xref: /freebsd/sys/kern/vfs_subr.c (revision 0f2bd1e89db1a2f09268edea21e0ead329e092df)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bio.h>
49 #include <sys/buf.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/event.h>
54 #include <sys/eventhandler.h>
55 #include <sys/extattr.h>
56 #include <sys/file.h>
57 #include <sys/fcntl.h>
58 #include <sys/jail.h>
59 #include <sys/kdb.h>
60 #include <sys/kernel.h>
61 #include <sys/kthread.h>
62 #include <sys/lockf.h>
63 #include <sys/malloc.h>
64 #include <sys/mount.h>
65 #include <sys/namei.h>
66 #include <sys/priv.h>
67 #include <sys/reboot.h>
68 #include <sys/sleepqueue.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vmmeter.h>
73 #include <sys/vnode.h>
74 
75 #include <machine/stdarg.h>
76 
77 #include <security/mac/mac_framework.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_kern.h>
86 #include <vm/uma.h>
87 
88 #ifdef DDB
89 #include <ddb/ddb.h>
90 #endif
91 
92 #define	WI_MPSAFEQ	0
93 #define	WI_GIANTQ	1
94 
95 static MALLOC_DEFINE(M_NETADDR, "subr_export_host", "Export host address structure");
96 
97 static void	delmntque(struct vnode *vp);
98 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
99 		    int slpflag, int slptimeo);
100 static void	syncer_shutdown(void *arg, int howto);
101 static int	vtryrecycle(struct vnode *vp);
102 static void	vbusy(struct vnode *vp);
103 static void	vinactive(struct vnode *, struct thread *);
104 static void	v_incr_usecount(struct vnode *);
105 static void	v_decr_usecount(struct vnode *);
106 static void	v_decr_useonly(struct vnode *);
107 static void	v_upgrade_usecount(struct vnode *);
108 static void	vfree(struct vnode *);
109 static void	vnlru_free(int);
110 static void	vgonel(struct vnode *);
111 static void	vfs_knllock(void *arg);
112 static void	vfs_knlunlock(void *arg);
113 static void	vfs_knl_assert_locked(void *arg);
114 static void	vfs_knl_assert_unlocked(void *arg);
115 static void	destroy_vpollinfo(struct vpollinfo *vi);
116 
117 /*
118  * Number of vnodes in existence.  Increased whenever getnewvnode()
119  * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
120  * vnode.
121  */
122 static unsigned long	numvnodes;
123 
124 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
125 
126 /*
127  * Conversion tables for conversion from vnode types to inode formats
128  * and back.
129  */
130 enum vtype iftovt_tab[16] = {
131 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
132 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
133 };
134 int vttoif_tab[10] = {
135 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
136 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
137 };
138 
139 /*
140  * List of vnodes that are ready for recycling.
141  */
142 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
143 
144 /*
145  * Free vnode target.  Free vnodes may simply be files which have been stat'd
146  * but not read.  This is somewhat common, and a small cache of such files
147  * should be kept to avoid recreation costs.
148  */
149 static u_long wantfreevnodes;
150 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
151 /* Number of vnodes in the free list. */
152 static u_long freevnodes;
153 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
154 
155 static int vlru_allow_cache_src;
156 SYSCTL_INT(_vfs, OID_AUTO, vlru_allow_cache_src, CTLFLAG_RW,
157     &vlru_allow_cache_src, 0, "Allow vlru to reclaim source vnode");
158 
159 /*
160  * Various variables used for debugging the new implementation of
161  * reassignbuf().
162  * XXX these are probably of (very) limited utility now.
163  */
164 static int reassignbufcalls;
165 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
166 
167 /*
168  * Cache for the mount type id assigned to NFS.  This is used for
169  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
170  */
171 int	nfs_mount_type = -1;
172 
173 /* To keep more than one thread at a time from running vfs_getnewfsid */
174 static struct mtx mntid_mtx;
175 
176 /*
177  * Lock for any access to the following:
178  *	vnode_free_list
179  *	numvnodes
180  *	freevnodes
181  */
182 static struct mtx vnode_free_list_mtx;
183 
184 /* Publicly exported FS */
185 struct nfs_public nfs_pub;
186 
187 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
188 static uma_zone_t vnode_zone;
189 static uma_zone_t vnodepoll_zone;
190 
191 /* Set to 1 to print out reclaim of active vnodes */
192 int	prtactive;
193 
194 /*
195  * The workitem queue.
196  *
197  * It is useful to delay writes of file data and filesystem metadata
198  * for tens of seconds so that quickly created and deleted files need
199  * not waste disk bandwidth being created and removed. To realize this,
200  * we append vnodes to a "workitem" queue. When running with a soft
201  * updates implementation, most pending metadata dependencies should
202  * not wait for more than a few seconds. Thus, mounted on block devices
203  * are delayed only about a half the time that file data is delayed.
204  * Similarly, directory updates are more critical, so are only delayed
205  * about a third the time that file data is delayed. Thus, there are
206  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
207  * one each second (driven off the filesystem syncer process). The
208  * syncer_delayno variable indicates the next queue that is to be processed.
209  * Items that need to be processed soon are placed in this queue:
210  *
211  *	syncer_workitem_pending[syncer_delayno]
212  *
213  * A delay of fifteen seconds is done by placing the request fifteen
214  * entries later in the queue:
215  *
216  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
217  *
218  */
219 static int syncer_delayno;
220 static long syncer_mask;
221 LIST_HEAD(synclist, bufobj);
222 static struct synclist *syncer_workitem_pending[2];
223 /*
224  * The sync_mtx protects:
225  *	bo->bo_synclist
226  *	sync_vnode_count
227  *	syncer_delayno
228  *	syncer_state
229  *	syncer_workitem_pending
230  *	syncer_worklist_len
231  *	rushjob
232  */
233 static struct mtx sync_mtx;
234 static struct cv sync_wakeup;
235 
236 #define SYNCER_MAXDELAY		32
237 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
238 static int syncdelay = 30;		/* max time to delay syncing data */
239 static int filedelay = 30;		/* time to delay syncing files */
240 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
241 static int dirdelay = 29;		/* time to delay syncing directories */
242 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
243 static int metadelay = 28;		/* time to delay syncing metadata */
244 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
245 static int rushjob;		/* number of slots to run ASAP */
246 static int stat_rush_requests;	/* number of times I/O speeded up */
247 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
248 
249 /*
250  * When shutting down the syncer, run it at four times normal speed.
251  */
252 #define SYNCER_SHUTDOWN_SPEEDUP		4
253 static int sync_vnode_count;
254 static int syncer_worklist_len;
255 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
256     syncer_state;
257 
258 /*
259  * Number of vnodes we want to exist at any one time.  This is mostly used
260  * to size hash tables in vnode-related code.  It is normally not used in
261  * getnewvnode(), as wantfreevnodes is normally nonzero.)
262  *
263  * XXX desiredvnodes is historical cruft and should not exist.
264  */
265 int desiredvnodes;
266 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
267     &desiredvnodes, 0, "Maximum number of vnodes");
268 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
269     &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
270 static int vnlru_nowhere;
271 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
272     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
273 
274 /*
275  * Macros to control when a vnode is freed and recycled.  All require
276  * the vnode interlock.
277  */
278 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
279 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
280 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
281 
282 
283 /*
284  * Initialize the vnode management data structures.
285  *
286  * Reevaluate the following cap on the number of vnodes after the physical
287  * memory size exceeds 512GB.  In the limit, as the physical memory size
288  * grows, the ratio of physical pages to vnodes approaches sixteen to one.
289  */
290 #ifndef	MAXVNODES_MAX
291 #define	MAXVNODES_MAX	(512 * (1024 * 1024 * 1024 / (int)PAGE_SIZE / 16))
292 #endif
293 static void
294 vntblinit(void *dummy __unused)
295 {
296 	int physvnodes, virtvnodes;
297 
298 	/*
299 	 * Desiredvnodes is a function of the physical memory size and the
300 	 * kernel's heap size.  Generally speaking, it scales with the
301 	 * physical memory size.  The ratio of desiredvnodes to physical pages
302 	 * is one to four until desiredvnodes exceeds 98,304.  Thereafter, the
303 	 * marginal ratio of desiredvnodes to physical pages is one to
304 	 * sixteen.  However, desiredvnodes is limited by the kernel's heap
305 	 * size.  The memory required by desiredvnodes vnodes and vm objects
306 	 * may not exceed one seventh of the kernel's heap size.
307 	 */
308 	physvnodes = maxproc + cnt.v_page_count / 16 + 3 * min(98304 * 4,
309 	    cnt.v_page_count) / 16;
310 	virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) +
311 	    sizeof(struct vnode)));
312 	desiredvnodes = min(physvnodes, virtvnodes);
313 	if (desiredvnodes > MAXVNODES_MAX) {
314 		if (bootverbose)
315 			printf("Reducing kern.maxvnodes %d -> %d\n",
316 			    desiredvnodes, MAXVNODES_MAX);
317 		desiredvnodes = MAXVNODES_MAX;
318 	}
319 	wantfreevnodes = desiredvnodes / 4;
320 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
321 	TAILQ_INIT(&vnode_free_list);
322 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
323 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
324 	    NULL, NULL, UMA_ALIGN_PTR, 0);
325 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
326 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
327 	/*
328 	 * Initialize the filesystem syncer.
329 	 */
330 	syncer_workitem_pending[WI_MPSAFEQ] = hashinit(syncer_maxdelay, M_VNODE,
331 	    &syncer_mask);
332 	syncer_workitem_pending[WI_GIANTQ] = hashinit(syncer_maxdelay, M_VNODE,
333 	    &syncer_mask);
334 	syncer_maxdelay = syncer_mask + 1;
335 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
336 	cv_init(&sync_wakeup, "syncer");
337 }
338 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
339 
340 
341 /*
342  * Mark a mount point as busy. Used to synchronize access and to delay
343  * unmounting. Eventually, mountlist_mtx is not released on failure.
344  */
345 int
346 vfs_busy(struct mount *mp, int flags)
347 {
348 
349 	MPASS((flags & ~MBF_MASK) == 0);
350 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
351 
352 	MNT_ILOCK(mp);
353 	MNT_REF(mp);
354 	/*
355 	 * If mount point is currenly being unmounted, sleep until the
356 	 * mount point fate is decided.  If thread doing the unmounting fails,
357 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
358 	 * that this mount point has survived the unmount attempt and vfs_busy
359 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
360 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
361 	 * about to be really destroyed.  vfs_busy needs to release its
362 	 * reference on the mount point in this case and return with ENOENT,
363 	 * telling the caller that mount mount it tried to busy is no longer
364 	 * valid.
365 	 */
366 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
367 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
368 			MNT_REL(mp);
369 			MNT_IUNLOCK(mp);
370 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
371 			    __func__);
372 			return (ENOENT);
373 		}
374 		if (flags & MBF_MNTLSTLOCK)
375 			mtx_unlock(&mountlist_mtx);
376 		mp->mnt_kern_flag |= MNTK_MWAIT;
377 		msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
378 		if (flags & MBF_MNTLSTLOCK)
379 			mtx_lock(&mountlist_mtx);
380 	}
381 	if (flags & MBF_MNTLSTLOCK)
382 		mtx_unlock(&mountlist_mtx);
383 	mp->mnt_lockref++;
384 	MNT_IUNLOCK(mp);
385 	return (0);
386 }
387 
388 /*
389  * Free a busy filesystem.
390  */
391 void
392 vfs_unbusy(struct mount *mp)
393 {
394 
395 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
396 	MNT_ILOCK(mp);
397 	MNT_REL(mp);
398 	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
399 	mp->mnt_lockref--;
400 	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
401 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
402 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
403 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
404 		wakeup(&mp->mnt_lockref);
405 	}
406 	MNT_IUNLOCK(mp);
407 }
408 
409 /*
410  * Lookup a mount point by filesystem identifier.
411  */
412 struct mount *
413 vfs_getvfs(fsid_t *fsid)
414 {
415 	struct mount *mp;
416 
417 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
418 	mtx_lock(&mountlist_mtx);
419 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
420 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
421 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
422 			vfs_ref(mp);
423 			mtx_unlock(&mountlist_mtx);
424 			return (mp);
425 		}
426 	}
427 	mtx_unlock(&mountlist_mtx);
428 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
429 	return ((struct mount *) 0);
430 }
431 
432 /*
433  * Lookup a mount point by filesystem identifier, busying it before
434  * returning.
435  */
436 struct mount *
437 vfs_busyfs(fsid_t *fsid)
438 {
439 	struct mount *mp;
440 	int error;
441 
442 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
443 	mtx_lock(&mountlist_mtx);
444 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
445 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
446 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
447 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
448 			if (error) {
449 				mtx_unlock(&mountlist_mtx);
450 				return (NULL);
451 			}
452 			return (mp);
453 		}
454 	}
455 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
456 	mtx_unlock(&mountlist_mtx);
457 	return ((struct mount *) 0);
458 }
459 
460 /*
461  * Check if a user can access privileged mount options.
462  */
463 int
464 vfs_suser(struct mount *mp, struct thread *td)
465 {
466 	int error;
467 
468 	/*
469 	 * If the thread is jailed, but this is not a jail-friendly file
470 	 * system, deny immediately.
471 	 */
472 	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
473 		return (EPERM);
474 
475 	/*
476 	 * If the file system was mounted outside the jail of the calling
477 	 * thread, deny immediately.
478 	 */
479 	if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
480 		return (EPERM);
481 
482 	/*
483 	 * If file system supports delegated administration, we don't check
484 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
485 	 * by the file system itself.
486 	 * If this is not the user that did original mount, we check for
487 	 * the PRIV_VFS_MOUNT_OWNER privilege.
488 	 */
489 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
490 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
491 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
492 			return (error);
493 	}
494 	return (0);
495 }
496 
497 /*
498  * Get a new unique fsid.  Try to make its val[0] unique, since this value
499  * will be used to create fake device numbers for stat().  Also try (but
500  * not so hard) make its val[0] unique mod 2^16, since some emulators only
501  * support 16-bit device numbers.  We end up with unique val[0]'s for the
502  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
503  *
504  * Keep in mind that several mounts may be running in parallel.  Starting
505  * the search one past where the previous search terminated is both a
506  * micro-optimization and a defense against returning the same fsid to
507  * different mounts.
508  */
509 void
510 vfs_getnewfsid(struct mount *mp)
511 {
512 	static uint16_t mntid_base;
513 	struct mount *nmp;
514 	fsid_t tfsid;
515 	int mtype;
516 
517 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
518 	mtx_lock(&mntid_mtx);
519 	mtype = mp->mnt_vfc->vfc_typenum;
520 	tfsid.val[1] = mtype;
521 	mtype = (mtype & 0xFF) << 24;
522 	for (;;) {
523 		tfsid.val[0] = makedev(255,
524 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
525 		mntid_base++;
526 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
527 			break;
528 		vfs_rel(nmp);
529 	}
530 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
531 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
532 	mtx_unlock(&mntid_mtx);
533 }
534 
535 /*
536  * Knob to control the precision of file timestamps:
537  *
538  *   0 = seconds only; nanoseconds zeroed.
539  *   1 = seconds and nanoseconds, accurate within 1/HZ.
540  *   2 = seconds and nanoseconds, truncated to microseconds.
541  * >=3 = seconds and nanoseconds, maximum precision.
542  */
543 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
544 
545 static int timestamp_precision = TSP_SEC;
546 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
547     &timestamp_precision, 0, "");
548 
549 /*
550  * Get a current timestamp.
551  */
552 void
553 vfs_timestamp(struct timespec *tsp)
554 {
555 	struct timeval tv;
556 
557 	switch (timestamp_precision) {
558 	case TSP_SEC:
559 		tsp->tv_sec = time_second;
560 		tsp->tv_nsec = 0;
561 		break;
562 	case TSP_HZ:
563 		getnanotime(tsp);
564 		break;
565 	case TSP_USEC:
566 		microtime(&tv);
567 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
568 		break;
569 	case TSP_NSEC:
570 	default:
571 		nanotime(tsp);
572 		break;
573 	}
574 }
575 
576 /*
577  * Set vnode attributes to VNOVAL
578  */
579 void
580 vattr_null(struct vattr *vap)
581 {
582 
583 	vap->va_type = VNON;
584 	vap->va_size = VNOVAL;
585 	vap->va_bytes = VNOVAL;
586 	vap->va_mode = VNOVAL;
587 	vap->va_nlink = VNOVAL;
588 	vap->va_uid = VNOVAL;
589 	vap->va_gid = VNOVAL;
590 	vap->va_fsid = VNOVAL;
591 	vap->va_fileid = VNOVAL;
592 	vap->va_blocksize = VNOVAL;
593 	vap->va_rdev = VNOVAL;
594 	vap->va_atime.tv_sec = VNOVAL;
595 	vap->va_atime.tv_nsec = VNOVAL;
596 	vap->va_mtime.tv_sec = VNOVAL;
597 	vap->va_mtime.tv_nsec = VNOVAL;
598 	vap->va_ctime.tv_sec = VNOVAL;
599 	vap->va_ctime.tv_nsec = VNOVAL;
600 	vap->va_birthtime.tv_sec = VNOVAL;
601 	vap->va_birthtime.tv_nsec = VNOVAL;
602 	vap->va_flags = VNOVAL;
603 	vap->va_gen = VNOVAL;
604 	vap->va_vaflags = 0;
605 }
606 
607 /*
608  * This routine is called when we have too many vnodes.  It attempts
609  * to free <count> vnodes and will potentially free vnodes that still
610  * have VM backing store (VM backing store is typically the cause
611  * of a vnode blowout so we want to do this).  Therefore, this operation
612  * is not considered cheap.
613  *
614  * A number of conditions may prevent a vnode from being reclaimed.
615  * the buffer cache may have references on the vnode, a directory
616  * vnode may still have references due to the namei cache representing
617  * underlying files, or the vnode may be in active use.   It is not
618  * desireable to reuse such vnodes.  These conditions may cause the
619  * number of vnodes to reach some minimum value regardless of what
620  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
621  */
622 static int
623 vlrureclaim(struct mount *mp)
624 {
625 	struct vnode *vp;
626 	int done;
627 	int trigger;
628 	int usevnodes;
629 	int count;
630 
631 	/*
632 	 * Calculate the trigger point, don't allow user
633 	 * screwups to blow us up.   This prevents us from
634 	 * recycling vnodes with lots of resident pages.  We
635 	 * aren't trying to free memory, we are trying to
636 	 * free vnodes.
637 	 */
638 	usevnodes = desiredvnodes;
639 	if (usevnodes <= 0)
640 		usevnodes = 1;
641 	trigger = cnt.v_page_count * 2 / usevnodes;
642 	done = 0;
643 	vn_start_write(NULL, &mp, V_WAIT);
644 	MNT_ILOCK(mp);
645 	count = mp->mnt_nvnodelistsize / 10 + 1;
646 	while (count != 0) {
647 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
648 		while (vp != NULL && vp->v_type == VMARKER)
649 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
650 		if (vp == NULL)
651 			break;
652 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
653 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
654 		--count;
655 		if (!VI_TRYLOCK(vp))
656 			goto next_iter;
657 		/*
658 		 * If it's been deconstructed already, it's still
659 		 * referenced, or it exceeds the trigger, skip it.
660 		 */
661 		if (vp->v_usecount ||
662 		    (!vlru_allow_cache_src &&
663 			!LIST_EMPTY(&(vp)->v_cache_src)) ||
664 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
665 		    vp->v_object->resident_page_count > trigger)) {
666 			VI_UNLOCK(vp);
667 			goto next_iter;
668 		}
669 		MNT_IUNLOCK(mp);
670 		vholdl(vp);
671 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
672 			vdrop(vp);
673 			goto next_iter_mntunlocked;
674 		}
675 		VI_LOCK(vp);
676 		/*
677 		 * v_usecount may have been bumped after VOP_LOCK() dropped
678 		 * the vnode interlock and before it was locked again.
679 		 *
680 		 * It is not necessary to recheck VI_DOOMED because it can
681 		 * only be set by another thread that holds both the vnode
682 		 * lock and vnode interlock.  If another thread has the
683 		 * vnode lock before we get to VOP_LOCK() and obtains the
684 		 * vnode interlock after VOP_LOCK() drops the vnode
685 		 * interlock, the other thread will be unable to drop the
686 		 * vnode lock before our VOP_LOCK() call fails.
687 		 */
688 		if (vp->v_usecount ||
689 		    (!vlru_allow_cache_src &&
690 			!LIST_EMPTY(&(vp)->v_cache_src)) ||
691 		    (vp->v_object != NULL &&
692 		    vp->v_object->resident_page_count > trigger)) {
693 			VOP_UNLOCK(vp, LK_INTERLOCK);
694 			goto next_iter_mntunlocked;
695 		}
696 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
697 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
698 		vgonel(vp);
699 		VOP_UNLOCK(vp, 0);
700 		vdropl(vp);
701 		done++;
702 next_iter_mntunlocked:
703 		if ((count % 256) != 0)
704 			goto relock_mnt;
705 		goto yield;
706 next_iter:
707 		if ((count % 256) != 0)
708 			continue;
709 		MNT_IUNLOCK(mp);
710 yield:
711 		uio_yield();
712 relock_mnt:
713 		MNT_ILOCK(mp);
714 	}
715 	MNT_IUNLOCK(mp);
716 	vn_finished_write(mp);
717 	return done;
718 }
719 
720 /*
721  * Attempt to keep the free list at wantfreevnodes length.
722  */
723 static void
724 vnlru_free(int count)
725 {
726 	struct vnode *vp;
727 	int vfslocked;
728 
729 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
730 	for (; count > 0; count--) {
731 		vp = TAILQ_FIRST(&vnode_free_list);
732 		/*
733 		 * The list can be modified while the free_list_mtx
734 		 * has been dropped and vp could be NULL here.
735 		 */
736 		if (!vp)
737 			break;
738 		VNASSERT(vp->v_op != NULL, vp,
739 		    ("vnlru_free: vnode already reclaimed."));
740 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
741 		/*
742 		 * Don't recycle if we can't get the interlock.
743 		 */
744 		if (!VI_TRYLOCK(vp)) {
745 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
746 			continue;
747 		}
748 		VNASSERT(VCANRECYCLE(vp), vp,
749 		    ("vp inconsistent on freelist"));
750 		freevnodes--;
751 		vp->v_iflag &= ~VI_FREE;
752 		vholdl(vp);
753 		mtx_unlock(&vnode_free_list_mtx);
754 		VI_UNLOCK(vp);
755 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
756 		vtryrecycle(vp);
757 		VFS_UNLOCK_GIANT(vfslocked);
758 		/*
759 		 * If the recycled succeeded this vdrop will actually free
760 		 * the vnode.  If not it will simply place it back on
761 		 * the free list.
762 		 */
763 		vdrop(vp);
764 		mtx_lock(&vnode_free_list_mtx);
765 	}
766 }
767 /*
768  * Attempt to recycle vnodes in a context that is always safe to block.
769  * Calling vlrurecycle() from the bowels of filesystem code has some
770  * interesting deadlock problems.
771  */
772 static struct proc *vnlruproc;
773 static int vnlruproc_sig;
774 
775 static void
776 vnlru_proc(void)
777 {
778 	struct mount *mp, *nmp;
779 	int done, vfslocked;
780 	struct proc *p = vnlruproc;
781 
782 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
783 	    SHUTDOWN_PRI_FIRST);
784 
785 	for (;;) {
786 		kproc_suspend_check(p);
787 		mtx_lock(&vnode_free_list_mtx);
788 		if (freevnodes > wantfreevnodes)
789 			vnlru_free(freevnodes - wantfreevnodes);
790 		if (numvnodes <= desiredvnodes * 9 / 10) {
791 			vnlruproc_sig = 0;
792 			wakeup(&vnlruproc_sig);
793 			msleep(vnlruproc, &vnode_free_list_mtx,
794 			    PVFS|PDROP, "vlruwt", hz);
795 			continue;
796 		}
797 		mtx_unlock(&vnode_free_list_mtx);
798 		done = 0;
799 		mtx_lock(&mountlist_mtx);
800 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
801 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
802 				nmp = TAILQ_NEXT(mp, mnt_list);
803 				continue;
804 			}
805 			vfslocked = VFS_LOCK_GIANT(mp);
806 			done += vlrureclaim(mp);
807 			VFS_UNLOCK_GIANT(vfslocked);
808 			mtx_lock(&mountlist_mtx);
809 			nmp = TAILQ_NEXT(mp, mnt_list);
810 			vfs_unbusy(mp);
811 		}
812 		mtx_unlock(&mountlist_mtx);
813 		if (done == 0) {
814 #if 0
815 			/* These messages are temporary debugging aids */
816 			if (vnlru_nowhere < 5)
817 				printf("vnlru process getting nowhere..\n");
818 			else if (vnlru_nowhere == 5)
819 				printf("vnlru process messages stopped.\n");
820 #endif
821 			vnlru_nowhere++;
822 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
823 		} else
824 			uio_yield();
825 	}
826 }
827 
828 static struct kproc_desc vnlru_kp = {
829 	"vnlru",
830 	vnlru_proc,
831 	&vnlruproc
832 };
833 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
834     &vnlru_kp);
835 
836 /*
837  * Routines having to do with the management of the vnode table.
838  */
839 
840 void
841 vdestroy(struct vnode *vp)
842 {
843 	struct bufobj *bo;
844 
845 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
846 	mtx_lock(&vnode_free_list_mtx);
847 	numvnodes--;
848 	mtx_unlock(&vnode_free_list_mtx);
849 	bo = &vp->v_bufobj;
850 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
851 	    ("cleaned vnode still on the free list."));
852 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
853 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
854 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
855 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
856 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
857 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
858 	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
859 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
860 	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
861 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
862 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
863 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
864 	VI_UNLOCK(vp);
865 #ifdef MAC
866 	mac_vnode_destroy(vp);
867 #endif
868 	if (vp->v_pollinfo != NULL)
869 		destroy_vpollinfo(vp->v_pollinfo);
870 #ifdef INVARIANTS
871 	/* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
872 	vp->v_op = NULL;
873 #endif
874 	lockdestroy(vp->v_vnlock);
875 	mtx_destroy(&vp->v_interlock);
876 	mtx_destroy(BO_MTX(bo));
877 	uma_zfree(vnode_zone, vp);
878 }
879 
880 /*
881  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
882  * before we actually vgone().  This function must be called with the vnode
883  * held to prevent the vnode from being returned to the free list midway
884  * through vgone().
885  */
886 static int
887 vtryrecycle(struct vnode *vp)
888 {
889 	struct mount *vnmp;
890 
891 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
892 	VNASSERT(vp->v_holdcnt, vp,
893 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
894 	/*
895 	 * This vnode may found and locked via some other list, if so we
896 	 * can't recycle it yet.
897 	 */
898 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
899 		CTR2(KTR_VFS,
900 		    "%s: impossible to recycle, vp %p lock is already held",
901 		    __func__, vp);
902 		return (EWOULDBLOCK);
903 	}
904 	/*
905 	 * Don't recycle if its filesystem is being suspended.
906 	 */
907 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
908 		VOP_UNLOCK(vp, 0);
909 		CTR2(KTR_VFS,
910 		    "%s: impossible to recycle, cannot start the write for %p",
911 		    __func__, vp);
912 		return (EBUSY);
913 	}
914 	/*
915 	 * If we got this far, we need to acquire the interlock and see if
916 	 * anyone picked up this vnode from another list.  If not, we will
917 	 * mark it with DOOMED via vgonel() so that anyone who does find it
918 	 * will skip over it.
919 	 */
920 	VI_LOCK(vp);
921 	if (vp->v_usecount) {
922 		VOP_UNLOCK(vp, LK_INTERLOCK);
923 		vn_finished_write(vnmp);
924 		CTR2(KTR_VFS,
925 		    "%s: impossible to recycle, %p is already referenced",
926 		    __func__, vp);
927 		return (EBUSY);
928 	}
929 	if ((vp->v_iflag & VI_DOOMED) == 0)
930 		vgonel(vp);
931 	VOP_UNLOCK(vp, LK_INTERLOCK);
932 	vn_finished_write(vnmp);
933 	return (0);
934 }
935 
936 /*
937  * Return the next vnode from the free list.
938  */
939 int
940 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
941     struct vnode **vpp)
942 {
943 	struct vnode *vp = NULL;
944 	struct bufobj *bo;
945 
946 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
947 	mtx_lock(&vnode_free_list_mtx);
948 	/*
949 	 * Lend our context to reclaim vnodes if they've exceeded the max.
950 	 */
951 	if (freevnodes > wantfreevnodes)
952 		vnlru_free(1);
953 	/*
954 	 * Wait for available vnodes.
955 	 */
956 	if (numvnodes > desiredvnodes) {
957 		if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
958 			/*
959 			 * File system is beeing suspended, we cannot risk a
960 			 * deadlock here, so allocate new vnode anyway.
961 			 */
962 			if (freevnodes > wantfreevnodes)
963 				vnlru_free(freevnodes - wantfreevnodes);
964 			goto alloc;
965 		}
966 		if (vnlruproc_sig == 0) {
967 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
968 			wakeup(vnlruproc);
969 		}
970 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
971 		    "vlruwk", hz);
972 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
973 		if (numvnodes > desiredvnodes) {
974 			mtx_unlock(&vnode_free_list_mtx);
975 			return (ENFILE);
976 		}
977 #endif
978 	}
979 alloc:
980 	numvnodes++;
981 	mtx_unlock(&vnode_free_list_mtx);
982 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
983 	/*
984 	 * Setup locks.
985 	 */
986 	vp->v_vnlock = &vp->v_lock;
987 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
988 	/*
989 	 * By default, don't allow shared locks unless filesystems
990 	 * opt-in.
991 	 */
992 	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
993 	/*
994 	 * Initialize bufobj.
995 	 */
996 	bo = &vp->v_bufobj;
997 	bo->__bo_vnode = vp;
998 	mtx_init(BO_MTX(bo), "bufobj interlock", NULL, MTX_DEF);
999 	bo->bo_ops = &buf_ops_bio;
1000 	bo->bo_private = vp;
1001 	TAILQ_INIT(&bo->bo_clean.bv_hd);
1002 	TAILQ_INIT(&bo->bo_dirty.bv_hd);
1003 	/*
1004 	 * Initialize namecache.
1005 	 */
1006 	LIST_INIT(&vp->v_cache_src);
1007 	TAILQ_INIT(&vp->v_cache_dst);
1008 	/*
1009 	 * Finalize various vnode identity bits.
1010 	 */
1011 	vp->v_type = VNON;
1012 	vp->v_tag = tag;
1013 	vp->v_op = vops;
1014 	v_incr_usecount(vp);
1015 	vp->v_data = 0;
1016 #ifdef MAC
1017 	mac_vnode_init(vp);
1018 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1019 		mac_vnode_associate_singlelabel(mp, vp);
1020 	else if (mp == NULL && vops != &dead_vnodeops)
1021 		printf("NULL mp in getnewvnode()\n");
1022 #endif
1023 	if (mp != NULL) {
1024 		bo->bo_bsize = mp->mnt_stat.f_iosize;
1025 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1026 			vp->v_vflag |= VV_NOKNOTE;
1027 	}
1028 
1029 	*vpp = vp;
1030 	return (0);
1031 }
1032 
1033 /*
1034  * Delete from old mount point vnode list, if on one.
1035  */
1036 static void
1037 delmntque(struct vnode *vp)
1038 {
1039 	struct mount *mp;
1040 
1041 	mp = vp->v_mount;
1042 	if (mp == NULL)
1043 		return;
1044 	MNT_ILOCK(mp);
1045 	vp->v_mount = NULL;
1046 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1047 		("bad mount point vnode list size"));
1048 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1049 	mp->mnt_nvnodelistsize--;
1050 	MNT_REL(mp);
1051 	MNT_IUNLOCK(mp);
1052 }
1053 
1054 static void
1055 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1056 {
1057 
1058 	vp->v_data = NULL;
1059 	vp->v_op = &dead_vnodeops;
1060 	/* XXX non mp-safe fs may still call insmntque with vnode
1061 	   unlocked */
1062 	if (!VOP_ISLOCKED(vp))
1063 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1064 	vgone(vp);
1065 	vput(vp);
1066 }
1067 
1068 /*
1069  * Insert into list of vnodes for the new mount point, if available.
1070  */
1071 int
1072 insmntque1(struct vnode *vp, struct mount *mp,
1073 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1074 {
1075 	int locked;
1076 
1077 	KASSERT(vp->v_mount == NULL,
1078 		("insmntque: vnode already on per mount vnode list"));
1079 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1080 #ifdef DEBUG_VFS_LOCKS
1081 	if (!VFS_NEEDSGIANT(mp))
1082 		ASSERT_VOP_ELOCKED(vp,
1083 		    "insmntque: mp-safe fs and non-locked vp");
1084 #endif
1085 	MNT_ILOCK(mp);
1086 	if ((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1087 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1088 	     mp->mnt_nvnodelistsize == 0)) {
1089 		locked = VOP_ISLOCKED(vp);
1090 		if (!locked || (locked == LK_EXCLUSIVE &&
1091 		     (vp->v_vflag & VV_FORCEINSMQ) == 0)) {
1092 			MNT_IUNLOCK(mp);
1093 			if (dtr != NULL)
1094 				dtr(vp, dtr_arg);
1095 			return (EBUSY);
1096 		}
1097 	}
1098 	vp->v_mount = mp;
1099 	MNT_REF(mp);
1100 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1101 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1102 		("neg mount point vnode list size"));
1103 	mp->mnt_nvnodelistsize++;
1104 	MNT_IUNLOCK(mp);
1105 	return (0);
1106 }
1107 
1108 int
1109 insmntque(struct vnode *vp, struct mount *mp)
1110 {
1111 
1112 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1113 }
1114 
1115 /*
1116  * Flush out and invalidate all buffers associated with a bufobj
1117  * Called with the underlying object locked.
1118  */
1119 int
1120 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1121 {
1122 	int error;
1123 
1124 	BO_LOCK(bo);
1125 	if (flags & V_SAVE) {
1126 		error = bufobj_wwait(bo, slpflag, slptimeo);
1127 		if (error) {
1128 			BO_UNLOCK(bo);
1129 			return (error);
1130 		}
1131 		if (bo->bo_dirty.bv_cnt > 0) {
1132 			BO_UNLOCK(bo);
1133 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1134 				return (error);
1135 			/*
1136 			 * XXX We could save a lock/unlock if this was only
1137 			 * enabled under INVARIANTS
1138 			 */
1139 			BO_LOCK(bo);
1140 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1141 				panic("vinvalbuf: dirty bufs");
1142 		}
1143 	}
1144 	/*
1145 	 * If you alter this loop please notice that interlock is dropped and
1146 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1147 	 * no race conditions occur from this.
1148 	 */
1149 	do {
1150 		error = flushbuflist(&bo->bo_clean,
1151 		    flags, bo, slpflag, slptimeo);
1152 		if (error == 0)
1153 			error = flushbuflist(&bo->bo_dirty,
1154 			    flags, bo, slpflag, slptimeo);
1155 		if (error != 0 && error != EAGAIN) {
1156 			BO_UNLOCK(bo);
1157 			return (error);
1158 		}
1159 	} while (error != 0);
1160 
1161 	/*
1162 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1163 	 * have write I/O in-progress but if there is a VM object then the
1164 	 * VM object can also have read-I/O in-progress.
1165 	 */
1166 	do {
1167 		bufobj_wwait(bo, 0, 0);
1168 		BO_UNLOCK(bo);
1169 		if (bo->bo_object != NULL) {
1170 			VM_OBJECT_LOCK(bo->bo_object);
1171 			vm_object_pip_wait(bo->bo_object, "bovlbx");
1172 			VM_OBJECT_UNLOCK(bo->bo_object);
1173 		}
1174 		BO_LOCK(bo);
1175 	} while (bo->bo_numoutput > 0);
1176 	BO_UNLOCK(bo);
1177 
1178 	/*
1179 	 * Destroy the copy in the VM cache, too.
1180 	 */
1181 	if (bo->bo_object != NULL && (flags & (V_ALT | V_NORMAL)) == 0) {
1182 		VM_OBJECT_LOCK(bo->bo_object);
1183 		vm_object_page_remove(bo->bo_object, 0, 0,
1184 			(flags & V_SAVE) ? TRUE : FALSE);
1185 		VM_OBJECT_UNLOCK(bo->bo_object);
1186 	}
1187 
1188 #ifdef INVARIANTS
1189 	BO_LOCK(bo);
1190 	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
1191 	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1192 		panic("vinvalbuf: flush failed");
1193 	BO_UNLOCK(bo);
1194 #endif
1195 	return (0);
1196 }
1197 
1198 /*
1199  * Flush out and invalidate all buffers associated with a vnode.
1200  * Called with the underlying object locked.
1201  */
1202 int
1203 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1204 {
1205 
1206 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1207 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1208 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1209 }
1210 
1211 /*
1212  * Flush out buffers on the specified list.
1213  *
1214  */
1215 static int
1216 flushbuflist( struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1217     int slptimeo)
1218 {
1219 	struct buf *bp, *nbp;
1220 	int retval, error;
1221 	daddr_t lblkno;
1222 	b_xflags_t xflags;
1223 
1224 	ASSERT_BO_LOCKED(bo);
1225 
1226 	retval = 0;
1227 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1228 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1229 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1230 			continue;
1231 		}
1232 		lblkno = 0;
1233 		xflags = 0;
1234 		if (nbp != NULL) {
1235 			lblkno = nbp->b_lblkno;
1236 			xflags = nbp->b_xflags &
1237 				(BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
1238 		}
1239 		retval = EAGAIN;
1240 		error = BUF_TIMELOCK(bp,
1241 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1242 		    "flushbuf", slpflag, slptimeo);
1243 		if (error) {
1244 			BO_LOCK(bo);
1245 			return (error != ENOLCK ? error : EAGAIN);
1246 		}
1247 		KASSERT(bp->b_bufobj == bo,
1248 		    ("bp %p wrong b_bufobj %p should be %p",
1249 		    bp, bp->b_bufobj, bo));
1250 		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1251 			BUF_UNLOCK(bp);
1252 			BO_LOCK(bo);
1253 			return (EAGAIN);
1254 		}
1255 		/*
1256 		 * XXX Since there are no node locks for NFS, I
1257 		 * believe there is a slight chance that a delayed
1258 		 * write will occur while sleeping just above, so
1259 		 * check for it.
1260 		 */
1261 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1262 		    (flags & V_SAVE)) {
1263 			BO_LOCK(bo);
1264 			bremfree(bp);
1265 			BO_UNLOCK(bo);
1266 			bp->b_flags |= B_ASYNC;
1267 			bwrite(bp);
1268 			BO_LOCK(bo);
1269 			return (EAGAIN);	/* XXX: why not loop ? */
1270 		}
1271 		BO_LOCK(bo);
1272 		bremfree(bp);
1273 		BO_UNLOCK(bo);
1274 		bp->b_flags |= (B_INVAL | B_RELBUF);
1275 		bp->b_flags &= ~B_ASYNC;
1276 		brelse(bp);
1277 		BO_LOCK(bo);
1278 		if (nbp != NULL &&
1279 		    (nbp->b_bufobj != bo ||
1280 		     nbp->b_lblkno != lblkno ||
1281 		     (nbp->b_xflags &
1282 		      (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1283 			break;			/* nbp invalid */
1284 	}
1285 	return (retval);
1286 }
1287 
1288 /*
1289  * Truncate a file's buffer and pages to a specified length.  This
1290  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1291  * sync activity.
1292  */
1293 int
1294 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td,
1295     off_t length, int blksize)
1296 {
1297 	struct buf *bp, *nbp;
1298 	int anyfreed;
1299 	int trunclbn;
1300 	struct bufobj *bo;
1301 
1302 	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1303 	    vp, cred, blksize, (uintmax_t)length);
1304 
1305 	/*
1306 	 * Round up to the *next* lbn.
1307 	 */
1308 	trunclbn = (length + blksize - 1) / blksize;
1309 
1310 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1311 restart:
1312 	bo = &vp->v_bufobj;
1313 	BO_LOCK(bo);
1314 	anyfreed = 1;
1315 	for (;anyfreed;) {
1316 		anyfreed = 0;
1317 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1318 			if (bp->b_lblkno < trunclbn)
1319 				continue;
1320 			if (BUF_LOCK(bp,
1321 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1322 			    BO_MTX(bo)) == ENOLCK)
1323 				goto restart;
1324 
1325 			BO_LOCK(bo);
1326 			bremfree(bp);
1327 			BO_UNLOCK(bo);
1328 			bp->b_flags |= (B_INVAL | B_RELBUF);
1329 			bp->b_flags &= ~B_ASYNC;
1330 			brelse(bp);
1331 			anyfreed = 1;
1332 
1333 			if (nbp != NULL &&
1334 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1335 			    (nbp->b_vp != vp) ||
1336 			    (nbp->b_flags & B_DELWRI))) {
1337 				goto restart;
1338 			}
1339 			BO_LOCK(bo);
1340 		}
1341 
1342 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1343 			if (bp->b_lblkno < trunclbn)
1344 				continue;
1345 			if (BUF_LOCK(bp,
1346 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1347 			    BO_MTX(bo)) == ENOLCK)
1348 				goto restart;
1349 			BO_LOCK(bo);
1350 			bremfree(bp);
1351 			BO_UNLOCK(bo);
1352 			bp->b_flags |= (B_INVAL | B_RELBUF);
1353 			bp->b_flags &= ~B_ASYNC;
1354 			brelse(bp);
1355 			anyfreed = 1;
1356 			if (nbp != NULL &&
1357 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1358 			    (nbp->b_vp != vp) ||
1359 			    (nbp->b_flags & B_DELWRI) == 0)) {
1360 				goto restart;
1361 			}
1362 			BO_LOCK(bo);
1363 		}
1364 	}
1365 
1366 	if (length > 0) {
1367 restartsync:
1368 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1369 			if (bp->b_lblkno > 0)
1370 				continue;
1371 			/*
1372 			 * Since we hold the vnode lock this should only
1373 			 * fail if we're racing with the buf daemon.
1374 			 */
1375 			if (BUF_LOCK(bp,
1376 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1377 			    BO_MTX(bo)) == ENOLCK) {
1378 				goto restart;
1379 			}
1380 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1381 			    ("buf(%p) on dirty queue without DELWRI", bp));
1382 
1383 			BO_LOCK(bo);
1384 			bremfree(bp);
1385 			BO_UNLOCK(bo);
1386 			bawrite(bp);
1387 			BO_LOCK(bo);
1388 			goto restartsync;
1389 		}
1390 	}
1391 
1392 	bufobj_wwait(bo, 0, 0);
1393 	BO_UNLOCK(bo);
1394 	vnode_pager_setsize(vp, length);
1395 
1396 	return (0);
1397 }
1398 
1399 /*
1400  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1401  *		 a vnode.
1402  *
1403  *	NOTE: We have to deal with the special case of a background bitmap
1404  *	buffer, a situation where two buffers will have the same logical
1405  *	block offset.  We want (1) only the foreground buffer to be accessed
1406  *	in a lookup and (2) must differentiate between the foreground and
1407  *	background buffer in the splay tree algorithm because the splay
1408  *	tree cannot normally handle multiple entities with the same 'index'.
1409  *	We accomplish this by adding differentiating flags to the splay tree's
1410  *	numerical domain.
1411  */
1412 static
1413 struct buf *
1414 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1415 {
1416 	struct buf dummy;
1417 	struct buf *lefttreemax, *righttreemin, *y;
1418 
1419 	if (root == NULL)
1420 		return (NULL);
1421 	lefttreemax = righttreemin = &dummy;
1422 	for (;;) {
1423 		if (lblkno < root->b_lblkno ||
1424 		    (lblkno == root->b_lblkno &&
1425 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1426 			if ((y = root->b_left) == NULL)
1427 				break;
1428 			if (lblkno < y->b_lblkno) {
1429 				/* Rotate right. */
1430 				root->b_left = y->b_right;
1431 				y->b_right = root;
1432 				root = y;
1433 				if ((y = root->b_left) == NULL)
1434 					break;
1435 			}
1436 			/* Link into the new root's right tree. */
1437 			righttreemin->b_left = root;
1438 			righttreemin = root;
1439 		} else if (lblkno > root->b_lblkno ||
1440 		    (lblkno == root->b_lblkno &&
1441 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1442 			if ((y = root->b_right) == NULL)
1443 				break;
1444 			if (lblkno > y->b_lblkno) {
1445 				/* Rotate left. */
1446 				root->b_right = y->b_left;
1447 				y->b_left = root;
1448 				root = y;
1449 				if ((y = root->b_right) == NULL)
1450 					break;
1451 			}
1452 			/* Link into the new root's left tree. */
1453 			lefttreemax->b_right = root;
1454 			lefttreemax = root;
1455 		} else {
1456 			break;
1457 		}
1458 		root = y;
1459 	}
1460 	/* Assemble the new root. */
1461 	lefttreemax->b_right = root->b_left;
1462 	righttreemin->b_left = root->b_right;
1463 	root->b_left = dummy.b_right;
1464 	root->b_right = dummy.b_left;
1465 	return (root);
1466 }
1467 
1468 static void
1469 buf_vlist_remove(struct buf *bp)
1470 {
1471 	struct buf *root;
1472 	struct bufv *bv;
1473 
1474 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1475 	ASSERT_BO_LOCKED(bp->b_bufobj);
1476 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1477 	    (BX_VNDIRTY|BX_VNCLEAN),
1478 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1479 	if (bp->b_xflags & BX_VNDIRTY)
1480 		bv = &bp->b_bufobj->bo_dirty;
1481 	else
1482 		bv = &bp->b_bufobj->bo_clean;
1483 	if (bp != bv->bv_root) {
1484 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1485 		KASSERT(root == bp, ("splay lookup failed in remove"));
1486 	}
1487 	if (bp->b_left == NULL) {
1488 		root = bp->b_right;
1489 	} else {
1490 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1491 		root->b_right = bp->b_right;
1492 	}
1493 	bv->bv_root = root;
1494 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1495 	bv->bv_cnt--;
1496 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1497 }
1498 
1499 /*
1500  * Add the buffer to the sorted clean or dirty block list using a
1501  * splay tree algorithm.
1502  *
1503  * NOTE: xflags is passed as a constant, optimizing this inline function!
1504  */
1505 static void
1506 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1507 {
1508 	struct buf *root;
1509 	struct bufv *bv;
1510 
1511 	ASSERT_BO_LOCKED(bo);
1512 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1513 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1514 	bp->b_xflags |= xflags;
1515 	if (xflags & BX_VNDIRTY)
1516 		bv = &bo->bo_dirty;
1517 	else
1518 		bv = &bo->bo_clean;
1519 
1520 	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1521 	if (root == NULL) {
1522 		bp->b_left = NULL;
1523 		bp->b_right = NULL;
1524 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1525 	} else if (bp->b_lblkno < root->b_lblkno ||
1526 	    (bp->b_lblkno == root->b_lblkno &&
1527 	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1528 		bp->b_left = root->b_left;
1529 		bp->b_right = root;
1530 		root->b_left = NULL;
1531 		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1532 	} else {
1533 		bp->b_right = root->b_right;
1534 		bp->b_left = root;
1535 		root->b_right = NULL;
1536 		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1537 	}
1538 	bv->bv_cnt++;
1539 	bv->bv_root = bp;
1540 }
1541 
1542 /*
1543  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1544  * shadow buffers used in background bitmap writes.
1545  *
1546  * This code isn't quite efficient as it could be because we are maintaining
1547  * two sorted lists and do not know which list the block resides in.
1548  *
1549  * During a "make buildworld" the desired buffer is found at one of
1550  * the roots more than 60% of the time.  Thus, checking both roots
1551  * before performing either splay eliminates unnecessary splays on the
1552  * first tree splayed.
1553  */
1554 struct buf *
1555 gbincore(struct bufobj *bo, daddr_t lblkno)
1556 {
1557 	struct buf *bp;
1558 
1559 	ASSERT_BO_LOCKED(bo);
1560 	if ((bp = bo->bo_clean.bv_root) != NULL &&
1561 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1562 		return (bp);
1563 	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1564 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1565 		return (bp);
1566 	if ((bp = bo->bo_clean.bv_root) != NULL) {
1567 		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1568 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1569 			return (bp);
1570 	}
1571 	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1572 		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1573 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1574 			return (bp);
1575 	}
1576 	return (NULL);
1577 }
1578 
1579 /*
1580  * Associate a buffer with a vnode.
1581  */
1582 void
1583 bgetvp(struct vnode *vp, struct buf *bp)
1584 {
1585 	struct bufobj *bo;
1586 
1587 	bo = &vp->v_bufobj;
1588 	ASSERT_BO_LOCKED(bo);
1589 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1590 
1591 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1592 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1593 	    ("bgetvp: bp already attached! %p", bp));
1594 
1595 	vhold(vp);
1596 	if (VFS_NEEDSGIANT(vp->v_mount) || bo->bo_flag & BO_NEEDSGIANT)
1597 		bp->b_flags |= B_NEEDSGIANT;
1598 	bp->b_vp = vp;
1599 	bp->b_bufobj = bo;
1600 	/*
1601 	 * Insert onto list for new vnode.
1602 	 */
1603 	buf_vlist_add(bp, bo, BX_VNCLEAN);
1604 }
1605 
1606 /*
1607  * Disassociate a buffer from a vnode.
1608  */
1609 void
1610 brelvp(struct buf *bp)
1611 {
1612 	struct bufobj *bo;
1613 	struct vnode *vp;
1614 
1615 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1616 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1617 
1618 	/*
1619 	 * Delete from old vnode list, if on one.
1620 	 */
1621 	vp = bp->b_vp;		/* XXX */
1622 	bo = bp->b_bufobj;
1623 	BO_LOCK(bo);
1624 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1625 		buf_vlist_remove(bp);
1626 	else
1627 		panic("brelvp: Buffer %p not on queue.", bp);
1628 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1629 		bo->bo_flag &= ~BO_ONWORKLST;
1630 		mtx_lock(&sync_mtx);
1631 		LIST_REMOVE(bo, bo_synclist);
1632 		syncer_worklist_len--;
1633 		mtx_unlock(&sync_mtx);
1634 	}
1635 	bp->b_flags &= ~B_NEEDSGIANT;
1636 	bp->b_vp = NULL;
1637 	bp->b_bufobj = NULL;
1638 	BO_UNLOCK(bo);
1639 	vdrop(vp);
1640 }
1641 
1642 /*
1643  * Add an item to the syncer work queue.
1644  */
1645 static void
1646 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1647 {
1648 	int queue, slot;
1649 
1650 	ASSERT_BO_LOCKED(bo);
1651 
1652 	mtx_lock(&sync_mtx);
1653 	if (bo->bo_flag & BO_ONWORKLST)
1654 		LIST_REMOVE(bo, bo_synclist);
1655 	else {
1656 		bo->bo_flag |= BO_ONWORKLST;
1657 		syncer_worklist_len++;
1658 	}
1659 
1660 	if (delay > syncer_maxdelay - 2)
1661 		delay = syncer_maxdelay - 2;
1662 	slot = (syncer_delayno + delay) & syncer_mask;
1663 
1664 	queue = VFS_NEEDSGIANT(bo->__bo_vnode->v_mount) ? WI_GIANTQ :
1665 	    WI_MPSAFEQ;
1666 	LIST_INSERT_HEAD(&syncer_workitem_pending[queue][slot], bo,
1667 	    bo_synclist);
1668 	mtx_unlock(&sync_mtx);
1669 }
1670 
1671 static int
1672 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1673 {
1674 	int error, len;
1675 
1676 	mtx_lock(&sync_mtx);
1677 	len = syncer_worklist_len - sync_vnode_count;
1678 	mtx_unlock(&sync_mtx);
1679 	error = SYSCTL_OUT(req, &len, sizeof(len));
1680 	return (error);
1681 }
1682 
1683 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1684     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1685 
1686 static struct proc *updateproc;
1687 static void sched_sync(void);
1688 static struct kproc_desc up_kp = {
1689 	"syncer",
1690 	sched_sync,
1691 	&updateproc
1692 };
1693 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1694 
1695 static int
1696 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1697 {
1698 	struct vnode *vp;
1699 	struct mount *mp;
1700 
1701 	*bo = LIST_FIRST(slp);
1702 	if (*bo == NULL)
1703 		return (0);
1704 	vp = (*bo)->__bo_vnode;	/* XXX */
1705 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1706 		return (1);
1707 	/*
1708 	 * We use vhold in case the vnode does not
1709 	 * successfully sync.  vhold prevents the vnode from
1710 	 * going away when we unlock the sync_mtx so that
1711 	 * we can acquire the vnode interlock.
1712 	 */
1713 	vholdl(vp);
1714 	mtx_unlock(&sync_mtx);
1715 	VI_UNLOCK(vp);
1716 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1717 		vdrop(vp);
1718 		mtx_lock(&sync_mtx);
1719 		return (*bo == LIST_FIRST(slp));
1720 	}
1721 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1722 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1723 	VOP_UNLOCK(vp, 0);
1724 	vn_finished_write(mp);
1725 	BO_LOCK(*bo);
1726 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1727 		/*
1728 		 * Put us back on the worklist.  The worklist
1729 		 * routine will remove us from our current
1730 		 * position and then add us back in at a later
1731 		 * position.
1732 		 */
1733 		vn_syncer_add_to_worklist(*bo, syncdelay);
1734 	}
1735 	BO_UNLOCK(*bo);
1736 	vdrop(vp);
1737 	mtx_lock(&sync_mtx);
1738 	return (0);
1739 }
1740 
1741 /*
1742  * System filesystem synchronizer daemon.
1743  */
1744 static void
1745 sched_sync(void)
1746 {
1747 	struct synclist *gnext, *next;
1748 	struct synclist *gslp, *slp;
1749 	struct bufobj *bo;
1750 	long starttime;
1751 	struct thread *td = curthread;
1752 	int last_work_seen;
1753 	int net_worklist_len;
1754 	int syncer_final_iter;
1755 	int first_printf;
1756 	int error;
1757 
1758 	last_work_seen = 0;
1759 	syncer_final_iter = 0;
1760 	first_printf = 1;
1761 	syncer_state = SYNCER_RUNNING;
1762 	starttime = time_uptime;
1763 	td->td_pflags |= TDP_NORUNNINGBUF;
1764 
1765 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1766 	    SHUTDOWN_PRI_LAST);
1767 
1768 	mtx_lock(&sync_mtx);
1769 	for (;;) {
1770 		if (syncer_state == SYNCER_FINAL_DELAY &&
1771 		    syncer_final_iter == 0) {
1772 			mtx_unlock(&sync_mtx);
1773 			kproc_suspend_check(td->td_proc);
1774 			mtx_lock(&sync_mtx);
1775 		}
1776 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1777 		if (syncer_state != SYNCER_RUNNING &&
1778 		    starttime != time_uptime) {
1779 			if (first_printf) {
1780 				printf("\nSyncing disks, vnodes remaining...");
1781 				first_printf = 0;
1782 			}
1783 			printf("%d ", net_worklist_len);
1784 		}
1785 		starttime = time_uptime;
1786 
1787 		/*
1788 		 * Push files whose dirty time has expired.  Be careful
1789 		 * of interrupt race on slp queue.
1790 		 *
1791 		 * Skip over empty worklist slots when shutting down.
1792 		 */
1793 		do {
1794 			slp = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1795 			gslp = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1796 			syncer_delayno += 1;
1797 			if (syncer_delayno == syncer_maxdelay)
1798 				syncer_delayno = 0;
1799 			next = &syncer_workitem_pending[WI_MPSAFEQ][syncer_delayno];
1800 			gnext = &syncer_workitem_pending[WI_GIANTQ][syncer_delayno];
1801 			/*
1802 			 * If the worklist has wrapped since the
1803 			 * it was emptied of all but syncer vnodes,
1804 			 * switch to the FINAL_DELAY state and run
1805 			 * for one more second.
1806 			 */
1807 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1808 			    net_worklist_len == 0 &&
1809 			    last_work_seen == syncer_delayno) {
1810 				syncer_state = SYNCER_FINAL_DELAY;
1811 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1812 			}
1813 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1814 		    LIST_EMPTY(gslp) && syncer_worklist_len > 0);
1815 
1816 		/*
1817 		 * Keep track of the last time there was anything
1818 		 * on the worklist other than syncer vnodes.
1819 		 * Return to the SHUTTING_DOWN state if any
1820 		 * new work appears.
1821 		 */
1822 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1823 			last_work_seen = syncer_delayno;
1824 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1825 			syncer_state = SYNCER_SHUTTING_DOWN;
1826 		while (!LIST_EMPTY(slp)) {
1827 			error = sync_vnode(slp, &bo, td);
1828 			if (error == 1) {
1829 				LIST_REMOVE(bo, bo_synclist);
1830 				LIST_INSERT_HEAD(next, bo, bo_synclist);
1831 				continue;
1832 			}
1833 		}
1834 		if (!LIST_EMPTY(gslp)) {
1835 			mtx_unlock(&sync_mtx);
1836 			mtx_lock(&Giant);
1837 			mtx_lock(&sync_mtx);
1838 			while (!LIST_EMPTY(gslp)) {
1839 				error = sync_vnode(gslp, &bo, td);
1840 				if (error == 1) {
1841 					LIST_REMOVE(bo, bo_synclist);
1842 					LIST_INSERT_HEAD(gnext, bo,
1843 					    bo_synclist);
1844 					continue;
1845 				}
1846 			}
1847 			mtx_unlock(&Giant);
1848 		}
1849 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1850 			syncer_final_iter--;
1851 		/*
1852 		 * The variable rushjob allows the kernel to speed up the
1853 		 * processing of the filesystem syncer process. A rushjob
1854 		 * value of N tells the filesystem syncer to process the next
1855 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1856 		 * is used by the soft update code to speed up the filesystem
1857 		 * syncer process when the incore state is getting so far
1858 		 * ahead of the disk that the kernel memory pool is being
1859 		 * threatened with exhaustion.
1860 		 */
1861 		if (rushjob > 0) {
1862 			rushjob -= 1;
1863 			continue;
1864 		}
1865 		/*
1866 		 * Just sleep for a short period of time between
1867 		 * iterations when shutting down to allow some I/O
1868 		 * to happen.
1869 		 *
1870 		 * If it has taken us less than a second to process the
1871 		 * current work, then wait. Otherwise start right over
1872 		 * again. We can still lose time if any single round
1873 		 * takes more than two seconds, but it does not really
1874 		 * matter as we are just trying to generally pace the
1875 		 * filesystem activity.
1876 		 */
1877 		if (syncer_state != SYNCER_RUNNING)
1878 			cv_timedwait(&sync_wakeup, &sync_mtx,
1879 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1880 		else if (time_uptime == starttime)
1881 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
1882 	}
1883 }
1884 
1885 /*
1886  * Request the syncer daemon to speed up its work.
1887  * We never push it to speed up more than half of its
1888  * normal turn time, otherwise it could take over the cpu.
1889  */
1890 int
1891 speedup_syncer(void)
1892 {
1893 	int ret = 0;
1894 
1895 	mtx_lock(&sync_mtx);
1896 	if (rushjob < syncdelay / 2) {
1897 		rushjob += 1;
1898 		stat_rush_requests += 1;
1899 		ret = 1;
1900 	}
1901 	mtx_unlock(&sync_mtx);
1902 	cv_broadcast(&sync_wakeup);
1903 	return (ret);
1904 }
1905 
1906 /*
1907  * Tell the syncer to speed up its work and run though its work
1908  * list several times, then tell it to shut down.
1909  */
1910 static void
1911 syncer_shutdown(void *arg, int howto)
1912 {
1913 
1914 	if (howto & RB_NOSYNC)
1915 		return;
1916 	mtx_lock(&sync_mtx);
1917 	syncer_state = SYNCER_SHUTTING_DOWN;
1918 	rushjob = 0;
1919 	mtx_unlock(&sync_mtx);
1920 	cv_broadcast(&sync_wakeup);
1921 	kproc_shutdown(arg, howto);
1922 }
1923 
1924 /*
1925  * Reassign a buffer from one vnode to another.
1926  * Used to assign file specific control information
1927  * (indirect blocks) to the vnode to which they belong.
1928  */
1929 void
1930 reassignbuf(struct buf *bp)
1931 {
1932 	struct vnode *vp;
1933 	struct bufobj *bo;
1934 	int delay;
1935 #ifdef INVARIANTS
1936 	struct bufv *bv;
1937 #endif
1938 
1939 	vp = bp->b_vp;
1940 	bo = bp->b_bufobj;
1941 	++reassignbufcalls;
1942 
1943 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1944 	    bp, bp->b_vp, bp->b_flags);
1945 	/*
1946 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1947 	 * is not fully linked in.
1948 	 */
1949 	if (bp->b_flags & B_PAGING)
1950 		panic("cannot reassign paging buffer");
1951 
1952 	/*
1953 	 * Delete from old vnode list, if on one.
1954 	 */
1955 	BO_LOCK(bo);
1956 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1957 		buf_vlist_remove(bp);
1958 	else
1959 		panic("reassignbuf: Buffer %p not on queue.", bp);
1960 	/*
1961 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1962 	 * of clean buffers.
1963 	 */
1964 	if (bp->b_flags & B_DELWRI) {
1965 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1966 			switch (vp->v_type) {
1967 			case VDIR:
1968 				delay = dirdelay;
1969 				break;
1970 			case VCHR:
1971 				delay = metadelay;
1972 				break;
1973 			default:
1974 				delay = filedelay;
1975 			}
1976 			vn_syncer_add_to_worklist(bo, delay);
1977 		}
1978 		buf_vlist_add(bp, bo, BX_VNDIRTY);
1979 	} else {
1980 		buf_vlist_add(bp, bo, BX_VNCLEAN);
1981 
1982 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1983 			mtx_lock(&sync_mtx);
1984 			LIST_REMOVE(bo, bo_synclist);
1985 			syncer_worklist_len--;
1986 			mtx_unlock(&sync_mtx);
1987 			bo->bo_flag &= ~BO_ONWORKLST;
1988 		}
1989 	}
1990 #ifdef INVARIANTS
1991 	bv = &bo->bo_clean;
1992 	bp = TAILQ_FIRST(&bv->bv_hd);
1993 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1994 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1995 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
1996 	KASSERT(bp == NULL || bp->b_bufobj == bo,
1997 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
1998 	bv = &bo->bo_dirty;
1999 	bp = TAILQ_FIRST(&bv->bv_hd);
2000 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2001 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2002 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2003 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2004 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2005 #endif
2006 	BO_UNLOCK(bo);
2007 }
2008 
2009 /*
2010  * Increment the use and hold counts on the vnode, taking care to reference
2011  * the driver's usecount if this is a chardev.  The vholdl() will remove
2012  * the vnode from the free list if it is presently free.  Requires the
2013  * vnode interlock and returns with it held.
2014  */
2015 static void
2016 v_incr_usecount(struct vnode *vp)
2017 {
2018 
2019 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2020 	vp->v_usecount++;
2021 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2022 		dev_lock();
2023 		vp->v_rdev->si_usecount++;
2024 		dev_unlock();
2025 	}
2026 	vholdl(vp);
2027 }
2028 
2029 /*
2030  * Turn a holdcnt into a use+holdcnt such that only one call to
2031  * v_decr_usecount is needed.
2032  */
2033 static void
2034 v_upgrade_usecount(struct vnode *vp)
2035 {
2036 
2037 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2038 	vp->v_usecount++;
2039 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2040 		dev_lock();
2041 		vp->v_rdev->si_usecount++;
2042 		dev_unlock();
2043 	}
2044 }
2045 
2046 /*
2047  * Decrement the vnode use and hold count along with the driver's usecount
2048  * if this is a chardev.  The vdropl() below releases the vnode interlock
2049  * as it may free the vnode.
2050  */
2051 static void
2052 v_decr_usecount(struct vnode *vp)
2053 {
2054 
2055 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2056 	VNASSERT(vp->v_usecount > 0, vp,
2057 	    ("v_decr_usecount: negative usecount"));
2058 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2059 	vp->v_usecount--;
2060 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2061 		dev_lock();
2062 		vp->v_rdev->si_usecount--;
2063 		dev_unlock();
2064 	}
2065 	vdropl(vp);
2066 }
2067 
2068 /*
2069  * Decrement only the use count and driver use count.  This is intended to
2070  * be paired with a follow on vdropl() to release the remaining hold count.
2071  * In this way we may vgone() a vnode with a 0 usecount without risk of
2072  * having it end up on a free list because the hold count is kept above 0.
2073  */
2074 static void
2075 v_decr_useonly(struct vnode *vp)
2076 {
2077 
2078 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2079 	VNASSERT(vp->v_usecount > 0, vp,
2080 	    ("v_decr_useonly: negative usecount"));
2081 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2082 	vp->v_usecount--;
2083 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2084 		dev_lock();
2085 		vp->v_rdev->si_usecount--;
2086 		dev_unlock();
2087 	}
2088 }
2089 
2090 /*
2091  * Grab a particular vnode from the free list, increment its
2092  * reference count and lock it.  VI_DOOMED is set if the vnode
2093  * is being destroyed.  Only callers who specify LK_RETRY will
2094  * see doomed vnodes.  If inactive processing was delayed in
2095  * vput try to do it here.
2096  */
2097 int
2098 vget(struct vnode *vp, int flags, struct thread *td)
2099 {
2100 	int error;
2101 
2102 	error = 0;
2103 	VFS_ASSERT_GIANT(vp->v_mount);
2104 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2105 	    ("vget: invalid lock operation"));
2106 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2107 
2108 	if ((flags & LK_INTERLOCK) == 0)
2109 		VI_LOCK(vp);
2110 	vholdl(vp);
2111 	if ((error = vn_lock(vp, flags | LK_INTERLOCK)) != 0) {
2112 		vdrop(vp);
2113 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2114 		    vp);
2115 		return (error);
2116 	}
2117 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2118 		panic("vget: vn_lock failed to return ENOENT\n");
2119 	VI_LOCK(vp);
2120 	/* Upgrade our holdcnt to a usecount. */
2121 	v_upgrade_usecount(vp);
2122 	/*
2123 	 * We don't guarantee that any particular close will
2124 	 * trigger inactive processing so just make a best effort
2125 	 * here at preventing a reference to a removed file.  If
2126 	 * we don't succeed no harm is done.
2127 	 */
2128 	if (vp->v_iflag & VI_OWEINACT) {
2129 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2130 		    (flags & LK_NOWAIT) == 0)
2131 			vinactive(vp, td);
2132 		vp->v_iflag &= ~VI_OWEINACT;
2133 	}
2134 	VI_UNLOCK(vp);
2135 	return (0);
2136 }
2137 
2138 /*
2139  * Increase the reference count of a vnode.
2140  */
2141 void
2142 vref(struct vnode *vp)
2143 {
2144 
2145 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2146 	VI_LOCK(vp);
2147 	v_incr_usecount(vp);
2148 	VI_UNLOCK(vp);
2149 }
2150 
2151 /*
2152  * Return reference count of a vnode.
2153  *
2154  * The results of this call are only guaranteed when some mechanism other
2155  * than the VI lock is used to stop other processes from gaining references
2156  * to the vnode.  This may be the case if the caller holds the only reference.
2157  * This is also useful when stale data is acceptable as race conditions may
2158  * be accounted for by some other means.
2159  */
2160 int
2161 vrefcnt(struct vnode *vp)
2162 {
2163 	int usecnt;
2164 
2165 	VI_LOCK(vp);
2166 	usecnt = vp->v_usecount;
2167 	VI_UNLOCK(vp);
2168 
2169 	return (usecnt);
2170 }
2171 
2172 #define	VPUTX_VRELE	1
2173 #define	VPUTX_VPUT	2
2174 #define	VPUTX_VUNREF	3
2175 
2176 static void
2177 vputx(struct vnode *vp, int func)
2178 {
2179 	int error;
2180 
2181 	KASSERT(vp != NULL, ("vputx: null vp"));
2182 	if (func == VPUTX_VUNREF)
2183 		ASSERT_VOP_ELOCKED(vp, "vunref");
2184 	else if (func == VPUTX_VPUT)
2185 		ASSERT_VOP_LOCKED(vp, "vput");
2186 	else
2187 		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2188 	VFS_ASSERT_GIANT(vp->v_mount);
2189 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2190 	VI_LOCK(vp);
2191 
2192 	/* Skip this v_writecount check if we're going to panic below. */
2193 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
2194 	    ("vputx: missed vn_close"));
2195 	error = 0;
2196 
2197 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
2198 	    vp->v_usecount == 1)) {
2199 		if (func == VPUTX_VPUT)
2200 			VOP_UNLOCK(vp, 0);
2201 		v_decr_usecount(vp);
2202 		return;
2203 	}
2204 
2205 	if (vp->v_usecount != 1) {
2206 #ifdef DIAGNOSTIC
2207 		vprint("vputx: negative ref count", vp);
2208 #endif
2209 		panic("vputx: negative ref cnt");
2210 	}
2211 	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2212 	/*
2213 	 * We want to hold the vnode until the inactive finishes to
2214 	 * prevent vgone() races.  We drop the use count here and the
2215 	 * hold count below when we're done.
2216 	 */
2217 	v_decr_useonly(vp);
2218 	/*
2219 	 * We must call VOP_INACTIVE with the node locked. Mark
2220 	 * as VI_DOINGINACT to avoid recursion.
2221 	 */
2222 	vp->v_iflag |= VI_OWEINACT;
2223 	if (func == VPUTX_VRELE) {
2224 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2225 		VI_LOCK(vp);
2226 	} else if (func == VPUTX_VPUT && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2227 		error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | LK_NOWAIT);
2228 		VI_LOCK(vp);
2229 	}
2230 	if (vp->v_usecount > 0)
2231 		vp->v_iflag &= ~VI_OWEINACT;
2232 	if (error == 0) {
2233 		if (vp->v_iflag & VI_OWEINACT)
2234 			vinactive(vp, curthread);
2235 		if (func != VPUTX_VUNREF)
2236 			VOP_UNLOCK(vp, 0);
2237 	}
2238 	vdropl(vp);
2239 }
2240 
2241 /*
2242  * Vnode put/release.
2243  * If count drops to zero, call inactive routine and return to freelist.
2244  */
2245 void
2246 vrele(struct vnode *vp)
2247 {
2248 
2249 	vputx(vp, VPUTX_VRELE);
2250 }
2251 
2252 /*
2253  * Release an already locked vnode.  This give the same effects as
2254  * unlock+vrele(), but takes less time and avoids releasing and
2255  * re-aquiring the lock (as vrele() acquires the lock internally.)
2256  */
2257 void
2258 vput(struct vnode *vp)
2259 {
2260 
2261 	vputx(vp, VPUTX_VPUT);
2262 }
2263 
2264 /*
2265  * Release an exclusively locked vnode. Do not unlock the vnode lock.
2266  */
2267 void
2268 vunref(struct vnode *vp)
2269 {
2270 
2271 	vputx(vp, VPUTX_VUNREF);
2272 }
2273 
2274 /*
2275  * Somebody doesn't want the vnode recycled.
2276  */
2277 void
2278 vhold(struct vnode *vp)
2279 {
2280 
2281 	VI_LOCK(vp);
2282 	vholdl(vp);
2283 	VI_UNLOCK(vp);
2284 }
2285 
2286 void
2287 vholdl(struct vnode *vp)
2288 {
2289 
2290 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2291 	vp->v_holdcnt++;
2292 	if (VSHOULDBUSY(vp))
2293 		vbusy(vp);
2294 }
2295 
2296 /*
2297  * Note that there is one less who cares about this vnode.  vdrop() is the
2298  * opposite of vhold().
2299  */
2300 void
2301 vdrop(struct vnode *vp)
2302 {
2303 
2304 	VI_LOCK(vp);
2305 	vdropl(vp);
2306 }
2307 
2308 /*
2309  * Drop the hold count of the vnode.  If this is the last reference to
2310  * the vnode we will free it if it has been vgone'd otherwise it is
2311  * placed on the free list.
2312  */
2313 void
2314 vdropl(struct vnode *vp)
2315 {
2316 
2317 	ASSERT_VI_LOCKED(vp, "vdropl");
2318 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2319 	if (vp->v_holdcnt <= 0)
2320 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2321 	vp->v_holdcnt--;
2322 	if (vp->v_holdcnt == 0) {
2323 		if (vp->v_iflag & VI_DOOMED) {
2324 			CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__,
2325 			    vp);
2326 			vdestroy(vp);
2327 			return;
2328 		} else
2329 			vfree(vp);
2330 	}
2331 	VI_UNLOCK(vp);
2332 }
2333 
2334 /*
2335  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2336  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2337  * OWEINACT tracks whether a vnode missed a call to inactive due to a
2338  * failed lock upgrade.
2339  */
2340 static void
2341 vinactive(struct vnode *vp, struct thread *td)
2342 {
2343 
2344 	ASSERT_VOP_ELOCKED(vp, "vinactive");
2345 	ASSERT_VI_LOCKED(vp, "vinactive");
2346 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2347 	    ("vinactive: recursed on VI_DOINGINACT"));
2348 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2349 	vp->v_iflag |= VI_DOINGINACT;
2350 	vp->v_iflag &= ~VI_OWEINACT;
2351 	VI_UNLOCK(vp);
2352 	VOP_INACTIVE(vp, td);
2353 	VI_LOCK(vp);
2354 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2355 	    ("vinactive: lost VI_DOINGINACT"));
2356 	vp->v_iflag &= ~VI_DOINGINACT;
2357 }
2358 
2359 /*
2360  * Remove any vnodes in the vnode table belonging to mount point mp.
2361  *
2362  * If FORCECLOSE is not specified, there should not be any active ones,
2363  * return error if any are found (nb: this is a user error, not a
2364  * system error). If FORCECLOSE is specified, detach any active vnodes
2365  * that are found.
2366  *
2367  * If WRITECLOSE is set, only flush out regular file vnodes open for
2368  * writing.
2369  *
2370  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2371  *
2372  * `rootrefs' specifies the base reference count for the root vnode
2373  * of this filesystem. The root vnode is considered busy if its
2374  * v_usecount exceeds this value. On a successful return, vflush(, td)
2375  * will call vrele() on the root vnode exactly rootrefs times.
2376  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2377  * be zero.
2378  */
2379 #ifdef DIAGNOSTIC
2380 static int busyprt = 0;		/* print out busy vnodes */
2381 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2382 #endif
2383 
2384 int
2385 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
2386 {
2387 	struct vnode *vp, *mvp, *rootvp = NULL;
2388 	struct vattr vattr;
2389 	int busy = 0, error;
2390 
2391 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2392 	    rootrefs, flags);
2393 	if (rootrefs > 0) {
2394 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2395 		    ("vflush: bad args"));
2396 		/*
2397 		 * Get the filesystem root vnode. We can vput() it
2398 		 * immediately, since with rootrefs > 0, it won't go away.
2399 		 */
2400 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2401 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2402 			    __func__, error);
2403 			return (error);
2404 		}
2405 		vput(rootvp);
2406 	}
2407 	MNT_ILOCK(mp);
2408 loop:
2409 	MNT_VNODE_FOREACH(vp, mp, mvp) {
2410 		VI_LOCK(vp);
2411 		vholdl(vp);
2412 		MNT_IUNLOCK(mp);
2413 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2414 		if (error) {
2415 			vdrop(vp);
2416 			MNT_ILOCK(mp);
2417 			MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
2418 			goto loop;
2419 		}
2420 		/*
2421 		 * Skip over a vnodes marked VV_SYSTEM.
2422 		 */
2423 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2424 			VOP_UNLOCK(vp, 0);
2425 			vdrop(vp);
2426 			MNT_ILOCK(mp);
2427 			continue;
2428 		}
2429 		/*
2430 		 * If WRITECLOSE is set, flush out unlinked but still open
2431 		 * files (even if open only for reading) and regular file
2432 		 * vnodes open for writing.
2433 		 */
2434 		if (flags & WRITECLOSE) {
2435 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2436 			VI_LOCK(vp);
2437 
2438 			if ((vp->v_type == VNON ||
2439 			    (error == 0 && vattr.va_nlink > 0)) &&
2440 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2441 				VOP_UNLOCK(vp, 0);
2442 				vdropl(vp);
2443 				MNT_ILOCK(mp);
2444 				continue;
2445 			}
2446 		} else
2447 			VI_LOCK(vp);
2448 		/*
2449 		 * With v_usecount == 0, all we need to do is clear out the
2450 		 * vnode data structures and we are done.
2451 		 *
2452 		 * If FORCECLOSE is set, forcibly close the vnode.
2453 		 */
2454 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2455 			VNASSERT(vp->v_usecount == 0 ||
2456 			    (vp->v_type != VCHR && vp->v_type != VBLK), vp,
2457 			    ("device VNODE %p is FORCECLOSED", vp));
2458 			vgonel(vp);
2459 		} else {
2460 			busy++;
2461 #ifdef DIAGNOSTIC
2462 			if (busyprt)
2463 				vprint("vflush: busy vnode", vp);
2464 #endif
2465 		}
2466 		VOP_UNLOCK(vp, 0);
2467 		vdropl(vp);
2468 		MNT_ILOCK(mp);
2469 	}
2470 	MNT_IUNLOCK(mp);
2471 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2472 		/*
2473 		 * If just the root vnode is busy, and if its refcount
2474 		 * is equal to `rootrefs', then go ahead and kill it.
2475 		 */
2476 		VI_LOCK(rootvp);
2477 		KASSERT(busy > 0, ("vflush: not busy"));
2478 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2479 		    ("vflush: usecount %d < rootrefs %d",
2480 		     rootvp->v_usecount, rootrefs));
2481 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2482 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2483 			vgone(rootvp);
2484 			VOP_UNLOCK(rootvp, 0);
2485 			busy = 0;
2486 		} else
2487 			VI_UNLOCK(rootvp);
2488 	}
2489 	if (busy) {
2490 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2491 		    busy);
2492 		return (EBUSY);
2493 	}
2494 	for (; rootrefs > 0; rootrefs--)
2495 		vrele(rootvp);
2496 	return (0);
2497 }
2498 
2499 /*
2500  * Recycle an unused vnode to the front of the free list.
2501  */
2502 int
2503 vrecycle(struct vnode *vp, struct thread *td)
2504 {
2505 	int recycled;
2506 
2507 	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2508 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2509 	recycled = 0;
2510 	VI_LOCK(vp);
2511 	if (vp->v_usecount == 0) {
2512 		recycled = 1;
2513 		vgonel(vp);
2514 	}
2515 	VI_UNLOCK(vp);
2516 	return (recycled);
2517 }
2518 
2519 /*
2520  * Eliminate all activity associated with a vnode
2521  * in preparation for reuse.
2522  */
2523 void
2524 vgone(struct vnode *vp)
2525 {
2526 	VI_LOCK(vp);
2527 	vgonel(vp);
2528 	VI_UNLOCK(vp);
2529 }
2530 
2531 /*
2532  * vgone, with the vp interlock held.
2533  */
2534 void
2535 vgonel(struct vnode *vp)
2536 {
2537 	struct thread *td;
2538 	int oweinact;
2539 	int active;
2540 	struct mount *mp;
2541 
2542 	ASSERT_VOP_ELOCKED(vp, "vgonel");
2543 	ASSERT_VI_LOCKED(vp, "vgonel");
2544 	VNASSERT(vp->v_holdcnt, vp,
2545 	    ("vgonel: vp %p has no reference.", vp));
2546 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2547 	td = curthread;
2548 
2549 	/*
2550 	 * Don't vgonel if we're already doomed.
2551 	 */
2552 	if (vp->v_iflag & VI_DOOMED)
2553 		return;
2554 	vp->v_iflag |= VI_DOOMED;
2555 	/*
2556 	 * Check to see if the vnode is in use.  If so, we have to call
2557 	 * VOP_CLOSE() and VOP_INACTIVE().
2558 	 */
2559 	active = vp->v_usecount;
2560 	oweinact = (vp->v_iflag & VI_OWEINACT);
2561 	VI_UNLOCK(vp);
2562 	/*
2563 	 * Clean out any buffers associated with the vnode.
2564 	 * If the flush fails, just toss the buffers.
2565 	 */
2566 	mp = NULL;
2567 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2568 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
2569 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0)
2570 		vinvalbuf(vp, 0, 0, 0);
2571 
2572 	/*
2573 	 * If purging an active vnode, it must be closed and
2574 	 * deactivated before being reclaimed.
2575 	 */
2576 	if (active)
2577 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2578 	if (oweinact || active) {
2579 		VI_LOCK(vp);
2580 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2581 			vinactive(vp, td);
2582 		VI_UNLOCK(vp);
2583 	}
2584 	/*
2585 	 * Reclaim the vnode.
2586 	 */
2587 	if (VOP_RECLAIM(vp, td))
2588 		panic("vgone: cannot reclaim");
2589 	if (mp != NULL)
2590 		vn_finished_secondary_write(mp);
2591 	VNASSERT(vp->v_object == NULL, vp,
2592 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2593 	/*
2594 	 * Clear the advisory locks and wake up waiting threads.
2595 	 */
2596 	(void)VOP_ADVLOCKPURGE(vp);
2597 	/*
2598 	 * Delete from old mount point vnode list.
2599 	 */
2600 	delmntque(vp);
2601 	cache_purge(vp);
2602 	/*
2603 	 * Done with purge, reset to the standard lock and invalidate
2604 	 * the vnode.
2605 	 */
2606 	VI_LOCK(vp);
2607 	vp->v_vnlock = &vp->v_lock;
2608 	vp->v_op = &dead_vnodeops;
2609 	vp->v_tag = "none";
2610 	vp->v_type = VBAD;
2611 }
2612 
2613 /*
2614  * Calculate the total number of references to a special device.
2615  */
2616 int
2617 vcount(struct vnode *vp)
2618 {
2619 	int count;
2620 
2621 	dev_lock();
2622 	count = vp->v_rdev->si_usecount;
2623 	dev_unlock();
2624 	return (count);
2625 }
2626 
2627 /*
2628  * Same as above, but using the struct cdev *as argument
2629  */
2630 int
2631 count_dev(struct cdev *dev)
2632 {
2633 	int count;
2634 
2635 	dev_lock();
2636 	count = dev->si_usecount;
2637 	dev_unlock();
2638 	return(count);
2639 }
2640 
2641 /*
2642  * Print out a description of a vnode.
2643  */
2644 static char *typename[] =
2645 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
2646  "VMARKER"};
2647 
2648 void
2649 vn_printf(struct vnode *vp, const char *fmt, ...)
2650 {
2651 	va_list ap;
2652 	char buf[256], buf2[16];
2653 	u_long flags;
2654 
2655 	va_start(ap, fmt);
2656 	vprintf(fmt, ap);
2657 	va_end(ap);
2658 	printf("%p: ", (void *)vp);
2659 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2660 	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2661 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2662 	buf[0] = '\0';
2663 	buf[1] = '\0';
2664 	if (vp->v_vflag & VV_ROOT)
2665 		strlcat(buf, "|VV_ROOT", sizeof(buf));
2666 	if (vp->v_vflag & VV_ISTTY)
2667 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
2668 	if (vp->v_vflag & VV_NOSYNC)
2669 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
2670 	if (vp->v_vflag & VV_CACHEDLABEL)
2671 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
2672 	if (vp->v_vflag & VV_TEXT)
2673 		strlcat(buf, "|VV_TEXT", sizeof(buf));
2674 	if (vp->v_vflag & VV_COPYONWRITE)
2675 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
2676 	if (vp->v_vflag & VV_SYSTEM)
2677 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
2678 	if (vp->v_vflag & VV_PROCDEP)
2679 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
2680 	if (vp->v_vflag & VV_NOKNOTE)
2681 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
2682 	if (vp->v_vflag & VV_DELETED)
2683 		strlcat(buf, "|VV_DELETED", sizeof(buf));
2684 	if (vp->v_vflag & VV_MD)
2685 		strlcat(buf, "|VV_MD", sizeof(buf));
2686 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC |
2687 	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
2688 	    VV_NOKNOTE | VV_DELETED | VV_MD);
2689 	if (flags != 0) {
2690 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
2691 		strlcat(buf, buf2, sizeof(buf));
2692 	}
2693 	if (vp->v_iflag & VI_MOUNT)
2694 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
2695 	if (vp->v_iflag & VI_AGE)
2696 		strlcat(buf, "|VI_AGE", sizeof(buf));
2697 	if (vp->v_iflag & VI_DOOMED)
2698 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
2699 	if (vp->v_iflag & VI_FREE)
2700 		strlcat(buf, "|VI_FREE", sizeof(buf));
2701 	if (vp->v_iflag & VI_DOINGINACT)
2702 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
2703 	if (vp->v_iflag & VI_OWEINACT)
2704 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
2705 	flags = vp->v_iflag & ~(VI_MOUNT | VI_AGE | VI_DOOMED | VI_FREE |
2706 	    VI_DOINGINACT | VI_OWEINACT);
2707 	if (flags != 0) {
2708 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
2709 		strlcat(buf, buf2, sizeof(buf));
2710 	}
2711 	printf("    flags (%s)\n", buf + 1);
2712 	if (mtx_owned(VI_MTX(vp)))
2713 		printf(" VI_LOCKed");
2714 	if (vp->v_object != NULL)
2715 		printf("    v_object %p ref %d pages %d\n",
2716 		    vp->v_object, vp->v_object->ref_count,
2717 		    vp->v_object->resident_page_count);
2718 	printf("    ");
2719 	lockmgr_printinfo(vp->v_vnlock);
2720 	if (vp->v_data != NULL)
2721 		VOP_PRINT(vp);
2722 }
2723 
2724 #ifdef DDB
2725 /*
2726  * List all of the locked vnodes in the system.
2727  * Called when debugging the kernel.
2728  */
2729 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2730 {
2731 	struct mount *mp, *nmp;
2732 	struct vnode *vp;
2733 
2734 	/*
2735 	 * Note: because this is DDB, we can't obey the locking semantics
2736 	 * for these structures, which means we could catch an inconsistent
2737 	 * state and dereference a nasty pointer.  Not much to be done
2738 	 * about that.
2739 	 */
2740 	db_printf("Locked vnodes\n");
2741 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2742 		nmp = TAILQ_NEXT(mp, mnt_list);
2743 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2744 			if (vp->v_type != VMARKER &&
2745 			    VOP_ISLOCKED(vp))
2746 				vprint("", vp);
2747 		}
2748 		nmp = TAILQ_NEXT(mp, mnt_list);
2749 	}
2750 }
2751 
2752 /*
2753  * Show details about the given vnode.
2754  */
2755 DB_SHOW_COMMAND(vnode, db_show_vnode)
2756 {
2757 	struct vnode *vp;
2758 
2759 	if (!have_addr)
2760 		return;
2761 	vp = (struct vnode *)addr;
2762 	vn_printf(vp, "vnode ");
2763 }
2764 
2765 /*
2766  * Show details about the given mount point.
2767  */
2768 DB_SHOW_COMMAND(mount, db_show_mount)
2769 {
2770 	struct mount *mp;
2771 	struct vfsopt *opt;
2772 	struct statfs *sp;
2773 	struct vnode *vp;
2774 	char buf[512];
2775 	u_int flags;
2776 
2777 	if (!have_addr) {
2778 		/* No address given, print short info about all mount points. */
2779 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2780 			db_printf("%p %s on %s (%s)\n", mp,
2781 			    mp->mnt_stat.f_mntfromname,
2782 			    mp->mnt_stat.f_mntonname,
2783 			    mp->mnt_stat.f_fstypename);
2784 			if (db_pager_quit)
2785 				break;
2786 		}
2787 		db_printf("\nMore info: show mount <addr>\n");
2788 		return;
2789 	}
2790 
2791 	mp = (struct mount *)addr;
2792 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
2793 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
2794 
2795 	buf[0] = '\0';
2796 	flags = mp->mnt_flag;
2797 #define	MNT_FLAG(flag)	do {						\
2798 	if (flags & (flag)) {						\
2799 		if (buf[0] != '\0')					\
2800 			strlcat(buf, ", ", sizeof(buf));		\
2801 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
2802 		flags &= ~(flag);					\
2803 	}								\
2804 } while (0)
2805 	MNT_FLAG(MNT_RDONLY);
2806 	MNT_FLAG(MNT_SYNCHRONOUS);
2807 	MNT_FLAG(MNT_NOEXEC);
2808 	MNT_FLAG(MNT_NOSUID);
2809 	MNT_FLAG(MNT_UNION);
2810 	MNT_FLAG(MNT_ASYNC);
2811 	MNT_FLAG(MNT_SUIDDIR);
2812 	MNT_FLAG(MNT_SOFTDEP);
2813 	MNT_FLAG(MNT_NOSYMFOLLOW);
2814 	MNT_FLAG(MNT_GJOURNAL);
2815 	MNT_FLAG(MNT_MULTILABEL);
2816 	MNT_FLAG(MNT_ACLS);
2817 	MNT_FLAG(MNT_NOATIME);
2818 	MNT_FLAG(MNT_NOCLUSTERR);
2819 	MNT_FLAG(MNT_NOCLUSTERW);
2820 	MNT_FLAG(MNT_NFS4ACLS);
2821 	MNT_FLAG(MNT_EXRDONLY);
2822 	MNT_FLAG(MNT_EXPORTED);
2823 	MNT_FLAG(MNT_DEFEXPORTED);
2824 	MNT_FLAG(MNT_EXPORTANON);
2825 	MNT_FLAG(MNT_EXKERB);
2826 	MNT_FLAG(MNT_EXPUBLIC);
2827 	MNT_FLAG(MNT_LOCAL);
2828 	MNT_FLAG(MNT_QUOTA);
2829 	MNT_FLAG(MNT_ROOTFS);
2830 	MNT_FLAG(MNT_USER);
2831 	MNT_FLAG(MNT_IGNORE);
2832 	MNT_FLAG(MNT_UPDATE);
2833 	MNT_FLAG(MNT_DELEXPORT);
2834 	MNT_FLAG(MNT_RELOAD);
2835 	MNT_FLAG(MNT_FORCE);
2836 	MNT_FLAG(MNT_SNAPSHOT);
2837 	MNT_FLAG(MNT_BYFSID);
2838 	MNT_FLAG(MNT_SOFTDEP);
2839 #undef MNT_FLAG
2840 	if (flags != 0) {
2841 		if (buf[0] != '\0')
2842 			strlcat(buf, ", ", sizeof(buf));
2843 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2844 		    "0x%08x", flags);
2845 	}
2846 	db_printf("    mnt_flag = %s\n", buf);
2847 
2848 	buf[0] = '\0';
2849 	flags = mp->mnt_kern_flag;
2850 #define	MNT_KERN_FLAG(flag)	do {					\
2851 	if (flags & (flag)) {						\
2852 		if (buf[0] != '\0')					\
2853 			strlcat(buf, ", ", sizeof(buf));		\
2854 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
2855 		flags &= ~(flag);					\
2856 	}								\
2857 } while (0)
2858 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
2859 	MNT_KERN_FLAG(MNTK_ASYNC);
2860 	MNT_KERN_FLAG(MNTK_SOFTDEP);
2861 	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
2862 	MNT_KERN_FLAG(MNTK_DRAINING);
2863 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
2864 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
2865 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
2866 	MNT_KERN_FLAG(MNTK_UNMOUNT);
2867 	MNT_KERN_FLAG(MNTK_MWAIT);
2868 	MNT_KERN_FLAG(MNTK_SUSPEND);
2869 	MNT_KERN_FLAG(MNTK_SUSPEND2);
2870 	MNT_KERN_FLAG(MNTK_SUSPENDED);
2871 	MNT_KERN_FLAG(MNTK_MPSAFE);
2872 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
2873 	MNT_KERN_FLAG(MNTK_NOKNOTE);
2874 #undef MNT_KERN_FLAG
2875 	if (flags != 0) {
2876 		if (buf[0] != '\0')
2877 			strlcat(buf, ", ", sizeof(buf));
2878 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
2879 		    "0x%08x", flags);
2880 	}
2881 	db_printf("    mnt_kern_flag = %s\n", buf);
2882 
2883 	db_printf("    mnt_opt = ");
2884 	opt = TAILQ_FIRST(mp->mnt_opt);
2885 	if (opt != NULL) {
2886 		db_printf("%s", opt->name);
2887 		opt = TAILQ_NEXT(opt, link);
2888 		while (opt != NULL) {
2889 			db_printf(", %s", opt->name);
2890 			opt = TAILQ_NEXT(opt, link);
2891 		}
2892 	}
2893 	db_printf("\n");
2894 
2895 	sp = &mp->mnt_stat;
2896 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
2897 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
2898 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
2899 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
2900 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
2901 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
2902 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
2903 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
2904 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
2905 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
2906 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
2907 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
2908 
2909 	db_printf("    mnt_cred = { uid=%u ruid=%u",
2910 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
2911 	if (jailed(mp->mnt_cred))
2912 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
2913 	db_printf(" }\n");
2914 	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
2915 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
2916 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
2917 	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
2918 	db_printf("    mnt_noasync = %u\n", mp->mnt_noasync);
2919 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
2920 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
2921 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
2922 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
2923 	db_printf("    mnt_secondary_accwrites = %d\n",
2924 	    mp->mnt_secondary_accwrites);
2925 	db_printf("    mnt_gjprovider = %s\n",
2926 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
2927 	db_printf("\n");
2928 
2929 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2930 		if (vp->v_type != VMARKER) {
2931 			vn_printf(vp, "vnode ");
2932 			if (db_pager_quit)
2933 				break;
2934 		}
2935 	}
2936 }
2937 #endif	/* DDB */
2938 
2939 /*
2940  * Fill in a struct xvfsconf based on a struct vfsconf.
2941  */
2942 static void
2943 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2944 {
2945 
2946 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2947 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2948 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2949 	xvfsp->vfc_flags = vfsp->vfc_flags;
2950 	/*
2951 	 * These are unused in userland, we keep them
2952 	 * to not break binary compatibility.
2953 	 */
2954 	xvfsp->vfc_vfsops = NULL;
2955 	xvfsp->vfc_next = NULL;
2956 }
2957 
2958 /*
2959  * Top level filesystem related information gathering.
2960  */
2961 static int
2962 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2963 {
2964 	struct vfsconf *vfsp;
2965 	struct xvfsconf xvfsp;
2966 	int error;
2967 
2968 	error = 0;
2969 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2970 		bzero(&xvfsp, sizeof(xvfsp));
2971 		vfsconf2x(vfsp, &xvfsp);
2972 		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2973 		if (error)
2974 			break;
2975 	}
2976 	return (error);
2977 }
2978 
2979 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2980     "S,xvfsconf", "List of all configured filesystems");
2981 
2982 #ifndef BURN_BRIDGES
2983 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2984 
2985 static int
2986 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2987 {
2988 	int *name = (int *)arg1 - 1;	/* XXX */
2989 	u_int namelen = arg2 + 1;	/* XXX */
2990 	struct vfsconf *vfsp;
2991 	struct xvfsconf xvfsp;
2992 
2993 	printf("WARNING: userland calling deprecated sysctl, "
2994 	    "please rebuild world\n");
2995 
2996 #if 1 || defined(COMPAT_PRELITE2)
2997 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2998 	if (namelen == 1)
2999 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3000 #endif
3001 
3002 	switch (name[1]) {
3003 	case VFS_MAXTYPENUM:
3004 		if (namelen != 2)
3005 			return (ENOTDIR);
3006 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3007 	case VFS_CONF:
3008 		if (namelen != 3)
3009 			return (ENOTDIR);	/* overloaded */
3010 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
3011 			if (vfsp->vfc_typenum == name[2])
3012 				break;
3013 		if (vfsp == NULL)
3014 			return (EOPNOTSUPP);
3015 		bzero(&xvfsp, sizeof(xvfsp));
3016 		vfsconf2x(vfsp, &xvfsp);
3017 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3018 	}
3019 	return (EOPNOTSUPP);
3020 }
3021 
3022 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
3023 	vfs_sysctl, "Generic filesystem");
3024 
3025 #if 1 || defined(COMPAT_PRELITE2)
3026 
3027 static int
3028 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3029 {
3030 	int error;
3031 	struct vfsconf *vfsp;
3032 	struct ovfsconf ovfs;
3033 
3034 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3035 		bzero(&ovfs, sizeof(ovfs));
3036 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3037 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3038 		ovfs.vfc_index = vfsp->vfc_typenum;
3039 		ovfs.vfc_refcount = vfsp->vfc_refcount;
3040 		ovfs.vfc_flags = vfsp->vfc_flags;
3041 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3042 		if (error)
3043 			return error;
3044 	}
3045 	return 0;
3046 }
3047 
3048 #endif /* 1 || COMPAT_PRELITE2 */
3049 #endif /* !BURN_BRIDGES */
3050 
3051 #define KINFO_VNODESLOP		10
3052 #ifdef notyet
3053 /*
3054  * Dump vnode list (via sysctl).
3055  */
3056 /* ARGSUSED */
3057 static int
3058 sysctl_vnode(SYSCTL_HANDLER_ARGS)
3059 {
3060 	struct xvnode *xvn;
3061 	struct mount *mp;
3062 	struct vnode *vp;
3063 	int error, len, n;
3064 
3065 	/*
3066 	 * Stale numvnodes access is not fatal here.
3067 	 */
3068 	req->lock = 0;
3069 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3070 	if (!req->oldptr)
3071 		/* Make an estimate */
3072 		return (SYSCTL_OUT(req, 0, len));
3073 
3074 	error = sysctl_wire_old_buffer(req, 0);
3075 	if (error != 0)
3076 		return (error);
3077 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3078 	n = 0;
3079 	mtx_lock(&mountlist_mtx);
3080 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3081 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3082 			continue;
3083 		MNT_ILOCK(mp);
3084 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3085 			if (n == len)
3086 				break;
3087 			vref(vp);
3088 			xvn[n].xv_size = sizeof *xvn;
3089 			xvn[n].xv_vnode = vp;
3090 			xvn[n].xv_id = 0;	/* XXX compat */
3091 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3092 			XV_COPY(usecount);
3093 			XV_COPY(writecount);
3094 			XV_COPY(holdcnt);
3095 			XV_COPY(mount);
3096 			XV_COPY(numoutput);
3097 			XV_COPY(type);
3098 #undef XV_COPY
3099 			xvn[n].xv_flag = vp->v_vflag;
3100 
3101 			switch (vp->v_type) {
3102 			case VREG:
3103 			case VDIR:
3104 			case VLNK:
3105 				break;
3106 			case VBLK:
3107 			case VCHR:
3108 				if (vp->v_rdev == NULL) {
3109 					vrele(vp);
3110 					continue;
3111 				}
3112 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3113 				break;
3114 			case VSOCK:
3115 				xvn[n].xv_socket = vp->v_socket;
3116 				break;
3117 			case VFIFO:
3118 				xvn[n].xv_fifo = vp->v_fifoinfo;
3119 				break;
3120 			case VNON:
3121 			case VBAD:
3122 			default:
3123 				/* shouldn't happen? */
3124 				vrele(vp);
3125 				continue;
3126 			}
3127 			vrele(vp);
3128 			++n;
3129 		}
3130 		MNT_IUNLOCK(mp);
3131 		mtx_lock(&mountlist_mtx);
3132 		vfs_unbusy(mp);
3133 		if (n == len)
3134 			break;
3135 	}
3136 	mtx_unlock(&mountlist_mtx);
3137 
3138 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3139 	free(xvn, M_TEMP);
3140 	return (error);
3141 }
3142 
3143 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
3144 	0, 0, sysctl_vnode, "S,xvnode", "");
3145 #endif
3146 
3147 /*
3148  * Unmount all filesystems. The list is traversed in reverse order
3149  * of mounting to avoid dependencies.
3150  */
3151 void
3152 vfs_unmountall(void)
3153 {
3154 	struct mount *mp;
3155 	struct thread *td;
3156 	int error;
3157 
3158 	KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
3159 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3160 	td = curthread;
3161 
3162 	/*
3163 	 * Since this only runs when rebooting, it is not interlocked.
3164 	 */
3165 	while(!TAILQ_EMPTY(&mountlist)) {
3166 		mp = TAILQ_LAST(&mountlist, mntlist);
3167 		error = dounmount(mp, MNT_FORCE, td);
3168 		if (error) {
3169 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
3170 			/*
3171 			 * XXX: Due to the way in which we mount the root
3172 			 * file system off of devfs, devfs will generate a
3173 			 * "busy" warning when we try to unmount it before
3174 			 * the root.  Don't print a warning as a result in
3175 			 * order to avoid false positive errors that may
3176 			 * cause needless upset.
3177 			 */
3178 			if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
3179 				printf("unmount of %s failed (",
3180 				    mp->mnt_stat.f_mntonname);
3181 				if (error == EBUSY)
3182 					printf("BUSY)\n");
3183 				else
3184 					printf("%d)\n", error);
3185 			}
3186 		} else {
3187 			/* The unmount has removed mp from the mountlist */
3188 		}
3189 	}
3190 }
3191 
3192 /*
3193  * perform msync on all vnodes under a mount point
3194  * the mount point must be locked.
3195  */
3196 void
3197 vfs_msync(struct mount *mp, int flags)
3198 {
3199 	struct vnode *vp, *mvp;
3200 	struct vm_object *obj;
3201 
3202 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3203 	MNT_ILOCK(mp);
3204 	MNT_VNODE_FOREACH(vp, mp, mvp) {
3205 		VI_LOCK(vp);
3206 		obj = vp->v_object;
3207 		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
3208 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3209 			MNT_IUNLOCK(mp);
3210 			if (!vget(vp,
3211 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3212 			    curthread)) {
3213 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3214 					vput(vp);
3215 					MNT_ILOCK(mp);
3216 					continue;
3217 				}
3218 
3219 				obj = vp->v_object;
3220 				if (obj != NULL) {
3221 					VM_OBJECT_LOCK(obj);
3222 					vm_object_page_clean(obj, 0, 0,
3223 					    flags == MNT_WAIT ?
3224 					    OBJPC_SYNC : OBJPC_NOSYNC);
3225 					VM_OBJECT_UNLOCK(obj);
3226 				}
3227 				vput(vp);
3228 			}
3229 			MNT_ILOCK(mp);
3230 		} else
3231 			VI_UNLOCK(vp);
3232 	}
3233 	MNT_IUNLOCK(mp);
3234 }
3235 
3236 /*
3237  * Mark a vnode as free, putting it up for recycling.
3238  */
3239 static void
3240 vfree(struct vnode *vp)
3241 {
3242 
3243 	ASSERT_VI_LOCKED(vp, "vfree");
3244 	mtx_lock(&vnode_free_list_mtx);
3245 	VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
3246 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
3247 	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
3248 	VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
3249 	    ("vfree: Freeing doomed vnode"));
3250 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3251 	if (vp->v_iflag & VI_AGE) {
3252 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3253 	} else {
3254 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3255 	}
3256 	freevnodes++;
3257 	vp->v_iflag &= ~VI_AGE;
3258 	vp->v_iflag |= VI_FREE;
3259 	mtx_unlock(&vnode_free_list_mtx);
3260 }
3261 
3262 /*
3263  * Opposite of vfree() - mark a vnode as in use.
3264  */
3265 static void
3266 vbusy(struct vnode *vp)
3267 {
3268 	ASSERT_VI_LOCKED(vp, "vbusy");
3269 	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
3270 	VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));
3271 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3272 
3273 	mtx_lock(&vnode_free_list_mtx);
3274 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
3275 	freevnodes--;
3276 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
3277 	mtx_unlock(&vnode_free_list_mtx);
3278 }
3279 
3280 static void
3281 destroy_vpollinfo(struct vpollinfo *vi)
3282 {
3283 	knlist_destroy(&vi->vpi_selinfo.si_note);
3284 	mtx_destroy(&vi->vpi_lock);
3285 	uma_zfree(vnodepoll_zone, vi);
3286 }
3287 
3288 /*
3289  * Initalize per-vnode helper structure to hold poll-related state.
3290  */
3291 void
3292 v_addpollinfo(struct vnode *vp)
3293 {
3294 	struct vpollinfo *vi;
3295 
3296 	if (vp->v_pollinfo != NULL)
3297 		return;
3298 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
3299 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3300 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3301 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3302 	VI_LOCK(vp);
3303 	if (vp->v_pollinfo != NULL) {
3304 		VI_UNLOCK(vp);
3305 		destroy_vpollinfo(vi);
3306 		return;
3307 	}
3308 	vp->v_pollinfo = vi;
3309 	VI_UNLOCK(vp);
3310 }
3311 
3312 /*
3313  * Record a process's interest in events which might happen to
3314  * a vnode.  Because poll uses the historic select-style interface
3315  * internally, this routine serves as both the ``check for any
3316  * pending events'' and the ``record my interest in future events''
3317  * functions.  (These are done together, while the lock is held,
3318  * to avoid race conditions.)
3319  */
3320 int
3321 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3322 {
3323 
3324 	v_addpollinfo(vp);
3325 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3326 	if (vp->v_pollinfo->vpi_revents & events) {
3327 		/*
3328 		 * This leaves events we are not interested
3329 		 * in available for the other process which
3330 		 * which presumably had requested them
3331 		 * (otherwise they would never have been
3332 		 * recorded).
3333 		 */
3334 		events &= vp->v_pollinfo->vpi_revents;
3335 		vp->v_pollinfo->vpi_revents &= ~events;
3336 
3337 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3338 		return (events);
3339 	}
3340 	vp->v_pollinfo->vpi_events |= events;
3341 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3342 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3343 	return (0);
3344 }
3345 
3346 /*
3347  * Routine to create and manage a filesystem syncer vnode.
3348  */
3349 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3350 static int	sync_fsync(struct  vop_fsync_args *);
3351 static int	sync_inactive(struct  vop_inactive_args *);
3352 static int	sync_reclaim(struct  vop_reclaim_args *);
3353 
3354 static struct vop_vector sync_vnodeops = {
3355 	.vop_bypass =	VOP_EOPNOTSUPP,
3356 	.vop_close =	sync_close,		/* close */
3357 	.vop_fsync =	sync_fsync,		/* fsync */
3358 	.vop_inactive =	sync_inactive,	/* inactive */
3359 	.vop_reclaim =	sync_reclaim,	/* reclaim */
3360 	.vop_lock1 =	vop_stdlock,	/* lock */
3361 	.vop_unlock =	vop_stdunlock,	/* unlock */
3362 	.vop_islocked =	vop_stdislocked,	/* islocked */
3363 };
3364 
3365 /*
3366  * Create a new filesystem syncer vnode for the specified mount point.
3367  */
3368 int
3369 vfs_allocate_syncvnode(struct mount *mp)
3370 {
3371 	struct vnode *vp;
3372 	struct bufobj *bo;
3373 	static long start, incr, next;
3374 	int error;
3375 
3376 	/* Allocate a new vnode */
3377 	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
3378 		mp->mnt_syncer = NULL;
3379 		return (error);
3380 	}
3381 	vp->v_type = VNON;
3382 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3383 	vp->v_vflag |= VV_FORCEINSMQ;
3384 	error = insmntque(vp, mp);
3385 	if (error != 0)
3386 		panic("vfs_allocate_syncvnode: insmntque failed");
3387 	vp->v_vflag &= ~VV_FORCEINSMQ;
3388 	VOP_UNLOCK(vp, 0);
3389 	/*
3390 	 * Place the vnode onto the syncer worklist. We attempt to
3391 	 * scatter them about on the list so that they will go off
3392 	 * at evenly distributed times even if all the filesystems
3393 	 * are mounted at once.
3394 	 */
3395 	next += incr;
3396 	if (next == 0 || next > syncer_maxdelay) {
3397 		start /= 2;
3398 		incr /= 2;
3399 		if (start == 0) {
3400 			start = syncer_maxdelay / 2;
3401 			incr = syncer_maxdelay;
3402 		}
3403 		next = start;
3404 	}
3405 	bo = &vp->v_bufobj;
3406 	BO_LOCK(bo);
3407 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3408 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3409 	mtx_lock(&sync_mtx);
3410 	sync_vnode_count++;
3411 	mtx_unlock(&sync_mtx);
3412 	BO_UNLOCK(bo);
3413 	mp->mnt_syncer = vp;
3414 	return (0);
3415 }
3416 
3417 /*
3418  * Do a lazy sync of the filesystem.
3419  */
3420 static int
3421 sync_fsync(struct vop_fsync_args *ap)
3422 {
3423 	struct vnode *syncvp = ap->a_vp;
3424 	struct mount *mp = syncvp->v_mount;
3425 	int error;
3426 	struct bufobj *bo;
3427 
3428 	/*
3429 	 * We only need to do something if this is a lazy evaluation.
3430 	 */
3431 	if (ap->a_waitfor != MNT_LAZY)
3432 		return (0);
3433 
3434 	/*
3435 	 * Move ourselves to the back of the sync list.
3436 	 */
3437 	bo = &syncvp->v_bufobj;
3438 	BO_LOCK(bo);
3439 	vn_syncer_add_to_worklist(bo, syncdelay);
3440 	BO_UNLOCK(bo);
3441 
3442 	/*
3443 	 * Walk the list of vnodes pushing all that are dirty and
3444 	 * not already on the sync list.
3445 	 */
3446 	mtx_lock(&mountlist_mtx);
3447 	if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) != 0) {
3448 		mtx_unlock(&mountlist_mtx);
3449 		return (0);
3450 	}
3451 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
3452 		vfs_unbusy(mp);
3453 		return (0);
3454 	}
3455 	MNT_ILOCK(mp);
3456 	mp->mnt_noasync++;
3457 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
3458 	MNT_IUNLOCK(mp);
3459 	vfs_msync(mp, MNT_NOWAIT);
3460 	error = VFS_SYNC(mp, MNT_LAZY);
3461 	MNT_ILOCK(mp);
3462 	mp->mnt_noasync--;
3463 	if ((mp->mnt_flag & MNT_ASYNC) != 0 && mp->mnt_noasync == 0)
3464 		mp->mnt_kern_flag |= MNTK_ASYNC;
3465 	MNT_IUNLOCK(mp);
3466 	vn_finished_write(mp);
3467 	vfs_unbusy(mp);
3468 	return (error);
3469 }
3470 
3471 /*
3472  * The syncer vnode is no referenced.
3473  */
3474 static int
3475 sync_inactive(struct vop_inactive_args *ap)
3476 {
3477 
3478 	vgone(ap->a_vp);
3479 	return (0);
3480 }
3481 
3482 /*
3483  * The syncer vnode is no longer needed and is being decommissioned.
3484  *
3485  * Modifications to the worklist must be protected by sync_mtx.
3486  */
3487 static int
3488 sync_reclaim(struct vop_reclaim_args *ap)
3489 {
3490 	struct vnode *vp = ap->a_vp;
3491 	struct bufobj *bo;
3492 
3493 	bo = &vp->v_bufobj;
3494 	BO_LOCK(bo);
3495 	vp->v_mount->mnt_syncer = NULL;
3496 	if (bo->bo_flag & BO_ONWORKLST) {
3497 		mtx_lock(&sync_mtx);
3498 		LIST_REMOVE(bo, bo_synclist);
3499 		syncer_worklist_len--;
3500 		sync_vnode_count--;
3501 		mtx_unlock(&sync_mtx);
3502 		bo->bo_flag &= ~BO_ONWORKLST;
3503 	}
3504 	BO_UNLOCK(bo);
3505 
3506 	return (0);
3507 }
3508 
3509 /*
3510  * Check if vnode represents a disk device
3511  */
3512 int
3513 vn_isdisk(struct vnode *vp, int *errp)
3514 {
3515 	int error;
3516 
3517 	error = 0;
3518 	dev_lock();
3519 	if (vp->v_type != VCHR)
3520 		error = ENOTBLK;
3521 	else if (vp->v_rdev == NULL)
3522 		error = ENXIO;
3523 	else if (vp->v_rdev->si_devsw == NULL)
3524 		error = ENXIO;
3525 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3526 		error = ENOTBLK;
3527 	dev_unlock();
3528 	if (errp != NULL)
3529 		*errp = error;
3530 	return (error == 0);
3531 }
3532 
3533 /*
3534  * Common filesystem object access control check routine.  Accepts a
3535  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3536  * and optional call-by-reference privused argument allowing vaccess()
3537  * to indicate to the caller whether privilege was used to satisfy the
3538  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3539  *
3540  * The ifdef'd CAPABILITIES version is here for reference, but is not
3541  * actually used.
3542  */
3543 int
3544 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
3545     accmode_t accmode, struct ucred *cred, int *privused)
3546 {
3547 	accmode_t dac_granted;
3548 	accmode_t priv_granted;
3549 
3550 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
3551 	    ("invalid bit in accmode"));
3552 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
3553 	    ("VAPPEND without VWRITE"));
3554 
3555 	/*
3556 	 * Look for a normal, non-privileged way to access the file/directory
3557 	 * as requested.  If it exists, go with that.
3558 	 */
3559 
3560 	if (privused != NULL)
3561 		*privused = 0;
3562 
3563 	dac_granted = 0;
3564 
3565 	/* Check the owner. */
3566 	if (cred->cr_uid == file_uid) {
3567 		dac_granted |= VADMIN;
3568 		if (file_mode & S_IXUSR)
3569 			dac_granted |= VEXEC;
3570 		if (file_mode & S_IRUSR)
3571 			dac_granted |= VREAD;
3572 		if (file_mode & S_IWUSR)
3573 			dac_granted |= (VWRITE | VAPPEND);
3574 
3575 		if ((accmode & dac_granted) == accmode)
3576 			return (0);
3577 
3578 		goto privcheck;
3579 	}
3580 
3581 	/* Otherwise, check the groups (first match) */
3582 	if (groupmember(file_gid, cred)) {
3583 		if (file_mode & S_IXGRP)
3584 			dac_granted |= VEXEC;
3585 		if (file_mode & S_IRGRP)
3586 			dac_granted |= VREAD;
3587 		if (file_mode & S_IWGRP)
3588 			dac_granted |= (VWRITE | VAPPEND);
3589 
3590 		if ((accmode & dac_granted) == accmode)
3591 			return (0);
3592 
3593 		goto privcheck;
3594 	}
3595 
3596 	/* Otherwise, check everyone else. */
3597 	if (file_mode & S_IXOTH)
3598 		dac_granted |= VEXEC;
3599 	if (file_mode & S_IROTH)
3600 		dac_granted |= VREAD;
3601 	if (file_mode & S_IWOTH)
3602 		dac_granted |= (VWRITE | VAPPEND);
3603 	if ((accmode & dac_granted) == accmode)
3604 		return (0);
3605 
3606 privcheck:
3607 	/*
3608 	 * Build a privilege mask to determine if the set of privileges
3609 	 * satisfies the requirements when combined with the granted mask
3610 	 * from above.  For each privilege, if the privilege is required,
3611 	 * bitwise or the request type onto the priv_granted mask.
3612 	 */
3613 	priv_granted = 0;
3614 
3615 	if (type == VDIR) {
3616 		/*
3617 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
3618 		 * requests, instead of PRIV_VFS_EXEC.
3619 		 */
3620 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3621 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
3622 			priv_granted |= VEXEC;
3623 	} else {
3624 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3625 		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
3626 			priv_granted |= VEXEC;
3627 	}
3628 
3629 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
3630 	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
3631 		priv_granted |= VREAD;
3632 
3633 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3634 	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
3635 		priv_granted |= (VWRITE | VAPPEND);
3636 
3637 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3638 	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
3639 		priv_granted |= VADMIN;
3640 
3641 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
3642 		/* XXX audit: privilege used */
3643 		if (privused != NULL)
3644 			*privused = 1;
3645 		return (0);
3646 	}
3647 
3648 	return ((accmode & VADMIN) ? EPERM : EACCES);
3649 }
3650 
3651 /*
3652  * Credential check based on process requesting service, and per-attribute
3653  * permissions.
3654  */
3655 int
3656 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
3657     struct thread *td, accmode_t accmode)
3658 {
3659 
3660 	/*
3661 	 * Kernel-invoked always succeeds.
3662 	 */
3663 	if (cred == NOCRED)
3664 		return (0);
3665 
3666 	/*
3667 	 * Do not allow privileged processes in jail to directly manipulate
3668 	 * system attributes.
3669 	 */
3670 	switch (attrnamespace) {
3671 	case EXTATTR_NAMESPACE_SYSTEM:
3672 		/* Potentially should be: return (EPERM); */
3673 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
3674 	case EXTATTR_NAMESPACE_USER:
3675 		return (VOP_ACCESS(vp, accmode, cred, td));
3676 	default:
3677 		return (EPERM);
3678 	}
3679 }
3680 
3681 #ifdef DEBUG_VFS_LOCKS
3682 /*
3683  * This only exists to supress warnings from unlocked specfs accesses.  It is
3684  * no longer ok to have an unlocked VFS.
3685  */
3686 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
3687 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
3688 
3689 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3690 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3691 
3692 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3693 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3694 
3695 int vfs_badlock_print = 1;	/* Print lock violations. */
3696 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3697 
3698 #ifdef KDB
3699 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3700 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3701 #endif
3702 
3703 static void
3704 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3705 {
3706 
3707 #ifdef KDB
3708 	if (vfs_badlock_backtrace)
3709 		kdb_backtrace();
3710 #endif
3711 	if (vfs_badlock_print)
3712 		printf("%s: %p %s\n", str, (void *)vp, msg);
3713 	if (vfs_badlock_ddb)
3714 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3715 }
3716 
3717 void
3718 assert_vi_locked(struct vnode *vp, const char *str)
3719 {
3720 
3721 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3722 		vfs_badlock("interlock is not locked but should be", str, vp);
3723 }
3724 
3725 void
3726 assert_vi_unlocked(struct vnode *vp, const char *str)
3727 {
3728 
3729 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3730 		vfs_badlock("interlock is locked but should not be", str, vp);
3731 }
3732 
3733 void
3734 assert_vop_locked(struct vnode *vp, const char *str)
3735 {
3736 
3737 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == 0)
3738 		vfs_badlock("is not locked but should be", str, vp);
3739 }
3740 
3741 void
3742 assert_vop_unlocked(struct vnode *vp, const char *str)
3743 {
3744 
3745 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
3746 		vfs_badlock("is locked but should not be", str, vp);
3747 }
3748 
3749 void
3750 assert_vop_elocked(struct vnode *vp, const char *str)
3751 {
3752 
3753 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
3754 		vfs_badlock("is not exclusive locked but should be", str, vp);
3755 }
3756 
3757 #if 0
3758 void
3759 assert_vop_elocked_other(struct vnode *vp, const char *str)
3760 {
3761 
3762 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
3763 		vfs_badlock("is not exclusive locked by another thread",
3764 		    str, vp);
3765 }
3766 
3767 void
3768 assert_vop_slocked(struct vnode *vp, const char *str)
3769 {
3770 
3771 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
3772 		vfs_badlock("is not locked shared but should be", str, vp);
3773 }
3774 #endif /* 0 */
3775 #endif /* DEBUG_VFS_LOCKS */
3776 
3777 void
3778 vop_rename_fail(struct vop_rename_args *ap)
3779 {
3780 
3781 	if (ap->a_tvp != NULL)
3782 		vput(ap->a_tvp);
3783 	if (ap->a_tdvp == ap->a_tvp)
3784 		vrele(ap->a_tdvp);
3785 	else
3786 		vput(ap->a_tdvp);
3787 	vrele(ap->a_fdvp);
3788 	vrele(ap->a_fvp);
3789 }
3790 
3791 void
3792 vop_rename_pre(void *ap)
3793 {
3794 	struct vop_rename_args *a = ap;
3795 
3796 #ifdef DEBUG_VFS_LOCKS
3797 	if (a->a_tvp)
3798 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3799 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3800 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3801 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3802 
3803 	/* Check the source (from). */
3804 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
3805 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
3806 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3807 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
3808 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
3809 
3810 	/* Check the target. */
3811 	if (a->a_tvp)
3812 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3813 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3814 #endif
3815 	if (a->a_tdvp != a->a_fdvp)
3816 		vhold(a->a_fdvp);
3817 	if (a->a_tvp != a->a_fvp)
3818 		vhold(a->a_fvp);
3819 	vhold(a->a_tdvp);
3820 	if (a->a_tvp)
3821 		vhold(a->a_tvp);
3822 }
3823 
3824 void
3825 vop_strategy_pre(void *ap)
3826 {
3827 #ifdef DEBUG_VFS_LOCKS
3828 	struct vop_strategy_args *a;
3829 	struct buf *bp;
3830 
3831 	a = ap;
3832 	bp = a->a_bp;
3833 
3834 	/*
3835 	 * Cluster ops lock their component buffers but not the IO container.
3836 	 */
3837 	if ((bp->b_flags & B_CLUSTER) != 0)
3838 		return;
3839 
3840 	if (!BUF_ISLOCKED(bp)) {
3841 		if (vfs_badlock_print)
3842 			printf(
3843 			    "VOP_STRATEGY: bp is not locked but should be\n");
3844 		if (vfs_badlock_ddb)
3845 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
3846 	}
3847 #endif
3848 }
3849 
3850 void
3851 vop_lookup_pre(void *ap)
3852 {
3853 #ifdef DEBUG_VFS_LOCKS
3854 	struct vop_lookup_args *a;
3855 	struct vnode *dvp;
3856 
3857 	a = ap;
3858 	dvp = a->a_dvp;
3859 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3860 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3861 #endif
3862 }
3863 
3864 void
3865 vop_lookup_post(void *ap, int rc)
3866 {
3867 #ifdef DEBUG_VFS_LOCKS
3868 	struct vop_lookup_args *a;
3869 	struct vnode *dvp;
3870 	struct vnode *vp;
3871 
3872 	a = ap;
3873 	dvp = a->a_dvp;
3874 	vp = *(a->a_vpp);
3875 
3876 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3877 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3878 
3879 	if (!rc)
3880 		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3881 #endif
3882 }
3883 
3884 void
3885 vop_lock_pre(void *ap)
3886 {
3887 #ifdef DEBUG_VFS_LOCKS
3888 	struct vop_lock1_args *a = ap;
3889 
3890 	if ((a->a_flags & LK_INTERLOCK) == 0)
3891 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3892 	else
3893 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3894 #endif
3895 }
3896 
3897 void
3898 vop_lock_post(void *ap, int rc)
3899 {
3900 #ifdef DEBUG_VFS_LOCKS
3901 	struct vop_lock1_args *a = ap;
3902 
3903 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3904 	if (rc == 0)
3905 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3906 #endif
3907 }
3908 
3909 void
3910 vop_unlock_pre(void *ap)
3911 {
3912 #ifdef DEBUG_VFS_LOCKS
3913 	struct vop_unlock_args *a = ap;
3914 
3915 	if (a->a_flags & LK_INTERLOCK)
3916 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3917 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3918 #endif
3919 }
3920 
3921 void
3922 vop_unlock_post(void *ap, int rc)
3923 {
3924 #ifdef DEBUG_VFS_LOCKS
3925 	struct vop_unlock_args *a = ap;
3926 
3927 	if (a->a_flags & LK_INTERLOCK)
3928 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3929 #endif
3930 }
3931 
3932 void
3933 vop_create_post(void *ap, int rc)
3934 {
3935 	struct vop_create_args *a = ap;
3936 
3937 	if (!rc)
3938 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3939 }
3940 
3941 void
3942 vop_link_post(void *ap, int rc)
3943 {
3944 	struct vop_link_args *a = ap;
3945 
3946 	if (!rc) {
3947 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
3948 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
3949 	}
3950 }
3951 
3952 void
3953 vop_mkdir_post(void *ap, int rc)
3954 {
3955 	struct vop_mkdir_args *a = ap;
3956 
3957 	if (!rc)
3958 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
3959 }
3960 
3961 void
3962 vop_mknod_post(void *ap, int rc)
3963 {
3964 	struct vop_mknod_args *a = ap;
3965 
3966 	if (!rc)
3967 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3968 }
3969 
3970 void
3971 vop_remove_post(void *ap, int rc)
3972 {
3973 	struct vop_remove_args *a = ap;
3974 
3975 	if (!rc) {
3976 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
3977 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
3978 	}
3979 }
3980 
3981 void
3982 vop_rename_post(void *ap, int rc)
3983 {
3984 	struct vop_rename_args *a = ap;
3985 
3986 	if (!rc) {
3987 		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
3988 		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
3989 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
3990 		if (a->a_tvp)
3991 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
3992 	}
3993 	if (a->a_tdvp != a->a_fdvp)
3994 		vdrop(a->a_fdvp);
3995 	if (a->a_tvp != a->a_fvp)
3996 		vdrop(a->a_fvp);
3997 	vdrop(a->a_tdvp);
3998 	if (a->a_tvp)
3999 		vdrop(a->a_tvp);
4000 }
4001 
4002 void
4003 vop_rmdir_post(void *ap, int rc)
4004 {
4005 	struct vop_rmdir_args *a = ap;
4006 
4007 	if (!rc) {
4008 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4009 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4010 	}
4011 }
4012 
4013 void
4014 vop_setattr_post(void *ap, int rc)
4015 {
4016 	struct vop_setattr_args *a = ap;
4017 
4018 	if (!rc)
4019 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4020 }
4021 
4022 void
4023 vop_symlink_post(void *ap, int rc)
4024 {
4025 	struct vop_symlink_args *a = ap;
4026 
4027 	if (!rc)
4028 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4029 }
4030 
4031 static struct knlist fs_knlist;
4032 
4033 static void
4034 vfs_event_init(void *arg)
4035 {
4036 	knlist_init_mtx(&fs_knlist, NULL);
4037 }
4038 /* XXX - correct order? */
4039 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4040 
4041 void
4042 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4043 {
4044 
4045 	KNOTE_UNLOCKED(&fs_knlist, event);
4046 }
4047 
4048 static int	filt_fsattach(struct knote *kn);
4049 static void	filt_fsdetach(struct knote *kn);
4050 static int	filt_fsevent(struct knote *kn, long hint);
4051 
4052 struct filterops fs_filtops = {
4053 	.f_isfd = 0,
4054 	.f_attach = filt_fsattach,
4055 	.f_detach = filt_fsdetach,
4056 	.f_event = filt_fsevent
4057 };
4058 
4059 static int
4060 filt_fsattach(struct knote *kn)
4061 {
4062 
4063 	kn->kn_flags |= EV_CLEAR;
4064 	knlist_add(&fs_knlist, kn, 0);
4065 	return (0);
4066 }
4067 
4068 static void
4069 filt_fsdetach(struct knote *kn)
4070 {
4071 
4072 	knlist_remove(&fs_knlist, kn, 0);
4073 }
4074 
4075 static int
4076 filt_fsevent(struct knote *kn, long hint)
4077 {
4078 
4079 	kn->kn_fflags |= hint;
4080 	return (kn->kn_fflags != 0);
4081 }
4082 
4083 static int
4084 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4085 {
4086 	struct vfsidctl vc;
4087 	int error;
4088 	struct mount *mp;
4089 
4090 	error = SYSCTL_IN(req, &vc, sizeof(vc));
4091 	if (error)
4092 		return (error);
4093 	if (vc.vc_vers != VFS_CTL_VERS1)
4094 		return (EINVAL);
4095 	mp = vfs_getvfs(&vc.vc_fsid);
4096 	if (mp == NULL)
4097 		return (ENOENT);
4098 	/* ensure that a specific sysctl goes to the right filesystem. */
4099 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4100 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4101 		vfs_rel(mp);
4102 		return (EINVAL);
4103 	}
4104 	VCTLTOREQ(&vc, req);
4105 	error = VFS_SYSCTL(mp, vc.vc_op, req);
4106 	vfs_rel(mp);
4107 	return (error);
4108 }
4109 
4110 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "",
4111     "Sysctl by fsid");
4112 
4113 /*
4114  * Function to initialize a va_filerev field sensibly.
4115  * XXX: Wouldn't a random number make a lot more sense ??
4116  */
4117 u_quad_t
4118 init_va_filerev(void)
4119 {
4120 	struct bintime bt;
4121 
4122 	getbinuptime(&bt);
4123 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4124 }
4125 
4126 static int	filt_vfsread(struct knote *kn, long hint);
4127 static int	filt_vfswrite(struct knote *kn, long hint);
4128 static int	filt_vfsvnode(struct knote *kn, long hint);
4129 static void	filt_vfsdetach(struct knote *kn);
4130 static struct filterops vfsread_filtops = {
4131 	.f_isfd = 1,
4132 	.f_detach = filt_vfsdetach,
4133 	.f_event = filt_vfsread
4134 };
4135 static struct filterops vfswrite_filtops = {
4136 	.f_isfd = 1,
4137 	.f_detach = filt_vfsdetach,
4138 	.f_event = filt_vfswrite
4139 };
4140 static struct filterops vfsvnode_filtops = {
4141 	.f_isfd = 1,
4142 	.f_detach = filt_vfsdetach,
4143 	.f_event = filt_vfsvnode
4144 };
4145 
4146 static void
4147 vfs_knllock(void *arg)
4148 {
4149 	struct vnode *vp = arg;
4150 
4151 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4152 }
4153 
4154 static void
4155 vfs_knlunlock(void *arg)
4156 {
4157 	struct vnode *vp = arg;
4158 
4159 	VOP_UNLOCK(vp, 0);
4160 }
4161 
4162 static void
4163 vfs_knl_assert_locked(void *arg)
4164 {
4165 #ifdef DEBUG_VFS_LOCKS
4166 	struct vnode *vp = arg;
4167 
4168 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4169 #endif
4170 }
4171 
4172 static void
4173 vfs_knl_assert_unlocked(void *arg)
4174 {
4175 #ifdef DEBUG_VFS_LOCKS
4176 	struct vnode *vp = arg;
4177 
4178 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4179 #endif
4180 }
4181 
4182 int
4183 vfs_kqfilter(struct vop_kqfilter_args *ap)
4184 {
4185 	struct vnode *vp = ap->a_vp;
4186 	struct knote *kn = ap->a_kn;
4187 	struct knlist *knl;
4188 
4189 	switch (kn->kn_filter) {
4190 	case EVFILT_READ:
4191 		kn->kn_fop = &vfsread_filtops;
4192 		break;
4193 	case EVFILT_WRITE:
4194 		kn->kn_fop = &vfswrite_filtops;
4195 		break;
4196 	case EVFILT_VNODE:
4197 		kn->kn_fop = &vfsvnode_filtops;
4198 		break;
4199 	default:
4200 		return (EINVAL);
4201 	}
4202 
4203 	kn->kn_hook = (caddr_t)vp;
4204 
4205 	v_addpollinfo(vp);
4206 	if (vp->v_pollinfo == NULL)
4207 		return (ENOMEM);
4208 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4209 	knlist_add(knl, kn, 0);
4210 
4211 	return (0);
4212 }
4213 
4214 /*
4215  * Detach knote from vnode
4216  */
4217 static void
4218 filt_vfsdetach(struct knote *kn)
4219 {
4220 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4221 
4222 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4223 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4224 }
4225 
4226 /*ARGSUSED*/
4227 static int
4228 filt_vfsread(struct knote *kn, long hint)
4229 {
4230 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4231 	struct vattr va;
4232 	int res;
4233 
4234 	/*
4235 	 * filesystem is gone, so set the EOF flag and schedule
4236 	 * the knote for deletion.
4237 	 */
4238 	if (hint == NOTE_REVOKE) {
4239 		VI_LOCK(vp);
4240 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4241 		VI_UNLOCK(vp);
4242 		return (1);
4243 	}
4244 
4245 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4246 		return (0);
4247 
4248 	VI_LOCK(vp);
4249 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4250 	res = (kn->kn_data != 0);
4251 	VI_UNLOCK(vp);
4252 	return (res);
4253 }
4254 
4255 /*ARGSUSED*/
4256 static int
4257 filt_vfswrite(struct knote *kn, long hint)
4258 {
4259 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4260 
4261 	VI_LOCK(vp);
4262 
4263 	/*
4264 	 * filesystem is gone, so set the EOF flag and schedule
4265 	 * the knote for deletion.
4266 	 */
4267 	if (hint == NOTE_REVOKE)
4268 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4269 
4270 	kn->kn_data = 0;
4271 	VI_UNLOCK(vp);
4272 	return (1);
4273 }
4274 
4275 static int
4276 filt_vfsvnode(struct knote *kn, long hint)
4277 {
4278 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4279 	int res;
4280 
4281 	VI_LOCK(vp);
4282 	if (kn->kn_sfflags & hint)
4283 		kn->kn_fflags |= hint;
4284 	if (hint == NOTE_REVOKE) {
4285 		kn->kn_flags |= EV_EOF;
4286 		VI_UNLOCK(vp);
4287 		return (1);
4288 	}
4289 	res = (kn->kn_fflags != 0);
4290 	VI_UNLOCK(vp);
4291 	return (res);
4292 }
4293 
4294 int
4295 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4296 {
4297 	int error;
4298 
4299 	if (dp->d_reclen > ap->a_uio->uio_resid)
4300 		return (ENAMETOOLONG);
4301 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4302 	if (error) {
4303 		if (ap->a_ncookies != NULL) {
4304 			if (ap->a_cookies != NULL)
4305 				free(ap->a_cookies, M_TEMP);
4306 			ap->a_cookies = NULL;
4307 			*ap->a_ncookies = 0;
4308 		}
4309 		return (error);
4310 	}
4311 	if (ap->a_ncookies == NULL)
4312 		return (0);
4313 
4314 	KASSERT(ap->a_cookies,
4315 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4316 
4317 	*ap->a_cookies = realloc(*ap->a_cookies,
4318 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4319 	(*ap->a_cookies)[*ap->a_ncookies] = off;
4320 	return (0);
4321 }
4322 
4323 /*
4324  * Mark for update the access time of the file if the filesystem
4325  * supports VOP_MARKATIME.  This functionality is used by execve and
4326  * mmap, so we want to avoid the I/O implied by directly setting
4327  * va_atime for the sake of efficiency.
4328  */
4329 void
4330 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4331 {
4332 	struct mount *mp;
4333 
4334 	mp = vp->v_mount;
4335 	VFS_ASSERT_GIANT(mp);
4336 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4337 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4338 		(void)VOP_MARKATIME(vp);
4339 }
4340 
4341 /*
4342  * The purpose of this routine is to remove granularity from accmode_t,
4343  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4344  * VADMIN and VAPPEND.
4345  *
4346  * If it returns 0, the caller is supposed to continue with the usual
4347  * access checks using 'accmode' as modified by this routine.  If it
4348  * returns nonzero value, the caller is supposed to return that value
4349  * as errno.
4350  *
4351  * Note that after this routine runs, accmode may be zero.
4352  */
4353 int
4354 vfs_unixify_accmode(accmode_t *accmode)
4355 {
4356 	/*
4357 	 * There is no way to specify explicit "deny" rule using
4358 	 * file mode or POSIX.1e ACLs.
4359 	 */
4360 	if (*accmode & VEXPLICIT_DENY) {
4361 		*accmode = 0;
4362 		return (0);
4363 	}
4364 
4365 	/*
4366 	 * None of these can be translated into usual access bits.
4367 	 * Also, the common case for NFSv4 ACLs is to not contain
4368 	 * either of these bits. Caller should check for VWRITE
4369 	 * on the containing directory instead.
4370 	 */
4371 	if (*accmode & (VDELETE_CHILD | VDELETE))
4372 		return (EPERM);
4373 
4374 	if (*accmode & VADMIN_PERMS) {
4375 		*accmode &= ~VADMIN_PERMS;
4376 		*accmode |= VADMIN;
4377 	}
4378 
4379 	/*
4380 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4381 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4382 	 */
4383 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4384 
4385 	return (0);
4386 }
4387