1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 37 */ 38 39 /* 40 * External virtual filesystem routines 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include "opt_ddb.h" 47 #include "opt_watchdog.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/asan.h> 52 #include <sys/bio.h> 53 #include <sys/buf.h> 54 #include <sys/capsicum.h> 55 #include <sys/condvar.h> 56 #include <sys/conf.h> 57 #include <sys/counter.h> 58 #include <sys/dirent.h> 59 #include <sys/event.h> 60 #include <sys/eventhandler.h> 61 #include <sys/extattr.h> 62 #include <sys/file.h> 63 #include <sys/fcntl.h> 64 #include <sys/jail.h> 65 #include <sys/kdb.h> 66 #include <sys/kernel.h> 67 #include <sys/kthread.h> 68 #include <sys/ktr.h> 69 #include <sys/limits.h> 70 #include <sys/lockf.h> 71 #include <sys/malloc.h> 72 #include <sys/mount.h> 73 #include <sys/namei.h> 74 #include <sys/pctrie.h> 75 #include <sys/priv.h> 76 #include <sys/reboot.h> 77 #include <sys/refcount.h> 78 #include <sys/rwlock.h> 79 #include <sys/sched.h> 80 #include <sys/sleepqueue.h> 81 #include <sys/smr.h> 82 #include <sys/smp.h> 83 #include <sys/stat.h> 84 #include <sys/sysctl.h> 85 #include <sys/syslog.h> 86 #include <sys/vmmeter.h> 87 #include <sys/vnode.h> 88 #include <sys/watchdog.h> 89 90 #include <machine/stdarg.h> 91 92 #include <security/mac/mac_framework.h> 93 94 #include <vm/vm.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_extern.h> 97 #include <vm/pmap.h> 98 #include <vm/vm_map.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_kern.h> 101 #include <vm/uma.h> 102 103 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS)) 104 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS 105 #endif 106 107 #ifdef DDB 108 #include <ddb/ddb.h> 109 #endif 110 111 static void delmntque(struct vnode *vp); 112 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 113 int slpflag, int slptimeo); 114 static void syncer_shutdown(void *arg, int howto); 115 static int vtryrecycle(struct vnode *vp); 116 static void v_init_counters(struct vnode *); 117 static void vn_seqc_init(struct vnode *); 118 static void vn_seqc_write_end_free(struct vnode *vp); 119 static void vgonel(struct vnode *); 120 static bool vhold_recycle_free(struct vnode *); 121 static void vdropl_recycle(struct vnode *vp); 122 static void vdrop_recycle(struct vnode *vp); 123 static void vfs_knllock(void *arg); 124 static void vfs_knlunlock(void *arg); 125 static void vfs_knl_assert_lock(void *arg, int what); 126 static void destroy_vpollinfo(struct vpollinfo *vi); 127 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 128 daddr_t startlbn, daddr_t endlbn); 129 static void vnlru_recalc(void); 130 131 /* 132 * Number of vnodes in existence. Increased whenever getnewvnode() 133 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode. 134 */ 135 static u_long __exclusive_cache_line numvnodes; 136 137 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 138 "Number of vnodes in existence"); 139 140 static counter_u64_t vnodes_created; 141 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 142 "Number of vnodes created by getnewvnode"); 143 144 /* 145 * Conversion tables for conversion from vnode types to inode formats 146 * and back. 147 */ 148 enum vtype iftovt_tab[16] = { 149 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 150 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 151 }; 152 int vttoif_tab[10] = { 153 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 154 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 155 }; 156 157 /* 158 * List of allocates vnodes in the system. 159 */ 160 static TAILQ_HEAD(freelst, vnode) vnode_list; 161 static struct vnode *vnode_list_free_marker; 162 static struct vnode *vnode_list_reclaim_marker; 163 164 /* 165 * "Free" vnode target. Free vnodes are rarely completely free, but are 166 * just ones that are cheap to recycle. Usually they are for files which 167 * have been stat'd but not read; these usually have inode and namecache 168 * data attached to them. This target is the preferred minimum size of a 169 * sub-cache consisting mostly of such files. The system balances the size 170 * of this sub-cache with its complement to try to prevent either from 171 * thrashing while the other is relatively inactive. The targets express 172 * a preference for the best balance. 173 * 174 * "Above" this target there are 2 further targets (watermarks) related 175 * to recyling of free vnodes. In the best-operating case, the cache is 176 * exactly full, the free list has size between vlowat and vhiwat above the 177 * free target, and recycling from it and normal use maintains this state. 178 * Sometimes the free list is below vlowat or even empty, but this state 179 * is even better for immediate use provided the cache is not full. 180 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free 181 * ones) to reach one of these states. The watermarks are currently hard- 182 * coded as 4% and 9% of the available space higher. These and the default 183 * of 25% for wantfreevnodes are too large if the memory size is large. 184 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim 185 * whenever vnlru_proc() becomes active. 186 */ 187 static long wantfreevnodes; 188 static long __exclusive_cache_line freevnodes; 189 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, 190 &freevnodes, 0, "Number of \"free\" vnodes"); 191 static long freevnodes_old; 192 193 static counter_u64_t recycles_count; 194 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 195 "Number of vnodes recycled to meet vnode cache targets"); 196 197 static counter_u64_t recycles_free_count; 198 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count, 199 "Number of free vnodes recycled to meet vnode cache targets"); 200 201 static u_long deferred_inact; 202 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, 203 &deferred_inact, 0, "Number of times inactive processing was deferred"); 204 205 /* To keep more than one thread at a time from running vfs_getnewfsid */ 206 static struct mtx mntid_mtx; 207 208 /* 209 * Lock for any access to the following: 210 * vnode_list 211 * numvnodes 212 * freevnodes 213 */ 214 static struct mtx __exclusive_cache_line vnode_list_mtx; 215 216 /* Publicly exported FS */ 217 struct nfs_public nfs_pub; 218 219 static uma_zone_t buf_trie_zone; 220 static smr_t buf_trie_smr; 221 222 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 223 static uma_zone_t vnode_zone; 224 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll"); 225 226 __read_frequently smr_t vfs_smr; 227 228 /* 229 * The workitem queue. 230 * 231 * It is useful to delay writes of file data and filesystem metadata 232 * for tens of seconds so that quickly created and deleted files need 233 * not waste disk bandwidth being created and removed. To realize this, 234 * we append vnodes to a "workitem" queue. When running with a soft 235 * updates implementation, most pending metadata dependencies should 236 * not wait for more than a few seconds. Thus, mounted on block devices 237 * are delayed only about a half the time that file data is delayed. 238 * Similarly, directory updates are more critical, so are only delayed 239 * about a third the time that file data is delayed. Thus, there are 240 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 241 * one each second (driven off the filesystem syncer process). The 242 * syncer_delayno variable indicates the next queue that is to be processed. 243 * Items that need to be processed soon are placed in this queue: 244 * 245 * syncer_workitem_pending[syncer_delayno] 246 * 247 * A delay of fifteen seconds is done by placing the request fifteen 248 * entries later in the queue: 249 * 250 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 251 * 252 */ 253 static int syncer_delayno; 254 static long syncer_mask; 255 LIST_HEAD(synclist, bufobj); 256 static struct synclist *syncer_workitem_pending; 257 /* 258 * The sync_mtx protects: 259 * bo->bo_synclist 260 * sync_vnode_count 261 * syncer_delayno 262 * syncer_state 263 * syncer_workitem_pending 264 * syncer_worklist_len 265 * rushjob 266 */ 267 static struct mtx sync_mtx; 268 static struct cv sync_wakeup; 269 270 #define SYNCER_MAXDELAY 32 271 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 272 static int syncdelay = 30; /* max time to delay syncing data */ 273 static int filedelay = 30; /* time to delay syncing files */ 274 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 275 "Time to delay syncing files (in seconds)"); 276 static int dirdelay = 29; /* time to delay syncing directories */ 277 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 278 "Time to delay syncing directories (in seconds)"); 279 static int metadelay = 28; /* time to delay syncing metadata */ 280 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 281 "Time to delay syncing metadata (in seconds)"); 282 static int rushjob; /* number of slots to run ASAP */ 283 static int stat_rush_requests; /* number of times I/O speeded up */ 284 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 285 "Number of times I/O speeded up (rush requests)"); 286 287 #define VDBATCH_SIZE 8 288 struct vdbatch { 289 u_int index; 290 struct mtx lock; 291 struct vnode *tab[VDBATCH_SIZE]; 292 }; 293 DPCPU_DEFINE_STATIC(struct vdbatch, vd); 294 295 static void vdbatch_dequeue(struct vnode *vp); 296 297 /* 298 * When shutting down the syncer, run it at four times normal speed. 299 */ 300 #define SYNCER_SHUTDOWN_SPEEDUP 4 301 static int sync_vnode_count; 302 static int syncer_worklist_len; 303 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 304 syncer_state; 305 306 /* Target for maximum number of vnodes. */ 307 u_long desiredvnodes; 308 static u_long gapvnodes; /* gap between wanted and desired */ 309 static u_long vhiwat; /* enough extras after expansion */ 310 static u_long vlowat; /* minimal extras before expansion */ 311 static u_long vstir; /* nonzero to stir non-free vnodes */ 312 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */ 313 314 static u_long vnlru_read_freevnodes(void); 315 316 /* 317 * Note that no attempt is made to sanitize these parameters. 318 */ 319 static int 320 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS) 321 { 322 u_long val; 323 int error; 324 325 val = desiredvnodes; 326 error = sysctl_handle_long(oidp, &val, 0, req); 327 if (error != 0 || req->newptr == NULL) 328 return (error); 329 330 if (val == desiredvnodes) 331 return (0); 332 mtx_lock(&vnode_list_mtx); 333 desiredvnodes = val; 334 wantfreevnodes = desiredvnodes / 4; 335 vnlru_recalc(); 336 mtx_unlock(&vnode_list_mtx); 337 /* 338 * XXX There is no protection against multiple threads changing 339 * desiredvnodes at the same time. Locking above only helps vnlru and 340 * getnewvnode. 341 */ 342 vfs_hash_changesize(desiredvnodes); 343 cache_changesize(desiredvnodes); 344 return (0); 345 } 346 347 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, 348 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 349 "LU", "Target for maximum number of vnodes"); 350 351 static int 352 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS) 353 { 354 u_long val; 355 int error; 356 357 val = wantfreevnodes; 358 error = sysctl_handle_long(oidp, &val, 0, req); 359 if (error != 0 || req->newptr == NULL) 360 return (error); 361 362 if (val == wantfreevnodes) 363 return (0); 364 mtx_lock(&vnode_list_mtx); 365 wantfreevnodes = val; 366 vnlru_recalc(); 367 mtx_unlock(&vnode_list_mtx); 368 return (0); 369 } 370 371 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes, 372 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 373 "LU", "Target for minimum number of \"free\" vnodes"); 374 375 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 376 &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)"); 377 static int vnlru_nowhere; 378 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW | CTLFLAG_STATS, 379 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 380 381 static int 382 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS) 383 { 384 struct vnode *vp; 385 struct nameidata nd; 386 char *buf; 387 unsigned long ndflags; 388 int error; 389 390 if (req->newptr == NULL) 391 return (EINVAL); 392 if (req->newlen >= PATH_MAX) 393 return (E2BIG); 394 395 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK); 396 error = SYSCTL_IN(req, buf, req->newlen); 397 if (error != 0) 398 goto out; 399 400 buf[req->newlen] = '\0'; 401 402 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1; 403 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf); 404 if ((error = namei(&nd)) != 0) 405 goto out; 406 vp = nd.ni_vp; 407 408 if (VN_IS_DOOMED(vp)) { 409 /* 410 * This vnode is being recycled. Return != 0 to let the caller 411 * know that the sysctl had no effect. Return EAGAIN because a 412 * subsequent call will likely succeed (since namei will create 413 * a new vnode if necessary) 414 */ 415 error = EAGAIN; 416 goto putvnode; 417 } 418 419 counter_u64_add(recycles_count, 1); 420 vgone(vp); 421 putvnode: 422 vput(vp); 423 NDFREE_PNBUF(&nd); 424 out: 425 free(buf, M_TEMP); 426 return (error); 427 } 428 429 static int 430 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS) 431 { 432 struct thread *td = curthread; 433 struct vnode *vp; 434 struct file *fp; 435 int error; 436 int fd; 437 438 if (req->newptr == NULL) 439 return (EBADF); 440 441 error = sysctl_handle_int(oidp, &fd, 0, req); 442 if (error != 0) 443 return (error); 444 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp); 445 if (error != 0) 446 return (error); 447 vp = fp->f_vnode; 448 449 error = vn_lock(vp, LK_EXCLUSIVE); 450 if (error != 0) 451 goto drop; 452 453 counter_u64_add(recycles_count, 1); 454 vgone(vp); 455 VOP_UNLOCK(vp); 456 drop: 457 fdrop(fp, td); 458 return (error); 459 } 460 461 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode, 462 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 463 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname"); 464 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode, 465 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 466 sysctl_ftry_reclaim_vnode, "I", 467 "Try to reclaim a vnode by its file descriptor"); 468 469 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 470 #define vnsz2log 8 471 #ifndef DEBUG_LOCKS 472 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log && 473 sizeof(struct vnode) < 1UL << (vnsz2log + 1), 474 "vnsz2log needs to be updated"); 475 #endif 476 477 /* 478 * Support for the bufobj clean & dirty pctrie. 479 */ 480 static void * 481 buf_trie_alloc(struct pctrie *ptree) 482 { 483 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT)); 484 } 485 486 static void 487 buf_trie_free(struct pctrie *ptree, void *node) 488 { 489 uma_zfree_smr(buf_trie_zone, node); 490 } 491 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free, 492 buf_trie_smr); 493 494 /* 495 * Initialize the vnode management data structures. 496 * 497 * Reevaluate the following cap on the number of vnodes after the physical 498 * memory size exceeds 512GB. In the limit, as the physical memory size 499 * grows, the ratio of the memory size in KB to vnodes approaches 64:1. 500 */ 501 #ifndef MAXVNODES_MAX 502 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */ 503 #endif 504 505 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 506 507 static struct vnode * 508 vn_alloc_marker(struct mount *mp) 509 { 510 struct vnode *vp; 511 512 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 513 vp->v_type = VMARKER; 514 vp->v_mount = mp; 515 516 return (vp); 517 } 518 519 static void 520 vn_free_marker(struct vnode *vp) 521 { 522 523 MPASS(vp->v_type == VMARKER); 524 free(vp, M_VNODE_MARKER); 525 } 526 527 #ifdef KASAN 528 static int 529 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused) 530 { 531 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0); 532 return (0); 533 } 534 535 static void 536 vnode_dtor(void *mem, int size, void *arg __unused) 537 { 538 size_t end1, end2, off1, off2; 539 540 _Static_assert(offsetof(struct vnode, v_vnodelist) < 541 offsetof(struct vnode, v_dbatchcpu), 542 "KASAN marks require updating"); 543 544 off1 = offsetof(struct vnode, v_vnodelist); 545 off2 = offsetof(struct vnode, v_dbatchcpu); 546 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist); 547 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu); 548 549 /* 550 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even 551 * after the vnode has been freed. Try to get some KASAN coverage by 552 * marking everything except those two fields as invalid. Because 553 * KASAN's tracking is not byte-granular, any preceding fields sharing 554 * the same 8-byte aligned word must also be marked valid. 555 */ 556 557 /* Handle the area from the start until v_vnodelist... */ 558 off1 = rounddown2(off1, KASAN_SHADOW_SCALE); 559 kasan_mark(mem, off1, off1, KASAN_UMA_FREED); 560 561 /* ... then the area between v_vnodelist and v_dbatchcpu ... */ 562 off1 = roundup2(end1, KASAN_SHADOW_SCALE); 563 off2 = rounddown2(off2, KASAN_SHADOW_SCALE); 564 if (off2 > off1) 565 kasan_mark((void *)((char *)mem + off1), off2 - off1, 566 off2 - off1, KASAN_UMA_FREED); 567 568 /* ... and finally the area from v_dbatchcpu to the end. */ 569 off2 = roundup2(end2, KASAN_SHADOW_SCALE); 570 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2, 571 KASAN_UMA_FREED); 572 } 573 #endif /* KASAN */ 574 575 /* 576 * Initialize a vnode as it first enters the zone. 577 */ 578 static int 579 vnode_init(void *mem, int size, int flags) 580 { 581 struct vnode *vp; 582 583 vp = mem; 584 bzero(vp, size); 585 /* 586 * Setup locks. 587 */ 588 vp->v_vnlock = &vp->v_lock; 589 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 590 /* 591 * By default, don't allow shared locks unless filesystems opt-in. 592 */ 593 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT, 594 LK_NOSHARE | LK_IS_VNODE); 595 /* 596 * Initialize bufobj. 597 */ 598 bufobj_init(&vp->v_bufobj, vp); 599 /* 600 * Initialize namecache. 601 */ 602 cache_vnode_init(vp); 603 /* 604 * Initialize rangelocks. 605 */ 606 rangelock_init(&vp->v_rl); 607 608 vp->v_dbatchcpu = NOCPU; 609 610 vp->v_state = VSTATE_DEAD; 611 612 /* 613 * Check vhold_recycle_free for an explanation. 614 */ 615 vp->v_holdcnt = VHOLD_NO_SMR; 616 vp->v_type = VNON; 617 mtx_lock(&vnode_list_mtx); 618 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist); 619 mtx_unlock(&vnode_list_mtx); 620 return (0); 621 } 622 623 /* 624 * Free a vnode when it is cleared from the zone. 625 */ 626 static void 627 vnode_fini(void *mem, int size) 628 { 629 struct vnode *vp; 630 struct bufobj *bo; 631 632 vp = mem; 633 vdbatch_dequeue(vp); 634 mtx_lock(&vnode_list_mtx); 635 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 636 mtx_unlock(&vnode_list_mtx); 637 rangelock_destroy(&vp->v_rl); 638 lockdestroy(vp->v_vnlock); 639 mtx_destroy(&vp->v_interlock); 640 bo = &vp->v_bufobj; 641 rw_destroy(BO_LOCKPTR(bo)); 642 643 kasan_mark(mem, size, size, 0); 644 } 645 646 /* 647 * Provide the size of NFS nclnode and NFS fh for calculation of the 648 * vnode memory consumption. The size is specified directly to 649 * eliminate dependency on NFS-private header. 650 * 651 * Other filesystems may use bigger or smaller (like UFS and ZFS) 652 * private inode data, but the NFS-based estimation is ample enough. 653 * Still, we care about differences in the size between 64- and 32-bit 654 * platforms. 655 * 656 * Namecache structure size is heuristically 657 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1. 658 */ 659 #ifdef _LP64 660 #define NFS_NCLNODE_SZ (528 + 64) 661 #define NC_SZ 148 662 #else 663 #define NFS_NCLNODE_SZ (360 + 32) 664 #define NC_SZ 92 665 #endif 666 667 static void 668 vntblinit(void *dummy __unused) 669 { 670 struct vdbatch *vd; 671 uma_ctor ctor; 672 uma_dtor dtor; 673 int cpu, physvnodes, virtvnodes; 674 675 /* 676 * Desiredvnodes is a function of the physical memory size and the 677 * kernel's heap size. Generally speaking, it scales with the 678 * physical memory size. The ratio of desiredvnodes to the physical 679 * memory size is 1:16 until desiredvnodes exceeds 98,304. 680 * Thereafter, the 681 * marginal ratio of desiredvnodes to the physical memory size is 682 * 1:64. However, desiredvnodes is limited by the kernel's heap 683 * size. The memory required by desiredvnodes vnodes and vm objects 684 * must not exceed 1/10th of the kernel's heap size. 685 */ 686 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 + 687 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64; 688 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) + 689 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ)); 690 desiredvnodes = min(physvnodes, virtvnodes); 691 if (desiredvnodes > MAXVNODES_MAX) { 692 if (bootverbose) 693 printf("Reducing kern.maxvnodes %lu -> %lu\n", 694 desiredvnodes, MAXVNODES_MAX); 695 desiredvnodes = MAXVNODES_MAX; 696 } 697 wantfreevnodes = desiredvnodes / 4; 698 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 699 TAILQ_INIT(&vnode_list); 700 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF); 701 /* 702 * The lock is taken to appease WITNESS. 703 */ 704 mtx_lock(&vnode_list_mtx); 705 vnlru_recalc(); 706 mtx_unlock(&vnode_list_mtx); 707 vnode_list_free_marker = vn_alloc_marker(NULL); 708 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist); 709 vnode_list_reclaim_marker = vn_alloc_marker(NULL); 710 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist); 711 712 #ifdef KASAN 713 ctor = vnode_ctor; 714 dtor = vnode_dtor; 715 #else 716 ctor = NULL; 717 dtor = NULL; 718 #endif 719 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor, 720 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN); 721 uma_zone_set_smr(vnode_zone, vfs_smr); 722 723 /* 724 * Preallocate enough nodes to support one-per buf so that 725 * we can not fail an insert. reassignbuf() callers can not 726 * tolerate the insertion failure. 727 */ 728 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 729 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 730 UMA_ZONE_NOFREE | UMA_ZONE_SMR); 731 buf_trie_smr = uma_zone_get_smr(buf_trie_zone); 732 uma_prealloc(buf_trie_zone, nbuf); 733 734 vnodes_created = counter_u64_alloc(M_WAITOK); 735 recycles_count = counter_u64_alloc(M_WAITOK); 736 recycles_free_count = counter_u64_alloc(M_WAITOK); 737 738 /* 739 * Initialize the filesystem syncer. 740 */ 741 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 742 &syncer_mask); 743 syncer_maxdelay = syncer_mask + 1; 744 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 745 cv_init(&sync_wakeup, "syncer"); 746 747 CPU_FOREACH(cpu) { 748 vd = DPCPU_ID_PTR((cpu), vd); 749 bzero(vd, sizeof(*vd)); 750 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF); 751 } 752 } 753 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 754 755 /* 756 * Mark a mount point as busy. Used to synchronize access and to delay 757 * unmounting. Eventually, mountlist_mtx is not released on failure. 758 * 759 * vfs_busy() is a custom lock, it can block the caller. 760 * vfs_busy() only sleeps if the unmount is active on the mount point. 761 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 762 * vnode belonging to mp. 763 * 764 * Lookup uses vfs_busy() to traverse mount points. 765 * root fs var fs 766 * / vnode lock A / vnode lock (/var) D 767 * /var vnode lock B /log vnode lock(/var/log) E 768 * vfs_busy lock C vfs_busy lock F 769 * 770 * Within each file system, the lock order is C->A->B and F->D->E. 771 * 772 * When traversing across mounts, the system follows that lock order: 773 * 774 * C->A->B 775 * | 776 * +->F->D->E 777 * 778 * The lookup() process for namei("/var") illustrates the process: 779 * 1. VOP_LOOKUP() obtains B while A is held 780 * 2. vfs_busy() obtains a shared lock on F while A and B are held 781 * 3. vput() releases lock on B 782 * 4. vput() releases lock on A 783 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held 784 * 6. vfs_unbusy() releases shared lock on F 785 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 786 * Attempt to lock A (instead of vp_crossmp) while D is held would 787 * violate the global order, causing deadlocks. 788 * 789 * dounmount() locks B while F is drained. Note that for stacked 790 * filesystems, D and B in the example above may be the same lock, 791 * which introdues potential lock order reversal deadlock between 792 * dounmount() and step 5 above. These filesystems may avoid the LOR 793 * by setting VV_CROSSLOCK on the covered vnode so that lock B will 794 * remain held until after step 5. 795 */ 796 int 797 vfs_busy(struct mount *mp, int flags) 798 { 799 struct mount_pcpu *mpcpu; 800 801 MPASS((flags & ~MBF_MASK) == 0); 802 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 803 804 if (vfs_op_thread_enter(mp, mpcpu)) { 805 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 806 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0); 807 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0); 808 vfs_mp_count_add_pcpu(mpcpu, ref, 1); 809 vfs_mp_count_add_pcpu(mpcpu, lockref, 1); 810 vfs_op_thread_exit(mp, mpcpu); 811 if (flags & MBF_MNTLSTLOCK) 812 mtx_unlock(&mountlist_mtx); 813 return (0); 814 } 815 816 MNT_ILOCK(mp); 817 vfs_assert_mount_counters(mp); 818 MNT_REF(mp); 819 /* 820 * If mount point is currently being unmounted, sleep until the 821 * mount point fate is decided. If thread doing the unmounting fails, 822 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 823 * that this mount point has survived the unmount attempt and vfs_busy 824 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 825 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 826 * about to be really destroyed. vfs_busy needs to release its 827 * reference on the mount point in this case and return with ENOENT, 828 * telling the caller the mount it tried to busy is no longer valid. 829 */ 830 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 831 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), 832 ("%s: non-empty upper mount list with pending unmount", 833 __func__)); 834 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 835 MNT_REL(mp); 836 MNT_IUNLOCK(mp); 837 CTR1(KTR_VFS, "%s: failed busying before sleeping", 838 __func__); 839 return (ENOENT); 840 } 841 if (flags & MBF_MNTLSTLOCK) 842 mtx_unlock(&mountlist_mtx); 843 mp->mnt_kern_flag |= MNTK_MWAIT; 844 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 845 if (flags & MBF_MNTLSTLOCK) 846 mtx_lock(&mountlist_mtx); 847 MNT_ILOCK(mp); 848 } 849 if (flags & MBF_MNTLSTLOCK) 850 mtx_unlock(&mountlist_mtx); 851 mp->mnt_lockref++; 852 MNT_IUNLOCK(mp); 853 return (0); 854 } 855 856 /* 857 * Free a busy filesystem. 858 */ 859 void 860 vfs_unbusy(struct mount *mp) 861 { 862 struct mount_pcpu *mpcpu; 863 int c; 864 865 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 866 867 if (vfs_op_thread_enter(mp, mpcpu)) { 868 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 869 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1); 870 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 871 vfs_op_thread_exit(mp, mpcpu); 872 return; 873 } 874 875 MNT_ILOCK(mp); 876 vfs_assert_mount_counters(mp); 877 MNT_REL(mp); 878 c = --mp->mnt_lockref; 879 if (mp->mnt_vfs_ops == 0) { 880 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 881 MNT_IUNLOCK(mp); 882 return; 883 } 884 if (c < 0) 885 vfs_dump_mount_counters(mp); 886 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 887 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 888 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 889 mp->mnt_kern_flag &= ~MNTK_DRAINING; 890 wakeup(&mp->mnt_lockref); 891 } 892 MNT_IUNLOCK(mp); 893 } 894 895 /* 896 * Lookup a mount point by filesystem identifier. 897 */ 898 struct mount * 899 vfs_getvfs(fsid_t *fsid) 900 { 901 struct mount *mp; 902 903 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 904 mtx_lock(&mountlist_mtx); 905 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 906 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 907 vfs_ref(mp); 908 mtx_unlock(&mountlist_mtx); 909 return (mp); 910 } 911 } 912 mtx_unlock(&mountlist_mtx); 913 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 914 return ((struct mount *) 0); 915 } 916 917 /* 918 * Lookup a mount point by filesystem identifier, busying it before 919 * returning. 920 * 921 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 922 * cache for popular filesystem identifiers. The cache is lockess, using 923 * the fact that struct mount's are never freed. In worst case we may 924 * get pointer to unmounted or even different filesystem, so we have to 925 * check what we got, and go slow way if so. 926 */ 927 struct mount * 928 vfs_busyfs(fsid_t *fsid) 929 { 930 #define FSID_CACHE_SIZE 256 931 typedef struct mount * volatile vmp_t; 932 static vmp_t cache[FSID_CACHE_SIZE]; 933 struct mount *mp; 934 int error; 935 uint32_t hash; 936 937 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 938 hash = fsid->val[0] ^ fsid->val[1]; 939 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 940 mp = cache[hash]; 941 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0) 942 goto slow; 943 if (vfs_busy(mp, 0) != 0) { 944 cache[hash] = NULL; 945 goto slow; 946 } 947 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) 948 return (mp); 949 else 950 vfs_unbusy(mp); 951 952 slow: 953 mtx_lock(&mountlist_mtx); 954 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 955 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 956 error = vfs_busy(mp, MBF_MNTLSTLOCK); 957 if (error) { 958 cache[hash] = NULL; 959 mtx_unlock(&mountlist_mtx); 960 return (NULL); 961 } 962 cache[hash] = mp; 963 return (mp); 964 } 965 } 966 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 967 mtx_unlock(&mountlist_mtx); 968 return ((struct mount *) 0); 969 } 970 971 /* 972 * Check if a user can access privileged mount options. 973 */ 974 int 975 vfs_suser(struct mount *mp, struct thread *td) 976 { 977 int error; 978 979 if (jailed(td->td_ucred)) { 980 /* 981 * If the jail of the calling thread lacks permission for 982 * this type of file system, deny immediately. 983 */ 984 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag)) 985 return (EPERM); 986 987 /* 988 * If the file system was mounted outside the jail of the 989 * calling thread, deny immediately. 990 */ 991 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 992 return (EPERM); 993 } 994 995 /* 996 * If file system supports delegated administration, we don't check 997 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 998 * by the file system itself. 999 * If this is not the user that did original mount, we check for 1000 * the PRIV_VFS_MOUNT_OWNER privilege. 1001 */ 1002 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 1003 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 1004 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 1005 return (error); 1006 } 1007 return (0); 1008 } 1009 1010 /* 1011 * Get a new unique fsid. Try to make its val[0] unique, since this value 1012 * will be used to create fake device numbers for stat(). Also try (but 1013 * not so hard) make its val[0] unique mod 2^16, since some emulators only 1014 * support 16-bit device numbers. We end up with unique val[0]'s for the 1015 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 1016 * 1017 * Keep in mind that several mounts may be running in parallel. Starting 1018 * the search one past where the previous search terminated is both a 1019 * micro-optimization and a defense against returning the same fsid to 1020 * different mounts. 1021 */ 1022 void 1023 vfs_getnewfsid(struct mount *mp) 1024 { 1025 static uint16_t mntid_base; 1026 struct mount *nmp; 1027 fsid_t tfsid; 1028 int mtype; 1029 1030 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 1031 mtx_lock(&mntid_mtx); 1032 mtype = mp->mnt_vfc->vfc_typenum; 1033 tfsid.val[1] = mtype; 1034 mtype = (mtype & 0xFF) << 24; 1035 for (;;) { 1036 tfsid.val[0] = makedev(255, 1037 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 1038 mntid_base++; 1039 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 1040 break; 1041 vfs_rel(nmp); 1042 } 1043 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 1044 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 1045 mtx_unlock(&mntid_mtx); 1046 } 1047 1048 /* 1049 * Knob to control the precision of file timestamps: 1050 * 1051 * 0 = seconds only; nanoseconds zeroed. 1052 * 1 = seconds and nanoseconds, accurate within 1/HZ. 1053 * 2 = seconds and nanoseconds, truncated to microseconds. 1054 * >=3 = seconds and nanoseconds, maximum precision. 1055 */ 1056 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 1057 1058 static int timestamp_precision = TSP_USEC; 1059 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 1060 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 1061 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, " 1062 "3+: sec + ns (max. precision))"); 1063 1064 /* 1065 * Get a current timestamp. 1066 */ 1067 void 1068 vfs_timestamp(struct timespec *tsp) 1069 { 1070 struct timeval tv; 1071 1072 switch (timestamp_precision) { 1073 case TSP_SEC: 1074 tsp->tv_sec = time_second; 1075 tsp->tv_nsec = 0; 1076 break; 1077 case TSP_HZ: 1078 getnanotime(tsp); 1079 break; 1080 case TSP_USEC: 1081 microtime(&tv); 1082 TIMEVAL_TO_TIMESPEC(&tv, tsp); 1083 break; 1084 case TSP_NSEC: 1085 default: 1086 nanotime(tsp); 1087 break; 1088 } 1089 } 1090 1091 /* 1092 * Set vnode attributes to VNOVAL 1093 */ 1094 void 1095 vattr_null(struct vattr *vap) 1096 { 1097 1098 vap->va_type = VNON; 1099 vap->va_size = VNOVAL; 1100 vap->va_bytes = VNOVAL; 1101 vap->va_mode = VNOVAL; 1102 vap->va_nlink = VNOVAL; 1103 vap->va_uid = VNOVAL; 1104 vap->va_gid = VNOVAL; 1105 vap->va_fsid = VNOVAL; 1106 vap->va_fileid = VNOVAL; 1107 vap->va_blocksize = VNOVAL; 1108 vap->va_rdev = VNOVAL; 1109 vap->va_atime.tv_sec = VNOVAL; 1110 vap->va_atime.tv_nsec = VNOVAL; 1111 vap->va_mtime.tv_sec = VNOVAL; 1112 vap->va_mtime.tv_nsec = VNOVAL; 1113 vap->va_ctime.tv_sec = VNOVAL; 1114 vap->va_ctime.tv_nsec = VNOVAL; 1115 vap->va_birthtime.tv_sec = VNOVAL; 1116 vap->va_birthtime.tv_nsec = VNOVAL; 1117 vap->va_flags = VNOVAL; 1118 vap->va_gen = VNOVAL; 1119 vap->va_vaflags = 0; 1120 } 1121 1122 /* 1123 * Try to reduce the total number of vnodes. 1124 * 1125 * This routine (and its user) are buggy in at least the following ways: 1126 * - all parameters were picked years ago when RAM sizes were significantly 1127 * smaller 1128 * - it can pick vnodes based on pages used by the vm object, but filesystems 1129 * like ZFS don't use it making the pick broken 1130 * - since ZFS has its own aging policy it gets partially combated by this one 1131 * - a dedicated method should be provided for filesystems to let them decide 1132 * whether the vnode should be recycled 1133 * 1134 * This routine is called when we have too many vnodes. It attempts 1135 * to free <count> vnodes and will potentially free vnodes that still 1136 * have VM backing store (VM backing store is typically the cause 1137 * of a vnode blowout so we want to do this). Therefore, this operation 1138 * is not considered cheap. 1139 * 1140 * A number of conditions may prevent a vnode from being reclaimed. 1141 * the buffer cache may have references on the vnode, a directory 1142 * vnode may still have references due to the namei cache representing 1143 * underlying files, or the vnode may be in active use. It is not 1144 * desirable to reuse such vnodes. These conditions may cause the 1145 * number of vnodes to reach some minimum value regardless of what 1146 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 1147 * 1148 * @param reclaim_nc_src Only reclaim directories with outgoing namecache 1149 * entries if this argument is strue 1150 * @param trigger Only reclaim vnodes with fewer than this many resident 1151 * pages. 1152 * @param target How many vnodes to reclaim. 1153 * @return The number of vnodes that were reclaimed. 1154 */ 1155 static int 1156 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target) 1157 { 1158 struct vnode *vp, *mvp; 1159 struct mount *mp; 1160 struct vm_object *object; 1161 u_long done; 1162 bool retried; 1163 1164 mtx_assert(&vnode_list_mtx, MA_OWNED); 1165 1166 retried = false; 1167 done = 0; 1168 1169 mvp = vnode_list_reclaim_marker; 1170 restart: 1171 vp = mvp; 1172 while (done < target) { 1173 vp = TAILQ_NEXT(vp, v_vnodelist); 1174 if (__predict_false(vp == NULL)) 1175 break; 1176 1177 if (__predict_false(vp->v_type == VMARKER)) 1178 continue; 1179 1180 /* 1181 * If it's been deconstructed already, it's still 1182 * referenced, or it exceeds the trigger, skip it. 1183 * Also skip free vnodes. We are trying to make space 1184 * to expand the free list, not reduce it. 1185 */ 1186 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 || 1187 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src))) 1188 goto next_iter; 1189 1190 if (vp->v_type == VBAD || vp->v_type == VNON) 1191 goto next_iter; 1192 1193 object = atomic_load_ptr(&vp->v_object); 1194 if (object == NULL || object->resident_page_count > trigger) { 1195 goto next_iter; 1196 } 1197 1198 /* 1199 * Handle races against vnode allocation. Filesystems lock the 1200 * vnode some time after it gets returned from getnewvnode, 1201 * despite type and hold count being manipulated earlier. 1202 * Resorting to checking v_mount restores guarantees present 1203 * before the global list was reworked to contain all vnodes. 1204 */ 1205 if (!VI_TRYLOCK(vp)) 1206 goto next_iter; 1207 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1208 VI_UNLOCK(vp); 1209 goto next_iter; 1210 } 1211 if (vp->v_mount == NULL) { 1212 VI_UNLOCK(vp); 1213 goto next_iter; 1214 } 1215 vholdl(vp); 1216 VI_UNLOCK(vp); 1217 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1218 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1219 mtx_unlock(&vnode_list_mtx); 1220 1221 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1222 vdrop_recycle(vp); 1223 goto next_iter_unlocked; 1224 } 1225 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) { 1226 vdrop_recycle(vp); 1227 vn_finished_write(mp); 1228 goto next_iter_unlocked; 1229 } 1230 1231 VI_LOCK(vp); 1232 if (vp->v_usecount > 0 || 1233 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || 1234 (vp->v_object != NULL && vp->v_object->handle == vp && 1235 vp->v_object->resident_page_count > trigger)) { 1236 VOP_UNLOCK(vp); 1237 vdropl_recycle(vp); 1238 vn_finished_write(mp); 1239 goto next_iter_unlocked; 1240 } 1241 counter_u64_add(recycles_count, 1); 1242 vgonel(vp); 1243 VOP_UNLOCK(vp); 1244 vdropl_recycle(vp); 1245 vn_finished_write(mp); 1246 done++; 1247 next_iter_unlocked: 1248 maybe_yield(); 1249 mtx_lock(&vnode_list_mtx); 1250 goto restart; 1251 next_iter: 1252 MPASS(vp->v_type != VMARKER); 1253 if (!should_yield()) 1254 continue; 1255 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1256 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1257 mtx_unlock(&vnode_list_mtx); 1258 kern_yield(PRI_USER); 1259 mtx_lock(&vnode_list_mtx); 1260 goto restart; 1261 } 1262 if (done == 0 && !retried) { 1263 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1264 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1265 retried = true; 1266 goto restart; 1267 } 1268 return (done); 1269 } 1270 1271 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */ 1272 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free, 1273 0, 1274 "limit on vnode free requests per call to the vnlru_free routine"); 1275 1276 /* 1277 * Attempt to reduce the free list by the requested amount. 1278 */ 1279 static int 1280 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp) 1281 { 1282 struct vnode *vp; 1283 struct mount *mp; 1284 int ocount; 1285 1286 mtx_assert(&vnode_list_mtx, MA_OWNED); 1287 if (count > max_vnlru_free) 1288 count = max_vnlru_free; 1289 ocount = count; 1290 vp = mvp; 1291 for (;;) { 1292 if (count == 0) { 1293 break; 1294 } 1295 vp = TAILQ_NEXT(vp, v_vnodelist); 1296 if (__predict_false(vp == NULL)) { 1297 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1298 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist); 1299 break; 1300 } 1301 if (__predict_false(vp->v_type == VMARKER)) 1302 continue; 1303 if (vp->v_holdcnt > 0) 1304 continue; 1305 /* 1306 * Don't recycle if our vnode is from different type 1307 * of mount point. Note that mp is type-safe, the 1308 * check does not reach unmapped address even if 1309 * vnode is reclaimed. 1310 */ 1311 if (mnt_op != NULL && (mp = vp->v_mount) != NULL && 1312 mp->mnt_op != mnt_op) { 1313 continue; 1314 } 1315 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1316 continue; 1317 } 1318 if (!vhold_recycle_free(vp)) 1319 continue; 1320 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1321 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1322 mtx_unlock(&vnode_list_mtx); 1323 /* 1324 * FIXME: ignores the return value, meaning it may be nothing 1325 * got recycled but it claims otherwise to the caller. 1326 * 1327 * Originally the value started being ignored in 2005 with 1328 * 114a1006a8204aa156e1f9ad6476cdff89cada7f . 1329 * 1330 * Respecting the value can run into significant stalls if most 1331 * vnodes belong to one file system and it has writes 1332 * suspended. In presence of many threads and millions of 1333 * vnodes they keep contending on the vnode_list_mtx lock only 1334 * to find vnodes they can't recycle. 1335 * 1336 * The solution would be to pre-check if the vnode is likely to 1337 * be recycle-able, but it needs to happen with the 1338 * vnode_list_mtx lock held. This runs into a problem where 1339 * VOP_GETWRITEMOUNT (currently needed to find out about if 1340 * writes are frozen) can take locks which LOR against it. 1341 * 1342 * Check nullfs for one example (null_getwritemount). 1343 */ 1344 vtryrecycle(vp); 1345 count--; 1346 mtx_lock(&vnode_list_mtx); 1347 vp = mvp; 1348 } 1349 return (ocount - count); 1350 } 1351 1352 static int 1353 vnlru_free_locked(int count) 1354 { 1355 1356 mtx_assert(&vnode_list_mtx, MA_OWNED); 1357 return (vnlru_free_impl(count, NULL, vnode_list_free_marker)); 1358 } 1359 1360 void 1361 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp) 1362 { 1363 1364 MPASS(mnt_op != NULL); 1365 MPASS(mvp != NULL); 1366 VNPASS(mvp->v_type == VMARKER, mvp); 1367 mtx_lock(&vnode_list_mtx); 1368 vnlru_free_impl(count, mnt_op, mvp); 1369 mtx_unlock(&vnode_list_mtx); 1370 } 1371 1372 struct vnode * 1373 vnlru_alloc_marker(void) 1374 { 1375 struct vnode *mvp; 1376 1377 mvp = vn_alloc_marker(NULL); 1378 mtx_lock(&vnode_list_mtx); 1379 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist); 1380 mtx_unlock(&vnode_list_mtx); 1381 return (mvp); 1382 } 1383 1384 void 1385 vnlru_free_marker(struct vnode *mvp) 1386 { 1387 mtx_lock(&vnode_list_mtx); 1388 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1389 mtx_unlock(&vnode_list_mtx); 1390 vn_free_marker(mvp); 1391 } 1392 1393 static void 1394 vnlru_recalc(void) 1395 { 1396 1397 mtx_assert(&vnode_list_mtx, MA_OWNED); 1398 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100); 1399 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */ 1400 vlowat = vhiwat / 2; 1401 } 1402 1403 /* 1404 * Attempt to recycle vnodes in a context that is always safe to block. 1405 * Calling vlrurecycle() from the bowels of filesystem code has some 1406 * interesting deadlock problems. 1407 */ 1408 static struct proc *vnlruproc; 1409 static int vnlruproc_sig; 1410 1411 /* 1412 * The main freevnodes counter is only updated when threads requeue their vnode 1413 * batches. CPUs are conditionally walked to compute a more accurate total. 1414 * 1415 * Limit how much of a slop are we willing to tolerate. Note: the actual value 1416 * at any given moment can still exceed slop, but it should not be by significant 1417 * margin in practice. 1418 */ 1419 #define VNLRU_FREEVNODES_SLOP 126 1420 1421 static void __noinline 1422 vfs_freevnodes_rollup(int8_t *lfreevnodes) 1423 { 1424 1425 atomic_add_long(&freevnodes, *lfreevnodes); 1426 *lfreevnodes = 0; 1427 critical_exit(); 1428 } 1429 1430 static __inline void 1431 vfs_freevnodes_inc(void) 1432 { 1433 int8_t *lfreevnodes; 1434 1435 critical_enter(); 1436 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1437 (*lfreevnodes)++; 1438 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP)) 1439 vfs_freevnodes_rollup(lfreevnodes); 1440 else 1441 critical_exit(); 1442 } 1443 1444 static __inline void 1445 vfs_freevnodes_dec(void) 1446 { 1447 int8_t *lfreevnodes; 1448 1449 critical_enter(); 1450 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1451 (*lfreevnodes)--; 1452 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP)) 1453 vfs_freevnodes_rollup(lfreevnodes); 1454 else 1455 critical_exit(); 1456 } 1457 1458 static u_long 1459 vnlru_read_freevnodes(void) 1460 { 1461 long slop, rfreevnodes; 1462 int cpu; 1463 1464 rfreevnodes = atomic_load_long(&freevnodes); 1465 1466 if (rfreevnodes > freevnodes_old) 1467 slop = rfreevnodes - freevnodes_old; 1468 else 1469 slop = freevnodes_old - rfreevnodes; 1470 if (slop < VNLRU_FREEVNODES_SLOP) 1471 return (rfreevnodes >= 0 ? rfreevnodes : 0); 1472 freevnodes_old = rfreevnodes; 1473 CPU_FOREACH(cpu) { 1474 freevnodes_old += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes; 1475 } 1476 return (freevnodes_old >= 0 ? freevnodes_old : 0); 1477 } 1478 1479 static bool 1480 vnlru_under(u_long rnumvnodes, u_long limit) 1481 { 1482 u_long rfreevnodes, space; 1483 1484 if (__predict_false(rnumvnodes > desiredvnodes)) 1485 return (true); 1486 1487 space = desiredvnodes - rnumvnodes; 1488 if (space < limit) { 1489 rfreevnodes = vnlru_read_freevnodes(); 1490 if (rfreevnodes > wantfreevnodes) 1491 space += rfreevnodes - wantfreevnodes; 1492 } 1493 return (space < limit); 1494 } 1495 1496 static bool 1497 vnlru_under_unlocked(u_long rnumvnodes, u_long limit) 1498 { 1499 long rfreevnodes, space; 1500 1501 if (__predict_false(rnumvnodes > desiredvnodes)) 1502 return (true); 1503 1504 space = desiredvnodes - rnumvnodes; 1505 if (space < limit) { 1506 rfreevnodes = atomic_load_long(&freevnodes); 1507 if (rfreevnodes > wantfreevnodes) 1508 space += rfreevnodes - wantfreevnodes; 1509 } 1510 return (space < limit); 1511 } 1512 1513 static void 1514 vnlru_kick(void) 1515 { 1516 1517 mtx_assert(&vnode_list_mtx, MA_OWNED); 1518 if (vnlruproc_sig == 0) { 1519 vnlruproc_sig = 1; 1520 wakeup(vnlruproc); 1521 } 1522 } 1523 1524 static void 1525 vnlru_proc(void) 1526 { 1527 u_long rnumvnodes, rfreevnodes, target; 1528 unsigned long onumvnodes; 1529 int done, force, trigger, usevnodes; 1530 bool reclaim_nc_src, want_reread; 1531 1532 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc, 1533 SHUTDOWN_PRI_FIRST); 1534 1535 force = 0; 1536 want_reread = false; 1537 for (;;) { 1538 kproc_suspend_check(vnlruproc); 1539 mtx_lock(&vnode_list_mtx); 1540 rnumvnodes = atomic_load_long(&numvnodes); 1541 1542 if (want_reread) { 1543 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0; 1544 want_reread = false; 1545 } 1546 1547 /* 1548 * If numvnodes is too large (due to desiredvnodes being 1549 * adjusted using its sysctl, or emergency growth), first 1550 * try to reduce it by discarding from the free list. 1551 */ 1552 if (rnumvnodes > desiredvnodes) { 1553 vnlru_free_locked(rnumvnodes - desiredvnodes); 1554 rnumvnodes = atomic_load_long(&numvnodes); 1555 } 1556 /* 1557 * Sleep if the vnode cache is in a good state. This is 1558 * when it is not over-full and has space for about a 4% 1559 * or 9% expansion (by growing its size or inexcessively 1560 * reducing its free list). Otherwise, try to reclaim 1561 * space for a 10% expansion. 1562 */ 1563 if (vstir && force == 0) { 1564 force = 1; 1565 vstir = 0; 1566 } 1567 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) { 1568 vnlruproc_sig = 0; 1569 wakeup(&vnlruproc_sig); 1570 msleep(vnlruproc, &vnode_list_mtx, 1571 PVFS|PDROP, "vlruwt", hz); 1572 continue; 1573 } 1574 rfreevnodes = vnlru_read_freevnodes(); 1575 1576 onumvnodes = rnumvnodes; 1577 /* 1578 * Calculate parameters for recycling. These are the same 1579 * throughout the loop to give some semblance of fairness. 1580 * The trigger point is to avoid recycling vnodes with lots 1581 * of resident pages. We aren't trying to free memory; we 1582 * are trying to recycle or at least free vnodes. 1583 */ 1584 if (rnumvnodes <= desiredvnodes) 1585 usevnodes = rnumvnodes - rfreevnodes; 1586 else 1587 usevnodes = rnumvnodes; 1588 if (usevnodes <= 0) 1589 usevnodes = 1; 1590 /* 1591 * The trigger value is chosen to give a conservatively 1592 * large value to ensure that it alone doesn't prevent 1593 * making progress. The value can easily be so large that 1594 * it is effectively infinite in some congested and 1595 * misconfigured cases, and this is necessary. Normally 1596 * it is about 8 to 100 (pages), which is quite large. 1597 */ 1598 trigger = vm_cnt.v_page_count * 2 / usevnodes; 1599 if (force < 2) 1600 trigger = vsmalltrigger; 1601 reclaim_nc_src = force >= 3; 1602 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1); 1603 target = target / 10 + 1; 1604 done = vlrureclaim(reclaim_nc_src, trigger, target); 1605 mtx_unlock(&vnode_list_mtx); 1606 if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes) 1607 uma_reclaim(UMA_RECLAIM_DRAIN); 1608 if (done == 0) { 1609 if (force == 0 || force == 1) { 1610 force = 2; 1611 continue; 1612 } 1613 if (force == 2) { 1614 force = 3; 1615 continue; 1616 } 1617 want_reread = true; 1618 force = 0; 1619 vnlru_nowhere++; 1620 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 1621 } else { 1622 want_reread = true; 1623 kern_yield(PRI_USER); 1624 } 1625 } 1626 } 1627 1628 static struct kproc_desc vnlru_kp = { 1629 "vnlru", 1630 vnlru_proc, 1631 &vnlruproc 1632 }; 1633 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 1634 &vnlru_kp); 1635 1636 /* 1637 * Routines having to do with the management of the vnode table. 1638 */ 1639 1640 /* 1641 * Try to recycle a freed vnode. We abort if anyone picks up a reference 1642 * before we actually vgone(). This function must be called with the vnode 1643 * held to prevent the vnode from being returned to the free list midway 1644 * through vgone(). 1645 */ 1646 static int 1647 vtryrecycle(struct vnode *vp) 1648 { 1649 struct mount *vnmp; 1650 1651 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 1652 VNPASS(vp->v_holdcnt > 0, vp); 1653 /* 1654 * This vnode may found and locked via some other list, if so we 1655 * can't recycle it yet. 1656 */ 1657 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1658 CTR2(KTR_VFS, 1659 "%s: impossible to recycle, vp %p lock is already held", 1660 __func__, vp); 1661 vdrop_recycle(vp); 1662 return (EWOULDBLOCK); 1663 } 1664 /* 1665 * Don't recycle if its filesystem is being suspended. 1666 */ 1667 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 1668 VOP_UNLOCK(vp); 1669 CTR2(KTR_VFS, 1670 "%s: impossible to recycle, cannot start the write for %p", 1671 __func__, vp); 1672 vdrop_recycle(vp); 1673 return (EBUSY); 1674 } 1675 /* 1676 * If we got this far, we need to acquire the interlock and see if 1677 * anyone picked up this vnode from another list. If not, we will 1678 * mark it with DOOMED via vgonel() so that anyone who does find it 1679 * will skip over it. 1680 */ 1681 VI_LOCK(vp); 1682 if (vp->v_usecount) { 1683 VOP_UNLOCK(vp); 1684 vdropl_recycle(vp); 1685 vn_finished_write(vnmp); 1686 CTR2(KTR_VFS, 1687 "%s: impossible to recycle, %p is already referenced", 1688 __func__, vp); 1689 return (EBUSY); 1690 } 1691 if (!VN_IS_DOOMED(vp)) { 1692 counter_u64_add(recycles_free_count, 1); 1693 vgonel(vp); 1694 } 1695 VOP_UNLOCK(vp); 1696 vdropl_recycle(vp); 1697 vn_finished_write(vnmp); 1698 return (0); 1699 } 1700 1701 /* 1702 * Allocate a new vnode. 1703 * 1704 * The operation never returns an error. Returning an error was disabled 1705 * in r145385 (dated 2005) with the following comment: 1706 * 1707 * XXX Not all VFS_VGET/ffs_vget callers check returns. 1708 * 1709 * Given the age of this commit (almost 15 years at the time of writing this 1710 * comment) restoring the ability to fail requires a significant audit of 1711 * all codepaths. 1712 * 1713 * The routine can try to free a vnode or stall for up to 1 second waiting for 1714 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation. 1715 */ 1716 static u_long vn_alloc_cyclecount; 1717 1718 static struct vnode * __noinline 1719 vn_alloc_hard(struct mount *mp) 1720 { 1721 u_long rnumvnodes, rfreevnodes; 1722 1723 mtx_lock(&vnode_list_mtx); 1724 rnumvnodes = atomic_load_long(&numvnodes); 1725 if (rnumvnodes + 1 < desiredvnodes) { 1726 vn_alloc_cyclecount = 0; 1727 goto alloc; 1728 } 1729 rfreevnodes = vnlru_read_freevnodes(); 1730 if (vn_alloc_cyclecount++ >= rfreevnodes) { 1731 vn_alloc_cyclecount = 0; 1732 vstir = 1; 1733 } 1734 /* 1735 * Grow the vnode cache if it will not be above its target max 1736 * after growing. Otherwise, if the free list is nonempty, try 1737 * to reclaim 1 item from it before growing the cache (possibly 1738 * above its target max if the reclamation failed or is delayed). 1739 * Otherwise, wait for some space. In all cases, schedule 1740 * vnlru_proc() if we are getting short of space. The watermarks 1741 * should be chosen so that we never wait or even reclaim from 1742 * the free list to below its target minimum. 1743 */ 1744 if (vnlru_free_locked(1) > 0) 1745 goto alloc; 1746 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 1747 /* 1748 * Wait for space for a new vnode. 1749 */ 1750 vnlru_kick(); 1751 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz); 1752 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes && 1753 vnlru_read_freevnodes() > 1) 1754 vnlru_free_locked(1); 1755 } 1756 alloc: 1757 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 1758 if (vnlru_under(rnumvnodes, vlowat)) 1759 vnlru_kick(); 1760 mtx_unlock(&vnode_list_mtx); 1761 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 1762 } 1763 1764 static struct vnode * 1765 vn_alloc(struct mount *mp) 1766 { 1767 u_long rnumvnodes; 1768 1769 if (__predict_false(vn_alloc_cyclecount != 0)) 1770 return (vn_alloc_hard(mp)); 1771 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 1772 if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) { 1773 atomic_subtract_long(&numvnodes, 1); 1774 return (vn_alloc_hard(mp)); 1775 } 1776 1777 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 1778 } 1779 1780 static void 1781 vn_free(struct vnode *vp) 1782 { 1783 1784 atomic_subtract_long(&numvnodes, 1); 1785 uma_zfree_smr(vnode_zone, vp); 1786 } 1787 1788 /* 1789 * Return the next vnode from the free list. 1790 */ 1791 int 1792 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 1793 struct vnode **vpp) 1794 { 1795 struct vnode *vp; 1796 struct thread *td; 1797 struct lock_object *lo; 1798 1799 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 1800 1801 KASSERT(vops->registered, 1802 ("%s: not registered vector op %p\n", __func__, vops)); 1803 cache_validate_vop_vector(mp, vops); 1804 1805 td = curthread; 1806 if (td->td_vp_reserved != NULL) { 1807 vp = td->td_vp_reserved; 1808 td->td_vp_reserved = NULL; 1809 } else { 1810 vp = vn_alloc(mp); 1811 } 1812 counter_u64_add(vnodes_created, 1); 1813 1814 vn_set_state(vp, VSTATE_UNINITIALIZED); 1815 1816 /* 1817 * Locks are given the generic name "vnode" when created. 1818 * Follow the historic practice of using the filesystem 1819 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc. 1820 * 1821 * Locks live in a witness group keyed on their name. Thus, 1822 * when a lock is renamed, it must also move from the witness 1823 * group of its old name to the witness group of its new name. 1824 * 1825 * The change only needs to be made when the vnode moves 1826 * from one filesystem type to another. We ensure that each 1827 * filesystem use a single static name pointer for its tag so 1828 * that we can compare pointers rather than doing a strcmp(). 1829 */ 1830 lo = &vp->v_vnlock->lock_object; 1831 #ifdef WITNESS 1832 if (lo->lo_name != tag) { 1833 #endif 1834 lo->lo_name = tag; 1835 #ifdef WITNESS 1836 WITNESS_DESTROY(lo); 1837 WITNESS_INIT(lo, tag); 1838 } 1839 #endif 1840 /* 1841 * By default, don't allow shared locks unless filesystems opt-in. 1842 */ 1843 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE; 1844 /* 1845 * Finalize various vnode identity bits. 1846 */ 1847 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp)); 1848 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp)); 1849 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp)); 1850 vp->v_type = VNON; 1851 vp->v_op = vops; 1852 vp->v_irflag = 0; 1853 v_init_counters(vp); 1854 vn_seqc_init(vp); 1855 vp->v_bufobj.bo_ops = &buf_ops_bio; 1856 #ifdef DIAGNOSTIC 1857 if (mp == NULL && vops != &dead_vnodeops) 1858 printf("NULL mp in getnewvnode(9), tag %s\n", tag); 1859 #endif 1860 #ifdef MAC 1861 mac_vnode_init(vp); 1862 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 1863 mac_vnode_associate_singlelabel(mp, vp); 1864 #endif 1865 if (mp != NULL) { 1866 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize; 1867 } 1868 1869 /* 1870 * For the filesystems which do not use vfs_hash_insert(), 1871 * still initialize v_hash to have vfs_hash_index() useful. 1872 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 1873 * its own hashing. 1874 */ 1875 vp->v_hash = (uintptr_t)vp >> vnsz2log; 1876 1877 *vpp = vp; 1878 return (0); 1879 } 1880 1881 void 1882 getnewvnode_reserve(void) 1883 { 1884 struct thread *td; 1885 1886 td = curthread; 1887 MPASS(td->td_vp_reserved == NULL); 1888 td->td_vp_reserved = vn_alloc(NULL); 1889 } 1890 1891 void 1892 getnewvnode_drop_reserve(void) 1893 { 1894 struct thread *td; 1895 1896 td = curthread; 1897 if (td->td_vp_reserved != NULL) { 1898 vn_free(td->td_vp_reserved); 1899 td->td_vp_reserved = NULL; 1900 } 1901 } 1902 1903 static void __noinline 1904 freevnode(struct vnode *vp) 1905 { 1906 struct bufobj *bo; 1907 1908 /* 1909 * The vnode has been marked for destruction, so free it. 1910 * 1911 * The vnode will be returned to the zone where it will 1912 * normally remain until it is needed for another vnode. We 1913 * need to cleanup (or verify that the cleanup has already 1914 * been done) any residual data left from its current use 1915 * so as not to contaminate the freshly allocated vnode. 1916 */ 1917 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 1918 /* 1919 * Paired with vgone. 1920 */ 1921 vn_seqc_write_end_free(vp); 1922 1923 bo = &vp->v_bufobj; 1924 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 1925 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp); 1926 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 1927 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 1928 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 1929 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 1930 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 1931 ("clean blk trie not empty")); 1932 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 1933 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 1934 ("dirty blk trie not empty")); 1935 VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp, 1936 ("Dangling rangelock waiters")); 1937 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp, 1938 ("Leaked inactivation")); 1939 VI_UNLOCK(vp); 1940 cache_assert_no_entries(vp); 1941 1942 #ifdef MAC 1943 mac_vnode_destroy(vp); 1944 #endif 1945 if (vp->v_pollinfo != NULL) { 1946 /* 1947 * Use LK_NOWAIT to shut up witness about the lock. We may get 1948 * here while having another vnode locked when trying to 1949 * satisfy a lookup and needing to recycle. 1950 */ 1951 VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT); 1952 destroy_vpollinfo(vp->v_pollinfo); 1953 VOP_UNLOCK(vp); 1954 vp->v_pollinfo = NULL; 1955 } 1956 vp->v_mountedhere = NULL; 1957 vp->v_unpcb = NULL; 1958 vp->v_rdev = NULL; 1959 vp->v_fifoinfo = NULL; 1960 vp->v_iflag = 0; 1961 vp->v_vflag = 0; 1962 bo->bo_flag = 0; 1963 vn_free(vp); 1964 } 1965 1966 /* 1967 * Delete from old mount point vnode list, if on one. 1968 */ 1969 static void 1970 delmntque(struct vnode *vp) 1971 { 1972 struct mount *mp; 1973 1974 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 1975 1976 mp = vp->v_mount; 1977 MNT_ILOCK(mp); 1978 VI_LOCK(vp); 1979 vp->v_mount = NULL; 1980 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 1981 ("bad mount point vnode list size")); 1982 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1983 mp->mnt_nvnodelistsize--; 1984 MNT_REL(mp); 1985 MNT_IUNLOCK(mp); 1986 /* 1987 * The caller expects the interlock to be still held. 1988 */ 1989 ASSERT_VI_LOCKED(vp, __func__); 1990 } 1991 1992 static int 1993 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr) 1994 { 1995 1996 KASSERT(vp->v_mount == NULL, 1997 ("insmntque: vnode already on per mount vnode list")); 1998 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 1999 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) { 2000 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 2001 } else { 2002 KASSERT(!dtr, 2003 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup", 2004 __func__)); 2005 } 2006 2007 /* 2008 * We acquire the vnode interlock early to ensure that the 2009 * vnode cannot be recycled by another process releasing a 2010 * holdcnt on it before we get it on both the vnode list 2011 * and the active vnode list. The mount mutex protects only 2012 * manipulation of the vnode list and the vnode freelist 2013 * mutex protects only manipulation of the active vnode list. 2014 * Hence the need to hold the vnode interlock throughout. 2015 */ 2016 MNT_ILOCK(mp); 2017 VI_LOCK(vp); 2018 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 && 2019 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 2020 mp->mnt_nvnodelistsize == 0)) && 2021 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 2022 VI_UNLOCK(vp); 2023 MNT_IUNLOCK(mp); 2024 if (dtr) { 2025 vp->v_data = NULL; 2026 vp->v_op = &dead_vnodeops; 2027 vgone(vp); 2028 vput(vp); 2029 } 2030 return (EBUSY); 2031 } 2032 vp->v_mount = mp; 2033 MNT_REF(mp); 2034 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2035 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 2036 ("neg mount point vnode list size")); 2037 mp->mnt_nvnodelistsize++; 2038 VI_UNLOCK(vp); 2039 MNT_IUNLOCK(mp); 2040 return (0); 2041 } 2042 2043 /* 2044 * Insert into list of vnodes for the new mount point, if available. 2045 * insmntque() reclaims the vnode on insertion failure, insmntque1() 2046 * leaves handling of the vnode to the caller. 2047 */ 2048 int 2049 insmntque(struct vnode *vp, struct mount *mp) 2050 { 2051 return (insmntque1_int(vp, mp, true)); 2052 } 2053 2054 int 2055 insmntque1(struct vnode *vp, struct mount *mp) 2056 { 2057 return (insmntque1_int(vp, mp, false)); 2058 } 2059 2060 /* 2061 * Flush out and invalidate all buffers associated with a bufobj 2062 * Called with the underlying object locked. 2063 */ 2064 int 2065 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 2066 { 2067 int error; 2068 2069 BO_LOCK(bo); 2070 if (flags & V_SAVE) { 2071 error = bufobj_wwait(bo, slpflag, slptimeo); 2072 if (error) { 2073 BO_UNLOCK(bo); 2074 return (error); 2075 } 2076 if (bo->bo_dirty.bv_cnt > 0) { 2077 BO_UNLOCK(bo); 2078 do { 2079 error = BO_SYNC(bo, MNT_WAIT); 2080 } while (error == ERELOOKUP); 2081 if (error != 0) 2082 return (error); 2083 BO_LOCK(bo); 2084 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 2085 BO_UNLOCK(bo); 2086 return (EBUSY); 2087 } 2088 } 2089 } 2090 /* 2091 * If you alter this loop please notice that interlock is dropped and 2092 * reacquired in flushbuflist. Special care is needed to ensure that 2093 * no race conditions occur from this. 2094 */ 2095 do { 2096 error = flushbuflist(&bo->bo_clean, 2097 flags, bo, slpflag, slptimeo); 2098 if (error == 0 && !(flags & V_CLEANONLY)) 2099 error = flushbuflist(&bo->bo_dirty, 2100 flags, bo, slpflag, slptimeo); 2101 if (error != 0 && error != EAGAIN) { 2102 BO_UNLOCK(bo); 2103 return (error); 2104 } 2105 } while (error != 0); 2106 2107 /* 2108 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 2109 * have write I/O in-progress but if there is a VM object then the 2110 * VM object can also have read-I/O in-progress. 2111 */ 2112 do { 2113 bufobj_wwait(bo, 0, 0); 2114 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) { 2115 BO_UNLOCK(bo); 2116 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx"); 2117 BO_LOCK(bo); 2118 } 2119 } while (bo->bo_numoutput > 0); 2120 BO_UNLOCK(bo); 2121 2122 /* 2123 * Destroy the copy in the VM cache, too. 2124 */ 2125 if (bo->bo_object != NULL && 2126 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) { 2127 VM_OBJECT_WLOCK(bo->bo_object); 2128 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 2129 OBJPR_CLEANONLY : 0); 2130 VM_OBJECT_WUNLOCK(bo->bo_object); 2131 } 2132 2133 #ifdef INVARIANTS 2134 BO_LOCK(bo); 2135 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO | 2136 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 || 2137 bo->bo_clean.bv_cnt > 0)) 2138 panic("vinvalbuf: flush failed"); 2139 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 && 2140 bo->bo_dirty.bv_cnt > 0) 2141 panic("vinvalbuf: flush dirty failed"); 2142 BO_UNLOCK(bo); 2143 #endif 2144 return (0); 2145 } 2146 2147 /* 2148 * Flush out and invalidate all buffers associated with a vnode. 2149 * Called with the underlying object locked. 2150 */ 2151 int 2152 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 2153 { 2154 2155 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2156 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 2157 if (vp->v_object != NULL && vp->v_object->handle != vp) 2158 return (0); 2159 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 2160 } 2161 2162 /* 2163 * Flush out buffers on the specified list. 2164 * 2165 */ 2166 static int 2167 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 2168 int slptimeo) 2169 { 2170 struct buf *bp, *nbp; 2171 int retval, error; 2172 daddr_t lblkno; 2173 b_xflags_t xflags; 2174 2175 ASSERT_BO_WLOCKED(bo); 2176 2177 retval = 0; 2178 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 2179 /* 2180 * If we are flushing both V_NORMAL and V_ALT buffers then 2181 * do not skip any buffers. If we are flushing only V_NORMAL 2182 * buffers then skip buffers marked as BX_ALTDATA. If we are 2183 * flushing only V_ALT buffers then skip buffers not marked 2184 * as BX_ALTDATA. 2185 */ 2186 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) && 2187 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) || 2188 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) { 2189 continue; 2190 } 2191 if (nbp != NULL) { 2192 lblkno = nbp->b_lblkno; 2193 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 2194 } 2195 retval = EAGAIN; 2196 error = BUF_TIMELOCK(bp, 2197 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 2198 "flushbuf", slpflag, slptimeo); 2199 if (error) { 2200 BO_LOCK(bo); 2201 return (error != ENOLCK ? error : EAGAIN); 2202 } 2203 KASSERT(bp->b_bufobj == bo, 2204 ("bp %p wrong b_bufobj %p should be %p", 2205 bp, bp->b_bufobj, bo)); 2206 /* 2207 * XXX Since there are no node locks for NFS, I 2208 * believe there is a slight chance that a delayed 2209 * write will occur while sleeping just above, so 2210 * check for it. 2211 */ 2212 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 2213 (flags & V_SAVE)) { 2214 bremfree(bp); 2215 bp->b_flags |= B_ASYNC; 2216 bwrite(bp); 2217 BO_LOCK(bo); 2218 return (EAGAIN); /* XXX: why not loop ? */ 2219 } 2220 bremfree(bp); 2221 bp->b_flags |= (B_INVAL | B_RELBUF); 2222 bp->b_flags &= ~B_ASYNC; 2223 brelse(bp); 2224 BO_LOCK(bo); 2225 if (nbp == NULL) 2226 break; 2227 nbp = gbincore(bo, lblkno); 2228 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2229 != xflags) 2230 break; /* nbp invalid */ 2231 } 2232 return (retval); 2233 } 2234 2235 int 2236 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn) 2237 { 2238 struct buf *bp; 2239 int error; 2240 daddr_t lblkno; 2241 2242 ASSERT_BO_LOCKED(bo); 2243 2244 for (lblkno = startn;;) { 2245 again: 2246 bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno); 2247 if (bp == NULL || bp->b_lblkno >= endn || 2248 bp->b_lblkno < startn) 2249 break; 2250 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 2251 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0); 2252 if (error != 0) { 2253 BO_RLOCK(bo); 2254 if (error == ENOLCK) 2255 goto again; 2256 return (error); 2257 } 2258 KASSERT(bp->b_bufobj == bo, 2259 ("bp %p wrong b_bufobj %p should be %p", 2260 bp, bp->b_bufobj, bo)); 2261 lblkno = bp->b_lblkno + 1; 2262 if ((bp->b_flags & B_MANAGED) == 0) 2263 bremfree(bp); 2264 bp->b_flags |= B_RELBUF; 2265 /* 2266 * In the VMIO case, use the B_NOREUSE flag to hint that the 2267 * pages backing each buffer in the range are unlikely to be 2268 * reused. Dirty buffers will have the hint applied once 2269 * they've been written. 2270 */ 2271 if ((bp->b_flags & B_VMIO) != 0) 2272 bp->b_flags |= B_NOREUSE; 2273 brelse(bp); 2274 BO_RLOCK(bo); 2275 } 2276 return (0); 2277 } 2278 2279 /* 2280 * Truncate a file's buffer and pages to a specified length. This 2281 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 2282 * sync activity. 2283 */ 2284 int 2285 vtruncbuf(struct vnode *vp, off_t length, int blksize) 2286 { 2287 struct buf *bp, *nbp; 2288 struct bufobj *bo; 2289 daddr_t startlbn; 2290 2291 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__, 2292 vp, blksize, (uintmax_t)length); 2293 2294 /* 2295 * Round up to the *next* lbn. 2296 */ 2297 startlbn = howmany(length, blksize); 2298 2299 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 2300 2301 bo = &vp->v_bufobj; 2302 restart_unlocked: 2303 BO_LOCK(bo); 2304 2305 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN) 2306 ; 2307 2308 if (length > 0) { 2309 restartsync: 2310 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2311 if (bp->b_lblkno > 0) 2312 continue; 2313 /* 2314 * Since we hold the vnode lock this should only 2315 * fail if we're racing with the buf daemon. 2316 */ 2317 if (BUF_LOCK(bp, 2318 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2319 BO_LOCKPTR(bo)) == ENOLCK) 2320 goto restart_unlocked; 2321 2322 VNASSERT((bp->b_flags & B_DELWRI), vp, 2323 ("buf(%p) on dirty queue without DELWRI", bp)); 2324 2325 bremfree(bp); 2326 bawrite(bp); 2327 BO_LOCK(bo); 2328 goto restartsync; 2329 } 2330 } 2331 2332 bufobj_wwait(bo, 0, 0); 2333 BO_UNLOCK(bo); 2334 vnode_pager_setsize(vp, length); 2335 2336 return (0); 2337 } 2338 2339 /* 2340 * Invalidate the cached pages of a file's buffer within the range of block 2341 * numbers [startlbn, endlbn). 2342 */ 2343 void 2344 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, 2345 int blksize) 2346 { 2347 struct bufobj *bo; 2348 off_t start, end; 2349 2350 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range"); 2351 2352 start = blksize * startlbn; 2353 end = blksize * endlbn; 2354 2355 bo = &vp->v_bufobj; 2356 BO_LOCK(bo); 2357 MPASS(blksize == bo->bo_bsize); 2358 2359 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN) 2360 ; 2361 2362 BO_UNLOCK(bo); 2363 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1)); 2364 } 2365 2366 static int 2367 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 2368 daddr_t startlbn, daddr_t endlbn) 2369 { 2370 struct buf *bp, *nbp; 2371 bool anyfreed; 2372 2373 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked"); 2374 ASSERT_BO_LOCKED(bo); 2375 2376 do { 2377 anyfreed = false; 2378 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 2379 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2380 continue; 2381 if (BUF_LOCK(bp, 2382 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2383 BO_LOCKPTR(bo)) == ENOLCK) { 2384 BO_LOCK(bo); 2385 return (EAGAIN); 2386 } 2387 2388 bremfree(bp); 2389 bp->b_flags |= B_INVAL | B_RELBUF; 2390 bp->b_flags &= ~B_ASYNC; 2391 brelse(bp); 2392 anyfreed = true; 2393 2394 BO_LOCK(bo); 2395 if (nbp != NULL && 2396 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 2397 nbp->b_vp != vp || 2398 (nbp->b_flags & B_DELWRI) != 0)) 2399 return (EAGAIN); 2400 } 2401 2402 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2403 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2404 continue; 2405 if (BUF_LOCK(bp, 2406 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2407 BO_LOCKPTR(bo)) == ENOLCK) { 2408 BO_LOCK(bo); 2409 return (EAGAIN); 2410 } 2411 bremfree(bp); 2412 bp->b_flags |= B_INVAL | B_RELBUF; 2413 bp->b_flags &= ~B_ASYNC; 2414 brelse(bp); 2415 anyfreed = true; 2416 2417 BO_LOCK(bo); 2418 if (nbp != NULL && 2419 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 2420 (nbp->b_vp != vp) || 2421 (nbp->b_flags & B_DELWRI) == 0)) 2422 return (EAGAIN); 2423 } 2424 } while (anyfreed); 2425 return (0); 2426 } 2427 2428 static void 2429 buf_vlist_remove(struct buf *bp) 2430 { 2431 struct bufv *bv; 2432 b_xflags_t flags; 2433 2434 flags = bp->b_xflags; 2435 2436 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2437 ASSERT_BO_WLOCKED(bp->b_bufobj); 2438 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 && 2439 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN), 2440 ("%s: buffer %p has invalid queue state", __func__, bp)); 2441 2442 if ((flags & BX_VNDIRTY) != 0) 2443 bv = &bp->b_bufobj->bo_dirty; 2444 else 2445 bv = &bp->b_bufobj->bo_clean; 2446 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 2447 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 2448 bv->bv_cnt--; 2449 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 2450 } 2451 2452 /* 2453 * Add the buffer to the sorted clean or dirty block list. 2454 * 2455 * NOTE: xflags is passed as a constant, optimizing this inline function! 2456 */ 2457 static void 2458 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2459 { 2460 struct bufv *bv; 2461 struct buf *n; 2462 int error; 2463 2464 ASSERT_BO_WLOCKED(bo); 2465 KASSERT((bo->bo_flag & BO_NOBUFS) == 0, 2466 ("buf_vlist_add: bo %p does not allow bufs", bo)); 2467 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, 2468 ("dead bo %p", bo)); 2469 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 2470 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 2471 bp->b_xflags |= xflags; 2472 if (xflags & BX_VNDIRTY) 2473 bv = &bo->bo_dirty; 2474 else 2475 bv = &bo->bo_clean; 2476 2477 /* 2478 * Keep the list ordered. Optimize empty list insertion. Assume 2479 * we tend to grow at the tail so lookup_le should usually be cheaper 2480 * than _ge. 2481 */ 2482 if (bv->bv_cnt == 0 || 2483 bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno) 2484 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 2485 else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL) 2486 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 2487 else 2488 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 2489 error = BUF_PCTRIE_INSERT(&bv->bv_root, bp); 2490 if (error) 2491 panic("buf_vlist_add: Preallocated nodes insufficient."); 2492 bv->bv_cnt++; 2493 } 2494 2495 /* 2496 * Look up a buffer using the buffer tries. 2497 */ 2498 struct buf * 2499 gbincore(struct bufobj *bo, daddr_t lblkno) 2500 { 2501 struct buf *bp; 2502 2503 ASSERT_BO_LOCKED(bo); 2504 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 2505 if (bp != NULL) 2506 return (bp); 2507 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno)); 2508 } 2509 2510 /* 2511 * Look up a buf using the buffer tries, without the bufobj lock. This relies 2512 * on SMR for safe lookup, and bufs being in a no-free zone to provide type 2513 * stability of the result. Like other lockless lookups, the found buf may 2514 * already be invalid by the time this function returns. 2515 */ 2516 struct buf * 2517 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno) 2518 { 2519 struct buf *bp; 2520 2521 ASSERT_BO_UNLOCKED(bo); 2522 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno); 2523 if (bp != NULL) 2524 return (bp); 2525 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno)); 2526 } 2527 2528 /* 2529 * Associate a buffer with a vnode. 2530 */ 2531 void 2532 bgetvp(struct vnode *vp, struct buf *bp) 2533 { 2534 struct bufobj *bo; 2535 2536 bo = &vp->v_bufobj; 2537 ASSERT_BO_WLOCKED(bo); 2538 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 2539 2540 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 2541 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 2542 ("bgetvp: bp already attached! %p", bp)); 2543 2544 vhold(vp); 2545 bp->b_vp = vp; 2546 bp->b_bufobj = bo; 2547 /* 2548 * Insert onto list for new vnode. 2549 */ 2550 buf_vlist_add(bp, bo, BX_VNCLEAN); 2551 } 2552 2553 /* 2554 * Disassociate a buffer from a vnode. 2555 */ 2556 void 2557 brelvp(struct buf *bp) 2558 { 2559 struct bufobj *bo; 2560 struct vnode *vp; 2561 2562 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2563 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 2564 2565 /* 2566 * Delete from old vnode list, if on one. 2567 */ 2568 vp = bp->b_vp; /* XXX */ 2569 bo = bp->b_bufobj; 2570 BO_LOCK(bo); 2571 buf_vlist_remove(bp); 2572 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2573 bo->bo_flag &= ~BO_ONWORKLST; 2574 mtx_lock(&sync_mtx); 2575 LIST_REMOVE(bo, bo_synclist); 2576 syncer_worklist_len--; 2577 mtx_unlock(&sync_mtx); 2578 } 2579 bp->b_vp = NULL; 2580 bp->b_bufobj = NULL; 2581 BO_UNLOCK(bo); 2582 vdrop(vp); 2583 } 2584 2585 /* 2586 * Add an item to the syncer work queue. 2587 */ 2588 static void 2589 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 2590 { 2591 int slot; 2592 2593 ASSERT_BO_WLOCKED(bo); 2594 2595 mtx_lock(&sync_mtx); 2596 if (bo->bo_flag & BO_ONWORKLST) 2597 LIST_REMOVE(bo, bo_synclist); 2598 else { 2599 bo->bo_flag |= BO_ONWORKLST; 2600 syncer_worklist_len++; 2601 } 2602 2603 if (delay > syncer_maxdelay - 2) 2604 delay = syncer_maxdelay - 2; 2605 slot = (syncer_delayno + delay) & syncer_mask; 2606 2607 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 2608 mtx_unlock(&sync_mtx); 2609 } 2610 2611 static int 2612 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 2613 { 2614 int error, len; 2615 2616 mtx_lock(&sync_mtx); 2617 len = syncer_worklist_len - sync_vnode_count; 2618 mtx_unlock(&sync_mtx); 2619 error = SYSCTL_OUT(req, &len, sizeof(len)); 2620 return (error); 2621 } 2622 2623 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, 2624 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0, 2625 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 2626 2627 static struct proc *updateproc; 2628 static void sched_sync(void); 2629 static struct kproc_desc up_kp = { 2630 "syncer", 2631 sched_sync, 2632 &updateproc 2633 }; 2634 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 2635 2636 static int 2637 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 2638 { 2639 struct vnode *vp; 2640 struct mount *mp; 2641 2642 *bo = LIST_FIRST(slp); 2643 if (*bo == NULL) 2644 return (0); 2645 vp = bo2vnode(*bo); 2646 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 2647 return (1); 2648 /* 2649 * We use vhold in case the vnode does not 2650 * successfully sync. vhold prevents the vnode from 2651 * going away when we unlock the sync_mtx so that 2652 * we can acquire the vnode interlock. 2653 */ 2654 vholdl(vp); 2655 mtx_unlock(&sync_mtx); 2656 VI_UNLOCK(vp); 2657 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2658 vdrop(vp); 2659 mtx_lock(&sync_mtx); 2660 return (*bo == LIST_FIRST(slp)); 2661 } 2662 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2663 (void) VOP_FSYNC(vp, MNT_LAZY, td); 2664 VOP_UNLOCK(vp); 2665 vn_finished_write(mp); 2666 BO_LOCK(*bo); 2667 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 2668 /* 2669 * Put us back on the worklist. The worklist 2670 * routine will remove us from our current 2671 * position and then add us back in at a later 2672 * position. 2673 */ 2674 vn_syncer_add_to_worklist(*bo, syncdelay); 2675 } 2676 BO_UNLOCK(*bo); 2677 vdrop(vp); 2678 mtx_lock(&sync_mtx); 2679 return (0); 2680 } 2681 2682 static int first_printf = 1; 2683 2684 /* 2685 * System filesystem synchronizer daemon. 2686 */ 2687 static void 2688 sched_sync(void) 2689 { 2690 struct synclist *next, *slp; 2691 struct bufobj *bo; 2692 long starttime; 2693 struct thread *td = curthread; 2694 int last_work_seen; 2695 int net_worklist_len; 2696 int syncer_final_iter; 2697 int error; 2698 2699 last_work_seen = 0; 2700 syncer_final_iter = 0; 2701 syncer_state = SYNCER_RUNNING; 2702 starttime = time_uptime; 2703 td->td_pflags |= TDP_NORUNNINGBUF; 2704 2705 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 2706 SHUTDOWN_PRI_LAST); 2707 2708 mtx_lock(&sync_mtx); 2709 for (;;) { 2710 if (syncer_state == SYNCER_FINAL_DELAY && 2711 syncer_final_iter == 0) { 2712 mtx_unlock(&sync_mtx); 2713 kproc_suspend_check(td->td_proc); 2714 mtx_lock(&sync_mtx); 2715 } 2716 net_worklist_len = syncer_worklist_len - sync_vnode_count; 2717 if (syncer_state != SYNCER_RUNNING && 2718 starttime != time_uptime) { 2719 if (first_printf) { 2720 printf("\nSyncing disks, vnodes remaining... "); 2721 first_printf = 0; 2722 } 2723 printf("%d ", net_worklist_len); 2724 } 2725 starttime = time_uptime; 2726 2727 /* 2728 * Push files whose dirty time has expired. Be careful 2729 * of interrupt race on slp queue. 2730 * 2731 * Skip over empty worklist slots when shutting down. 2732 */ 2733 do { 2734 slp = &syncer_workitem_pending[syncer_delayno]; 2735 syncer_delayno += 1; 2736 if (syncer_delayno == syncer_maxdelay) 2737 syncer_delayno = 0; 2738 next = &syncer_workitem_pending[syncer_delayno]; 2739 /* 2740 * If the worklist has wrapped since the 2741 * it was emptied of all but syncer vnodes, 2742 * switch to the FINAL_DELAY state and run 2743 * for one more second. 2744 */ 2745 if (syncer_state == SYNCER_SHUTTING_DOWN && 2746 net_worklist_len == 0 && 2747 last_work_seen == syncer_delayno) { 2748 syncer_state = SYNCER_FINAL_DELAY; 2749 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 2750 } 2751 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 2752 syncer_worklist_len > 0); 2753 2754 /* 2755 * Keep track of the last time there was anything 2756 * on the worklist other than syncer vnodes. 2757 * Return to the SHUTTING_DOWN state if any 2758 * new work appears. 2759 */ 2760 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 2761 last_work_seen = syncer_delayno; 2762 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 2763 syncer_state = SYNCER_SHUTTING_DOWN; 2764 while (!LIST_EMPTY(slp)) { 2765 error = sync_vnode(slp, &bo, td); 2766 if (error == 1) { 2767 LIST_REMOVE(bo, bo_synclist); 2768 LIST_INSERT_HEAD(next, bo, bo_synclist); 2769 continue; 2770 } 2771 2772 if (first_printf == 0) { 2773 /* 2774 * Drop the sync mutex, because some watchdog 2775 * drivers need to sleep while patting 2776 */ 2777 mtx_unlock(&sync_mtx); 2778 wdog_kern_pat(WD_LASTVAL); 2779 mtx_lock(&sync_mtx); 2780 } 2781 } 2782 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 2783 syncer_final_iter--; 2784 /* 2785 * The variable rushjob allows the kernel to speed up the 2786 * processing of the filesystem syncer process. A rushjob 2787 * value of N tells the filesystem syncer to process the next 2788 * N seconds worth of work on its queue ASAP. Currently rushjob 2789 * is used by the soft update code to speed up the filesystem 2790 * syncer process when the incore state is getting so far 2791 * ahead of the disk that the kernel memory pool is being 2792 * threatened with exhaustion. 2793 */ 2794 if (rushjob > 0) { 2795 rushjob -= 1; 2796 continue; 2797 } 2798 /* 2799 * Just sleep for a short period of time between 2800 * iterations when shutting down to allow some I/O 2801 * to happen. 2802 * 2803 * If it has taken us less than a second to process the 2804 * current work, then wait. Otherwise start right over 2805 * again. We can still lose time if any single round 2806 * takes more than two seconds, but it does not really 2807 * matter as we are just trying to generally pace the 2808 * filesystem activity. 2809 */ 2810 if (syncer_state != SYNCER_RUNNING || 2811 time_uptime == starttime) { 2812 thread_lock(td); 2813 sched_prio(td, PPAUSE); 2814 thread_unlock(td); 2815 } 2816 if (syncer_state != SYNCER_RUNNING) 2817 cv_timedwait(&sync_wakeup, &sync_mtx, 2818 hz / SYNCER_SHUTDOWN_SPEEDUP); 2819 else if (time_uptime == starttime) 2820 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 2821 } 2822 } 2823 2824 /* 2825 * Request the syncer daemon to speed up its work. 2826 * We never push it to speed up more than half of its 2827 * normal turn time, otherwise it could take over the cpu. 2828 */ 2829 int 2830 speedup_syncer(void) 2831 { 2832 int ret = 0; 2833 2834 mtx_lock(&sync_mtx); 2835 if (rushjob < syncdelay / 2) { 2836 rushjob += 1; 2837 stat_rush_requests += 1; 2838 ret = 1; 2839 } 2840 mtx_unlock(&sync_mtx); 2841 cv_broadcast(&sync_wakeup); 2842 return (ret); 2843 } 2844 2845 /* 2846 * Tell the syncer to speed up its work and run though its work 2847 * list several times, then tell it to shut down. 2848 */ 2849 static void 2850 syncer_shutdown(void *arg, int howto) 2851 { 2852 2853 if (howto & RB_NOSYNC) 2854 return; 2855 mtx_lock(&sync_mtx); 2856 syncer_state = SYNCER_SHUTTING_DOWN; 2857 rushjob = 0; 2858 mtx_unlock(&sync_mtx); 2859 cv_broadcast(&sync_wakeup); 2860 kproc_shutdown(arg, howto); 2861 } 2862 2863 void 2864 syncer_suspend(void) 2865 { 2866 2867 syncer_shutdown(updateproc, 0); 2868 } 2869 2870 void 2871 syncer_resume(void) 2872 { 2873 2874 mtx_lock(&sync_mtx); 2875 first_printf = 1; 2876 syncer_state = SYNCER_RUNNING; 2877 mtx_unlock(&sync_mtx); 2878 cv_broadcast(&sync_wakeup); 2879 kproc_resume(updateproc); 2880 } 2881 2882 /* 2883 * Move the buffer between the clean and dirty lists of its vnode. 2884 */ 2885 void 2886 reassignbuf(struct buf *bp) 2887 { 2888 struct vnode *vp; 2889 struct bufobj *bo; 2890 int delay; 2891 #ifdef INVARIANTS 2892 struct bufv *bv; 2893 #endif 2894 2895 vp = bp->b_vp; 2896 bo = bp->b_bufobj; 2897 2898 KASSERT((bp->b_flags & B_PAGING) == 0, 2899 ("%s: cannot reassign paging buffer %p", __func__, bp)); 2900 2901 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 2902 bp, bp->b_vp, bp->b_flags); 2903 2904 BO_LOCK(bo); 2905 buf_vlist_remove(bp); 2906 2907 /* 2908 * If dirty, put on list of dirty buffers; otherwise insert onto list 2909 * of clean buffers. 2910 */ 2911 if (bp->b_flags & B_DELWRI) { 2912 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 2913 switch (vp->v_type) { 2914 case VDIR: 2915 delay = dirdelay; 2916 break; 2917 case VCHR: 2918 delay = metadelay; 2919 break; 2920 default: 2921 delay = filedelay; 2922 } 2923 vn_syncer_add_to_worklist(bo, delay); 2924 } 2925 buf_vlist_add(bp, bo, BX_VNDIRTY); 2926 } else { 2927 buf_vlist_add(bp, bo, BX_VNCLEAN); 2928 2929 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2930 mtx_lock(&sync_mtx); 2931 LIST_REMOVE(bo, bo_synclist); 2932 syncer_worklist_len--; 2933 mtx_unlock(&sync_mtx); 2934 bo->bo_flag &= ~BO_ONWORKLST; 2935 } 2936 } 2937 #ifdef INVARIANTS 2938 bv = &bo->bo_clean; 2939 bp = TAILQ_FIRST(&bv->bv_hd); 2940 KASSERT(bp == NULL || bp->b_bufobj == bo, 2941 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2942 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2943 KASSERT(bp == NULL || bp->b_bufobj == bo, 2944 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2945 bv = &bo->bo_dirty; 2946 bp = TAILQ_FIRST(&bv->bv_hd); 2947 KASSERT(bp == NULL || bp->b_bufobj == bo, 2948 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2949 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2950 KASSERT(bp == NULL || bp->b_bufobj == bo, 2951 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2952 #endif 2953 BO_UNLOCK(bo); 2954 } 2955 2956 static void 2957 v_init_counters(struct vnode *vp) 2958 { 2959 2960 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, 2961 vp, ("%s called for an initialized vnode", __FUNCTION__)); 2962 ASSERT_VI_UNLOCKED(vp, __FUNCTION__); 2963 2964 refcount_init(&vp->v_holdcnt, 1); 2965 refcount_init(&vp->v_usecount, 1); 2966 } 2967 2968 /* 2969 * Grab a particular vnode from the free list, increment its 2970 * reference count and lock it. VIRF_DOOMED is set if the vnode 2971 * is being destroyed. Only callers who specify LK_RETRY will 2972 * see doomed vnodes. If inactive processing was delayed in 2973 * vput try to do it here. 2974 * 2975 * usecount is manipulated using atomics without holding any locks. 2976 * 2977 * holdcnt can be manipulated using atomics without holding any locks, 2978 * except when transitioning 1<->0, in which case the interlock is held. 2979 * 2980 * Consumers which don't guarantee liveness of the vnode can use SMR to 2981 * try to get a reference. Note this operation can fail since the vnode 2982 * may be awaiting getting freed by the time they get to it. 2983 */ 2984 enum vgetstate 2985 vget_prep_smr(struct vnode *vp) 2986 { 2987 enum vgetstate vs; 2988 2989 VFS_SMR_ASSERT_ENTERED(); 2990 2991 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 2992 vs = VGET_USECOUNT; 2993 } else { 2994 if (vhold_smr(vp)) 2995 vs = VGET_HOLDCNT; 2996 else 2997 vs = VGET_NONE; 2998 } 2999 return (vs); 3000 } 3001 3002 enum vgetstate 3003 vget_prep(struct vnode *vp) 3004 { 3005 enum vgetstate vs; 3006 3007 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 3008 vs = VGET_USECOUNT; 3009 } else { 3010 vhold(vp); 3011 vs = VGET_HOLDCNT; 3012 } 3013 return (vs); 3014 } 3015 3016 void 3017 vget_abort(struct vnode *vp, enum vgetstate vs) 3018 { 3019 3020 switch (vs) { 3021 case VGET_USECOUNT: 3022 vrele(vp); 3023 break; 3024 case VGET_HOLDCNT: 3025 vdrop(vp); 3026 break; 3027 default: 3028 __assert_unreachable(); 3029 } 3030 } 3031 3032 int 3033 vget(struct vnode *vp, int flags) 3034 { 3035 enum vgetstate vs; 3036 3037 vs = vget_prep(vp); 3038 return (vget_finish(vp, flags, vs)); 3039 } 3040 3041 int 3042 vget_finish(struct vnode *vp, int flags, enum vgetstate vs) 3043 { 3044 int error; 3045 3046 if ((flags & LK_INTERLOCK) != 0) 3047 ASSERT_VI_LOCKED(vp, __func__); 3048 else 3049 ASSERT_VI_UNLOCKED(vp, __func__); 3050 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3051 VNPASS(vp->v_holdcnt > 0, vp); 3052 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3053 3054 error = vn_lock(vp, flags); 3055 if (__predict_false(error != 0)) { 3056 vget_abort(vp, vs); 3057 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 3058 vp); 3059 return (error); 3060 } 3061 3062 vget_finish_ref(vp, vs); 3063 return (0); 3064 } 3065 3066 void 3067 vget_finish_ref(struct vnode *vp, enum vgetstate vs) 3068 { 3069 int old; 3070 3071 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3072 VNPASS(vp->v_holdcnt > 0, vp); 3073 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3074 3075 if (vs == VGET_USECOUNT) 3076 return; 3077 3078 /* 3079 * We hold the vnode. If the usecount is 0 it will be utilized to keep 3080 * the vnode around. Otherwise someone else lended their hold count and 3081 * we have to drop ours. 3082 */ 3083 old = atomic_fetchadd_int(&vp->v_usecount, 1); 3084 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old)); 3085 if (old != 0) { 3086 #ifdef INVARIANTS 3087 old = atomic_fetchadd_int(&vp->v_holdcnt, -1); 3088 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); 3089 #else 3090 refcount_release(&vp->v_holdcnt); 3091 #endif 3092 } 3093 } 3094 3095 void 3096 vref(struct vnode *vp) 3097 { 3098 enum vgetstate vs; 3099 3100 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3101 vs = vget_prep(vp); 3102 vget_finish_ref(vp, vs); 3103 } 3104 3105 void 3106 vrefact(struct vnode *vp) 3107 { 3108 3109 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3110 #ifdef INVARIANTS 3111 int old = atomic_fetchadd_int(&vp->v_usecount, 1); 3112 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old)); 3113 #else 3114 refcount_acquire(&vp->v_usecount); 3115 #endif 3116 } 3117 3118 void 3119 vlazy(struct vnode *vp) 3120 { 3121 struct mount *mp; 3122 3123 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__)); 3124 3125 if ((vp->v_mflag & VMP_LAZYLIST) != 0) 3126 return; 3127 /* 3128 * We may get here for inactive routines after the vnode got doomed. 3129 */ 3130 if (VN_IS_DOOMED(vp)) 3131 return; 3132 mp = vp->v_mount; 3133 mtx_lock(&mp->mnt_listmtx); 3134 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 3135 vp->v_mflag |= VMP_LAZYLIST; 3136 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3137 mp->mnt_lazyvnodelistsize++; 3138 } 3139 mtx_unlock(&mp->mnt_listmtx); 3140 } 3141 3142 static void 3143 vunlazy(struct vnode *vp) 3144 { 3145 struct mount *mp; 3146 3147 ASSERT_VI_LOCKED(vp, __func__); 3148 VNPASS(!VN_IS_DOOMED(vp), vp); 3149 3150 mp = vp->v_mount; 3151 mtx_lock(&mp->mnt_listmtx); 3152 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3153 /* 3154 * Don't remove the vnode from the lazy list if another thread 3155 * has increased the hold count. It may have re-enqueued the 3156 * vnode to the lazy list and is now responsible for its 3157 * removal. 3158 */ 3159 if (vp->v_holdcnt == 0) { 3160 vp->v_mflag &= ~VMP_LAZYLIST; 3161 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3162 mp->mnt_lazyvnodelistsize--; 3163 } 3164 mtx_unlock(&mp->mnt_listmtx); 3165 } 3166 3167 /* 3168 * This routine is only meant to be called from vgonel prior to dooming 3169 * the vnode. 3170 */ 3171 static void 3172 vunlazy_gone(struct vnode *vp) 3173 { 3174 struct mount *mp; 3175 3176 ASSERT_VOP_ELOCKED(vp, __func__); 3177 ASSERT_VI_LOCKED(vp, __func__); 3178 VNPASS(!VN_IS_DOOMED(vp), vp); 3179 3180 if (vp->v_mflag & VMP_LAZYLIST) { 3181 mp = vp->v_mount; 3182 mtx_lock(&mp->mnt_listmtx); 3183 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3184 vp->v_mflag &= ~VMP_LAZYLIST; 3185 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3186 mp->mnt_lazyvnodelistsize--; 3187 mtx_unlock(&mp->mnt_listmtx); 3188 } 3189 } 3190 3191 static void 3192 vdefer_inactive(struct vnode *vp) 3193 { 3194 3195 ASSERT_VI_LOCKED(vp, __func__); 3196 VNPASS(vp->v_holdcnt > 0, vp); 3197 if (VN_IS_DOOMED(vp)) { 3198 vdropl(vp); 3199 return; 3200 } 3201 if (vp->v_iflag & VI_DEFINACT) { 3202 VNPASS(vp->v_holdcnt > 1, vp); 3203 vdropl(vp); 3204 return; 3205 } 3206 if (vp->v_usecount > 0) { 3207 vp->v_iflag &= ~VI_OWEINACT; 3208 vdropl(vp); 3209 return; 3210 } 3211 vlazy(vp); 3212 vp->v_iflag |= VI_DEFINACT; 3213 VI_UNLOCK(vp); 3214 atomic_add_long(&deferred_inact, 1); 3215 } 3216 3217 static void 3218 vdefer_inactive_unlocked(struct vnode *vp) 3219 { 3220 3221 VI_LOCK(vp); 3222 if ((vp->v_iflag & VI_OWEINACT) == 0) { 3223 vdropl(vp); 3224 return; 3225 } 3226 vdefer_inactive(vp); 3227 } 3228 3229 enum vput_op { VRELE, VPUT, VUNREF }; 3230 3231 /* 3232 * Handle ->v_usecount transitioning to 0. 3233 * 3234 * By releasing the last usecount we take ownership of the hold count which 3235 * provides liveness of the vnode, meaning we have to vdrop. 3236 * 3237 * For all vnodes we may need to perform inactive processing. It requires an 3238 * exclusive lock on the vnode, while it is legal to call here with only a 3239 * shared lock (or no locks). If locking the vnode in an expected manner fails, 3240 * inactive processing gets deferred to the syncer. 3241 * 3242 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend 3243 * on the lock being held all the way until VOP_INACTIVE. This in particular 3244 * happens with UFS which adds half-constructed vnodes to the hash, where they 3245 * can be found by other code. 3246 */ 3247 static void 3248 vput_final(struct vnode *vp, enum vput_op func) 3249 { 3250 int error; 3251 bool want_unlock; 3252 3253 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3254 VNPASS(vp->v_holdcnt > 0, vp); 3255 3256 VI_LOCK(vp); 3257 3258 /* 3259 * By the time we got here someone else might have transitioned 3260 * the count back to > 0. 3261 */ 3262 if (vp->v_usecount > 0) 3263 goto out; 3264 3265 /* 3266 * If the vnode is doomed vgone already performed inactive processing 3267 * (if needed). 3268 */ 3269 if (VN_IS_DOOMED(vp)) 3270 goto out; 3271 3272 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0)) 3273 goto out; 3274 3275 if (vp->v_iflag & VI_DOINGINACT) 3276 goto out; 3277 3278 /* 3279 * Locking operations here will drop the interlock and possibly the 3280 * vnode lock, opening a window where the vnode can get doomed all the 3281 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to 3282 * perform inactive. 3283 */ 3284 vp->v_iflag |= VI_OWEINACT; 3285 want_unlock = false; 3286 error = 0; 3287 switch (func) { 3288 case VRELE: 3289 switch (VOP_ISLOCKED(vp)) { 3290 case LK_EXCLUSIVE: 3291 break; 3292 case LK_EXCLOTHER: 3293 case 0: 3294 want_unlock = true; 3295 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 3296 VI_LOCK(vp); 3297 break; 3298 default: 3299 /* 3300 * The lock has at least one sharer, but we have no way 3301 * to conclude whether this is us. Play it safe and 3302 * defer processing. 3303 */ 3304 error = EAGAIN; 3305 break; 3306 } 3307 break; 3308 case VPUT: 3309 want_unlock = true; 3310 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3311 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 3312 LK_NOWAIT); 3313 VI_LOCK(vp); 3314 } 3315 break; 3316 case VUNREF: 3317 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3318 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 3319 VI_LOCK(vp); 3320 } 3321 break; 3322 } 3323 if (error == 0) { 3324 if (func == VUNREF) { 3325 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp, 3326 ("recursive vunref")); 3327 vp->v_vflag |= VV_UNREF; 3328 } 3329 for (;;) { 3330 error = vinactive(vp); 3331 if (want_unlock) 3332 VOP_UNLOCK(vp); 3333 if (error != ERELOOKUP || !want_unlock) 3334 break; 3335 VOP_LOCK(vp, LK_EXCLUSIVE); 3336 } 3337 if (func == VUNREF) 3338 vp->v_vflag &= ~VV_UNREF; 3339 vdropl(vp); 3340 } else { 3341 vdefer_inactive(vp); 3342 } 3343 return; 3344 out: 3345 if (func == VPUT) 3346 VOP_UNLOCK(vp); 3347 vdropl(vp); 3348 } 3349 3350 /* 3351 * Decrement ->v_usecount for a vnode. 3352 * 3353 * Releasing the last use count requires additional processing, see vput_final 3354 * above for details. 3355 * 3356 * Comment above each variant denotes lock state on entry and exit. 3357 */ 3358 3359 /* 3360 * in: any 3361 * out: same as passed in 3362 */ 3363 void 3364 vrele(struct vnode *vp) 3365 { 3366 3367 ASSERT_VI_UNLOCKED(vp, __func__); 3368 if (!refcount_release(&vp->v_usecount)) 3369 return; 3370 vput_final(vp, VRELE); 3371 } 3372 3373 /* 3374 * in: locked 3375 * out: unlocked 3376 */ 3377 void 3378 vput(struct vnode *vp) 3379 { 3380 3381 ASSERT_VOP_LOCKED(vp, __func__); 3382 ASSERT_VI_UNLOCKED(vp, __func__); 3383 if (!refcount_release(&vp->v_usecount)) { 3384 VOP_UNLOCK(vp); 3385 return; 3386 } 3387 vput_final(vp, VPUT); 3388 } 3389 3390 /* 3391 * in: locked 3392 * out: locked 3393 */ 3394 void 3395 vunref(struct vnode *vp) 3396 { 3397 3398 ASSERT_VOP_LOCKED(vp, __func__); 3399 ASSERT_VI_UNLOCKED(vp, __func__); 3400 if (!refcount_release(&vp->v_usecount)) 3401 return; 3402 vput_final(vp, VUNREF); 3403 } 3404 3405 void 3406 vhold(struct vnode *vp) 3407 { 3408 int old; 3409 3410 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3411 old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3412 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3413 ("%s: wrong hold count %d", __func__, old)); 3414 if (old == 0) 3415 vfs_freevnodes_dec(); 3416 } 3417 3418 void 3419 vholdnz(struct vnode *vp) 3420 { 3421 3422 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3423 #ifdef INVARIANTS 3424 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3425 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3426 ("%s: wrong hold count %d", __func__, old)); 3427 #else 3428 atomic_add_int(&vp->v_holdcnt, 1); 3429 #endif 3430 } 3431 3432 /* 3433 * Grab a hold count unless the vnode is freed. 3434 * 3435 * Only use this routine if vfs smr is the only protection you have against 3436 * freeing the vnode. 3437 * 3438 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag 3439 * is not set. After the flag is set the vnode becomes immutable to anyone but 3440 * the thread which managed to set the flag. 3441 * 3442 * It may be tempting to replace the loop with: 3443 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3444 * if (count & VHOLD_NO_SMR) { 3445 * backpedal and error out; 3446 * } 3447 * 3448 * However, while this is more performant, it hinders debugging by eliminating 3449 * the previously mentioned invariant. 3450 */ 3451 bool 3452 vhold_smr(struct vnode *vp) 3453 { 3454 int count; 3455 3456 VFS_SMR_ASSERT_ENTERED(); 3457 3458 count = atomic_load_int(&vp->v_holdcnt); 3459 for (;;) { 3460 if (count & VHOLD_NO_SMR) { 3461 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3462 ("non-zero hold count with flags %d\n", count)); 3463 return (false); 3464 } 3465 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3466 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3467 if (count == 0) 3468 vfs_freevnodes_dec(); 3469 return (true); 3470 } 3471 } 3472 } 3473 3474 /* 3475 * Hold a free vnode for recycling. 3476 * 3477 * Note: vnode_init references this comment. 3478 * 3479 * Attempts to recycle only need the global vnode list lock and have no use for 3480 * SMR. 3481 * 3482 * However, vnodes get inserted into the global list before they get fully 3483 * initialized and stay there until UMA decides to free the memory. This in 3484 * particular means the target can be found before it becomes usable and after 3485 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to 3486 * VHOLD_NO_SMR. 3487 * 3488 * Note: the vnode may gain more references after we transition the count 0->1. 3489 */ 3490 static bool 3491 vhold_recycle_free(struct vnode *vp) 3492 { 3493 int count; 3494 3495 mtx_assert(&vnode_list_mtx, MA_OWNED); 3496 3497 count = atomic_load_int(&vp->v_holdcnt); 3498 for (;;) { 3499 if (count & VHOLD_NO_SMR) { 3500 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3501 ("non-zero hold count with flags %d\n", count)); 3502 return (false); 3503 } 3504 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3505 if (count > 0) { 3506 return (false); 3507 } 3508 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3509 vfs_freevnodes_dec(); 3510 return (true); 3511 } 3512 } 3513 } 3514 3515 static void __noinline 3516 vdbatch_process(struct vdbatch *vd) 3517 { 3518 struct vnode *vp; 3519 int i; 3520 3521 mtx_assert(&vd->lock, MA_OWNED); 3522 MPASS(curthread->td_pinned > 0); 3523 MPASS(vd->index == VDBATCH_SIZE); 3524 3525 critical_enter(); 3526 if (mtx_trylock(&vnode_list_mtx)) { 3527 for (i = 0; i < VDBATCH_SIZE; i++) { 3528 vp = vd->tab[i]; 3529 vd->tab[i] = NULL; 3530 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 3531 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist); 3532 MPASS(vp->v_dbatchcpu != NOCPU); 3533 vp->v_dbatchcpu = NOCPU; 3534 } 3535 mtx_unlock(&vnode_list_mtx); 3536 } else { 3537 for (i = 0; i < VDBATCH_SIZE; i++) { 3538 vp = vd->tab[i]; 3539 vd->tab[i] = NULL; 3540 MPASS(vp->v_dbatchcpu != NOCPU); 3541 vp->v_dbatchcpu = NOCPU; 3542 } 3543 } 3544 vd->index = 0; 3545 critical_exit(); 3546 } 3547 3548 static void 3549 vdbatch_enqueue(struct vnode *vp) 3550 { 3551 struct vdbatch *vd; 3552 3553 ASSERT_VI_LOCKED(vp, __func__); 3554 VNPASS(!VN_IS_DOOMED(vp), vp); 3555 3556 if (vp->v_dbatchcpu != NOCPU) { 3557 VI_UNLOCK(vp); 3558 return; 3559 } 3560 3561 sched_pin(); 3562 vd = DPCPU_PTR(vd); 3563 mtx_lock(&vd->lock); 3564 MPASS(vd->index < VDBATCH_SIZE); 3565 MPASS(vd->tab[vd->index] == NULL); 3566 /* 3567 * A hack: we depend on being pinned so that we know what to put in 3568 * ->v_dbatchcpu. 3569 */ 3570 vp->v_dbatchcpu = curcpu; 3571 vd->tab[vd->index] = vp; 3572 vd->index++; 3573 VI_UNLOCK(vp); 3574 if (vd->index == VDBATCH_SIZE) 3575 vdbatch_process(vd); 3576 mtx_unlock(&vd->lock); 3577 sched_unpin(); 3578 } 3579 3580 /* 3581 * This routine must only be called for vnodes which are about to be 3582 * deallocated. Supporting dequeue for arbitrary vndoes would require 3583 * validating that the locked batch matches. 3584 */ 3585 static void 3586 vdbatch_dequeue(struct vnode *vp) 3587 { 3588 struct vdbatch *vd; 3589 int i; 3590 short cpu; 3591 3592 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp); 3593 3594 cpu = vp->v_dbatchcpu; 3595 if (cpu == NOCPU) 3596 return; 3597 3598 vd = DPCPU_ID_PTR(cpu, vd); 3599 mtx_lock(&vd->lock); 3600 for (i = 0; i < vd->index; i++) { 3601 if (vd->tab[i] != vp) 3602 continue; 3603 vp->v_dbatchcpu = NOCPU; 3604 vd->index--; 3605 vd->tab[i] = vd->tab[vd->index]; 3606 vd->tab[vd->index] = NULL; 3607 break; 3608 } 3609 mtx_unlock(&vd->lock); 3610 /* 3611 * Either we dequeued the vnode above or the target CPU beat us to it. 3612 */ 3613 MPASS(vp->v_dbatchcpu == NOCPU); 3614 } 3615 3616 /* 3617 * Drop the hold count of the vnode. If this is the last reference to 3618 * the vnode we place it on the free list unless it has been vgone'd 3619 * (marked VIRF_DOOMED) in which case we will free it. 3620 * 3621 * Because the vnode vm object keeps a hold reference on the vnode if 3622 * there is at least one resident non-cached page, the vnode cannot 3623 * leave the active list without the page cleanup done. 3624 */ 3625 static void __noinline 3626 vdropl_final(struct vnode *vp) 3627 { 3628 3629 ASSERT_VI_LOCKED(vp, __func__); 3630 VNPASS(VN_IS_DOOMED(vp), vp); 3631 /* 3632 * Set the VHOLD_NO_SMR flag. 3633 * 3634 * We may be racing against vhold_smr. If they win we can just pretend 3635 * we never got this far, they will vdrop later. 3636 */ 3637 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) { 3638 vfs_freevnodes_inc(); 3639 VI_UNLOCK(vp); 3640 /* 3641 * We lost the aforementioned race. Any subsequent access is 3642 * invalid as they might have managed to vdropl on their own. 3643 */ 3644 return; 3645 } 3646 /* 3647 * Don't bump freevnodes as this one is going away. 3648 */ 3649 freevnode(vp); 3650 } 3651 3652 void 3653 vdrop(struct vnode *vp) 3654 { 3655 3656 ASSERT_VI_UNLOCKED(vp, __func__); 3657 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3658 if (refcount_release_if_not_last(&vp->v_holdcnt)) 3659 return; 3660 VI_LOCK(vp); 3661 vdropl(vp); 3662 } 3663 3664 static void __always_inline 3665 vdropl_impl(struct vnode *vp, bool enqueue) 3666 { 3667 3668 ASSERT_VI_LOCKED(vp, __func__); 3669 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3670 if (!refcount_release(&vp->v_holdcnt)) { 3671 VI_UNLOCK(vp); 3672 return; 3673 } 3674 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp); 3675 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 3676 if (VN_IS_DOOMED(vp)) { 3677 vdropl_final(vp); 3678 return; 3679 } 3680 3681 vfs_freevnodes_inc(); 3682 if (vp->v_mflag & VMP_LAZYLIST) { 3683 vunlazy(vp); 3684 } 3685 3686 if (!enqueue) { 3687 VI_UNLOCK(vp); 3688 return; 3689 } 3690 3691 /* 3692 * Also unlocks the interlock. We can't assert on it as we 3693 * released our hold and by now the vnode might have been 3694 * freed. 3695 */ 3696 vdbatch_enqueue(vp); 3697 } 3698 3699 void 3700 vdropl(struct vnode *vp) 3701 { 3702 3703 vdropl_impl(vp, true); 3704 } 3705 3706 /* 3707 * vdrop a vnode when recycling 3708 * 3709 * This is a special case routine only to be used when recycling, differs from 3710 * regular vdrop by not requeieing the vnode on LRU. 3711 * 3712 * Consider a case where vtryrecycle continuously fails with all vnodes (due to 3713 * e.g., frozen writes on the filesystem), filling the batch and causing it to 3714 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a 3715 * loop which can last for as long as writes are frozen. 3716 */ 3717 static void 3718 vdropl_recycle(struct vnode *vp) 3719 { 3720 3721 vdropl_impl(vp, false); 3722 } 3723 3724 static void 3725 vdrop_recycle(struct vnode *vp) 3726 { 3727 3728 VI_LOCK(vp); 3729 vdropl_recycle(vp); 3730 } 3731 3732 /* 3733 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 3734 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 3735 */ 3736 static int 3737 vinactivef(struct vnode *vp) 3738 { 3739 struct vm_object *obj; 3740 int error; 3741 3742 ASSERT_VOP_ELOCKED(vp, "vinactive"); 3743 ASSERT_VI_LOCKED(vp, "vinactive"); 3744 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp); 3745 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3746 vp->v_iflag |= VI_DOINGINACT; 3747 vp->v_iflag &= ~VI_OWEINACT; 3748 VI_UNLOCK(vp); 3749 /* 3750 * Before moving off the active list, we must be sure that any 3751 * modified pages are converted into the vnode's dirty 3752 * buffers, since these will no longer be checked once the 3753 * vnode is on the inactive list. 3754 * 3755 * The write-out of the dirty pages is asynchronous. At the 3756 * point that VOP_INACTIVE() is called, there could still be 3757 * pending I/O and dirty pages in the object. 3758 */ 3759 if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 3760 vm_object_mightbedirty(obj)) { 3761 VM_OBJECT_WLOCK(obj); 3762 vm_object_page_clean(obj, 0, 0, 0); 3763 VM_OBJECT_WUNLOCK(obj); 3764 } 3765 error = VOP_INACTIVE(vp); 3766 VI_LOCK(vp); 3767 VNPASS(vp->v_iflag & VI_DOINGINACT, vp); 3768 vp->v_iflag &= ~VI_DOINGINACT; 3769 return (error); 3770 } 3771 3772 int 3773 vinactive(struct vnode *vp) 3774 { 3775 3776 ASSERT_VOP_ELOCKED(vp, "vinactive"); 3777 ASSERT_VI_LOCKED(vp, "vinactive"); 3778 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3779 3780 if ((vp->v_iflag & VI_OWEINACT) == 0) 3781 return (0); 3782 if (vp->v_iflag & VI_DOINGINACT) 3783 return (0); 3784 if (vp->v_usecount > 0) { 3785 vp->v_iflag &= ~VI_OWEINACT; 3786 return (0); 3787 } 3788 return (vinactivef(vp)); 3789 } 3790 3791 /* 3792 * Remove any vnodes in the vnode table belonging to mount point mp. 3793 * 3794 * If FORCECLOSE is not specified, there should not be any active ones, 3795 * return error if any are found (nb: this is a user error, not a 3796 * system error). If FORCECLOSE is specified, detach any active vnodes 3797 * that are found. 3798 * 3799 * If WRITECLOSE is set, only flush out regular file vnodes open for 3800 * writing. 3801 * 3802 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 3803 * 3804 * `rootrefs' specifies the base reference count for the root vnode 3805 * of this filesystem. The root vnode is considered busy if its 3806 * v_usecount exceeds this value. On a successful return, vflush(, td) 3807 * will call vrele() on the root vnode exactly rootrefs times. 3808 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 3809 * be zero. 3810 */ 3811 #ifdef DIAGNOSTIC 3812 static int busyprt = 0; /* print out busy vnodes */ 3813 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 3814 #endif 3815 3816 int 3817 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 3818 { 3819 struct vnode *vp, *mvp, *rootvp = NULL; 3820 struct vattr vattr; 3821 int busy = 0, error; 3822 3823 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 3824 rootrefs, flags); 3825 if (rootrefs > 0) { 3826 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 3827 ("vflush: bad args")); 3828 /* 3829 * Get the filesystem root vnode. We can vput() it 3830 * immediately, since with rootrefs > 0, it won't go away. 3831 */ 3832 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 3833 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 3834 __func__, error); 3835 return (error); 3836 } 3837 vput(rootvp); 3838 } 3839 loop: 3840 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 3841 vholdl(vp); 3842 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 3843 if (error) { 3844 vdrop(vp); 3845 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3846 goto loop; 3847 } 3848 /* 3849 * Skip over a vnodes marked VV_SYSTEM. 3850 */ 3851 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 3852 VOP_UNLOCK(vp); 3853 vdrop(vp); 3854 continue; 3855 } 3856 /* 3857 * If WRITECLOSE is set, flush out unlinked but still open 3858 * files (even if open only for reading) and regular file 3859 * vnodes open for writing. 3860 */ 3861 if (flags & WRITECLOSE) { 3862 if (vp->v_object != NULL) { 3863 VM_OBJECT_WLOCK(vp->v_object); 3864 vm_object_page_clean(vp->v_object, 0, 0, 0); 3865 VM_OBJECT_WUNLOCK(vp->v_object); 3866 } 3867 do { 3868 error = VOP_FSYNC(vp, MNT_WAIT, td); 3869 } while (error == ERELOOKUP); 3870 if (error != 0) { 3871 VOP_UNLOCK(vp); 3872 vdrop(vp); 3873 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3874 return (error); 3875 } 3876 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 3877 VI_LOCK(vp); 3878 3879 if ((vp->v_type == VNON || 3880 (error == 0 && vattr.va_nlink > 0)) && 3881 (vp->v_writecount <= 0 || vp->v_type != VREG)) { 3882 VOP_UNLOCK(vp); 3883 vdropl(vp); 3884 continue; 3885 } 3886 } else 3887 VI_LOCK(vp); 3888 /* 3889 * With v_usecount == 0, all we need to do is clear out the 3890 * vnode data structures and we are done. 3891 * 3892 * If FORCECLOSE is set, forcibly close the vnode. 3893 */ 3894 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 3895 vgonel(vp); 3896 } else { 3897 busy++; 3898 #ifdef DIAGNOSTIC 3899 if (busyprt) 3900 vn_printf(vp, "vflush: busy vnode "); 3901 #endif 3902 } 3903 VOP_UNLOCK(vp); 3904 vdropl(vp); 3905 } 3906 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 3907 /* 3908 * If just the root vnode is busy, and if its refcount 3909 * is equal to `rootrefs', then go ahead and kill it. 3910 */ 3911 VI_LOCK(rootvp); 3912 KASSERT(busy > 0, ("vflush: not busy")); 3913 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 3914 ("vflush: usecount %d < rootrefs %d", 3915 rootvp->v_usecount, rootrefs)); 3916 if (busy == 1 && rootvp->v_usecount == rootrefs) { 3917 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 3918 vgone(rootvp); 3919 VOP_UNLOCK(rootvp); 3920 busy = 0; 3921 } else 3922 VI_UNLOCK(rootvp); 3923 } 3924 if (busy) { 3925 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 3926 busy); 3927 return (EBUSY); 3928 } 3929 for (; rootrefs > 0; rootrefs--) 3930 vrele(rootvp); 3931 return (0); 3932 } 3933 3934 /* 3935 * Recycle an unused vnode to the front of the free list. 3936 */ 3937 int 3938 vrecycle(struct vnode *vp) 3939 { 3940 int recycled; 3941 3942 VI_LOCK(vp); 3943 recycled = vrecyclel(vp); 3944 VI_UNLOCK(vp); 3945 return (recycled); 3946 } 3947 3948 /* 3949 * vrecycle, with the vp interlock held. 3950 */ 3951 int 3952 vrecyclel(struct vnode *vp) 3953 { 3954 int recycled; 3955 3956 ASSERT_VOP_ELOCKED(vp, __func__); 3957 ASSERT_VI_LOCKED(vp, __func__); 3958 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3959 recycled = 0; 3960 if (vp->v_usecount == 0) { 3961 recycled = 1; 3962 vgonel(vp); 3963 } 3964 return (recycled); 3965 } 3966 3967 /* 3968 * Eliminate all activity associated with a vnode 3969 * in preparation for reuse. 3970 */ 3971 void 3972 vgone(struct vnode *vp) 3973 { 3974 VI_LOCK(vp); 3975 vgonel(vp); 3976 VI_UNLOCK(vp); 3977 } 3978 3979 /* 3980 * Notify upper mounts about reclaimed or unlinked vnode. 3981 */ 3982 void 3983 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event) 3984 { 3985 struct mount *mp; 3986 struct mount_upper_node *ump; 3987 3988 mp = atomic_load_ptr(&vp->v_mount); 3989 if (mp == NULL) 3990 return; 3991 if (TAILQ_EMPTY(&mp->mnt_notify)) 3992 return; 3993 3994 MNT_ILOCK(mp); 3995 mp->mnt_upper_pending++; 3996 KASSERT(mp->mnt_upper_pending > 0, 3997 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending)); 3998 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) { 3999 MNT_IUNLOCK(mp); 4000 switch (event) { 4001 case VFS_NOTIFY_UPPER_RECLAIM: 4002 VFS_RECLAIM_LOWERVP(ump->mp, vp); 4003 break; 4004 case VFS_NOTIFY_UPPER_UNLINK: 4005 VFS_UNLINK_LOWERVP(ump->mp, vp); 4006 break; 4007 } 4008 MNT_ILOCK(mp); 4009 } 4010 mp->mnt_upper_pending--; 4011 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 && 4012 mp->mnt_upper_pending == 0) { 4013 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER; 4014 wakeup(&mp->mnt_uppers); 4015 } 4016 MNT_IUNLOCK(mp); 4017 } 4018 4019 /* 4020 * vgone, with the vp interlock held. 4021 */ 4022 static void 4023 vgonel(struct vnode *vp) 4024 { 4025 struct thread *td; 4026 struct mount *mp; 4027 vm_object_t object; 4028 bool active, doinginact, oweinact; 4029 4030 ASSERT_VOP_ELOCKED(vp, "vgonel"); 4031 ASSERT_VI_LOCKED(vp, "vgonel"); 4032 VNASSERT(vp->v_holdcnt, vp, 4033 ("vgonel: vp %p has no reference.", vp)); 4034 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4035 td = curthread; 4036 4037 /* 4038 * Don't vgonel if we're already doomed. 4039 */ 4040 if (VN_IS_DOOMED(vp)) { 4041 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \ 4042 vn_get_state(vp) == VSTATE_DEAD, vp); 4043 return; 4044 } 4045 /* 4046 * Paired with freevnode. 4047 */ 4048 vn_seqc_write_begin_locked(vp); 4049 vunlazy_gone(vp); 4050 vn_irflag_set_locked(vp, VIRF_DOOMED); 4051 vn_set_state(vp, VSTATE_DESTROYING); 4052 4053 /* 4054 * Check to see if the vnode is in use. If so, we have to 4055 * call VOP_CLOSE() and VOP_INACTIVE(). 4056 * 4057 * It could be that VOP_INACTIVE() requested reclamation, in 4058 * which case we should avoid recursion, so check 4059 * VI_DOINGINACT. This is not precise but good enough. 4060 */ 4061 active = vp->v_usecount > 0; 4062 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4063 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0; 4064 4065 /* 4066 * If we need to do inactive VI_OWEINACT will be set. 4067 */ 4068 if (vp->v_iflag & VI_DEFINACT) { 4069 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); 4070 vp->v_iflag &= ~VI_DEFINACT; 4071 vdropl(vp); 4072 } else { 4073 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count")); 4074 VI_UNLOCK(vp); 4075 } 4076 cache_purge_vgone(vp); 4077 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 4078 4079 /* 4080 * If purging an active vnode, it must be closed and 4081 * deactivated before being reclaimed. 4082 */ 4083 if (active) 4084 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 4085 if (!doinginact) { 4086 do { 4087 if (oweinact || active) { 4088 VI_LOCK(vp); 4089 vinactivef(vp); 4090 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4091 VI_UNLOCK(vp); 4092 } 4093 } while (oweinact); 4094 } 4095 if (vp->v_type == VSOCK) 4096 vfs_unp_reclaim(vp); 4097 4098 /* 4099 * Clean out any buffers associated with the vnode. 4100 * If the flush fails, just toss the buffers. 4101 */ 4102 mp = NULL; 4103 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 4104 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 4105 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 4106 while (vinvalbuf(vp, 0, 0, 0) != 0) 4107 ; 4108 } 4109 4110 BO_LOCK(&vp->v_bufobj); 4111 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 4112 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 4113 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 4114 vp->v_bufobj.bo_clean.bv_cnt == 0, 4115 ("vp %p bufobj not invalidated", vp)); 4116 4117 /* 4118 * For VMIO bufobj, BO_DEAD is set later, or in 4119 * vm_object_terminate() after the object's page queue is 4120 * flushed. 4121 */ 4122 object = vp->v_bufobj.bo_object; 4123 if (object == NULL) 4124 vp->v_bufobj.bo_flag |= BO_DEAD; 4125 BO_UNLOCK(&vp->v_bufobj); 4126 4127 /* 4128 * Handle the VM part. Tmpfs handles v_object on its own (the 4129 * OBJT_VNODE check). Nullfs or other bypassing filesystems 4130 * should not touch the object borrowed from the lower vnode 4131 * (the handle check). 4132 */ 4133 if (object != NULL && object->type == OBJT_VNODE && 4134 object->handle == vp) 4135 vnode_destroy_vobject(vp); 4136 4137 /* 4138 * Reclaim the vnode. 4139 */ 4140 if (VOP_RECLAIM(vp)) 4141 panic("vgone: cannot reclaim"); 4142 if (mp != NULL) 4143 vn_finished_secondary_write(mp); 4144 VNASSERT(vp->v_object == NULL, vp, 4145 ("vop_reclaim left v_object vp=%p", vp)); 4146 /* 4147 * Clear the advisory locks and wake up waiting threads. 4148 */ 4149 if (vp->v_lockf != NULL) { 4150 (void)VOP_ADVLOCKPURGE(vp); 4151 vp->v_lockf = NULL; 4152 } 4153 /* 4154 * Delete from old mount point vnode list. 4155 */ 4156 if (vp->v_mount == NULL) { 4157 VI_LOCK(vp); 4158 } else { 4159 delmntque(vp); 4160 ASSERT_VI_LOCKED(vp, "vgonel 2"); 4161 } 4162 /* 4163 * Done with purge, reset to the standard lock and invalidate 4164 * the vnode. 4165 */ 4166 vp->v_vnlock = &vp->v_lock; 4167 vp->v_op = &dead_vnodeops; 4168 vp->v_type = VBAD; 4169 vn_set_state(vp, VSTATE_DEAD); 4170 } 4171 4172 /* 4173 * Print out a description of a vnode. 4174 */ 4175 static const char *const vtypename[] = { 4176 [VNON] = "VNON", 4177 [VREG] = "VREG", 4178 [VDIR] = "VDIR", 4179 [VBLK] = "VBLK", 4180 [VCHR] = "VCHR", 4181 [VLNK] = "VLNK", 4182 [VSOCK] = "VSOCK", 4183 [VFIFO] = "VFIFO", 4184 [VBAD] = "VBAD", 4185 [VMARKER] = "VMARKER", 4186 }; 4187 _Static_assert(nitems(vtypename) == VLASTTYPE + 1, 4188 "vnode type name not added to vtypename"); 4189 4190 static const char *const vstatename[] = { 4191 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED", 4192 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED", 4193 [VSTATE_DESTROYING] = "VSTATE_DESTROYING", 4194 [VSTATE_DEAD] = "VSTATE_DEAD", 4195 }; 4196 _Static_assert(nitems(vstatename) == VLASTSTATE + 1, 4197 "vnode state name not added to vstatename"); 4198 4199 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0, 4200 "new hold count flag not added to vn_printf"); 4201 4202 void 4203 vn_printf(struct vnode *vp, const char *fmt, ...) 4204 { 4205 va_list ap; 4206 char buf[256], buf2[16]; 4207 u_long flags; 4208 u_int holdcnt; 4209 short irflag; 4210 4211 va_start(ap, fmt); 4212 vprintf(fmt, ap); 4213 va_end(ap); 4214 printf("%p: ", (void *)vp); 4215 printf("type %s state %s op %p\n", vtypename[vp->v_type], 4216 vstatename[vp->v_state], vp->v_op); 4217 holdcnt = atomic_load_int(&vp->v_holdcnt); 4218 printf(" usecount %d, writecount %d, refcount %d seqc users %d", 4219 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS, 4220 vp->v_seqc_users); 4221 switch (vp->v_type) { 4222 case VDIR: 4223 printf(" mountedhere %p\n", vp->v_mountedhere); 4224 break; 4225 case VCHR: 4226 printf(" rdev %p\n", vp->v_rdev); 4227 break; 4228 case VSOCK: 4229 printf(" socket %p\n", vp->v_unpcb); 4230 break; 4231 case VFIFO: 4232 printf(" fifoinfo %p\n", vp->v_fifoinfo); 4233 break; 4234 default: 4235 printf("\n"); 4236 break; 4237 } 4238 buf[0] = '\0'; 4239 buf[1] = '\0'; 4240 if (holdcnt & VHOLD_NO_SMR) 4241 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf)); 4242 printf(" hold count flags (%s)\n", buf + 1); 4243 4244 buf[0] = '\0'; 4245 buf[1] = '\0'; 4246 irflag = vn_irflag_read(vp); 4247 if (irflag & VIRF_DOOMED) 4248 strlcat(buf, "|VIRF_DOOMED", sizeof(buf)); 4249 if (irflag & VIRF_PGREAD) 4250 strlcat(buf, "|VIRF_PGREAD", sizeof(buf)); 4251 if (irflag & VIRF_MOUNTPOINT) 4252 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf)); 4253 if (irflag & VIRF_TEXT_REF) 4254 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf)); 4255 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF); 4256 if (flags != 0) { 4257 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags); 4258 strlcat(buf, buf2, sizeof(buf)); 4259 } 4260 if (vp->v_vflag & VV_ROOT) 4261 strlcat(buf, "|VV_ROOT", sizeof(buf)); 4262 if (vp->v_vflag & VV_ISTTY) 4263 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 4264 if (vp->v_vflag & VV_NOSYNC) 4265 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 4266 if (vp->v_vflag & VV_ETERNALDEV) 4267 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 4268 if (vp->v_vflag & VV_CACHEDLABEL) 4269 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 4270 if (vp->v_vflag & VV_VMSIZEVNLOCK) 4271 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf)); 4272 if (vp->v_vflag & VV_COPYONWRITE) 4273 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 4274 if (vp->v_vflag & VV_SYSTEM) 4275 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 4276 if (vp->v_vflag & VV_PROCDEP) 4277 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 4278 if (vp->v_vflag & VV_DELETED) 4279 strlcat(buf, "|VV_DELETED", sizeof(buf)); 4280 if (vp->v_vflag & VV_MD) 4281 strlcat(buf, "|VV_MD", sizeof(buf)); 4282 if (vp->v_vflag & VV_FORCEINSMQ) 4283 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 4284 if (vp->v_vflag & VV_READLINK) 4285 strlcat(buf, "|VV_READLINK", sizeof(buf)); 4286 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 4287 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM | 4288 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK); 4289 if (flags != 0) { 4290 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 4291 strlcat(buf, buf2, sizeof(buf)); 4292 } 4293 if (vp->v_iflag & VI_MOUNT) 4294 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 4295 if (vp->v_iflag & VI_DOINGINACT) 4296 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 4297 if (vp->v_iflag & VI_OWEINACT) 4298 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 4299 if (vp->v_iflag & VI_DEFINACT) 4300 strlcat(buf, "|VI_DEFINACT", sizeof(buf)); 4301 if (vp->v_iflag & VI_FOPENING) 4302 strlcat(buf, "|VI_FOPENING", sizeof(buf)); 4303 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT | 4304 VI_OWEINACT | VI_DEFINACT | VI_FOPENING); 4305 if (flags != 0) { 4306 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 4307 strlcat(buf, buf2, sizeof(buf)); 4308 } 4309 if (vp->v_mflag & VMP_LAZYLIST) 4310 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf)); 4311 flags = vp->v_mflag & ~(VMP_LAZYLIST); 4312 if (flags != 0) { 4313 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags); 4314 strlcat(buf, buf2, sizeof(buf)); 4315 } 4316 printf(" flags (%s)", buf + 1); 4317 if (mtx_owned(VI_MTX(vp))) 4318 printf(" VI_LOCKed"); 4319 printf("\n"); 4320 if (vp->v_object != NULL) 4321 printf(" v_object %p ref %d pages %d " 4322 "cleanbuf %d dirtybuf %d\n", 4323 vp->v_object, vp->v_object->ref_count, 4324 vp->v_object->resident_page_count, 4325 vp->v_bufobj.bo_clean.bv_cnt, 4326 vp->v_bufobj.bo_dirty.bv_cnt); 4327 printf(" "); 4328 lockmgr_printinfo(vp->v_vnlock); 4329 if (vp->v_data != NULL) 4330 VOP_PRINT(vp); 4331 } 4332 4333 #ifdef DDB 4334 /* 4335 * List all of the locked vnodes in the system. 4336 * Called when debugging the kernel. 4337 */ 4338 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE) 4339 { 4340 struct mount *mp; 4341 struct vnode *vp; 4342 4343 /* 4344 * Note: because this is DDB, we can't obey the locking semantics 4345 * for these structures, which means we could catch an inconsistent 4346 * state and dereference a nasty pointer. Not much to be done 4347 * about that. 4348 */ 4349 db_printf("Locked vnodes\n"); 4350 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4351 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4352 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 4353 vn_printf(vp, "vnode "); 4354 } 4355 } 4356 } 4357 4358 /* 4359 * Show details about the given vnode. 4360 */ 4361 DB_SHOW_COMMAND(vnode, db_show_vnode) 4362 { 4363 struct vnode *vp; 4364 4365 if (!have_addr) 4366 return; 4367 vp = (struct vnode *)addr; 4368 vn_printf(vp, "vnode "); 4369 } 4370 4371 /* 4372 * Show details about the given mount point. 4373 */ 4374 DB_SHOW_COMMAND(mount, db_show_mount) 4375 { 4376 struct mount *mp; 4377 struct vfsopt *opt; 4378 struct statfs *sp; 4379 struct vnode *vp; 4380 char buf[512]; 4381 uint64_t mflags; 4382 u_int flags; 4383 4384 if (!have_addr) { 4385 /* No address given, print short info about all mount points. */ 4386 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4387 db_printf("%p %s on %s (%s)\n", mp, 4388 mp->mnt_stat.f_mntfromname, 4389 mp->mnt_stat.f_mntonname, 4390 mp->mnt_stat.f_fstypename); 4391 if (db_pager_quit) 4392 break; 4393 } 4394 db_printf("\nMore info: show mount <addr>\n"); 4395 return; 4396 } 4397 4398 mp = (struct mount *)addr; 4399 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 4400 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 4401 4402 buf[0] = '\0'; 4403 mflags = mp->mnt_flag; 4404 #define MNT_FLAG(flag) do { \ 4405 if (mflags & (flag)) { \ 4406 if (buf[0] != '\0') \ 4407 strlcat(buf, ", ", sizeof(buf)); \ 4408 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 4409 mflags &= ~(flag); \ 4410 } \ 4411 } while (0) 4412 MNT_FLAG(MNT_RDONLY); 4413 MNT_FLAG(MNT_SYNCHRONOUS); 4414 MNT_FLAG(MNT_NOEXEC); 4415 MNT_FLAG(MNT_NOSUID); 4416 MNT_FLAG(MNT_NFS4ACLS); 4417 MNT_FLAG(MNT_UNION); 4418 MNT_FLAG(MNT_ASYNC); 4419 MNT_FLAG(MNT_SUIDDIR); 4420 MNT_FLAG(MNT_SOFTDEP); 4421 MNT_FLAG(MNT_NOSYMFOLLOW); 4422 MNT_FLAG(MNT_GJOURNAL); 4423 MNT_FLAG(MNT_MULTILABEL); 4424 MNT_FLAG(MNT_ACLS); 4425 MNT_FLAG(MNT_NOATIME); 4426 MNT_FLAG(MNT_NOCLUSTERR); 4427 MNT_FLAG(MNT_NOCLUSTERW); 4428 MNT_FLAG(MNT_SUJ); 4429 MNT_FLAG(MNT_EXRDONLY); 4430 MNT_FLAG(MNT_EXPORTED); 4431 MNT_FLAG(MNT_DEFEXPORTED); 4432 MNT_FLAG(MNT_EXPORTANON); 4433 MNT_FLAG(MNT_EXKERB); 4434 MNT_FLAG(MNT_EXPUBLIC); 4435 MNT_FLAG(MNT_LOCAL); 4436 MNT_FLAG(MNT_QUOTA); 4437 MNT_FLAG(MNT_ROOTFS); 4438 MNT_FLAG(MNT_USER); 4439 MNT_FLAG(MNT_IGNORE); 4440 MNT_FLAG(MNT_UPDATE); 4441 MNT_FLAG(MNT_DELEXPORT); 4442 MNT_FLAG(MNT_RELOAD); 4443 MNT_FLAG(MNT_FORCE); 4444 MNT_FLAG(MNT_SNAPSHOT); 4445 MNT_FLAG(MNT_BYFSID); 4446 #undef MNT_FLAG 4447 if (mflags != 0) { 4448 if (buf[0] != '\0') 4449 strlcat(buf, ", ", sizeof(buf)); 4450 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4451 "0x%016jx", mflags); 4452 } 4453 db_printf(" mnt_flag = %s\n", buf); 4454 4455 buf[0] = '\0'; 4456 flags = mp->mnt_kern_flag; 4457 #define MNT_KERN_FLAG(flag) do { \ 4458 if (flags & (flag)) { \ 4459 if (buf[0] != '\0') \ 4460 strlcat(buf, ", ", sizeof(buf)); \ 4461 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 4462 flags &= ~(flag); \ 4463 } \ 4464 } while (0) 4465 MNT_KERN_FLAG(MNTK_UNMOUNTF); 4466 MNT_KERN_FLAG(MNTK_ASYNC); 4467 MNT_KERN_FLAG(MNTK_SOFTDEP); 4468 MNT_KERN_FLAG(MNTK_NOMSYNC); 4469 MNT_KERN_FLAG(MNTK_DRAINING); 4470 MNT_KERN_FLAG(MNTK_REFEXPIRE); 4471 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 4472 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 4473 MNT_KERN_FLAG(MNTK_NO_IOPF); 4474 MNT_KERN_FLAG(MNTK_RECURSE); 4475 MNT_KERN_FLAG(MNTK_UPPER_WAITER); 4476 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE); 4477 MNT_KERN_FLAG(MNTK_USES_BCACHE); 4478 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG); 4479 MNT_KERN_FLAG(MNTK_FPLOOKUP); 4480 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER); 4481 MNT_KERN_FLAG(MNTK_NOASYNC); 4482 MNT_KERN_FLAG(MNTK_UNMOUNT); 4483 MNT_KERN_FLAG(MNTK_MWAIT); 4484 MNT_KERN_FLAG(MNTK_SUSPEND); 4485 MNT_KERN_FLAG(MNTK_SUSPEND2); 4486 MNT_KERN_FLAG(MNTK_SUSPENDED); 4487 MNT_KERN_FLAG(MNTK_NULL_NOCACHE); 4488 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 4489 #undef MNT_KERN_FLAG 4490 if (flags != 0) { 4491 if (buf[0] != '\0') 4492 strlcat(buf, ", ", sizeof(buf)); 4493 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4494 "0x%08x", flags); 4495 } 4496 db_printf(" mnt_kern_flag = %s\n", buf); 4497 4498 db_printf(" mnt_opt = "); 4499 opt = TAILQ_FIRST(mp->mnt_opt); 4500 if (opt != NULL) { 4501 db_printf("%s", opt->name); 4502 opt = TAILQ_NEXT(opt, link); 4503 while (opt != NULL) { 4504 db_printf(", %s", opt->name); 4505 opt = TAILQ_NEXT(opt, link); 4506 } 4507 } 4508 db_printf("\n"); 4509 4510 sp = &mp->mnt_stat; 4511 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 4512 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 4513 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 4514 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 4515 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 4516 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 4517 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 4518 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 4519 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 4520 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 4521 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 4522 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 4523 4524 db_printf(" mnt_cred = { uid=%u ruid=%u", 4525 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 4526 if (jailed(mp->mnt_cred)) 4527 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 4528 db_printf(" }\n"); 4529 db_printf(" mnt_ref = %d (with %d in the struct)\n", 4530 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref); 4531 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 4532 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 4533 db_printf(" mnt_lazyvnodelistsize = %d\n", 4534 mp->mnt_lazyvnodelistsize); 4535 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n", 4536 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount); 4537 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 4538 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 4539 db_printf(" mnt_lockref = %d (with %d in the struct)\n", 4540 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref); 4541 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 4542 db_printf(" mnt_secondary_accwrites = %d\n", 4543 mp->mnt_secondary_accwrites); 4544 db_printf(" mnt_gjprovider = %s\n", 4545 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 4546 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops); 4547 4548 db_printf("\n\nList of active vnodes\n"); 4549 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4550 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) { 4551 vn_printf(vp, "vnode "); 4552 if (db_pager_quit) 4553 break; 4554 } 4555 } 4556 db_printf("\n\nList of inactive vnodes\n"); 4557 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4558 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) { 4559 vn_printf(vp, "vnode "); 4560 if (db_pager_quit) 4561 break; 4562 } 4563 } 4564 } 4565 #endif /* DDB */ 4566 4567 /* 4568 * Fill in a struct xvfsconf based on a struct vfsconf. 4569 */ 4570 static int 4571 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 4572 { 4573 struct xvfsconf xvfsp; 4574 4575 bzero(&xvfsp, sizeof(xvfsp)); 4576 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4577 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4578 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4579 xvfsp.vfc_flags = vfsp->vfc_flags; 4580 /* 4581 * These are unused in userland, we keep them 4582 * to not break binary compatibility. 4583 */ 4584 xvfsp.vfc_vfsops = NULL; 4585 xvfsp.vfc_next = NULL; 4586 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4587 } 4588 4589 #ifdef COMPAT_FREEBSD32 4590 struct xvfsconf32 { 4591 uint32_t vfc_vfsops; 4592 char vfc_name[MFSNAMELEN]; 4593 int32_t vfc_typenum; 4594 int32_t vfc_refcount; 4595 int32_t vfc_flags; 4596 uint32_t vfc_next; 4597 }; 4598 4599 static int 4600 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 4601 { 4602 struct xvfsconf32 xvfsp; 4603 4604 bzero(&xvfsp, sizeof(xvfsp)); 4605 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4606 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4607 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4608 xvfsp.vfc_flags = vfsp->vfc_flags; 4609 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4610 } 4611 #endif 4612 4613 /* 4614 * Top level filesystem related information gathering. 4615 */ 4616 static int 4617 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 4618 { 4619 struct vfsconf *vfsp; 4620 int error; 4621 4622 error = 0; 4623 vfsconf_slock(); 4624 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4625 #ifdef COMPAT_FREEBSD32 4626 if (req->flags & SCTL_MASK32) 4627 error = vfsconf2x32(req, vfsp); 4628 else 4629 #endif 4630 error = vfsconf2x(req, vfsp); 4631 if (error) 4632 break; 4633 } 4634 vfsconf_sunlock(); 4635 return (error); 4636 } 4637 4638 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 4639 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 4640 "S,xvfsconf", "List of all configured filesystems"); 4641 4642 #ifndef BURN_BRIDGES 4643 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 4644 4645 static int 4646 vfs_sysctl(SYSCTL_HANDLER_ARGS) 4647 { 4648 int *name = (int *)arg1 - 1; /* XXX */ 4649 u_int namelen = arg2 + 1; /* XXX */ 4650 struct vfsconf *vfsp; 4651 4652 log(LOG_WARNING, "userland calling deprecated sysctl, " 4653 "please rebuild world\n"); 4654 4655 #if 1 || defined(COMPAT_PRELITE2) 4656 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 4657 if (namelen == 1) 4658 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 4659 #endif 4660 4661 switch (name[1]) { 4662 case VFS_MAXTYPENUM: 4663 if (namelen != 2) 4664 return (ENOTDIR); 4665 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 4666 case VFS_CONF: 4667 if (namelen != 3) 4668 return (ENOTDIR); /* overloaded */ 4669 vfsconf_slock(); 4670 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4671 if (vfsp->vfc_typenum == name[2]) 4672 break; 4673 } 4674 vfsconf_sunlock(); 4675 if (vfsp == NULL) 4676 return (EOPNOTSUPP); 4677 #ifdef COMPAT_FREEBSD32 4678 if (req->flags & SCTL_MASK32) 4679 return (vfsconf2x32(req, vfsp)); 4680 else 4681 #endif 4682 return (vfsconf2x(req, vfsp)); 4683 } 4684 return (EOPNOTSUPP); 4685 } 4686 4687 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 4688 CTLFLAG_MPSAFE, vfs_sysctl, 4689 "Generic filesystem"); 4690 4691 #if 1 || defined(COMPAT_PRELITE2) 4692 4693 static int 4694 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 4695 { 4696 int error; 4697 struct vfsconf *vfsp; 4698 struct ovfsconf ovfs; 4699 4700 vfsconf_slock(); 4701 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4702 bzero(&ovfs, sizeof(ovfs)); 4703 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 4704 strcpy(ovfs.vfc_name, vfsp->vfc_name); 4705 ovfs.vfc_index = vfsp->vfc_typenum; 4706 ovfs.vfc_refcount = vfsp->vfc_refcount; 4707 ovfs.vfc_flags = vfsp->vfc_flags; 4708 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 4709 if (error != 0) { 4710 vfsconf_sunlock(); 4711 return (error); 4712 } 4713 } 4714 vfsconf_sunlock(); 4715 return (0); 4716 } 4717 4718 #endif /* 1 || COMPAT_PRELITE2 */ 4719 #endif /* !BURN_BRIDGES */ 4720 4721 static void 4722 unmount_or_warn(struct mount *mp) 4723 { 4724 int error; 4725 4726 error = dounmount(mp, MNT_FORCE, curthread); 4727 if (error != 0) { 4728 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); 4729 if (error == EBUSY) 4730 printf("BUSY)\n"); 4731 else 4732 printf("%d)\n", error); 4733 } 4734 } 4735 4736 /* 4737 * Unmount all filesystems. The list is traversed in reverse order 4738 * of mounting to avoid dependencies. 4739 */ 4740 void 4741 vfs_unmountall(void) 4742 { 4743 struct mount *mp, *tmp; 4744 4745 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 4746 4747 /* 4748 * Since this only runs when rebooting, it is not interlocked. 4749 */ 4750 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { 4751 vfs_ref(mp); 4752 4753 /* 4754 * Forcibly unmounting "/dev" before "/" would prevent clean 4755 * unmount of the latter. 4756 */ 4757 if (mp == rootdevmp) 4758 continue; 4759 4760 unmount_or_warn(mp); 4761 } 4762 4763 if (rootdevmp != NULL) 4764 unmount_or_warn(rootdevmp); 4765 } 4766 4767 static void 4768 vfs_deferred_inactive(struct vnode *vp, int lkflags) 4769 { 4770 4771 ASSERT_VI_LOCKED(vp, __func__); 4772 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 4773 if ((vp->v_iflag & VI_OWEINACT) == 0) { 4774 vdropl(vp); 4775 return; 4776 } 4777 if (vn_lock(vp, lkflags) == 0) { 4778 VI_LOCK(vp); 4779 vinactive(vp); 4780 VOP_UNLOCK(vp); 4781 vdropl(vp); 4782 return; 4783 } 4784 vdefer_inactive_unlocked(vp); 4785 } 4786 4787 static int 4788 vfs_periodic_inactive_filter(struct vnode *vp, void *arg) 4789 { 4790 4791 return (vp->v_iflag & VI_DEFINACT); 4792 } 4793 4794 static void __noinline 4795 vfs_periodic_inactive(struct mount *mp, int flags) 4796 { 4797 struct vnode *vp, *mvp; 4798 int lkflags; 4799 4800 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 4801 if (flags != MNT_WAIT) 4802 lkflags |= LK_NOWAIT; 4803 4804 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) { 4805 if ((vp->v_iflag & VI_DEFINACT) == 0) { 4806 VI_UNLOCK(vp); 4807 continue; 4808 } 4809 vp->v_iflag &= ~VI_DEFINACT; 4810 vfs_deferred_inactive(vp, lkflags); 4811 } 4812 } 4813 4814 static inline bool 4815 vfs_want_msync(struct vnode *vp) 4816 { 4817 struct vm_object *obj; 4818 4819 /* 4820 * This test may be performed without any locks held. 4821 * We rely on vm_object's type stability. 4822 */ 4823 if (vp->v_vflag & VV_NOSYNC) 4824 return (false); 4825 obj = vp->v_object; 4826 return (obj != NULL && vm_object_mightbedirty(obj)); 4827 } 4828 4829 static int 4830 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused) 4831 { 4832 4833 if (vp->v_vflag & VV_NOSYNC) 4834 return (false); 4835 if (vp->v_iflag & VI_DEFINACT) 4836 return (true); 4837 return (vfs_want_msync(vp)); 4838 } 4839 4840 static void __noinline 4841 vfs_periodic_msync_inactive(struct mount *mp, int flags) 4842 { 4843 struct vnode *vp, *mvp; 4844 struct vm_object *obj; 4845 int lkflags, objflags; 4846 bool seen_defer; 4847 4848 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 4849 if (flags != MNT_WAIT) { 4850 lkflags |= LK_NOWAIT; 4851 objflags = OBJPC_NOSYNC; 4852 } else { 4853 objflags = OBJPC_SYNC; 4854 } 4855 4856 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) { 4857 seen_defer = false; 4858 if (vp->v_iflag & VI_DEFINACT) { 4859 vp->v_iflag &= ~VI_DEFINACT; 4860 seen_defer = true; 4861 } 4862 if (!vfs_want_msync(vp)) { 4863 if (seen_defer) 4864 vfs_deferred_inactive(vp, lkflags); 4865 else 4866 VI_UNLOCK(vp); 4867 continue; 4868 } 4869 if (vget(vp, lkflags) == 0) { 4870 obj = vp->v_object; 4871 if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) { 4872 VM_OBJECT_WLOCK(obj); 4873 vm_object_page_clean(obj, 0, 0, objflags); 4874 VM_OBJECT_WUNLOCK(obj); 4875 } 4876 vput(vp); 4877 if (seen_defer) 4878 vdrop(vp); 4879 } else { 4880 if (seen_defer) 4881 vdefer_inactive_unlocked(vp); 4882 } 4883 } 4884 } 4885 4886 void 4887 vfs_periodic(struct mount *mp, int flags) 4888 { 4889 4890 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 4891 4892 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0) 4893 vfs_periodic_inactive(mp, flags); 4894 else 4895 vfs_periodic_msync_inactive(mp, flags); 4896 } 4897 4898 static void 4899 destroy_vpollinfo_free(struct vpollinfo *vi) 4900 { 4901 4902 knlist_destroy(&vi->vpi_selinfo.si_note); 4903 mtx_destroy(&vi->vpi_lock); 4904 free(vi, M_VNODEPOLL); 4905 } 4906 4907 static void 4908 destroy_vpollinfo(struct vpollinfo *vi) 4909 { 4910 4911 knlist_clear(&vi->vpi_selinfo.si_note, 1); 4912 seldrain(&vi->vpi_selinfo); 4913 destroy_vpollinfo_free(vi); 4914 } 4915 4916 /* 4917 * Initialize per-vnode helper structure to hold poll-related state. 4918 */ 4919 void 4920 v_addpollinfo(struct vnode *vp) 4921 { 4922 struct vpollinfo *vi; 4923 4924 if (vp->v_pollinfo != NULL) 4925 return; 4926 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO); 4927 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 4928 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 4929 vfs_knlunlock, vfs_knl_assert_lock); 4930 VI_LOCK(vp); 4931 if (vp->v_pollinfo != NULL) { 4932 VI_UNLOCK(vp); 4933 destroy_vpollinfo_free(vi); 4934 return; 4935 } 4936 vp->v_pollinfo = vi; 4937 VI_UNLOCK(vp); 4938 } 4939 4940 /* 4941 * Record a process's interest in events which might happen to 4942 * a vnode. Because poll uses the historic select-style interface 4943 * internally, this routine serves as both the ``check for any 4944 * pending events'' and the ``record my interest in future events'' 4945 * functions. (These are done together, while the lock is held, 4946 * to avoid race conditions.) 4947 */ 4948 int 4949 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 4950 { 4951 4952 v_addpollinfo(vp); 4953 mtx_lock(&vp->v_pollinfo->vpi_lock); 4954 if (vp->v_pollinfo->vpi_revents & events) { 4955 /* 4956 * This leaves events we are not interested 4957 * in available for the other process which 4958 * which presumably had requested them 4959 * (otherwise they would never have been 4960 * recorded). 4961 */ 4962 events &= vp->v_pollinfo->vpi_revents; 4963 vp->v_pollinfo->vpi_revents &= ~events; 4964 4965 mtx_unlock(&vp->v_pollinfo->vpi_lock); 4966 return (events); 4967 } 4968 vp->v_pollinfo->vpi_events |= events; 4969 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 4970 mtx_unlock(&vp->v_pollinfo->vpi_lock); 4971 return (0); 4972 } 4973 4974 /* 4975 * Routine to create and manage a filesystem syncer vnode. 4976 */ 4977 #define sync_close ((int (*)(struct vop_close_args *))nullop) 4978 static int sync_fsync(struct vop_fsync_args *); 4979 static int sync_inactive(struct vop_inactive_args *); 4980 static int sync_reclaim(struct vop_reclaim_args *); 4981 4982 static struct vop_vector sync_vnodeops = { 4983 .vop_bypass = VOP_EOPNOTSUPP, 4984 .vop_close = sync_close, 4985 .vop_fsync = sync_fsync, 4986 .vop_inactive = sync_inactive, 4987 .vop_need_inactive = vop_stdneed_inactive, 4988 .vop_reclaim = sync_reclaim, 4989 .vop_lock1 = vop_stdlock, 4990 .vop_unlock = vop_stdunlock, 4991 .vop_islocked = vop_stdislocked, 4992 .vop_fplookup_vexec = VOP_EAGAIN, 4993 .vop_fplookup_symlink = VOP_EAGAIN, 4994 }; 4995 VFS_VOP_VECTOR_REGISTER(sync_vnodeops); 4996 4997 /* 4998 * Create a new filesystem syncer vnode for the specified mount point. 4999 */ 5000 void 5001 vfs_allocate_syncvnode(struct mount *mp) 5002 { 5003 struct vnode *vp; 5004 struct bufobj *bo; 5005 static long start, incr, next; 5006 int error; 5007 5008 /* Allocate a new vnode */ 5009 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 5010 if (error != 0) 5011 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 5012 vp->v_type = VNON; 5013 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5014 vp->v_vflag |= VV_FORCEINSMQ; 5015 error = insmntque1(vp, mp); 5016 if (error != 0) 5017 panic("vfs_allocate_syncvnode: insmntque() failed"); 5018 vp->v_vflag &= ~VV_FORCEINSMQ; 5019 vn_set_state(vp, VSTATE_CONSTRUCTED); 5020 VOP_UNLOCK(vp); 5021 /* 5022 * Place the vnode onto the syncer worklist. We attempt to 5023 * scatter them about on the list so that they will go off 5024 * at evenly distributed times even if all the filesystems 5025 * are mounted at once. 5026 */ 5027 next += incr; 5028 if (next == 0 || next > syncer_maxdelay) { 5029 start /= 2; 5030 incr /= 2; 5031 if (start == 0) { 5032 start = syncer_maxdelay / 2; 5033 incr = syncer_maxdelay; 5034 } 5035 next = start; 5036 } 5037 bo = &vp->v_bufobj; 5038 BO_LOCK(bo); 5039 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 5040 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 5041 mtx_lock(&sync_mtx); 5042 sync_vnode_count++; 5043 if (mp->mnt_syncer == NULL) { 5044 mp->mnt_syncer = vp; 5045 vp = NULL; 5046 } 5047 mtx_unlock(&sync_mtx); 5048 BO_UNLOCK(bo); 5049 if (vp != NULL) { 5050 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5051 vgone(vp); 5052 vput(vp); 5053 } 5054 } 5055 5056 void 5057 vfs_deallocate_syncvnode(struct mount *mp) 5058 { 5059 struct vnode *vp; 5060 5061 mtx_lock(&sync_mtx); 5062 vp = mp->mnt_syncer; 5063 if (vp != NULL) 5064 mp->mnt_syncer = NULL; 5065 mtx_unlock(&sync_mtx); 5066 if (vp != NULL) 5067 vrele(vp); 5068 } 5069 5070 /* 5071 * Do a lazy sync of the filesystem. 5072 */ 5073 static int 5074 sync_fsync(struct vop_fsync_args *ap) 5075 { 5076 struct vnode *syncvp = ap->a_vp; 5077 struct mount *mp = syncvp->v_mount; 5078 int error, save; 5079 struct bufobj *bo; 5080 5081 /* 5082 * We only need to do something if this is a lazy evaluation. 5083 */ 5084 if (ap->a_waitfor != MNT_LAZY) 5085 return (0); 5086 5087 /* 5088 * Move ourselves to the back of the sync list. 5089 */ 5090 bo = &syncvp->v_bufobj; 5091 BO_LOCK(bo); 5092 vn_syncer_add_to_worklist(bo, syncdelay); 5093 BO_UNLOCK(bo); 5094 5095 /* 5096 * Walk the list of vnodes pushing all that are dirty and 5097 * not already on the sync list. 5098 */ 5099 if (vfs_busy(mp, MBF_NOWAIT) != 0) 5100 return (0); 5101 VOP_UNLOCK(syncvp); 5102 save = curthread_pflags_set(TDP_SYNCIO); 5103 /* 5104 * The filesystem at hand may be idle with free vnodes stored in the 5105 * batch. Return them instead of letting them stay there indefinitely. 5106 */ 5107 vfs_periodic(mp, MNT_NOWAIT); 5108 error = VFS_SYNC(mp, MNT_LAZY); 5109 curthread_pflags_restore(save); 5110 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY); 5111 vfs_unbusy(mp); 5112 return (error); 5113 } 5114 5115 /* 5116 * The syncer vnode is no referenced. 5117 */ 5118 static int 5119 sync_inactive(struct vop_inactive_args *ap) 5120 { 5121 5122 vgone(ap->a_vp); 5123 return (0); 5124 } 5125 5126 /* 5127 * The syncer vnode is no longer needed and is being decommissioned. 5128 * 5129 * Modifications to the worklist must be protected by sync_mtx. 5130 */ 5131 static int 5132 sync_reclaim(struct vop_reclaim_args *ap) 5133 { 5134 struct vnode *vp = ap->a_vp; 5135 struct bufobj *bo; 5136 5137 bo = &vp->v_bufobj; 5138 BO_LOCK(bo); 5139 mtx_lock(&sync_mtx); 5140 if (vp->v_mount->mnt_syncer == vp) 5141 vp->v_mount->mnt_syncer = NULL; 5142 if (bo->bo_flag & BO_ONWORKLST) { 5143 LIST_REMOVE(bo, bo_synclist); 5144 syncer_worklist_len--; 5145 sync_vnode_count--; 5146 bo->bo_flag &= ~BO_ONWORKLST; 5147 } 5148 mtx_unlock(&sync_mtx); 5149 BO_UNLOCK(bo); 5150 5151 return (0); 5152 } 5153 5154 int 5155 vn_need_pageq_flush(struct vnode *vp) 5156 { 5157 struct vm_object *obj; 5158 5159 obj = vp->v_object; 5160 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 5161 vm_object_mightbedirty(obj)); 5162 } 5163 5164 /* 5165 * Check if vnode represents a disk device 5166 */ 5167 bool 5168 vn_isdisk_error(struct vnode *vp, int *errp) 5169 { 5170 int error; 5171 5172 if (vp->v_type != VCHR) { 5173 error = ENOTBLK; 5174 goto out; 5175 } 5176 error = 0; 5177 dev_lock(); 5178 if (vp->v_rdev == NULL) 5179 error = ENXIO; 5180 else if (vp->v_rdev->si_devsw == NULL) 5181 error = ENXIO; 5182 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 5183 error = ENOTBLK; 5184 dev_unlock(); 5185 out: 5186 *errp = error; 5187 return (error == 0); 5188 } 5189 5190 bool 5191 vn_isdisk(struct vnode *vp) 5192 { 5193 int error; 5194 5195 return (vn_isdisk_error(vp, &error)); 5196 } 5197 5198 /* 5199 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see 5200 * the comment above cache_fplookup for details. 5201 */ 5202 int 5203 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred) 5204 { 5205 int error; 5206 5207 VFS_SMR_ASSERT_ENTERED(); 5208 5209 /* Check the owner. */ 5210 if (cred->cr_uid == file_uid) { 5211 if (file_mode & S_IXUSR) 5212 return (0); 5213 goto out_error; 5214 } 5215 5216 /* Otherwise, check the groups (first match) */ 5217 if (groupmember(file_gid, cred)) { 5218 if (file_mode & S_IXGRP) 5219 return (0); 5220 goto out_error; 5221 } 5222 5223 /* Otherwise, check everyone else. */ 5224 if (file_mode & S_IXOTH) 5225 return (0); 5226 out_error: 5227 /* 5228 * Permission check failed, but it is possible denial will get overwritten 5229 * (e.g., when root is traversing through a 700 directory owned by someone 5230 * else). 5231 * 5232 * vaccess() calls priv_check_cred which in turn can descent into MAC 5233 * modules overriding this result. It's quite unclear what semantics 5234 * are allowed for them to operate, thus for safety we don't call them 5235 * from within the SMR section. This also means if any such modules 5236 * are present, we have to let the regular lookup decide. 5237 */ 5238 error = priv_check_cred_vfs_lookup_nomac(cred); 5239 switch (error) { 5240 case 0: 5241 return (0); 5242 case EAGAIN: 5243 /* 5244 * MAC modules present. 5245 */ 5246 return (EAGAIN); 5247 case EPERM: 5248 return (EACCES); 5249 default: 5250 return (error); 5251 } 5252 } 5253 5254 /* 5255 * Common filesystem object access control check routine. Accepts a 5256 * vnode's type, "mode", uid and gid, requested access mode, and credentials. 5257 * Returns 0 on success, or an errno on failure. 5258 */ 5259 int 5260 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 5261 accmode_t accmode, struct ucred *cred) 5262 { 5263 accmode_t dac_granted; 5264 accmode_t priv_granted; 5265 5266 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 5267 ("invalid bit in accmode")); 5268 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 5269 ("VAPPEND without VWRITE")); 5270 5271 /* 5272 * Look for a normal, non-privileged way to access the file/directory 5273 * as requested. If it exists, go with that. 5274 */ 5275 5276 dac_granted = 0; 5277 5278 /* Check the owner. */ 5279 if (cred->cr_uid == file_uid) { 5280 dac_granted |= VADMIN; 5281 if (file_mode & S_IXUSR) 5282 dac_granted |= VEXEC; 5283 if (file_mode & S_IRUSR) 5284 dac_granted |= VREAD; 5285 if (file_mode & S_IWUSR) 5286 dac_granted |= (VWRITE | VAPPEND); 5287 5288 if ((accmode & dac_granted) == accmode) 5289 return (0); 5290 5291 goto privcheck; 5292 } 5293 5294 /* Otherwise, check the groups (first match) */ 5295 if (groupmember(file_gid, cred)) { 5296 if (file_mode & S_IXGRP) 5297 dac_granted |= VEXEC; 5298 if (file_mode & S_IRGRP) 5299 dac_granted |= VREAD; 5300 if (file_mode & S_IWGRP) 5301 dac_granted |= (VWRITE | VAPPEND); 5302 5303 if ((accmode & dac_granted) == accmode) 5304 return (0); 5305 5306 goto privcheck; 5307 } 5308 5309 /* Otherwise, check everyone else. */ 5310 if (file_mode & S_IXOTH) 5311 dac_granted |= VEXEC; 5312 if (file_mode & S_IROTH) 5313 dac_granted |= VREAD; 5314 if (file_mode & S_IWOTH) 5315 dac_granted |= (VWRITE | VAPPEND); 5316 if ((accmode & dac_granted) == accmode) 5317 return (0); 5318 5319 privcheck: 5320 /* 5321 * Build a privilege mask to determine if the set of privileges 5322 * satisfies the requirements when combined with the granted mask 5323 * from above. For each privilege, if the privilege is required, 5324 * bitwise or the request type onto the priv_granted mask. 5325 */ 5326 priv_granted = 0; 5327 5328 if (type == VDIR) { 5329 /* 5330 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 5331 * requests, instead of PRIV_VFS_EXEC. 5332 */ 5333 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5334 !priv_check_cred(cred, PRIV_VFS_LOOKUP)) 5335 priv_granted |= VEXEC; 5336 } else { 5337 /* 5338 * Ensure that at least one execute bit is on. Otherwise, 5339 * a privileged user will always succeed, and we don't want 5340 * this to happen unless the file really is executable. 5341 */ 5342 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5343 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 5344 !priv_check_cred(cred, PRIV_VFS_EXEC)) 5345 priv_granted |= VEXEC; 5346 } 5347 5348 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 5349 !priv_check_cred(cred, PRIV_VFS_READ)) 5350 priv_granted |= VREAD; 5351 5352 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 5353 !priv_check_cred(cred, PRIV_VFS_WRITE)) 5354 priv_granted |= (VWRITE | VAPPEND); 5355 5356 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 5357 !priv_check_cred(cred, PRIV_VFS_ADMIN)) 5358 priv_granted |= VADMIN; 5359 5360 if ((accmode & (priv_granted | dac_granted)) == accmode) { 5361 return (0); 5362 } 5363 5364 return ((accmode & VADMIN) ? EPERM : EACCES); 5365 } 5366 5367 /* 5368 * Credential check based on process requesting service, and per-attribute 5369 * permissions. 5370 */ 5371 int 5372 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 5373 struct thread *td, accmode_t accmode) 5374 { 5375 5376 /* 5377 * Kernel-invoked always succeeds. 5378 */ 5379 if (cred == NOCRED) 5380 return (0); 5381 5382 /* 5383 * Do not allow privileged processes in jail to directly manipulate 5384 * system attributes. 5385 */ 5386 switch (attrnamespace) { 5387 case EXTATTR_NAMESPACE_SYSTEM: 5388 /* Potentially should be: return (EPERM); */ 5389 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM)); 5390 case EXTATTR_NAMESPACE_USER: 5391 return (VOP_ACCESS(vp, accmode, cred, td)); 5392 default: 5393 return (EPERM); 5394 } 5395 } 5396 5397 #ifdef DEBUG_VFS_LOCKS 5398 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 5399 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 5400 "Drop into debugger on lock violation"); 5401 5402 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 5403 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 5404 0, "Check for interlock across VOPs"); 5405 5406 int vfs_badlock_print = 1; /* Print lock violations. */ 5407 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 5408 0, "Print lock violations"); 5409 5410 int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */ 5411 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode, 5412 0, "Print vnode details on lock violations"); 5413 5414 #ifdef KDB 5415 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 5416 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 5417 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 5418 #endif 5419 5420 static void 5421 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 5422 { 5423 5424 #ifdef KDB 5425 if (vfs_badlock_backtrace) 5426 kdb_backtrace(); 5427 #endif 5428 if (vfs_badlock_vnode) 5429 vn_printf(vp, "vnode "); 5430 if (vfs_badlock_print) 5431 printf("%s: %p %s\n", str, (void *)vp, msg); 5432 if (vfs_badlock_ddb) 5433 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5434 } 5435 5436 void 5437 assert_vi_locked(struct vnode *vp, const char *str) 5438 { 5439 5440 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 5441 vfs_badlock("interlock is not locked but should be", str, vp); 5442 } 5443 5444 void 5445 assert_vi_unlocked(struct vnode *vp, const char *str) 5446 { 5447 5448 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 5449 vfs_badlock("interlock is locked but should not be", str, vp); 5450 } 5451 5452 void 5453 assert_vop_locked(struct vnode *vp, const char *str) 5454 { 5455 int locked; 5456 5457 if (KERNEL_PANICKED() || vp == NULL) 5458 return; 5459 5460 locked = VOP_ISLOCKED(vp); 5461 if (locked == 0 || locked == LK_EXCLOTHER) 5462 vfs_badlock("is not locked but should be", str, vp); 5463 } 5464 5465 void 5466 assert_vop_unlocked(struct vnode *vp, const char *str) 5467 { 5468 if (KERNEL_PANICKED() || vp == NULL) 5469 return; 5470 5471 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 5472 vfs_badlock("is locked but should not be", str, vp); 5473 } 5474 5475 void 5476 assert_vop_elocked(struct vnode *vp, const char *str) 5477 { 5478 if (KERNEL_PANICKED() || vp == NULL) 5479 return; 5480 5481 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 5482 vfs_badlock("is not exclusive locked but should be", str, vp); 5483 } 5484 #endif /* DEBUG_VFS_LOCKS */ 5485 5486 void 5487 vop_rename_fail(struct vop_rename_args *ap) 5488 { 5489 5490 if (ap->a_tvp != NULL) 5491 vput(ap->a_tvp); 5492 if (ap->a_tdvp == ap->a_tvp) 5493 vrele(ap->a_tdvp); 5494 else 5495 vput(ap->a_tdvp); 5496 vrele(ap->a_fdvp); 5497 vrele(ap->a_fvp); 5498 } 5499 5500 void 5501 vop_rename_pre(void *ap) 5502 { 5503 struct vop_rename_args *a = ap; 5504 5505 #ifdef DEBUG_VFS_LOCKS 5506 if (a->a_tvp) 5507 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 5508 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 5509 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 5510 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 5511 5512 /* Check the source (from). */ 5513 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 5514 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 5515 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 5516 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 5517 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 5518 5519 /* Check the target. */ 5520 if (a->a_tvp) 5521 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 5522 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 5523 #endif 5524 /* 5525 * It may be tempting to add vn_seqc_write_begin/end calls here and 5526 * in vop_rename_post but that's not going to work out since some 5527 * filesystems relookup vnodes mid-rename. This is probably a bug. 5528 * 5529 * For now filesystems are expected to do the relevant calls after they 5530 * decide what vnodes to operate on. 5531 */ 5532 if (a->a_tdvp != a->a_fdvp) 5533 vhold(a->a_fdvp); 5534 if (a->a_tvp != a->a_fvp) 5535 vhold(a->a_fvp); 5536 vhold(a->a_tdvp); 5537 if (a->a_tvp) 5538 vhold(a->a_tvp); 5539 } 5540 5541 #ifdef DEBUG_VFS_LOCKS 5542 void 5543 vop_fplookup_vexec_debugpre(void *ap __unused) 5544 { 5545 5546 VFS_SMR_ASSERT_ENTERED(); 5547 } 5548 5549 void 5550 vop_fplookup_vexec_debugpost(void *ap, int rc) 5551 { 5552 struct vop_fplookup_vexec_args *a; 5553 struct vnode *vp; 5554 5555 a = ap; 5556 vp = a->a_vp; 5557 5558 VFS_SMR_ASSERT_ENTERED(); 5559 if (rc == EOPNOTSUPP) 5560 VNPASS(VN_IS_DOOMED(vp), vp); 5561 } 5562 5563 void 5564 vop_fplookup_symlink_debugpre(void *ap __unused) 5565 { 5566 5567 VFS_SMR_ASSERT_ENTERED(); 5568 } 5569 5570 void 5571 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused) 5572 { 5573 5574 VFS_SMR_ASSERT_ENTERED(); 5575 } 5576 5577 static void 5578 vop_fsync_debugprepost(struct vnode *vp, const char *name) 5579 { 5580 if (vp->v_type == VCHR) 5581 ; 5582 else if (MNT_EXTENDED_SHARED(vp->v_mount)) 5583 ASSERT_VOP_LOCKED(vp, name); 5584 else 5585 ASSERT_VOP_ELOCKED(vp, name); 5586 } 5587 5588 void 5589 vop_fsync_debugpre(void *a) 5590 { 5591 struct vop_fsync_args *ap; 5592 5593 ap = a; 5594 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5595 } 5596 5597 void 5598 vop_fsync_debugpost(void *a, int rc __unused) 5599 { 5600 struct vop_fsync_args *ap; 5601 5602 ap = a; 5603 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5604 } 5605 5606 void 5607 vop_fdatasync_debugpre(void *a) 5608 { 5609 struct vop_fdatasync_args *ap; 5610 5611 ap = a; 5612 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5613 } 5614 5615 void 5616 vop_fdatasync_debugpost(void *a, int rc __unused) 5617 { 5618 struct vop_fdatasync_args *ap; 5619 5620 ap = a; 5621 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5622 } 5623 5624 void 5625 vop_strategy_debugpre(void *ap) 5626 { 5627 struct vop_strategy_args *a; 5628 struct buf *bp; 5629 5630 a = ap; 5631 bp = a->a_bp; 5632 5633 /* 5634 * Cluster ops lock their component buffers but not the IO container. 5635 */ 5636 if ((bp->b_flags & B_CLUSTER) != 0) 5637 return; 5638 5639 if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) { 5640 if (vfs_badlock_print) 5641 printf( 5642 "VOP_STRATEGY: bp is not locked but should be\n"); 5643 if (vfs_badlock_ddb) 5644 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5645 } 5646 } 5647 5648 void 5649 vop_lock_debugpre(void *ap) 5650 { 5651 struct vop_lock1_args *a = ap; 5652 5653 if ((a->a_flags & LK_INTERLOCK) == 0) 5654 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 5655 else 5656 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 5657 } 5658 5659 void 5660 vop_lock_debugpost(void *ap, int rc) 5661 { 5662 struct vop_lock1_args *a = ap; 5663 5664 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 5665 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 5666 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 5667 } 5668 5669 void 5670 vop_unlock_debugpre(void *ap) 5671 { 5672 struct vop_unlock_args *a = ap; 5673 struct vnode *vp = a->a_vp; 5674 5675 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp); 5676 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK"); 5677 } 5678 5679 void 5680 vop_need_inactive_debugpre(void *ap) 5681 { 5682 struct vop_need_inactive_args *a = ap; 5683 5684 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 5685 } 5686 5687 void 5688 vop_need_inactive_debugpost(void *ap, int rc) 5689 { 5690 struct vop_need_inactive_args *a = ap; 5691 5692 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 5693 } 5694 #endif 5695 5696 void 5697 vop_create_pre(void *ap) 5698 { 5699 struct vop_create_args *a; 5700 struct vnode *dvp; 5701 5702 a = ap; 5703 dvp = a->a_dvp; 5704 vn_seqc_write_begin(dvp); 5705 } 5706 5707 void 5708 vop_create_post(void *ap, int rc) 5709 { 5710 struct vop_create_args *a; 5711 struct vnode *dvp; 5712 5713 a = ap; 5714 dvp = a->a_dvp; 5715 vn_seqc_write_end(dvp); 5716 if (!rc) 5717 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5718 } 5719 5720 void 5721 vop_whiteout_pre(void *ap) 5722 { 5723 struct vop_whiteout_args *a; 5724 struct vnode *dvp; 5725 5726 a = ap; 5727 dvp = a->a_dvp; 5728 vn_seqc_write_begin(dvp); 5729 } 5730 5731 void 5732 vop_whiteout_post(void *ap, int rc) 5733 { 5734 struct vop_whiteout_args *a; 5735 struct vnode *dvp; 5736 5737 a = ap; 5738 dvp = a->a_dvp; 5739 vn_seqc_write_end(dvp); 5740 } 5741 5742 void 5743 vop_deleteextattr_pre(void *ap) 5744 { 5745 struct vop_deleteextattr_args *a; 5746 struct vnode *vp; 5747 5748 a = ap; 5749 vp = a->a_vp; 5750 vn_seqc_write_begin(vp); 5751 } 5752 5753 void 5754 vop_deleteextattr_post(void *ap, int rc) 5755 { 5756 struct vop_deleteextattr_args *a; 5757 struct vnode *vp; 5758 5759 a = ap; 5760 vp = a->a_vp; 5761 vn_seqc_write_end(vp); 5762 if (!rc) 5763 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 5764 } 5765 5766 void 5767 vop_link_pre(void *ap) 5768 { 5769 struct vop_link_args *a; 5770 struct vnode *vp, *tdvp; 5771 5772 a = ap; 5773 vp = a->a_vp; 5774 tdvp = a->a_tdvp; 5775 vn_seqc_write_begin(vp); 5776 vn_seqc_write_begin(tdvp); 5777 } 5778 5779 void 5780 vop_link_post(void *ap, int rc) 5781 { 5782 struct vop_link_args *a; 5783 struct vnode *vp, *tdvp; 5784 5785 a = ap; 5786 vp = a->a_vp; 5787 tdvp = a->a_tdvp; 5788 vn_seqc_write_end(vp); 5789 vn_seqc_write_end(tdvp); 5790 if (!rc) { 5791 VFS_KNOTE_LOCKED(vp, NOTE_LINK); 5792 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE); 5793 } 5794 } 5795 5796 void 5797 vop_mkdir_pre(void *ap) 5798 { 5799 struct vop_mkdir_args *a; 5800 struct vnode *dvp; 5801 5802 a = ap; 5803 dvp = a->a_dvp; 5804 vn_seqc_write_begin(dvp); 5805 } 5806 5807 void 5808 vop_mkdir_post(void *ap, int rc) 5809 { 5810 struct vop_mkdir_args *a; 5811 struct vnode *dvp; 5812 5813 a = ap; 5814 dvp = a->a_dvp; 5815 vn_seqc_write_end(dvp); 5816 if (!rc) 5817 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 5818 } 5819 5820 #ifdef DEBUG_VFS_LOCKS 5821 void 5822 vop_mkdir_debugpost(void *ap, int rc) 5823 { 5824 struct vop_mkdir_args *a; 5825 5826 a = ap; 5827 if (!rc) 5828 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp); 5829 } 5830 #endif 5831 5832 void 5833 vop_mknod_pre(void *ap) 5834 { 5835 struct vop_mknod_args *a; 5836 struct vnode *dvp; 5837 5838 a = ap; 5839 dvp = a->a_dvp; 5840 vn_seqc_write_begin(dvp); 5841 } 5842 5843 void 5844 vop_mknod_post(void *ap, int rc) 5845 { 5846 struct vop_mknod_args *a; 5847 struct vnode *dvp; 5848 5849 a = ap; 5850 dvp = a->a_dvp; 5851 vn_seqc_write_end(dvp); 5852 if (!rc) 5853 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5854 } 5855 5856 void 5857 vop_reclaim_post(void *ap, int rc) 5858 { 5859 struct vop_reclaim_args *a; 5860 struct vnode *vp; 5861 5862 a = ap; 5863 vp = a->a_vp; 5864 ASSERT_VOP_IN_SEQC(vp); 5865 if (!rc) 5866 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE); 5867 } 5868 5869 void 5870 vop_remove_pre(void *ap) 5871 { 5872 struct vop_remove_args *a; 5873 struct vnode *dvp, *vp; 5874 5875 a = ap; 5876 dvp = a->a_dvp; 5877 vp = a->a_vp; 5878 vn_seqc_write_begin(dvp); 5879 vn_seqc_write_begin(vp); 5880 } 5881 5882 void 5883 vop_remove_post(void *ap, int rc) 5884 { 5885 struct vop_remove_args *a; 5886 struct vnode *dvp, *vp; 5887 5888 a = ap; 5889 dvp = a->a_dvp; 5890 vp = a->a_vp; 5891 vn_seqc_write_end(dvp); 5892 vn_seqc_write_end(vp); 5893 if (!rc) { 5894 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5895 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 5896 } 5897 } 5898 5899 void 5900 vop_rename_post(void *ap, int rc) 5901 { 5902 struct vop_rename_args *a = ap; 5903 long hint; 5904 5905 if (!rc) { 5906 hint = NOTE_WRITE; 5907 if (a->a_fdvp == a->a_tdvp) { 5908 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR) 5909 hint |= NOTE_LINK; 5910 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 5911 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 5912 } else { 5913 hint |= NOTE_EXTEND; 5914 if (a->a_fvp->v_type == VDIR) 5915 hint |= NOTE_LINK; 5916 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 5917 5918 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL && 5919 a->a_tvp->v_type == VDIR) 5920 hint &= ~NOTE_LINK; 5921 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 5922 } 5923 5924 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 5925 if (a->a_tvp) 5926 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 5927 } 5928 if (a->a_tdvp != a->a_fdvp) 5929 vdrop(a->a_fdvp); 5930 if (a->a_tvp != a->a_fvp) 5931 vdrop(a->a_fvp); 5932 vdrop(a->a_tdvp); 5933 if (a->a_tvp) 5934 vdrop(a->a_tvp); 5935 } 5936 5937 void 5938 vop_rmdir_pre(void *ap) 5939 { 5940 struct vop_rmdir_args *a; 5941 struct vnode *dvp, *vp; 5942 5943 a = ap; 5944 dvp = a->a_dvp; 5945 vp = a->a_vp; 5946 vn_seqc_write_begin(dvp); 5947 vn_seqc_write_begin(vp); 5948 } 5949 5950 void 5951 vop_rmdir_post(void *ap, int rc) 5952 { 5953 struct vop_rmdir_args *a; 5954 struct vnode *dvp, *vp; 5955 5956 a = ap; 5957 dvp = a->a_dvp; 5958 vp = a->a_vp; 5959 vn_seqc_write_end(dvp); 5960 vn_seqc_write_end(vp); 5961 if (!rc) { 5962 vp->v_vflag |= VV_UNLINKED; 5963 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 5964 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 5965 } 5966 } 5967 5968 void 5969 vop_setattr_pre(void *ap) 5970 { 5971 struct vop_setattr_args *a; 5972 struct vnode *vp; 5973 5974 a = ap; 5975 vp = a->a_vp; 5976 vn_seqc_write_begin(vp); 5977 } 5978 5979 void 5980 vop_setattr_post(void *ap, int rc) 5981 { 5982 struct vop_setattr_args *a; 5983 struct vnode *vp; 5984 5985 a = ap; 5986 vp = a->a_vp; 5987 vn_seqc_write_end(vp); 5988 if (!rc) 5989 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 5990 } 5991 5992 void 5993 vop_setacl_pre(void *ap) 5994 { 5995 struct vop_setacl_args *a; 5996 struct vnode *vp; 5997 5998 a = ap; 5999 vp = a->a_vp; 6000 vn_seqc_write_begin(vp); 6001 } 6002 6003 void 6004 vop_setacl_post(void *ap, int rc __unused) 6005 { 6006 struct vop_setacl_args *a; 6007 struct vnode *vp; 6008 6009 a = ap; 6010 vp = a->a_vp; 6011 vn_seqc_write_end(vp); 6012 } 6013 6014 void 6015 vop_setextattr_pre(void *ap) 6016 { 6017 struct vop_setextattr_args *a; 6018 struct vnode *vp; 6019 6020 a = ap; 6021 vp = a->a_vp; 6022 vn_seqc_write_begin(vp); 6023 } 6024 6025 void 6026 vop_setextattr_post(void *ap, int rc) 6027 { 6028 struct vop_setextattr_args *a; 6029 struct vnode *vp; 6030 6031 a = ap; 6032 vp = a->a_vp; 6033 vn_seqc_write_end(vp); 6034 if (!rc) 6035 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 6036 } 6037 6038 void 6039 vop_symlink_pre(void *ap) 6040 { 6041 struct vop_symlink_args *a; 6042 struct vnode *dvp; 6043 6044 a = ap; 6045 dvp = a->a_dvp; 6046 vn_seqc_write_begin(dvp); 6047 } 6048 6049 void 6050 vop_symlink_post(void *ap, int rc) 6051 { 6052 struct vop_symlink_args *a; 6053 struct vnode *dvp; 6054 6055 a = ap; 6056 dvp = a->a_dvp; 6057 vn_seqc_write_end(dvp); 6058 if (!rc) 6059 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6060 } 6061 6062 void 6063 vop_open_post(void *ap, int rc) 6064 { 6065 struct vop_open_args *a = ap; 6066 6067 if (!rc) 6068 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN); 6069 } 6070 6071 void 6072 vop_close_post(void *ap, int rc) 6073 { 6074 struct vop_close_args *a = ap; 6075 6076 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */ 6077 !VN_IS_DOOMED(a->a_vp))) { 6078 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ? 6079 NOTE_CLOSE_WRITE : NOTE_CLOSE); 6080 } 6081 } 6082 6083 void 6084 vop_read_post(void *ap, int rc) 6085 { 6086 struct vop_read_args *a = ap; 6087 6088 if (!rc) 6089 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6090 } 6091 6092 void 6093 vop_read_pgcache_post(void *ap, int rc) 6094 { 6095 struct vop_read_pgcache_args *a = ap; 6096 6097 if (!rc) 6098 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ); 6099 } 6100 6101 void 6102 vop_readdir_post(void *ap, int rc) 6103 { 6104 struct vop_readdir_args *a = ap; 6105 6106 if (!rc) 6107 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6108 } 6109 6110 static struct knlist fs_knlist; 6111 6112 static void 6113 vfs_event_init(void *arg) 6114 { 6115 knlist_init_mtx(&fs_knlist, NULL); 6116 } 6117 /* XXX - correct order? */ 6118 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 6119 6120 void 6121 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 6122 { 6123 6124 KNOTE_UNLOCKED(&fs_knlist, event); 6125 } 6126 6127 static int filt_fsattach(struct knote *kn); 6128 static void filt_fsdetach(struct knote *kn); 6129 static int filt_fsevent(struct knote *kn, long hint); 6130 6131 struct filterops fs_filtops = { 6132 .f_isfd = 0, 6133 .f_attach = filt_fsattach, 6134 .f_detach = filt_fsdetach, 6135 .f_event = filt_fsevent 6136 }; 6137 6138 static int 6139 filt_fsattach(struct knote *kn) 6140 { 6141 6142 kn->kn_flags |= EV_CLEAR; 6143 knlist_add(&fs_knlist, kn, 0); 6144 return (0); 6145 } 6146 6147 static void 6148 filt_fsdetach(struct knote *kn) 6149 { 6150 6151 knlist_remove(&fs_knlist, kn, 0); 6152 } 6153 6154 static int 6155 filt_fsevent(struct knote *kn, long hint) 6156 { 6157 6158 kn->kn_fflags |= kn->kn_sfflags & hint; 6159 6160 return (kn->kn_fflags != 0); 6161 } 6162 6163 static int 6164 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 6165 { 6166 struct vfsidctl vc; 6167 int error; 6168 struct mount *mp; 6169 6170 error = SYSCTL_IN(req, &vc, sizeof(vc)); 6171 if (error) 6172 return (error); 6173 if (vc.vc_vers != VFS_CTL_VERS1) 6174 return (EINVAL); 6175 mp = vfs_getvfs(&vc.vc_fsid); 6176 if (mp == NULL) 6177 return (ENOENT); 6178 /* ensure that a specific sysctl goes to the right filesystem. */ 6179 if (strcmp(vc.vc_fstypename, "*") != 0 && 6180 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 6181 vfs_rel(mp); 6182 return (EINVAL); 6183 } 6184 VCTLTOREQ(&vc, req); 6185 error = VFS_SYSCTL(mp, vc.vc_op, req); 6186 vfs_rel(mp); 6187 return (error); 6188 } 6189 6190 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR, 6191 NULL, 0, sysctl_vfs_ctl, "", 6192 "Sysctl by fsid"); 6193 6194 /* 6195 * Function to initialize a va_filerev field sensibly. 6196 * XXX: Wouldn't a random number make a lot more sense ?? 6197 */ 6198 u_quad_t 6199 init_va_filerev(void) 6200 { 6201 struct bintime bt; 6202 6203 getbinuptime(&bt); 6204 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 6205 } 6206 6207 static int filt_vfsread(struct knote *kn, long hint); 6208 static int filt_vfswrite(struct knote *kn, long hint); 6209 static int filt_vfsvnode(struct knote *kn, long hint); 6210 static void filt_vfsdetach(struct knote *kn); 6211 static struct filterops vfsread_filtops = { 6212 .f_isfd = 1, 6213 .f_detach = filt_vfsdetach, 6214 .f_event = filt_vfsread 6215 }; 6216 static struct filterops vfswrite_filtops = { 6217 .f_isfd = 1, 6218 .f_detach = filt_vfsdetach, 6219 .f_event = filt_vfswrite 6220 }; 6221 static struct filterops vfsvnode_filtops = { 6222 .f_isfd = 1, 6223 .f_detach = filt_vfsdetach, 6224 .f_event = filt_vfsvnode 6225 }; 6226 6227 static void 6228 vfs_knllock(void *arg) 6229 { 6230 struct vnode *vp = arg; 6231 6232 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 6233 } 6234 6235 static void 6236 vfs_knlunlock(void *arg) 6237 { 6238 struct vnode *vp = arg; 6239 6240 VOP_UNLOCK(vp); 6241 } 6242 6243 static void 6244 vfs_knl_assert_lock(void *arg, int what) 6245 { 6246 #ifdef DEBUG_VFS_LOCKS 6247 struct vnode *vp = arg; 6248 6249 if (what == LA_LOCKED) 6250 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 6251 else 6252 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 6253 #endif 6254 } 6255 6256 int 6257 vfs_kqfilter(struct vop_kqfilter_args *ap) 6258 { 6259 struct vnode *vp = ap->a_vp; 6260 struct knote *kn = ap->a_kn; 6261 struct knlist *knl; 6262 6263 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ && 6264 kn->kn_filter != EVFILT_WRITE), 6265 ("READ/WRITE filter on a FIFO leaked through")); 6266 switch (kn->kn_filter) { 6267 case EVFILT_READ: 6268 kn->kn_fop = &vfsread_filtops; 6269 break; 6270 case EVFILT_WRITE: 6271 kn->kn_fop = &vfswrite_filtops; 6272 break; 6273 case EVFILT_VNODE: 6274 kn->kn_fop = &vfsvnode_filtops; 6275 break; 6276 default: 6277 return (EINVAL); 6278 } 6279 6280 kn->kn_hook = (caddr_t)vp; 6281 6282 v_addpollinfo(vp); 6283 if (vp->v_pollinfo == NULL) 6284 return (ENOMEM); 6285 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 6286 vhold(vp); 6287 knlist_add(knl, kn, 0); 6288 6289 return (0); 6290 } 6291 6292 /* 6293 * Detach knote from vnode 6294 */ 6295 static void 6296 filt_vfsdetach(struct knote *kn) 6297 { 6298 struct vnode *vp = (struct vnode *)kn->kn_hook; 6299 6300 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 6301 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 6302 vdrop(vp); 6303 } 6304 6305 /*ARGSUSED*/ 6306 static int 6307 filt_vfsread(struct knote *kn, long hint) 6308 { 6309 struct vnode *vp = (struct vnode *)kn->kn_hook; 6310 off_t size; 6311 int res; 6312 6313 /* 6314 * filesystem is gone, so set the EOF flag and schedule 6315 * the knote for deletion. 6316 */ 6317 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6318 VI_LOCK(vp); 6319 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6320 VI_UNLOCK(vp); 6321 return (1); 6322 } 6323 6324 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0) 6325 return (0); 6326 6327 VI_LOCK(vp); 6328 kn->kn_data = size - kn->kn_fp->f_offset; 6329 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; 6330 VI_UNLOCK(vp); 6331 return (res); 6332 } 6333 6334 /*ARGSUSED*/ 6335 static int 6336 filt_vfswrite(struct knote *kn, long hint) 6337 { 6338 struct vnode *vp = (struct vnode *)kn->kn_hook; 6339 6340 VI_LOCK(vp); 6341 6342 /* 6343 * filesystem is gone, so set the EOF flag and schedule 6344 * the knote for deletion. 6345 */ 6346 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) 6347 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6348 6349 kn->kn_data = 0; 6350 VI_UNLOCK(vp); 6351 return (1); 6352 } 6353 6354 static int 6355 filt_vfsvnode(struct knote *kn, long hint) 6356 { 6357 struct vnode *vp = (struct vnode *)kn->kn_hook; 6358 int res; 6359 6360 VI_LOCK(vp); 6361 if (kn->kn_sfflags & hint) 6362 kn->kn_fflags |= hint; 6363 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6364 kn->kn_flags |= EV_EOF; 6365 VI_UNLOCK(vp); 6366 return (1); 6367 } 6368 res = (kn->kn_fflags != 0); 6369 VI_UNLOCK(vp); 6370 return (res); 6371 } 6372 6373 /* 6374 * Returns whether the directory is empty or not. 6375 * If it is empty, the return value is 0; otherwise 6376 * the return value is an error value (which may 6377 * be ENOTEMPTY). 6378 */ 6379 int 6380 vfs_emptydir(struct vnode *vp) 6381 { 6382 struct uio uio; 6383 struct iovec iov; 6384 struct dirent *dirent, *dp, *endp; 6385 int error, eof; 6386 6387 error = 0; 6388 eof = 0; 6389 6390 ASSERT_VOP_LOCKED(vp, "vfs_emptydir"); 6391 VNPASS(vp->v_type == VDIR, vp); 6392 6393 dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK); 6394 iov.iov_base = dirent; 6395 iov.iov_len = sizeof(struct dirent); 6396 6397 uio.uio_iov = &iov; 6398 uio.uio_iovcnt = 1; 6399 uio.uio_offset = 0; 6400 uio.uio_resid = sizeof(struct dirent); 6401 uio.uio_segflg = UIO_SYSSPACE; 6402 uio.uio_rw = UIO_READ; 6403 uio.uio_td = curthread; 6404 6405 while (eof == 0 && error == 0) { 6406 error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof, 6407 NULL, NULL); 6408 if (error != 0) 6409 break; 6410 endp = (void *)((uint8_t *)dirent + 6411 sizeof(struct dirent) - uio.uio_resid); 6412 for (dp = dirent; dp < endp; 6413 dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) { 6414 if (dp->d_type == DT_WHT) 6415 continue; 6416 if (dp->d_namlen == 0) 6417 continue; 6418 if (dp->d_type != DT_DIR && 6419 dp->d_type != DT_UNKNOWN) { 6420 error = ENOTEMPTY; 6421 break; 6422 } 6423 if (dp->d_namlen > 2) { 6424 error = ENOTEMPTY; 6425 break; 6426 } 6427 if (dp->d_namlen == 1 && 6428 dp->d_name[0] != '.') { 6429 error = ENOTEMPTY; 6430 break; 6431 } 6432 if (dp->d_namlen == 2 && 6433 dp->d_name[1] != '.') { 6434 error = ENOTEMPTY; 6435 break; 6436 } 6437 uio.uio_resid = sizeof(struct dirent); 6438 } 6439 } 6440 free(dirent, M_TEMP); 6441 return (error); 6442 } 6443 6444 int 6445 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 6446 { 6447 int error; 6448 6449 if (dp->d_reclen > ap->a_uio->uio_resid) 6450 return (ENAMETOOLONG); 6451 error = uiomove(dp, dp->d_reclen, ap->a_uio); 6452 if (error) { 6453 if (ap->a_ncookies != NULL) { 6454 if (ap->a_cookies != NULL) 6455 free(ap->a_cookies, M_TEMP); 6456 ap->a_cookies = NULL; 6457 *ap->a_ncookies = 0; 6458 } 6459 return (error); 6460 } 6461 if (ap->a_ncookies == NULL) 6462 return (0); 6463 6464 KASSERT(ap->a_cookies, 6465 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 6466 6467 *ap->a_cookies = realloc(*ap->a_cookies, 6468 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO); 6469 (*ap->a_cookies)[*ap->a_ncookies] = off; 6470 *ap->a_ncookies += 1; 6471 return (0); 6472 } 6473 6474 /* 6475 * The purpose of this routine is to remove granularity from accmode_t, 6476 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 6477 * VADMIN and VAPPEND. 6478 * 6479 * If it returns 0, the caller is supposed to continue with the usual 6480 * access checks using 'accmode' as modified by this routine. If it 6481 * returns nonzero value, the caller is supposed to return that value 6482 * as errno. 6483 * 6484 * Note that after this routine runs, accmode may be zero. 6485 */ 6486 int 6487 vfs_unixify_accmode(accmode_t *accmode) 6488 { 6489 /* 6490 * There is no way to specify explicit "deny" rule using 6491 * file mode or POSIX.1e ACLs. 6492 */ 6493 if (*accmode & VEXPLICIT_DENY) { 6494 *accmode = 0; 6495 return (0); 6496 } 6497 6498 /* 6499 * None of these can be translated into usual access bits. 6500 * Also, the common case for NFSv4 ACLs is to not contain 6501 * either of these bits. Caller should check for VWRITE 6502 * on the containing directory instead. 6503 */ 6504 if (*accmode & (VDELETE_CHILD | VDELETE)) 6505 return (EPERM); 6506 6507 if (*accmode & VADMIN_PERMS) { 6508 *accmode &= ~VADMIN_PERMS; 6509 *accmode |= VADMIN; 6510 } 6511 6512 /* 6513 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 6514 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 6515 */ 6516 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 6517 6518 return (0); 6519 } 6520 6521 /* 6522 * Clear out a doomed vnode (if any) and replace it with a new one as long 6523 * as the fs is not being unmounted. Return the root vnode to the caller. 6524 */ 6525 static int __noinline 6526 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp) 6527 { 6528 struct vnode *vp; 6529 int error; 6530 6531 restart: 6532 if (mp->mnt_rootvnode != NULL) { 6533 MNT_ILOCK(mp); 6534 vp = mp->mnt_rootvnode; 6535 if (vp != NULL) { 6536 if (!VN_IS_DOOMED(vp)) { 6537 vrefact(vp); 6538 MNT_IUNLOCK(mp); 6539 error = vn_lock(vp, flags); 6540 if (error == 0) { 6541 *vpp = vp; 6542 return (0); 6543 } 6544 vrele(vp); 6545 goto restart; 6546 } 6547 /* 6548 * Clear the old one. 6549 */ 6550 mp->mnt_rootvnode = NULL; 6551 } 6552 MNT_IUNLOCK(mp); 6553 if (vp != NULL) { 6554 vfs_op_barrier_wait(mp); 6555 vrele(vp); 6556 } 6557 } 6558 error = VFS_CACHEDROOT(mp, flags, vpp); 6559 if (error != 0) 6560 return (error); 6561 if (mp->mnt_vfs_ops == 0) { 6562 MNT_ILOCK(mp); 6563 if (mp->mnt_vfs_ops != 0) { 6564 MNT_IUNLOCK(mp); 6565 return (0); 6566 } 6567 if (mp->mnt_rootvnode == NULL) { 6568 vrefact(*vpp); 6569 mp->mnt_rootvnode = *vpp; 6570 } else { 6571 if (mp->mnt_rootvnode != *vpp) { 6572 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) { 6573 panic("%s: mismatch between vnode returned " 6574 " by VFS_CACHEDROOT and the one cached " 6575 " (%p != %p)", 6576 __func__, *vpp, mp->mnt_rootvnode); 6577 } 6578 } 6579 } 6580 MNT_IUNLOCK(mp); 6581 } 6582 return (0); 6583 } 6584 6585 int 6586 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp) 6587 { 6588 struct mount_pcpu *mpcpu; 6589 struct vnode *vp; 6590 int error; 6591 6592 if (!vfs_op_thread_enter(mp, mpcpu)) 6593 return (vfs_cache_root_fallback(mp, flags, vpp)); 6594 vp = atomic_load_ptr(&mp->mnt_rootvnode); 6595 if (vp == NULL || VN_IS_DOOMED(vp)) { 6596 vfs_op_thread_exit(mp, mpcpu); 6597 return (vfs_cache_root_fallback(mp, flags, vpp)); 6598 } 6599 vrefact(vp); 6600 vfs_op_thread_exit(mp, mpcpu); 6601 error = vn_lock(vp, flags); 6602 if (error != 0) { 6603 vrele(vp); 6604 return (vfs_cache_root_fallback(mp, flags, vpp)); 6605 } 6606 *vpp = vp; 6607 return (0); 6608 } 6609 6610 struct vnode * 6611 vfs_cache_root_clear(struct mount *mp) 6612 { 6613 struct vnode *vp; 6614 6615 /* 6616 * ops > 0 guarantees there is nobody who can see this vnode 6617 */ 6618 MPASS(mp->mnt_vfs_ops > 0); 6619 vp = mp->mnt_rootvnode; 6620 if (vp != NULL) 6621 vn_seqc_write_begin(vp); 6622 mp->mnt_rootvnode = NULL; 6623 return (vp); 6624 } 6625 6626 void 6627 vfs_cache_root_set(struct mount *mp, struct vnode *vp) 6628 { 6629 6630 MPASS(mp->mnt_vfs_ops > 0); 6631 vrefact(vp); 6632 mp->mnt_rootvnode = vp; 6633 } 6634 6635 /* 6636 * These are helper functions for filesystems to traverse all 6637 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 6638 * 6639 * This interface replaces MNT_VNODE_FOREACH. 6640 */ 6641 6642 struct vnode * 6643 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 6644 { 6645 struct vnode *vp; 6646 6647 maybe_yield(); 6648 MNT_ILOCK(mp); 6649 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6650 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL; 6651 vp = TAILQ_NEXT(vp, v_nmntvnodes)) { 6652 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6653 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6654 continue; 6655 VI_LOCK(vp); 6656 if (VN_IS_DOOMED(vp)) { 6657 VI_UNLOCK(vp); 6658 continue; 6659 } 6660 break; 6661 } 6662 if (vp == NULL) { 6663 __mnt_vnode_markerfree_all(mvp, mp); 6664 /* MNT_IUNLOCK(mp); -- done in above function */ 6665 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 6666 return (NULL); 6667 } 6668 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6669 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6670 MNT_IUNLOCK(mp); 6671 return (vp); 6672 } 6673 6674 struct vnode * 6675 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 6676 { 6677 struct vnode *vp; 6678 6679 *mvp = vn_alloc_marker(mp); 6680 MNT_ILOCK(mp); 6681 MNT_REF(mp); 6682 6683 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 6684 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6685 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6686 continue; 6687 VI_LOCK(vp); 6688 if (VN_IS_DOOMED(vp)) { 6689 VI_UNLOCK(vp); 6690 continue; 6691 } 6692 break; 6693 } 6694 if (vp == NULL) { 6695 MNT_REL(mp); 6696 MNT_IUNLOCK(mp); 6697 vn_free_marker(*mvp); 6698 *mvp = NULL; 6699 return (NULL); 6700 } 6701 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6702 MNT_IUNLOCK(mp); 6703 return (vp); 6704 } 6705 6706 void 6707 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 6708 { 6709 6710 if (*mvp == NULL) { 6711 MNT_IUNLOCK(mp); 6712 return; 6713 } 6714 6715 mtx_assert(MNT_MTX(mp), MA_OWNED); 6716 6717 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6718 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6719 MNT_REL(mp); 6720 MNT_IUNLOCK(mp); 6721 vn_free_marker(*mvp); 6722 *mvp = NULL; 6723 } 6724 6725 /* 6726 * These are helper functions for filesystems to traverse their 6727 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h 6728 */ 6729 static void 6730 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 6731 { 6732 6733 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6734 6735 MNT_ILOCK(mp); 6736 MNT_REL(mp); 6737 MNT_IUNLOCK(mp); 6738 vn_free_marker(*mvp); 6739 *mvp = NULL; 6740 } 6741 6742 /* 6743 * Relock the mp mount vnode list lock with the vp vnode interlock in the 6744 * conventional lock order during mnt_vnode_next_lazy iteration. 6745 * 6746 * On entry, the mount vnode list lock is held and the vnode interlock is not. 6747 * The list lock is dropped and reacquired. On success, both locks are held. 6748 * On failure, the mount vnode list lock is held but the vnode interlock is 6749 * not, and the procedure may have yielded. 6750 */ 6751 static bool 6752 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp, 6753 struct vnode *vp) 6754 { 6755 6756 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER && 6757 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp, 6758 ("%s: bad marker", __func__)); 6759 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp, 6760 ("%s: inappropriate vnode", __func__)); 6761 ASSERT_VI_UNLOCKED(vp, __func__); 6762 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 6763 6764 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist); 6765 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist); 6766 6767 /* 6768 * Note we may be racing against vdrop which transitioned the hold 6769 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine, 6770 * if we are the only user after we get the interlock we will just 6771 * vdrop. 6772 */ 6773 vhold(vp); 6774 mtx_unlock(&mp->mnt_listmtx); 6775 VI_LOCK(vp); 6776 if (VN_IS_DOOMED(vp)) { 6777 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 6778 goto out_lost; 6779 } 6780 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 6781 /* 6782 * There is nothing to do if we are the last user. 6783 */ 6784 if (!refcount_release_if_not_last(&vp->v_holdcnt)) 6785 goto out_lost; 6786 mtx_lock(&mp->mnt_listmtx); 6787 return (true); 6788 out_lost: 6789 vdropl(vp); 6790 maybe_yield(); 6791 mtx_lock(&mp->mnt_listmtx); 6792 return (false); 6793 } 6794 6795 static struct vnode * 6796 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6797 void *cbarg) 6798 { 6799 struct vnode *vp; 6800 6801 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 6802 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6803 restart: 6804 vp = TAILQ_NEXT(*mvp, v_lazylist); 6805 while (vp != NULL) { 6806 if (vp->v_type == VMARKER) { 6807 vp = TAILQ_NEXT(vp, v_lazylist); 6808 continue; 6809 } 6810 /* 6811 * See if we want to process the vnode. Note we may encounter a 6812 * long string of vnodes we don't care about and hog the list 6813 * as a result. Check for it and requeue the marker. 6814 */ 6815 VNPASS(!VN_IS_DOOMED(vp), vp); 6816 if (!cb(vp, cbarg)) { 6817 if (!should_yield()) { 6818 vp = TAILQ_NEXT(vp, v_lazylist); 6819 continue; 6820 } 6821 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, 6822 v_lazylist); 6823 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, 6824 v_lazylist); 6825 mtx_unlock(&mp->mnt_listmtx); 6826 kern_yield(PRI_USER); 6827 mtx_lock(&mp->mnt_listmtx); 6828 goto restart; 6829 } 6830 /* 6831 * Try-lock because this is the wrong lock order. 6832 */ 6833 if (!VI_TRYLOCK(vp) && 6834 !mnt_vnode_next_lazy_relock(*mvp, mp, vp)) 6835 goto restart; 6836 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 6837 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 6838 ("alien vnode on the lazy list %p %p", vp, mp)); 6839 VNPASS(vp->v_mount == mp, vp); 6840 VNPASS(!VN_IS_DOOMED(vp), vp); 6841 break; 6842 } 6843 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 6844 6845 /* Check if we are done */ 6846 if (vp == NULL) { 6847 mtx_unlock(&mp->mnt_listmtx); 6848 mnt_vnode_markerfree_lazy(mvp, mp); 6849 return (NULL); 6850 } 6851 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist); 6852 mtx_unlock(&mp->mnt_listmtx); 6853 ASSERT_VI_LOCKED(vp, "lazy iter"); 6854 return (vp); 6855 } 6856 6857 struct vnode * 6858 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6859 void *cbarg) 6860 { 6861 6862 maybe_yield(); 6863 mtx_lock(&mp->mnt_listmtx); 6864 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 6865 } 6866 6867 struct vnode * 6868 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6869 void *cbarg) 6870 { 6871 struct vnode *vp; 6872 6873 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist)) 6874 return (NULL); 6875 6876 *mvp = vn_alloc_marker(mp); 6877 MNT_ILOCK(mp); 6878 MNT_REF(mp); 6879 MNT_IUNLOCK(mp); 6880 6881 mtx_lock(&mp->mnt_listmtx); 6882 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist); 6883 if (vp == NULL) { 6884 mtx_unlock(&mp->mnt_listmtx); 6885 mnt_vnode_markerfree_lazy(mvp, mp); 6886 return (NULL); 6887 } 6888 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist); 6889 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 6890 } 6891 6892 void 6893 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 6894 { 6895 6896 if (*mvp == NULL) 6897 return; 6898 6899 mtx_lock(&mp->mnt_listmtx); 6900 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 6901 mtx_unlock(&mp->mnt_listmtx); 6902 mnt_vnode_markerfree_lazy(mvp, mp); 6903 } 6904 6905 int 6906 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp) 6907 { 6908 6909 if ((cnp->cn_flags & NOEXECCHECK) != 0) { 6910 cnp->cn_flags &= ~NOEXECCHECK; 6911 return (0); 6912 } 6913 6914 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread)); 6915 } 6916 6917 /* 6918 * Do not use this variant unless you have means other than the hold count 6919 * to prevent the vnode from getting freed. 6920 */ 6921 void 6922 vn_seqc_write_begin_locked(struct vnode *vp) 6923 { 6924 6925 ASSERT_VI_LOCKED(vp, __func__); 6926 VNPASS(vp->v_holdcnt > 0, vp); 6927 VNPASS(vp->v_seqc_users >= 0, vp); 6928 vp->v_seqc_users++; 6929 if (vp->v_seqc_users == 1) 6930 seqc_sleepable_write_begin(&vp->v_seqc); 6931 } 6932 6933 void 6934 vn_seqc_write_begin(struct vnode *vp) 6935 { 6936 6937 VI_LOCK(vp); 6938 vn_seqc_write_begin_locked(vp); 6939 VI_UNLOCK(vp); 6940 } 6941 6942 void 6943 vn_seqc_write_end_locked(struct vnode *vp) 6944 { 6945 6946 ASSERT_VI_LOCKED(vp, __func__); 6947 VNPASS(vp->v_seqc_users > 0, vp); 6948 vp->v_seqc_users--; 6949 if (vp->v_seqc_users == 0) 6950 seqc_sleepable_write_end(&vp->v_seqc); 6951 } 6952 6953 void 6954 vn_seqc_write_end(struct vnode *vp) 6955 { 6956 6957 VI_LOCK(vp); 6958 vn_seqc_write_end_locked(vp); 6959 VI_UNLOCK(vp); 6960 } 6961 6962 /* 6963 * Special case handling for allocating and freeing vnodes. 6964 * 6965 * The counter remains unchanged on free so that a doomed vnode will 6966 * keep testing as in modify as long as it is accessible with SMR. 6967 */ 6968 static void 6969 vn_seqc_init(struct vnode *vp) 6970 { 6971 6972 vp->v_seqc = 0; 6973 vp->v_seqc_users = 0; 6974 } 6975 6976 static void 6977 vn_seqc_write_end_free(struct vnode *vp) 6978 { 6979 6980 VNPASS(seqc_in_modify(vp->v_seqc), vp); 6981 VNPASS(vp->v_seqc_users == 1, vp); 6982 } 6983 6984 void 6985 vn_irflag_set_locked(struct vnode *vp, short toset) 6986 { 6987 short flags; 6988 6989 ASSERT_VI_LOCKED(vp, __func__); 6990 flags = vn_irflag_read(vp); 6991 VNASSERT((flags & toset) == 0, vp, 6992 ("%s: some of the passed flags already set (have %d, passed %d)\n", 6993 __func__, flags, toset)); 6994 atomic_store_short(&vp->v_irflag, flags | toset); 6995 } 6996 6997 void 6998 vn_irflag_set(struct vnode *vp, short toset) 6999 { 7000 7001 VI_LOCK(vp); 7002 vn_irflag_set_locked(vp, toset); 7003 VI_UNLOCK(vp); 7004 } 7005 7006 void 7007 vn_irflag_set_cond_locked(struct vnode *vp, short toset) 7008 { 7009 short flags; 7010 7011 ASSERT_VI_LOCKED(vp, __func__); 7012 flags = vn_irflag_read(vp); 7013 atomic_store_short(&vp->v_irflag, flags | toset); 7014 } 7015 7016 void 7017 vn_irflag_set_cond(struct vnode *vp, short toset) 7018 { 7019 7020 VI_LOCK(vp); 7021 vn_irflag_set_cond_locked(vp, toset); 7022 VI_UNLOCK(vp); 7023 } 7024 7025 void 7026 vn_irflag_unset_locked(struct vnode *vp, short tounset) 7027 { 7028 short flags; 7029 7030 ASSERT_VI_LOCKED(vp, __func__); 7031 flags = vn_irflag_read(vp); 7032 VNASSERT((flags & tounset) == tounset, vp, 7033 ("%s: some of the passed flags not set (have %d, passed %d)\n", 7034 __func__, flags, tounset)); 7035 atomic_store_short(&vp->v_irflag, flags & ~tounset); 7036 } 7037 7038 void 7039 vn_irflag_unset(struct vnode *vp, short tounset) 7040 { 7041 7042 VI_LOCK(vp); 7043 vn_irflag_unset_locked(vp, tounset); 7044 VI_UNLOCK(vp); 7045 } 7046 7047 int 7048 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred) 7049 { 7050 struct vattr vattr; 7051 int error; 7052 7053 ASSERT_VOP_LOCKED(vp, __func__); 7054 error = VOP_GETATTR(vp, &vattr, cred); 7055 if (__predict_true(error == 0)) { 7056 if (vattr.va_size <= OFF_MAX) 7057 *size = vattr.va_size; 7058 else 7059 error = EFBIG; 7060 } 7061 return (error); 7062 } 7063 7064 int 7065 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred) 7066 { 7067 int error; 7068 7069 VOP_LOCK(vp, LK_SHARED); 7070 error = vn_getsize_locked(vp, size, cred); 7071 VOP_UNLOCK(vp); 7072 return (error); 7073 } 7074 7075 #ifdef INVARIANTS 7076 void 7077 vn_set_state_validate(struct vnode *vp, enum vstate state) 7078 { 7079 7080 switch (vp->v_state) { 7081 case VSTATE_UNINITIALIZED: 7082 switch (state) { 7083 case VSTATE_CONSTRUCTED: 7084 case VSTATE_DESTROYING: 7085 return; 7086 default: 7087 break; 7088 } 7089 break; 7090 case VSTATE_CONSTRUCTED: 7091 ASSERT_VOP_ELOCKED(vp, __func__); 7092 switch (state) { 7093 case VSTATE_DESTROYING: 7094 return; 7095 default: 7096 break; 7097 } 7098 break; 7099 case VSTATE_DESTROYING: 7100 ASSERT_VOP_ELOCKED(vp, __func__); 7101 switch (state) { 7102 case VSTATE_DEAD: 7103 return; 7104 default: 7105 break; 7106 } 7107 break; 7108 case VSTATE_DEAD: 7109 switch (state) { 7110 case VSTATE_UNINITIALIZED: 7111 return; 7112 default: 7113 break; 7114 } 7115 break; 7116 } 7117 7118 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state); 7119 panic("invalid state transition %d -> %d\n", vp->v_state, state); 7120 } 7121 #endif 7122