1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 /*
38 * External virtual filesystem routines
39 */
40
41 #include "opt_ddb.h"
42 #include "opt_watchdog.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/asan.h>
47 #include <sys/bio.h>
48 #include <sys/buf.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/counter.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/inotify.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/stdarg.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/user.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87
88 #include <security/mac/mac_framework.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103
104 static void delmntque(struct vnode *vp);
105 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 int slpflag, int slptimeo);
107 static void syncer_shutdown(void *arg, int howto);
108 static int vtryrecycle(struct vnode *vp, bool isvnlru);
109 static void v_init_counters(struct vnode *);
110 static void vn_seqc_init(struct vnode *);
111 static void vn_seqc_write_end_free(struct vnode *vp);
112 static void vgonel(struct vnode *);
113 static bool vhold_recycle_free(struct vnode *);
114 static void vdropl_recycle(struct vnode *vp);
115 static void vdrop_recycle(struct vnode *vp);
116 static void vfs_knllock(void *arg);
117 static void vfs_knlunlock(void *arg);
118 static void vfs_knl_assert_lock(void *arg, int what);
119 static void destroy_vpollinfo(struct vpollinfo *vi);
120 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 daddr_t startlbn, daddr_t endlbn);
122 static void vnlru_recalc(void);
123
124 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
125 "vnode configuration and statistics");
126 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
127 "vnode configuration");
128 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129 "vnode statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131 "vnode recycling");
132
133 /*
134 * Number of vnodes in existence. Increased whenever getnewvnode()
135 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
136 */
137 static u_long __exclusive_cache_line numvnodes;
138
139 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
140 "Number of vnodes in existence (legacy)");
141 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
142 "Number of vnodes in existence");
143
144 static counter_u64_t vnodes_created;
145 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
146 "Number of vnodes created by getnewvnode (legacy)");
147 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
148 "Number of vnodes created by getnewvnode");
149
150 /*
151 * Conversion tables for conversion from vnode types to inode formats
152 * and back.
153 */
154 __enum_uint8(vtype) iftovt_tab[16] = {
155 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
156 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
157 };
158 int vttoif_tab[10] = {
159 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
160 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
161 };
162
163 /*
164 * List of allocates vnodes in the system.
165 */
166 static TAILQ_HEAD(freelst, vnode) vnode_list;
167 static struct vnode *vnode_list_free_marker;
168 static struct vnode *vnode_list_reclaim_marker;
169
170 /*
171 * "Free" vnode target. Free vnodes are rarely completely free, but are
172 * just ones that are cheap to recycle. Usually they are for files which
173 * have been stat'd but not read; these usually have inode and namecache
174 * data attached to them. This target is the preferred minimum size of a
175 * sub-cache consisting mostly of such files. The system balances the size
176 * of this sub-cache with its complement to try to prevent either from
177 * thrashing while the other is relatively inactive. The targets express
178 * a preference for the best balance.
179 *
180 * "Above" this target there are 2 further targets (watermarks) related
181 * to recyling of free vnodes. In the best-operating case, the cache is
182 * exactly full, the free list has size between vlowat and vhiwat above the
183 * free target, and recycling from it and normal use maintains this state.
184 * Sometimes the free list is below vlowat or even empty, but this state
185 * is even better for immediate use provided the cache is not full.
186 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
187 * ones) to reach one of these states. The watermarks are currently hard-
188 * coded as 4% and 9% of the available space higher. These and the default
189 * of 25% for wantfreevnodes are too large if the memory size is large.
190 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
191 * whenever vnlru_proc() becomes active.
192 */
193 static long wantfreevnodes;
194 static long __exclusive_cache_line freevnodes;
195 static long freevnodes_old;
196
197 static u_long recycles_count;
198 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
199 "Number of vnodes recycled to meet vnode cache targets (legacy)");
200 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
201 &recycles_count, 0,
202 "Number of vnodes recycled to meet vnode cache targets");
203
204 static u_long recycles_free_count;
205 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
206 &recycles_free_count, 0,
207 "Number of free vnodes recycled to meet vnode cache targets (legacy)");
208 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
209 &recycles_free_count, 0,
210 "Number of free vnodes recycled to meet vnode cache targets");
211
212 static counter_u64_t direct_recycles_free_count;
213 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
214 &direct_recycles_free_count,
215 "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
216
217 static counter_u64_t vnode_skipped_requeues;
218 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
219 "Number of times LRU requeue was skipped due to lock contention");
220
221 static __read_mostly bool vnode_can_skip_requeue;
222 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
223 &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
224
225 static u_long deferred_inact;
226 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
227 &deferred_inact, 0, "Number of times inactive processing was deferred");
228
229 /* To keep more than one thread at a time from running vfs_getnewfsid */
230 static struct mtx mntid_mtx;
231
232 /*
233 * Lock for any access to the following:
234 * vnode_list
235 * numvnodes
236 * freevnodes
237 */
238 static struct mtx __exclusive_cache_line vnode_list_mtx;
239
240 /* Publicly exported FS */
241 struct nfs_public nfs_pub;
242
243 static uma_zone_t buf_trie_zone;
244 static smr_t buf_trie_smr;
245
246 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
247 static uma_zone_t vnode_zone;
248 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
249
250 __read_frequently smr_t vfs_smr;
251
252 /*
253 * The workitem queue.
254 *
255 * It is useful to delay writes of file data and filesystem metadata
256 * for tens of seconds so that quickly created and deleted files need
257 * not waste disk bandwidth being created and removed. To realize this,
258 * we append vnodes to a "workitem" queue. When running with a soft
259 * updates implementation, most pending metadata dependencies should
260 * not wait for more than a few seconds. Thus, mounted on block devices
261 * are delayed only about a half the time that file data is delayed.
262 * Similarly, directory updates are more critical, so are only delayed
263 * about a third the time that file data is delayed. Thus, there are
264 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
265 * one each second (driven off the filesystem syncer process). The
266 * syncer_delayno variable indicates the next queue that is to be processed.
267 * Items that need to be processed soon are placed in this queue:
268 *
269 * syncer_workitem_pending[syncer_delayno]
270 *
271 * A delay of fifteen seconds is done by placing the request fifteen
272 * entries later in the queue:
273 *
274 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
275 *
276 */
277 static int syncer_delayno;
278 static long syncer_mask;
279 LIST_HEAD(synclist, bufobj);
280 static struct synclist *syncer_workitem_pending;
281 /*
282 * The sync_mtx protects:
283 * bo->bo_synclist
284 * sync_vnode_count
285 * syncer_delayno
286 * syncer_state
287 * syncer_workitem_pending
288 * syncer_worklist_len
289 * rushjob
290 */
291 static struct mtx sync_mtx;
292 static struct cv sync_wakeup;
293
294 #define SYNCER_MAXDELAY 32
295 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
296 static int syncdelay = 30; /* max time to delay syncing data */
297 static int filedelay = 30; /* time to delay syncing files */
298 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
299 "Time to delay syncing files (in seconds)");
300 static int dirdelay = 29; /* time to delay syncing directories */
301 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
302 "Time to delay syncing directories (in seconds)");
303 static int metadelay = 28; /* time to delay syncing metadata */
304 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
305 "Time to delay syncing metadata (in seconds)");
306 static int rushjob; /* number of slots to run ASAP */
307 static int stat_rush_requests; /* number of times I/O speeded up */
308 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
309 "Number of times I/O speeded up (rush requests)");
310
311 #define VDBATCH_SIZE 8
312 struct vdbatch {
313 u_int index;
314 struct mtx lock;
315 struct vnode *tab[VDBATCH_SIZE];
316 };
317 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
318
319 static void vdbatch_dequeue(struct vnode *vp);
320
321 /*
322 * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
323 * we probably don't want to pause for the whole second each time.
324 */
325 #define SYNCER_SHUTDOWN_SPEEDUP 32
326 static int sync_vnode_count;
327 static int syncer_worklist_len;
328 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
329 syncer_state;
330
331 /* Target for maximum number of vnodes. */
332 u_long desiredvnodes;
333 static u_long gapvnodes; /* gap between wanted and desired */
334 static u_long vhiwat; /* enough extras after expansion */
335 static u_long vlowat; /* minimal extras before expansion */
336 static bool vstir; /* nonzero to stir non-free vnodes */
337 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */
338
339 static u_long vnlru_read_freevnodes(void);
340
341 /*
342 * Note that no attempt is made to sanitize these parameters.
343 */
344 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)345 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
346 {
347 u_long val;
348 int error;
349
350 val = desiredvnodes;
351 error = sysctl_handle_long(oidp, &val, 0, req);
352 if (error != 0 || req->newptr == NULL)
353 return (error);
354
355 if (val == desiredvnodes)
356 return (0);
357 mtx_lock(&vnode_list_mtx);
358 desiredvnodes = val;
359 wantfreevnodes = desiredvnodes / 4;
360 vnlru_recalc();
361 mtx_unlock(&vnode_list_mtx);
362 /*
363 * XXX There is no protection against multiple threads changing
364 * desiredvnodes at the same time. Locking above only helps vnlru and
365 * getnewvnode.
366 */
367 vfs_hash_changesize(desiredvnodes);
368 cache_changesize(desiredvnodes);
369 return (0);
370 }
371
372 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
373 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
374 "LU", "Target for maximum number of vnodes (legacy)");
375 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
376 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377 "LU", "Target for maximum number of vnodes");
378
379 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)380 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
381 {
382 u_long rfreevnodes;
383
384 rfreevnodes = vnlru_read_freevnodes();
385 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
386 }
387
388 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
389 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
390 "LU", "Number of \"free\" vnodes (legacy)");
391 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
392 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393 "LU", "Number of \"free\" vnodes");
394
395 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)396 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
397 {
398 u_long val;
399 int error;
400
401 val = wantfreevnodes;
402 error = sysctl_handle_long(oidp, &val, 0, req);
403 if (error != 0 || req->newptr == NULL)
404 return (error);
405
406 if (val == wantfreevnodes)
407 return (0);
408 mtx_lock(&vnode_list_mtx);
409 wantfreevnodes = val;
410 vnlru_recalc();
411 mtx_unlock(&vnode_list_mtx);
412 return (0);
413 }
414
415 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
416 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
417 "LU", "Target for minimum number of \"free\" vnodes (legacy)");
418 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
419 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420 "LU", "Target for minimum number of \"free\" vnodes");
421
422 static int vnlru_nowhere;
423 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
424 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
425
426 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)427 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
428 {
429 struct vnode *vp;
430 struct nameidata nd;
431 char *buf;
432 unsigned long ndflags;
433 int error;
434
435 if (req->newptr == NULL)
436 return (EINVAL);
437 if (req->newlen >= PATH_MAX)
438 return (E2BIG);
439
440 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
441 error = SYSCTL_IN(req, buf, req->newlen);
442 if (error != 0)
443 goto out;
444
445 buf[req->newlen] = '\0';
446
447 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
448 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
449 if ((error = namei(&nd)) != 0)
450 goto out;
451 vp = nd.ni_vp;
452
453 if (VN_IS_DOOMED(vp)) {
454 /*
455 * This vnode is being recycled. Return != 0 to let the caller
456 * know that the sysctl had no effect. Return EAGAIN because a
457 * subsequent call will likely succeed (since namei will create
458 * a new vnode if necessary)
459 */
460 error = EAGAIN;
461 goto putvnode;
462 }
463
464 vgone(vp);
465 putvnode:
466 vput(vp);
467 NDFREE_PNBUF(&nd);
468 out:
469 free(buf, M_TEMP);
470 return (error);
471 }
472
473 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)474 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
475 {
476 struct thread *td = curthread;
477 struct vnode *vp;
478 struct file *fp;
479 int error;
480 int fd;
481
482 if (req->newptr == NULL)
483 return (EBADF);
484
485 error = sysctl_handle_int(oidp, &fd, 0, req);
486 if (error != 0)
487 return (error);
488 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
489 if (error != 0)
490 return (error);
491 vp = fp->f_vnode;
492
493 error = vn_lock(vp, LK_EXCLUSIVE);
494 if (error != 0)
495 goto drop;
496
497 vgone(vp);
498 VOP_UNLOCK(vp);
499 drop:
500 fdrop(fp, td);
501 return (error);
502 }
503
504 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
505 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
506 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
507 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
508 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509 sysctl_ftry_reclaim_vnode, "I",
510 "Try to reclaim a vnode by its file descriptor");
511
512 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
513 #define vnsz2log 8
514 #ifndef DEBUG_LOCKS
515 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
516 sizeof(struct vnode) < 1UL << (vnsz2log + 1),
517 "vnsz2log needs to be updated");
518 #endif
519
520 /*
521 * Support for the bufobj clean & dirty pctrie.
522 */
523 static void *
buf_trie_alloc(struct pctrie * ptree)524 buf_trie_alloc(struct pctrie *ptree)
525 {
526 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
527 }
528
529 static void
buf_trie_free(struct pctrie * ptree,void * node)530 buf_trie_free(struct pctrie *ptree, void *node)
531 {
532 uma_zfree_smr(buf_trie_zone, node);
533 }
534 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
535 buf_trie_smr);
536
537 /*
538 * Lookup the next element greater than or equal to lblkno, accounting for the
539 * fact that, for pctries, negative values are greater than nonnegative ones.
540 */
541 static struct buf *
buf_lookup_ge(struct bufv * bv,daddr_t lblkno)542 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
543 {
544 struct buf *bp;
545
546 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
547 if (bp == NULL && lblkno < 0)
548 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
549 if (bp != NULL && bp->b_lblkno < lblkno)
550 bp = NULL;
551 return (bp);
552 }
553
554 /*
555 * Insert bp, and find the next element smaller than bp, accounting for the fact
556 * that, for pctries, negative values are greater than nonnegative ones.
557 */
558 static int
buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)559 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
560 {
561 int error;
562
563 error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
564 if (error != EEXIST) {
565 if (*n == NULL && bp->b_lblkno >= 0)
566 *n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
567 if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
568 *n = NULL;
569 }
570 return (error);
571 }
572
573 /*
574 * Initialize the vnode management data structures.
575 *
576 * Reevaluate the following cap on the number of vnodes after the physical
577 * memory size exceeds 512GB. In the limit, as the physical memory size
578 * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
579 */
580 #ifndef MAXVNODES_MAX
581 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */
582 #endif
583
584 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
585
586 static struct vnode *
vn_alloc_marker(struct mount * mp)587 vn_alloc_marker(struct mount *mp)
588 {
589 struct vnode *vp;
590
591 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
592 vp->v_type = VMARKER;
593 vp->v_mount = mp;
594
595 return (vp);
596 }
597
598 static void
vn_free_marker(struct vnode * vp)599 vn_free_marker(struct vnode *vp)
600 {
601
602 MPASS(vp->v_type == VMARKER);
603 free(vp, M_VNODE_MARKER);
604 }
605
606 #ifdef KASAN
607 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)608 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
609 {
610 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
611 return (0);
612 }
613
614 static void
vnode_dtor(void * mem,int size,void * arg __unused)615 vnode_dtor(void *mem, int size, void *arg __unused)
616 {
617 size_t end1, end2, off1, off2;
618
619 _Static_assert(offsetof(struct vnode, v_vnodelist) <
620 offsetof(struct vnode, v_dbatchcpu),
621 "KASAN marks require updating");
622
623 off1 = offsetof(struct vnode, v_vnodelist);
624 off2 = offsetof(struct vnode, v_dbatchcpu);
625 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
626 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
627
628 /*
629 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
630 * after the vnode has been freed. Try to get some KASAN coverage by
631 * marking everything except those two fields as invalid. Because
632 * KASAN's tracking is not byte-granular, any preceding fields sharing
633 * the same 8-byte aligned word must also be marked valid.
634 */
635
636 /* Handle the area from the start until v_vnodelist... */
637 off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
638 kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
639
640 /* ... then the area between v_vnodelist and v_dbatchcpu ... */
641 off1 = roundup2(end1, KASAN_SHADOW_SCALE);
642 off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
643 if (off2 > off1)
644 kasan_mark((void *)((char *)mem + off1), off2 - off1,
645 off2 - off1, KASAN_UMA_FREED);
646
647 /* ... and finally the area from v_dbatchcpu to the end. */
648 off2 = roundup2(end2, KASAN_SHADOW_SCALE);
649 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
650 KASAN_UMA_FREED);
651 }
652 #endif /* KASAN */
653
654 /*
655 * Initialize a vnode as it first enters the zone.
656 */
657 static int
vnode_init(void * mem,int size,int flags)658 vnode_init(void *mem, int size, int flags)
659 {
660 struct vnode *vp;
661
662 vp = mem;
663 bzero(vp, size);
664 /*
665 * Setup locks.
666 */
667 vp->v_vnlock = &vp->v_lock;
668 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
669 /*
670 * By default, don't allow shared locks unless filesystems opt-in.
671 */
672 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
673 LK_NOSHARE | LK_IS_VNODE);
674 /*
675 * Initialize bufobj.
676 */
677 bufobj_init(&vp->v_bufobj, vp);
678 /*
679 * Initialize namecache.
680 */
681 cache_vnode_init(vp);
682 /*
683 * Initialize rangelocks.
684 */
685 rangelock_init(&vp->v_rl);
686
687 vp->v_dbatchcpu = NOCPU;
688
689 vp->v_state = VSTATE_DEAD;
690
691 /*
692 * Check vhold_recycle_free for an explanation.
693 */
694 vp->v_holdcnt = VHOLD_NO_SMR;
695 vp->v_type = VNON;
696 mtx_lock(&vnode_list_mtx);
697 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
698 mtx_unlock(&vnode_list_mtx);
699 return (0);
700 }
701
702 /*
703 * Free a vnode when it is cleared from the zone.
704 */
705 static void
vnode_fini(void * mem,int size)706 vnode_fini(void *mem, int size)
707 {
708 struct vnode *vp;
709 struct bufobj *bo;
710
711 vp = mem;
712 vdbatch_dequeue(vp);
713 mtx_lock(&vnode_list_mtx);
714 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
715 mtx_unlock(&vnode_list_mtx);
716 rangelock_destroy(&vp->v_rl);
717 lockdestroy(vp->v_vnlock);
718 mtx_destroy(&vp->v_interlock);
719 bo = &vp->v_bufobj;
720 rw_destroy(BO_LOCKPTR(bo));
721
722 kasan_mark(mem, size, size, 0);
723 }
724
725 /*
726 * Provide the size of NFS nclnode and NFS fh for calculation of the
727 * vnode memory consumption. The size is specified directly to
728 * eliminate dependency on NFS-private header.
729 *
730 * Other filesystems may use bigger or smaller (like UFS and ZFS)
731 * private inode data, but the NFS-based estimation is ample enough.
732 * Still, we care about differences in the size between 64- and 32-bit
733 * platforms.
734 *
735 * Namecache structure size is heuristically
736 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
737 */
738 #ifdef _LP64
739 #define NFS_NCLNODE_SZ (528 + 64)
740 #define NC_SZ 148
741 #else
742 #define NFS_NCLNODE_SZ (360 + 32)
743 #define NC_SZ 92
744 #endif
745
746 static void
vntblinit(void * dummy __unused)747 vntblinit(void *dummy __unused)
748 {
749 struct vdbatch *vd;
750 uma_ctor ctor;
751 uma_dtor dtor;
752 int cpu, physvnodes, virtvnodes;
753
754 /*
755 * 'desiredvnodes' is the minimum of a function of the physical memory
756 * size and another of the kernel heap size (UMA limit, a portion of the
757 * KVA).
758 *
759 * Currently, on 64-bit platforms, 'desiredvnodes' is set to
760 * 'virtvnodes' up to a physical memory cutoff of ~1722MB, after which
761 * 'physvnodes' applies instead. With the current automatic tuning for
762 * 'maxfiles' (32 files/MB), 'desiredvnodes' is always greater than it.
763 */
764 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 32 +
765 min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 32;
766 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
767 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
768 desiredvnodes = min(physvnodes, virtvnodes);
769 if (desiredvnodes > MAXVNODES_MAX) {
770 if (bootverbose)
771 printf("Reducing kern.maxvnodes %lu -> %lu\n",
772 desiredvnodes, MAXVNODES_MAX);
773 desiredvnodes = MAXVNODES_MAX;
774 }
775 wantfreevnodes = desiredvnodes / 4;
776 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
777 TAILQ_INIT(&vnode_list);
778 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
779 /*
780 * The lock is taken to appease WITNESS.
781 */
782 mtx_lock(&vnode_list_mtx);
783 vnlru_recalc();
784 mtx_unlock(&vnode_list_mtx);
785 vnode_list_free_marker = vn_alloc_marker(NULL);
786 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
787 vnode_list_reclaim_marker = vn_alloc_marker(NULL);
788 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
789
790 #ifdef KASAN
791 ctor = vnode_ctor;
792 dtor = vnode_dtor;
793 #else
794 ctor = NULL;
795 dtor = NULL;
796 #endif
797 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
798 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
799 uma_zone_set_smr(vnode_zone, vfs_smr);
800
801 /*
802 * Preallocate enough nodes to support one-per buf so that
803 * we can not fail an insert. reassignbuf() callers can not
804 * tolerate the insertion failure.
805 */
806 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
807 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
808 UMA_ZONE_NOFREE | UMA_ZONE_SMR);
809 buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
810 uma_prealloc(buf_trie_zone, nbuf);
811
812 vnodes_created = counter_u64_alloc(M_WAITOK);
813 direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
814 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
815
816 /*
817 * Initialize the filesystem syncer.
818 */
819 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
820 &syncer_mask);
821 syncer_maxdelay = syncer_mask + 1;
822 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
823 cv_init(&sync_wakeup, "syncer");
824
825 CPU_FOREACH(cpu) {
826 vd = DPCPU_ID_PTR((cpu), vd);
827 bzero(vd, sizeof(*vd));
828 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
829 }
830 }
831 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
832
833 /*
834 * Mark a mount point as busy. Used to synchronize access and to delay
835 * unmounting. Eventually, mountlist_mtx is not released on failure.
836 *
837 * vfs_busy() is a custom lock, it can block the caller.
838 * vfs_busy() only sleeps if the unmount is active on the mount point.
839 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
840 * vnode belonging to mp.
841 *
842 * Lookup uses vfs_busy() to traverse mount points.
843 * root fs var fs
844 * / vnode lock A / vnode lock (/var) D
845 * /var vnode lock B /log vnode lock(/var/log) E
846 * vfs_busy lock C vfs_busy lock F
847 *
848 * Within each file system, the lock order is C->A->B and F->D->E.
849 *
850 * When traversing across mounts, the system follows that lock order:
851 *
852 * C->A->B
853 * |
854 * +->F->D->E
855 *
856 * The lookup() process for namei("/var") illustrates the process:
857 * 1. VOP_LOOKUP() obtains B while A is held
858 * 2. vfs_busy() obtains a shared lock on F while A and B are held
859 * 3. vput() releases lock on B
860 * 4. vput() releases lock on A
861 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held
862 * 6. vfs_unbusy() releases shared lock on F
863 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
864 * Attempt to lock A (instead of vp_crossmp) while D is held would
865 * violate the global order, causing deadlocks.
866 *
867 * dounmount() locks B while F is drained. Note that for stacked
868 * filesystems, D and B in the example above may be the same lock,
869 * which introdues potential lock order reversal deadlock between
870 * dounmount() and step 5 above. These filesystems may avoid the LOR
871 * by setting VV_CROSSLOCK on the covered vnode so that lock B will
872 * remain held until after step 5.
873 */
874 int
vfs_busy(struct mount * mp,int flags)875 vfs_busy(struct mount *mp, int flags)
876 {
877 struct mount_pcpu *mpcpu;
878
879 MPASS((flags & ~MBF_MASK) == 0);
880 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
881
882 if (vfs_op_thread_enter(mp, mpcpu)) {
883 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
884 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
885 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
886 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
887 vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
888 vfs_op_thread_exit(mp, mpcpu);
889 if (flags & MBF_MNTLSTLOCK)
890 mtx_unlock(&mountlist_mtx);
891 return (0);
892 }
893
894 MNT_ILOCK(mp);
895 vfs_assert_mount_counters(mp);
896 MNT_REF(mp);
897 /*
898 * If mount point is currently being unmounted, sleep until the
899 * mount point fate is decided. If thread doing the unmounting fails,
900 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
901 * that this mount point has survived the unmount attempt and vfs_busy
902 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
903 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
904 * about to be really destroyed. vfs_busy needs to release its
905 * reference on the mount point in this case and return with ENOENT,
906 * telling the caller the mount it tried to busy is no longer valid.
907 */
908 while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
909 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
910 ("%s: non-empty upper mount list with pending unmount",
911 __func__));
912 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
913 MNT_REL(mp);
914 MNT_IUNLOCK(mp);
915 CTR1(KTR_VFS, "%s: failed busying before sleeping",
916 __func__);
917 return (ENOENT);
918 }
919 if (flags & MBF_MNTLSTLOCK)
920 mtx_unlock(&mountlist_mtx);
921 mp->mnt_kern_flag |= MNTK_MWAIT;
922 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
923 if (flags & MBF_MNTLSTLOCK)
924 mtx_lock(&mountlist_mtx);
925 MNT_ILOCK(mp);
926 }
927 if (flags & MBF_MNTLSTLOCK)
928 mtx_unlock(&mountlist_mtx);
929 mp->mnt_lockref++;
930 MNT_IUNLOCK(mp);
931 return (0);
932 }
933
934 /*
935 * Free a busy filesystem.
936 */
937 void
vfs_unbusy(struct mount * mp)938 vfs_unbusy(struct mount *mp)
939 {
940 struct mount_pcpu *mpcpu;
941 int c;
942
943 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
944
945 if (vfs_op_thread_enter(mp, mpcpu)) {
946 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
947 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
948 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
949 vfs_op_thread_exit(mp, mpcpu);
950 return;
951 }
952
953 MNT_ILOCK(mp);
954 vfs_assert_mount_counters(mp);
955 MNT_REL(mp);
956 c = --mp->mnt_lockref;
957 if (mp->mnt_vfs_ops == 0) {
958 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
959 MNT_IUNLOCK(mp);
960 return;
961 }
962 if (c < 0)
963 vfs_dump_mount_counters(mp);
964 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
965 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
966 CTR1(KTR_VFS, "%s: waking up waiters", __func__);
967 mp->mnt_kern_flag &= ~MNTK_DRAINING;
968 wakeup(&mp->mnt_lockref);
969 }
970 MNT_IUNLOCK(mp);
971 }
972
973 /*
974 * Lookup a mount point by filesystem identifier.
975 */
976 struct mount *
vfs_getvfs(fsid_t * fsid)977 vfs_getvfs(fsid_t *fsid)
978 {
979 struct mount *mp;
980
981 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
982 mtx_lock(&mountlist_mtx);
983 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
984 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
985 vfs_ref(mp);
986 mtx_unlock(&mountlist_mtx);
987 return (mp);
988 }
989 }
990 mtx_unlock(&mountlist_mtx);
991 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
992 return ((struct mount *) 0);
993 }
994
995 /*
996 * Lookup a mount point by filesystem identifier, busying it before
997 * returning.
998 *
999 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1000 * cache for popular filesystem identifiers. The cache is lockess, using
1001 * the fact that struct mount's are never freed. In worst case we may
1002 * get pointer to unmounted or even different filesystem, so we have to
1003 * check what we got, and go slow way if so.
1004 */
1005 struct mount *
vfs_busyfs(fsid_t * fsid)1006 vfs_busyfs(fsid_t *fsid)
1007 {
1008 #define FSID_CACHE_SIZE 256
1009 typedef struct mount * volatile vmp_t;
1010 static vmp_t cache[FSID_CACHE_SIZE];
1011 struct mount *mp;
1012 int error;
1013 uint32_t hash;
1014
1015 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1016 hash = fsid->val[0] ^ fsid->val[1];
1017 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1018 mp = cache[hash];
1019 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1020 goto slow;
1021 if (vfs_busy(mp, 0) != 0) {
1022 cache[hash] = NULL;
1023 goto slow;
1024 }
1025 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1026 return (mp);
1027 else
1028 vfs_unbusy(mp);
1029
1030 slow:
1031 mtx_lock(&mountlist_mtx);
1032 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1033 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1034 error = vfs_busy(mp, MBF_MNTLSTLOCK);
1035 if (error) {
1036 cache[hash] = NULL;
1037 mtx_unlock(&mountlist_mtx);
1038 return (NULL);
1039 }
1040 cache[hash] = mp;
1041 return (mp);
1042 }
1043 }
1044 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1045 mtx_unlock(&mountlist_mtx);
1046 return ((struct mount *) 0);
1047 }
1048
1049 /*
1050 * Check if a user can access privileged mount options.
1051 */
1052 int
vfs_suser(struct mount * mp,struct thread * td)1053 vfs_suser(struct mount *mp, struct thread *td)
1054 {
1055 int error;
1056
1057 if (jailed(td->td_ucred)) {
1058 /*
1059 * If the jail of the calling thread lacks permission for
1060 * this type of file system, deny immediately.
1061 */
1062 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1063 return (EPERM);
1064
1065 /*
1066 * If the file system was mounted outside the jail of the
1067 * calling thread, deny immediately.
1068 */
1069 if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1070 return (EPERM);
1071 }
1072
1073 /*
1074 * If file system supports delegated administration, we don't check
1075 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1076 * by the file system itself.
1077 * If this is not the user that did original mount, we check for
1078 * the PRIV_VFS_MOUNT_OWNER privilege.
1079 */
1080 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1081 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1082 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1083 return (error);
1084 }
1085 return (0);
1086 }
1087
1088 /*
1089 * Get a new unique fsid. Try to make its val[0] unique, since this value
1090 * will be used to create fake device numbers for stat(). Also try (but
1091 * not so hard) make its val[0] unique mod 2^16, since some emulators only
1092 * support 16-bit device numbers. We end up with unique val[0]'s for the
1093 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1094 *
1095 * Keep in mind that several mounts may be running in parallel. Starting
1096 * the search one past where the previous search terminated is both a
1097 * micro-optimization and a defense against returning the same fsid to
1098 * different mounts.
1099 */
1100 void
vfs_getnewfsid(struct mount * mp)1101 vfs_getnewfsid(struct mount *mp)
1102 {
1103 static uint16_t mntid_base;
1104 struct mount *nmp;
1105 fsid_t tfsid;
1106 int mtype;
1107
1108 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1109 mtx_lock(&mntid_mtx);
1110 mtype = mp->mnt_vfc->vfc_typenum;
1111 tfsid.val[1] = mtype;
1112 mtype = (mtype & 0xFF) << 24;
1113 for (;;) {
1114 tfsid.val[0] = makedev(255,
1115 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1116 mntid_base++;
1117 if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1118 break;
1119 vfs_rel(nmp);
1120 }
1121 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1122 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1123 mtx_unlock(&mntid_mtx);
1124 }
1125
1126 /*
1127 * Knob to control the precision of file timestamps:
1128 *
1129 * 0 = seconds only; nanoseconds zeroed.
1130 * 1 = seconds and nanoseconds, accurate within 1/HZ.
1131 * 2 = seconds and nanoseconds, truncated to microseconds.
1132 * >=3 = seconds and nanoseconds, maximum precision.
1133 */
1134 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1135
1136 static int timestamp_precision = TSP_USEC;
1137 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1138 ×tamp_precision, 0, "File timestamp precision (0: seconds, "
1139 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1140 "3+: sec + ns (max. precision))");
1141
1142 /*
1143 * Get a current timestamp.
1144 */
1145 void
vfs_timestamp(struct timespec * tsp)1146 vfs_timestamp(struct timespec *tsp)
1147 {
1148 struct timeval tv;
1149
1150 switch (timestamp_precision) {
1151 case TSP_SEC:
1152 tsp->tv_sec = time_second;
1153 tsp->tv_nsec = 0;
1154 break;
1155 case TSP_HZ:
1156 getnanotime(tsp);
1157 break;
1158 case TSP_USEC:
1159 microtime(&tv);
1160 TIMEVAL_TO_TIMESPEC(&tv, tsp);
1161 break;
1162 case TSP_NSEC:
1163 default:
1164 nanotime(tsp);
1165 break;
1166 }
1167 }
1168
1169 /*
1170 * Set vnode attributes to VNOVAL
1171 */
1172 void
vattr_null(struct vattr * vap)1173 vattr_null(struct vattr *vap)
1174 {
1175
1176 vap->va_type = VNON;
1177 vap->va_size = VNOVAL;
1178 vap->va_bytes = VNOVAL;
1179 vap->va_mode = VNOVAL;
1180 vap->va_nlink = VNOVAL;
1181 vap->va_uid = VNOVAL;
1182 vap->va_gid = VNOVAL;
1183 vap->va_fsid = VNOVAL;
1184 vap->va_fileid = VNOVAL;
1185 vap->va_blocksize = VNOVAL;
1186 vap->va_rdev = VNOVAL;
1187 vap->va_atime.tv_sec = VNOVAL;
1188 vap->va_atime.tv_nsec = VNOVAL;
1189 vap->va_mtime.tv_sec = VNOVAL;
1190 vap->va_mtime.tv_nsec = VNOVAL;
1191 vap->va_ctime.tv_sec = VNOVAL;
1192 vap->va_ctime.tv_nsec = VNOVAL;
1193 vap->va_birthtime.tv_sec = VNOVAL;
1194 vap->va_birthtime.tv_nsec = VNOVAL;
1195 vap->va_flags = VNOVAL;
1196 vap->va_gen = VNOVAL;
1197 vap->va_vaflags = 0;
1198 vap->va_filerev = VNOVAL;
1199 vap->va_bsdflags = 0;
1200 }
1201
1202 /*
1203 * Try to reduce the total number of vnodes.
1204 *
1205 * This routine (and its user) are buggy in at least the following ways:
1206 * - all parameters were picked years ago when RAM sizes were significantly
1207 * smaller
1208 * - it can pick vnodes based on pages used by the vm object, but filesystems
1209 * like ZFS don't use it making the pick broken
1210 * - since ZFS has its own aging policy it gets partially combated by this one
1211 * - a dedicated method should be provided for filesystems to let them decide
1212 * whether the vnode should be recycled
1213 *
1214 * This routine is called when we have too many vnodes. It attempts
1215 * to free <count> vnodes and will potentially free vnodes that still
1216 * have VM backing store (VM backing store is typically the cause
1217 * of a vnode blowout so we want to do this). Therefore, this operation
1218 * is not considered cheap.
1219 *
1220 * A number of conditions may prevent a vnode from being reclaimed.
1221 * the buffer cache may have references on the vnode, a directory
1222 * vnode may still have references due to the namei cache representing
1223 * underlying files, or the vnode may be in active use. It is not
1224 * desirable to reuse such vnodes. These conditions may cause the
1225 * number of vnodes to reach some minimum value regardless of what
1226 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
1227 *
1228 * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1229 * entries if this argument is strue
1230 * @param trigger Only reclaim vnodes with fewer than this many resident
1231 * pages.
1232 * @param target How many vnodes to reclaim.
1233 * @return The number of vnodes that were reclaimed.
1234 */
1235 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1236 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1237 {
1238 struct vnode *vp, *mvp;
1239 struct mount *mp;
1240 struct vm_object *object;
1241 u_long done;
1242 bool retried;
1243
1244 mtx_assert(&vnode_list_mtx, MA_OWNED);
1245
1246 retried = false;
1247 done = 0;
1248
1249 mvp = vnode_list_reclaim_marker;
1250 restart:
1251 vp = mvp;
1252 while (done < target) {
1253 vp = TAILQ_NEXT(vp, v_vnodelist);
1254 if (__predict_false(vp == NULL))
1255 break;
1256
1257 if (__predict_false(vp->v_type == VMARKER))
1258 continue;
1259
1260 /*
1261 * If it's been deconstructed already, it's still
1262 * referenced, or it exceeds the trigger, skip it.
1263 * Also skip free vnodes. We are trying to make space
1264 * for more free vnodes, not reduce their count.
1265 */
1266 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1267 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1268 goto next_iter;
1269
1270 if (vp->v_type == VBAD || vp->v_type == VNON)
1271 goto next_iter;
1272
1273 object = atomic_load_ptr(&vp->v_object);
1274 if (object == NULL || object->resident_page_count > trigger) {
1275 goto next_iter;
1276 }
1277
1278 /*
1279 * Handle races against vnode allocation. Filesystems lock the
1280 * vnode some time after it gets returned from getnewvnode,
1281 * despite type and hold count being manipulated earlier.
1282 * Resorting to checking v_mount restores guarantees present
1283 * before the global list was reworked to contain all vnodes.
1284 */
1285 if (!VI_TRYLOCK(vp))
1286 goto next_iter;
1287 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1288 VI_UNLOCK(vp);
1289 goto next_iter;
1290 }
1291 if (vp->v_mount == NULL) {
1292 VI_UNLOCK(vp);
1293 goto next_iter;
1294 }
1295 vholdl(vp);
1296 VI_UNLOCK(vp);
1297 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1299 mtx_unlock(&vnode_list_mtx);
1300
1301 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1302 vdrop_recycle(vp);
1303 goto next_iter_unlocked;
1304 }
1305 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1306 vdrop_recycle(vp);
1307 vn_finished_write(mp);
1308 goto next_iter_unlocked;
1309 }
1310
1311 VI_LOCK(vp);
1312 if (vp->v_usecount > 0 ||
1313 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1314 (vp->v_object != NULL && vp->v_object->handle == vp &&
1315 vp->v_object->resident_page_count > trigger)) {
1316 VOP_UNLOCK(vp);
1317 vdropl_recycle(vp);
1318 vn_finished_write(mp);
1319 goto next_iter_unlocked;
1320 }
1321 recycles_count++;
1322 vgonel(vp);
1323 VOP_UNLOCK(vp);
1324 vdropl_recycle(vp);
1325 vn_finished_write(mp);
1326 done++;
1327 next_iter_unlocked:
1328 maybe_yield();
1329 mtx_lock(&vnode_list_mtx);
1330 goto restart;
1331 next_iter:
1332 MPASS(vp->v_type != VMARKER);
1333 if (!should_yield())
1334 continue;
1335 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1336 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1337 mtx_unlock(&vnode_list_mtx);
1338 kern_yield(PRI_USER);
1339 mtx_lock(&vnode_list_mtx);
1340 goto restart;
1341 }
1342 if (done == 0 && !retried) {
1343 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1344 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1345 retried = true;
1346 goto restart;
1347 }
1348 return (done);
1349 }
1350
1351 static int max_free_per_call = 10000;
1352 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1353 "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1354 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1355 &max_free_per_call, 0,
1356 "limit on vnode free requests per call to the vnlru_free routine");
1357
1358 /*
1359 * Attempt to recycle requested amount of free vnodes.
1360 */
1361 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1362 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1363 {
1364 struct vnode *vp;
1365 struct mount *mp;
1366 int ocount;
1367 bool retried;
1368
1369 mtx_assert(&vnode_list_mtx, MA_OWNED);
1370 if (count > max_free_per_call)
1371 count = max_free_per_call;
1372 if (count == 0) {
1373 mtx_unlock(&vnode_list_mtx);
1374 return (0);
1375 }
1376 ocount = count;
1377 retried = false;
1378 vp = mvp;
1379 for (;;) {
1380 vp = TAILQ_NEXT(vp, v_vnodelist);
1381 if (__predict_false(vp == NULL)) {
1382 /*
1383 * The free vnode marker can be past eligible vnodes:
1384 * 1. if vdbatch_process trylock failed
1385 * 2. if vtryrecycle failed
1386 *
1387 * If so, start the scan from scratch.
1388 */
1389 if (!retried && vnlru_read_freevnodes() > 0) {
1390 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1392 vp = mvp;
1393 retried = true;
1394 continue;
1395 }
1396
1397 /*
1398 * Give up
1399 */
1400 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1401 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1402 mtx_unlock(&vnode_list_mtx);
1403 break;
1404 }
1405 if (__predict_false(vp->v_type == VMARKER))
1406 continue;
1407 if (vp->v_holdcnt > 0)
1408 continue;
1409 /*
1410 * Don't recycle if our vnode is from different type
1411 * of mount point. Note that mp is type-safe, the
1412 * check does not reach unmapped address even if
1413 * vnode is reclaimed.
1414 */
1415 if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1416 mp->mnt_op != mnt_op) {
1417 continue;
1418 }
1419 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1420 continue;
1421 }
1422 if (!vhold_recycle_free(vp))
1423 continue;
1424 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1425 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1426 mtx_unlock(&vnode_list_mtx);
1427 /*
1428 * FIXME: ignores the return value, meaning it may be nothing
1429 * got recycled but it claims otherwise to the caller.
1430 *
1431 * Originally the value started being ignored in 2005 with
1432 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1433 *
1434 * Respecting the value can run into significant stalls if most
1435 * vnodes belong to one file system and it has writes
1436 * suspended. In presence of many threads and millions of
1437 * vnodes they keep contending on the vnode_list_mtx lock only
1438 * to find vnodes they can't recycle.
1439 *
1440 * The solution would be to pre-check if the vnode is likely to
1441 * be recycle-able, but it needs to happen with the
1442 * vnode_list_mtx lock held. This runs into a problem where
1443 * VOP_GETWRITEMOUNT (currently needed to find out about if
1444 * writes are frozen) can take locks which LOR against it.
1445 *
1446 * Check nullfs for one example (null_getwritemount).
1447 */
1448 vtryrecycle(vp, isvnlru);
1449 count--;
1450 if (count == 0) {
1451 break;
1452 }
1453 mtx_lock(&vnode_list_mtx);
1454 vp = mvp;
1455 }
1456 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1457 return (ocount - count);
1458 }
1459
1460 /*
1461 * XXX: returns without vnode_list_mtx locked!
1462 */
1463 static int
vnlru_free_locked_direct(int count)1464 vnlru_free_locked_direct(int count)
1465 {
1466 int ret;
1467
1468 mtx_assert(&vnode_list_mtx, MA_OWNED);
1469 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1470 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1471 return (ret);
1472 }
1473
1474 static int
vnlru_free_locked_vnlru(int count)1475 vnlru_free_locked_vnlru(int count)
1476 {
1477 int ret;
1478
1479 mtx_assert(&vnode_list_mtx, MA_OWNED);
1480 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1481 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1482 return (ret);
1483 }
1484
1485 static int
vnlru_free_vnlru(int count)1486 vnlru_free_vnlru(int count)
1487 {
1488
1489 mtx_lock(&vnode_list_mtx);
1490 return (vnlru_free_locked_vnlru(count));
1491 }
1492
1493 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1494 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1495 {
1496
1497 MPASS(mnt_op != NULL);
1498 MPASS(mvp != NULL);
1499 VNPASS(mvp->v_type == VMARKER, mvp);
1500 mtx_lock(&vnode_list_mtx);
1501 vnlru_free_impl(count, mnt_op, mvp, true);
1502 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1503 }
1504
1505 struct vnode *
vnlru_alloc_marker(void)1506 vnlru_alloc_marker(void)
1507 {
1508 struct vnode *mvp;
1509
1510 mvp = vn_alloc_marker(NULL);
1511 mtx_lock(&vnode_list_mtx);
1512 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1513 mtx_unlock(&vnode_list_mtx);
1514 return (mvp);
1515 }
1516
1517 void
vnlru_free_marker(struct vnode * mvp)1518 vnlru_free_marker(struct vnode *mvp)
1519 {
1520 mtx_lock(&vnode_list_mtx);
1521 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1522 mtx_unlock(&vnode_list_mtx);
1523 vn_free_marker(mvp);
1524 }
1525
1526 static void
vnlru_recalc(void)1527 vnlru_recalc(void)
1528 {
1529
1530 mtx_assert(&vnode_list_mtx, MA_OWNED);
1531 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1532 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1533 vlowat = vhiwat / 2;
1534 }
1535
1536 /*
1537 * Attempt to recycle vnodes in a context that is always safe to block.
1538 * Calling vlrurecycle() from the bowels of filesystem code has some
1539 * interesting deadlock problems.
1540 */
1541 static struct proc *vnlruproc;
1542 static int vnlruproc_sig;
1543 static u_long vnlruproc_kicks;
1544
1545 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1546 "Number of times vnlru awakened due to vnode shortage");
1547
1548 #define VNLRU_COUNT_SLOP 100
1549
1550 /*
1551 * The main freevnodes counter is only updated when a counter local to CPU
1552 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1553 * walked to compute a more accurate total.
1554 *
1555 * Note: the actual value at any given moment can still exceed slop, but it
1556 * should not be by significant margin in practice.
1557 */
1558 #define VNLRU_FREEVNODES_SLOP 126
1559
1560 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1561 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1562 {
1563
1564 atomic_add_long(&freevnodes, *lfreevnodes);
1565 *lfreevnodes = 0;
1566 critical_exit();
1567 }
1568
1569 static __inline void
vfs_freevnodes_inc(void)1570 vfs_freevnodes_inc(void)
1571 {
1572 int8_t *lfreevnodes;
1573
1574 critical_enter();
1575 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1576 (*lfreevnodes)++;
1577 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1578 vfs_freevnodes_rollup(lfreevnodes);
1579 else
1580 critical_exit();
1581 }
1582
1583 static __inline void
vfs_freevnodes_dec(void)1584 vfs_freevnodes_dec(void)
1585 {
1586 int8_t *lfreevnodes;
1587
1588 critical_enter();
1589 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1590 (*lfreevnodes)--;
1591 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1592 vfs_freevnodes_rollup(lfreevnodes);
1593 else
1594 critical_exit();
1595 }
1596
1597 static u_long
vnlru_read_freevnodes(void)1598 vnlru_read_freevnodes(void)
1599 {
1600 long slop, rfreevnodes, rfreevnodes_old;
1601 int cpu;
1602
1603 rfreevnodes = atomic_load_long(&freevnodes);
1604 rfreevnodes_old = atomic_load_long(&freevnodes_old);
1605
1606 if (rfreevnodes > rfreevnodes_old)
1607 slop = rfreevnodes - rfreevnodes_old;
1608 else
1609 slop = rfreevnodes_old - rfreevnodes;
1610 if (slop < VNLRU_FREEVNODES_SLOP)
1611 return (rfreevnodes >= 0 ? rfreevnodes : 0);
1612 CPU_FOREACH(cpu) {
1613 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1614 }
1615 atomic_store_long(&freevnodes_old, rfreevnodes);
1616 return (freevnodes_old >= 0 ? freevnodes_old : 0);
1617 }
1618
1619 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1620 vnlru_under(u_long rnumvnodes, u_long limit)
1621 {
1622 u_long rfreevnodes, space;
1623
1624 if (__predict_false(rnumvnodes > desiredvnodes))
1625 return (true);
1626
1627 space = desiredvnodes - rnumvnodes;
1628 if (space < limit) {
1629 rfreevnodes = vnlru_read_freevnodes();
1630 if (rfreevnodes > wantfreevnodes)
1631 space += rfreevnodes - wantfreevnodes;
1632 }
1633 return (space < limit);
1634 }
1635
1636 static void
vnlru_kick_locked(void)1637 vnlru_kick_locked(void)
1638 {
1639
1640 mtx_assert(&vnode_list_mtx, MA_OWNED);
1641 if (vnlruproc_sig == 0) {
1642 vnlruproc_sig = 1;
1643 vnlruproc_kicks++;
1644 wakeup(vnlruproc);
1645 }
1646 }
1647
1648 static void
vnlru_kick_cond(void)1649 vnlru_kick_cond(void)
1650 {
1651
1652 if (vnlru_read_freevnodes() > wantfreevnodes)
1653 return;
1654
1655 if (vnlruproc_sig)
1656 return;
1657 mtx_lock(&vnode_list_mtx);
1658 vnlru_kick_locked();
1659 mtx_unlock(&vnode_list_mtx);
1660 }
1661
1662 static void
vnlru_proc_sleep(void)1663 vnlru_proc_sleep(void)
1664 {
1665
1666 if (vnlruproc_sig) {
1667 vnlruproc_sig = 0;
1668 wakeup(&vnlruproc_sig);
1669 }
1670 msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1671 }
1672
1673 /*
1674 * A lighter version of the machinery below.
1675 *
1676 * Tries to reach goals only by recycling free vnodes and does not invoke
1677 * uma_reclaim(UMA_RECLAIM_DRAIN).
1678 *
1679 * This works around pathological behavior in vnlru in presence of tons of free
1680 * vnodes, but without having to rewrite the machinery at this time. Said
1681 * behavior boils down to continuously trying to reclaim all kinds of vnodes
1682 * (cycling through all levels of "force") when the count is transiently above
1683 * limit. This happens a lot when all vnodes are used up and vn_alloc
1684 * speculatively increments the counter.
1685 *
1686 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1687 * 1 million files in total and 20 find(1) processes stating them in parallel
1688 * (one per each tree).
1689 *
1690 * On a kernel with only stock machinery this needs anywhere between 60 and 120
1691 * seconds to execute (time varies *wildly* between runs). With the workaround
1692 * it consistently stays around 20 seconds [it got further down with later
1693 * changes].
1694 *
1695 * That is to say the entire thing needs a fundamental redesign (most notably
1696 * to accommodate faster recycling), the above only tries to get it ouf the way.
1697 *
1698 * Return values are:
1699 * -1 -- fallback to regular vnlru loop
1700 * 0 -- do nothing, go to sleep
1701 * >0 -- recycle this many vnodes
1702 */
1703 static long
vnlru_proc_light_pick(void)1704 vnlru_proc_light_pick(void)
1705 {
1706 u_long rnumvnodes, rfreevnodes;
1707
1708 if (vstir || vnlruproc_sig == 1)
1709 return (-1);
1710
1711 rnumvnodes = atomic_load_long(&numvnodes);
1712 rfreevnodes = vnlru_read_freevnodes();
1713
1714 /*
1715 * vnode limit might have changed and now we may be at a significant
1716 * excess. Bail if we can't sort it out with free vnodes.
1717 *
1718 * Due to atomic updates the count can legitimately go above
1719 * the limit for a short period, don't bother doing anything in
1720 * that case.
1721 */
1722 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1723 if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1724 rfreevnodes <= wantfreevnodes) {
1725 return (-1);
1726 }
1727
1728 return (rnumvnodes - desiredvnodes);
1729 }
1730
1731 /*
1732 * Don't try to reach wantfreevnodes target if there are too few vnodes
1733 * to begin with.
1734 */
1735 if (rnumvnodes < wantfreevnodes) {
1736 return (0);
1737 }
1738
1739 if (rfreevnodes < wantfreevnodes) {
1740 return (-1);
1741 }
1742
1743 return (0);
1744 }
1745
1746 static bool
vnlru_proc_light(void)1747 vnlru_proc_light(void)
1748 {
1749 long freecount;
1750
1751 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1752
1753 freecount = vnlru_proc_light_pick();
1754 if (freecount == -1)
1755 return (false);
1756
1757 if (freecount != 0) {
1758 vnlru_free_vnlru(freecount);
1759 }
1760
1761 mtx_lock(&vnode_list_mtx);
1762 vnlru_proc_sleep();
1763 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1764 return (true);
1765 }
1766
1767 static u_long uma_reclaim_calls;
1768 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1769 &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1770
1771 static void
vnlru_proc(void)1772 vnlru_proc(void)
1773 {
1774 u_long rnumvnodes, rfreevnodes, target;
1775 unsigned long onumvnodes;
1776 int done, force, trigger, usevnodes;
1777 bool reclaim_nc_src, want_reread;
1778
1779 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1780 SHUTDOWN_PRI_FIRST);
1781
1782 force = 0;
1783 want_reread = false;
1784 for (;;) {
1785 kproc_suspend_check(vnlruproc);
1786
1787 if (force == 0 && vnlru_proc_light())
1788 continue;
1789
1790 mtx_lock(&vnode_list_mtx);
1791 rnumvnodes = atomic_load_long(&numvnodes);
1792
1793 if (want_reread) {
1794 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1795 want_reread = false;
1796 }
1797
1798 /*
1799 * If numvnodes is too large (due to desiredvnodes being
1800 * adjusted using its sysctl, or emergency growth), first
1801 * try to reduce it by discarding free vnodes.
1802 */
1803 if (rnumvnodes > desiredvnodes + 10) {
1804 vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1805 mtx_lock(&vnode_list_mtx);
1806 rnumvnodes = atomic_load_long(&numvnodes);
1807 }
1808 /*
1809 * Sleep if the vnode cache is in a good state. This is
1810 * when it is not over-full and has space for about a 4%
1811 * or 9% expansion (by growing its size or inexcessively
1812 * reducing free vnode count). Otherwise, try to reclaim
1813 * space for a 10% expansion.
1814 */
1815 if (vstir && force == 0) {
1816 force = 1;
1817 vstir = false;
1818 }
1819 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1820 vnlru_proc_sleep();
1821 continue;
1822 }
1823 rfreevnodes = vnlru_read_freevnodes();
1824
1825 onumvnodes = rnumvnodes;
1826 /*
1827 * Calculate parameters for recycling. These are the same
1828 * throughout the loop to give some semblance of fairness.
1829 * The trigger point is to avoid recycling vnodes with lots
1830 * of resident pages. We aren't trying to free memory; we
1831 * are trying to recycle or at least free vnodes.
1832 */
1833 if (rnumvnodes <= desiredvnodes)
1834 usevnodes = rnumvnodes - rfreevnodes;
1835 else
1836 usevnodes = rnumvnodes;
1837 if (usevnodes <= 0)
1838 usevnodes = 1;
1839 /*
1840 * The trigger value is chosen to give a conservatively
1841 * large value to ensure that it alone doesn't prevent
1842 * making progress. The value can easily be so large that
1843 * it is effectively infinite in some congested and
1844 * misconfigured cases, and this is necessary. Normally
1845 * it is about 8 to 100 (pages), which is quite large.
1846 */
1847 trigger = vm_cnt.v_page_count * 2 / usevnodes;
1848 if (force < 2)
1849 trigger = vsmalltrigger;
1850 reclaim_nc_src = force >= 3;
1851 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1852 target = target / 10 + 1;
1853 done = vlrureclaim(reclaim_nc_src, trigger, target);
1854 mtx_unlock(&vnode_list_mtx);
1855 /*
1856 * Total number of vnodes can transiently go slightly above the
1857 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1858 * this happens.
1859 */
1860 if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1861 numvnodes <= desiredvnodes) {
1862 uma_reclaim_calls++;
1863 uma_reclaim(UMA_RECLAIM_DRAIN);
1864 }
1865 if (done == 0) {
1866 if (force == 0 || force == 1) {
1867 force = 2;
1868 continue;
1869 }
1870 if (force == 2) {
1871 force = 3;
1872 continue;
1873 }
1874 want_reread = true;
1875 force = 0;
1876 vnlru_nowhere++;
1877 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1878 } else {
1879 want_reread = true;
1880 kern_yield(PRI_USER);
1881 }
1882 }
1883 }
1884
1885 static struct kproc_desc vnlru_kp = {
1886 "vnlru",
1887 vnlru_proc,
1888 &vnlruproc
1889 };
1890 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1891 &vnlru_kp);
1892
1893 /*
1894 * Routines having to do with the management of the vnode table.
1895 */
1896
1897 /*
1898 * Try to recycle a freed vnode.
1899 */
1900 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1901 vtryrecycle(struct vnode *vp, bool isvnlru)
1902 {
1903 struct mount *vnmp;
1904
1905 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1906 VNPASS(vp->v_holdcnt > 0, vp);
1907 /*
1908 * This vnode may found and locked via some other list, if so we
1909 * can't recycle it yet.
1910 */
1911 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1912 CTR2(KTR_VFS,
1913 "%s: impossible to recycle, vp %p lock is already held",
1914 __func__, vp);
1915 vdrop_recycle(vp);
1916 return (EWOULDBLOCK);
1917 }
1918 /*
1919 * Don't recycle if its filesystem is being suspended.
1920 */
1921 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1922 VOP_UNLOCK(vp);
1923 CTR2(KTR_VFS,
1924 "%s: impossible to recycle, cannot start the write for %p",
1925 __func__, vp);
1926 vdrop_recycle(vp);
1927 return (EBUSY);
1928 }
1929 /*
1930 * If we got this far, we need to acquire the interlock and see if
1931 * anyone picked up this vnode from another list. If not, we will
1932 * mark it with DOOMED via vgonel() so that anyone who does find it
1933 * will skip over it.
1934 */
1935 VI_LOCK(vp);
1936 if (vp->v_usecount) {
1937 VOP_UNLOCK(vp);
1938 vdropl_recycle(vp);
1939 vn_finished_write(vnmp);
1940 CTR2(KTR_VFS,
1941 "%s: impossible to recycle, %p is already referenced",
1942 __func__, vp);
1943 return (EBUSY);
1944 }
1945 if (!VN_IS_DOOMED(vp)) {
1946 if (isvnlru)
1947 recycles_free_count++;
1948 else
1949 counter_u64_add(direct_recycles_free_count, 1);
1950 vgonel(vp);
1951 }
1952 VOP_UNLOCK(vp);
1953 vdropl_recycle(vp);
1954 vn_finished_write(vnmp);
1955 return (0);
1956 }
1957
1958 /*
1959 * Allocate a new vnode.
1960 *
1961 * The operation never returns an error. Returning an error was disabled
1962 * in r145385 (dated 2005) with the following comment:
1963 *
1964 * XXX Not all VFS_VGET/ffs_vget callers check returns.
1965 *
1966 * Given the age of this commit (almost 15 years at the time of writing this
1967 * comment) restoring the ability to fail requires a significant audit of
1968 * all codepaths.
1969 *
1970 * The routine can try to free a vnode or stall for up to 1 second waiting for
1971 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1972 */
1973 static u_long vn_alloc_cyclecount;
1974 static u_long vn_alloc_sleeps;
1975
1976 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1977 "Number of times vnode allocation blocked waiting on vnlru");
1978
1979 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1980 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1981 {
1982 u_long rfreevnodes;
1983
1984 if (bumped) {
1985 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1986 atomic_subtract_long(&numvnodes, 1);
1987 bumped = false;
1988 }
1989 }
1990
1991 mtx_lock(&vnode_list_mtx);
1992
1993 /*
1994 * Reload 'numvnodes', as since we acquired the lock, it may have
1995 * changed significantly if we waited, and 'rnumvnodes' above was only
1996 * actually passed if 'bumped' is true (else it is 0).
1997 */
1998 rnumvnodes = atomic_load_long(&numvnodes);
1999 if (rnumvnodes + !bumped < desiredvnodes) {
2000 vn_alloc_cyclecount = 0;
2001 mtx_unlock(&vnode_list_mtx);
2002 goto alloc;
2003 }
2004
2005 rfreevnodes = vnlru_read_freevnodes();
2006 if (vn_alloc_cyclecount++ >= rfreevnodes) {
2007 vn_alloc_cyclecount = 0;
2008 vstir = true;
2009 }
2010
2011 /*
2012 * Grow the vnode cache if it will not be above its target max after
2013 * growing. Otherwise, if there is at least one free vnode, try to
2014 * reclaim 1 item from it before growing the cache (possibly above its
2015 * target max if the reclamation failed or is delayed).
2016 */
2017 if (vnlru_free_locked_direct(1) > 0)
2018 goto alloc;
2019 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2020 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2021 /*
2022 * Wait for space for a new vnode.
2023 */
2024 if (bumped) {
2025 atomic_subtract_long(&numvnodes, 1);
2026 bumped = false;
2027 }
2028 mtx_lock(&vnode_list_mtx);
2029 vnlru_kick_locked();
2030 vn_alloc_sleeps++;
2031 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2032 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2033 vnlru_read_freevnodes() > 1)
2034 vnlru_free_locked_direct(1);
2035 else
2036 mtx_unlock(&vnode_list_mtx);
2037 }
2038 alloc:
2039 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2040 if (!bumped)
2041 atomic_add_long(&numvnodes, 1);
2042 vnlru_kick_cond();
2043 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2044 }
2045
2046 static struct vnode *
vn_alloc(struct mount * mp)2047 vn_alloc(struct mount *mp)
2048 {
2049 u_long rnumvnodes;
2050
2051 if (__predict_false(vn_alloc_cyclecount != 0))
2052 return (vn_alloc_hard(mp, 0, false));
2053 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2054 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2055 return (vn_alloc_hard(mp, rnumvnodes, true));
2056 }
2057
2058 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2059 }
2060
2061 static void
vn_free(struct vnode * vp)2062 vn_free(struct vnode *vp)
2063 {
2064
2065 atomic_subtract_long(&numvnodes, 1);
2066 uma_zfree_smr(vnode_zone, vp);
2067 }
2068
2069 /*
2070 * Allocate a new vnode.
2071 */
2072 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2073 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2074 struct vnode **vpp)
2075 {
2076 struct vnode *vp;
2077 struct thread *td;
2078 struct lock_object *lo;
2079
2080 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2081
2082 KASSERT(vops->registered,
2083 ("%s: not registered vector op %p\n", __func__, vops));
2084 cache_validate_vop_vector(mp, vops);
2085
2086 td = curthread;
2087 if (td->td_vp_reserved != NULL) {
2088 vp = td->td_vp_reserved;
2089 td->td_vp_reserved = NULL;
2090 } else {
2091 vp = vn_alloc(mp);
2092 }
2093 counter_u64_add(vnodes_created, 1);
2094
2095 vn_set_state(vp, VSTATE_UNINITIALIZED);
2096
2097 /*
2098 * Locks are given the generic name "vnode" when created.
2099 * Follow the historic practice of using the filesystem
2100 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2101 *
2102 * Locks live in a witness group keyed on their name. Thus,
2103 * when a lock is renamed, it must also move from the witness
2104 * group of its old name to the witness group of its new name.
2105 *
2106 * The change only needs to be made when the vnode moves
2107 * from one filesystem type to another. We ensure that each
2108 * filesystem use a single static name pointer for its tag so
2109 * that we can compare pointers rather than doing a strcmp().
2110 */
2111 lo = &vp->v_vnlock->lock_object;
2112 #ifdef WITNESS
2113 if (lo->lo_name != tag) {
2114 #endif
2115 lo->lo_name = tag;
2116 #ifdef WITNESS
2117 WITNESS_DESTROY(lo);
2118 WITNESS_INIT(lo, tag);
2119 }
2120 #endif
2121 /*
2122 * By default, don't allow shared locks unless filesystems opt-in.
2123 */
2124 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2125 /*
2126 * Finalize various vnode identity bits.
2127 */
2128 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2129 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2130 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2131 vp->v_type = VNON;
2132 vp->v_op = vops;
2133 vp->v_irflag = 0;
2134 v_init_counters(vp);
2135 vn_seqc_init(vp);
2136 vp->v_bufobj.bo_ops = &buf_ops_bio;
2137 #ifdef DIAGNOSTIC
2138 if (mp == NULL && vops != &dead_vnodeops)
2139 printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2140 #endif
2141 #ifdef MAC
2142 mac_vnode_init(vp);
2143 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2144 mac_vnode_associate_singlelabel(mp, vp);
2145 #endif
2146 if (mp != NULL) {
2147 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2148 }
2149
2150 /*
2151 * For the filesystems which do not use vfs_hash_insert(),
2152 * still initialize v_hash to have vfs_hash_index() useful.
2153 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2154 * its own hashing.
2155 */
2156 vp->v_hash = (uintptr_t)vp >> vnsz2log;
2157
2158 *vpp = vp;
2159 return (0);
2160 }
2161
2162 void
getnewvnode_reserve(void)2163 getnewvnode_reserve(void)
2164 {
2165 struct thread *td;
2166
2167 td = curthread;
2168 MPASS(td->td_vp_reserved == NULL);
2169 td->td_vp_reserved = vn_alloc(NULL);
2170 }
2171
2172 void
getnewvnode_drop_reserve(void)2173 getnewvnode_drop_reserve(void)
2174 {
2175 struct thread *td;
2176
2177 td = curthread;
2178 if (td->td_vp_reserved != NULL) {
2179 vn_free(td->td_vp_reserved);
2180 td->td_vp_reserved = NULL;
2181 }
2182 }
2183
2184 static void __noinline
freevnode(struct vnode * vp)2185 freevnode(struct vnode *vp)
2186 {
2187 struct bufobj *bo;
2188
2189 ASSERT_VOP_UNLOCKED(vp, __func__);
2190
2191 /*
2192 * The vnode has been marked for destruction, so free it.
2193 *
2194 * The vnode will be returned to the zone where it will
2195 * normally remain until it is needed for another vnode. We
2196 * need to cleanup (or verify that the cleanup has already
2197 * been done) any residual data left from its current use
2198 * so as not to contaminate the freshly allocated vnode.
2199 */
2200 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2201 /*
2202 * Paired with vgone.
2203 */
2204 vn_seqc_write_end_free(vp);
2205
2206 bo = &vp->v_bufobj;
2207 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2208 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2209 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2210 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2211 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2212 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2213 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2214 ("clean blk trie not empty"));
2215 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2216 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2217 ("dirty blk trie not empty"));
2218 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2219 ("Leaked inactivation"));
2220 VI_UNLOCK(vp);
2221 cache_assert_no_entries(vp);
2222
2223 #ifdef MAC
2224 mac_vnode_destroy(vp);
2225 #endif
2226 if (vp->v_pollinfo != NULL) {
2227 int error __diagused;
2228
2229 /*
2230 * Use LK_NOWAIT to shut up witness about the lock. We may get
2231 * here while having another vnode locked when trying to
2232 * satisfy a lookup and needing to recycle.
2233 */
2234 error = VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2235 VNASSERT(error == 0, vp,
2236 ("freevnode: cannot lock vp %p for pollinfo destroy", vp));
2237 destroy_vpollinfo(vp->v_pollinfo);
2238 VOP_UNLOCK(vp);
2239 vp->v_pollinfo = NULL;
2240 }
2241 vp->v_mountedhere = NULL;
2242 vp->v_unpcb = NULL;
2243 vp->v_rdev = NULL;
2244 vp->v_fifoinfo = NULL;
2245 vp->v_iflag = 0;
2246 vp->v_vflag = 0;
2247 bo->bo_flag = 0;
2248 vn_free(vp);
2249 }
2250
2251 /*
2252 * Delete from old mount point vnode list, if on one.
2253 */
2254 static void
delmntque(struct vnode * vp)2255 delmntque(struct vnode *vp)
2256 {
2257 struct mount *mp;
2258
2259 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2260
2261 mp = vp->v_mount;
2262 MNT_ILOCK(mp);
2263 VI_LOCK(vp);
2264 vp->v_mount = NULL;
2265 VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2266 ("bad mount point vnode list size"));
2267 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2268 mp->mnt_nvnodelistsize--;
2269 MNT_REL(mp);
2270 MNT_IUNLOCK(mp);
2271 /*
2272 * The caller expects the interlock to be still held.
2273 */
2274 ASSERT_VI_LOCKED(vp, __func__);
2275 }
2276
2277 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2278 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2279 {
2280
2281 KASSERT(vp->v_mount == NULL,
2282 ("insmntque: vnode already on per mount vnode list"));
2283 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2284 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2285 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2286 } else {
2287 KASSERT(!dtr,
2288 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2289 __func__));
2290 }
2291
2292 /*
2293 * We acquire the vnode interlock early to ensure that the
2294 * vnode cannot be recycled by another process releasing a
2295 * holdcnt on it before we get it on both the vnode list
2296 * and the active vnode list. The mount mutex protects only
2297 * manipulation of the vnode list and the vnode freelist
2298 * mutex protects only manipulation of the active vnode list.
2299 * Hence the need to hold the vnode interlock throughout.
2300 */
2301 MNT_ILOCK(mp);
2302 VI_LOCK(vp);
2303 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2304 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2305 mp->mnt_nvnodelistsize == 0)) &&
2306 (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2307 VI_UNLOCK(vp);
2308 MNT_IUNLOCK(mp);
2309 if (dtr) {
2310 vp->v_data = NULL;
2311 vp->v_op = &dead_vnodeops;
2312 vgone(vp);
2313 vput(vp);
2314 }
2315 return (EBUSY);
2316 }
2317 vp->v_mount = mp;
2318 MNT_REF(mp);
2319 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2320 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2321 ("neg mount point vnode list size"));
2322 mp->mnt_nvnodelistsize++;
2323 VI_UNLOCK(vp);
2324 MNT_IUNLOCK(mp);
2325 return (0);
2326 }
2327
2328 /*
2329 * Insert into list of vnodes for the new mount point, if available.
2330 * insmntque() reclaims the vnode on insertion failure, insmntque1()
2331 * leaves handling of the vnode to the caller.
2332 */
2333 int
insmntque(struct vnode * vp,struct mount * mp)2334 insmntque(struct vnode *vp, struct mount *mp)
2335 {
2336 return (insmntque1_int(vp, mp, true));
2337 }
2338
2339 int
insmntque1(struct vnode * vp,struct mount * mp)2340 insmntque1(struct vnode *vp, struct mount *mp)
2341 {
2342 return (insmntque1_int(vp, mp, false));
2343 }
2344
2345 /*
2346 * Flush out and invalidate all buffers associated with a bufobj
2347 * Called with the underlying object locked.
2348 */
2349 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2350 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2351 {
2352 int error;
2353
2354 BO_LOCK(bo);
2355 if (flags & V_SAVE) {
2356 error = bufobj_wwait(bo, slpflag, slptimeo);
2357 if (error) {
2358 BO_UNLOCK(bo);
2359 return (error);
2360 }
2361 if (bo->bo_dirty.bv_cnt > 0) {
2362 BO_UNLOCK(bo);
2363 do {
2364 error = BO_SYNC(bo, MNT_WAIT);
2365 } while (error == ERELOOKUP);
2366 if (error != 0)
2367 return (error);
2368 BO_LOCK(bo);
2369 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2370 BO_UNLOCK(bo);
2371 return (EBUSY);
2372 }
2373 }
2374 }
2375 /*
2376 * If you alter this loop please notice that interlock is dropped and
2377 * reacquired in flushbuflist. Special care is needed to ensure that
2378 * no race conditions occur from this.
2379 */
2380 do {
2381 error = flushbuflist(&bo->bo_clean,
2382 flags, bo, slpflag, slptimeo);
2383 if (error == 0 && !(flags & V_CLEANONLY))
2384 error = flushbuflist(&bo->bo_dirty,
2385 flags, bo, slpflag, slptimeo);
2386 if (error != 0 && error != EAGAIN) {
2387 BO_UNLOCK(bo);
2388 return (error);
2389 }
2390 } while (error != 0);
2391
2392 /*
2393 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
2394 * have write I/O in-progress but if there is a VM object then the
2395 * VM object can also have read-I/O in-progress.
2396 */
2397 do {
2398 bufobj_wwait(bo, 0, 0);
2399 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2400 BO_UNLOCK(bo);
2401 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2402 BO_LOCK(bo);
2403 }
2404 } while (bo->bo_numoutput > 0);
2405 BO_UNLOCK(bo);
2406
2407 /*
2408 * Destroy the copy in the VM cache, too.
2409 */
2410 if (bo->bo_object != NULL &&
2411 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2412 VM_OBJECT_WLOCK(bo->bo_object);
2413 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2414 OBJPR_CLEANONLY : 0);
2415 VM_OBJECT_WUNLOCK(bo->bo_object);
2416 }
2417
2418 #ifdef INVARIANTS
2419 BO_LOCK(bo);
2420 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2421 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2422 bo->bo_clean.bv_cnt > 0))
2423 panic("vinvalbuf: flush failed");
2424 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2425 bo->bo_dirty.bv_cnt > 0)
2426 panic("vinvalbuf: flush dirty failed");
2427 BO_UNLOCK(bo);
2428 #endif
2429 return (0);
2430 }
2431
2432 /*
2433 * Flush out and invalidate all buffers associated with a vnode.
2434 * Called with the underlying object locked.
2435 */
2436 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2437 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2438 {
2439
2440 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2441 ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2442 if (vp->v_object != NULL && vp->v_object->handle != vp)
2443 return (0);
2444 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2445 }
2446
2447 /*
2448 * Flush out buffers on the specified list.
2449 *
2450 */
2451 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2452 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2453 int slptimeo)
2454 {
2455 struct buf *bp, *nbp;
2456 int retval, error;
2457 daddr_t lblkno;
2458 b_xflags_t xflags;
2459
2460 ASSERT_BO_WLOCKED(bo);
2461
2462 retval = 0;
2463 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2464 /*
2465 * If we are flushing both V_NORMAL and V_ALT buffers then
2466 * do not skip any buffers. If we are flushing only V_NORMAL
2467 * buffers then skip buffers marked as BX_ALTDATA. If we are
2468 * flushing only V_ALT buffers then skip buffers not marked
2469 * as BX_ALTDATA.
2470 */
2471 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2472 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2473 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2474 continue;
2475 }
2476 if (nbp != NULL) {
2477 lblkno = nbp->b_lblkno;
2478 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2479 }
2480 retval = EAGAIN;
2481 error = BUF_TIMELOCK(bp,
2482 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2483 "flushbuf", slpflag, slptimeo);
2484 if (error) {
2485 BO_LOCK(bo);
2486 return (error != ENOLCK ? error : EAGAIN);
2487 }
2488 KASSERT(bp->b_bufobj == bo,
2489 ("bp %p wrong b_bufobj %p should be %p",
2490 bp, bp->b_bufobj, bo));
2491 /*
2492 * XXX Since there are no node locks for NFS, I
2493 * believe there is a slight chance that a delayed
2494 * write will occur while sleeping just above, so
2495 * check for it.
2496 */
2497 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2498 (flags & V_SAVE)) {
2499 bremfree(bp);
2500 bp->b_flags |= B_ASYNC;
2501 bwrite(bp);
2502 BO_LOCK(bo);
2503 return (EAGAIN); /* XXX: why not loop ? */
2504 }
2505 bremfree(bp);
2506 bp->b_flags |= (B_INVAL | B_RELBUF);
2507 bp->b_flags &= ~B_ASYNC;
2508 brelse(bp);
2509 BO_LOCK(bo);
2510 if (nbp == NULL)
2511 break;
2512 nbp = gbincore(bo, lblkno);
2513 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2514 != xflags)
2515 break; /* nbp invalid */
2516 }
2517 return (retval);
2518 }
2519
2520 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2521 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2522 {
2523 struct buf *bp;
2524 int error;
2525 daddr_t lblkno;
2526
2527 ASSERT_BO_LOCKED(bo);
2528
2529 for (lblkno = startn;;) {
2530 again:
2531 bp = buf_lookup_ge(bufv, lblkno);
2532 if (bp == NULL || bp->b_lblkno >= endn)
2533 break;
2534 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2535 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2536 if (error != 0) {
2537 BO_RLOCK(bo);
2538 if (error == ENOLCK)
2539 goto again;
2540 return (error);
2541 }
2542 KASSERT(bp->b_bufobj == bo,
2543 ("bp %p wrong b_bufobj %p should be %p",
2544 bp, bp->b_bufobj, bo));
2545 lblkno = bp->b_lblkno + 1;
2546 if ((bp->b_flags & B_MANAGED) == 0)
2547 bremfree(bp);
2548 bp->b_flags |= B_RELBUF;
2549 /*
2550 * In the VMIO case, use the B_NOREUSE flag to hint that the
2551 * pages backing each buffer in the range are unlikely to be
2552 * reused. Dirty buffers will have the hint applied once
2553 * they've been written.
2554 */
2555 if ((bp->b_flags & B_VMIO) != 0)
2556 bp->b_flags |= B_NOREUSE;
2557 brelse(bp);
2558 BO_RLOCK(bo);
2559 }
2560 return (0);
2561 }
2562
2563 /*
2564 * Truncate a file's buffer and pages to a specified length. This
2565 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2566 * sync activity.
2567 */
2568 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2569 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2570 {
2571 struct buf *bp, *nbp;
2572 struct bufobj *bo;
2573 daddr_t startlbn;
2574
2575 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2576 vp, blksize, (uintmax_t)length);
2577
2578 /*
2579 * Round up to the *next* lbn.
2580 */
2581 startlbn = howmany(length, blksize);
2582
2583 ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2584
2585 bo = &vp->v_bufobj;
2586 restart_unlocked:
2587 BO_LOCK(bo);
2588
2589 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2590 ;
2591
2592 if (length > 0) {
2593 /*
2594 * Write out vnode metadata, e.g. indirect blocks.
2595 */
2596 restartsync:
2597 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2598 if (bp->b_lblkno >= 0)
2599 continue;
2600 /*
2601 * Since we hold the vnode lock this should only
2602 * fail if we're racing with the buf daemon.
2603 */
2604 if (BUF_LOCK(bp,
2605 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2606 BO_LOCKPTR(bo)) == ENOLCK)
2607 goto restart_unlocked;
2608
2609 VNASSERT((bp->b_flags & B_DELWRI), vp,
2610 ("buf(%p) on dirty queue without DELWRI", bp));
2611
2612 bremfree(bp);
2613 bawrite(bp);
2614 BO_LOCK(bo);
2615 goto restartsync;
2616 }
2617 }
2618
2619 bufobj_wwait(bo, 0, 0);
2620 BO_UNLOCK(bo);
2621 vnode_pager_setsize(vp, length);
2622
2623 return (0);
2624 }
2625
2626 /*
2627 * Invalidate the cached pages of a file's buffer within the range of block
2628 * numbers [startlbn, endlbn).
2629 */
2630 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2631 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2632 int blksize)
2633 {
2634 struct bufobj *bo;
2635 off_t start, end;
2636
2637 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2638
2639 start = blksize * startlbn;
2640 end = blksize * endlbn;
2641
2642 bo = &vp->v_bufobj;
2643 BO_LOCK(bo);
2644 MPASS(blksize == bo->bo_bsize);
2645
2646 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2647 ;
2648
2649 BO_UNLOCK(bo);
2650 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2651 }
2652
2653 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2654 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2655 daddr_t startlbn, daddr_t endlbn)
2656 {
2657 struct bufv *bv;
2658 struct buf *bp, *nbp;
2659 uint8_t anyfreed;
2660 bool clean;
2661
2662 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2663 ASSERT_BO_LOCKED(bo);
2664
2665 anyfreed = 1;
2666 clean = true;
2667 do {
2668 bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2669 bp = buf_lookup_ge(bv, startlbn);
2670 if (bp == NULL)
2671 continue;
2672 TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2673 if (bp->b_lblkno >= endlbn)
2674 break;
2675 if (BUF_LOCK(bp,
2676 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2677 BO_LOCKPTR(bo)) == ENOLCK) {
2678 BO_LOCK(bo);
2679 return (EAGAIN);
2680 }
2681
2682 bremfree(bp);
2683 bp->b_flags |= B_INVAL | B_RELBUF;
2684 bp->b_flags &= ~B_ASYNC;
2685 brelse(bp);
2686 anyfreed = 2;
2687
2688 BO_LOCK(bo);
2689 if (nbp != NULL &&
2690 (((nbp->b_xflags &
2691 (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2692 nbp->b_vp != vp ||
2693 (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2694 return (EAGAIN);
2695 }
2696 } while (clean = !clean, anyfreed-- > 0);
2697 return (0);
2698 }
2699
2700 static void
buf_vlist_remove(struct buf * bp)2701 buf_vlist_remove(struct buf *bp)
2702 {
2703 struct bufv *bv;
2704 b_xflags_t flags;
2705
2706 flags = bp->b_xflags;
2707
2708 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2709 ASSERT_BO_WLOCKED(bp->b_bufobj);
2710 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2711 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2712 ("%s: buffer %p has invalid queue state", __func__, bp));
2713
2714 if ((flags & BX_VNDIRTY) != 0)
2715 bv = &bp->b_bufobj->bo_dirty;
2716 else
2717 bv = &bp->b_bufobj->bo_clean;
2718 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2719 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2720 bv->bv_cnt--;
2721 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2722 }
2723
2724 /*
2725 * Add the buffer to the sorted clean or dirty block list. Return zero on
2726 * success, EEXIST if a buffer with this identity already exists, or another
2727 * error on allocation failure.
2728 */
2729 static inline int
buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2730 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2731 {
2732 struct bufv *bv;
2733 struct buf *n;
2734 int error;
2735
2736 ASSERT_BO_WLOCKED(bo);
2737 KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2738 ("buf_vlist_add: bo %p does not allow bufs", bo));
2739 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2740 ("dead bo %p", bo));
2741 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2742 ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2743
2744 if (xflags & BX_VNDIRTY)
2745 bv = &bo->bo_dirty;
2746 else
2747 bv = &bo->bo_clean;
2748
2749 error = buf_insert_lookup_le(bv, bp, &n);
2750 if (n == NULL) {
2751 KASSERT(error != EEXIST,
2752 ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2753 bp));
2754 } else {
2755 KASSERT(n->b_lblkno <= bp->b_lblkno,
2756 ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2757 bp, n));
2758 KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2759 ("buf_vlist_add: inconsistent result for existing buf: "
2760 "error %d bp %p n %p", error, bp, n));
2761 }
2762 if (error != 0)
2763 return (error);
2764
2765 /* Keep the list ordered. */
2766 if (n == NULL) {
2767 KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2768 bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2769 ("buf_vlist_add: queue order: "
2770 "%p should be before first %p",
2771 bp, TAILQ_FIRST(&bv->bv_hd)));
2772 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2773 } else {
2774 KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2775 bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2776 ("buf_vlist_add: queue order: "
2777 "%p should be before next %p",
2778 bp, TAILQ_NEXT(n, b_bobufs)));
2779 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2780 }
2781
2782 bv->bv_cnt++;
2783 return (0);
2784 }
2785
2786 /*
2787 * Add the buffer to the sorted clean or dirty block list.
2788 *
2789 * NOTE: xflags is passed as a constant, optimizing this inline function!
2790 */
2791 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2792 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2793 {
2794 int error;
2795
2796 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2797 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2798 bp->b_xflags |= xflags;
2799 error = buf_vlist_find_or_add(bp, bo, xflags);
2800 if (error)
2801 panic("buf_vlist_add: error=%d", error);
2802 }
2803
2804 /*
2805 * Look up a buffer using the buffer tries.
2806 */
2807 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2808 gbincore(struct bufobj *bo, daddr_t lblkno)
2809 {
2810 struct buf *bp;
2811
2812 ASSERT_BO_LOCKED(bo);
2813 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2814 if (bp != NULL)
2815 return (bp);
2816 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2817 }
2818
2819 /*
2820 * Look up a buf using the buffer tries, without the bufobj lock. This relies
2821 * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2822 * stability of the result. Like other lockless lookups, the found buf may
2823 * already be invalid by the time this function returns.
2824 */
2825 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2826 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2827 {
2828 struct buf *bp;
2829
2830 ASSERT_BO_UNLOCKED(bo);
2831 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2832 if (bp != NULL)
2833 return (bp);
2834 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2835 }
2836
2837 /*
2838 * Associate a buffer with a vnode.
2839 */
2840 int
bgetvp(struct vnode * vp,struct buf * bp)2841 bgetvp(struct vnode *vp, struct buf *bp)
2842 {
2843 struct bufobj *bo;
2844 int error;
2845
2846 bo = &vp->v_bufobj;
2847 ASSERT_BO_UNLOCKED(bo);
2848 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2849
2850 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2851 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2852 ("bgetvp: bp already attached! %p", bp));
2853
2854 /*
2855 * Add the buf to the vnode's clean list unless we lost a race and find
2856 * an existing buf in either dirty or clean.
2857 */
2858 bp->b_vp = vp;
2859 bp->b_bufobj = bo;
2860 bp->b_xflags |= BX_VNCLEAN;
2861 error = EEXIST;
2862 BO_LOCK(bo);
2863 if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2864 error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2865 BO_UNLOCK(bo);
2866 if (__predict_true(error == 0)) {
2867 vhold(vp);
2868 return (0);
2869 }
2870 if (error != EEXIST)
2871 panic("bgetvp: buf_vlist_add error: %d", error);
2872 bp->b_vp = NULL;
2873 bp->b_bufobj = NULL;
2874 bp->b_xflags &= ~BX_VNCLEAN;
2875 return (error);
2876 }
2877
2878 /*
2879 * Disassociate a buffer from a vnode.
2880 */
2881 void
brelvp(struct buf * bp)2882 brelvp(struct buf *bp)
2883 {
2884 struct bufobj *bo;
2885 struct vnode *vp;
2886
2887 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2888 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2889
2890 /*
2891 * Delete from old vnode list, if on one.
2892 */
2893 vp = bp->b_vp; /* XXX */
2894 bo = bp->b_bufobj;
2895 BO_LOCK(bo);
2896 buf_vlist_remove(bp);
2897 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2898 bo->bo_flag &= ~BO_ONWORKLST;
2899 mtx_lock(&sync_mtx);
2900 LIST_REMOVE(bo, bo_synclist);
2901 syncer_worklist_len--;
2902 mtx_unlock(&sync_mtx);
2903 }
2904 bp->b_vp = NULL;
2905 bp->b_bufobj = NULL;
2906 BO_UNLOCK(bo);
2907 vdrop(vp);
2908 }
2909
2910 /*
2911 * Add an item to the syncer work queue.
2912 */
2913 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2914 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2915 {
2916 int slot;
2917
2918 ASSERT_BO_WLOCKED(bo);
2919
2920 mtx_lock(&sync_mtx);
2921 if (bo->bo_flag & BO_ONWORKLST)
2922 LIST_REMOVE(bo, bo_synclist);
2923 else {
2924 bo->bo_flag |= BO_ONWORKLST;
2925 syncer_worklist_len++;
2926 }
2927
2928 if (delay > syncer_maxdelay - 2)
2929 delay = syncer_maxdelay - 2;
2930 slot = (syncer_delayno + delay) & syncer_mask;
2931
2932 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2933 mtx_unlock(&sync_mtx);
2934 }
2935
2936 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2937 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2938 {
2939 int error, len;
2940
2941 mtx_lock(&sync_mtx);
2942 len = syncer_worklist_len - sync_vnode_count;
2943 mtx_unlock(&sync_mtx);
2944 error = SYSCTL_OUT(req, &len, sizeof(len));
2945 return (error);
2946 }
2947
2948 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2949 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2950 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2951
2952 static struct proc *updateproc;
2953 static void sched_sync(void);
2954 static struct kproc_desc up_kp = {
2955 "syncer",
2956 sched_sync,
2957 &updateproc
2958 };
2959 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2960
2961 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2962 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2963 {
2964 struct vnode *vp;
2965 struct mount *mp;
2966
2967 *bo = LIST_FIRST(slp);
2968 if (*bo == NULL)
2969 return (0);
2970 vp = bo2vnode(*bo);
2971 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2972 return (1);
2973 /*
2974 * We use vhold in case the vnode does not
2975 * successfully sync. vhold prevents the vnode from
2976 * going away when we unlock the sync_mtx so that
2977 * we can acquire the vnode interlock.
2978 */
2979 vholdl(vp);
2980 mtx_unlock(&sync_mtx);
2981 VI_UNLOCK(vp);
2982 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2983 vdrop(vp);
2984 mtx_lock(&sync_mtx);
2985 return (*bo == LIST_FIRST(slp));
2986 }
2987 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2988 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2989 ("suspended mp syncing vp %p", vp));
2990 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2991 (void) VOP_FSYNC(vp, MNT_LAZY, td);
2992 VOP_UNLOCK(vp);
2993 vn_finished_write(mp);
2994 BO_LOCK(*bo);
2995 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2996 /*
2997 * Put us back on the worklist. The worklist
2998 * routine will remove us from our current
2999 * position and then add us back in at a later
3000 * position.
3001 */
3002 vn_syncer_add_to_worklist(*bo, syncdelay);
3003 }
3004 BO_UNLOCK(*bo);
3005 vdrop(vp);
3006 mtx_lock(&sync_mtx);
3007 return (0);
3008 }
3009
3010 static int first_printf = 1;
3011
3012 /*
3013 * System filesystem synchronizer daemon.
3014 */
3015 static void
sched_sync(void)3016 sched_sync(void)
3017 {
3018 struct synclist *next, *slp;
3019 struct bufobj *bo;
3020 long starttime;
3021 struct thread *td = curthread;
3022 int last_work_seen;
3023 int net_worklist_len;
3024 int syncer_final_iter;
3025 int error;
3026
3027 last_work_seen = 0;
3028 syncer_final_iter = 0;
3029 syncer_state = SYNCER_RUNNING;
3030 starttime = time_uptime;
3031 td->td_pflags |= TDP_NORUNNINGBUF;
3032
3033 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3034 SHUTDOWN_PRI_LAST);
3035
3036 mtx_lock(&sync_mtx);
3037 for (;;) {
3038 if (syncer_state == SYNCER_FINAL_DELAY &&
3039 syncer_final_iter == 0) {
3040 mtx_unlock(&sync_mtx);
3041 kproc_suspend_check(td->td_proc);
3042 mtx_lock(&sync_mtx);
3043 }
3044 net_worklist_len = syncer_worklist_len - sync_vnode_count;
3045 if (syncer_state != SYNCER_RUNNING &&
3046 starttime != time_uptime) {
3047 if (first_printf) {
3048 printf("\nSyncing disks, vnodes remaining... ");
3049 first_printf = 0;
3050 }
3051 printf("%d ", net_worklist_len);
3052 }
3053 starttime = time_uptime;
3054
3055 /*
3056 * Push files whose dirty time has expired. Be careful
3057 * of interrupt race on slp queue.
3058 *
3059 * Skip over empty worklist slots when shutting down.
3060 */
3061 do {
3062 slp = &syncer_workitem_pending[syncer_delayno];
3063 syncer_delayno += 1;
3064 if (syncer_delayno == syncer_maxdelay)
3065 syncer_delayno = 0;
3066 next = &syncer_workitem_pending[syncer_delayno];
3067 /*
3068 * If the worklist has wrapped since the
3069 * it was emptied of all but syncer vnodes,
3070 * switch to the FINAL_DELAY state and run
3071 * for one more second.
3072 */
3073 if (syncer_state == SYNCER_SHUTTING_DOWN &&
3074 net_worklist_len == 0 &&
3075 last_work_seen == syncer_delayno) {
3076 syncer_state = SYNCER_FINAL_DELAY;
3077 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3078 }
3079 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3080 syncer_worklist_len > 0);
3081
3082 /*
3083 * Keep track of the last time there was anything
3084 * on the worklist other than syncer vnodes.
3085 * Return to the SHUTTING_DOWN state if any
3086 * new work appears.
3087 */
3088 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3089 last_work_seen = syncer_delayno;
3090 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3091 syncer_state = SYNCER_SHUTTING_DOWN;
3092 while (!LIST_EMPTY(slp)) {
3093 error = sync_vnode(slp, &bo, td);
3094 if (error == 1) {
3095 LIST_REMOVE(bo, bo_synclist);
3096 LIST_INSERT_HEAD(next, bo, bo_synclist);
3097 continue;
3098 }
3099
3100 if (first_printf == 0) {
3101 /*
3102 * Drop the sync mutex, because some watchdog
3103 * drivers need to sleep while patting
3104 */
3105 mtx_unlock(&sync_mtx);
3106 wdog_kern_pat(WD_LASTVAL);
3107 mtx_lock(&sync_mtx);
3108 }
3109 }
3110 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3111 syncer_final_iter--;
3112 /*
3113 * The variable rushjob allows the kernel to speed up the
3114 * processing of the filesystem syncer process. A rushjob
3115 * value of N tells the filesystem syncer to process the next
3116 * N seconds worth of work on its queue ASAP. Currently rushjob
3117 * is used by the soft update code to speed up the filesystem
3118 * syncer process when the incore state is getting so far
3119 * ahead of the disk that the kernel memory pool is being
3120 * threatened with exhaustion.
3121 */
3122 if (rushjob > 0) {
3123 rushjob -= 1;
3124 continue;
3125 }
3126 /*
3127 * Just sleep for a short period of time between
3128 * iterations when shutting down to allow some I/O
3129 * to happen.
3130 *
3131 * If it has taken us less than a second to process the
3132 * current work, then wait. Otherwise start right over
3133 * again. We can still lose time if any single round
3134 * takes more than two seconds, but it does not really
3135 * matter as we are just trying to generally pace the
3136 * filesystem activity.
3137 */
3138 if (syncer_state != SYNCER_RUNNING ||
3139 time_uptime == starttime) {
3140 thread_lock(td);
3141 sched_prio(td, PPAUSE);
3142 thread_unlock(td);
3143 }
3144 if (syncer_state != SYNCER_RUNNING)
3145 cv_timedwait(&sync_wakeup, &sync_mtx,
3146 hz / SYNCER_SHUTDOWN_SPEEDUP);
3147 else if (time_uptime == starttime)
3148 cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3149 }
3150 }
3151
3152 /*
3153 * Request the syncer daemon to speed up its work.
3154 * We never push it to speed up more than half of its
3155 * normal turn time, otherwise it could take over the cpu.
3156 */
3157 int
speedup_syncer(void)3158 speedup_syncer(void)
3159 {
3160 int ret = 0;
3161
3162 mtx_lock(&sync_mtx);
3163 if (rushjob < syncdelay / 2) {
3164 rushjob += 1;
3165 stat_rush_requests += 1;
3166 ret = 1;
3167 }
3168 mtx_unlock(&sync_mtx);
3169 cv_broadcast(&sync_wakeup);
3170 return (ret);
3171 }
3172
3173 /*
3174 * Tell the syncer to speed up its work and run though its work
3175 * list several times, then tell it to shut down.
3176 */
3177 static void
syncer_shutdown(void * arg,int howto)3178 syncer_shutdown(void *arg, int howto)
3179 {
3180
3181 if (howto & RB_NOSYNC)
3182 return;
3183 mtx_lock(&sync_mtx);
3184 syncer_state = SYNCER_SHUTTING_DOWN;
3185 rushjob = 0;
3186 mtx_unlock(&sync_mtx);
3187 cv_broadcast(&sync_wakeup);
3188 kproc_shutdown(arg, howto);
3189 }
3190
3191 void
syncer_suspend(void)3192 syncer_suspend(void)
3193 {
3194
3195 syncer_shutdown(updateproc, 0);
3196 }
3197
3198 void
syncer_resume(void)3199 syncer_resume(void)
3200 {
3201
3202 mtx_lock(&sync_mtx);
3203 first_printf = 1;
3204 syncer_state = SYNCER_RUNNING;
3205 mtx_unlock(&sync_mtx);
3206 cv_broadcast(&sync_wakeup);
3207 kproc_resume(updateproc);
3208 }
3209
3210 /*
3211 * Move the buffer between the clean and dirty lists of its vnode.
3212 */
3213 void
reassignbuf(struct buf * bp)3214 reassignbuf(struct buf *bp)
3215 {
3216 struct vnode *vp;
3217 struct bufobj *bo;
3218 int delay;
3219 #ifdef INVARIANTS
3220 struct bufv *bv;
3221 #endif
3222
3223 vp = bp->b_vp;
3224 bo = bp->b_bufobj;
3225
3226 KASSERT((bp->b_flags & B_PAGING) == 0,
3227 ("%s: cannot reassign paging buffer %p", __func__, bp));
3228
3229 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3230 bp, bp->b_vp, bp->b_flags);
3231
3232 BO_LOCK(bo);
3233 if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3234 /*
3235 * Coordinate with getblk's unlocked lookup. Make
3236 * BO_NONSTERILE visible before the first reassignbuf produces
3237 * any side effect. This could be outside the bo lock if we
3238 * used a separate atomic flag field.
3239 */
3240 bo->bo_flag |= BO_NONSTERILE;
3241 atomic_thread_fence_rel();
3242 }
3243 buf_vlist_remove(bp);
3244
3245 /*
3246 * If dirty, put on list of dirty buffers; otherwise insert onto list
3247 * of clean buffers.
3248 */
3249 if (bp->b_flags & B_DELWRI) {
3250 if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3251 switch (vp->v_type) {
3252 case VDIR:
3253 delay = dirdelay;
3254 break;
3255 case VCHR:
3256 delay = metadelay;
3257 break;
3258 default:
3259 delay = filedelay;
3260 }
3261 vn_syncer_add_to_worklist(bo, delay);
3262 }
3263 buf_vlist_add(bp, bo, BX_VNDIRTY);
3264 } else {
3265 buf_vlist_add(bp, bo, BX_VNCLEAN);
3266
3267 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3268 mtx_lock(&sync_mtx);
3269 LIST_REMOVE(bo, bo_synclist);
3270 syncer_worklist_len--;
3271 mtx_unlock(&sync_mtx);
3272 bo->bo_flag &= ~BO_ONWORKLST;
3273 }
3274 }
3275 #ifdef INVARIANTS
3276 bv = &bo->bo_clean;
3277 bp = TAILQ_FIRST(&bv->bv_hd);
3278 KASSERT(bp == NULL || bp->b_bufobj == bo,
3279 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3280 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3281 KASSERT(bp == NULL || bp->b_bufobj == bo,
3282 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3283 bv = &bo->bo_dirty;
3284 bp = TAILQ_FIRST(&bv->bv_hd);
3285 KASSERT(bp == NULL || bp->b_bufobj == bo,
3286 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3287 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3288 KASSERT(bp == NULL || bp->b_bufobj == bo,
3289 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3290 #endif
3291 BO_UNLOCK(bo);
3292 }
3293
3294 static void
v_init_counters(struct vnode * vp)3295 v_init_counters(struct vnode *vp)
3296 {
3297
3298 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3299 vp, ("%s called for an initialized vnode", __FUNCTION__));
3300 ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3301
3302 refcount_init(&vp->v_holdcnt, 1);
3303 refcount_init(&vp->v_usecount, 1);
3304 }
3305
3306 /*
3307 * Get a usecount on a vnode.
3308 *
3309 * vget and vget_finish may fail to lock the vnode if they lose a race against
3310 * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3311 *
3312 * Consumers which don't guarantee liveness of the vnode can use SMR to
3313 * try to get a reference. Note this operation can fail since the vnode
3314 * may be awaiting getting freed by the time they get to it.
3315 */
3316 enum vgetstate
vget_prep_smr(struct vnode * vp)3317 vget_prep_smr(struct vnode *vp)
3318 {
3319 enum vgetstate vs;
3320
3321 VFS_SMR_ASSERT_ENTERED();
3322
3323 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3324 vs = VGET_USECOUNT;
3325 } else {
3326 if (vhold_smr(vp))
3327 vs = VGET_HOLDCNT;
3328 else
3329 vs = VGET_NONE;
3330 }
3331 return (vs);
3332 }
3333
3334 enum vgetstate
vget_prep(struct vnode * vp)3335 vget_prep(struct vnode *vp)
3336 {
3337 enum vgetstate vs;
3338
3339 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3340 vs = VGET_USECOUNT;
3341 } else {
3342 vhold(vp);
3343 vs = VGET_HOLDCNT;
3344 }
3345 return (vs);
3346 }
3347
3348 void
vget_abort(struct vnode * vp,enum vgetstate vs)3349 vget_abort(struct vnode *vp, enum vgetstate vs)
3350 {
3351
3352 switch (vs) {
3353 case VGET_USECOUNT:
3354 vrele(vp);
3355 break;
3356 case VGET_HOLDCNT:
3357 vdrop(vp);
3358 break;
3359 default:
3360 __assert_unreachable();
3361 }
3362 }
3363
3364 int
vget(struct vnode * vp,int flags)3365 vget(struct vnode *vp, int flags)
3366 {
3367 enum vgetstate vs;
3368
3369 vs = vget_prep(vp);
3370 return (vget_finish(vp, flags, vs));
3371 }
3372
3373 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3374 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3375 {
3376 int error;
3377
3378 if ((flags & LK_INTERLOCK) != 0)
3379 ASSERT_VI_LOCKED(vp, __func__);
3380 else
3381 ASSERT_VI_UNLOCKED(vp, __func__);
3382 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3383 VNPASS(vp->v_holdcnt > 0, vp);
3384 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3385
3386 error = vn_lock(vp, flags);
3387 if (__predict_false(error != 0)) {
3388 vget_abort(vp, vs);
3389 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3390 vp);
3391 return (error);
3392 }
3393
3394 vget_finish_ref(vp, vs);
3395 return (0);
3396 }
3397
3398 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3399 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3400 {
3401 int old;
3402
3403 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3404 VNPASS(vp->v_holdcnt > 0, vp);
3405 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3406
3407 if (vs == VGET_USECOUNT)
3408 return;
3409
3410 /*
3411 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3412 * the vnode around. Otherwise someone else lended their hold count and
3413 * we have to drop ours.
3414 */
3415 old = atomic_fetchadd_int(&vp->v_usecount, 1);
3416 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3417 if (old != 0) {
3418 #ifdef INVARIANTS
3419 old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3420 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3421 #else
3422 refcount_release(&vp->v_holdcnt);
3423 #endif
3424 }
3425 }
3426
3427 void
vref(struct vnode * vp)3428 vref(struct vnode *vp)
3429 {
3430 enum vgetstate vs;
3431
3432 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3433 vs = vget_prep(vp);
3434 vget_finish_ref(vp, vs);
3435 }
3436
3437 void
vrefact(struct vnode * vp)3438 vrefact(struct vnode *vp)
3439 {
3440 int old __diagused;
3441
3442 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3443 old = refcount_acquire(&vp->v_usecount);
3444 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3445 }
3446
3447 void
vlazy(struct vnode * vp)3448 vlazy(struct vnode *vp)
3449 {
3450 struct mount *mp;
3451
3452 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3453
3454 if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3455 return;
3456 /*
3457 * We may get here for inactive routines after the vnode got doomed.
3458 */
3459 if (VN_IS_DOOMED(vp))
3460 return;
3461 mp = vp->v_mount;
3462 mtx_lock(&mp->mnt_listmtx);
3463 if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3464 vp->v_mflag |= VMP_LAZYLIST;
3465 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3466 mp->mnt_lazyvnodelistsize++;
3467 }
3468 mtx_unlock(&mp->mnt_listmtx);
3469 }
3470
3471 static void
vunlazy(struct vnode * vp)3472 vunlazy(struct vnode *vp)
3473 {
3474 struct mount *mp;
3475
3476 ASSERT_VI_LOCKED(vp, __func__);
3477 VNPASS(!VN_IS_DOOMED(vp), vp);
3478
3479 mp = vp->v_mount;
3480 mtx_lock(&mp->mnt_listmtx);
3481 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3482 /*
3483 * Don't remove the vnode from the lazy list if another thread
3484 * has increased the hold count. It may have re-enqueued the
3485 * vnode to the lazy list and is now responsible for its
3486 * removal.
3487 */
3488 if (vp->v_holdcnt == 0) {
3489 vp->v_mflag &= ~VMP_LAZYLIST;
3490 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3491 mp->mnt_lazyvnodelistsize--;
3492 }
3493 mtx_unlock(&mp->mnt_listmtx);
3494 }
3495
3496 /*
3497 * This routine is only meant to be called from vgonel prior to dooming
3498 * the vnode.
3499 */
3500 static void
vunlazy_gone(struct vnode * vp)3501 vunlazy_gone(struct vnode *vp)
3502 {
3503 struct mount *mp;
3504
3505 ASSERT_VOP_ELOCKED(vp, __func__);
3506 ASSERT_VI_LOCKED(vp, __func__);
3507 VNPASS(!VN_IS_DOOMED(vp), vp);
3508
3509 if (vp->v_mflag & VMP_LAZYLIST) {
3510 mp = vp->v_mount;
3511 mtx_lock(&mp->mnt_listmtx);
3512 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3513 vp->v_mflag &= ~VMP_LAZYLIST;
3514 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3515 mp->mnt_lazyvnodelistsize--;
3516 mtx_unlock(&mp->mnt_listmtx);
3517 }
3518 }
3519
3520 static void
vdefer_inactive(struct vnode * vp)3521 vdefer_inactive(struct vnode *vp)
3522 {
3523
3524 ASSERT_VI_LOCKED(vp, __func__);
3525 VNPASS(vp->v_holdcnt > 0, vp);
3526 if (VN_IS_DOOMED(vp)) {
3527 vdropl(vp);
3528 return;
3529 }
3530 if (vp->v_iflag & VI_DEFINACT) {
3531 VNPASS(vp->v_holdcnt > 1, vp);
3532 vdropl(vp);
3533 return;
3534 }
3535 if (vp->v_usecount > 0) {
3536 vp->v_iflag &= ~VI_OWEINACT;
3537 vdropl(vp);
3538 return;
3539 }
3540 vlazy(vp);
3541 vp->v_iflag |= VI_DEFINACT;
3542 VI_UNLOCK(vp);
3543 atomic_add_long(&deferred_inact, 1);
3544 }
3545
3546 static void
vdefer_inactive_unlocked(struct vnode * vp)3547 vdefer_inactive_unlocked(struct vnode *vp)
3548 {
3549
3550 VI_LOCK(vp);
3551 if ((vp->v_iflag & VI_OWEINACT) == 0) {
3552 vdropl(vp);
3553 return;
3554 }
3555 vdefer_inactive(vp);
3556 }
3557
3558 enum vput_op { VRELE, VPUT, VUNREF };
3559
3560 /*
3561 * Handle ->v_usecount transitioning to 0.
3562 *
3563 * By releasing the last usecount we take ownership of the hold count which
3564 * provides liveness of the vnode, meaning we have to vdrop.
3565 *
3566 * For all vnodes we may need to perform inactive processing. It requires an
3567 * exclusive lock on the vnode, while it is legal to call here with only a
3568 * shared lock (or no locks). If locking the vnode in an expected manner fails,
3569 * inactive processing gets deferred to the syncer.
3570 *
3571 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3572 * on the lock being held all the way until VOP_INACTIVE. This in particular
3573 * happens with UFS which adds half-constructed vnodes to the hash, where they
3574 * can be found by other code.
3575 */
3576 static void
vput_final(struct vnode * vp,enum vput_op func)3577 vput_final(struct vnode *vp, enum vput_op func)
3578 {
3579 int error;
3580 bool want_unlock;
3581
3582 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3583 VNPASS(vp->v_holdcnt > 0, vp);
3584
3585 VI_LOCK(vp);
3586
3587 /*
3588 * By the time we got here someone else might have transitioned
3589 * the count back to > 0.
3590 */
3591 if (vp->v_usecount > 0)
3592 goto out;
3593
3594 /*
3595 * If the vnode is doomed vgone already performed inactive processing
3596 * (if needed).
3597 */
3598 if (VN_IS_DOOMED(vp))
3599 goto out;
3600
3601 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3602 goto out;
3603
3604 if (vp->v_iflag & VI_DOINGINACT)
3605 goto out;
3606
3607 /*
3608 * Locking operations here will drop the interlock and possibly the
3609 * vnode lock, opening a window where the vnode can get doomed all the
3610 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3611 * perform inactive.
3612 */
3613 vp->v_iflag |= VI_OWEINACT;
3614 want_unlock = false;
3615 error = 0;
3616 switch (func) {
3617 case VRELE:
3618 switch (VOP_ISLOCKED(vp)) {
3619 case LK_EXCLUSIVE:
3620 break;
3621 case LK_EXCLOTHER:
3622 case 0:
3623 want_unlock = true;
3624 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3625 VI_LOCK(vp);
3626 break;
3627 default:
3628 /*
3629 * The lock has at least one sharer, but we have no way
3630 * to conclude whether this is us. Play it safe and
3631 * defer processing.
3632 */
3633 error = EAGAIN;
3634 break;
3635 }
3636 break;
3637 case VPUT:
3638 want_unlock = true;
3639 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3640 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3641 LK_NOWAIT);
3642 VI_LOCK(vp);
3643 }
3644 break;
3645 case VUNREF:
3646 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3647 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3648 VI_LOCK(vp);
3649 }
3650 break;
3651 }
3652 if (error == 0) {
3653 if (func == VUNREF) {
3654 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3655 ("recursive vunref"));
3656 vp->v_vflag |= VV_UNREF;
3657 }
3658 for (;;) {
3659 error = vinactive(vp);
3660 if (want_unlock)
3661 VOP_UNLOCK(vp);
3662 if (error != ERELOOKUP || !want_unlock)
3663 break;
3664 VOP_LOCK(vp, LK_EXCLUSIVE);
3665 }
3666 if (func == VUNREF)
3667 vp->v_vflag &= ~VV_UNREF;
3668 vdropl(vp);
3669 } else {
3670 vdefer_inactive(vp);
3671 }
3672 return;
3673 out:
3674 if (func == VPUT)
3675 VOP_UNLOCK(vp);
3676 vdropl(vp);
3677 }
3678
3679 /*
3680 * Decrement ->v_usecount for a vnode.
3681 *
3682 * Releasing the last use count requires additional processing, see vput_final
3683 * above for details.
3684 *
3685 * Comment above each variant denotes lock state on entry and exit.
3686 */
3687
3688 /*
3689 * in: any
3690 * out: same as passed in
3691 */
3692 void
vrele(struct vnode * vp)3693 vrele(struct vnode *vp)
3694 {
3695
3696 ASSERT_VI_UNLOCKED(vp, __func__);
3697 if (!refcount_release(&vp->v_usecount))
3698 return;
3699 vput_final(vp, VRELE);
3700 }
3701
3702 /*
3703 * in: locked
3704 * out: unlocked
3705 */
3706 void
vput(struct vnode * vp)3707 vput(struct vnode *vp)
3708 {
3709
3710 ASSERT_VOP_LOCKED(vp, __func__);
3711 ASSERT_VI_UNLOCKED(vp, __func__);
3712 if (!refcount_release(&vp->v_usecount)) {
3713 VOP_UNLOCK(vp);
3714 return;
3715 }
3716 vput_final(vp, VPUT);
3717 }
3718
3719 /*
3720 * in: locked
3721 * out: locked
3722 */
3723 void
vunref(struct vnode * vp)3724 vunref(struct vnode *vp)
3725 {
3726
3727 ASSERT_VOP_LOCKED(vp, __func__);
3728 ASSERT_VI_UNLOCKED(vp, __func__);
3729 if (!refcount_release(&vp->v_usecount))
3730 return;
3731 vput_final(vp, VUNREF);
3732 }
3733
3734 void
vhold(struct vnode * vp)3735 vhold(struct vnode *vp)
3736 {
3737 int old;
3738
3739 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3740 old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3741 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3742 ("%s: wrong hold count %d", __func__, old));
3743 if (old == 0)
3744 vfs_freevnodes_dec();
3745 }
3746
3747 void
vholdnz(struct vnode * vp)3748 vholdnz(struct vnode *vp)
3749 {
3750
3751 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3752 #ifdef INVARIANTS
3753 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3754 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3755 ("%s: wrong hold count %d", __func__, old));
3756 #else
3757 atomic_add_int(&vp->v_holdcnt, 1);
3758 #endif
3759 }
3760
3761 /*
3762 * Grab a hold count unless the vnode is freed.
3763 *
3764 * Only use this routine if vfs smr is the only protection you have against
3765 * freeing the vnode.
3766 *
3767 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3768 * is not set. After the flag is set the vnode becomes immutable to anyone but
3769 * the thread which managed to set the flag.
3770 *
3771 * It may be tempting to replace the loop with:
3772 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3773 * if (count & VHOLD_NO_SMR) {
3774 * backpedal and error out;
3775 * }
3776 *
3777 * However, while this is more performant, it hinders debugging by eliminating
3778 * the previously mentioned invariant.
3779 */
3780 bool
vhold_smr(struct vnode * vp)3781 vhold_smr(struct vnode *vp)
3782 {
3783 int count;
3784
3785 VFS_SMR_ASSERT_ENTERED();
3786
3787 count = atomic_load_int(&vp->v_holdcnt);
3788 for (;;) {
3789 if (count & VHOLD_NO_SMR) {
3790 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3791 ("non-zero hold count with flags %d\n", count));
3792 return (false);
3793 }
3794 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3795 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3796 if (count == 0)
3797 vfs_freevnodes_dec();
3798 return (true);
3799 }
3800 }
3801 }
3802
3803 /*
3804 * Hold a free vnode for recycling.
3805 *
3806 * Note: vnode_init references this comment.
3807 *
3808 * Attempts to recycle only need the global vnode list lock and have no use for
3809 * SMR.
3810 *
3811 * However, vnodes get inserted into the global list before they get fully
3812 * initialized and stay there until UMA decides to free the memory. This in
3813 * particular means the target can be found before it becomes usable and after
3814 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3815 * VHOLD_NO_SMR.
3816 *
3817 * Note: the vnode may gain more references after we transition the count 0->1.
3818 */
3819 static bool
vhold_recycle_free(struct vnode * vp)3820 vhold_recycle_free(struct vnode *vp)
3821 {
3822 int count;
3823
3824 mtx_assert(&vnode_list_mtx, MA_OWNED);
3825
3826 count = atomic_load_int(&vp->v_holdcnt);
3827 for (;;) {
3828 if (count & VHOLD_NO_SMR) {
3829 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3830 ("non-zero hold count with flags %d\n", count));
3831 return (false);
3832 }
3833 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3834 if (count > 0) {
3835 return (false);
3836 }
3837 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3838 vfs_freevnodes_dec();
3839 return (true);
3840 }
3841 }
3842 }
3843
3844 static void __noinline
vdbatch_process(struct vdbatch * vd)3845 vdbatch_process(struct vdbatch *vd)
3846 {
3847 struct vnode *vp;
3848 int i;
3849
3850 mtx_assert(&vd->lock, MA_OWNED);
3851 MPASS(curthread->td_pinned > 0);
3852 MPASS(vd->index == VDBATCH_SIZE);
3853
3854 /*
3855 * Attempt to requeue the passed batch, but give up easily.
3856 *
3857 * Despite batching the mechanism is prone to transient *significant*
3858 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3859 * if multiple CPUs get here (one real-world example is highly parallel
3860 * do-nothing make , which will stat *tons* of vnodes). Since it is
3861 * quasi-LRU (read: not that great even if fully honoured) provide an
3862 * option to just dodge the problem. Parties which don't like it are
3863 * welcome to implement something better.
3864 */
3865 if (vnode_can_skip_requeue) {
3866 if (!mtx_trylock(&vnode_list_mtx)) {
3867 counter_u64_add(vnode_skipped_requeues, 1);
3868 critical_enter();
3869 for (i = 0; i < VDBATCH_SIZE; i++) {
3870 vp = vd->tab[i];
3871 vd->tab[i] = NULL;
3872 MPASS(vp->v_dbatchcpu != NOCPU);
3873 vp->v_dbatchcpu = NOCPU;
3874 }
3875 vd->index = 0;
3876 critical_exit();
3877 return;
3878
3879 }
3880 /* fallthrough to locked processing */
3881 } else {
3882 mtx_lock(&vnode_list_mtx);
3883 }
3884
3885 mtx_assert(&vnode_list_mtx, MA_OWNED);
3886 critical_enter();
3887 for (i = 0; i < VDBATCH_SIZE; i++) {
3888 vp = vd->tab[i];
3889 vd->tab[i] = NULL;
3890 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3891 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3892 MPASS(vp->v_dbatchcpu != NOCPU);
3893 vp->v_dbatchcpu = NOCPU;
3894 }
3895 mtx_unlock(&vnode_list_mtx);
3896 vd->index = 0;
3897 critical_exit();
3898 }
3899
3900 static void
vdbatch_enqueue(struct vnode * vp)3901 vdbatch_enqueue(struct vnode *vp)
3902 {
3903 struct vdbatch *vd;
3904
3905 ASSERT_VI_LOCKED(vp, __func__);
3906 VNPASS(!VN_IS_DOOMED(vp), vp);
3907
3908 if (vp->v_dbatchcpu != NOCPU) {
3909 VI_UNLOCK(vp);
3910 return;
3911 }
3912
3913 sched_pin();
3914 vd = DPCPU_PTR(vd);
3915 mtx_lock(&vd->lock);
3916 MPASS(vd->index < VDBATCH_SIZE);
3917 MPASS(vd->tab[vd->index] == NULL);
3918 /*
3919 * A hack: we depend on being pinned so that we know what to put in
3920 * ->v_dbatchcpu.
3921 */
3922 vp->v_dbatchcpu = curcpu;
3923 vd->tab[vd->index] = vp;
3924 vd->index++;
3925 VI_UNLOCK(vp);
3926 if (vd->index == VDBATCH_SIZE)
3927 vdbatch_process(vd);
3928 mtx_unlock(&vd->lock);
3929 sched_unpin();
3930 }
3931
3932 /*
3933 * This routine must only be called for vnodes which are about to be
3934 * deallocated. Supporting dequeue for arbitrary vndoes would require
3935 * validating that the locked batch matches.
3936 */
3937 static void
vdbatch_dequeue(struct vnode * vp)3938 vdbatch_dequeue(struct vnode *vp)
3939 {
3940 struct vdbatch *vd;
3941 int i;
3942 short cpu;
3943
3944 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3945
3946 cpu = vp->v_dbatchcpu;
3947 if (cpu == NOCPU)
3948 return;
3949
3950 vd = DPCPU_ID_PTR(cpu, vd);
3951 mtx_lock(&vd->lock);
3952 for (i = 0; i < vd->index; i++) {
3953 if (vd->tab[i] != vp)
3954 continue;
3955 vp->v_dbatchcpu = NOCPU;
3956 vd->index--;
3957 vd->tab[i] = vd->tab[vd->index];
3958 vd->tab[vd->index] = NULL;
3959 break;
3960 }
3961 mtx_unlock(&vd->lock);
3962 /*
3963 * Either we dequeued the vnode above or the target CPU beat us to it.
3964 */
3965 MPASS(vp->v_dbatchcpu == NOCPU);
3966 }
3967
3968 /*
3969 * Drop the hold count of the vnode.
3970 *
3971 * It will only get freed if this is the last hold *and* it has been vgone'd.
3972 *
3973 * Because the vnode vm object keeps a hold reference on the vnode if
3974 * there is at least one resident non-cached page, the vnode cannot
3975 * leave the active list without the page cleanup done.
3976 */
3977 static void __noinline
vdropl_final(struct vnode * vp)3978 vdropl_final(struct vnode *vp)
3979 {
3980
3981 ASSERT_VI_LOCKED(vp, __func__);
3982 VNPASS(VN_IS_DOOMED(vp), vp);
3983 /*
3984 * Set the VHOLD_NO_SMR flag.
3985 *
3986 * We may be racing against vhold_smr. If they win we can just pretend
3987 * we never got this far, they will vdrop later.
3988 */
3989 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3990 vfs_freevnodes_inc();
3991 VI_UNLOCK(vp);
3992 /*
3993 * We lost the aforementioned race. Any subsequent access is
3994 * invalid as they might have managed to vdropl on their own.
3995 */
3996 return;
3997 }
3998 /*
3999 * Don't bump freevnodes as this one is going away.
4000 */
4001 freevnode(vp);
4002 }
4003
4004 void
vdrop(struct vnode * vp)4005 vdrop(struct vnode *vp)
4006 {
4007
4008 ASSERT_VI_UNLOCKED(vp, __func__);
4009 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4010 if (refcount_release_if_not_last(&vp->v_holdcnt))
4011 return;
4012 VI_LOCK(vp);
4013 vdropl(vp);
4014 }
4015
4016 static __always_inline void
vdropl_impl(struct vnode * vp,bool enqueue)4017 vdropl_impl(struct vnode *vp, bool enqueue)
4018 {
4019
4020 ASSERT_VI_LOCKED(vp, __func__);
4021 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4022 if (!refcount_release(&vp->v_holdcnt)) {
4023 VI_UNLOCK(vp);
4024 return;
4025 }
4026 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4027 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4028 if (VN_IS_DOOMED(vp)) {
4029 vdropl_final(vp);
4030 return;
4031 }
4032
4033 vfs_freevnodes_inc();
4034 if (vp->v_mflag & VMP_LAZYLIST) {
4035 vunlazy(vp);
4036 }
4037
4038 if (!enqueue) {
4039 VI_UNLOCK(vp);
4040 return;
4041 }
4042
4043 /*
4044 * Also unlocks the interlock. We can't assert on it as we
4045 * released our hold and by now the vnode might have been
4046 * freed.
4047 */
4048 vdbatch_enqueue(vp);
4049 }
4050
4051 void
vdropl(struct vnode * vp)4052 vdropl(struct vnode *vp)
4053 {
4054
4055 vdropl_impl(vp, true);
4056 }
4057
4058 /*
4059 * vdrop a vnode when recycling
4060 *
4061 * This is a special case routine only to be used when recycling, differs from
4062 * regular vdrop by not requeieing the vnode on LRU.
4063 *
4064 * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4065 * e.g., frozen writes on the filesystem), filling the batch and causing it to
4066 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4067 * loop which can last for as long as writes are frozen.
4068 */
4069 static void
vdropl_recycle(struct vnode * vp)4070 vdropl_recycle(struct vnode *vp)
4071 {
4072
4073 vdropl_impl(vp, false);
4074 }
4075
4076 static void
vdrop_recycle(struct vnode * vp)4077 vdrop_recycle(struct vnode *vp)
4078 {
4079
4080 VI_LOCK(vp);
4081 vdropl_recycle(vp);
4082 }
4083
4084 /*
4085 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4086 * flags. DOINGINACT prevents us from recursing in calls to vinactive.
4087 */
4088 static int
vinactivef(struct vnode * vp)4089 vinactivef(struct vnode *vp)
4090 {
4091 int error;
4092
4093 ASSERT_VOP_ELOCKED(vp, "vinactive");
4094 ASSERT_VI_LOCKED(vp, "vinactive");
4095 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4096 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4097 vp->v_iflag |= VI_DOINGINACT;
4098 vp->v_iflag &= ~VI_OWEINACT;
4099 VI_UNLOCK(vp);
4100
4101 /*
4102 * Before moving off the active list, we must be sure that any
4103 * modified pages are converted into the vnode's dirty
4104 * buffers, since these will no longer be checked once the
4105 * vnode is on the inactive list.
4106 *
4107 * The write-out of the dirty pages is asynchronous. At the
4108 * point that VOP_INACTIVE() is called, there could still be
4109 * pending I/O and dirty pages in the object.
4110 */
4111 if ((vp->v_vflag & VV_NOSYNC) == 0)
4112 vnode_pager_clean_async(vp);
4113
4114 error = VOP_INACTIVE(vp);
4115 VI_LOCK(vp);
4116 VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4117 vp->v_iflag &= ~VI_DOINGINACT;
4118 return (error);
4119 }
4120
4121 int
vinactive(struct vnode * vp)4122 vinactive(struct vnode *vp)
4123 {
4124
4125 ASSERT_VOP_ELOCKED(vp, "vinactive");
4126 ASSERT_VI_LOCKED(vp, "vinactive");
4127 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4128
4129 if ((vp->v_iflag & VI_OWEINACT) == 0)
4130 return (0);
4131 if (vp->v_iflag & VI_DOINGINACT)
4132 return (0);
4133 if (vp->v_usecount > 0) {
4134 vp->v_iflag &= ~VI_OWEINACT;
4135 return (0);
4136 }
4137 return (vinactivef(vp));
4138 }
4139
4140 /*
4141 * Remove any vnodes in the vnode table belonging to mount point mp.
4142 *
4143 * If FORCECLOSE is not specified, there should not be any active ones,
4144 * return error if any are found (nb: this is a user error, not a
4145 * system error). If FORCECLOSE is specified, detach any active vnodes
4146 * that are found.
4147 *
4148 * If WRITECLOSE is set, only flush out regular file vnodes open for
4149 * writing.
4150 *
4151 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4152 *
4153 * `rootrefs' specifies the base reference count for the root vnode
4154 * of this filesystem. The root vnode is considered busy if its
4155 * v_usecount exceeds this value. On a successful return, vflush(, td)
4156 * will call vrele() on the root vnode exactly rootrefs times.
4157 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4158 * be zero.
4159 */
4160 #ifdef DIAGNOSTIC
4161 static int busyprt = 0; /* print out busy vnodes */
4162 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4163 #endif
4164
4165 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4166 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4167 {
4168 struct vnode *vp, *mvp, *rootvp = NULL;
4169 struct vattr vattr;
4170 int busy = 0, error;
4171
4172 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4173 rootrefs, flags);
4174 if (rootrefs > 0) {
4175 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4176 ("vflush: bad args"));
4177 /*
4178 * Get the filesystem root vnode. We can vput() it
4179 * immediately, since with rootrefs > 0, it won't go away.
4180 */
4181 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4182 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4183 __func__, error);
4184 return (error);
4185 }
4186 vput(rootvp);
4187 }
4188 loop:
4189 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4190 vholdl(vp);
4191 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4192 if (error) {
4193 vdrop(vp);
4194 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4195 goto loop;
4196 }
4197 /*
4198 * Skip over a vnodes marked VV_SYSTEM.
4199 */
4200 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4201 VOP_UNLOCK(vp);
4202 vdrop(vp);
4203 continue;
4204 }
4205 /*
4206 * If WRITECLOSE is set, flush out unlinked but still open
4207 * files (even if open only for reading) and regular file
4208 * vnodes open for writing.
4209 */
4210 if (flags & WRITECLOSE) {
4211 vnode_pager_clean_async(vp);
4212 do {
4213 error = VOP_FSYNC(vp, MNT_WAIT, td);
4214 } while (error == ERELOOKUP);
4215 if (error != 0) {
4216 VOP_UNLOCK(vp);
4217 vdrop(vp);
4218 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4219 return (error);
4220 }
4221 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4222 VI_LOCK(vp);
4223
4224 if ((vp->v_type == VNON ||
4225 (error == 0 && vattr.va_nlink > 0)) &&
4226 (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4227 VOP_UNLOCK(vp);
4228 vdropl(vp);
4229 continue;
4230 }
4231 } else
4232 VI_LOCK(vp);
4233 /*
4234 * With v_usecount == 0, all we need to do is clear out the
4235 * vnode data structures and we are done.
4236 *
4237 * If FORCECLOSE is set, forcibly close the vnode.
4238 */
4239 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4240 vgonel(vp);
4241 } else {
4242 busy++;
4243 #ifdef DIAGNOSTIC
4244 if (busyprt)
4245 vn_printf(vp, "vflush: busy vnode ");
4246 #endif
4247 }
4248 VOP_UNLOCK(vp);
4249 vdropl(vp);
4250 }
4251 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4252 /*
4253 * If just the root vnode is busy, and if its refcount
4254 * is equal to `rootrefs', then go ahead and kill it.
4255 */
4256 VI_LOCK(rootvp);
4257 KASSERT(busy > 0, ("vflush: not busy"));
4258 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4259 ("vflush: usecount %d < rootrefs %d",
4260 rootvp->v_usecount, rootrefs));
4261 if (busy == 1 && rootvp->v_usecount == rootrefs) {
4262 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4263 vgone(rootvp);
4264 VOP_UNLOCK(rootvp);
4265 busy = 0;
4266 } else
4267 VI_UNLOCK(rootvp);
4268 }
4269 if (busy) {
4270 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4271 busy);
4272 return (EBUSY);
4273 }
4274 for (; rootrefs > 0; rootrefs--)
4275 vrele(rootvp);
4276 return (0);
4277 }
4278
4279 /*
4280 * Recycle an unused vnode.
4281 */
4282 int
vrecycle(struct vnode * vp)4283 vrecycle(struct vnode *vp)
4284 {
4285 int recycled;
4286
4287 VI_LOCK(vp);
4288 recycled = vrecyclel(vp);
4289 VI_UNLOCK(vp);
4290 return (recycled);
4291 }
4292
4293 /*
4294 * vrecycle, with the vp interlock held.
4295 */
4296 int
vrecyclel(struct vnode * vp)4297 vrecyclel(struct vnode *vp)
4298 {
4299 int recycled;
4300
4301 ASSERT_VOP_ELOCKED(vp, __func__);
4302 ASSERT_VI_LOCKED(vp, __func__);
4303 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4304 recycled = 0;
4305 if (vp->v_usecount == 0) {
4306 recycled = 1;
4307 vgonel(vp);
4308 }
4309 return (recycled);
4310 }
4311
4312 /*
4313 * Eliminate all activity associated with a vnode
4314 * in preparation for reuse.
4315 */
4316 void
vgone(struct vnode * vp)4317 vgone(struct vnode *vp)
4318 {
4319 VI_LOCK(vp);
4320 vgonel(vp);
4321 VI_UNLOCK(vp);
4322 }
4323
4324 /*
4325 * Notify upper mounts about reclaimed or unlinked vnode.
4326 */
4327 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4328 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4329 {
4330 struct mount *mp;
4331 struct mount_upper_node *ump;
4332
4333 mp = atomic_load_ptr(&vp->v_mount);
4334 if (mp == NULL)
4335 return;
4336 if (TAILQ_EMPTY(&mp->mnt_notify))
4337 return;
4338
4339 MNT_ILOCK(mp);
4340 mp->mnt_upper_pending++;
4341 KASSERT(mp->mnt_upper_pending > 0,
4342 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4343 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4344 MNT_IUNLOCK(mp);
4345 switch (event) {
4346 case VFS_NOTIFY_UPPER_RECLAIM:
4347 VFS_RECLAIM_LOWERVP(ump->mp, vp);
4348 break;
4349 case VFS_NOTIFY_UPPER_UNLINK:
4350 VFS_UNLINK_LOWERVP(ump->mp, vp);
4351 break;
4352 }
4353 MNT_ILOCK(mp);
4354 }
4355 mp->mnt_upper_pending--;
4356 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4357 mp->mnt_upper_pending == 0) {
4358 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4359 wakeup(&mp->mnt_uppers);
4360 }
4361 MNT_IUNLOCK(mp);
4362 }
4363
4364 /*
4365 * vgone, with the vp interlock held.
4366 */
4367 static void
vgonel(struct vnode * vp)4368 vgonel(struct vnode *vp)
4369 {
4370 struct thread *td;
4371 struct mount *mp;
4372 vm_object_t object;
4373 bool active, doinginact, oweinact;
4374
4375 ASSERT_VOP_ELOCKED(vp, "vgonel");
4376 ASSERT_VI_LOCKED(vp, "vgonel");
4377 VNASSERT(vp->v_holdcnt, vp,
4378 ("vgonel: vp %p has no reference.", vp));
4379 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4380 td = curthread;
4381
4382 /*
4383 * Don't vgonel if we're already doomed.
4384 */
4385 if (VN_IS_DOOMED(vp)) {
4386 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4387 vn_get_state(vp) == VSTATE_DEAD, vp);
4388 return;
4389 }
4390 /*
4391 * Paired with freevnode.
4392 */
4393 vn_seqc_write_begin_locked(vp);
4394 vunlazy_gone(vp);
4395 vn_irflag_set_locked(vp, VIRF_DOOMED);
4396 vn_set_state(vp, VSTATE_DESTROYING);
4397
4398 /*
4399 * Check to see if the vnode is in use. If so, we have to
4400 * call VOP_CLOSE() and VOP_INACTIVE().
4401 *
4402 * It could be that VOP_INACTIVE() requested reclamation, in
4403 * which case we should avoid recursion, so check
4404 * VI_DOINGINACT. This is not precise but good enough.
4405 */
4406 active = vp->v_usecount > 0;
4407 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4408 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4409
4410 /*
4411 * If we need to do inactive VI_OWEINACT will be set.
4412 */
4413 if (vp->v_iflag & VI_DEFINACT) {
4414 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4415 vp->v_iflag &= ~VI_DEFINACT;
4416 vdropl(vp);
4417 } else {
4418 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4419 VI_UNLOCK(vp);
4420 }
4421 cache_purge_vgone(vp);
4422 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4423
4424 /*
4425 * If purging an active vnode, it must be closed and
4426 * deactivated before being reclaimed.
4427 */
4428 if (active)
4429 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4430 if (!doinginact) {
4431 do {
4432 if (oweinact || active) {
4433 VI_LOCK(vp);
4434 vinactivef(vp);
4435 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4436 VI_UNLOCK(vp);
4437 }
4438 } while (oweinact);
4439 }
4440 if (vp->v_type == VSOCK)
4441 vfs_unp_reclaim(vp);
4442
4443 /*
4444 * Clean out any buffers associated with the vnode.
4445 * If the flush fails, just toss the buffers.
4446 */
4447 mp = NULL;
4448 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4449 (void) vn_start_secondary_write(vp, &mp, V_WAIT);
4450 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4451 while (vinvalbuf(vp, 0, 0, 0) != 0)
4452 ;
4453 }
4454
4455 BO_LOCK(&vp->v_bufobj);
4456 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4457 vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4458 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4459 vp->v_bufobj.bo_clean.bv_cnt == 0,
4460 ("vp %p bufobj not invalidated", vp));
4461
4462 /*
4463 * For VMIO bufobj, BO_DEAD is set later, or in
4464 * vm_object_terminate() after the object's page queue is
4465 * flushed.
4466 */
4467 object = vp->v_bufobj.bo_object;
4468 if (object == NULL)
4469 vp->v_bufobj.bo_flag |= BO_DEAD;
4470 BO_UNLOCK(&vp->v_bufobj);
4471
4472 /*
4473 * Handle the VM part. Tmpfs handles v_object on its own (the
4474 * OBJT_VNODE check). Nullfs or other bypassing filesystems
4475 * should not touch the object borrowed from the lower vnode
4476 * (the handle check).
4477 */
4478 if (object != NULL && object->type == OBJT_VNODE &&
4479 object->handle == vp)
4480 vnode_destroy_vobject(vp);
4481
4482 /*
4483 * Reclaim the vnode.
4484 */
4485 if (VOP_RECLAIM(vp))
4486 panic("vgone: cannot reclaim");
4487 if (mp != NULL)
4488 vn_finished_secondary_write(mp);
4489 VNASSERT(vp->v_object == NULL, vp,
4490 ("vop_reclaim left v_object vp=%p", vp));
4491 /*
4492 * Clear the advisory locks and wake up waiting threads.
4493 */
4494 if (vp->v_lockf != NULL) {
4495 (void)VOP_ADVLOCKPURGE(vp);
4496 vp->v_lockf = NULL;
4497 }
4498 /*
4499 * Delete from old mount point vnode list.
4500 */
4501 if (vp->v_mount == NULL) {
4502 VI_LOCK(vp);
4503 } else {
4504 delmntque(vp);
4505 ASSERT_VI_LOCKED(vp, "vgonel 2");
4506 }
4507 /*
4508 * Done with purge, reset to the standard lock and invalidate
4509 * the vnode.
4510 */
4511 vp->v_vnlock = &vp->v_lock;
4512 vp->v_op = &dead_vnodeops;
4513 vp->v_type = VBAD;
4514 vn_set_state(vp, VSTATE_DEAD);
4515 }
4516
4517 /*
4518 * Print out a description of a vnode.
4519 */
4520 static const char *const vtypename[] = {
4521 [VNON] = "VNON",
4522 [VREG] = "VREG",
4523 [VDIR] = "VDIR",
4524 [VBLK] = "VBLK",
4525 [VCHR] = "VCHR",
4526 [VLNK] = "VLNK",
4527 [VSOCK] = "VSOCK",
4528 [VFIFO] = "VFIFO",
4529 [VBAD] = "VBAD",
4530 [VMARKER] = "VMARKER",
4531 };
4532 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4533 "vnode type name not added to vtypename");
4534
4535 static const char *const vstatename[] = {
4536 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4537 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4538 [VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4539 [VSTATE_DEAD] = "VSTATE_DEAD",
4540 };
4541 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4542 "vnode state name not added to vstatename");
4543
4544 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4545 "new hold count flag not added to vn_printf");
4546
4547 void
vn_printf(struct vnode * vp,const char * fmt,...)4548 vn_printf(struct vnode *vp, const char *fmt, ...)
4549 {
4550 va_list ap;
4551 char buf[256], buf2[16];
4552 u_long flags;
4553 u_int holdcnt;
4554 short irflag;
4555
4556 va_start(ap, fmt);
4557 vprintf(fmt, ap);
4558 va_end(ap);
4559 printf("%p: ", (void *)vp);
4560 printf("type %s state %s op %p\n", vtypename[vp->v_type],
4561 vstatename[vp->v_state], vp->v_op);
4562 holdcnt = atomic_load_int(&vp->v_holdcnt);
4563 printf(" usecount %d, writecount %d, refcount %d seqc users %d",
4564 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4565 vp->v_seqc_users);
4566 switch (vp->v_type) {
4567 case VDIR:
4568 printf(" mountedhere %p\n", vp->v_mountedhere);
4569 break;
4570 case VCHR:
4571 printf(" rdev %p\n", vp->v_rdev);
4572 break;
4573 case VSOCK:
4574 printf(" socket %p\n", vp->v_unpcb);
4575 break;
4576 case VFIFO:
4577 printf(" fifoinfo %p\n", vp->v_fifoinfo);
4578 break;
4579 default:
4580 printf("\n");
4581 break;
4582 }
4583 buf[0] = '\0';
4584 buf[1] = '\0';
4585 if (holdcnt & VHOLD_NO_SMR)
4586 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4587 printf(" hold count flags (%s)\n", buf + 1);
4588
4589 buf[0] = '\0';
4590 buf[1] = '\0';
4591 irflag = vn_irflag_read(vp);
4592 if (irflag & VIRF_DOOMED)
4593 strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4594 if (irflag & VIRF_PGREAD)
4595 strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4596 if (irflag & VIRF_MOUNTPOINT)
4597 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4598 if (irflag & VIRF_TEXT_REF)
4599 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4600 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4601 if (flags != 0) {
4602 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4603 strlcat(buf, buf2, sizeof(buf));
4604 }
4605 if (vp->v_vflag & VV_ROOT)
4606 strlcat(buf, "|VV_ROOT", sizeof(buf));
4607 if (vp->v_vflag & VV_ISTTY)
4608 strlcat(buf, "|VV_ISTTY", sizeof(buf));
4609 if (vp->v_vflag & VV_NOSYNC)
4610 strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4611 if (vp->v_vflag & VV_ETERNALDEV)
4612 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4613 if (vp->v_vflag & VV_CACHEDLABEL)
4614 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4615 if (vp->v_vflag & VV_VMSIZEVNLOCK)
4616 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4617 if (vp->v_vflag & VV_COPYONWRITE)
4618 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4619 if (vp->v_vflag & VV_SYSTEM)
4620 strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4621 if (vp->v_vflag & VV_PROCDEP)
4622 strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4623 if (vp->v_vflag & VV_DELETED)
4624 strlcat(buf, "|VV_DELETED", sizeof(buf));
4625 if (vp->v_vflag & VV_MD)
4626 strlcat(buf, "|VV_MD", sizeof(buf));
4627 if (vp->v_vflag & VV_FORCEINSMQ)
4628 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4629 if (vp->v_vflag & VV_READLINK)
4630 strlcat(buf, "|VV_READLINK", sizeof(buf));
4631 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4632 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4633 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4634 if (flags != 0) {
4635 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4636 strlcat(buf, buf2, sizeof(buf));
4637 }
4638 if (vp->v_iflag & VI_MOUNT)
4639 strlcat(buf, "|VI_MOUNT", sizeof(buf));
4640 if (vp->v_iflag & VI_DOINGINACT)
4641 strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4642 if (vp->v_iflag & VI_OWEINACT)
4643 strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4644 if (vp->v_iflag & VI_DEFINACT)
4645 strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4646 if (vp->v_iflag & VI_FOPENING)
4647 strlcat(buf, "|VI_FOPENING", sizeof(buf));
4648 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4649 VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4650 if (flags != 0) {
4651 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4652 strlcat(buf, buf2, sizeof(buf));
4653 }
4654 if (vp->v_mflag & VMP_LAZYLIST)
4655 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4656 flags = vp->v_mflag & ~(VMP_LAZYLIST);
4657 if (flags != 0) {
4658 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4659 strlcat(buf, buf2, sizeof(buf));
4660 }
4661 printf(" flags (%s)", buf + 1);
4662 if (mtx_owned(VI_MTX(vp)))
4663 printf(" VI_LOCKed");
4664 printf("\n");
4665 if (vp->v_object != NULL)
4666 printf(" v_object %p ref %d pages %d "
4667 "cleanbuf %d dirtybuf %d\n",
4668 vp->v_object, vp->v_object->ref_count,
4669 vp->v_object->resident_page_count,
4670 vp->v_bufobj.bo_clean.bv_cnt,
4671 vp->v_bufobj.bo_dirty.bv_cnt);
4672 printf(" ");
4673 lockmgr_printinfo(vp->v_vnlock);
4674 if (vp->v_data != NULL)
4675 VOP_PRINT(vp);
4676 }
4677
4678 #ifdef DDB
4679 /*
4680 * List all of the locked vnodes in the system.
4681 * Called when debugging the kernel.
4682 */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4683 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4684 {
4685 struct mount *mp;
4686 struct vnode *vp;
4687
4688 /*
4689 * Note: because this is DDB, we can't obey the locking semantics
4690 * for these structures, which means we could catch an inconsistent
4691 * state and dereference a nasty pointer. Not much to be done
4692 * about that.
4693 */
4694 db_printf("Locked vnodes\n");
4695 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4696 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4697 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4698 vn_printf(vp, "vnode ");
4699 }
4700 }
4701 }
4702
4703 /*
4704 * Show details about the given vnode.
4705 */
DB_SHOW_COMMAND(vnode,db_show_vnode)4706 DB_SHOW_COMMAND(vnode, db_show_vnode)
4707 {
4708 struct vnode *vp;
4709
4710 if (!have_addr)
4711 return;
4712 vp = (struct vnode *)addr;
4713 vn_printf(vp, "vnode ");
4714 }
4715
4716 /*
4717 * Show details about the given mount point.
4718 */
DB_SHOW_COMMAND(mount,db_show_mount)4719 DB_SHOW_COMMAND(mount, db_show_mount)
4720 {
4721 struct mount *mp;
4722 struct vfsopt *opt;
4723 struct statfs *sp;
4724 struct vnode *vp;
4725 char buf[512];
4726 uint64_t mflags;
4727 u_int flags;
4728
4729 if (!have_addr) {
4730 /* No address given, print short info about all mount points. */
4731 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4732 db_printf("%p %s on %s (%s)\n", mp,
4733 mp->mnt_stat.f_mntfromname,
4734 mp->mnt_stat.f_mntonname,
4735 mp->mnt_stat.f_fstypename);
4736 if (db_pager_quit)
4737 break;
4738 }
4739 db_printf("\nMore info: show mount <addr>\n");
4740 return;
4741 }
4742
4743 mp = (struct mount *)addr;
4744 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4745 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4746
4747 buf[0] = '\0';
4748 mflags = mp->mnt_flag;
4749 #define MNT_FLAG(flag) do { \
4750 if (mflags & (flag)) { \
4751 if (buf[0] != '\0') \
4752 strlcat(buf, ", ", sizeof(buf)); \
4753 strlcat(buf, (#flag) + 4, sizeof(buf)); \
4754 mflags &= ~(flag); \
4755 } \
4756 } while (0)
4757 MNT_FLAG(MNT_RDONLY);
4758 MNT_FLAG(MNT_SYNCHRONOUS);
4759 MNT_FLAG(MNT_NOEXEC);
4760 MNT_FLAG(MNT_NOSUID);
4761 MNT_FLAG(MNT_NFS4ACLS);
4762 MNT_FLAG(MNT_UNION);
4763 MNT_FLAG(MNT_ASYNC);
4764 MNT_FLAG(MNT_SUIDDIR);
4765 MNT_FLAG(MNT_SOFTDEP);
4766 MNT_FLAG(MNT_NOSYMFOLLOW);
4767 MNT_FLAG(MNT_GJOURNAL);
4768 MNT_FLAG(MNT_MULTILABEL);
4769 MNT_FLAG(MNT_ACLS);
4770 MNT_FLAG(MNT_NOATIME);
4771 MNT_FLAG(MNT_NOCLUSTERR);
4772 MNT_FLAG(MNT_NOCLUSTERW);
4773 MNT_FLAG(MNT_SUJ);
4774 MNT_FLAG(MNT_EXRDONLY);
4775 MNT_FLAG(MNT_EXPORTED);
4776 MNT_FLAG(MNT_DEFEXPORTED);
4777 MNT_FLAG(MNT_EXPORTANON);
4778 MNT_FLAG(MNT_EXKERB);
4779 MNT_FLAG(MNT_EXPUBLIC);
4780 MNT_FLAG(MNT_LOCAL);
4781 MNT_FLAG(MNT_QUOTA);
4782 MNT_FLAG(MNT_ROOTFS);
4783 MNT_FLAG(MNT_USER);
4784 MNT_FLAG(MNT_IGNORE);
4785 MNT_FLAG(MNT_UPDATE);
4786 MNT_FLAG(MNT_DELEXPORT);
4787 MNT_FLAG(MNT_RELOAD);
4788 MNT_FLAG(MNT_FORCE);
4789 MNT_FLAG(MNT_SNAPSHOT);
4790 MNT_FLAG(MNT_BYFSID);
4791 MNT_FLAG(MNT_NAMEDATTR);
4792 #undef MNT_FLAG
4793 if (mflags != 0) {
4794 if (buf[0] != '\0')
4795 strlcat(buf, ", ", sizeof(buf));
4796 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4797 "0x%016jx", mflags);
4798 }
4799 db_printf(" mnt_flag = %s\n", buf);
4800
4801 buf[0] = '\0';
4802 flags = mp->mnt_kern_flag;
4803 #define MNT_KERN_FLAG(flag) do { \
4804 if (flags & (flag)) { \
4805 if (buf[0] != '\0') \
4806 strlcat(buf, ", ", sizeof(buf)); \
4807 strlcat(buf, (#flag) + 5, sizeof(buf)); \
4808 flags &= ~(flag); \
4809 } \
4810 } while (0)
4811 MNT_KERN_FLAG(MNTK_UNMOUNTF);
4812 MNT_KERN_FLAG(MNTK_ASYNC);
4813 MNT_KERN_FLAG(MNTK_SOFTDEP);
4814 MNT_KERN_FLAG(MNTK_NOMSYNC);
4815 MNT_KERN_FLAG(MNTK_DRAINING);
4816 MNT_KERN_FLAG(MNTK_REFEXPIRE);
4817 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4818 MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4819 MNT_KERN_FLAG(MNTK_NO_IOPF);
4820 MNT_KERN_FLAG(MNTK_RECURSE);
4821 MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4822 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4823 MNT_KERN_FLAG(MNTK_USES_BCACHE);
4824 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4825 MNT_KERN_FLAG(MNTK_FPLOOKUP);
4826 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4827 MNT_KERN_FLAG(MNTK_NOASYNC);
4828 MNT_KERN_FLAG(MNTK_UNMOUNT);
4829 MNT_KERN_FLAG(MNTK_MWAIT);
4830 MNT_KERN_FLAG(MNTK_SUSPEND);
4831 MNT_KERN_FLAG(MNTK_SUSPEND2);
4832 MNT_KERN_FLAG(MNTK_SUSPENDED);
4833 MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4834 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4835 #undef MNT_KERN_FLAG
4836 if (flags != 0) {
4837 if (buf[0] != '\0')
4838 strlcat(buf, ", ", sizeof(buf));
4839 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4840 "0x%08x", flags);
4841 }
4842 db_printf(" mnt_kern_flag = %s\n", buf);
4843
4844 db_printf(" mnt_opt = ");
4845 opt = TAILQ_FIRST(mp->mnt_opt);
4846 if (opt != NULL) {
4847 db_printf("%s", opt->name);
4848 opt = TAILQ_NEXT(opt, link);
4849 while (opt != NULL) {
4850 db_printf(", %s", opt->name);
4851 opt = TAILQ_NEXT(opt, link);
4852 }
4853 }
4854 db_printf("\n");
4855
4856 sp = &mp->mnt_stat;
4857 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
4858 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4859 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4860 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4861 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4862 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4863 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4864 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4865 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4866 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4867 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4868 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4869
4870 db_printf(" mnt_cred = { uid=%u ruid=%u",
4871 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4872 if (jailed(mp->mnt_cred))
4873 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4874 db_printf(" }\n");
4875 db_printf(" mnt_ref = %d (with %d in the struct)\n",
4876 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4877 db_printf(" mnt_gen = %d\n", mp->mnt_gen);
4878 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4879 db_printf(" mnt_lazyvnodelistsize = %d\n",
4880 mp->mnt_lazyvnodelistsize);
4881 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n",
4882 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4883 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4884 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
4885 db_printf(" mnt_lockref = %d (with %d in the struct)\n",
4886 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4887 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4888 db_printf(" mnt_secondary_accwrites = %d\n",
4889 mp->mnt_secondary_accwrites);
4890 db_printf(" mnt_gjprovider = %s\n",
4891 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4892 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4893
4894 db_printf("\n\nList of active vnodes\n");
4895 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4896 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4897 vn_printf(vp, "vnode ");
4898 if (db_pager_quit)
4899 break;
4900 }
4901 }
4902 db_printf("\n\nList of inactive vnodes\n");
4903 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4904 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4905 vn_printf(vp, "vnode ");
4906 if (db_pager_quit)
4907 break;
4908 }
4909 }
4910 }
4911 #endif /* DDB */
4912
4913 /*
4914 * Fill in a struct xvfsconf based on a struct vfsconf.
4915 */
4916 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4917 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4918 {
4919 struct xvfsconf xvfsp;
4920
4921 bzero(&xvfsp, sizeof(xvfsp));
4922 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4923 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4924 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4925 xvfsp.vfc_flags = vfsp->vfc_flags;
4926 /*
4927 * These are unused in userland, we keep them
4928 * to not break binary compatibility.
4929 */
4930 xvfsp.vfc_vfsops = NULL;
4931 xvfsp.vfc_next = NULL;
4932 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4933 }
4934
4935 #ifdef COMPAT_FREEBSD32
4936 struct xvfsconf32 {
4937 uint32_t vfc_vfsops;
4938 char vfc_name[MFSNAMELEN];
4939 int32_t vfc_typenum;
4940 int32_t vfc_refcount;
4941 int32_t vfc_flags;
4942 uint32_t vfc_next;
4943 };
4944
4945 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4946 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4947 {
4948 struct xvfsconf32 xvfsp;
4949
4950 bzero(&xvfsp, sizeof(xvfsp));
4951 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4952 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4953 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4954 xvfsp.vfc_flags = vfsp->vfc_flags;
4955 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4956 }
4957 #endif
4958
4959 /*
4960 * Top level filesystem related information gathering.
4961 */
4962 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4963 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4964 {
4965 struct vfsconf *vfsp;
4966 int error;
4967
4968 error = 0;
4969 vfsconf_slock();
4970 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4971 #ifdef COMPAT_FREEBSD32
4972 if (req->flags & SCTL_MASK32)
4973 error = vfsconf2x32(req, vfsp);
4974 else
4975 #endif
4976 error = vfsconf2x(req, vfsp);
4977 if (error)
4978 break;
4979 }
4980 vfsconf_sunlock();
4981 return (error);
4982 }
4983
4984 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4985 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4986 "S,xvfsconf", "List of all configured filesystems");
4987
4988 #ifndef BURN_BRIDGES
4989 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4990
4991 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)4992 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4993 {
4994 int *name = (int *)arg1 - 1; /* XXX */
4995 u_int namelen = arg2 + 1; /* XXX */
4996 struct vfsconf *vfsp;
4997
4998 log(LOG_WARNING, "userland calling deprecated sysctl, "
4999 "please rebuild world\n");
5000
5001 #if 1 || defined(COMPAT_PRELITE2)
5002 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
5003 if (namelen == 1)
5004 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
5005 #endif
5006
5007 switch (name[1]) {
5008 case VFS_MAXTYPENUM:
5009 if (namelen != 2)
5010 return (ENOTDIR);
5011 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
5012 case VFS_CONF:
5013 if (namelen != 3)
5014 return (ENOTDIR); /* overloaded */
5015 vfsconf_slock();
5016 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5017 if (vfsp->vfc_typenum == name[2])
5018 break;
5019 }
5020 vfsconf_sunlock();
5021 if (vfsp == NULL)
5022 return (EOPNOTSUPP);
5023 #ifdef COMPAT_FREEBSD32
5024 if (req->flags & SCTL_MASK32)
5025 return (vfsconf2x32(req, vfsp));
5026 else
5027 #endif
5028 return (vfsconf2x(req, vfsp));
5029 }
5030 return (EOPNOTSUPP);
5031 }
5032
5033 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5034 CTLFLAG_MPSAFE, vfs_sysctl,
5035 "Generic filesystem");
5036
5037 #if 1 || defined(COMPAT_PRELITE2)
5038
5039 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5040 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5041 {
5042 int error;
5043 struct vfsconf *vfsp;
5044 struct ovfsconf ovfs;
5045
5046 vfsconf_slock();
5047 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5048 bzero(&ovfs, sizeof(ovfs));
5049 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
5050 strcpy(ovfs.vfc_name, vfsp->vfc_name);
5051 ovfs.vfc_index = vfsp->vfc_typenum;
5052 ovfs.vfc_refcount = vfsp->vfc_refcount;
5053 ovfs.vfc_flags = vfsp->vfc_flags;
5054 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5055 if (error != 0) {
5056 vfsconf_sunlock();
5057 return (error);
5058 }
5059 }
5060 vfsconf_sunlock();
5061 return (0);
5062 }
5063
5064 #endif /* 1 || COMPAT_PRELITE2 */
5065 #endif /* !BURN_BRIDGES */
5066
5067 static void
unmount_or_warn(struct mount * mp)5068 unmount_or_warn(struct mount *mp)
5069 {
5070 int error;
5071
5072 error = dounmount(mp, MNT_FORCE, curthread);
5073 if (error != 0) {
5074 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5075 if (error == EBUSY)
5076 printf("BUSY)\n");
5077 else
5078 printf("%d)\n", error);
5079 }
5080 }
5081
5082 /*
5083 * Unmount all filesystems. The list is traversed in reverse order
5084 * of mounting to avoid dependencies.
5085 */
5086 void
vfs_unmountall(void)5087 vfs_unmountall(void)
5088 {
5089 struct mount *mp, *tmp;
5090
5091 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5092
5093 /*
5094 * Since this only runs when rebooting, it is not interlocked.
5095 */
5096 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5097 vfs_ref(mp);
5098
5099 /*
5100 * Forcibly unmounting "/dev" before "/" would prevent clean
5101 * unmount of the latter.
5102 */
5103 if (mp == rootdevmp)
5104 continue;
5105
5106 unmount_or_warn(mp);
5107 }
5108
5109 if (rootdevmp != NULL)
5110 unmount_or_warn(rootdevmp);
5111 }
5112
5113 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5114 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5115 {
5116
5117 ASSERT_VI_LOCKED(vp, __func__);
5118 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5119 if ((vp->v_iflag & VI_OWEINACT) == 0) {
5120 vdropl(vp);
5121 return;
5122 }
5123 if (vn_lock(vp, lkflags) == 0) {
5124 VI_LOCK(vp);
5125 vinactive(vp);
5126 VOP_UNLOCK(vp);
5127 vdropl(vp);
5128 return;
5129 }
5130 vdefer_inactive_unlocked(vp);
5131 }
5132
5133 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5134 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5135 {
5136
5137 return (vp->v_iflag & VI_DEFINACT);
5138 }
5139
5140 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5141 vfs_periodic_inactive(struct mount *mp, int flags)
5142 {
5143 struct vnode *vp, *mvp;
5144 int lkflags;
5145
5146 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5147 if (flags != MNT_WAIT)
5148 lkflags |= LK_NOWAIT;
5149
5150 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5151 if ((vp->v_iflag & VI_DEFINACT) == 0) {
5152 VI_UNLOCK(vp);
5153 continue;
5154 }
5155 vp->v_iflag &= ~VI_DEFINACT;
5156 vfs_deferred_inactive(vp, lkflags);
5157 }
5158 }
5159
5160 static inline bool
vfs_want_msync(struct vnode * vp)5161 vfs_want_msync(struct vnode *vp)
5162 {
5163 struct vm_object *obj;
5164
5165 /*
5166 * This test may be performed without any locks held.
5167 * We rely on vm_object's type stability.
5168 */
5169 if (vp->v_vflag & VV_NOSYNC)
5170 return (false);
5171 obj = vp->v_object;
5172 return (obj != NULL && vm_object_mightbedirty(obj));
5173 }
5174
5175 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5176 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5177 {
5178
5179 if (vp->v_vflag & VV_NOSYNC)
5180 return (false);
5181 if (vp->v_iflag & VI_DEFINACT)
5182 return (true);
5183 return (vfs_want_msync(vp));
5184 }
5185
5186 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5187 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5188 {
5189 struct vnode *vp, *mvp;
5190 int lkflags;
5191 bool seen_defer;
5192
5193 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5194 if (flags != MNT_WAIT)
5195 lkflags |= LK_NOWAIT;
5196
5197 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5198 seen_defer = false;
5199 if (vp->v_iflag & VI_DEFINACT) {
5200 vp->v_iflag &= ~VI_DEFINACT;
5201 seen_defer = true;
5202 }
5203 if (!vfs_want_msync(vp)) {
5204 if (seen_defer)
5205 vfs_deferred_inactive(vp, lkflags);
5206 else
5207 VI_UNLOCK(vp);
5208 continue;
5209 }
5210 if (vget(vp, lkflags) == 0) {
5211 if ((vp->v_vflag & VV_NOSYNC) == 0) {
5212 if (flags == MNT_WAIT)
5213 vnode_pager_clean_sync(vp);
5214 else
5215 vnode_pager_clean_async(vp);
5216 }
5217 vput(vp);
5218 if (seen_defer)
5219 vdrop(vp);
5220 } else {
5221 if (seen_defer)
5222 vdefer_inactive_unlocked(vp);
5223 }
5224 }
5225 }
5226
5227 void
vfs_periodic(struct mount * mp,int flags)5228 vfs_periodic(struct mount *mp, int flags)
5229 {
5230
5231 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5232
5233 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5234 vfs_periodic_inactive(mp, flags);
5235 else
5236 vfs_periodic_msync_inactive(mp, flags);
5237 }
5238
5239 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5240 destroy_vpollinfo_free(struct vpollinfo *vi)
5241 {
5242
5243 knlist_destroy(&vi->vpi_selinfo.si_note);
5244 mtx_destroy(&vi->vpi_lock);
5245 free(vi, M_VNODEPOLL);
5246 }
5247
5248 static void
destroy_vpollinfo(struct vpollinfo * vi)5249 destroy_vpollinfo(struct vpollinfo *vi)
5250 {
5251 KASSERT(TAILQ_EMPTY(&vi->vpi_inotify),
5252 ("%s: pollinfo %p has lingering watches", __func__, vi));
5253 knlist_clear(&vi->vpi_selinfo.si_note, 1);
5254 seldrain(&vi->vpi_selinfo);
5255 destroy_vpollinfo_free(vi);
5256 }
5257
5258 /*
5259 * Initialize per-vnode helper structure to hold poll-related state.
5260 */
5261 void
v_addpollinfo(struct vnode * vp)5262 v_addpollinfo(struct vnode *vp)
5263 {
5264 struct vpollinfo *vi;
5265
5266 if (atomic_load_ptr(&vp->v_pollinfo) != NULL)
5267 return;
5268 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5269 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5270 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5271 vfs_knlunlock, vfs_knl_assert_lock);
5272 TAILQ_INIT(&vi->vpi_inotify);
5273 VI_LOCK(vp);
5274 if (vp->v_pollinfo != NULL) {
5275 VI_UNLOCK(vp);
5276 destroy_vpollinfo_free(vi);
5277 return;
5278 }
5279 vp->v_pollinfo = vi;
5280 VI_UNLOCK(vp);
5281 }
5282
5283 /*
5284 * Record a process's interest in events which might happen to
5285 * a vnode. Because poll uses the historic select-style interface
5286 * internally, this routine serves as both the ``check for any
5287 * pending events'' and the ``record my interest in future events''
5288 * functions. (These are done together, while the lock is held,
5289 * to avoid race conditions.)
5290 */
5291 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5292 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5293 {
5294
5295 v_addpollinfo(vp);
5296 mtx_lock(&vp->v_pollinfo->vpi_lock);
5297 if (vp->v_pollinfo->vpi_revents & events) {
5298 /*
5299 * This leaves events we are not interested
5300 * in available for the other process which
5301 * which presumably had requested them
5302 * (otherwise they would never have been
5303 * recorded).
5304 */
5305 events &= vp->v_pollinfo->vpi_revents;
5306 vp->v_pollinfo->vpi_revents &= ~events;
5307
5308 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5309 return (events);
5310 }
5311 vp->v_pollinfo->vpi_events |= events;
5312 selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5313 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5314 return (0);
5315 }
5316
5317 /*
5318 * Routine to create and manage a filesystem syncer vnode.
5319 */
5320 #define sync_close ((int (*)(struct vop_close_args *))nullop)
5321 static int sync_fsync(struct vop_fsync_args *);
5322 static int sync_inactive(struct vop_inactive_args *);
5323 static int sync_reclaim(struct vop_reclaim_args *);
5324
5325 static struct vop_vector sync_vnodeops = {
5326 .vop_bypass = VOP_EOPNOTSUPP,
5327 .vop_close = sync_close,
5328 .vop_fsync = sync_fsync,
5329 .vop_getwritemount = vop_stdgetwritemount,
5330 .vop_inactive = sync_inactive,
5331 .vop_need_inactive = vop_stdneed_inactive,
5332 .vop_reclaim = sync_reclaim,
5333 .vop_lock1 = vop_stdlock,
5334 .vop_unlock = vop_stdunlock,
5335 .vop_islocked = vop_stdislocked,
5336 .vop_fplookup_vexec = VOP_EAGAIN,
5337 .vop_fplookup_symlink = VOP_EAGAIN,
5338 };
5339 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5340
5341 /*
5342 * Create a new filesystem syncer vnode for the specified mount point.
5343 */
5344 void
vfs_allocate_syncvnode(struct mount * mp)5345 vfs_allocate_syncvnode(struct mount *mp)
5346 {
5347 struct vnode *vp;
5348 struct bufobj *bo;
5349 static long start, incr, next;
5350 int error;
5351
5352 /* Allocate a new vnode */
5353 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5354 if (error != 0)
5355 panic("vfs_allocate_syncvnode: getnewvnode() failed");
5356 vp->v_type = VNON;
5357 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5358 vp->v_vflag |= VV_FORCEINSMQ;
5359 error = insmntque1(vp, mp);
5360 if (error != 0)
5361 panic("vfs_allocate_syncvnode: insmntque() failed");
5362 vp->v_vflag &= ~VV_FORCEINSMQ;
5363 vn_set_state(vp, VSTATE_CONSTRUCTED);
5364 VOP_UNLOCK(vp);
5365 /*
5366 * Place the vnode onto the syncer worklist. We attempt to
5367 * scatter them about on the list so that they will go off
5368 * at evenly distributed times even if all the filesystems
5369 * are mounted at once.
5370 */
5371 next += incr;
5372 if (next == 0 || next > syncer_maxdelay) {
5373 start /= 2;
5374 incr /= 2;
5375 if (start == 0) {
5376 start = syncer_maxdelay / 2;
5377 incr = syncer_maxdelay;
5378 }
5379 next = start;
5380 }
5381 bo = &vp->v_bufobj;
5382 BO_LOCK(bo);
5383 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5384 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5385 mtx_lock(&sync_mtx);
5386 sync_vnode_count++;
5387 if (mp->mnt_syncer == NULL) {
5388 mp->mnt_syncer = vp;
5389 vp = NULL;
5390 }
5391 mtx_unlock(&sync_mtx);
5392 BO_UNLOCK(bo);
5393 if (vp != NULL) {
5394 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5395 vgone(vp);
5396 vput(vp);
5397 }
5398 }
5399
5400 void
vfs_deallocate_syncvnode(struct mount * mp)5401 vfs_deallocate_syncvnode(struct mount *mp)
5402 {
5403 struct vnode *vp;
5404
5405 mtx_lock(&sync_mtx);
5406 vp = mp->mnt_syncer;
5407 if (vp != NULL)
5408 mp->mnt_syncer = NULL;
5409 mtx_unlock(&sync_mtx);
5410 if (vp != NULL)
5411 vrele(vp);
5412 }
5413
5414 /*
5415 * Do a lazy sync of the filesystem.
5416 */
5417 static int
sync_fsync(struct vop_fsync_args * ap)5418 sync_fsync(struct vop_fsync_args *ap)
5419 {
5420 struct vnode *syncvp = ap->a_vp;
5421 struct mount *mp = syncvp->v_mount;
5422 int error, save;
5423 struct bufobj *bo;
5424
5425 /*
5426 * We only need to do something if this is a lazy evaluation.
5427 */
5428 if (ap->a_waitfor != MNT_LAZY)
5429 return (0);
5430
5431 /*
5432 * Move ourselves to the back of the sync list.
5433 */
5434 bo = &syncvp->v_bufobj;
5435 BO_LOCK(bo);
5436 vn_syncer_add_to_worklist(bo, syncdelay);
5437 BO_UNLOCK(bo);
5438
5439 /*
5440 * Walk the list of vnodes pushing all that are dirty and
5441 * not already on the sync list.
5442 */
5443 if (vfs_busy(mp, MBF_NOWAIT) != 0)
5444 return (0);
5445 VOP_UNLOCK(syncvp);
5446 save = curthread_pflags_set(TDP_SYNCIO);
5447 /*
5448 * The filesystem at hand may be idle with free vnodes stored in the
5449 * batch. Return them instead of letting them stay there indefinitely.
5450 */
5451 vfs_periodic(mp, MNT_NOWAIT);
5452 error = VFS_SYNC(mp, MNT_LAZY);
5453 curthread_pflags_restore(save);
5454 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5455 vfs_unbusy(mp);
5456 return (error);
5457 }
5458
5459 /*
5460 * The syncer vnode is no referenced.
5461 */
5462 static int
sync_inactive(struct vop_inactive_args * ap)5463 sync_inactive(struct vop_inactive_args *ap)
5464 {
5465
5466 vgone(ap->a_vp);
5467 return (0);
5468 }
5469
5470 /*
5471 * The syncer vnode is no longer needed and is being decommissioned.
5472 *
5473 * Modifications to the worklist must be protected by sync_mtx.
5474 */
5475 static int
sync_reclaim(struct vop_reclaim_args * ap)5476 sync_reclaim(struct vop_reclaim_args *ap)
5477 {
5478 struct vnode *vp = ap->a_vp;
5479 struct bufobj *bo;
5480
5481 bo = &vp->v_bufobj;
5482 BO_LOCK(bo);
5483 mtx_lock(&sync_mtx);
5484 if (vp->v_mount->mnt_syncer == vp)
5485 vp->v_mount->mnt_syncer = NULL;
5486 if (bo->bo_flag & BO_ONWORKLST) {
5487 LIST_REMOVE(bo, bo_synclist);
5488 syncer_worklist_len--;
5489 sync_vnode_count--;
5490 bo->bo_flag &= ~BO_ONWORKLST;
5491 }
5492 mtx_unlock(&sync_mtx);
5493 BO_UNLOCK(bo);
5494
5495 return (0);
5496 }
5497
5498 int
vn_need_pageq_flush(struct vnode * vp)5499 vn_need_pageq_flush(struct vnode *vp)
5500 {
5501 struct vm_object *obj;
5502
5503 obj = vp->v_object;
5504 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5505 vm_object_mightbedirty(obj));
5506 }
5507
5508 /*
5509 * Check if vnode represents a disk device
5510 */
5511 bool
vn_isdisk_error(struct vnode * vp,int * errp)5512 vn_isdisk_error(struct vnode *vp, int *errp)
5513 {
5514 int error;
5515
5516 if (vp->v_type != VCHR) {
5517 error = ENOTBLK;
5518 goto out;
5519 }
5520 error = 0;
5521 dev_lock();
5522 if (vp->v_rdev == NULL)
5523 error = ENXIO;
5524 else if (vp->v_rdev->si_devsw == NULL)
5525 error = ENXIO;
5526 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5527 error = ENOTBLK;
5528 dev_unlock();
5529 out:
5530 *errp = error;
5531 return (error == 0);
5532 }
5533
5534 bool
vn_isdisk(struct vnode * vp)5535 vn_isdisk(struct vnode *vp)
5536 {
5537 int error;
5538
5539 return (vn_isdisk_error(vp, &error));
5540 }
5541
5542 /*
5543 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5544 * the comment above cache_fplookup for details.
5545 */
5546 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5547 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5548 {
5549 int error;
5550
5551 VFS_SMR_ASSERT_ENTERED();
5552
5553 /* Check the owner. */
5554 if (cred->cr_uid == file_uid) {
5555 if (file_mode & S_IXUSR)
5556 return (0);
5557 goto out_error;
5558 }
5559
5560 /* Otherwise, check the groups (first match) */
5561 if (groupmember(file_gid, cred)) {
5562 if (file_mode & S_IXGRP)
5563 return (0);
5564 goto out_error;
5565 }
5566
5567 /* Otherwise, check everyone else. */
5568 if (file_mode & S_IXOTH)
5569 return (0);
5570 out_error:
5571 /*
5572 * Permission check failed, but it is possible denial will get overwritten
5573 * (e.g., when root is traversing through a 700 directory owned by someone
5574 * else).
5575 *
5576 * vaccess() calls priv_check_cred which in turn can descent into MAC
5577 * modules overriding this result. It's quite unclear what semantics
5578 * are allowed for them to operate, thus for safety we don't call them
5579 * from within the SMR section. This also means if any such modules
5580 * are present, we have to let the regular lookup decide.
5581 */
5582 error = priv_check_cred_vfs_lookup_nomac(cred);
5583 switch (error) {
5584 case 0:
5585 return (0);
5586 case EAGAIN:
5587 /*
5588 * MAC modules present.
5589 */
5590 return (EAGAIN);
5591 case EPERM:
5592 return (EACCES);
5593 default:
5594 return (error);
5595 }
5596 }
5597
5598 /*
5599 * Common filesystem object access control check routine. Accepts a
5600 * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5601 * Returns 0 on success, or an errno on failure.
5602 */
5603 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5604 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5605 accmode_t accmode, struct ucred *cred)
5606 {
5607 accmode_t dac_granted;
5608 accmode_t priv_granted;
5609
5610 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5611 ("invalid bit in accmode"));
5612 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5613 ("VAPPEND without VWRITE"));
5614
5615 /*
5616 * Look for a normal, non-privileged way to access the file/directory
5617 * as requested. If it exists, go with that.
5618 */
5619
5620 dac_granted = 0;
5621
5622 /* Check the owner. */
5623 if (cred->cr_uid == file_uid) {
5624 dac_granted |= VADMIN;
5625 if (file_mode & S_IXUSR)
5626 dac_granted |= VEXEC;
5627 if (file_mode & S_IRUSR)
5628 dac_granted |= VREAD;
5629 if (file_mode & S_IWUSR)
5630 dac_granted |= (VWRITE | VAPPEND);
5631
5632 if ((accmode & dac_granted) == accmode)
5633 return (0);
5634
5635 goto privcheck;
5636 }
5637
5638 /* Otherwise, check the groups (first match) */
5639 if (groupmember(file_gid, cred)) {
5640 if (file_mode & S_IXGRP)
5641 dac_granted |= VEXEC;
5642 if (file_mode & S_IRGRP)
5643 dac_granted |= VREAD;
5644 if (file_mode & S_IWGRP)
5645 dac_granted |= (VWRITE | VAPPEND);
5646
5647 if ((accmode & dac_granted) == accmode)
5648 return (0);
5649
5650 goto privcheck;
5651 }
5652
5653 /* Otherwise, check everyone else. */
5654 if (file_mode & S_IXOTH)
5655 dac_granted |= VEXEC;
5656 if (file_mode & S_IROTH)
5657 dac_granted |= VREAD;
5658 if (file_mode & S_IWOTH)
5659 dac_granted |= (VWRITE | VAPPEND);
5660 if ((accmode & dac_granted) == accmode)
5661 return (0);
5662
5663 privcheck:
5664 /*
5665 * Build a privilege mask to determine if the set of privileges
5666 * satisfies the requirements when combined with the granted mask
5667 * from above. For each privilege, if the privilege is required,
5668 * bitwise or the request type onto the priv_granted mask.
5669 */
5670 priv_granted = 0;
5671
5672 if (type == VDIR) {
5673 /*
5674 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5675 * requests, instead of PRIV_VFS_EXEC.
5676 */
5677 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5678 !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5679 priv_granted |= VEXEC;
5680 } else {
5681 /*
5682 * Ensure that at least one execute bit is on. Otherwise,
5683 * a privileged user will always succeed, and we don't want
5684 * this to happen unless the file really is executable.
5685 */
5686 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5687 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5688 !priv_check_cred(cred, PRIV_VFS_EXEC))
5689 priv_granted |= VEXEC;
5690 }
5691
5692 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5693 !priv_check_cred(cred, PRIV_VFS_READ))
5694 priv_granted |= VREAD;
5695
5696 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5697 !priv_check_cred(cred, PRIV_VFS_WRITE))
5698 priv_granted |= (VWRITE | VAPPEND);
5699
5700 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5701 !priv_check_cred(cred, PRIV_VFS_ADMIN))
5702 priv_granted |= VADMIN;
5703
5704 if ((accmode & (priv_granted | dac_granted)) == accmode) {
5705 return (0);
5706 }
5707
5708 return ((accmode & VADMIN) ? EPERM : EACCES);
5709 }
5710
5711 /*
5712 * Credential check based on process requesting service, and per-attribute
5713 * permissions.
5714 */
5715 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5716 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5717 struct thread *td, accmode_t accmode)
5718 {
5719
5720 /*
5721 * Kernel-invoked always succeeds.
5722 */
5723 if (cred == NOCRED)
5724 return (0);
5725
5726 /*
5727 * Do not allow privileged processes in jail to directly manipulate
5728 * system attributes.
5729 */
5730 switch (attrnamespace) {
5731 case EXTATTR_NAMESPACE_SYSTEM:
5732 /* Potentially should be: return (EPERM); */
5733 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5734 case EXTATTR_NAMESPACE_USER:
5735 return (VOP_ACCESS(vp, accmode, cred, td));
5736 default:
5737 return (EPERM);
5738 }
5739 }
5740
5741 #ifdef INVARIANTS
5742 void
assert_vi_locked(struct vnode * vp,const char * str)5743 assert_vi_locked(struct vnode *vp, const char *str)
5744 {
5745 VNASSERT(mtx_owned(VI_MTX(vp)), vp,
5746 ("%s: vnode interlock is not locked but should be", str));
5747 }
5748
5749 void
assert_vi_unlocked(struct vnode * vp,const char * str)5750 assert_vi_unlocked(struct vnode *vp, const char *str)
5751 {
5752 VNASSERT(!mtx_owned(VI_MTX(vp)), vp,
5753 ("%s: vnode interlock is locked but should not be", str));
5754 }
5755
5756 void
assert_vop_locked(struct vnode * vp,const char * str)5757 assert_vop_locked(struct vnode *vp, const char *str)
5758 {
5759 bool locked;
5760
5761 if (KERNEL_PANICKED() || vp == NULL)
5762 return;
5763
5764 #ifdef WITNESS
5765 locked = !((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5766 witness_is_owned(&vp->v_vnlock->lock_object) == -1);
5767 #else
5768 int state = VOP_ISLOCKED(vp);
5769 locked = state != 0 && state != LK_EXCLOTHER;
5770 #endif
5771 VNASSERT(locked, vp, ("%s: vnode is not locked but should be", str));
5772 }
5773
5774 void
assert_vop_unlocked(struct vnode * vp,const char * str)5775 assert_vop_unlocked(struct vnode *vp, const char *str)
5776 {
5777 bool locked;
5778
5779 if (KERNEL_PANICKED() || vp == NULL)
5780 return;
5781
5782 #ifdef WITNESS
5783 locked = (vp->v_irflag & VIRF_CROSSMP) == 0 &&
5784 witness_is_owned(&vp->v_vnlock->lock_object) == 1;
5785 #else
5786 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5787 #endif
5788 VNASSERT(!locked, vp, ("%s: vnode is locked but should not be", str));
5789 }
5790
5791 void
assert_vop_elocked(struct vnode * vp,const char * str)5792 assert_vop_elocked(struct vnode *vp, const char *str)
5793 {
5794 bool locked;
5795
5796 if (KERNEL_PANICKED() || vp == NULL)
5797 return;
5798
5799 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5800 VNASSERT(locked, vp,
5801 ("%s: vnode is not exclusive locked but should be", str));
5802 }
5803 #endif /* INVARIANTS */
5804
5805 void
vop_rename_fail(struct vop_rename_args * ap)5806 vop_rename_fail(struct vop_rename_args *ap)
5807 {
5808
5809 if (ap->a_tvp != NULL)
5810 vput(ap->a_tvp);
5811 if (ap->a_tdvp == ap->a_tvp)
5812 vrele(ap->a_tdvp);
5813 else
5814 vput(ap->a_tdvp);
5815 vrele(ap->a_fdvp);
5816 vrele(ap->a_fvp);
5817 }
5818
5819 void
vop_rename_pre(void * ap)5820 vop_rename_pre(void *ap)
5821 {
5822 struct vop_rename_args *a = ap;
5823
5824 #ifdef INVARIANTS
5825 struct mount *tmp;
5826
5827 if (a->a_tvp)
5828 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5829 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5830 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5831 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5832
5833 /* Check the source (from). */
5834 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5835 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5836 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5837 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5838 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5839
5840 /* Check the target. */
5841 if (a->a_tvp)
5842 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5843 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5844
5845 tmp = NULL;
5846 VOP_GETWRITEMOUNT(a->a_tdvp, &tmp);
5847 lockmgr_assert(&tmp->mnt_renamelock, KA_XLOCKED);
5848 vfs_rel(tmp);
5849 #endif
5850 /*
5851 * It may be tempting to add vn_seqc_write_begin/end calls here and
5852 * in vop_rename_post but that's not going to work out since some
5853 * filesystems relookup vnodes mid-rename. This is probably a bug.
5854 *
5855 * For now filesystems are expected to do the relevant calls after they
5856 * decide what vnodes to operate on.
5857 */
5858 if (a->a_tdvp != a->a_fdvp)
5859 vhold(a->a_fdvp);
5860 if (a->a_tvp != a->a_fvp)
5861 vhold(a->a_fvp);
5862 vhold(a->a_tdvp);
5863 if (a->a_tvp)
5864 vhold(a->a_tvp);
5865 }
5866
5867 #ifdef INVARIANTS
5868 void
vop_fplookup_vexec_debugpre(void * ap __unused)5869 vop_fplookup_vexec_debugpre(void *ap __unused)
5870 {
5871
5872 VFS_SMR_ASSERT_ENTERED();
5873 }
5874
5875 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5876 vop_fplookup_vexec_debugpost(void *ap, int rc)
5877 {
5878 struct vop_fplookup_vexec_args *a;
5879 struct vnode *vp;
5880
5881 a = ap;
5882 vp = a->a_vp;
5883
5884 VFS_SMR_ASSERT_ENTERED();
5885 if (rc == EOPNOTSUPP)
5886 VNPASS(VN_IS_DOOMED(vp), vp);
5887 }
5888
5889 void
vop_fplookup_symlink_debugpre(void * ap __unused)5890 vop_fplookup_symlink_debugpre(void *ap __unused)
5891 {
5892
5893 VFS_SMR_ASSERT_ENTERED();
5894 }
5895
5896 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5897 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5898 {
5899
5900 VFS_SMR_ASSERT_ENTERED();
5901 }
5902
5903 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5904 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5905 {
5906 struct mount *mp;
5907
5908 if (vp->v_type == VCHR)
5909 ;
5910 /*
5911 * The shared vs. exclusive locking policy for fsync()
5912 * is actually determined by vp's write mount as indicated
5913 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5914 * may not be the same as vp->v_mount. However, if the
5915 * underlying filesystem which really handles the fsync()
5916 * supports shared locking, the stacked filesystem must also
5917 * be prepared for its VOP_FSYNC() operation to be called
5918 * with only a shared lock. On the other hand, if the
5919 * stacked filesystem claims support for shared write
5920 * locking but the underlying filesystem does not, and the
5921 * caller incorrectly uses a shared lock, this condition
5922 * should still be caught when the stacked filesystem
5923 * invokes VOP_FSYNC() on the underlying filesystem.
5924 */
5925 else {
5926 mp = NULL;
5927 VOP_GETWRITEMOUNT(vp, &mp);
5928 if (vn_lktype_write(mp, vp) == LK_SHARED)
5929 ASSERT_VOP_LOCKED(vp, name);
5930 else
5931 ASSERT_VOP_ELOCKED(vp, name);
5932 if (mp != NULL)
5933 vfs_rel(mp);
5934 }
5935 }
5936
5937 void
vop_fsync_debugpre(void * a)5938 vop_fsync_debugpre(void *a)
5939 {
5940 struct vop_fsync_args *ap;
5941
5942 ap = a;
5943 vop_fsync_debugprepost(ap->a_vp, "fsync");
5944 }
5945
5946 void
vop_fsync_debugpost(void * a,int rc __unused)5947 vop_fsync_debugpost(void *a, int rc __unused)
5948 {
5949 struct vop_fsync_args *ap;
5950
5951 ap = a;
5952 vop_fsync_debugprepost(ap->a_vp, "fsync");
5953 }
5954
5955 void
vop_fdatasync_debugpre(void * a)5956 vop_fdatasync_debugpre(void *a)
5957 {
5958 struct vop_fdatasync_args *ap;
5959
5960 ap = a;
5961 vop_fsync_debugprepost(ap->a_vp, "fsync");
5962 }
5963
5964 void
vop_fdatasync_debugpost(void * a,int rc __unused)5965 vop_fdatasync_debugpost(void *a, int rc __unused)
5966 {
5967 struct vop_fdatasync_args *ap;
5968
5969 ap = a;
5970 vop_fsync_debugprepost(ap->a_vp, "fsync");
5971 }
5972
5973 void
vop_strategy_debugpre(void * ap)5974 vop_strategy_debugpre(void *ap)
5975 {
5976 struct vop_strategy_args *a;
5977 struct buf *bp;
5978
5979 a = ap;
5980 bp = a->a_bp;
5981
5982 /*
5983 * Cluster ops lock their component buffers but not the IO container.
5984 */
5985 if ((bp->b_flags & B_CLUSTER) != 0)
5986 return;
5987
5988 BUF_ASSERT_LOCKED(bp);
5989 }
5990
5991 void
vop_lock_debugpre(void * ap)5992 vop_lock_debugpre(void *ap)
5993 {
5994 struct vop_lock1_args *a = ap;
5995
5996 if ((a->a_flags & LK_INTERLOCK) == 0)
5997 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5998 else
5999 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6000 }
6001
6002 void
vop_lock_debugpost(void * ap,int rc)6003 vop_lock_debugpost(void *ap, int rc)
6004 {
6005 struct vop_lock1_args *a = ap;
6006
6007 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6008 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6009 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6010 }
6011
6012 void
vop_unlock_debugpre(void * ap)6013 vop_unlock_debugpre(void *ap)
6014 {
6015 struct vop_unlock_args *a = ap;
6016 struct vnode *vp = a->a_vp;
6017
6018 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6019 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6020 }
6021
6022 void
vop_need_inactive_debugpre(void * ap)6023 vop_need_inactive_debugpre(void *ap)
6024 {
6025 struct vop_need_inactive_args *a = ap;
6026
6027 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6028 }
6029
6030 void
vop_need_inactive_debugpost(void * ap,int rc)6031 vop_need_inactive_debugpost(void *ap, int rc)
6032 {
6033 struct vop_need_inactive_args *a = ap;
6034
6035 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6036 }
6037 #endif /* INVARIANTS */
6038
6039 void
vop_allocate_post(void * ap,int rc)6040 vop_allocate_post(void *ap, int rc)
6041 {
6042 struct vop_allocate_args *a;
6043
6044 a = ap;
6045 if (rc == 0)
6046 INOTIFY(a->a_vp, IN_MODIFY);
6047 }
6048
6049 void
vop_copy_file_range_post(void * ap,int rc)6050 vop_copy_file_range_post(void *ap, int rc)
6051 {
6052 struct vop_copy_file_range_args *a;
6053
6054 a = ap;
6055 if (rc == 0) {
6056 INOTIFY(a->a_invp, IN_ACCESS);
6057 INOTIFY(a->a_outvp, IN_MODIFY);
6058 }
6059 }
6060
6061 void
vop_create_pre(void * ap)6062 vop_create_pre(void *ap)
6063 {
6064 struct vop_create_args *a;
6065 struct vnode *dvp;
6066
6067 a = ap;
6068 dvp = a->a_dvp;
6069 vn_seqc_write_begin(dvp);
6070 }
6071
6072 void
vop_create_post(void * ap,int rc)6073 vop_create_post(void *ap, int rc)
6074 {
6075 struct vop_create_args *a;
6076 struct vnode *dvp;
6077
6078 a = ap;
6079 dvp = a->a_dvp;
6080 vn_seqc_write_end(dvp);
6081 if (!rc) {
6082 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6083 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6084 }
6085 }
6086
6087 void
vop_deallocate_post(void * ap,int rc)6088 vop_deallocate_post(void *ap, int rc)
6089 {
6090 struct vop_deallocate_args *a;
6091
6092 a = ap;
6093 if (rc == 0)
6094 INOTIFY(a->a_vp, IN_MODIFY);
6095 }
6096
6097 void
vop_whiteout_pre(void * ap)6098 vop_whiteout_pre(void *ap)
6099 {
6100 struct vop_whiteout_args *a;
6101 struct vnode *dvp;
6102
6103 a = ap;
6104 dvp = a->a_dvp;
6105 vn_seqc_write_begin(dvp);
6106 }
6107
6108 void
vop_whiteout_post(void * ap,int rc)6109 vop_whiteout_post(void *ap, int rc)
6110 {
6111 struct vop_whiteout_args *a;
6112 struct vnode *dvp;
6113
6114 a = ap;
6115 dvp = a->a_dvp;
6116 vn_seqc_write_end(dvp);
6117 }
6118
6119 void
vop_deleteextattr_pre(void * ap)6120 vop_deleteextattr_pre(void *ap)
6121 {
6122 struct vop_deleteextattr_args *a;
6123 struct vnode *vp;
6124
6125 a = ap;
6126 vp = a->a_vp;
6127 vn_seqc_write_begin(vp);
6128 }
6129
6130 void
vop_deleteextattr_post(void * ap,int rc)6131 vop_deleteextattr_post(void *ap, int rc)
6132 {
6133 struct vop_deleteextattr_args *a;
6134 struct vnode *vp;
6135
6136 a = ap;
6137 vp = a->a_vp;
6138 vn_seqc_write_end(vp);
6139 if (!rc) {
6140 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6141 INOTIFY(vp, IN_ATTRIB);
6142 }
6143 }
6144
6145 void
vop_link_pre(void * ap)6146 vop_link_pre(void *ap)
6147 {
6148 struct vop_link_args *a;
6149 struct vnode *vp, *tdvp;
6150
6151 a = ap;
6152 vp = a->a_vp;
6153 tdvp = a->a_tdvp;
6154 vn_seqc_write_begin(vp);
6155 vn_seqc_write_begin(tdvp);
6156 }
6157
6158 void
vop_link_post(void * ap,int rc)6159 vop_link_post(void *ap, int rc)
6160 {
6161 struct vop_link_args *a;
6162 struct vnode *vp, *tdvp;
6163
6164 a = ap;
6165 vp = a->a_vp;
6166 tdvp = a->a_tdvp;
6167 vn_seqc_write_end(vp);
6168 vn_seqc_write_end(tdvp);
6169 if (!rc) {
6170 VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6171 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6172 INOTIFY_NAME(vp, tdvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6173 INOTIFY_NAME(vp, tdvp, a->a_cnp, IN_CREATE);
6174 }
6175 }
6176
6177 void
vop_mkdir_pre(void * ap)6178 vop_mkdir_pre(void *ap)
6179 {
6180 struct vop_mkdir_args *a;
6181 struct vnode *dvp;
6182
6183 a = ap;
6184 dvp = a->a_dvp;
6185 vn_seqc_write_begin(dvp);
6186 }
6187
6188 void
vop_mkdir_post(void * ap,int rc)6189 vop_mkdir_post(void *ap, int rc)
6190 {
6191 struct vop_mkdir_args *a;
6192 struct vnode *dvp;
6193
6194 a = ap;
6195 dvp = a->a_dvp;
6196 vn_seqc_write_end(dvp);
6197 if (!rc) {
6198 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6199 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6200 }
6201 }
6202
6203 #ifdef INVARIANTS
6204 void
vop_mkdir_debugpost(void * ap,int rc)6205 vop_mkdir_debugpost(void *ap, int rc)
6206 {
6207 struct vop_mkdir_args *a;
6208
6209 a = ap;
6210 if (!rc)
6211 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6212 }
6213 #endif
6214
6215 void
vop_mknod_pre(void * ap)6216 vop_mknod_pre(void *ap)
6217 {
6218 struct vop_mknod_args *a;
6219 struct vnode *dvp;
6220
6221 a = ap;
6222 dvp = a->a_dvp;
6223 vn_seqc_write_begin(dvp);
6224 }
6225
6226 void
vop_mknod_post(void * ap,int rc)6227 vop_mknod_post(void *ap, int rc)
6228 {
6229 struct vop_mknod_args *a;
6230 struct vnode *dvp;
6231
6232 a = ap;
6233 dvp = a->a_dvp;
6234 vn_seqc_write_end(dvp);
6235 if (!rc) {
6236 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6237 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6238 }
6239 }
6240
6241 void
vop_reclaim_post(void * ap,int rc)6242 vop_reclaim_post(void *ap, int rc)
6243 {
6244 struct vop_reclaim_args *a;
6245 struct vnode *vp;
6246
6247 a = ap;
6248 vp = a->a_vp;
6249 ASSERT_VOP_IN_SEQC(vp);
6250 if (!rc) {
6251 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6252 INOTIFY_REVOKE(vp);
6253 }
6254 }
6255
6256 void
vop_remove_pre(void * ap)6257 vop_remove_pre(void *ap)
6258 {
6259 struct vop_remove_args *a;
6260 struct vnode *dvp, *vp;
6261
6262 a = ap;
6263 dvp = a->a_dvp;
6264 vp = a->a_vp;
6265 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6266 vn_seqc_write_begin(dvp);
6267 vn_seqc_write_begin(vp);
6268 }
6269
6270 void
vop_remove_post(void * ap,int rc)6271 vop_remove_post(void *ap, int rc)
6272 {
6273 struct vop_remove_args *a;
6274 struct vnode *dvp, *vp;
6275
6276 a = ap;
6277 dvp = a->a_dvp;
6278 vp = a->a_vp;
6279 vn_seqc_write_end(dvp);
6280 vn_seqc_write_end(vp);
6281 if (!rc) {
6282 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6283 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6284 INOTIFY_NAME(vp, dvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6285 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6286 }
6287 }
6288
6289 void
vop_rename_post(void * ap,int rc)6290 vop_rename_post(void *ap, int rc)
6291 {
6292 struct vop_rename_args *a = ap;
6293 long hint;
6294
6295 if (!rc) {
6296 hint = NOTE_WRITE;
6297 if (a->a_fdvp == a->a_tdvp) {
6298 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6299 hint |= NOTE_LINK;
6300 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6301 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6302 } else {
6303 hint |= NOTE_EXTEND;
6304 if (a->a_fvp->v_type == VDIR)
6305 hint |= NOTE_LINK;
6306 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6307
6308 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6309 a->a_tvp->v_type == VDIR)
6310 hint &= ~NOTE_LINK;
6311 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6312 }
6313
6314 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6315 if (a->a_tvp)
6316 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6317 INOTIFY_MOVE(a->a_fvp, a->a_fdvp, a->a_fcnp, a->a_tvp,
6318 a->a_tdvp, a->a_tcnp);
6319 }
6320 if (a->a_tdvp != a->a_fdvp)
6321 vdrop(a->a_fdvp);
6322 if (a->a_tvp != a->a_fvp)
6323 vdrop(a->a_fvp);
6324 vdrop(a->a_tdvp);
6325 if (a->a_tvp)
6326 vdrop(a->a_tvp);
6327 }
6328
6329 void
vop_rmdir_pre(void * ap)6330 vop_rmdir_pre(void *ap)
6331 {
6332 struct vop_rmdir_args *a;
6333 struct vnode *dvp, *vp;
6334
6335 a = ap;
6336 dvp = a->a_dvp;
6337 vp = a->a_vp;
6338 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6339 vn_seqc_write_begin(dvp);
6340 vn_seqc_write_begin(vp);
6341 }
6342
6343 void
vop_rmdir_post(void * ap,int rc)6344 vop_rmdir_post(void *ap, int rc)
6345 {
6346 struct vop_rmdir_args *a;
6347 struct vnode *dvp, *vp;
6348
6349 a = ap;
6350 dvp = a->a_dvp;
6351 vp = a->a_vp;
6352 vn_seqc_write_end(dvp);
6353 vn_seqc_write_end(vp);
6354 if (!rc) {
6355 vp->v_vflag |= VV_UNLINKED;
6356 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6357 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6358 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6359 }
6360 }
6361
6362 void
vop_setattr_pre(void * ap)6363 vop_setattr_pre(void *ap)
6364 {
6365 struct vop_setattr_args *a;
6366 struct vnode *vp;
6367
6368 a = ap;
6369 vp = a->a_vp;
6370 vn_seqc_write_begin(vp);
6371 }
6372
6373 void
vop_setattr_post(void * ap,int rc)6374 vop_setattr_post(void *ap, int rc)
6375 {
6376 struct vop_setattr_args *a;
6377 struct vnode *vp;
6378
6379 a = ap;
6380 vp = a->a_vp;
6381 vn_seqc_write_end(vp);
6382 if (!rc) {
6383 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6384 INOTIFY(vp, IN_ATTRIB);
6385 }
6386 }
6387
6388 void
vop_setacl_pre(void * ap)6389 vop_setacl_pre(void *ap)
6390 {
6391 struct vop_setacl_args *a;
6392 struct vnode *vp;
6393
6394 a = ap;
6395 vp = a->a_vp;
6396 vn_seqc_write_begin(vp);
6397 }
6398
6399 void
vop_setacl_post(void * ap,int rc __unused)6400 vop_setacl_post(void *ap, int rc __unused)
6401 {
6402 struct vop_setacl_args *a;
6403 struct vnode *vp;
6404
6405 a = ap;
6406 vp = a->a_vp;
6407 vn_seqc_write_end(vp);
6408 }
6409
6410 void
vop_setextattr_pre(void * ap)6411 vop_setextattr_pre(void *ap)
6412 {
6413 struct vop_setextattr_args *a;
6414 struct vnode *vp;
6415
6416 a = ap;
6417 vp = a->a_vp;
6418 vn_seqc_write_begin(vp);
6419 }
6420
6421 void
vop_setextattr_post(void * ap,int rc)6422 vop_setextattr_post(void *ap, int rc)
6423 {
6424 struct vop_setextattr_args *a;
6425 struct vnode *vp;
6426
6427 a = ap;
6428 vp = a->a_vp;
6429 vn_seqc_write_end(vp);
6430 if (!rc) {
6431 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6432 INOTIFY(vp, IN_ATTRIB);
6433 }
6434 }
6435
6436 void
vop_symlink_pre(void * ap)6437 vop_symlink_pre(void *ap)
6438 {
6439 struct vop_symlink_args *a;
6440 struct vnode *dvp;
6441
6442 a = ap;
6443 dvp = a->a_dvp;
6444 vn_seqc_write_begin(dvp);
6445 }
6446
6447 void
vop_symlink_post(void * ap,int rc)6448 vop_symlink_post(void *ap, int rc)
6449 {
6450 struct vop_symlink_args *a;
6451 struct vnode *dvp;
6452
6453 a = ap;
6454 dvp = a->a_dvp;
6455 vn_seqc_write_end(dvp);
6456 if (!rc) {
6457 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6458 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6459 }
6460 }
6461
6462 void
vop_open_post(void * ap,int rc)6463 vop_open_post(void *ap, int rc)
6464 {
6465 struct vop_open_args *a = ap;
6466
6467 if (!rc) {
6468 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6469 INOTIFY(a->a_vp, IN_OPEN);
6470 }
6471 }
6472
6473 void
vop_close_post(void * ap,int rc)6474 vop_close_post(void *ap, int rc)
6475 {
6476 struct vop_close_args *a = ap;
6477
6478 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6479 !VN_IS_DOOMED(a->a_vp))) {
6480 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6481 NOTE_CLOSE_WRITE : NOTE_CLOSE);
6482 INOTIFY(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6483 IN_CLOSE_WRITE : IN_CLOSE_NOWRITE);
6484 }
6485 }
6486
6487 void
vop_read_post(void * ap,int rc)6488 vop_read_post(void *ap, int rc)
6489 {
6490 struct vop_read_args *a = ap;
6491
6492 if (!rc) {
6493 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6494 INOTIFY(a->a_vp, IN_ACCESS);
6495 }
6496 }
6497
6498 void
vop_read_pgcache_post(void * ap,int rc)6499 vop_read_pgcache_post(void *ap, int rc)
6500 {
6501 struct vop_read_pgcache_args *a = ap;
6502
6503 if (!rc)
6504 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6505 }
6506
6507 static struct knlist fs_knlist;
6508
6509 static void
vfs_event_init(void * arg)6510 vfs_event_init(void *arg)
6511 {
6512 knlist_init_mtx(&fs_knlist, NULL);
6513 }
6514 /* XXX - correct order? */
6515 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6516
6517 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6518 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6519 {
6520
6521 KNOTE_UNLOCKED(&fs_knlist, event);
6522 }
6523
6524 static int filt_fsattach(struct knote *kn);
6525 static void filt_fsdetach(struct knote *kn);
6526 static int filt_fsevent(struct knote *kn, long hint);
6527
6528 const struct filterops fs_filtops = {
6529 .f_isfd = 0,
6530 .f_attach = filt_fsattach,
6531 .f_detach = filt_fsdetach,
6532 .f_event = filt_fsevent,
6533 };
6534
6535 static int
filt_fsattach(struct knote * kn)6536 filt_fsattach(struct knote *kn)
6537 {
6538
6539 kn->kn_flags |= EV_CLEAR;
6540 knlist_add(&fs_knlist, kn, 0);
6541 return (0);
6542 }
6543
6544 static void
filt_fsdetach(struct knote * kn)6545 filt_fsdetach(struct knote *kn)
6546 {
6547
6548 knlist_remove(&fs_knlist, kn, 0);
6549 }
6550
6551 static int
filt_fsevent(struct knote * kn,long hint)6552 filt_fsevent(struct knote *kn, long hint)
6553 {
6554
6555 kn->kn_fflags |= kn->kn_sfflags & hint;
6556
6557 return (kn->kn_fflags != 0);
6558 }
6559
6560 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6561 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6562 {
6563 struct vfsidctl vc;
6564 int error;
6565 struct mount *mp;
6566
6567 if (req->newptr == NULL)
6568 return (EINVAL);
6569 error = SYSCTL_IN(req, &vc, sizeof(vc));
6570 if (error)
6571 return (error);
6572 if (vc.vc_vers != VFS_CTL_VERS1)
6573 return (EINVAL);
6574 mp = vfs_getvfs(&vc.vc_fsid);
6575 if (mp == NULL)
6576 return (ENOENT);
6577 /* ensure that a specific sysctl goes to the right filesystem. */
6578 if (strcmp(vc.vc_fstypename, "*") != 0 &&
6579 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6580 vfs_rel(mp);
6581 return (EINVAL);
6582 }
6583 VCTLTOREQ(&vc, req);
6584 error = VFS_SYSCTL(mp, vc.vc_op, req);
6585 vfs_rel(mp);
6586 return (error);
6587 }
6588
6589 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6590 NULL, 0, sysctl_vfs_ctl, "",
6591 "Sysctl by fsid");
6592
6593 /*
6594 * Function to initialize a va_filerev field sensibly.
6595 * XXX: Wouldn't a random number make a lot more sense ??
6596 */
6597 u_quad_t
init_va_filerev(void)6598 init_va_filerev(void)
6599 {
6600 struct bintime bt;
6601
6602 getbinuptime(&bt);
6603 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6604 }
6605
6606 static int filt_vfsread(struct knote *kn, long hint);
6607 static int filt_vfswrite(struct knote *kn, long hint);
6608 static int filt_vfsvnode(struct knote *kn, long hint);
6609 static void filt_vfsdetach(struct knote *kn);
6610 static int filt_vfsdump(struct proc *p, struct knote *kn,
6611 struct kinfo_knote *kin);
6612
6613 static const struct filterops vfsread_filtops = {
6614 .f_isfd = 1,
6615 .f_detach = filt_vfsdetach,
6616 .f_event = filt_vfsread,
6617 .f_userdump = filt_vfsdump,
6618 };
6619 static const struct filterops vfswrite_filtops = {
6620 .f_isfd = 1,
6621 .f_detach = filt_vfsdetach,
6622 .f_event = filt_vfswrite,
6623 .f_userdump = filt_vfsdump,
6624 };
6625 static const struct filterops vfsvnode_filtops = {
6626 .f_isfd = 1,
6627 .f_detach = filt_vfsdetach,
6628 .f_event = filt_vfsvnode,
6629 .f_userdump = filt_vfsdump,
6630 };
6631
6632 static void
vfs_knllock(void * arg)6633 vfs_knllock(void *arg)
6634 {
6635 struct vnode *vp = arg;
6636
6637 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6638 }
6639
6640 static void
vfs_knlunlock(void * arg)6641 vfs_knlunlock(void *arg)
6642 {
6643 struct vnode *vp = arg;
6644
6645 VOP_UNLOCK(vp);
6646 }
6647
6648 static void
vfs_knl_assert_lock(void * arg,int what)6649 vfs_knl_assert_lock(void *arg, int what)
6650 {
6651 #ifdef INVARIANTS
6652 struct vnode *vp = arg;
6653
6654 if (what == LA_LOCKED)
6655 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6656 else
6657 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6658 #endif
6659 }
6660
6661 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6662 vfs_kqfilter(struct vop_kqfilter_args *ap)
6663 {
6664 struct vnode *vp = ap->a_vp;
6665 struct knote *kn = ap->a_kn;
6666 struct knlist *knl;
6667
6668 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6669 kn->kn_filter != EVFILT_WRITE),
6670 ("READ/WRITE filter on a FIFO leaked through"));
6671 switch (kn->kn_filter) {
6672 case EVFILT_READ:
6673 kn->kn_fop = &vfsread_filtops;
6674 break;
6675 case EVFILT_WRITE:
6676 kn->kn_fop = &vfswrite_filtops;
6677 break;
6678 case EVFILT_VNODE:
6679 kn->kn_fop = &vfsvnode_filtops;
6680 break;
6681 default:
6682 return (EINVAL);
6683 }
6684
6685 kn->kn_hook = (caddr_t)vp;
6686
6687 v_addpollinfo(vp);
6688 if (vp->v_pollinfo == NULL)
6689 return (ENOMEM);
6690 knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6691 vhold(vp);
6692 knlist_add(knl, kn, 0);
6693
6694 return (0);
6695 }
6696
6697 /*
6698 * Detach knote from vnode
6699 */
6700 static void
filt_vfsdetach(struct knote * kn)6701 filt_vfsdetach(struct knote *kn)
6702 {
6703 struct vnode *vp = (struct vnode *)kn->kn_hook;
6704
6705 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6706 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6707 vdrop(vp);
6708 }
6709
6710 /*ARGSUSED*/
6711 static int
filt_vfsread(struct knote * kn,long hint)6712 filt_vfsread(struct knote *kn, long hint)
6713 {
6714 struct vnode *vp = (struct vnode *)kn->kn_hook;
6715 off_t size;
6716 int res;
6717
6718 /*
6719 * filesystem is gone, so set the EOF flag and schedule
6720 * the knote for deletion.
6721 */
6722 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6723 VI_LOCK(vp);
6724 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6725 VI_UNLOCK(vp);
6726 return (1);
6727 }
6728
6729 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6730 return (0);
6731
6732 VI_LOCK(vp);
6733 kn->kn_data = size - kn->kn_fp->f_offset;
6734 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6735 VI_UNLOCK(vp);
6736 return (res);
6737 }
6738
6739 /*ARGSUSED*/
6740 static int
filt_vfswrite(struct knote * kn,long hint)6741 filt_vfswrite(struct knote *kn, long hint)
6742 {
6743 struct vnode *vp = (struct vnode *)kn->kn_hook;
6744
6745 VI_LOCK(vp);
6746
6747 /*
6748 * filesystem is gone, so set the EOF flag and schedule
6749 * the knote for deletion.
6750 */
6751 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6752 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6753
6754 kn->kn_data = 0;
6755 VI_UNLOCK(vp);
6756 return (1);
6757 }
6758
6759 static int
filt_vfsvnode(struct knote * kn,long hint)6760 filt_vfsvnode(struct knote *kn, long hint)
6761 {
6762 struct vnode *vp = (struct vnode *)kn->kn_hook;
6763 int res;
6764
6765 VI_LOCK(vp);
6766 if (kn->kn_sfflags & hint)
6767 kn->kn_fflags |= hint;
6768 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6769 kn->kn_flags |= EV_EOF;
6770 VI_UNLOCK(vp);
6771 return (1);
6772 }
6773 res = (kn->kn_fflags != 0);
6774 VI_UNLOCK(vp);
6775 return (res);
6776 }
6777
6778 static int
filt_vfsdump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)6779 filt_vfsdump(struct proc *p, struct knote *kn, struct kinfo_knote *kin)
6780 {
6781 struct vattr va;
6782 struct vnode *vp;
6783 char *fullpath, *freepath;
6784 int error;
6785
6786 kin->knt_extdata = KNOTE_EXTDATA_VNODE;
6787
6788 vp = kn->kn_fp->f_vnode;
6789 kin->knt_vnode.knt_vnode_type = vntype_to_kinfo(vp->v_type);
6790
6791 va.va_fsid = VNOVAL;
6792 vn_lock(vp, LK_SHARED | LK_RETRY);
6793 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
6794 VOP_UNLOCK(vp);
6795 if (error != 0)
6796 return (error);
6797 kin->knt_vnode.knt_vnode_fsid = va.va_fsid;
6798 kin->knt_vnode.knt_vnode_fileid = va.va_fileid;
6799
6800 freepath = NULL;
6801 fullpath = "-";
6802 error = vn_fullpath(vp, &fullpath, &freepath);
6803 if (error == 0) {
6804 strlcpy(kin->knt_vnode.knt_vnode_fullpath, fullpath,
6805 sizeof(kin->knt_vnode.knt_vnode_fullpath));
6806 }
6807 if (freepath != NULL)
6808 free(freepath, M_TEMP);
6809
6810 return (0);
6811 }
6812
6813 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6814 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6815 {
6816 int error;
6817
6818 if (dp->d_reclen > ap->a_uio->uio_resid)
6819 return (ENAMETOOLONG);
6820 error = uiomove(dp, dp->d_reclen, ap->a_uio);
6821 if (error) {
6822 if (ap->a_ncookies != NULL) {
6823 if (ap->a_cookies != NULL)
6824 free(ap->a_cookies, M_TEMP);
6825 ap->a_cookies = NULL;
6826 *ap->a_ncookies = 0;
6827 }
6828 return (error);
6829 }
6830 if (ap->a_ncookies == NULL)
6831 return (0);
6832
6833 KASSERT(ap->a_cookies,
6834 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6835
6836 *ap->a_cookies = realloc(*ap->a_cookies,
6837 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6838 (*ap->a_cookies)[*ap->a_ncookies] = off;
6839 *ap->a_ncookies += 1;
6840 return (0);
6841 }
6842
6843 /*
6844 * The purpose of this routine is to remove granularity from accmode_t,
6845 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6846 * VADMIN and VAPPEND.
6847 *
6848 * If it returns 0, the caller is supposed to continue with the usual
6849 * access checks using 'accmode' as modified by this routine. If it
6850 * returns nonzero value, the caller is supposed to return that value
6851 * as errno.
6852 *
6853 * Note that after this routine runs, accmode may be zero.
6854 */
6855 int
vfs_unixify_accmode(accmode_t * accmode)6856 vfs_unixify_accmode(accmode_t *accmode)
6857 {
6858 /*
6859 * There is no way to specify explicit "deny" rule using
6860 * file mode or POSIX.1e ACLs.
6861 */
6862 if (*accmode & VEXPLICIT_DENY) {
6863 *accmode = 0;
6864 return (0);
6865 }
6866
6867 /*
6868 * None of these can be translated into usual access bits.
6869 * Also, the common case for NFSv4 ACLs is to not contain
6870 * either of these bits. Caller should check for VWRITE
6871 * on the containing directory instead.
6872 */
6873 if (*accmode & (VDELETE_CHILD | VDELETE))
6874 return (EPERM);
6875
6876 if (*accmode & VADMIN_PERMS) {
6877 *accmode &= ~VADMIN_PERMS;
6878 *accmode |= VADMIN;
6879 }
6880
6881 /*
6882 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6883 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6884 */
6885 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6886
6887 return (0);
6888 }
6889
6890 /*
6891 * Clear out a doomed vnode (if any) and replace it with a new one as long
6892 * as the fs is not being unmounted. Return the root vnode to the caller.
6893 */
6894 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6895 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6896 {
6897 struct vnode *vp;
6898 int error;
6899
6900 restart:
6901 if (mp->mnt_rootvnode != NULL) {
6902 MNT_ILOCK(mp);
6903 vp = mp->mnt_rootvnode;
6904 if (vp != NULL) {
6905 if (!VN_IS_DOOMED(vp)) {
6906 vrefact(vp);
6907 MNT_IUNLOCK(mp);
6908 error = vn_lock(vp, flags);
6909 if (error == 0) {
6910 *vpp = vp;
6911 return (0);
6912 }
6913 vrele(vp);
6914 goto restart;
6915 }
6916 /*
6917 * Clear the old one.
6918 */
6919 mp->mnt_rootvnode = NULL;
6920 }
6921 MNT_IUNLOCK(mp);
6922 if (vp != NULL) {
6923 vfs_op_barrier_wait(mp);
6924 vrele(vp);
6925 }
6926 }
6927 error = VFS_CACHEDROOT(mp, flags, vpp);
6928 if (error != 0)
6929 return (error);
6930 if (mp->mnt_vfs_ops == 0) {
6931 MNT_ILOCK(mp);
6932 if (mp->mnt_vfs_ops != 0) {
6933 MNT_IUNLOCK(mp);
6934 return (0);
6935 }
6936 if (mp->mnt_rootvnode == NULL) {
6937 vrefact(*vpp);
6938 mp->mnt_rootvnode = *vpp;
6939 } else {
6940 if (mp->mnt_rootvnode != *vpp) {
6941 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6942 panic("%s: mismatch between vnode returned "
6943 " by VFS_CACHEDROOT and the one cached "
6944 " (%p != %p)",
6945 __func__, *vpp, mp->mnt_rootvnode);
6946 }
6947 }
6948 }
6949 MNT_IUNLOCK(mp);
6950 }
6951 return (0);
6952 }
6953
6954 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6955 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6956 {
6957 struct mount_pcpu *mpcpu;
6958 struct vnode *vp;
6959 int error;
6960
6961 if (!vfs_op_thread_enter(mp, mpcpu))
6962 return (vfs_cache_root_fallback(mp, flags, vpp));
6963 vp = atomic_load_ptr(&mp->mnt_rootvnode);
6964 if (vp == NULL || VN_IS_DOOMED(vp)) {
6965 vfs_op_thread_exit(mp, mpcpu);
6966 return (vfs_cache_root_fallback(mp, flags, vpp));
6967 }
6968 vrefact(vp);
6969 vfs_op_thread_exit(mp, mpcpu);
6970 error = vn_lock(vp, flags);
6971 if (error != 0) {
6972 vrele(vp);
6973 return (vfs_cache_root_fallback(mp, flags, vpp));
6974 }
6975 *vpp = vp;
6976 return (0);
6977 }
6978
6979 struct vnode *
vfs_cache_root_clear(struct mount * mp)6980 vfs_cache_root_clear(struct mount *mp)
6981 {
6982 struct vnode *vp;
6983
6984 /*
6985 * ops > 0 guarantees there is nobody who can see this vnode
6986 */
6987 MPASS(mp->mnt_vfs_ops > 0);
6988 vp = mp->mnt_rootvnode;
6989 if (vp != NULL)
6990 vn_seqc_write_begin(vp);
6991 mp->mnt_rootvnode = NULL;
6992 return (vp);
6993 }
6994
6995 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)6996 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6997 {
6998
6999 MPASS(mp->mnt_vfs_ops > 0);
7000 vrefact(vp);
7001 mp->mnt_rootvnode = vp;
7002 }
7003
7004 /*
7005 * These are helper functions for filesystems to traverse all
7006 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
7007 *
7008 * This interface replaces MNT_VNODE_FOREACH.
7009 */
7010
7011 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)7012 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
7013 {
7014 struct vnode *vp;
7015
7016 maybe_yield();
7017 MNT_ILOCK(mp);
7018 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7019 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
7020 vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
7021 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7022 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7023 continue;
7024 VI_LOCK(vp);
7025 if (VN_IS_DOOMED(vp)) {
7026 VI_UNLOCK(vp);
7027 continue;
7028 }
7029 break;
7030 }
7031 if (vp == NULL) {
7032 __mnt_vnode_markerfree_all(mvp, mp);
7033 /* MNT_IUNLOCK(mp); -- done in above function */
7034 mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
7035 return (NULL);
7036 }
7037 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7038 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7039 MNT_IUNLOCK(mp);
7040 return (vp);
7041 }
7042
7043 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)7044 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
7045 {
7046 struct vnode *vp;
7047
7048 *mvp = vn_alloc_marker(mp);
7049 MNT_ILOCK(mp);
7050 MNT_REF(mp);
7051
7052 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
7053 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7054 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7055 continue;
7056 VI_LOCK(vp);
7057 if (VN_IS_DOOMED(vp)) {
7058 VI_UNLOCK(vp);
7059 continue;
7060 }
7061 break;
7062 }
7063 if (vp == NULL) {
7064 MNT_REL(mp);
7065 MNT_IUNLOCK(mp);
7066 vn_free_marker(*mvp);
7067 *mvp = NULL;
7068 return (NULL);
7069 }
7070 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7071 MNT_IUNLOCK(mp);
7072 return (vp);
7073 }
7074
7075 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)7076 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
7077 {
7078
7079 if (*mvp == NULL) {
7080 MNT_IUNLOCK(mp);
7081 return;
7082 }
7083
7084 mtx_assert(MNT_MTX(mp), MA_OWNED);
7085
7086 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7087 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7088 MNT_REL(mp);
7089 MNT_IUNLOCK(mp);
7090 vn_free_marker(*mvp);
7091 *mvp = NULL;
7092 }
7093
7094 /*
7095 * These are helper functions for filesystems to traverse their
7096 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7097 */
7098 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7099 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7100 {
7101
7102 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7103
7104 MNT_ILOCK(mp);
7105 MNT_REL(mp);
7106 MNT_IUNLOCK(mp);
7107 vn_free_marker(*mvp);
7108 *mvp = NULL;
7109 }
7110
7111 /*
7112 * Relock the mp mount vnode list lock with the vp vnode interlock in the
7113 * conventional lock order during mnt_vnode_next_lazy iteration.
7114 *
7115 * On entry, the mount vnode list lock is held and the vnode interlock is not.
7116 * The list lock is dropped and reacquired. On success, both locks are held.
7117 * On failure, the mount vnode list lock is held but the vnode interlock is
7118 * not, and the procedure may have yielded.
7119 */
7120 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7121 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7122 struct vnode *vp)
7123 {
7124
7125 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7126 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7127 ("%s: bad marker", __func__));
7128 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7129 ("%s: inappropriate vnode", __func__));
7130 ASSERT_VI_UNLOCKED(vp, __func__);
7131 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7132
7133 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7134 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7135
7136 /*
7137 * Note we may be racing against vdrop which transitioned the hold
7138 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7139 * if we are the only user after we get the interlock we will just
7140 * vdrop.
7141 */
7142 vhold(vp);
7143 mtx_unlock(&mp->mnt_listmtx);
7144 VI_LOCK(vp);
7145 if (VN_IS_DOOMED(vp)) {
7146 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7147 goto out_lost;
7148 }
7149 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7150 /*
7151 * There is nothing to do if we are the last user.
7152 */
7153 if (!refcount_release_if_not_last(&vp->v_holdcnt))
7154 goto out_lost;
7155 mtx_lock(&mp->mnt_listmtx);
7156 return (true);
7157 out_lost:
7158 vdropl(vp);
7159 maybe_yield();
7160 mtx_lock(&mp->mnt_listmtx);
7161 return (false);
7162 }
7163
7164 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7165 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7166 void *cbarg)
7167 {
7168 struct vnode *vp;
7169
7170 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7171 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7172 restart:
7173 vp = TAILQ_NEXT(*mvp, v_lazylist);
7174 while (vp != NULL) {
7175 if (vp->v_type == VMARKER) {
7176 vp = TAILQ_NEXT(vp, v_lazylist);
7177 continue;
7178 }
7179 /*
7180 * See if we want to process the vnode. Note we may encounter a
7181 * long string of vnodes we don't care about and hog the list
7182 * as a result. Check for it and requeue the marker.
7183 */
7184 VNPASS(!VN_IS_DOOMED(vp), vp);
7185 if (!cb(vp, cbarg)) {
7186 if (!should_yield()) {
7187 vp = TAILQ_NEXT(vp, v_lazylist);
7188 continue;
7189 }
7190 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7191 v_lazylist);
7192 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7193 v_lazylist);
7194 mtx_unlock(&mp->mnt_listmtx);
7195 kern_yield(PRI_USER);
7196 mtx_lock(&mp->mnt_listmtx);
7197 goto restart;
7198 }
7199 /*
7200 * Try-lock because this is the wrong lock order.
7201 */
7202 if (!VI_TRYLOCK(vp) &&
7203 !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7204 goto restart;
7205 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7206 KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7207 ("alien vnode on the lazy list %p %p", vp, mp));
7208 VNPASS(vp->v_mount == mp, vp);
7209 VNPASS(!VN_IS_DOOMED(vp), vp);
7210 break;
7211 }
7212 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7213
7214 /* Check if we are done */
7215 if (vp == NULL) {
7216 mtx_unlock(&mp->mnt_listmtx);
7217 mnt_vnode_markerfree_lazy(mvp, mp);
7218 return (NULL);
7219 }
7220 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7221 mtx_unlock(&mp->mnt_listmtx);
7222 ASSERT_VI_LOCKED(vp, "lazy iter");
7223 return (vp);
7224 }
7225
7226 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7227 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7228 void *cbarg)
7229 {
7230
7231 maybe_yield();
7232 mtx_lock(&mp->mnt_listmtx);
7233 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7234 }
7235
7236 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7237 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7238 void *cbarg)
7239 {
7240 struct vnode *vp;
7241
7242 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7243 return (NULL);
7244
7245 *mvp = vn_alloc_marker(mp);
7246 MNT_ILOCK(mp);
7247 MNT_REF(mp);
7248 MNT_IUNLOCK(mp);
7249
7250 mtx_lock(&mp->mnt_listmtx);
7251 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7252 if (vp == NULL) {
7253 mtx_unlock(&mp->mnt_listmtx);
7254 mnt_vnode_markerfree_lazy(mvp, mp);
7255 return (NULL);
7256 }
7257 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7258 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7259 }
7260
7261 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7262 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7263 {
7264
7265 if (*mvp == NULL)
7266 return;
7267
7268 mtx_lock(&mp->mnt_listmtx);
7269 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7270 mtx_unlock(&mp->mnt_listmtx);
7271 mnt_vnode_markerfree_lazy(mvp, mp);
7272 }
7273
7274 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7275 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7276 {
7277
7278 if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7279 cnp->cn_flags &= ~NOEXECCHECK;
7280 return (0);
7281 }
7282
7283 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7284 }
7285
7286 /*
7287 * Do not use this variant unless you have means other than the hold count
7288 * to prevent the vnode from getting freed.
7289 */
7290 void
vn_seqc_write_begin_locked(struct vnode * vp)7291 vn_seqc_write_begin_locked(struct vnode *vp)
7292 {
7293
7294 ASSERT_VI_LOCKED(vp, __func__);
7295 VNPASS(vp->v_holdcnt > 0, vp);
7296 VNPASS(vp->v_seqc_users >= 0, vp);
7297 vp->v_seqc_users++;
7298 if (vp->v_seqc_users == 1)
7299 seqc_sleepable_write_begin(&vp->v_seqc);
7300 }
7301
7302 void
vn_seqc_write_begin(struct vnode * vp)7303 vn_seqc_write_begin(struct vnode *vp)
7304 {
7305
7306 VI_LOCK(vp);
7307 vn_seqc_write_begin_locked(vp);
7308 VI_UNLOCK(vp);
7309 }
7310
7311 void
vn_seqc_write_end_locked(struct vnode * vp)7312 vn_seqc_write_end_locked(struct vnode *vp)
7313 {
7314
7315 ASSERT_VI_LOCKED(vp, __func__);
7316 VNPASS(vp->v_seqc_users > 0, vp);
7317 vp->v_seqc_users--;
7318 if (vp->v_seqc_users == 0)
7319 seqc_sleepable_write_end(&vp->v_seqc);
7320 }
7321
7322 void
vn_seqc_write_end(struct vnode * vp)7323 vn_seqc_write_end(struct vnode *vp)
7324 {
7325
7326 VI_LOCK(vp);
7327 vn_seqc_write_end_locked(vp);
7328 VI_UNLOCK(vp);
7329 }
7330
7331 /*
7332 * Special case handling for allocating and freeing vnodes.
7333 *
7334 * The counter remains unchanged on free so that a doomed vnode will
7335 * keep testing as in modify as long as it is accessible with SMR.
7336 */
7337 static void
vn_seqc_init(struct vnode * vp)7338 vn_seqc_init(struct vnode *vp)
7339 {
7340
7341 vp->v_seqc = 0;
7342 vp->v_seqc_users = 0;
7343 }
7344
7345 static void
vn_seqc_write_end_free(struct vnode * vp)7346 vn_seqc_write_end_free(struct vnode *vp)
7347 {
7348
7349 VNPASS(seqc_in_modify(vp->v_seqc), vp);
7350 VNPASS(vp->v_seqc_users == 1, vp);
7351 }
7352
7353 void
vn_irflag_set_locked(struct vnode * vp,short toset)7354 vn_irflag_set_locked(struct vnode *vp, short toset)
7355 {
7356 short flags;
7357
7358 ASSERT_VI_LOCKED(vp, __func__);
7359 flags = vn_irflag_read(vp);
7360 VNASSERT((flags & toset) == 0, vp,
7361 ("%s: some of the passed flags already set (have %d, passed %d)\n",
7362 __func__, flags, toset));
7363 atomic_store_short(&vp->v_irflag, flags | toset);
7364 }
7365
7366 void
vn_irflag_set(struct vnode * vp,short toset)7367 vn_irflag_set(struct vnode *vp, short toset)
7368 {
7369
7370 VI_LOCK(vp);
7371 vn_irflag_set_locked(vp, toset);
7372 VI_UNLOCK(vp);
7373 }
7374
7375 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7376 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7377 {
7378 short flags;
7379
7380 ASSERT_VI_LOCKED(vp, __func__);
7381 flags = vn_irflag_read(vp);
7382 atomic_store_short(&vp->v_irflag, flags | toset);
7383 }
7384
7385 void
vn_irflag_set_cond(struct vnode * vp,short toset)7386 vn_irflag_set_cond(struct vnode *vp, short toset)
7387 {
7388
7389 VI_LOCK(vp);
7390 vn_irflag_set_cond_locked(vp, toset);
7391 VI_UNLOCK(vp);
7392 }
7393
7394 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7395 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7396 {
7397 short flags;
7398
7399 ASSERT_VI_LOCKED(vp, __func__);
7400 flags = vn_irflag_read(vp);
7401 VNASSERT((flags & tounset) == tounset, vp,
7402 ("%s: some of the passed flags not set (have %d, passed %d)\n",
7403 __func__, flags, tounset));
7404 atomic_store_short(&vp->v_irflag, flags & ~tounset);
7405 }
7406
7407 void
vn_irflag_unset(struct vnode * vp,short tounset)7408 vn_irflag_unset(struct vnode *vp, short tounset)
7409 {
7410
7411 VI_LOCK(vp);
7412 vn_irflag_unset_locked(vp, tounset);
7413 VI_UNLOCK(vp);
7414 }
7415
7416 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7417 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7418 {
7419 struct vattr vattr;
7420 int error;
7421
7422 ASSERT_VOP_LOCKED(vp, __func__);
7423 error = VOP_GETATTR(vp, &vattr, cred);
7424 if (__predict_true(error == 0)) {
7425 if (vattr.va_size <= OFF_MAX)
7426 *size = vattr.va_size;
7427 else
7428 error = EFBIG;
7429 }
7430 return (error);
7431 }
7432
7433 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7434 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7435 {
7436 int error;
7437
7438 VOP_LOCK(vp, LK_SHARED);
7439 error = vn_getsize_locked(vp, size, cred);
7440 VOP_UNLOCK(vp);
7441 return (error);
7442 }
7443
7444 #ifdef INVARIANTS
7445 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7446 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7447 {
7448
7449 switch (vp->v_state) {
7450 case VSTATE_UNINITIALIZED:
7451 switch (state) {
7452 case VSTATE_CONSTRUCTED:
7453 case VSTATE_DESTROYING:
7454 return;
7455 default:
7456 break;
7457 }
7458 break;
7459 case VSTATE_CONSTRUCTED:
7460 ASSERT_VOP_ELOCKED(vp, __func__);
7461 switch (state) {
7462 case VSTATE_DESTROYING:
7463 return;
7464 default:
7465 break;
7466 }
7467 break;
7468 case VSTATE_DESTROYING:
7469 ASSERT_VOP_ELOCKED(vp, __func__);
7470 switch (state) {
7471 case VSTATE_DEAD:
7472 return;
7473 default:
7474 break;
7475 }
7476 break;
7477 case VSTATE_DEAD:
7478 switch (state) {
7479 case VSTATE_UNINITIALIZED:
7480 return;
7481 default:
7482 break;
7483 }
7484 break;
7485 }
7486
7487 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7488 panic("invalid state transition %d -> %d\n", vp->v_state, state);
7489 }
7490 #endif
7491