 			strlcat(buf, ", ", sizeof(buf));
4494 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4495 		    "0x%08x", flags);
4496 	}
4497 	db_printf("    mnt_kern_flag = %s\n", buf);
4498 
4499 	db_printf("    mnt_opt = ");
4500 	opt = TAILQ_FIRST(mp->mnt_opt);
4501 	if (opt != NULL) {
4502 		db_printf("%s", opt->name);
4503 		opt = TAILQ_NEXT(opt, link);
4504 		while (opt != NULL) {
4505 			db_printf(", %s", opt->name);
4506 			opt = TAILQ_NEXT(opt, link);
4507 		}
4508 	}
4509 	db_printf("\n");
4510 
4511 	sp = &mp->mnt_stat;
4512 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4513 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4514 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4515 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4516 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4517 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4518 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4519 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4520 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4521 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4522 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4523 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4524 
4525 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4526 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4527 	if (jailed(mp->mnt_cred))
4528 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4529 	db_printf(" }\n");
4530 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4531 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4532 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4533 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4534 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4535 	    mp->mnt_lazyvnodelistsize);
4536 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4537 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4538 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4539 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4540 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4541 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4542 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4543 	db_printf("    mnt_secondary_accwrites = %d\n",
4544 	    mp->mnt_secondary_accwrites);
4545 	db_printf("    mnt_gjprovider = %s\n",
4546 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4547 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4548 
4549 	db_printf("\n\nList of active vnodes\n");
4550 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4551 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4552 			vn_printf(vp, "vnode ");
4553 			if (db_pager_quit)
4554 				break;
4555 		}
4556 	}
4557 	db_printf("\n\nList of inactive vnodes\n");
4558 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4559 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4560 			vn_printf(vp, "vnode ");
4561 			if (db_pager_quit)
4562 				break;
4563 		}
4564 	}
4565 }
4566 #endif	/* DDB */
4567 
4568 /*
4569  * Fill in a struct xvfsconf based on a struct vfsconf.
4570  */
4571 static int
4572 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4573 {
4574 	struct xvfsconf xvfsp;
4575 
4576 	bzero(&xvfsp, sizeof(xvfsp));
4577 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4578 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4579 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4580 	xvfsp.vfc_flags = vfsp->vfc_flags;
4581 	/*
4582 	 * These are unused in userland, we keep them
4583 	 * to not break binary compatibility.
4584 	 */
4585 	xvfsp.vfc_vfsops = NULL;
4586 	xvfsp.vfc_next = NULL;
4587 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4588 }
4589 
4590 #ifdef COMPAT_FREEBSD32
4591 struct xvfsconf32 {
4592 	uint32_t	vfc_vfsops;
4593 	char		vfc_name[MFSNAMELEN];
4594 	int32_t		vfc_typenum;
4595 	int32_t		vfc_refcount;
4596 	int32_t		vfc_flags;
4597 	uint32_t	vfc_next;
4598 };
4599 
4600 static int
4601 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4602 {
4603 	struct xvfsconf32 xvfsp;
4604 
4605 	bzero(&xvfsp, sizeof(xvfsp));
4606 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4607 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4608 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4609 	xvfsp.vfc_flags = vfsp->vfc_flags;
4610 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4611 }
4612 #endif
4613 
4614 /*
4615  * Top level filesystem related information gathering.
4616  */
4617 static int
4618 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4619 {
4620 	struct vfsconf *vfsp;
4621 	int error;
4622 
4623 	error = 0;
4624 	vfsconf_slock();
4625 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4626 #ifdef COMPAT_FREEBSD32
4627 		if (req->flags & SCTL_MASK32)
4628 			error = vfsconf2x32(req, vfsp);
4629 		else
4630 #endif
4631 			error = vfsconf2x(req, vfsp);
4632 		if (error)
4633 			break;
4634 	}
4635 	vfsconf_sunlock();
4636 	return (error);
4637 }
4638 
4639 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4640     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4641     "S,xvfsconf", "List of all configured filesystems");
4642 
4643 #ifndef BURN_BRIDGES
4644 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4645 
4646 static int
4647 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4648 {
4649 	int *name = (int *)arg1 - 1;	/* XXX */
4650 	u_int namelen = arg2 + 1;	/* XXX */
4651 	struct vfsconf *vfsp;
4652 
4653 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4654 	    "please rebuild world\n");
4655 
4656 #if 1 || defined(COMPAT_PRELITE2)
4657 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4658 	if (namelen == 1)
4659 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4660 #endif
4661 
4662 	switch (name[1]) {
4663 	case VFS_MAXTYPENUM:
4664 		if (namelen != 2)
4665 			return (ENOTDIR);
4666 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4667 	case VFS_CONF:
4668 		if (namelen != 3)
4669 			return (ENOTDIR);	/* overloaded */
4670 		vfsconf_slock();
4671 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4672 			if (vfsp->vfc_typenum == name[2])
4673 				break;
4674 		}
4675 		vfsconf_sunlock();
4676 		if (vfsp == NULL)
4677 			return (EOPNOTSUPP);
4678 #ifdef COMPAT_FREEBSD32
4679 		if (req->flags & SCTL_MASK32)
4680 			return (vfsconf2x32(req, vfsp));
4681 		else
4682 #endif
4683 			return (vfsconf2x(req, vfsp));
4684 	}
4685 	return (EOPNOTSUPP);
4686 }
4687 
4688 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4689     CTLFLAG_MPSAFE, vfs_sysctl,
4690     "Generic filesystem");
4691 
4692 #if 1 || defined(COMPAT_PRELITE2)
4693 
4694 static int
4695 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4696 {
4697 	int error;
4698 	struct vfsconf *vfsp;
4699 	struct ovfsconf ovfs;
4700 
4701 	vfsconf_slock();
4702 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4703 		bzero(&ovfs, sizeof(ovfs));
4704 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4705 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4706 		ovfs.vfc_index = vfsp->vfc_typenum;
4707 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4708 		ovfs.vfc_flags = vfsp->vfc_flags;
4709 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4710 		if (error != 0) {
4711 			vfsconf_sunlock();
4712 			return (error);
4713 		}
4714 	}
4715 	vfsconf_sunlock();
4716 	return (0);
4717 }
4718 
4719 #endif /* 1 || COMPAT_PRELITE2 */
4720 #endif /* !BURN_BRIDGES */
4721 
4722 static void
4723 unmount_or_warn(struct mount *mp)
4724 {
4725 	int error;
4726 
4727 	error = dounmount(mp, MNT_FORCE, curthread);
4728 	if (error != 0) {
4729 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4730 		if (error == EBUSY)
4731 			printf("BUSY)\n");
4732 		else
4733 			printf("%d)\n", error);
4734 	}
4735 }
4736 
4737 /*
4738  * Unmount all filesystems. The list is traversed in reverse order
4739  * of mounting to avoid dependencies.
4740  */
4741 void
4742 vfs_unmountall(void)
4743 {
4744 	struct mount *mp, *tmp;
4745 
4746 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4747 
4748 	/*
4749 	 * Since this only runs when rebooting, it is not interlocked.
4750 	 */
4751 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4752 		vfs_ref(mp);
4753 
4754 		/*
4755 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4756 		 * unmount of the latter.
4757 		 */
4758 		if (mp == rootdevmp)
4759 			continue;
4760 
4761 		unmount_or_warn(mp);
4762 	}
4763 
4764 	if (rootdevmp != NULL)
4765 		unmount_or_warn(rootdevmp);
4766 }
4767 
4768 static void
4769 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4770 {
4771 
4772 	ASSERT_VI_LOCKED(vp, __func__);
4773 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4774 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4775 		vdropl(vp);
4776 		return;
4777 	}
4778 	if (vn_lock(vp, lkflags) == 0) {
4779 		VI_LOCK(vp);
4780 		vinactive(vp);
4781 		VOP_UNLOCK(vp);
4782 		vdropl(vp);
4783 		return;
4784 	}
4785 	vdefer_inactive_unlocked(vp);
4786 }
4787 
4788 static int
4789 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4790 {
4791 
4792 	return (vp->v_iflag & VI_DEFINACT);
4793 }
4794 
4795 static void __noinline
4796 vfs_periodic_inactive(struct mount *mp, int flags)
4797 {
4798 	struct vnode *vp, *mvp;
4799 	int lkflags;
4800 
4801 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4802 	if (flags != MNT_WAIT)
4803 		lkflags |= LK_NOWAIT;
4804 
4805 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4806 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4807 			VI_UNLOCK(vp);
4808 			continue;
4809 		}
4810 		vp->v_iflag &= ~VI_DEFINACT;
4811 		vfs_deferred_inactive(vp, lkflags);
4812 	}
4813 }
4814 
4815 static inline bool
4816 vfs_want_msync(struct vnode *vp)
4817 {
4818 	struct vm_object *obj;
4819 
4820 	/*
4821 	 * This test may be performed without any locks held.
4822 	 * We rely on vm_object's type stability.
4823 	 */
4824 	if (vp->v_vflag & VV_NOSYNC)
4825 		return (false);
4826 	obj = vp->v_object;
4827 	return (obj != NULL && vm_object_mightbedirty(obj));
4828 }
4829 
4830 static int
4831 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4832 {
4833 
4834 	if (vp->v_vflag & VV_NOSYNC)
4835 		return (false);
4836 	if (vp->v_iflag & VI_DEFINACT)
4837 		return (true);
4838 	return (vfs_want_msync(vp));
4839 }
4840 
4841 static void __noinline
4842 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4843 {
4844 	struct vnode *vp, *mvp;
4845 	struct vm_object *obj;
4846 	int lkflags, objflags;
4847 	bool seen_defer;
4848 
4849 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4850 	if (flags != MNT_WAIT) {
4851 		lkflags |= LK_NOWAIT;
4852 		objflags = OBJPC_NOSYNC;
4853 	} else {
4854 		objflags = OBJPC_SYNC;
4855 	}
4856 
4857 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4858 		seen_defer = false;
4859 		if (vp->v_iflag & VI_DEFINACT) {
4860 			vp->v_iflag &= ~VI_DEFINACT;
4861 			seen_defer = true;
4862 		}
4863 		if (!vfs_want_msync(vp)) {
4864 			if (seen_defer)
4865 				vfs_deferred_inactive(vp, lkflags);
4866 			else
4867 				VI_UNLOCK(vp);
4868 			continue;
4869 		}
4870 		if (vget(vp, lkflags) == 0) {
4871 			obj = vp->v_object;
4872 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4873 				VM_OBJECT_WLOCK(obj);
4874 				vm_object_page_clean(obj, 0, 0, objflags);
4875 				VM_OBJECT_WUNLOCK(obj);
4876 			}
4877 			vput(vp);
4878 			if (seen_defer)
4879 				vdrop(vp);
4880 		} else {
4881 			if (seen_defer)
4882 				vdefer_inactive_unlocked(vp);
4883 		}
4884 	}
4885 }
4886 
4887 void
4888 vfs_periodic(struct mount *mp, int flags)
4889 {
4890 
4891 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4892 
4893 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4894 		vfs_periodic_inactive(mp, flags);
4895 	else
4896 		vfs_periodic_msync_inactive(mp, flags);
4897 }
4898 
4899 static void
4900 destroy_vpollinfo_free(struct vpollinfo *vi)
4901 {
4902 
4903 	knlist_destroy(&vi->vpi_selinfo.si_note);
4904 	mtx_destroy(&vi->vpi_lock);
4905 	free(vi, M_VNODEPOLL);
4906 }
4907 
4908 static void
4909 destroy_vpollinfo(struct vpollinfo *vi)
4910 {
4911 
4912 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4913 	seldrain(&vi->vpi_selinfo);
4914 	destroy_vpollinfo_free(vi);
4915 }
4916 
4917 /*
4918  * Initialize per-vnode helper structure to hold poll-related state.
4919  */
4920 void
4921 v_addpollinfo(struct vnode *vp)
4922 {
4923 	struct vpollinfo *vi;
4924 
4925 	if (vp->v_pollinfo != NULL)
4926 		return;
4927 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4928 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4929 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4930 	    vfs_knlunlock, vfs_knl_assert_lock);
4931 	VI_LOCK(vp);
4932 	if (vp->v_pollinfo != NULL) {
4933 		VI_UNLOCK(vp);
4934 		destroy_vpollinfo_free(vi);
4935 		return;
4936 	}
4937 	vp->v_pollinfo = vi;
4938 	VI_UNLOCK(vp);
4939 }
4940 
4941 /*
4942  * Record a process's interest in events which might happen to
4943  * a vnode.  Because poll uses the historic select-style interface
4944  * internally, this routine serves as both the ``check for any
4945  * pending events'' and the ``record my interest in future events''
4946  * functions.  (These are done together, while the lock is held,
4947  * to avoid race conditions.)
4948  */
4949 int
4950 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4951 {
4952 
4953 	v_addpollinfo(vp);
4954 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4955 	if (vp->v_pollinfo->vpi_revents & events) {
4956 		/*
4957 		 * This leaves events we are not interested
4958 		 * in available for the other process which
4959 		 * which presumably had requested them
4960 		 * (otherwise they would never have been
4961 		 * recorded).
4962 		 */
4963 		events &= vp->v_pollinfo->vpi_revents;
4964 		vp->v_pollinfo->vpi_revents &= ~events;
4965 
4966 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4967 		return (events);
4968 	}
4969 	vp->v_pollinfo->vpi_events |= events;
4970 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4971 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4972 	return (0);
4973 }
4974 
4975 /*
4976  * Routine to create and manage a filesystem syncer vnode.
4977  */
4978 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4979 static int	sync_fsync(struct  vop_fsync_args *);
4980 static int	sync_inactive(struct  vop_inactive_args *);
4981 static int	sync_reclaim(struct  vop_reclaim_args *);
4982 
4983 static struct vop_vector sync_vnodeops = {
4984 	.vop_bypass =	VOP_EOPNOTSUPP,
4985 	.vop_close =	sync_close,
4986 	.vop_fsync =	sync_fsync,
4987 	.vop_getwritemount = vop_stdgetwritemount,
4988 	.vop_inactive =	sync_inactive,
4989 	.vop_need_inactive = vop_stdneed_inactive,
4990 	.vop_reclaim =	sync_reclaim,
4991 	.vop_lock1 =	vop_stdlock,
4992 	.vop_unlock =	vop_stdunlock,
4993 	.vop_islocked =	vop_stdislocked,
4994 	.vop_fplookup_vexec = VOP_EAGAIN,
4995 	.vop_fplookup_symlink = VOP_EAGAIN,
4996 };
4997 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
4998 
4999 /*
5000  * Create a new filesystem syncer vnode for the specified mount point.
5001  */
5002 void
5003 vfs_allocate_syncvnode(struct mount *mp)
5004 {
5005 	struct vnode *vp;
5006 	struct bufobj *bo;
5007 	static long start, incr, next;
5008 	int error;
5009 
5010 	/* Allocate a new vnode */
5011 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5012 	if (error != 0)
5013 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5014 	vp->v_type = VNON;
5015 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5016 	vp->v_vflag |= VV_FORCEINSMQ;
5017 	error = insmntque1(vp, mp);
5018 	if (error != 0)
5019 		panic("vfs_allocate_syncvnode: insmntque() failed");
5020 	vp->v_vflag &= ~VV_FORCEINSMQ;
5021 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5022 	VOP_UNLOCK(vp);
5023 	/*
5024 	 * Place the vnode onto the syncer worklist. We attempt to
5025 	 * scatter them about on the list so that they will go off
5026 	 * at evenly distributed times even if all the filesystems
5027 	 * are mounted at once.
5028 	 */
5029 	next += incr;
5030 	if (next == 0 || next > syncer_maxdelay) {
5031 		start /= 2;
5032 		incr /= 2;
5033 		if (start == 0) {
5034 			start = syncer_maxdelay / 2;
5035 			incr = syncer_maxdelay;
5036 		}
5037 		next = start;
5038 	}
5039 	bo = &vp->v_bufobj;
5040 	BO_LOCK(bo);
5041 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5042 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5043 	mtx_lock(&sync_mtx);
5044 	sync_vnode_count++;
5045 	if (mp->mnt_syncer == NULL) {
5046 		mp->mnt_syncer = vp;
5047 		vp = NULL;
5048 	}
5049 	mtx_unlock(&sync_mtx);
5050 	BO_UNLOCK(bo);
5051 	if (vp != NULL) {
5052 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5053 		vgone(vp);
5054 		vput(vp);
5055 	}
5056 }
5057 
5058 void
5059 vfs_deallocate_syncvnode(struct mount *mp)
5060 {
5061 	struct vnode *vp;
5062 
5063 	mtx_lock(&sync_mtx);
5064 	vp = mp->mnt_syncer;
5065 	if (vp != NULL)
5066 		mp->mnt_syncer = NULL;
5067 	mtx_unlock(&sync_mtx);
5068 	if (vp != NULL)
5069 		vrele(vp);
5070 }
5071 
5072 /*
5073  * Do a lazy sync of the filesystem.
5074  */
5075 static int
5076 sync_fsync(struct vop_fsync_args *ap)
5077 {
5078 	struct vnode *syncvp = ap->a_vp;
5079 	struct mount *mp = syncvp->v_mount;
5080 	int error, save;
5081 	struct bufobj *bo;
5082 
5083 	/*
5084 	 * We only need to do something if this is a lazy evaluation.
5085 	 */
5086 	if (ap->a_waitfor != MNT_LAZY)
5087 		return (0);
5088 
5089 	/*
5090 	 * Move ourselves to the back of the sync list.
5091 	 */
5092 	bo = &syncvp->v_bufobj;
5093 	BO_LOCK(bo);
5094 	vn_syncer_add_to_worklist(bo, syncdelay);
5095 	BO_UNLOCK(bo);
5096 
5097 	/*
5098 	 * Walk the list of vnodes pushing all that are dirty and
5099 	 * not already on the sync list.
5100 	 */
5101 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5102 		return (0);
5103 	VOP_UNLOCK(syncvp);
5104 	save = curthread_pflags_set(TDP_SYNCIO);
5105 	/*
5106 	 * The filesystem at hand may be idle with free vnodes stored in the
5107 	 * batch.  Return them instead of letting them stay there indefinitely.
5108 	 */
5109 	vfs_periodic(mp, MNT_NOWAIT);
5110 	error = VFS_SYNC(mp, MNT_LAZY);
5111 	curthread_pflags_restore(save);
5112 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5113 	vfs_unbusy(mp);
5114 	return (error);
5115 }
5116 
5117 /*
5118  * The syncer vnode is no referenced.
5119  */
5120 static int
5121 sync_inactive(struct vop_inactive_args *ap)
5122 {
5123 
5124 	vgone(ap->a_vp);
5125 	return (0);
5126 }
5127 
5128 /*
5129  * The syncer vnode is no longer needed and is being decommissioned.
5130  *
5131  * Modifications to the worklist must be protected by sync_mtx.
5132  */
5133 static int
5134 sync_reclaim(struct vop_reclaim_args *ap)
5135 {
5136 	struct vnode *vp = ap->a_vp;
5137 	struct bufobj *bo;
5138 
5139 	bo = &vp->v_bufobj;
5140 	BO_LOCK(bo);
5141 	mtx_lock(&sync_mtx);
5142 	if (vp->v_mount->mnt_syncer == vp)
5143 		vp->v_mount->mnt_syncer = NULL;
5144 	if (bo->bo_flag & BO_ONWORKLST) {
5145 		LIST_REMOVE(bo, bo_synclist);
5146 		syncer_worklist_len--;
5147 		sync_vnode_count--;
5148 		bo->bo_flag &= ~BO_ONWORKLST;
5149 	}
5150 	mtx_unlock(&sync_mtx);
5151 	BO_UNLOCK(bo);
5152 
5153 	return (0);
5154 }
5155 
5156 int
5157 vn_need_pageq_flush(struct vnode *vp)
5158 {
5159 	struct vm_object *obj;
5160 
5161 	obj = vp->v_object;
5162 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5163 	    vm_object_mightbedirty(obj));
5164 }
5165 
5166 /*
5167  * Check if vnode represents a disk device
5168  */
5169 bool
5170 vn_isdisk_error(struct vnode *vp, int *errp)
5171 {
5172 	int error;
5173 
5174 	if (vp->v_type != VCHR) {
5175 		error = ENOTBLK;
5176 		goto out;
5177 	}
5178 	error = 0;
5179 	dev_lock();
5180 	if (vp->v_rdev == NULL)
5181 		error = ENXIO;
5182 	else if (vp->v_rdev->si_devsw == NULL)
5183 		error = ENXIO;
5184 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5185 		error = ENOTBLK;
5186 	dev_unlock();
5187 out:
5188 	*errp = error;
5189 	return (error == 0);
5190 }
5191 
5192 bool
5193 vn_isdisk(struct vnode *vp)
5194 {
5195 	int error;
5196 
5197 	return (vn_isdisk_error(vp, &error));
5198 }
5199 
5200 /*
5201  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5202  * the comment above cache_fplookup for details.
5203  */
5204 int
5205 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5206 {
5207 	int error;
5208 
5209 	VFS_SMR_ASSERT_ENTERED();
5210 
5211 	/* Check the owner. */
5212 	if (cred->cr_uid == file_uid) {
5213 		if (file_mode & S_IXUSR)
5214 			return (0);
5215 		goto out_error;
5216 	}
5217 
5218 	/* Otherwise, check the groups (first match) */
5219 	if (groupmember(file_gid, cred)) {
5220 		if (file_mode & S_IXGRP)
5221 			return (0);
5222 		goto out_error;
5223 	}
5224 
5225 	/* Otherwise, check everyone else. */
5226 	if (file_mode & S_IXOTH)
5227 		return (0);
5228 out_error:
5229 	/*
5230 	 * Permission check failed, but it is possible denial will get overwritten
5231 	 * (e.g., when root is traversing through a 700 directory owned by someone
5232 	 * else).
5233 	 *
5234 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5235 	 * modules overriding this result. It's quite unclear what semantics
5236 	 * are allowed for them to operate, thus for safety we don't call them
5237 	 * from within the SMR section. This also means if any such modules
5238 	 * are present, we have to let the regular lookup decide.
5239 	 */
5240 	error = priv_check_cred_vfs_lookup_nomac(cred);
5241 	switch (error) {
5242 	case 0:
5243 		return (0);
5244 	case EAGAIN:
5245 		/*
5246 		 * MAC modules present.
5247 		 */
5248 		return (EAGAIN);
5249 	case EPERM:
5250 		return (EACCES);
5251 	default:
5252 		return (error);
5253 	}
5254 }
5255 
5256 /*
5257  * Common filesystem object access control check routine.  Accepts a
5258  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5259  * Returns 0 on success, or an errno on failure.
5260  */
5261 int
5262 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5263     accmode_t accmode, struct ucred *cred)
5264 {
5265 	accmode_t dac_granted;
5266 	accmode_t priv_granted;
5267 
5268 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5269 	    ("invalid bit in accmode"));
5270 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5271 	    ("VAPPEND without VWRITE"));
5272 
5273 	/*
5274 	 * Look for a normal, non-privileged way to access the file/directory
5275 	 * as requested.  If it exists, go with that.
5276 	 */
5277 
5278 	dac_granted = 0;
5279 
5280 	/* Check the owner. */
5281 	if (cred->cr_uid == file_uid) {
5282 		dac_granted |= VADMIN;
5283 		if (file_mode & S_IXUSR)
5284 			dac_granted |= VEXEC;
5285 		if (file_mode & S_IRUSR)
5286 			dac_granted |= VREAD;
5287 		if (file_mode & S_IWUSR)
5288 			dac_granted |= (VWRITE | VAPPEND);
5289 
5290 		if ((accmode & dac_granted) == accmode)
5291 			return (0);
5292 
5293 		goto privcheck;
5294 	}
5295 
5296 	/* Otherwise, check the groups (first match) */
5297 	if (groupmember(file_gid, cred)) {
5298 		if (file_mode & S_IXGRP)
5299 			dac_granted |= VEXEC;
5300 		if (file_mode & S_IRGRP)
5301 			dac_granted |= VREAD;
5302 		if (file_mode & S_IWGRP)
5303 			dac_granted |= (VWRITE | VAPPEND);
5304 
5305 		if ((accmode & dac_granted) == accmode)
5306 			return (0);
5307 
5308 		goto privcheck;
5309 	}
5310 
5311 	/* Otherwise, check everyone else. */
5312 	if (file_mode & S_IXOTH)
5313 		dac_granted |= VEXEC;
5314 	if (file_mode & S_IROTH)
5315 		dac_granted |= VREAD;
5316 	if (file_mode & S_IWOTH)
5317 		dac_granted |= (VWRITE | VAPPEND);
5318 	if ((accmode & dac_granted) == accmode)
5319 		return (0);
5320 
5321 privcheck:
5322 	/*
5323 	 * Build a privilege mask to determine if the set of privileges
5324 	 * satisfies the requirements when combined with the granted mask
5325 	 * from above.  For each privilege, if the privilege is required,
5326 	 * bitwise or the request type onto the priv_granted mask.
5327 	 */
5328 	priv_granted = 0;
5329 
5330 	if (type == VDIR) {
5331 		/*
5332 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5333 		 * requests, instead of PRIV_VFS_EXEC.
5334 		 */
5335 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5336 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5337 			priv_granted |= VEXEC;
5338 	} else {
5339 		/*
5340 		 * Ensure that at least one execute bit is on. Otherwise,
5341 		 * a privileged user will always succeed, and we don't want
5342 		 * this to happen unless the file really is executable.
5343 		 */
5344 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5345 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5346 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5347 			priv_granted |= VEXEC;
5348 	}
5349 
5350 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5351 	    !priv_check_cred(cred, PRIV_VFS_READ))
5352 		priv_granted |= VREAD;
5353 
5354 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5355 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5356 		priv_granted |= (VWRITE | VAPPEND);
5357 
5358 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5359 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5360 		priv_granted |= VADMIN;
5361 
5362 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5363 		return (0);
5364 	}
5365 
5366 	return ((accmode & VADMIN) ? EPERM : EACCES);
5367 }
5368 
5369 /*
5370  * Credential check based on process requesting service, and per-attribute
5371  * permissions.
5372  */
5373 int
5374 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5375     struct thread *td, accmode_t accmode)
5376 {
5377 
5378 	/*
5379 	 * Kernel-invoked always succeeds.
5380 	 */
5381 	if (cred == NOCRED)
5382 		return (0);
5383 
5384 	/*
5385 	 * Do not allow privileged processes in jail to directly manipulate
5386 	 * system attributes.
5387 	 */
5388 	switch (attrnamespace) {
5389 	case EXTATTR_NAMESPACE_SYSTEM:
5390 		/* Potentially should be: return (EPERM); */
5391 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5392 	case EXTATTR_NAMESPACE_USER:
5393 		return (VOP_ACCESS(vp, accmode, cred, td));
5394 	default:
5395 		return (EPERM);
5396 	}
5397 }
5398 
5399 #ifdef DEBUG_VFS_LOCKS
5400 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5401 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5402     "Drop into debugger on lock violation");
5403 
5404 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5405 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5406     0, "Check for interlock across VOPs");
5407 
5408 int vfs_badlock_print = 1;	/* Print lock violations. */
5409 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5410     0, "Print lock violations");
5411 
5412 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5413 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5414     0, "Print vnode details on lock violations");
5415 
5416 #ifdef KDB
5417 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5418 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5419     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5420 #endif
5421 
5422 static void
5423 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5424 {
5425 
5426 #ifdef KDB
5427 	if (vfs_badlock_backtrace)
5428 		kdb_backtrace();
5429 #endif
5430 	if (vfs_badlock_vnode)
5431 		vn_printf(vp, "vnode ");
5432 	if (vfs_badlock_print)
5433 		printf("%s: %p %s\n", str, (void *)vp, msg);
5434 	if (vfs_badlock_ddb)
5435 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5436 }
5437 
5438 void
5439 assert_vi_locked(struct vnode *vp, const char *str)
5440 {
5441 
5442 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5443 		vfs_badlock("interlock is not locked but should be", str, vp);
5444 }
5445 
5446 void
5447 assert_vi_unlocked(struct vnode *vp, const char *str)
5448 {
5449 
5450 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5451 		vfs_badlock("interlock is locked but should not be", str, vp);
5452 }
5453 
5454 void
5455 assert_vop_locked(struct vnode *vp, const char *str)
5456 {
5457 	if (KERNEL_PANICKED() || vp == NULL)
5458 		return;
5459 
5460 #ifdef WITNESS
5461 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5462 	    witness_is_owned(&vp->v_vnlock->lock_object) == -1)
5463 #else
5464 	int locked = VOP_ISLOCKED(vp);
5465 	if (locked == 0 || locked == LK_EXCLOTHER)
5466 #endif
5467 		vfs_badlock("is not locked but should be", str, vp);
5468 }
5469 
5470 void
5471 assert_vop_unlocked(struct vnode *vp, const char *str)
5472 {
5473 	if (KERNEL_PANICKED() || vp == NULL)
5474 		return;
5475 
5476 #ifdef WITNESS
5477 	if ((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5478 	    witness_is_owned(&vp->v_vnlock->lock_object) == 1)
5479 #else
5480 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5481 #endif
5482 		vfs_badlock("is locked but should not be", str, vp);
5483 }
5484 
5485 void
5486 assert_vop_elocked(struct vnode *vp, const char *str)
5487 {
5488 	if (KERNEL_PANICKED() || vp == NULL)
5489 		return;
5490 
5491 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5492 		vfs_badlock("is not exclusive locked but should be", str, vp);
5493 }
5494 #endif /* DEBUG_VFS_LOCKS */
5495 
5496 void
5497 vop_rename_fail(struct vop_rename_args *ap)
5498 {
5499 
5500 	if (ap->a_tvp != NULL)
5501 		vput(ap->a_tvp);
5502 	if (ap->a_tdvp == ap->a_tvp)
5503 		vrele(ap->a_tdvp);
5504 	else
5505 		vput(ap->a_tdvp);
5506 	vrele(ap->a_fdvp);
5507 	vrele(ap->a_fvp);
5508 }
5509 
5510 void
5511 vop_rename_pre(void *ap)
5512 {
5513 	struct vop_rename_args *a = ap;
5514 
5515 #ifdef DEBUG_VFS_LOCKS
5516 	if (a->a_tvp)
5517 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5518 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5519 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5520 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5521 
5522 	/* Check the source (from). */
5523 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5524 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5525 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5526 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5527 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5528 
5529 	/* Check the target. */
5530 	if (a->a_tvp)
5531 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5532 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5533 #endif
5534 	/*
5535 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5536 	 * in vop_rename_post but that's not going to work out since some
5537 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5538 	 *
5539 	 * For now filesystems are expected to do the relevant calls after they
5540 	 * decide what vnodes to operate on.
5541 	 */
5542 	if (a->a_tdvp != a->a_fdvp)
5543 		vhold(a->a_fdvp);
5544 	if (a->a_tvp != a->a_fvp)
5545 		vhold(a->a_fvp);
5546 	vhold(a->a_tdvp);
5547 	if (a->a_tvp)
5548 		vhold(a->a_tvp);
5549 }
5550 
5551 #ifdef DEBUG_VFS_LOCKS
5552 void
5553 vop_fplookup_vexec_debugpre(void *ap __unused)
5554 {
5555 
5556 	VFS_SMR_ASSERT_ENTERED();
5557 }
5558 
5559 void
5560 vop_fplookup_vexec_debugpost(void *ap, int rc)
5561 {
5562 	struct vop_fplookup_vexec_args *a;
5563 	struct vnode *vp;
5564 
5565 	a = ap;
5566 	vp = a->a_vp;
5567 
5568 	VFS_SMR_ASSERT_ENTERED();
5569 	if (rc == EOPNOTSUPP)
5570 		VNPASS(VN_IS_DOOMED(vp), vp);
5571 }
5572 
5573 void
5574 vop_fplookup_symlink_debugpre(void *ap __unused)
5575 {
5576 
5577 	VFS_SMR_ASSERT_ENTERED();
5578 }
5579 
5580 void
5581 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5582 {
5583 
5584 	VFS_SMR_ASSERT_ENTERED();
5585 }
5586 
5587 static void
5588 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5589 {
5590 	if (vp->v_type == VCHR)
5591 		;
5592 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5593 		ASSERT_VOP_LOCKED(vp, name);
5594 	else
5595 		ASSERT_VOP_ELOCKED(vp, name);
5596 }
5597 
5598 void
5599 vop_fsync_debugpre(void *a)
5600 {
5601 	struct vop_fsync_args *ap;
5602 
5603 	ap = a;
5604 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5605 }
5606 
5607 void
5608 vop_fsync_debugpost(void *a, int rc __unused)
5609 {
5610 	struct vop_fsync_args *ap;
5611 
5612 	ap = a;
5613 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5614 }
5615 
5616 void
5617 vop_fdatasync_debugpre(void *a)
5618 {
5619 	struct vop_fdatasync_args *ap;
5620 
5621 	ap = a;
5622 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5623 }
5624 
5625 void
5626 vop_fdatasync_debugpost(void *a, int rc __unused)
5627 {
5628 	struct vop_fdatasync_args *ap;
5629 
5630 	ap = a;
5631 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5632 }
5633 
5634 void
5635 vop_strategy_debugpre(void *ap)
5636 {
5637 	struct vop_strategy_args *a;
5638 	struct buf *bp;
5639 
5640 	a = ap;
5641 	bp = a->a_bp;
5642 
5643 	/*
5644 	 * Cluster ops lock their component buffers but not the IO container.
5645 	 */
5646 	if ((bp->b_flags & B_CLUSTER) != 0)
5647 		return;
5648 
5649 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5650 		if (vfs_badlock_print)
5651 			printf(
5652 			    "VOP_STRATEGY: bp is not locked but should be\n");
5653 		if (vfs_badlock_ddb)
5654 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5655 	}
5656 }
5657 
5658 void
5659 vop_lock_debugpre(void *ap)
5660 {
5661 	struct vop_lock1_args *a = ap;
5662 
5663 	if ((a->a_flags & LK_INTERLOCK) == 0)
5664 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5665 	else
5666 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5667 }
5668 
5669 void
5670 vop_lock_debugpost(void *ap, int rc)
5671 {
5672 	struct vop_lock1_args *a = ap;
5673 
5674 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5675 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5676 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5677 }
5678 
5679 void
5680 vop_unlock_debugpre(void *ap)
5681 {
5682 	struct vop_unlock_args *a = ap;
5683 	struct vnode *vp = a->a_vp;
5684 
5685 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5686 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5687 }
5688 
5689 void
5690 vop_need_inactive_debugpre(void *ap)
5691 {
5692 	struct vop_need_inactive_args *a = ap;
5693 
5694 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5695 }
5696 
5697 void
5698 vop_need_inactive_debugpost(void *ap, int rc)
5699 {
5700 	struct vop_need_inactive_args *a = ap;
5701 
5702 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5703 }
5704 #endif
5705 
5706 void
5707 vop_create_pre(void *ap)
5708 {
5709 	struct vop_create_args *a;
5710 	struct vnode *dvp;
5711 
5712 	a = ap;
5713 	dvp = a->a_dvp;
5714 	vn_seqc_write_begin(dvp);
5715 }
5716 
5717 void
5718 vop_create_post(void *ap, int rc)
5719 {
5720 	struct vop_create_args *a;
5721 	struct vnode *dvp;
5722 
5723 	a = ap;
5724 	dvp = a->a_dvp;
5725 	vn_seqc_write_end(dvp);
5726 	if (!rc)
5727 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5728 }
5729 
5730 void
5731 vop_whiteout_pre(void *ap)
5732 {
5733 	struct vop_whiteout_args *a;
5734 	struct vnode *dvp;
5735 
5736 	a = ap;
5737 	dvp = a->a_dvp;
5738 	vn_seqc_write_begin(dvp);
5739 }
5740 
5741 void
5742 vop_whiteout_post(void *ap, int rc)
5743 {
5744 	struct vop_whiteout_args *a;
5745 	struct vnode *dvp;
5746 
5747 	a = ap;
5748 	dvp = a->a_dvp;
5749 	vn_seqc_write_end(dvp);
5750 }
5751 
5752 void
5753 vop_deleteextattr_pre(void *ap)
5754 {
5755 	struct vop_deleteextattr_args *a;
5756 	struct vnode *vp;
5757 
5758 	a = ap;
5759 	vp = a->a_vp;
5760 	vn_seqc_write_begin(vp);
5761 }
5762 
5763 void
5764 vop_deleteextattr_post(void *ap, int rc)
5765 {
5766 	struct vop_deleteextattr_args *a;
5767 	struct vnode *vp;
5768 
5769 	a = ap;
5770 	vp = a->a_vp;
5771 	vn_seqc_write_end(vp);
5772 	if (!rc)
5773 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5774 }
5775 
5776 void
5777 vop_link_pre(void *ap)
5778 {
5779 	struct vop_link_args *a;
5780 	struct vnode *vp, *tdvp;
5781 
5782 	a = ap;
5783 	vp = a->a_vp;
5784 	tdvp = a->a_tdvp;
5785 	vn_seqc_write_begin(vp);
5786 	vn_seqc_write_begin(tdvp);
5787 }
5788 
5789 void
5790 vop_link_post(void *ap, int rc)
5791 {
5792 	struct vop_link_args *a;
5793 	struct vnode *vp, *tdvp;
5794 
5795 	a = ap;
5796 	vp = a->a_vp;
5797 	tdvp = a->a_tdvp;
5798 	vn_seqc_write_end(vp);
5799 	vn_seqc_write_end(tdvp);
5800 	if (!rc) {
5801 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5802 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5803 	}
5804 }
5805 
5806 void
5807 vop_mkdir_pre(void *ap)
5808 {
5809 	struct vop_mkdir_args *a;
5810 	struct vnode *dvp;
5811 
5812 	a = ap;
5813 	dvp = a->a_dvp;
5814 	vn_seqc_write_begin(dvp);
5815 }
5816 
5817 void
5818 vop_mkdir_post(void *ap, int rc)
5819 {
5820 	struct vop_mkdir_args *a;
5821 	struct vnode *dvp;
5822 
5823 	a = ap;
5824 	dvp = a->a_dvp;
5825 	vn_seqc_write_end(dvp);
5826 	if (!rc)
5827 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5828 }
5829 
5830 #ifdef DEBUG_VFS_LOCKS
5831 void
5832 vop_mkdir_debugpost(void *ap, int rc)
5833 {
5834 	struct vop_mkdir_args *a;
5835 
5836 	a = ap;
5837 	if (!rc)
5838 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5839 }
5840 #endif
5841 
5842 void
5843 vop_mknod_pre(void *ap)
5844 {
5845 	struct vop_mknod_args *a;
5846 	struct vnode *dvp;
5847 
5848 	a = ap;
5849 	dvp = a->a_dvp;
5850 	vn_seqc_write_begin(dvp);
5851 }
5852 
5853 void
5854 vop_mknod_post(void *ap, int rc)
5855 {
5856 	struct vop_mknod_args *a;
5857 	struct vnode *dvp;
5858 
5859 	a = ap;
5860 	dvp = a->a_dvp;
5861 	vn_seqc_write_end(dvp);
5862 	if (!rc)
5863 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5864 }
5865 
5866 void
5867 vop_reclaim_post(void *ap, int rc)
5868 {
5869 	struct vop_reclaim_args *a;
5870 	struct vnode *vp;
5871 
5872 	a = ap;
5873 	vp = a->a_vp;
5874 	ASSERT_VOP_IN_SEQC(vp);
5875 	if (!rc)
5876 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5877 }
5878 
5879 void
5880 vop_remove_pre(void *ap)
5881 {
5882 	struct vop_remove_args *a;
5883 	struct vnode *dvp, *vp;
5884 
5885 	a = ap;
5886 	dvp = a->a_dvp;
5887 	vp = a->a_vp;
5888 	vn_seqc_write_begin(dvp);
5889 	vn_seqc_write_begin(vp);
5890 }
5891 
5892 void
5893 vop_remove_post(void *ap, int rc)
5894 {
5895 	struct vop_remove_args *a;
5896 	struct vnode *dvp, *vp;
5897 
5898 	a = ap;
5899 	dvp = a->a_dvp;
5900 	vp = a->a_vp;
5901 	vn_seqc_write_end(dvp);
5902 	vn_seqc_write_end(vp);
5903 	if (!rc) {
5904 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5905 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5906 	}
5907 }
5908 
5909 void
5910 vop_rename_post(void *ap, int rc)
5911 {
5912 	struct vop_rename_args *a = ap;
5913 	long hint;
5914 
5915 	if (!rc) {
5916 		hint = NOTE_WRITE;
5917 		if (a->a_fdvp == a->a_tdvp) {
5918 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5919 				hint |= NOTE_LINK;
5920 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5921 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5922 		} else {
5923 			hint |= NOTE_EXTEND;
5924 			if (a->a_fvp->v_type == VDIR)
5925 				hint |= NOTE_LINK;
5926 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5927 
5928 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5929 			    a->a_tvp->v_type == VDIR)
5930 				hint &= ~NOTE_LINK;
5931 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5932 		}
5933 
5934 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5935 		if (a->a_tvp)
5936 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5937 	}
5938 	if (a->a_tdvp != a->a_fdvp)
5939 		vdrop(a->a_fdvp);
5940 	if (a->a_tvp != a->a_fvp)
5941 		vdrop(a->a_fvp);
5942 	vdrop(a->a_tdvp);
5943 	if (a->a_tvp)
5944 		vdrop(a->a_tvp);
5945 }
5946 
5947 void
5948 vop_rmdir_pre(void *ap)
5949 {
5950 	struct vop_rmdir_args *a;
5951 	struct vnode *dvp, *vp;
5952 
5953 	a = ap;
5954 	dvp = a->a_dvp;
5955 	vp = a->a_vp;
5956 	vn_seqc_write_begin(dvp);
5957 	vn_seqc_write_begin(vp);
5958 }
5959 
5960 void
5961 vop_rmdir_post(void *ap, int rc)
5962 {
5963 	struct vop_rmdir_args *a;
5964 	struct vnode *dvp, *vp;
5965 
5966 	a = ap;
5967 	dvp = a->a_dvp;
5968 	vp = a->a_vp;
5969 	vn_seqc_write_end(dvp);
5970 	vn_seqc_write_end(vp);
5971 	if (!rc) {
5972 		vp->v_vflag |= VV_UNLINKED;
5973 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5974 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5975 	}
5976 }
5977 
5978 void
5979 vop_setattr_pre(void *ap)
5980 {
5981 	struct vop_setattr_args *a;
5982 	struct vnode *vp;
5983 
5984 	a = ap;
5985 	vp = a->a_vp;
5986 	vn_seqc_write_begin(vp);
5987 }
5988 
5989 void
5990 vop_setattr_post(void *ap, int rc)
5991 {
5992 	struct vop_setattr_args *a;
5993 	struct vnode *vp;
5994 
5995 	a = ap;
5996 	vp = a->a_vp;
5997 	vn_seqc_write_end(vp);
5998 	if (!rc)
5999 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6000 }
6001 
6002 void
6003 vop_setacl_pre(void *ap)
6004 {
6005 	struct vop_setacl_args *a;
6006 	struct vnode *vp;
6007 
6008 	a = ap;
6009 	vp = a->a_vp;
6010 	vn_seqc_write_begin(vp);
6011 }
6012 
6013 void
6014 vop_setacl_post(void *ap, int rc __unused)
6015 {
6016 	struct vop_setacl_args *a;
6017 	struct vnode *vp;
6018 
6019 	a = ap;
6020 	vp = a->a_vp;
6021 	vn_seqc_write_end(vp);
6022 }
6023 
6024 void
6025 vop_setextattr_pre(void *ap)
6026 {
6027 	struct vop_setextattr_args *a;
6028 	struct vnode *vp;
6029 
6030 	a = ap;
6031 	vp = a->a_vp;
6032 	vn_seqc_write_begin(vp);
6033 }
6034 
6035 void
6036 vop_setextattr_post(void *ap, int rc)
6037 {
6038 	struct vop_setextattr_args *a;
6039 	struct vnode *vp;
6040 
6041 	a = ap;
6042 	vp = a->a_vp;
6043 	vn_seqc_write_end(vp);
6044 	if (!rc)
6045 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6046 }
6047 
6048 void
6049 vop_symlink_pre(void *ap)
6050 {
6051 	struct vop_symlink_args *a;
6052 	struct vnode *dvp;
6053 
6054 	a = ap;
6055 	dvp = a->a_dvp;
6056 	vn_seqc_write_begin(dvp);
6057 }
6058 
6059 void
6060 vop_symlink_post(void *ap, int rc)
6061 {
6062 	struct vop_symlink_args *a;
6063 	struct vnode *dvp;
6064 
6065 	a = ap;
6066 	dvp = a->a_dvp;
6067 	vn_seqc_write_end(dvp);
6068 	if (!rc)
6069 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6070 }
6071 
6072 void
6073 vop_open_post(void *ap, int rc)
6074 {
6075 	struct vop_open_args *a = ap;
6076 
6077 	if (!rc)
6078 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6079 }
6080 
6081 void
6082 vop_close_post(void *ap, int rc)
6083 {
6084 	struct vop_close_args *a = ap;
6085 
6086 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6087 	    !VN_IS_DOOMED(a->a_vp))) {
6088 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6089 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6090 	}
6091 }
6092 
6093 void
6094 vop_read_post(void *ap, int rc)
6095 {
6096 	struct vop_read_args *a = ap;
6097 
6098 	if (!rc)
6099 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6100 }
6101 
6102 void
6103 vop_read_pgcache_post(void *ap, int rc)
6104 {
6105 	struct vop_read_pgcache_args *a = ap;
6106 
6107 	if (!rc)
6108 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6109 }
6110 
6111 void
6112 vop_readdir_post(void *ap, int rc)
6113 {
6114 	struct vop_readdir_args *a = ap;
6115 
6116 	if (!rc)
6117 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6118 }
6119 
6120 static struct knlist fs_knlist;
6121 
6122 static void
6123 vfs_event_init(void *arg)
6124 {
6125 	knlist_init_mtx(&fs_knlist, NULL);
6126 }
6127 /* XXX - correct order? */
6128 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6129 
6130 void
6131 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6132 {
6133 
6134 	KNOTE_UNLOCKED(&fs_knlist, event);
6135 }
6136 
6137 static int	filt_fsattach(struct knote *kn);
6138 static void	filt_fsdetach(struct knote *kn);
6139 static int	filt_fsevent(struct knote *kn, long hint);
6140 
6141 struct filterops fs_filtops = {
6142 	.f_isfd = 0,
6143 	.f_attach = filt_fsattach,
6144 	.f_detach = filt_fsdetach,
6145 	.f_event = filt_fsevent
6146 };
6147 
6148 static int
6149 filt_fsattach(struct knote *kn)
6150 {
6151 
6152 	kn->kn_flags |= EV_CLEAR;
6153 	knlist_add(&fs_knlist, kn, 0);
6154 	return (0);
6155 }
6156 
6157 static void
6158 filt_fsdetach(struct knote *kn)
6159 {
6160 
6161 	knlist_remove(&fs_knlist, kn, 0);
6162 }
6163 
6164 static int
6165 filt_fsevent(struct knote *kn, long hint)
6166 {
6167 
6168 	kn->kn_fflags |= kn->kn_sfflags & hint;
6169 
6170 	return (kn->kn_fflags != 0);
6171 }
6172 
6173 static int
6174 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6175 {
6176 	struct vfsidctl vc;
6177 	int error;
6178 	struct mount *mp;
6179 
6180 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6181 	if (error)
6182 		return (error);
6183 	if (vc.vc_vers != VFS_CTL_VERS1)
6184 		return (EINVAL);
6185 	mp = vfs_getvfs(&vc.vc_fsid);
6186 	if (mp == NULL)
6187 		return (ENOENT);
6188 	/* ensure that a specific sysctl goes to the right filesystem. */
6189 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6190 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6191 		vfs_rel(mp);
6192 		return (EINVAL);
6193 	}
6194 	VCTLTOREQ(&vc, req);
6195 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6196 	vfs_rel(mp);
6197 	return (error);
6198 }
6199 
6200 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6201     NULL, 0, sysctl_vfs_ctl, "",
6202     "Sysctl by fsid");
6203 
6204 /*
6205  * Function to initialize a va_filerev field sensibly.
6206  * XXX: Wouldn't a random number make a lot more sense ??
6207  */
6208 u_quad_t
6209 init_va_filerev(void)
6210 {
6211 	struct bintime bt;
6212 
6213 	getbinuptime(&bt);
6214 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6215 }
6216 
6217 static int	filt_vfsread(struct knote *kn, long hint);
6218 static int	filt_vfswrite(struct knote *kn, long hint);
6219 static int	filt_vfsvnode(struct knote *kn, long hint);
6220 static void	filt_vfsdetach(struct knote *kn);
6221 static struct filterops vfsread_filtops = {
6222 	.f_isfd = 1,
6223 	.f_detach = filt_vfsdetach,
6224 	.f_event = filt_vfsread
6225 };
6226 static struct filterops vfswrite_filtops = {
6227 	.f_isfd = 1,
6228 	.f_detach = filt_vfsdetach,
6229 	.f_event = filt_vfswrite
6230 };
6231 static struct filterops vfsvnode_filtops = {
6232 	.f_isfd = 1,
6233 	.f_detach = filt_vfsdetach,
6234 	.f_event = filt_vfsvnode
6235 };
6236 
6237 static void
6238 vfs_knllock(void *arg)
6239 {
6240 	struct vnode *vp = arg;
6241 
6242 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6243 }
6244 
6245 static void
6246 vfs_knlunlock(void *arg)
6247 {
6248 	struct vnode *vp = arg;
6249 
6250 	VOP_UNLOCK(vp);
6251 }
6252 
6253 static void
6254 vfs_knl_assert_lock(void *arg, int what)
6255 {
6256 #ifdef DEBUG_VFS_LOCKS
6257 	struct vnode *vp = arg;
6258 
6259 	if (what == LA_LOCKED)
6260 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6261 	else
6262 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6263 #endif
6264 }
6265 
6266 int
6267 vfs_kqfilter(struct vop_kqfilter_args *ap)
6268 {
6269 	struct vnode *vp = ap->a_vp;
6270 	struct knote *kn = ap->a_kn;
6271 	struct knlist *knl;
6272 
6273 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6274 	    kn->kn_filter != EVFILT_WRITE),
6275 	    ("READ/WRITE filter on a FIFO leaked through"));
6276 	switch (kn->kn_filter) {
6277 	case EVFILT_READ:
6278 		kn->kn_fop = &vfsread_filtops;
6279 		break;
6280 	case EVFILT_WRITE:
6281 		kn->kn_fop = &vfswrite_filtops;
6282 		break;
6283 	case EVFILT_VNODE:
6284 		kn->kn_fop = &vfsvnode_filtops;
6285 		break;
6286 	default:
6287 		return (EINVAL);
6288 	}
6289 
6290 	kn->kn_hook = (caddr_t)vp;
6291 
6292 	v_addpollinfo(vp);
6293 	if (vp->v_pollinfo == NULL)
6294 		return (ENOMEM);
6295 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6296 	vhold(vp);
6297 	knlist_add(knl, kn, 0);
6298 
6299 	return (0);
6300 }
6301 
6302 /*
6303  * Detach knote from vnode
6304  */
6305 static void
6306 filt_vfsdetach(struct knote *kn)
6307 {
6308 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6309 
6310 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6311 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6312 	vdrop(vp);
6313 }
6314 
6315 /*ARGSUSED*/
6316 static int
6317 filt_vfsread(struct knote *kn, long hint)
6318 {
6319 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6320 	off_t size;
6321 	int res;
6322 
6323 	/*
6324 	 * filesystem is gone, so set the EOF flag and schedule
6325 	 * the knote for deletion.
6326 	 */
6327 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6328 		VI_LOCK(vp);
6329 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6330 		VI_UNLOCK(vp);
6331 		return (1);
6332 	}
6333 
6334 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6335 		return (0);
6336 
6337 	VI_LOCK(vp);
6338 	kn->kn_data = size - kn->kn_fp->f_offset;
6339 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6340 	VI_UNLOCK(vp);
6341 	return (res);
6342 }
6343 
6344 /*ARGSUSED*/
6345 static int
6346 filt_vfswrite(struct knote *kn, long hint)
6347 {
6348 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6349 
6350 	VI_LOCK(vp);
6351 
6352 	/*
6353 	 * filesystem is gone, so set the EOF flag and schedule
6354 	 * the knote for deletion.
6355 	 */
6356 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6357 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6358 
6359 	kn->kn_data = 0;
6360 	VI_UNLOCK(vp);
6361 	return (1);
6362 }
6363 
6364 static int
6365 filt_vfsvnode(struct knote *kn, long hint)
6366 {
6367 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6368 	int res;
6369 
6370 	VI_LOCK(vp);
6371 	if (kn->kn_sfflags & hint)
6372 		kn->kn_fflags |= hint;
6373 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6374 		kn->kn_flags |= EV_EOF;
6375 		VI_UNLOCK(vp);
6376 		return (1);
6377 	}
6378 	res = (kn->kn_fflags != 0);
6379 	VI_UNLOCK(vp);
6380 	return (res);
6381 }
6382 
6383 int
6384 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6385 {
6386 	int error;
6387 
6388 	if (dp->d_reclen > ap->a_uio->uio_resid)
6389 		return (ENAMETOOLONG);
6390 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6391 	if (error) {
6392 		if (ap->a_ncookies != NULL) {
6393 			if (ap->a_cookies != NULL)
6394 				free(ap->a_cookies, M_TEMP);
6395 			ap->a_cookies = NULL;
6396 			*ap->a_ncookies = 0;
6397 		}
6398 		return (error);
6399 	}
6400 	if (ap->a_ncookies == NULL)
6401 		return (0);
6402 
6403 	KASSERT(ap->a_cookies,
6404 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6405 
6406 	*ap->a_cookies = realloc(*ap->a_cookies,
6407 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6408 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6409 	*ap->a_ncookies += 1;
6410 	return (0);
6411 }
6412 
6413 /*
6414  * The purpose of this routine is to remove granularity from accmode_t,
6415  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6416  * VADMIN and VAPPEND.
6417  *
6418  * If it returns 0, the caller is supposed to continue with the usual
6419  * access checks using 'accmode' as modified by this routine.  If it
6420  * returns nonzero value, the caller is supposed to return that value
6421  * as errno.
6422  *
6423  * Note that after this routine runs, accmode may be zero.
6424  */
6425 int
6426 vfs_unixify_accmode(accmode_t *accmode)
6427 {
6428 	/*
6429 	 * There is no way to specify explicit "deny" rule using
6430 	 * file mode or POSIX.1e ACLs.
6431 	 */
6432 	if (*accmode & VEXPLICIT_DENY) {
6433 		*accmode = 0;
6434 		return (0);
6435 	}
6436 
6437 	/*
6438 	 * None of these can be translated into usual access bits.
6439 	 * Also, the common case for NFSv4 ACLs is to not contain
6440 	 * either of these bits. Caller should check for VWRITE
6441 	 * on the containing directory instead.
6442 	 */
6443 	if (*accmode & (VDELETE_CHILD | VDELETE))
6444 		return (EPERM);
6445 
6446 	if (*accmode & VADMIN_PERMS) {
6447 		*accmode &= ~VADMIN_PERMS;
6448 		*accmode |= VADMIN;
6449 	}
6450 
6451 	/*
6452 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6453 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6454 	 */
6455 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6456 
6457 	return (0);
6458 }
6459 
6460 /*
6461  * Clear out a doomed vnode (if any) and replace it with a new one as long
6462  * as the fs is not being unmounted. Return the root vnode to the caller.
6463  */
6464 static int __noinline
6465 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6466 {
6467 	struct vnode *vp;
6468 	int error;
6469 
6470 restart:
6471 	if (mp->mnt_rootvnode != NULL) {
6472 		MNT_ILOCK(mp);
6473 		vp = mp->mnt_rootvnode;
6474 		if (vp != NULL) {
6475 			if (!VN_IS_DOOMED(vp)) {
6476 				vrefact(vp);
6477 				MNT_IUNLOCK(mp);
6478 				error = vn_lock(vp, flags);
6479 				if (error == 0) {
6480 					*vpp = vp;
6481 					return (0);
6482 				}
6483 				vrele(vp);
6484 				goto restart;
6485 			}
6486 			/*
6487 			 * Clear the old one.
6488 			 */
6489 			mp->mnt_rootvnode = NULL;
6490 		}
6491 		MNT_IUNLOCK(mp);
6492 		if (vp != NULL) {
6493 			vfs_op_barrier_wait(mp);
6494 			vrele(vp);
6495 		}
6496 	}
6497 	error = VFS_CACHEDROOT(mp, flags, vpp);
6498 	if (error != 0)
6499 		return (error);
6500 	if (mp->mnt_vfs_ops == 0) {
6501 		MNT_ILOCK(mp);
6502 		if (mp->mnt_vfs_ops != 0) {
6503 			MNT_IUNLOCK(mp);
6504 			return (0);
6505 		}
6506 		if (mp->mnt_rootvnode == NULL) {
6507 			vrefact(*vpp);
6508 			mp->mnt_rootvnode = *vpp;
6509 		} else {
6510 			if (mp->mnt_rootvnode != *vpp) {
6511 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6512 					panic("%s: mismatch between vnode returned "
6513 					    " by VFS_CACHEDROOT and the one cached "
6514 					    " (%p != %p)",
6515 					    __func__, *vpp, mp->mnt_rootvnode);
6516 				}
6517 			}
6518 		}
6519 		MNT_IUNLOCK(mp);
6520 	}
6521 	return (0);
6522 }
6523 
6524 int
6525 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6526 {
6527 	struct mount_pcpu *mpcpu;
6528 	struct vnode *vp;
6529 	int error;
6530 
6531 	if (!vfs_op_thread_enter(mp, mpcpu))
6532 		return (vfs_cache_root_fallback(mp, flags, vpp));
6533 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6534 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6535 		vfs_op_thread_exit(mp, mpcpu);
6536 		return (vfs_cache_root_fallback(mp, flags, vpp));
6537 	}
6538 	vrefact(vp);
6539 	vfs_op_thread_exit(mp, mpcpu);
6540 	error = vn_lock(vp, flags);
6541 	if (error != 0) {
6542 		vrele(vp);
6543 		return (vfs_cache_root_fallback(mp, flags, vpp));
6544 	}
6545 	*vpp = vp;
6546 	return (0);
6547 }
6548 
6549 struct vnode *
6550 vfs_cache_root_clear(struct mount *mp)
6551 {
6552 	struct vnode *vp;
6553 
6554 	/*
6555 	 * ops > 0 guarantees there is nobody who can see this vnode
6556 	 */
6557 	MPASS(mp->mnt_vfs_ops > 0);
6558 	vp = mp->mnt_rootvnode;
6559 	if (vp != NULL)
6560 		vn_seqc_write_begin(vp);
6561 	mp->mnt_rootvnode = NULL;
6562 	return (vp);
6563 }
6564 
6565 void
6566 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6567 {
6568 
6569 	MPASS(mp->mnt_vfs_ops > 0);
6570 	vrefact(vp);
6571 	mp->mnt_rootvnode = vp;
6572 }
6573 
6574 /*
6575  * These are helper functions for filesystems to traverse all
6576  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6577  *
6578  * This interface replaces MNT_VNODE_FOREACH.
6579  */
6580 
6581 struct vnode *
6582 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6583 {
6584 	struct vnode *vp;
6585 
6586 	maybe_yield();
6587 	MNT_ILOCK(mp);
6588 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6589 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6590 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6591 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6592 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6593 			continue;
6594 		VI_LOCK(vp);
6595 		if (VN_IS_DOOMED(vp)) {
6596 			VI_UNLOCK(vp);
6597 			continue;
6598 		}
6599 		break;
6600 	}
6601 	if (vp == NULL) {
6602 		__mnt_vnode_markerfree_all(mvp, mp);
6603 		/* MNT_IUNLOCK(mp); -- done in above function */
6604 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6605 		return (NULL);
6606 	}
6607 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6608 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6609 	MNT_IUNLOCK(mp);
6610 	return (vp);
6611 }
6612 
6613 struct vnode *
6614 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6615 {
6616 	struct vnode *vp;
6617 
6618 	*mvp = vn_alloc_marker(mp);
6619 	MNT_ILOCK(mp);
6620 	MNT_REF(mp);
6621 
6622 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6623 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6624 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6625 			continue;
6626 		VI_LOCK(vp);
6627 		if (VN_IS_DOOMED(vp)) {
6628 			VI_UNLOCK(vp);
6629 			continue;
6630 		}
6631 		break;
6632 	}
6633 	if (vp == NULL) {
6634 		MNT_REL(mp);
6635 		MNT_IUNLOCK(mp);
6636 		vn_free_marker(*mvp);
6637 		*mvp = NULL;
6638 		return (NULL);
6639 	}
6640 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6641 	MNT_IUNLOCK(mp);
6642 	return (vp);
6643 }
6644 
6645 void
6646 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6647 {
6648 
6649 	if (*mvp == NULL) {
6650 		MNT_IUNLOCK(mp);
6651 		return;
6652 	}
6653 
6654 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6655 
6656 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6657 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6658 	MNT_REL(mp);
6659 	MNT_IUNLOCK(mp);
6660 	vn_free_marker(*mvp);
6661 	*mvp = NULL;
6662 }
6663 
6664 /*
6665  * These are helper functions for filesystems to traverse their
6666  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6667  */
6668 static void
6669 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6670 {
6671 
6672 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6673 
6674 	MNT_ILOCK(mp);
6675 	MNT_REL(mp);
6676 	MNT_IUNLOCK(mp);
6677 	vn_free_marker(*mvp);
6678 	*mvp = NULL;
6679 }
6680 
6681 /*
6682  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6683  * conventional lock order during mnt_vnode_next_lazy iteration.
6684  *
6685  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6686  * The list lock is dropped and reacquired.  On success, both locks are held.
6687  * On failure, the mount vnode list lock is held but the vnode interlock is
6688  * not, and the procedure may have yielded.
6689  */
6690 static bool
6691 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6692     struct vnode *vp)
6693 {
6694 
6695 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6696 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6697 	    ("%s: bad marker", __func__));
6698 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6699 	    ("%s: inappropriate vnode", __func__));
6700 	ASSERT_VI_UNLOCKED(vp, __func__);
6701 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6702 
6703 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6704 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6705 
6706 	/*
6707 	 * Note we may be racing against vdrop which transitioned the hold
6708 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6709 	 * if we are the only user after we get the interlock we will just
6710 	 * vdrop.
6711 	 */
6712 	vhold(vp);
6713 	mtx_unlock(&mp->mnt_listmtx);
6714 	VI_LOCK(vp);
6715 	if (VN_IS_DOOMED(vp)) {
6716 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6717 		goto out_lost;
6718 	}
6719 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6720 	/*
6721 	 * There is nothing to do if we are the last user.
6722 	 */
6723 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6724 		goto out_lost;
6725 	mtx_lock(&mp->mnt_listmtx);
6726 	return (true);
6727 out_lost:
6728 	vdropl(vp);
6729 	maybe_yield();
6730 	mtx_lock(&mp->mnt_listmtx);
6731 	return (false);
6732 }
6733 
6734 static struct vnode *
6735 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6736     void *cbarg)
6737 {
6738 	struct vnode *vp;
6739 
6740 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6741 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6742 restart:
6743 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6744 	while (vp != NULL) {
6745 		if (vp->v_type == VMARKER) {
6746 			vp = TAILQ_NEXT(vp, v_lazylist);
6747 			continue;
6748 		}
6749 		/*
6750 		 * See if we want to process the vnode. Note we may encounter a
6751 		 * long string of vnodes we don't care about and hog the list
6752 		 * as a result. Check for it and requeue the marker.
6753 		 */
6754 		VNPASS(!VN_IS_DOOMED(vp), vp);
6755 		if (!cb(vp, cbarg)) {
6756 			if (!should_yield()) {
6757 				vp = TAILQ_NEXT(vp, v_lazylist);
6758 				continue;
6759 			}
6760 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6761 			    v_lazylist);
6762 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6763 			    v_lazylist);
6764 			mtx_unlock(&mp->mnt_listmtx);
6765 			kern_yield(PRI_USER);
6766 			mtx_lock(&mp->mnt_listmtx);
6767 			goto restart;
6768 		}
6769 		/*
6770 		 * Try-lock because this is the wrong lock order.
6771 		 */
6772 		if (!VI_TRYLOCK(vp) &&
6773 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6774 			goto restart;
6775 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6776 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6777 		    ("alien vnode on the lazy list %p %p", vp, mp));
6778 		VNPASS(vp->v_mount == mp, vp);
6779 		VNPASS(!VN_IS_DOOMED(vp), vp);
6780 		break;
6781 	}
6782 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6783 
6784 	/* Check if we are done */
6785 	if (vp == NULL) {
6786 		mtx_unlock(&mp->mnt_listmtx);
6787 		mnt_vnode_markerfree_lazy(mvp, mp);
6788 		return (NULL);
6789 	}
6790 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6791 	mtx_unlock(&mp->mnt_listmtx);
6792 	ASSERT_VI_LOCKED(vp, "lazy iter");
6793 	return (vp);
6794 }
6795 
6796 struct vnode *
6797 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6798     void *cbarg)
6799 {
6800 
6801 	maybe_yield();
6802 	mtx_lock(&mp->mnt_listmtx);
6803 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6804 }
6805 
6806 struct vnode *
6807 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6808     void *cbarg)
6809 {
6810 	struct vnode *vp;
6811 
6812 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6813 		return (NULL);
6814 
6815 	*mvp = vn_alloc_marker(mp);
6816 	MNT_ILOCK(mp);
6817 	MNT_REF(mp);
6818 	MNT_IUNLOCK(mp);
6819 
6820 	mtx_lock(&mp->mnt_listmtx);
6821 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6822 	if (vp == NULL) {
6823 		mtx_unlock(&mp->mnt_listmtx);
6824 		mnt_vnode_markerfree_lazy(mvp, mp);
6825 		return (NULL);
6826 	}
6827 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6828 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6829 }
6830 
6831 void
6832 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6833 {
6834 
6835 	if (*mvp == NULL)
6836 		return;
6837 
6838 	mtx_lock(&mp->mnt_listmtx);
6839 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6840 	mtx_unlock(&mp->mnt_listmtx);
6841 	mnt_vnode_markerfree_lazy(mvp, mp);
6842 }
6843 
6844 int
6845 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6846 {
6847 
6848 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6849 		cnp->cn_flags &= ~NOEXECCHECK;
6850 		return (0);
6851 	}
6852 
6853 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6854 }
6855 
6856 /*
6857  * Do not use this variant unless you have means other than the hold count
6858  * to prevent the vnode from getting freed.
6859  */
6860 void
6861 vn_seqc_write_begin_locked(struct vnode *vp)
6862 {
6863 
6864 	ASSERT_VI_LOCKED(vp, __func__);
6865 	VNPASS(vp->v_holdcnt > 0, vp);
6866 	VNPASS(vp->v_seqc_users >= 0, vp);
6867 	vp->v_seqc_users++;
6868 	if (vp->v_seqc_users == 1)
6869 		seqc_sleepable_write_begin(&vp->v_seqc);
6870 }
6871 
6872 void
6873 vn_seqc_write_begin(struct vnode *vp)
6874 {
6875 
6876 	VI_LOCK(vp);
6877 	vn_seqc_write_begin_locked(vp);
6878 	VI_UNLOCK(vp);
6879 }
6880 
6881 void
6882 vn_seqc_write_end_locked(struct vnode *vp)
6883 {
6884 
6885 	ASSERT_VI_LOCKED(vp, __func__);
6886 	VNPASS(vp->v_seqc_users > 0, vp);
6887 	vp->v_seqc_users--;
6888 	if (vp->v_seqc_users == 0)
6889 		seqc_sleepable_write_end(&vp->v_seqc);
6890 }
6891 
6892 void
6893 vn_seqc_write_end(struct vnode *vp)
6894 {
6895 
6896 	VI_LOCK(vp);
6897 	vn_seqc_write_end_locked(vp);
6898 	VI_UNLOCK(vp);
6899 }
6900 
6901 /*
6902  * Special case handling for allocating and freeing vnodes.
6903  *
6904  * The counter remains unchanged on free so that a doomed vnode will
6905  * keep testing as in modify as long as it is accessible with SMR.
6906  */
6907 static void
6908 vn_seqc_init(struct vnode *vp)
6909 {
6910 
6911 	vp->v_seqc = 0;
6912 	vp->v_seqc_users = 0;
6913 }
6914 
6915 static void
6916 vn_seqc_write_end_free(struct vnode *vp)
6917 {
6918 
6919 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
6920 	VNPASS(vp->v_seqc_users == 1, vp);
6921 }
6922 
6923 void
6924 vn_irflag_set_locked(struct vnode *vp, short toset)
6925 {
6926 	short flags;
6927 
6928 	ASSERT_VI_LOCKED(vp, __func__);
6929 	flags = vn_irflag_read(vp);
6930 	VNASSERT((flags & toset) == 0, vp,
6931 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
6932 	    __func__, flags, toset));
6933 	atomic_store_short(&vp->v_irflag, flags | toset);
6934 }
6935 
6936 void
6937 vn_irflag_set(struct vnode *vp, short toset)
6938 {
6939 
6940 	VI_LOCK(vp);
6941 	vn_irflag_set_locked(vp, toset);
6942 	VI_UNLOCK(vp);
6943 }
6944 
6945 void
6946 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
6947 {
6948 	short flags;
6949 
6950 	ASSERT_VI_LOCKED(vp, __func__);
6951 	flags = vn_irflag_read(vp);
6952 	atomic_store_short(&vp->v_irflag, flags | toset);
6953 }
6954 
6955 void
6956 vn_irflag_set_cond(struct vnode *vp, short toset)
6957 {
6958 
6959 	VI_LOCK(vp);
6960 	vn_irflag_set_cond_locked(vp, toset);
6961 	VI_UNLOCK(vp);
6962 }
6963 
6964 void
6965 vn_irflag_unset_locked(struct vnode *vp, short tounset)
6966 {
6967 	short flags;
6968 
6969 	ASSERT_VI_LOCKED(vp, __func__);
6970 	flags = vn_irflag_read(vp);
6971 	VNASSERT((flags & tounset) == tounset, vp,
6972 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
6973 	    __func__, flags, tounset));
6974 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
6975 }
6976 
6977 void
6978 vn_irflag_unset(struct vnode *vp, short tounset)
6979 {
6980 
6981 	VI_LOCK(vp);
6982 	vn_irflag_unset_locked(vp, tounset);
6983 	VI_UNLOCK(vp);
6984 }
6985 
6986 int
6987 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
6988 {
6989 	struct vattr vattr;
6990 	int error;
6991 
6992 	ASSERT_VOP_LOCKED(vp, __func__);
6993 	error = VOP_GETATTR(vp, &vattr, cred);
6994 	if (__predict_true(error == 0)) {
6995 		if (vattr.va_size <= OFF_MAX)
6996 			*size = vattr.va_size;
6997 		else
6998 			error = EFBIG;
6999 	}
7000 	return (error);
7001 }
7002 
7003 int
7004 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7005 {
7006 	int error;
7007 
7008 	VOP_LOCK(vp, LK_SHARED);
7009 	error = vn_getsize_locked(vp, size, cred);
7010 	VOP_UNLOCK(vp);
7011 	return (error);
7012 }
7013 
7014 #ifdef INVARIANTS
7015 void
7016 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7017 {
7018 
7019 	switch (vp->v_state) {
7020 	case VSTATE_UNINITIALIZED:
7021 		switch (state) {
7022 		case VSTATE_CONSTRUCTED:
7023 		case VSTATE_DESTROYING:
7024 			return;
7025 		default:
7026 			break;
7027 		}
7028 		break;
7029 	case VSTATE_CONSTRUCTED:
7030 		ASSERT_VOP_ELOCKED(vp, __func__);
7031 		switch (state) {
7032 		case VSTATE_DESTROYING:
7033 			return;
7034 		default:
7035 			break;
7036 		}
7037 		break;
7038 	case VSTATE_DESTROYING:
7039 		ASSERT_VOP_ELOCKED(vp, __func__);
7040 		switch (state) {
7041 		case VSTATE_DEAD:
7042 			return;
7043 		default:
7044 			break;
7045 		}
7046 		break;
7047 	case VSTATE_DEAD:
7048 		switch (state) {
7049 		case VSTATE_UNINITIALIZED:
7050 			return;
7051 		default:
7052 			break;
7053 		}
7054 		break;
7055 	}
7056 
7057 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7058 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7059 }
7060 #endif
7061