xref: /freebsd/sys/kern/vfs_mount.c (revision e3aa18ad71782a73d3dd9dd3d526bbd2b607ca16)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2004 Poul-Henning Kamp
5  * Copyright (c) 1999 Michael Smith
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/smp.h>
45 #include <sys/devctl.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/libkern.h>
52 #include <sys/limits.h>
53 #include <sys/malloc.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/filedesc.h>
60 #include <sys/reboot.h>
61 #include <sys/sbuf.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysproto.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/taskqueue.h>
68 #include <sys/vnode.h>
69 #include <vm/uma.h>
70 
71 #include <geom/geom.h>
72 
73 #include <machine/stdarg.h>
74 
75 #include <security/audit/audit.h>
76 #include <security/mac/mac_framework.h>
77 
78 #define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
79 
80 static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
81 		    uint64_t fsflags, struct vfsoptlist **optlist);
82 static void	free_mntarg(struct mntarg *ma);
83 
84 static int	usermount = 0;
85 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
86     "Unprivileged users may mount and unmount file systems");
87 
88 static bool	default_autoro = false;
89 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
90     "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
91 
92 static bool	recursive_forced_unmount = false;
93 SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
94     &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
95     " when a file system is forcibly unmounted");
96 
97 static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
98     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
99 
100 static unsigned int	deferred_unmount_retry_limit = 10;
101 SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
102     &deferred_unmount_retry_limit, 0,
103     "Maximum number of retries for deferred unmount failure");
104 
105 static int	deferred_unmount_retry_delay_hz;
106 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
107     &deferred_unmount_retry_delay_hz, 0,
108     "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
109 
110 static int	deferred_unmount_total_retries = 0;
111 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
112     &deferred_unmount_total_retries, 0,
113     "Total number of retried deferred unmounts");
114 
115 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
116 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
117 static uma_zone_t mount_zone;
118 
119 /* List of mounted filesystems. */
120 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
121 
122 /* For any iteration/modification of mountlist */
123 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
124 
125 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
126 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
127 
128 static void vfs_deferred_unmount(void *arg, int pending);
129 static struct timeout_task deferred_unmount_task;
130 static struct mtx deferred_unmount_lock;
131 MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
132     MTX_DEF);
133 static STAILQ_HEAD(, mount) deferred_unmount_list =
134     STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
135 TASKQUEUE_DEFINE_THREAD(deferred_unmount);
136 
137 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
138 
139 /*
140  * Global opts, taken by all filesystems
141  */
142 static const char *global_opts[] = {
143 	"errmsg",
144 	"fstype",
145 	"fspath",
146 	"ro",
147 	"rw",
148 	"nosuid",
149 	"noexec",
150 	NULL
151 };
152 
153 static int
154 mount_init(void *mem, int size, int flags)
155 {
156 	struct mount *mp;
157 
158 	mp = (struct mount *)mem;
159 	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
160 	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
161 	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
162 	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
163 	mp->mnt_ref = 0;
164 	mp->mnt_vfs_ops = 1;
165 	mp->mnt_rootvnode = NULL;
166 	return (0);
167 }
168 
169 static void
170 mount_fini(void *mem, int size)
171 {
172 	struct mount *mp;
173 
174 	mp = (struct mount *)mem;
175 	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
176 	lockdestroy(&mp->mnt_explock);
177 	mtx_destroy(&mp->mnt_listmtx);
178 	mtx_destroy(&mp->mnt_mtx);
179 }
180 
181 static void
182 vfs_mount_init(void *dummy __unused)
183 {
184 	TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
185 	    0, vfs_deferred_unmount, NULL);
186 	deferred_unmount_retry_delay_hz = hz;
187 	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
188 	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
189 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
190 }
191 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
192 
193 /*
194  * ---------------------------------------------------------------------
195  * Functions for building and sanitizing the mount options
196  */
197 
198 /* Remove one mount option. */
199 static void
200 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
201 {
202 
203 	TAILQ_REMOVE(opts, opt, link);
204 	free(opt->name, M_MOUNT);
205 	if (opt->value != NULL)
206 		free(opt->value, M_MOUNT);
207 	free(opt, M_MOUNT);
208 }
209 
210 /* Release all resources related to the mount options. */
211 void
212 vfs_freeopts(struct vfsoptlist *opts)
213 {
214 	struct vfsopt *opt;
215 
216 	while (!TAILQ_EMPTY(opts)) {
217 		opt = TAILQ_FIRST(opts);
218 		vfs_freeopt(opts, opt);
219 	}
220 	free(opts, M_MOUNT);
221 }
222 
223 void
224 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
225 {
226 	struct vfsopt *opt, *temp;
227 
228 	if (opts == NULL)
229 		return;
230 	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
231 		if (strcmp(opt->name, name) == 0)
232 			vfs_freeopt(opts, opt);
233 	}
234 }
235 
236 static int
237 vfs_isopt_ro(const char *opt)
238 {
239 
240 	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
241 	    strcmp(opt, "norw") == 0)
242 		return (1);
243 	return (0);
244 }
245 
246 static int
247 vfs_isopt_rw(const char *opt)
248 {
249 
250 	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
251 		return (1);
252 	return (0);
253 }
254 
255 /*
256  * Check if options are equal (with or without the "no" prefix).
257  */
258 static int
259 vfs_equalopts(const char *opt1, const char *opt2)
260 {
261 	char *p;
262 
263 	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
264 	if (strcmp(opt1, opt2) == 0)
265 		return (1);
266 	/* "noopt" vs. "opt" */
267 	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
268 		return (1);
269 	/* "opt" vs. "noopt" */
270 	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
271 		return (1);
272 	while ((p = strchr(opt1, '.')) != NULL &&
273 	    !strncmp(opt1, opt2, ++p - opt1)) {
274 		opt2 += p - opt1;
275 		opt1 = p;
276 		/* "foo.noopt" vs. "foo.opt" */
277 		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
278 			return (1);
279 		/* "foo.opt" vs. "foo.noopt" */
280 		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
281 			return (1);
282 	}
283 	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
284 	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
285 	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
286 		return (1);
287 	return (0);
288 }
289 
290 /*
291  * If a mount option is specified several times,
292  * (with or without the "no" prefix) only keep
293  * the last occurrence of it.
294  */
295 static void
296 vfs_sanitizeopts(struct vfsoptlist *opts)
297 {
298 	struct vfsopt *opt, *opt2, *tmp;
299 
300 	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
301 		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
302 		while (opt2 != NULL) {
303 			if (vfs_equalopts(opt->name, opt2->name)) {
304 				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
305 				vfs_freeopt(opts, opt2);
306 				opt2 = tmp;
307 			} else {
308 				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
309 			}
310 		}
311 	}
312 }
313 
314 /*
315  * Build a linked list of mount options from a struct uio.
316  */
317 int
318 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
319 {
320 	struct vfsoptlist *opts;
321 	struct vfsopt *opt;
322 	size_t memused, namelen, optlen;
323 	unsigned int i, iovcnt;
324 	int error;
325 
326 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
327 	TAILQ_INIT(opts);
328 	memused = 0;
329 	iovcnt = auio->uio_iovcnt;
330 	for (i = 0; i < iovcnt; i += 2) {
331 		namelen = auio->uio_iov[i].iov_len;
332 		optlen = auio->uio_iov[i + 1].iov_len;
333 		memused += sizeof(struct vfsopt) + optlen + namelen;
334 		/*
335 		 * Avoid consuming too much memory, and attempts to overflow
336 		 * memused.
337 		 */
338 		if (memused > VFS_MOUNTARG_SIZE_MAX ||
339 		    optlen > VFS_MOUNTARG_SIZE_MAX ||
340 		    namelen > VFS_MOUNTARG_SIZE_MAX) {
341 			error = EINVAL;
342 			goto bad;
343 		}
344 
345 		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
346 		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
347 		opt->value = NULL;
348 		opt->len = 0;
349 		opt->pos = i / 2;
350 		opt->seen = 0;
351 
352 		/*
353 		 * Do this early, so jumps to "bad" will free the current
354 		 * option.
355 		 */
356 		TAILQ_INSERT_TAIL(opts, opt, link);
357 
358 		if (auio->uio_segflg == UIO_SYSSPACE) {
359 			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
360 		} else {
361 			error = copyin(auio->uio_iov[i].iov_base, opt->name,
362 			    namelen);
363 			if (error)
364 				goto bad;
365 		}
366 		/* Ensure names are null-terminated strings. */
367 		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
368 			error = EINVAL;
369 			goto bad;
370 		}
371 		if (optlen != 0) {
372 			opt->len = optlen;
373 			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
374 			if (auio->uio_segflg == UIO_SYSSPACE) {
375 				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
376 				    optlen);
377 			} else {
378 				error = copyin(auio->uio_iov[i + 1].iov_base,
379 				    opt->value, optlen);
380 				if (error)
381 					goto bad;
382 			}
383 		}
384 	}
385 	vfs_sanitizeopts(opts);
386 	*options = opts;
387 	return (0);
388 bad:
389 	vfs_freeopts(opts);
390 	return (error);
391 }
392 
393 /*
394  * Merge the old mount options with the new ones passed
395  * in the MNT_UPDATE case.
396  *
397  * XXX: This function will keep a "nofoo" option in the new
398  * options.  E.g, if the option's canonical name is "foo",
399  * "nofoo" ends up in the mount point's active options.
400  */
401 static void
402 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
403 {
404 	struct vfsopt *opt, *new;
405 
406 	TAILQ_FOREACH(opt, oldopts, link) {
407 		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
408 		new->name = strdup(opt->name, M_MOUNT);
409 		if (opt->len != 0) {
410 			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
411 			bcopy(opt->value, new->value, opt->len);
412 		} else
413 			new->value = NULL;
414 		new->len = opt->len;
415 		new->seen = opt->seen;
416 		TAILQ_INSERT_HEAD(toopts, new, link);
417 	}
418 	vfs_sanitizeopts(toopts);
419 }
420 
421 /*
422  * Mount a filesystem.
423  */
424 #ifndef _SYS_SYSPROTO_H_
425 struct nmount_args {
426 	struct iovec *iovp;
427 	unsigned int iovcnt;
428 	int flags;
429 };
430 #endif
431 int
432 sys_nmount(struct thread *td, struct nmount_args *uap)
433 {
434 	struct uio *auio;
435 	int error;
436 	u_int iovcnt;
437 	uint64_t flags;
438 
439 	/*
440 	 * Mount flags are now 64-bits. On 32-bit archtectures only
441 	 * 32-bits are passed in, but from here on everything handles
442 	 * 64-bit flags correctly.
443 	 */
444 	flags = uap->flags;
445 
446 	AUDIT_ARG_FFLAGS(flags);
447 	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
448 	    uap->iovp, uap->iovcnt, flags);
449 
450 	/*
451 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
452 	 * userspace to set this flag, but we must filter it out if we want
453 	 * MNT_UPDATE on the root file system to work.
454 	 * MNT_ROOTFS should only be set by the kernel when mounting its
455 	 * root file system.
456 	 */
457 	flags &= ~MNT_ROOTFS;
458 
459 	iovcnt = uap->iovcnt;
460 	/*
461 	 * Check that we have an even number of iovec's
462 	 * and that we have at least two options.
463 	 */
464 	if ((iovcnt & 1) || (iovcnt < 4)) {
465 		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
466 		    uap->iovcnt);
467 		return (EINVAL);
468 	}
469 
470 	error = copyinuio(uap->iovp, iovcnt, &auio);
471 	if (error) {
472 		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
473 		    __func__, error);
474 		return (error);
475 	}
476 	error = vfs_donmount(td, flags, auio);
477 
478 	free(auio, M_IOV);
479 	return (error);
480 }
481 
482 /*
483  * ---------------------------------------------------------------------
484  * Various utility functions
485  */
486 
487 /*
488  * Get a reference on a mount point from a vnode.
489  *
490  * The vnode is allowed to be passed unlocked and race against dooming. Note in
491  * such case there are no guarantees the referenced mount point will still be
492  * associated with it after the function returns.
493  */
494 struct mount *
495 vfs_ref_from_vp(struct vnode *vp)
496 {
497 	struct mount *mp;
498 	struct mount_pcpu *mpcpu;
499 
500 	mp = atomic_load_ptr(&vp->v_mount);
501 	if (__predict_false(mp == NULL)) {
502 		return (mp);
503 	}
504 	if (vfs_op_thread_enter(mp, mpcpu)) {
505 		if (__predict_true(mp == vp->v_mount)) {
506 			vfs_mp_count_add_pcpu(mpcpu, ref, 1);
507 			vfs_op_thread_exit(mp, mpcpu);
508 		} else {
509 			vfs_op_thread_exit(mp, mpcpu);
510 			mp = NULL;
511 		}
512 	} else {
513 		MNT_ILOCK(mp);
514 		if (mp == vp->v_mount) {
515 			MNT_REF(mp);
516 			MNT_IUNLOCK(mp);
517 		} else {
518 			MNT_IUNLOCK(mp);
519 			mp = NULL;
520 		}
521 	}
522 	return (mp);
523 }
524 
525 void
526 vfs_ref(struct mount *mp)
527 {
528 	struct mount_pcpu *mpcpu;
529 
530 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
531 	if (vfs_op_thread_enter(mp, mpcpu)) {
532 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
533 		vfs_op_thread_exit(mp, mpcpu);
534 		return;
535 	}
536 
537 	MNT_ILOCK(mp);
538 	MNT_REF(mp);
539 	MNT_IUNLOCK(mp);
540 }
541 
542 /*
543  * Register ump as an upper mount of the mount associated with
544  * vnode vp.  This registration will be tracked through
545  * mount_upper_node upper, which should be allocated by the
546  * caller and stored in per-mount data associated with mp.
547  *
548  * If successful, this function will return the mount associated
549  * with vp, and will ensure that it cannot be unmounted until
550  * ump has been unregistered as one of its upper mounts.
551  *
552  * Upon failure this function will return NULL.
553  */
554 struct mount *
555 vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
556     struct mount_upper_node *upper)
557 {
558 	struct mount *mp;
559 
560 	mp = atomic_load_ptr(&vp->v_mount);
561 	if (mp == NULL)
562 		return (NULL);
563 	MNT_ILOCK(mp);
564 	if (mp != vp->v_mount ||
565 	    ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
566 		MNT_IUNLOCK(mp);
567 		return (NULL);
568 	}
569 	KASSERT(ump != mp, ("upper and lower mounts are identical"));
570 	upper->mp = ump;
571 	MNT_REF(mp);
572 	TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
573 	MNT_IUNLOCK(mp);
574 	return (mp);
575 }
576 
577 /*
578  * Register upper mount ump to receive vnode unlink/reclaim
579  * notifications from lower mount mp. This registration will
580  * be tracked through mount_upper_node upper, which should be
581  * allocated by the caller and stored in per-mount data
582  * associated with mp.
583  *
584  * ump must already be registered as an upper mount of mp
585  * through a call to vfs_register_upper_from_vp().
586  */
587 void
588 vfs_register_for_notification(struct mount *mp, struct mount *ump,
589     struct mount_upper_node *upper)
590 {
591 	upper->mp = ump;
592 	MNT_ILOCK(mp);
593 	TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
594 	MNT_IUNLOCK(mp);
595 }
596 
597 static void
598 vfs_drain_upper_locked(struct mount *mp)
599 {
600 	mtx_assert(MNT_MTX(mp), MA_OWNED);
601 	while (mp->mnt_upper_pending != 0) {
602 		mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
603 		msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
604 	}
605 }
606 
607 /*
608  * Undo a previous call to vfs_register_for_notification().
609  * The mount represented by upper must be currently registered
610  * as an upper mount for mp.
611  */
612 void
613 vfs_unregister_for_notification(struct mount *mp,
614     struct mount_upper_node *upper)
615 {
616 	MNT_ILOCK(mp);
617 	vfs_drain_upper_locked(mp);
618 	TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
619 	MNT_IUNLOCK(mp);
620 }
621 
622 /*
623  * Undo a previous call to vfs_register_upper_from_vp().
624  * This must be done before mp can be unmounted.
625  */
626 void
627 vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
628 {
629 	MNT_ILOCK(mp);
630 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
631 	    ("registered upper with pending unmount"));
632 	vfs_drain_upper_locked(mp);
633 	TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
634 	if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
635 	    TAILQ_EMPTY(&mp->mnt_uppers)) {
636 		mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
637 		wakeup(&mp->mnt_taskqueue_link);
638 	}
639 	MNT_REL(mp);
640 	MNT_IUNLOCK(mp);
641 }
642 
643 void
644 vfs_rel(struct mount *mp)
645 {
646 	struct mount_pcpu *mpcpu;
647 
648 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
649 	if (vfs_op_thread_enter(mp, mpcpu)) {
650 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
651 		vfs_op_thread_exit(mp, mpcpu);
652 		return;
653 	}
654 
655 	MNT_ILOCK(mp);
656 	MNT_REL(mp);
657 	MNT_IUNLOCK(mp);
658 }
659 
660 /*
661  * Allocate and initialize the mount point struct.
662  */
663 struct mount *
664 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
665     struct ucred *cred)
666 {
667 	struct mount *mp;
668 
669 	mp = uma_zalloc(mount_zone, M_WAITOK);
670 	bzero(&mp->mnt_startzero,
671 	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
672 	mp->mnt_kern_flag = 0;
673 	mp->mnt_flag = 0;
674 	mp->mnt_rootvnode = NULL;
675 	mp->mnt_vnodecovered = NULL;
676 	mp->mnt_op = NULL;
677 	mp->mnt_vfc = NULL;
678 	TAILQ_INIT(&mp->mnt_nvnodelist);
679 	mp->mnt_nvnodelistsize = 0;
680 	TAILQ_INIT(&mp->mnt_lazyvnodelist);
681 	mp->mnt_lazyvnodelistsize = 0;
682 	if (mp->mnt_ref != 0 || mp->mnt_lockref != 0 ||
683 	    mp->mnt_writeopcount != 0)
684 		panic("%s: non-zero counters on new mp %p\n", __func__, mp);
685 	if (mp->mnt_vfs_ops != 1)
686 		panic("%s: vfs_ops should be 1 but %d found\n", __func__,
687 		    mp->mnt_vfs_ops);
688 	(void) vfs_busy(mp, MBF_NOWAIT);
689 	atomic_add_acq_int(&vfsp->vfc_refcount, 1);
690 	mp->mnt_op = vfsp->vfc_vfsops;
691 	mp->mnt_vfc = vfsp;
692 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
693 	mp->mnt_gen++;
694 	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
695 	mp->mnt_vnodecovered = vp;
696 	mp->mnt_cred = crdup(cred);
697 	mp->mnt_stat.f_owner = cred->cr_uid;
698 	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
699 	mp->mnt_iosize_max = DFLTPHYS;
700 #ifdef MAC
701 	mac_mount_init(mp);
702 	mac_mount_create(cred, mp);
703 #endif
704 	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
705 	mp->mnt_upper_pending = 0;
706 	TAILQ_INIT(&mp->mnt_uppers);
707 	TAILQ_INIT(&mp->mnt_notify);
708 	mp->mnt_taskqueue_flags = 0;
709 	mp->mnt_unmount_retries = 0;
710 	return (mp);
711 }
712 
713 /*
714  * Destroy the mount struct previously allocated by vfs_mount_alloc().
715  */
716 void
717 vfs_mount_destroy(struct mount *mp)
718 {
719 
720 	if (mp->mnt_vfs_ops == 0)
721 		panic("%s: entered with zero vfs_ops\n", __func__);
722 
723 	vfs_assert_mount_counters(mp);
724 
725 	MNT_ILOCK(mp);
726 	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
727 	if (mp->mnt_kern_flag & MNTK_MWAIT) {
728 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
729 		wakeup(mp);
730 	}
731 	while (mp->mnt_ref)
732 		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
733 	KASSERT(mp->mnt_ref == 0,
734 	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
735 	    __FILE__, __LINE__));
736 	if (mp->mnt_writeopcount != 0)
737 		panic("vfs_mount_destroy: nonzero writeopcount");
738 	if (mp->mnt_secondary_writes != 0)
739 		panic("vfs_mount_destroy: nonzero secondary_writes");
740 	atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
741 	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
742 		struct vnode *vp;
743 
744 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
745 			vn_printf(vp, "dangling vnode ");
746 		panic("unmount: dangling vnode");
747 	}
748 	KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
749 	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
750 	KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
751 	if (mp->mnt_nvnodelistsize != 0)
752 		panic("vfs_mount_destroy: nonzero nvnodelistsize");
753 	if (mp->mnt_lazyvnodelistsize != 0)
754 		panic("vfs_mount_destroy: nonzero lazyvnodelistsize");
755 	if (mp->mnt_lockref != 0)
756 		panic("vfs_mount_destroy: nonzero lock refcount");
757 	MNT_IUNLOCK(mp);
758 
759 	if (mp->mnt_vfs_ops != 1)
760 		panic("%s: vfs_ops should be 1 but %d found\n", __func__,
761 		    mp->mnt_vfs_ops);
762 
763 	if (mp->mnt_rootvnode != NULL)
764 		panic("%s: mount point still has a root vnode %p\n", __func__,
765 		    mp->mnt_rootvnode);
766 
767 	if (mp->mnt_vnodecovered != NULL)
768 		vrele(mp->mnt_vnodecovered);
769 #ifdef MAC
770 	mac_mount_destroy(mp);
771 #endif
772 	if (mp->mnt_opt != NULL)
773 		vfs_freeopts(mp->mnt_opt);
774 	crfree(mp->mnt_cred);
775 	uma_zfree(mount_zone, mp);
776 }
777 
778 static bool
779 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
780 {
781 	/* This is an upgrade of an exisiting mount. */
782 	if ((fsflags & MNT_UPDATE) != 0)
783 		return (false);
784 	/* This is already an R/O mount. */
785 	if ((fsflags & MNT_RDONLY) != 0)
786 		return (false);
787 
788 	switch (error) {
789 	case ENODEV:	/* generic, geom, ... */
790 	case EACCES:	/* cam/scsi, ... */
791 	case EROFS:	/* md, mmcsd, ... */
792 		/*
793 		 * These errors can be returned by the storage layer to signal
794 		 * that the media is read-only.  No harm in the R/O mount
795 		 * attempt if the error was returned for some other reason.
796 		 */
797 		return (true);
798 	default:
799 		return (false);
800 	}
801 }
802 
803 int
804 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
805 {
806 	struct vfsoptlist *optlist;
807 	struct vfsopt *opt, *tmp_opt;
808 	char *fstype, *fspath, *errmsg;
809 	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
810 	bool autoro;
811 
812 	errmsg = fspath = NULL;
813 	errmsg_len = fspathlen = 0;
814 	errmsg_pos = -1;
815 	autoro = default_autoro;
816 
817 	error = vfs_buildopts(fsoptions, &optlist);
818 	if (error)
819 		return (error);
820 
821 	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
822 		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
823 
824 	/*
825 	 * We need these two options before the others,
826 	 * and they are mandatory for any filesystem.
827 	 * Ensure they are NUL terminated as well.
828 	 */
829 	fstypelen = 0;
830 	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
831 	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
832 		error = EINVAL;
833 		if (errmsg != NULL)
834 			strncpy(errmsg, "Invalid fstype", errmsg_len);
835 		goto bail;
836 	}
837 	fspathlen = 0;
838 	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
839 	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
840 		error = EINVAL;
841 		if (errmsg != NULL)
842 			strncpy(errmsg, "Invalid fspath", errmsg_len);
843 		goto bail;
844 	}
845 
846 	/*
847 	 * We need to see if we have the "update" option
848 	 * before we call vfs_domount(), since vfs_domount() has special
849 	 * logic based on MNT_UPDATE.  This is very important
850 	 * when we want to update the root filesystem.
851 	 */
852 	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
853 		int do_freeopt = 0;
854 
855 		if (strcmp(opt->name, "update") == 0) {
856 			fsflags |= MNT_UPDATE;
857 			do_freeopt = 1;
858 		}
859 		else if (strcmp(opt->name, "async") == 0)
860 			fsflags |= MNT_ASYNC;
861 		else if (strcmp(opt->name, "force") == 0) {
862 			fsflags |= MNT_FORCE;
863 			do_freeopt = 1;
864 		}
865 		else if (strcmp(opt->name, "reload") == 0) {
866 			fsflags |= MNT_RELOAD;
867 			do_freeopt = 1;
868 		}
869 		else if (strcmp(opt->name, "multilabel") == 0)
870 			fsflags |= MNT_MULTILABEL;
871 		else if (strcmp(opt->name, "noasync") == 0)
872 			fsflags &= ~MNT_ASYNC;
873 		else if (strcmp(opt->name, "noatime") == 0)
874 			fsflags |= MNT_NOATIME;
875 		else if (strcmp(opt->name, "atime") == 0) {
876 			free(opt->name, M_MOUNT);
877 			opt->name = strdup("nonoatime", M_MOUNT);
878 		}
879 		else if (strcmp(opt->name, "noclusterr") == 0)
880 			fsflags |= MNT_NOCLUSTERR;
881 		else if (strcmp(opt->name, "clusterr") == 0) {
882 			free(opt->name, M_MOUNT);
883 			opt->name = strdup("nonoclusterr", M_MOUNT);
884 		}
885 		else if (strcmp(opt->name, "noclusterw") == 0)
886 			fsflags |= MNT_NOCLUSTERW;
887 		else if (strcmp(opt->name, "clusterw") == 0) {
888 			free(opt->name, M_MOUNT);
889 			opt->name = strdup("nonoclusterw", M_MOUNT);
890 		}
891 		else if (strcmp(opt->name, "noexec") == 0)
892 			fsflags |= MNT_NOEXEC;
893 		else if (strcmp(opt->name, "exec") == 0) {
894 			free(opt->name, M_MOUNT);
895 			opt->name = strdup("nonoexec", M_MOUNT);
896 		}
897 		else if (strcmp(opt->name, "nosuid") == 0)
898 			fsflags |= MNT_NOSUID;
899 		else if (strcmp(opt->name, "suid") == 0) {
900 			free(opt->name, M_MOUNT);
901 			opt->name = strdup("nonosuid", M_MOUNT);
902 		}
903 		else if (strcmp(opt->name, "nosymfollow") == 0)
904 			fsflags |= MNT_NOSYMFOLLOW;
905 		else if (strcmp(opt->name, "symfollow") == 0) {
906 			free(opt->name, M_MOUNT);
907 			opt->name = strdup("nonosymfollow", M_MOUNT);
908 		}
909 		else if (strcmp(opt->name, "noro") == 0) {
910 			fsflags &= ~MNT_RDONLY;
911 			autoro = false;
912 		}
913 		else if (strcmp(opt->name, "rw") == 0) {
914 			fsflags &= ~MNT_RDONLY;
915 			autoro = false;
916 		}
917 		else if (strcmp(opt->name, "ro") == 0) {
918 			fsflags |= MNT_RDONLY;
919 			autoro = false;
920 		}
921 		else if (strcmp(opt->name, "rdonly") == 0) {
922 			free(opt->name, M_MOUNT);
923 			opt->name = strdup("ro", M_MOUNT);
924 			fsflags |= MNT_RDONLY;
925 			autoro = false;
926 		}
927 		else if (strcmp(opt->name, "autoro") == 0) {
928 			do_freeopt = 1;
929 			autoro = true;
930 		}
931 		else if (strcmp(opt->name, "suiddir") == 0)
932 			fsflags |= MNT_SUIDDIR;
933 		else if (strcmp(opt->name, "sync") == 0)
934 			fsflags |= MNT_SYNCHRONOUS;
935 		else if (strcmp(opt->name, "union") == 0)
936 			fsflags |= MNT_UNION;
937 		else if (strcmp(opt->name, "automounted") == 0) {
938 			fsflags |= MNT_AUTOMOUNTED;
939 			do_freeopt = 1;
940 		} else if (strcmp(opt->name, "nocover") == 0) {
941 			fsflags |= MNT_NOCOVER;
942 			do_freeopt = 1;
943 		} else if (strcmp(opt->name, "cover") == 0) {
944 			fsflags &= ~MNT_NOCOVER;
945 			do_freeopt = 1;
946 		} else if (strcmp(opt->name, "emptydir") == 0) {
947 			fsflags |= MNT_EMPTYDIR;
948 			do_freeopt = 1;
949 		} else if (strcmp(opt->name, "noemptydir") == 0) {
950 			fsflags &= ~MNT_EMPTYDIR;
951 			do_freeopt = 1;
952 		}
953 		if (do_freeopt)
954 			vfs_freeopt(optlist, opt);
955 	}
956 
957 	/*
958 	 * Be ultra-paranoid about making sure the type and fspath
959 	 * variables will fit in our mp buffers, including the
960 	 * terminating NUL.
961 	 */
962 	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
963 		error = ENAMETOOLONG;
964 		goto bail;
965 	}
966 
967 	error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
968 	if (error == ENOENT) {
969 		error = EINVAL;
970 		if (errmsg != NULL)
971 			strncpy(errmsg, "Invalid fstype", errmsg_len);
972 		goto bail;
973 	}
974 
975 	/*
976 	 * See if we can mount in the read-only mode if the error code suggests
977 	 * that it could be possible and the mount options allow for that.
978 	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
979 	 * overridden by "autoro".
980 	 */
981 	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
982 		printf("%s: R/W mount failed, possibly R/O media,"
983 		    " trying R/O mount\n", __func__);
984 		fsflags |= MNT_RDONLY;
985 		error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
986 	}
987 bail:
988 	/* copyout the errmsg */
989 	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
990 	    && errmsg_len > 0 && errmsg != NULL) {
991 		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
992 			bcopy(errmsg,
993 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
994 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
995 		} else {
996 			copyout(errmsg,
997 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
998 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
999 		}
1000 	}
1001 
1002 	if (optlist != NULL)
1003 		vfs_freeopts(optlist);
1004 	return (error);
1005 }
1006 
1007 /*
1008  * Old mount API.
1009  */
1010 #ifndef _SYS_SYSPROTO_H_
1011 struct mount_args {
1012 	char	*type;
1013 	char	*path;
1014 	int	flags;
1015 	caddr_t	data;
1016 };
1017 #endif
1018 /* ARGSUSED */
1019 int
1020 sys_mount(struct thread *td, struct mount_args *uap)
1021 {
1022 	char *fstype;
1023 	struct vfsconf *vfsp = NULL;
1024 	struct mntarg *ma = NULL;
1025 	uint64_t flags;
1026 	int error;
1027 
1028 	/*
1029 	 * Mount flags are now 64-bits. On 32-bit architectures only
1030 	 * 32-bits are passed in, but from here on everything handles
1031 	 * 64-bit flags correctly.
1032 	 */
1033 	flags = uap->flags;
1034 
1035 	AUDIT_ARG_FFLAGS(flags);
1036 
1037 	/*
1038 	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
1039 	 * userspace to set this flag, but we must filter it out if we want
1040 	 * MNT_UPDATE on the root file system to work.
1041 	 * MNT_ROOTFS should only be set by the kernel when mounting its
1042 	 * root file system.
1043 	 */
1044 	flags &= ~MNT_ROOTFS;
1045 
1046 	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1047 	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1048 	if (error) {
1049 		free(fstype, M_TEMP);
1050 		return (error);
1051 	}
1052 
1053 	AUDIT_ARG_TEXT(fstype);
1054 	vfsp = vfs_byname_kld(fstype, td, &error);
1055 	free(fstype, M_TEMP);
1056 	if (vfsp == NULL)
1057 		return (ENOENT);
1058 	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1059 	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1060 	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1061 	    vfsp->vfc_vfsops->vfs_cmount == NULL))
1062 		return (EOPNOTSUPP);
1063 
1064 	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1065 	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1066 	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1067 	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1068 	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1069 
1070 	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1071 		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1072 	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1073 }
1074 
1075 /*
1076  * vfs_domount_first(): first file system mount (not update)
1077  */
1078 static int
1079 vfs_domount_first(
1080 	struct thread *td,		/* Calling thread. */
1081 	struct vfsconf *vfsp,		/* File system type. */
1082 	char *fspath,			/* Mount path. */
1083 	struct vnode *vp,		/* Vnode to be covered. */
1084 	uint64_t fsflags,		/* Flags common to all filesystems. */
1085 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1086 	)
1087 {
1088 	struct vattr va;
1089 	struct mount *mp;
1090 	struct vnode *newdp, *rootvp;
1091 	int error, error1;
1092 	bool unmounted;
1093 
1094 	ASSERT_VOP_ELOCKED(vp, __func__);
1095 	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1096 
1097 	/*
1098 	 * If the jail of the calling thread lacks permission for this type of
1099 	 * file system, or is trying to cover its own root, deny immediately.
1100 	 */
1101 	if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1102 	    vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1103 		vput(vp);
1104 		return (EPERM);
1105 	}
1106 
1107 	/*
1108 	 * If the user is not root, ensure that they own the directory
1109 	 * onto which we are attempting to mount.
1110 	 */
1111 	error = VOP_GETATTR(vp, &va, td->td_ucred);
1112 	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1113 		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1114 	if (error == 0)
1115 		error = vinvalbuf(vp, V_SAVE, 0, 0);
1116 	if (error == 0 && vp->v_type != VDIR)
1117 		error = ENOTDIR;
1118 	if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1119 		error = vfs_emptydir(vp);
1120 	if (error == 0) {
1121 		VI_LOCK(vp);
1122 		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1123 			vp->v_iflag |= VI_MOUNT;
1124 		else
1125 			error = EBUSY;
1126 		VI_UNLOCK(vp);
1127 	}
1128 	if (error != 0) {
1129 		vput(vp);
1130 		return (error);
1131 	}
1132 	vn_seqc_write_begin(vp);
1133 	VOP_UNLOCK(vp);
1134 
1135 	/* Allocate and initialize the filesystem. */
1136 	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1137 	/* XXXMAC: pass to vfs_mount_alloc? */
1138 	mp->mnt_optnew = *optlist;
1139 	/* Set the mount level flags. */
1140 	mp->mnt_flag = (fsflags &
1141 	    (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1142 
1143 	/*
1144 	 * Mount the filesystem.
1145 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1146 	 * get.  No freeing of cn_pnbuf.
1147 	 */
1148 	error1 = 0;
1149 	unmounted = true;
1150 	if ((error = VFS_MOUNT(mp)) != 0 ||
1151 	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1152 	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1153 		rootvp = NULL;
1154 		if (error1 != 0) {
1155 			MPASS(error == 0);
1156 			rootvp = vfs_cache_root_clear(mp);
1157 			if (rootvp != NULL) {
1158 				vhold(rootvp);
1159 				vrele(rootvp);
1160 			}
1161 			(void)vn_start_write(NULL, &mp, V_WAIT);
1162 			MNT_ILOCK(mp);
1163 			mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1164 			MNT_IUNLOCK(mp);
1165 			VFS_PURGE(mp);
1166 			error = VFS_UNMOUNT(mp, 0);
1167 			vn_finished_write(mp);
1168 			if (error != 0) {
1169 				printf(
1170 		    "failed post-mount (%d): rollback unmount returned %d\n",
1171 				    error1, error);
1172 				unmounted = false;
1173 			}
1174 			error = error1;
1175 		}
1176 		vfs_unbusy(mp);
1177 		mp->mnt_vnodecovered = NULL;
1178 		if (unmounted) {
1179 			/* XXXKIB wait for mnt_lockref drain? */
1180 			vfs_mount_destroy(mp);
1181 		}
1182 		VI_LOCK(vp);
1183 		vp->v_iflag &= ~VI_MOUNT;
1184 		VI_UNLOCK(vp);
1185 		if (rootvp != NULL) {
1186 			vn_seqc_write_end(rootvp);
1187 			vdrop(rootvp);
1188 		}
1189 		vn_seqc_write_end(vp);
1190 		vrele(vp);
1191 		return (error);
1192 	}
1193 	vn_seqc_write_begin(newdp);
1194 	VOP_UNLOCK(newdp);
1195 
1196 	if (mp->mnt_opt != NULL)
1197 		vfs_freeopts(mp->mnt_opt);
1198 	mp->mnt_opt = mp->mnt_optnew;
1199 	*optlist = NULL;
1200 
1201 	/*
1202 	 * Prevent external consumers of mount options from reading mnt_optnew.
1203 	 */
1204 	mp->mnt_optnew = NULL;
1205 
1206 	MNT_ILOCK(mp);
1207 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1208 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1209 		mp->mnt_kern_flag |= MNTK_ASYNC;
1210 	else
1211 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1212 	MNT_IUNLOCK(mp);
1213 
1214 	VI_LOCK(vp);
1215 	vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1216 	vp->v_mountedhere = mp;
1217 	VI_UNLOCK(vp);
1218 	cache_purge(vp);
1219 
1220 	/*
1221 	 * We need to lock both vnodes.
1222 	 *
1223 	 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1224 	 * from different filesystems.
1225 	 */
1226 	vn_lock_pair(vp, false, newdp, false);
1227 
1228 	VI_LOCK(vp);
1229 	vp->v_iflag &= ~VI_MOUNT;
1230 	VI_UNLOCK(vp);
1231 	/* Place the new filesystem at the end of the mount list. */
1232 	mtx_lock(&mountlist_mtx);
1233 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1234 	mtx_unlock(&mountlist_mtx);
1235 	vfs_event_signal(NULL, VQ_MOUNT, 0);
1236 	VOP_UNLOCK(vp);
1237 	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1238 	VOP_UNLOCK(newdp);
1239 	mount_devctl_event("MOUNT", mp, false);
1240 	mountcheckdirs(vp, newdp);
1241 	vn_seqc_write_end(vp);
1242 	vn_seqc_write_end(newdp);
1243 	vrele(newdp);
1244 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1245 		vfs_allocate_syncvnode(mp);
1246 	vfs_op_exit(mp);
1247 	vfs_unbusy(mp);
1248 	return (0);
1249 }
1250 
1251 /*
1252  * vfs_domount_update(): update of mounted file system
1253  */
1254 static int
1255 vfs_domount_update(
1256 	struct thread *td,		/* Calling thread. */
1257 	struct vnode *vp,		/* Mount point vnode. */
1258 	uint64_t fsflags,		/* Flags common to all filesystems. */
1259 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1260 	)
1261 {
1262 	struct export_args export;
1263 	struct o2export_args o2export;
1264 	struct vnode *rootvp;
1265 	void *bufp;
1266 	struct mount *mp;
1267 	int error, export_error, i, len;
1268 	uint64_t flag;
1269 	gid_t *grps;
1270 
1271 	ASSERT_VOP_ELOCKED(vp, __func__);
1272 	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1273 	mp = vp->v_mount;
1274 
1275 	if ((vp->v_vflag & VV_ROOT) == 0) {
1276 		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1277 		    == 0)
1278 			error = EXDEV;
1279 		else
1280 			error = EINVAL;
1281 		vput(vp);
1282 		return (error);
1283 	}
1284 
1285 	/*
1286 	 * We only allow the filesystem to be reloaded if it
1287 	 * is currently mounted read-only.
1288 	 */
1289 	flag = mp->mnt_flag;
1290 	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1291 		vput(vp);
1292 		return (EOPNOTSUPP);	/* Needs translation */
1293 	}
1294 	/*
1295 	 * Only privileged root, or (if MNT_USER is set) the user that
1296 	 * did the original mount is permitted to update it.
1297 	 */
1298 	error = vfs_suser(mp, td);
1299 	if (error != 0) {
1300 		vput(vp);
1301 		return (error);
1302 	}
1303 	if (vfs_busy(mp, MBF_NOWAIT)) {
1304 		vput(vp);
1305 		return (EBUSY);
1306 	}
1307 	VI_LOCK(vp);
1308 	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1309 		VI_UNLOCK(vp);
1310 		vfs_unbusy(mp);
1311 		vput(vp);
1312 		return (EBUSY);
1313 	}
1314 	vp->v_iflag |= VI_MOUNT;
1315 	VI_UNLOCK(vp);
1316 	VOP_UNLOCK(vp);
1317 
1318 	vfs_op_enter(mp);
1319 	vn_seqc_write_begin(vp);
1320 
1321 	rootvp = NULL;
1322 	MNT_ILOCK(mp);
1323 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1324 		MNT_IUNLOCK(mp);
1325 		error = EBUSY;
1326 		goto end;
1327 	}
1328 	mp->mnt_flag &= ~MNT_UPDATEMASK;
1329 	mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1330 	    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1331 	if ((mp->mnt_flag & MNT_ASYNC) == 0)
1332 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1333 	rootvp = vfs_cache_root_clear(mp);
1334 	MNT_IUNLOCK(mp);
1335 	mp->mnt_optnew = *optlist;
1336 	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1337 
1338 	/*
1339 	 * Mount the filesystem.
1340 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1341 	 * get.  No freeing of cn_pnbuf.
1342 	 */
1343 	error = VFS_MOUNT(mp);
1344 
1345 	export_error = 0;
1346 	/* Process the export option. */
1347 	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1348 	    &len) == 0) {
1349 		/* Assume that there is only 1 ABI for each length. */
1350 		switch (len) {
1351 		case (sizeof(struct oexport_args)):
1352 			bzero(&o2export, sizeof(o2export));
1353 			/* FALLTHROUGH */
1354 		case (sizeof(o2export)):
1355 			bcopy(bufp, &o2export, len);
1356 			export.ex_flags = (uint64_t)o2export.ex_flags;
1357 			export.ex_root = o2export.ex_root;
1358 			export.ex_uid = o2export.ex_anon.cr_uid;
1359 			export.ex_groups = NULL;
1360 			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1361 			if (export.ex_ngroups > 0) {
1362 				if (export.ex_ngroups <= XU_NGROUPS) {
1363 					export.ex_groups = malloc(
1364 					    export.ex_ngroups * sizeof(gid_t),
1365 					    M_TEMP, M_WAITOK);
1366 					for (i = 0; i < export.ex_ngroups; i++)
1367 						export.ex_groups[i] =
1368 						  o2export.ex_anon.cr_groups[i];
1369 				} else
1370 					export_error = EINVAL;
1371 			} else if (export.ex_ngroups < 0)
1372 				export_error = EINVAL;
1373 			export.ex_addr = o2export.ex_addr;
1374 			export.ex_addrlen = o2export.ex_addrlen;
1375 			export.ex_mask = o2export.ex_mask;
1376 			export.ex_masklen = o2export.ex_masklen;
1377 			export.ex_indexfile = o2export.ex_indexfile;
1378 			export.ex_numsecflavors = o2export.ex_numsecflavors;
1379 			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1380 				for (i = 0; i < export.ex_numsecflavors; i++)
1381 					export.ex_secflavors[i] =
1382 					    o2export.ex_secflavors[i];
1383 			} else
1384 				export_error = EINVAL;
1385 			if (export_error == 0)
1386 				export_error = vfs_export(mp, &export);
1387 			free(export.ex_groups, M_TEMP);
1388 			break;
1389 		case (sizeof(export)):
1390 			bcopy(bufp, &export, len);
1391 			grps = NULL;
1392 			if (export.ex_ngroups > 0) {
1393 				if (export.ex_ngroups <= NGROUPS_MAX) {
1394 					grps = malloc(export.ex_ngroups *
1395 					    sizeof(gid_t), M_TEMP, M_WAITOK);
1396 					export_error = copyin(export.ex_groups,
1397 					    grps, export.ex_ngroups *
1398 					    sizeof(gid_t));
1399 					if (export_error == 0)
1400 						export.ex_groups = grps;
1401 				} else
1402 					export_error = EINVAL;
1403 			} else if (export.ex_ngroups == 0)
1404 				export.ex_groups = NULL;
1405 			else
1406 				export_error = EINVAL;
1407 			if (export_error == 0)
1408 				export_error = vfs_export(mp, &export);
1409 			free(grps, M_TEMP);
1410 			break;
1411 		default:
1412 			export_error = EINVAL;
1413 			break;
1414 		}
1415 	}
1416 
1417 	MNT_ILOCK(mp);
1418 	if (error == 0) {
1419 		mp->mnt_flag &=	~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1420 		    MNT_SNAPSHOT);
1421 	} else {
1422 		/*
1423 		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1424 		 * because it is not part of MNT_UPDATEMASK, but it could have
1425 		 * changed in the meantime if quotactl(2) was called.
1426 		 * All in all we want current value of MNT_QUOTA, not the old
1427 		 * one.
1428 		 */
1429 		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1430 	}
1431 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1432 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1433 		mp->mnt_kern_flag |= MNTK_ASYNC;
1434 	else
1435 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1436 	MNT_IUNLOCK(mp);
1437 
1438 	if (error != 0)
1439 		goto end;
1440 
1441 	mount_devctl_event("REMOUNT", mp, true);
1442 	if (mp->mnt_opt != NULL)
1443 		vfs_freeopts(mp->mnt_opt);
1444 	mp->mnt_opt = mp->mnt_optnew;
1445 	*optlist = NULL;
1446 	(void)VFS_STATFS(mp, &mp->mnt_stat);
1447 	/*
1448 	 * Prevent external consumers of mount options from reading
1449 	 * mnt_optnew.
1450 	 */
1451 	mp->mnt_optnew = NULL;
1452 
1453 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1454 		vfs_allocate_syncvnode(mp);
1455 	else
1456 		vfs_deallocate_syncvnode(mp);
1457 end:
1458 	vfs_op_exit(mp);
1459 	if (rootvp != NULL) {
1460 		vn_seqc_write_end(rootvp);
1461 		vrele(rootvp);
1462 	}
1463 	vn_seqc_write_end(vp);
1464 	vfs_unbusy(mp);
1465 	VI_LOCK(vp);
1466 	vp->v_iflag &= ~VI_MOUNT;
1467 	VI_UNLOCK(vp);
1468 	vrele(vp);
1469 	return (error != 0 ? error : export_error);
1470 }
1471 
1472 /*
1473  * vfs_domount(): actually attempt a filesystem mount.
1474  */
1475 static int
1476 vfs_domount(
1477 	struct thread *td,		/* Calling thread. */
1478 	const char *fstype,		/* Filesystem type. */
1479 	char *fspath,			/* Mount path. */
1480 	uint64_t fsflags,		/* Flags common to all filesystems. */
1481 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1482 	)
1483 {
1484 	struct vfsconf *vfsp;
1485 	struct nameidata nd;
1486 	struct vnode *vp;
1487 	char *pathbuf;
1488 	int error;
1489 
1490 	/*
1491 	 * Be ultra-paranoid about making sure the type and fspath
1492 	 * variables will fit in our mp buffers, including the
1493 	 * terminating NUL.
1494 	 */
1495 	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1496 		return (ENAMETOOLONG);
1497 
1498 	if (jailed(td->td_ucred) || usermount == 0) {
1499 		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1500 			return (error);
1501 	}
1502 
1503 	/*
1504 	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1505 	 */
1506 	if (fsflags & MNT_EXPORTED) {
1507 		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1508 		if (error)
1509 			return (error);
1510 	}
1511 	if (fsflags & MNT_SUIDDIR) {
1512 		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1513 		if (error)
1514 			return (error);
1515 	}
1516 	/*
1517 	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1518 	 */
1519 	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1520 		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1521 			fsflags |= MNT_NOSUID | MNT_USER;
1522 	}
1523 
1524 	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1525 	vfsp = NULL;
1526 	if ((fsflags & MNT_UPDATE) == 0) {
1527 		/* Don't try to load KLDs if we're mounting the root. */
1528 		if (fsflags & MNT_ROOTFS) {
1529 			if ((vfsp = vfs_byname(fstype)) == NULL)
1530 				return (ENODEV);
1531 		} else {
1532 			if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1533 				return (error);
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1539 	 */
1540 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE,
1541 	    fspath);
1542 	error = namei(&nd);
1543 	if (error != 0)
1544 		return (error);
1545 	NDFREE_PNBUF(&nd);
1546 	vp = nd.ni_vp;
1547 	if ((fsflags & MNT_UPDATE) == 0) {
1548 		if ((vp->v_vflag & VV_ROOT) != 0 &&
1549 		    (fsflags & MNT_NOCOVER) != 0) {
1550 			vput(vp);
1551 			return (EBUSY);
1552 		}
1553 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1554 		strcpy(pathbuf, fspath);
1555 		error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN);
1556 		if (error == 0) {
1557 			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1558 			    fsflags, optlist);
1559 		}
1560 		free(pathbuf, M_TEMP);
1561 	} else
1562 		error = vfs_domount_update(td, vp, fsflags, optlist);
1563 
1564 	return (error);
1565 }
1566 
1567 /*
1568  * Unmount a filesystem.
1569  *
1570  * Note: unmount takes a path to the vnode mounted on as argument, not
1571  * special file (as before).
1572  */
1573 #ifndef _SYS_SYSPROTO_H_
1574 struct unmount_args {
1575 	char	*path;
1576 	int	flags;
1577 };
1578 #endif
1579 /* ARGSUSED */
1580 int
1581 sys_unmount(struct thread *td, struct unmount_args *uap)
1582 {
1583 
1584 	return (kern_unmount(td, uap->path, uap->flags));
1585 }
1586 
1587 int
1588 kern_unmount(struct thread *td, const char *path, int flags)
1589 {
1590 	struct nameidata nd;
1591 	struct mount *mp;
1592 	char *fsidbuf, *pathbuf;
1593 	fsid_t fsid;
1594 	int error;
1595 
1596 	AUDIT_ARG_VALUE(flags);
1597 	if (jailed(td->td_ucred) || usermount == 0) {
1598 		error = priv_check(td, PRIV_VFS_UNMOUNT);
1599 		if (error)
1600 			return (error);
1601 	}
1602 
1603 	if (flags & MNT_BYFSID) {
1604 		fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1605 		error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1606 		if (error) {
1607 			free(fsidbuf, M_TEMP);
1608 			return (error);
1609 		}
1610 
1611 		AUDIT_ARG_TEXT(fsidbuf);
1612 		/* Decode the filesystem ID. */
1613 		if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1614 			free(fsidbuf, M_TEMP);
1615 			return (EINVAL);
1616 		}
1617 
1618 		mp = vfs_getvfs(&fsid);
1619 		free(fsidbuf, M_TEMP);
1620 		if (mp == NULL) {
1621 			return (ENOENT);
1622 		}
1623 	} else {
1624 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1625 		error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1626 		if (error) {
1627 			free(pathbuf, M_TEMP);
1628 			return (error);
1629 		}
1630 
1631 		/*
1632 		 * Try to find global path for path argument.
1633 		 */
1634 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1635 		    UIO_SYSSPACE, pathbuf);
1636 		if (namei(&nd) == 0) {
1637 			NDFREE_PNBUF(&nd);
1638 			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1639 			    MNAMELEN);
1640 			if (error == 0)
1641 				vput(nd.ni_vp);
1642 		}
1643 		mtx_lock(&mountlist_mtx);
1644 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1645 			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1646 				vfs_ref(mp);
1647 				break;
1648 			}
1649 		}
1650 		mtx_unlock(&mountlist_mtx);
1651 		free(pathbuf, M_TEMP);
1652 		if (mp == NULL) {
1653 			/*
1654 			 * Previously we returned ENOENT for a nonexistent path and
1655 			 * EINVAL for a non-mountpoint.  We cannot tell these apart
1656 			 * now, so in the !MNT_BYFSID case return the more likely
1657 			 * EINVAL for compatibility.
1658 			 */
1659 			return (EINVAL);
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * Don't allow unmounting the root filesystem.
1665 	 */
1666 	if (mp->mnt_flag & MNT_ROOTFS) {
1667 		vfs_rel(mp);
1668 		return (EINVAL);
1669 	}
1670 	error = dounmount(mp, flags, td);
1671 	return (error);
1672 }
1673 
1674 /*
1675  * Return error if any of the vnodes, ignoring the root vnode
1676  * and the syncer vnode, have non-zero usecount.
1677  *
1678  * This function is purely advisory - it can return false positives
1679  * and negatives.
1680  */
1681 static int
1682 vfs_check_usecounts(struct mount *mp)
1683 {
1684 	struct vnode *vp, *mvp;
1685 
1686 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1687 		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1688 		    vp->v_usecount != 0) {
1689 			VI_UNLOCK(vp);
1690 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1691 			return (EBUSY);
1692 		}
1693 		VI_UNLOCK(vp);
1694 	}
1695 
1696 	return (0);
1697 }
1698 
1699 static void
1700 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1701 {
1702 
1703 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1704 	mp->mnt_kern_flag &= ~mntkflags;
1705 	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1706 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1707 		wakeup(mp);
1708 	}
1709 	vfs_op_exit_locked(mp);
1710 	MNT_IUNLOCK(mp);
1711 	if (coveredvp != NULL) {
1712 		VOP_UNLOCK(coveredvp);
1713 		vdrop(coveredvp);
1714 	}
1715 	vn_finished_write(mp);
1716 }
1717 
1718 /*
1719  * There are various reference counters associated with the mount point.
1720  * Normally it is permitted to modify them without taking the mnt ilock,
1721  * but this behavior can be temporarily disabled if stable value is needed
1722  * or callers are expected to block (e.g. to not allow new users during
1723  * forced unmount).
1724  */
1725 void
1726 vfs_op_enter(struct mount *mp)
1727 {
1728 	struct mount_pcpu *mpcpu;
1729 	int cpu;
1730 
1731 	MNT_ILOCK(mp);
1732 	mp->mnt_vfs_ops++;
1733 	if (mp->mnt_vfs_ops > 1) {
1734 		MNT_IUNLOCK(mp);
1735 		return;
1736 	}
1737 	vfs_op_barrier_wait(mp);
1738 	CPU_FOREACH(cpu) {
1739 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1740 
1741 		mp->mnt_ref += mpcpu->mntp_ref;
1742 		mpcpu->mntp_ref = 0;
1743 
1744 		mp->mnt_lockref += mpcpu->mntp_lockref;
1745 		mpcpu->mntp_lockref = 0;
1746 
1747 		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1748 		mpcpu->mntp_writeopcount = 0;
1749 	}
1750 	if (mp->mnt_ref <= 0 || mp->mnt_lockref < 0 || mp->mnt_writeopcount < 0)
1751 		panic("%s: invalid count(s) on mp %p: ref %d lockref %d writeopcount %d\n",
1752 		    __func__, mp, mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount);
1753 	MNT_IUNLOCK(mp);
1754 	vfs_assert_mount_counters(mp);
1755 }
1756 
1757 void
1758 vfs_op_exit_locked(struct mount *mp)
1759 {
1760 
1761 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1762 
1763 	if (mp->mnt_vfs_ops <= 0)
1764 		panic("%s: invalid vfs_ops count %d for mp %p\n",
1765 		    __func__, mp->mnt_vfs_ops, mp);
1766 	mp->mnt_vfs_ops--;
1767 }
1768 
1769 void
1770 vfs_op_exit(struct mount *mp)
1771 {
1772 
1773 	MNT_ILOCK(mp);
1774 	vfs_op_exit_locked(mp);
1775 	MNT_IUNLOCK(mp);
1776 }
1777 
1778 struct vfs_op_barrier_ipi {
1779 	struct mount *mp;
1780 	struct smp_rendezvous_cpus_retry_arg srcra;
1781 };
1782 
1783 static void
1784 vfs_op_action_func(void *arg)
1785 {
1786 	struct vfs_op_barrier_ipi *vfsopipi;
1787 	struct mount *mp;
1788 
1789 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1790 	mp = vfsopipi->mp;
1791 
1792 	if (!vfs_op_thread_entered(mp))
1793 		smp_rendezvous_cpus_done(arg);
1794 }
1795 
1796 static void
1797 vfs_op_wait_func(void *arg, int cpu)
1798 {
1799 	struct vfs_op_barrier_ipi *vfsopipi;
1800 	struct mount *mp;
1801 	struct mount_pcpu *mpcpu;
1802 
1803 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1804 	mp = vfsopipi->mp;
1805 
1806 	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1807 	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1808 		cpu_spinwait();
1809 }
1810 
1811 void
1812 vfs_op_barrier_wait(struct mount *mp)
1813 {
1814 	struct vfs_op_barrier_ipi vfsopipi;
1815 
1816 	vfsopipi.mp = mp;
1817 
1818 	smp_rendezvous_cpus_retry(all_cpus,
1819 	    smp_no_rendezvous_barrier,
1820 	    vfs_op_action_func,
1821 	    smp_no_rendezvous_barrier,
1822 	    vfs_op_wait_func,
1823 	    &vfsopipi.srcra);
1824 }
1825 
1826 #ifdef DIAGNOSTIC
1827 void
1828 vfs_assert_mount_counters(struct mount *mp)
1829 {
1830 	struct mount_pcpu *mpcpu;
1831 	int cpu;
1832 
1833 	if (mp->mnt_vfs_ops == 0)
1834 		return;
1835 
1836 	CPU_FOREACH(cpu) {
1837 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1838 		if (mpcpu->mntp_ref != 0 ||
1839 		    mpcpu->mntp_lockref != 0 ||
1840 		    mpcpu->mntp_writeopcount != 0)
1841 			vfs_dump_mount_counters(mp);
1842 	}
1843 }
1844 
1845 void
1846 vfs_dump_mount_counters(struct mount *mp)
1847 {
1848 	struct mount_pcpu *mpcpu;
1849 	int ref, lockref, writeopcount;
1850 	int cpu;
1851 
1852 	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1853 
1854 	printf("        ref : ");
1855 	ref = mp->mnt_ref;
1856 	CPU_FOREACH(cpu) {
1857 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1858 		printf("%d ", mpcpu->mntp_ref);
1859 		ref += mpcpu->mntp_ref;
1860 	}
1861 	printf("\n");
1862 	printf("    lockref : ");
1863 	lockref = mp->mnt_lockref;
1864 	CPU_FOREACH(cpu) {
1865 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1866 		printf("%d ", mpcpu->mntp_lockref);
1867 		lockref += mpcpu->mntp_lockref;
1868 	}
1869 	printf("\n");
1870 	printf("writeopcount: ");
1871 	writeopcount = mp->mnt_writeopcount;
1872 	CPU_FOREACH(cpu) {
1873 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1874 		printf("%d ", mpcpu->mntp_writeopcount);
1875 		writeopcount += mpcpu->mntp_writeopcount;
1876 	}
1877 	printf("\n");
1878 
1879 	printf("counter       struct total\n");
1880 	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
1881 	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
1882 	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
1883 
1884 	panic("invalid counts on struct mount");
1885 }
1886 #endif
1887 
1888 int
1889 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
1890 {
1891 	struct mount_pcpu *mpcpu;
1892 	int cpu, sum;
1893 
1894 	switch (which) {
1895 	case MNT_COUNT_REF:
1896 		sum = mp->mnt_ref;
1897 		break;
1898 	case MNT_COUNT_LOCKREF:
1899 		sum = mp->mnt_lockref;
1900 		break;
1901 	case MNT_COUNT_WRITEOPCOUNT:
1902 		sum = mp->mnt_writeopcount;
1903 		break;
1904 	}
1905 
1906 	CPU_FOREACH(cpu) {
1907 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1908 		switch (which) {
1909 		case MNT_COUNT_REF:
1910 			sum += mpcpu->mntp_ref;
1911 			break;
1912 		case MNT_COUNT_LOCKREF:
1913 			sum += mpcpu->mntp_lockref;
1914 			break;
1915 		case MNT_COUNT_WRITEOPCOUNT:
1916 			sum += mpcpu->mntp_writeopcount;
1917 			break;
1918 		}
1919 	}
1920 	return (sum);
1921 }
1922 
1923 static bool
1924 deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
1925     int timeout_ticks)
1926 {
1927 	bool enqueued;
1928 
1929 	enqueued = false;
1930 	mtx_lock(&deferred_unmount_lock);
1931 	if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
1932 		mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
1933 		STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
1934 		    mnt_taskqueue_link);
1935 		enqueued = true;
1936 	}
1937 	mtx_unlock(&deferred_unmount_lock);
1938 
1939 	if (enqueued) {
1940 		taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
1941 		    &deferred_unmount_task, timeout_ticks);
1942 	}
1943 
1944 	return (enqueued);
1945 }
1946 
1947 /*
1948  * Taskqueue handler for processing async/recursive unmounts
1949  */
1950 static void
1951 vfs_deferred_unmount(void *argi __unused, int pending __unused)
1952 {
1953 	STAILQ_HEAD(, mount) local_unmounts;
1954 	uint64_t flags;
1955 	struct mount *mp, *tmp;
1956 	int error;
1957 	unsigned int retries;
1958 	bool unmounted;
1959 
1960 	STAILQ_INIT(&local_unmounts);
1961 	mtx_lock(&deferred_unmount_lock);
1962 	STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
1963 	mtx_unlock(&deferred_unmount_lock);
1964 
1965 	STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
1966 		flags = mp->mnt_taskqueue_flags;
1967 		KASSERT((flags & MNT_DEFERRED) != 0,
1968 		    ("taskqueue unmount without MNT_DEFERRED"));
1969 		error = dounmount(mp, flags, curthread);
1970 		if (error != 0) {
1971 			MNT_ILOCK(mp);
1972 			unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
1973 			MNT_IUNLOCK(mp);
1974 
1975 			/*
1976 			 * The deferred unmount thread is the only thread that
1977 			 * modifies the retry counts, so locking/atomics aren't
1978 			 * needed here.
1979 			 */
1980 			retries = (mp->mnt_unmount_retries)++;
1981 			deferred_unmount_total_retries++;
1982 			if (!unmounted && retries < deferred_unmount_retry_limit) {
1983 				deferred_unmount_enqueue(mp, flags, true,
1984 				    -deferred_unmount_retry_delay_hz);
1985 			} else {
1986 				if (retries >= deferred_unmount_retry_limit) {
1987 					printf("giving up on deferred unmount "
1988 					    "of %s after %d retries, error %d\n",
1989 					    mp->mnt_stat.f_mntonname, retries, error);
1990 				}
1991 				vfs_rel(mp);
1992 			}
1993 		}
1994 	}
1995 }
1996 
1997 /*
1998  * Do the actual filesystem unmount.
1999  */
2000 int
2001 dounmount(struct mount *mp, uint64_t flags, struct thread *td)
2002 {
2003 	struct mount_upper_node *upper;
2004 	struct vnode *coveredvp, *rootvp;
2005 	int error;
2006 	uint64_t async_flag;
2007 	int mnt_gen_r;
2008 	unsigned int retries;
2009 
2010 	KASSERT((flags & MNT_DEFERRED) == 0 ||
2011 	    (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2012 	    ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2013 
2014 	/*
2015 	 * If the caller has explicitly requested the unmount to be handled by
2016 	 * the taskqueue and we're not already in taskqueue context, queue
2017 	 * up the unmount request and exit.  This is done prior to any
2018 	 * credential checks; MNT_DEFERRED should be used only for kernel-
2019 	 * initiated unmounts and will therefore be processed with the
2020 	 * (kernel) credentials of the taskqueue thread.  Still, callers
2021 	 * should be sure this is the behavior they want.
2022 	 */
2023 	if ((flags & MNT_DEFERRED) != 0 &&
2024 	    taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2025 		if (!deferred_unmount_enqueue(mp, flags, false, 0))
2026 			vfs_rel(mp);
2027 		return (EINPROGRESS);
2028 	}
2029 
2030 	/*
2031 	 * Only privileged root, or (if MNT_USER is set) the user that did the
2032 	 * original mount is permitted to unmount this filesystem.
2033 	 * This check should be made prior to queueing up any recursive
2034 	 * unmounts of upper filesystems.  Those unmounts will be executed
2035 	 * with kernel thread credentials and are expected to succeed, so
2036 	 * we must at least ensure the originating context has sufficient
2037 	 * privilege to unmount the base filesystem before proceeding with
2038 	 * the uppers.
2039 	 */
2040 	error = vfs_suser(mp, td);
2041 	if (error != 0) {
2042 		KASSERT((flags & MNT_DEFERRED) == 0,
2043 		    ("taskqueue unmount with insufficient privilege"));
2044 		vfs_rel(mp);
2045 		return (error);
2046 	}
2047 
2048 	if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2049 		flags |= MNT_RECURSE;
2050 
2051 	if ((flags & MNT_RECURSE) != 0) {
2052 		KASSERT((flags & MNT_FORCE) != 0,
2053 		    ("MNT_RECURSE requires MNT_FORCE"));
2054 
2055 		MNT_ILOCK(mp);
2056 		/*
2057 		 * Set MNTK_RECURSE to prevent new upper mounts from being
2058 		 * added, and note that an operation on the uppers list is in
2059 		 * progress.  This will ensure that unregistration from the
2060 		 * uppers list, and therefore any pending unmount of the upper
2061 		 * FS, can't complete until after we finish walking the list.
2062 		 */
2063 		mp->mnt_kern_flag |= MNTK_RECURSE;
2064 		mp->mnt_upper_pending++;
2065 		TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2066 			retries = upper->mp->mnt_unmount_retries;
2067 			if (retries > deferred_unmount_retry_limit) {
2068 				error = EBUSY;
2069 				continue;
2070 			}
2071 			MNT_IUNLOCK(mp);
2072 
2073 			vfs_ref(upper->mp);
2074 			if (!deferred_unmount_enqueue(upper->mp, flags,
2075 			    false, 0))
2076 				vfs_rel(upper->mp);
2077 			MNT_ILOCK(mp);
2078 		}
2079 		mp->mnt_upper_pending--;
2080 		if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2081 		    mp->mnt_upper_pending == 0) {
2082 			mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2083 			wakeup(&mp->mnt_uppers);
2084 		}
2085 
2086 		/*
2087 		 * If we're not on the taskqueue, wait until the uppers list
2088 		 * is drained before proceeding with unmount.  Otherwise, if
2089 		 * we are on the taskqueue and there are still pending uppers,
2090 		 * just re-enqueue on the end of the taskqueue.
2091 		 */
2092 		if ((flags & MNT_DEFERRED) == 0) {
2093 			while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2094 				mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2095 				error = msleep(&mp->mnt_taskqueue_link,
2096 				    MNT_MTX(mp), PCATCH, "umntqw", 0);
2097 			}
2098 			if (error != 0) {
2099 				MNT_REL(mp);
2100 				MNT_IUNLOCK(mp);
2101 				return (error);
2102 			}
2103 		} else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2104 			MNT_IUNLOCK(mp);
2105 			if (error == 0)
2106 				deferred_unmount_enqueue(mp, flags, true, 0);
2107 			return (error);
2108 		}
2109 		MNT_IUNLOCK(mp);
2110 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2111 	}
2112 
2113 	/* Allow the taskqueue to safely re-enqueue on failure */
2114 	if ((flags & MNT_DEFERRED) != 0)
2115 		vfs_ref(mp);
2116 
2117 	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2118 		mnt_gen_r = mp->mnt_gen;
2119 		VI_LOCK(coveredvp);
2120 		vholdl(coveredvp);
2121 		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2122 		/*
2123 		 * Check for mp being unmounted while waiting for the
2124 		 * covered vnode lock.
2125 		 */
2126 		if (coveredvp->v_mountedhere != mp ||
2127 		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2128 			VOP_UNLOCK(coveredvp);
2129 			vdrop(coveredvp);
2130 			vfs_rel(mp);
2131 			return (EBUSY);
2132 		}
2133 	}
2134 
2135 	vfs_op_enter(mp);
2136 
2137 	vn_start_write(NULL, &mp, V_WAIT | V_MNTREF);
2138 	MNT_ILOCK(mp);
2139 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2140 	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
2141 	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
2142 		dounmount_cleanup(mp, coveredvp, 0);
2143 		return (EBUSY);
2144 	}
2145 	mp->mnt_kern_flag |= MNTK_UNMOUNT;
2146 	rootvp = vfs_cache_root_clear(mp);
2147 	if (coveredvp != NULL)
2148 		vn_seqc_write_begin(coveredvp);
2149 	if (flags & MNT_NONBUSY) {
2150 		MNT_IUNLOCK(mp);
2151 		error = vfs_check_usecounts(mp);
2152 		MNT_ILOCK(mp);
2153 		if (error != 0) {
2154 			vn_seqc_write_end(coveredvp);
2155 			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2156 			if (rootvp != NULL) {
2157 				vn_seqc_write_end(rootvp);
2158 				vrele(rootvp);
2159 			}
2160 			return (error);
2161 		}
2162 	}
2163 	/* Allow filesystems to detect that a forced unmount is in progress. */
2164 	if (flags & MNT_FORCE) {
2165 		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2166 		MNT_IUNLOCK(mp);
2167 		/*
2168 		 * Must be done after setting MNTK_UNMOUNTF and before
2169 		 * waiting for mnt_lockref to become 0.
2170 		 */
2171 		VFS_PURGE(mp);
2172 		MNT_ILOCK(mp);
2173 	}
2174 	error = 0;
2175 	if (mp->mnt_lockref) {
2176 		mp->mnt_kern_flag |= MNTK_DRAINING;
2177 		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2178 		    "mount drain", 0);
2179 	}
2180 	MNT_IUNLOCK(mp);
2181 	KASSERT(mp->mnt_lockref == 0,
2182 	    ("%s: invalid lock refcount in the drain path @ %s:%d",
2183 	    __func__, __FILE__, __LINE__));
2184 	KASSERT(error == 0,
2185 	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
2186 	    __func__, __FILE__, __LINE__));
2187 
2188 	/*
2189 	 * We want to keep the vnode around so that we can vn_seqc_write_end
2190 	 * after we are done with unmount. Downgrade our reference to a mere
2191 	 * hold count so that we don't interefere with anything.
2192 	 */
2193 	if (rootvp != NULL) {
2194 		vhold(rootvp);
2195 		vrele(rootvp);
2196 	}
2197 
2198 	if (mp->mnt_flag & MNT_EXPUBLIC)
2199 		vfs_setpublicfs(NULL, NULL, NULL);
2200 
2201 	vfs_periodic(mp, MNT_WAIT);
2202 	MNT_ILOCK(mp);
2203 	async_flag = mp->mnt_flag & MNT_ASYNC;
2204 	mp->mnt_flag &= ~MNT_ASYNC;
2205 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
2206 	MNT_IUNLOCK(mp);
2207 	vfs_deallocate_syncvnode(mp);
2208 	error = VFS_UNMOUNT(mp, flags);
2209 	vn_finished_write(mp);
2210 	/*
2211 	 * If we failed to flush the dirty blocks for this mount point,
2212 	 * undo all the cdir/rdir and rootvnode changes we made above.
2213 	 * Unless we failed to do so because the device is reporting that
2214 	 * it doesn't exist anymore.
2215 	 */
2216 	if (error && error != ENXIO) {
2217 		MNT_ILOCK(mp);
2218 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2219 			MNT_IUNLOCK(mp);
2220 			vfs_allocate_syncvnode(mp);
2221 			MNT_ILOCK(mp);
2222 		}
2223 		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2224 		mp->mnt_flag |= async_flag;
2225 		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2226 		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2227 			mp->mnt_kern_flag |= MNTK_ASYNC;
2228 		if (mp->mnt_kern_flag & MNTK_MWAIT) {
2229 			mp->mnt_kern_flag &= ~MNTK_MWAIT;
2230 			wakeup(mp);
2231 		}
2232 		vfs_op_exit_locked(mp);
2233 		MNT_IUNLOCK(mp);
2234 		if (coveredvp) {
2235 			vn_seqc_write_end(coveredvp);
2236 			VOP_UNLOCK(coveredvp);
2237 			vdrop(coveredvp);
2238 		}
2239 		if (rootvp != NULL) {
2240 			vn_seqc_write_end(rootvp);
2241 			vdrop(rootvp);
2242 		}
2243 		return (error);
2244 	}
2245 
2246 	mtx_lock(&mountlist_mtx);
2247 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
2248 	mtx_unlock(&mountlist_mtx);
2249 	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2250 	if (coveredvp != NULL) {
2251 		VI_LOCK(coveredvp);
2252 		vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2253 		coveredvp->v_mountedhere = NULL;
2254 		vn_seqc_write_end_locked(coveredvp);
2255 		VI_UNLOCK(coveredvp);
2256 		VOP_UNLOCK(coveredvp);
2257 		vdrop(coveredvp);
2258 	}
2259 	mount_devctl_event("UNMOUNT", mp, false);
2260 	if (rootvp != NULL) {
2261 		vn_seqc_write_end(rootvp);
2262 		vdrop(rootvp);
2263 	}
2264 	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2265 	if (rootvnode != NULL && mp == rootvnode->v_mount) {
2266 		vrele(rootvnode);
2267 		rootvnode = NULL;
2268 	}
2269 	if (mp == rootdevmp)
2270 		rootdevmp = NULL;
2271 	if ((flags & MNT_DEFERRED) != 0)
2272 		vfs_rel(mp);
2273 	vfs_mount_destroy(mp);
2274 	return (0);
2275 }
2276 
2277 /*
2278  * Report errors during filesystem mounting.
2279  */
2280 void
2281 vfs_mount_error(struct mount *mp, const char *fmt, ...)
2282 {
2283 	struct vfsoptlist *moptlist = mp->mnt_optnew;
2284 	va_list ap;
2285 	int error, len;
2286 	char *errmsg;
2287 
2288 	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2289 	if (error || errmsg == NULL || len <= 0)
2290 		return;
2291 
2292 	va_start(ap, fmt);
2293 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2294 	va_end(ap);
2295 }
2296 
2297 void
2298 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2299 {
2300 	va_list ap;
2301 	int error, len;
2302 	char *errmsg;
2303 
2304 	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2305 	if (error || errmsg == NULL || len <= 0)
2306 		return;
2307 
2308 	va_start(ap, fmt);
2309 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2310 	va_end(ap);
2311 }
2312 
2313 /*
2314  * ---------------------------------------------------------------------
2315  * Functions for querying mount options/arguments from filesystems.
2316  */
2317 
2318 /*
2319  * Check that no unknown options are given
2320  */
2321 int
2322 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2323 {
2324 	struct vfsopt *opt;
2325 	char errmsg[255];
2326 	const char **t, *p, *q;
2327 	int ret = 0;
2328 
2329 	TAILQ_FOREACH(opt, opts, link) {
2330 		p = opt->name;
2331 		q = NULL;
2332 		if (p[0] == 'n' && p[1] == 'o')
2333 			q = p + 2;
2334 		for(t = global_opts; *t != NULL; t++) {
2335 			if (strcmp(*t, p) == 0)
2336 				break;
2337 			if (q != NULL) {
2338 				if (strcmp(*t, q) == 0)
2339 					break;
2340 			}
2341 		}
2342 		if (*t != NULL)
2343 			continue;
2344 		for(t = legal; *t != NULL; t++) {
2345 			if (strcmp(*t, p) == 0)
2346 				break;
2347 			if (q != NULL) {
2348 				if (strcmp(*t, q) == 0)
2349 					break;
2350 			}
2351 		}
2352 		if (*t != NULL)
2353 			continue;
2354 		snprintf(errmsg, sizeof(errmsg),
2355 		    "mount option <%s> is unknown", p);
2356 		ret = EINVAL;
2357 	}
2358 	if (ret != 0) {
2359 		TAILQ_FOREACH(opt, opts, link) {
2360 			if (strcmp(opt->name, "errmsg") == 0) {
2361 				strncpy((char *)opt->value, errmsg, opt->len);
2362 				break;
2363 			}
2364 		}
2365 		if (opt == NULL)
2366 			printf("%s\n", errmsg);
2367 	}
2368 	return (ret);
2369 }
2370 
2371 /*
2372  * Get a mount option by its name.
2373  *
2374  * Return 0 if the option was found, ENOENT otherwise.
2375  * If len is non-NULL it will be filled with the length
2376  * of the option. If buf is non-NULL, it will be filled
2377  * with the address of the option.
2378  */
2379 int
2380 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2381 {
2382 	struct vfsopt *opt;
2383 
2384 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2385 
2386 	TAILQ_FOREACH(opt, opts, link) {
2387 		if (strcmp(name, opt->name) == 0) {
2388 			opt->seen = 1;
2389 			if (len != NULL)
2390 				*len = opt->len;
2391 			if (buf != NULL)
2392 				*buf = opt->value;
2393 			return (0);
2394 		}
2395 	}
2396 	return (ENOENT);
2397 }
2398 
2399 int
2400 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2401 {
2402 	struct vfsopt *opt;
2403 
2404 	if (opts == NULL)
2405 		return (-1);
2406 
2407 	TAILQ_FOREACH(opt, opts, link) {
2408 		if (strcmp(name, opt->name) == 0) {
2409 			opt->seen = 1;
2410 			return (opt->pos);
2411 		}
2412 	}
2413 	return (-1);
2414 }
2415 
2416 int
2417 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2418 {
2419 	char *opt_value, *vtp;
2420 	quad_t iv;
2421 	int error, opt_len;
2422 
2423 	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2424 	if (error != 0)
2425 		return (error);
2426 	if (opt_len == 0 || opt_value == NULL)
2427 		return (EINVAL);
2428 	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2429 		return (EINVAL);
2430 	iv = strtoq(opt_value, &vtp, 0);
2431 	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2432 		return (EINVAL);
2433 	if (iv < 0)
2434 		return (EINVAL);
2435 	switch (vtp[0]) {
2436 	case 't': case 'T':
2437 		iv *= 1024;
2438 		/* FALLTHROUGH */
2439 	case 'g': case 'G':
2440 		iv *= 1024;
2441 		/* FALLTHROUGH */
2442 	case 'm': case 'M':
2443 		iv *= 1024;
2444 		/* FALLTHROUGH */
2445 	case 'k': case 'K':
2446 		iv *= 1024;
2447 	case '\0':
2448 		break;
2449 	default:
2450 		return (EINVAL);
2451 	}
2452 	*value = iv;
2453 
2454 	return (0);
2455 }
2456 
2457 char *
2458 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2459 {
2460 	struct vfsopt *opt;
2461 
2462 	*error = 0;
2463 	TAILQ_FOREACH(opt, opts, link) {
2464 		if (strcmp(name, opt->name) != 0)
2465 			continue;
2466 		opt->seen = 1;
2467 		if (opt->len == 0 ||
2468 		    ((char *)opt->value)[opt->len - 1] != '\0') {
2469 			*error = EINVAL;
2470 			return (NULL);
2471 		}
2472 		return (opt->value);
2473 	}
2474 	*error = ENOENT;
2475 	return (NULL);
2476 }
2477 
2478 int
2479 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2480 	uint64_t val)
2481 {
2482 	struct vfsopt *opt;
2483 
2484 	TAILQ_FOREACH(opt, opts, link) {
2485 		if (strcmp(name, opt->name) == 0) {
2486 			opt->seen = 1;
2487 			if (w != NULL)
2488 				*w |= val;
2489 			return (1);
2490 		}
2491 	}
2492 	if (w != NULL)
2493 		*w &= ~val;
2494 	return (0);
2495 }
2496 
2497 int
2498 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2499 {
2500 	va_list ap;
2501 	struct vfsopt *opt;
2502 	int ret;
2503 
2504 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2505 
2506 	TAILQ_FOREACH(opt, opts, link) {
2507 		if (strcmp(name, opt->name) != 0)
2508 			continue;
2509 		opt->seen = 1;
2510 		if (opt->len == 0 || opt->value == NULL)
2511 			return (0);
2512 		if (((char *)opt->value)[opt->len - 1] != '\0')
2513 			return (0);
2514 		va_start(ap, fmt);
2515 		ret = vsscanf(opt->value, fmt, ap);
2516 		va_end(ap);
2517 		return (ret);
2518 	}
2519 	return (0);
2520 }
2521 
2522 int
2523 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2524 {
2525 	struct vfsopt *opt;
2526 
2527 	TAILQ_FOREACH(opt, opts, link) {
2528 		if (strcmp(name, opt->name) != 0)
2529 			continue;
2530 		opt->seen = 1;
2531 		if (opt->value == NULL)
2532 			opt->len = len;
2533 		else {
2534 			if (opt->len != len)
2535 				return (EINVAL);
2536 			bcopy(value, opt->value, len);
2537 		}
2538 		return (0);
2539 	}
2540 	return (ENOENT);
2541 }
2542 
2543 int
2544 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2545 {
2546 	struct vfsopt *opt;
2547 
2548 	TAILQ_FOREACH(opt, opts, link) {
2549 		if (strcmp(name, opt->name) != 0)
2550 			continue;
2551 		opt->seen = 1;
2552 		if (opt->value == NULL)
2553 			opt->len = len;
2554 		else {
2555 			if (opt->len < len)
2556 				return (EINVAL);
2557 			opt->len = len;
2558 			bcopy(value, opt->value, len);
2559 		}
2560 		return (0);
2561 	}
2562 	return (ENOENT);
2563 }
2564 
2565 int
2566 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2567 {
2568 	struct vfsopt *opt;
2569 
2570 	TAILQ_FOREACH(opt, opts, link) {
2571 		if (strcmp(name, opt->name) != 0)
2572 			continue;
2573 		opt->seen = 1;
2574 		if (opt->value == NULL)
2575 			opt->len = strlen(value) + 1;
2576 		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2577 			return (EINVAL);
2578 		return (0);
2579 	}
2580 	return (ENOENT);
2581 }
2582 
2583 /*
2584  * Find and copy a mount option.
2585  *
2586  * The size of the buffer has to be specified
2587  * in len, if it is not the same length as the
2588  * mount option, EINVAL is returned.
2589  * Returns ENOENT if the option is not found.
2590  */
2591 int
2592 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2593 {
2594 	struct vfsopt *opt;
2595 
2596 	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2597 
2598 	TAILQ_FOREACH(opt, opts, link) {
2599 		if (strcmp(name, opt->name) == 0) {
2600 			opt->seen = 1;
2601 			if (len != opt->len)
2602 				return (EINVAL);
2603 			bcopy(opt->value, dest, opt->len);
2604 			return (0);
2605 		}
2606 	}
2607 	return (ENOENT);
2608 }
2609 
2610 int
2611 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2612 {
2613 
2614 	/*
2615 	 * Filesystems only fill in part of the structure for updates, we
2616 	 * have to read the entirety first to get all content.
2617 	 */
2618 	if (sbp != &mp->mnt_stat)
2619 		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2620 
2621 	/*
2622 	 * Set these in case the underlying filesystem fails to do so.
2623 	 */
2624 	sbp->f_version = STATFS_VERSION;
2625 	sbp->f_namemax = NAME_MAX;
2626 	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2627 
2628 	return (mp->mnt_op->vfs_statfs(mp, sbp));
2629 }
2630 
2631 void
2632 vfs_mountedfrom(struct mount *mp, const char *from)
2633 {
2634 
2635 	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2636 	strlcpy(mp->mnt_stat.f_mntfromname, from,
2637 	    sizeof mp->mnt_stat.f_mntfromname);
2638 }
2639 
2640 /*
2641  * ---------------------------------------------------------------------
2642  * This is the api for building mount args and mounting filesystems from
2643  * inside the kernel.
2644  *
2645  * The API works by accumulation of individual args.  First error is
2646  * latched.
2647  *
2648  * XXX: should be documented in new manpage kernel_mount(9)
2649  */
2650 
2651 /* A memory allocation which must be freed when we are done */
2652 struct mntaarg {
2653 	SLIST_ENTRY(mntaarg)	next;
2654 };
2655 
2656 /* The header for the mount arguments */
2657 struct mntarg {
2658 	struct iovec *v;
2659 	int len;
2660 	int error;
2661 	SLIST_HEAD(, mntaarg)	list;
2662 };
2663 
2664 /*
2665  * Add a boolean argument.
2666  *
2667  * flag is the boolean value.
2668  * name must start with "no".
2669  */
2670 struct mntarg *
2671 mount_argb(struct mntarg *ma, int flag, const char *name)
2672 {
2673 
2674 	KASSERT(name[0] == 'n' && name[1] == 'o',
2675 	    ("mount_argb(...,%s): name must start with 'no'", name));
2676 
2677 	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2678 }
2679 
2680 /*
2681  * Add an argument printf style
2682  */
2683 struct mntarg *
2684 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2685 {
2686 	va_list ap;
2687 	struct mntaarg *maa;
2688 	struct sbuf *sb;
2689 	int len;
2690 
2691 	if (ma == NULL) {
2692 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2693 		SLIST_INIT(&ma->list);
2694 	}
2695 	if (ma->error)
2696 		return (ma);
2697 
2698 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2699 	    M_MOUNT, M_WAITOK);
2700 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2701 	ma->v[ma->len].iov_len = strlen(name) + 1;
2702 	ma->len++;
2703 
2704 	sb = sbuf_new_auto();
2705 	va_start(ap, fmt);
2706 	sbuf_vprintf(sb, fmt, ap);
2707 	va_end(ap);
2708 	sbuf_finish(sb);
2709 	len = sbuf_len(sb) + 1;
2710 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2711 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2712 	bcopy(sbuf_data(sb), maa + 1, len);
2713 	sbuf_delete(sb);
2714 
2715 	ma->v[ma->len].iov_base = maa + 1;
2716 	ma->v[ma->len].iov_len = len;
2717 	ma->len++;
2718 
2719 	return (ma);
2720 }
2721 
2722 /*
2723  * Add an argument which is a userland string.
2724  */
2725 struct mntarg *
2726 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2727 {
2728 	struct mntaarg *maa;
2729 	char *tbuf;
2730 
2731 	if (val == NULL)
2732 		return (ma);
2733 	if (ma == NULL) {
2734 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2735 		SLIST_INIT(&ma->list);
2736 	}
2737 	if (ma->error)
2738 		return (ma);
2739 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2740 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2741 	tbuf = (void *)(maa + 1);
2742 	ma->error = copyinstr(val, tbuf, len, NULL);
2743 	return (mount_arg(ma, name, tbuf, -1));
2744 }
2745 
2746 /*
2747  * Plain argument.
2748  *
2749  * If length is -1, treat value as a C string.
2750  */
2751 struct mntarg *
2752 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2753 {
2754 
2755 	if (ma == NULL) {
2756 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2757 		SLIST_INIT(&ma->list);
2758 	}
2759 	if (ma->error)
2760 		return (ma);
2761 
2762 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2763 	    M_MOUNT, M_WAITOK);
2764 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2765 	ma->v[ma->len].iov_len = strlen(name) + 1;
2766 	ma->len++;
2767 
2768 	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2769 	if (len < 0)
2770 		ma->v[ma->len].iov_len = strlen(val) + 1;
2771 	else
2772 		ma->v[ma->len].iov_len = len;
2773 	ma->len++;
2774 	return (ma);
2775 }
2776 
2777 /*
2778  * Free a mntarg structure
2779  */
2780 static void
2781 free_mntarg(struct mntarg *ma)
2782 {
2783 	struct mntaarg *maa;
2784 
2785 	while (!SLIST_EMPTY(&ma->list)) {
2786 		maa = SLIST_FIRST(&ma->list);
2787 		SLIST_REMOVE_HEAD(&ma->list, next);
2788 		free(maa, M_MOUNT);
2789 	}
2790 	free(ma->v, M_MOUNT);
2791 	free(ma, M_MOUNT);
2792 }
2793 
2794 /*
2795  * Mount a filesystem
2796  */
2797 int
2798 kernel_mount(struct mntarg *ma, uint64_t flags)
2799 {
2800 	struct uio auio;
2801 	int error;
2802 
2803 	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2804 	KASSERT(ma->v != NULL, ("kernel_mount NULL ma->v"));
2805 	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2806 
2807 	auio.uio_iov = ma->v;
2808 	auio.uio_iovcnt = ma->len;
2809 	auio.uio_segflg = UIO_SYSSPACE;
2810 
2811 	error = ma->error;
2812 	if (!error)
2813 		error = vfs_donmount(curthread, flags, &auio);
2814 	free_mntarg(ma);
2815 	return (error);
2816 }
2817 
2818 /* Map from mount options to printable formats. */
2819 static struct mntoptnames optnames[] = {
2820 	MNTOPT_NAMES
2821 };
2822 
2823 #define DEVCTL_LEN 1024
2824 static void
2825 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2826 {
2827 	const uint8_t *cp;
2828 	struct mntoptnames *fp;
2829 	struct sbuf sb;
2830 	struct statfs *sfp = &mp->mnt_stat;
2831 	char *buf;
2832 
2833 	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2834 	if (buf == NULL)
2835 		return;
2836 	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2837 	sbuf_cpy(&sb, "mount-point=\"");
2838 	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2839 	sbuf_cat(&sb, "\" mount-dev=\"");
2840 	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2841 	sbuf_cat(&sb, "\" mount-type=\"");
2842 	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2843 	sbuf_cat(&sb, "\" fsid=0x");
2844 	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2845 	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2846 		sbuf_printf(&sb, "%02x", cp[i]);
2847 	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2848 	for (fp = optnames; fp->o_opt != 0; fp++) {
2849 		if ((mp->mnt_flag & fp->o_opt) != 0) {
2850 			sbuf_cat(&sb, fp->o_name);
2851 			sbuf_putc(&sb, ';');
2852 		}
2853 	}
2854 	sbuf_putc(&sb, '"');
2855 	sbuf_finish(&sb);
2856 
2857 	/*
2858 	 * Options are not published because the form of the options depends on
2859 	 * the file system and may include binary data. In addition, they don't
2860 	 * necessarily provide enough useful information to be actionable when
2861 	 * devd processes them.
2862 	 */
2863 
2864 	if (sbuf_error(&sb) == 0)
2865 		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2866 	sbuf_delete(&sb);
2867 	free(buf, M_MOUNT);
2868 }
2869 
2870 /*
2871  * Force remount specified mount point to read-only.  The argument
2872  * must be busied to avoid parallel unmount attempts.
2873  *
2874  * Intended use is to prevent further writes if some metadata
2875  * inconsistency is detected.  Note that the function still flushes
2876  * all cached metadata and data for the mount point, which might be
2877  * not always suitable.
2878  */
2879 int
2880 vfs_remount_ro(struct mount *mp)
2881 {
2882 	struct vfsoptlist *opts;
2883 	struct vfsopt *opt;
2884 	struct vnode *vp_covered, *rootvp;
2885 	int error;
2886 
2887 	KASSERT(mp->mnt_lockref > 0,
2888 	    ("vfs_remount_ro: mp %p is not busied", mp));
2889 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
2890 	    ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
2891 
2892 	rootvp = NULL;
2893 	vp_covered = mp->mnt_vnodecovered;
2894 	error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
2895 	if (error != 0)
2896 		return (error);
2897 	VI_LOCK(vp_covered);
2898 	if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
2899 		VI_UNLOCK(vp_covered);
2900 		vput(vp_covered);
2901 		return (EBUSY);
2902 	}
2903 	vp_covered->v_iflag |= VI_MOUNT;
2904 	VI_UNLOCK(vp_covered);
2905 	vfs_op_enter(mp);
2906 	vn_seqc_write_begin(vp_covered);
2907 
2908 	MNT_ILOCK(mp);
2909 	if ((mp->mnt_flag & MNT_RDONLY) != 0) {
2910 		MNT_IUNLOCK(mp);
2911 		error = EBUSY;
2912 		goto out;
2913 	}
2914 	mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
2915 	rootvp = vfs_cache_root_clear(mp);
2916 	MNT_IUNLOCK(mp);
2917 
2918 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
2919 	TAILQ_INIT(opts);
2920 	opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
2921 	opt->name = strdup("ro", M_MOUNT);
2922 	opt->value = NULL;
2923 	TAILQ_INSERT_TAIL(opts, opt, link);
2924 	vfs_mergeopts(opts, mp->mnt_opt);
2925 	mp->mnt_optnew = opts;
2926 
2927 	error = VFS_MOUNT(mp);
2928 
2929 	if (error == 0) {
2930 		MNT_ILOCK(mp);
2931 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
2932 		MNT_IUNLOCK(mp);
2933 		vfs_deallocate_syncvnode(mp);
2934 		if (mp->mnt_opt != NULL)
2935 			vfs_freeopts(mp->mnt_opt);
2936 		mp->mnt_opt = mp->mnt_optnew;
2937 	} else {
2938 		MNT_ILOCK(mp);
2939 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
2940 		MNT_IUNLOCK(mp);
2941 		vfs_freeopts(mp->mnt_optnew);
2942 	}
2943 	mp->mnt_optnew = NULL;
2944 
2945 out:
2946 	vfs_op_exit(mp);
2947 	VI_LOCK(vp_covered);
2948 	vp_covered->v_iflag &= ~VI_MOUNT;
2949 	VI_UNLOCK(vp_covered);
2950 	vput(vp_covered);
2951 	vn_seqc_write_end(vp_covered);
2952 	if (rootvp != NULL) {
2953 		vn_seqc_write_end(rootvp);
2954 		vrele(rootvp);
2955 	}
2956 	return (error);
2957 }
2958 
2959 /*
2960  * Suspend write operations on all local writeable filesystems.  Does
2961  * full sync of them in the process.
2962  *
2963  * Iterate over the mount points in reverse order, suspending most
2964  * recently mounted filesystems first.  It handles a case where a
2965  * filesystem mounted from a md(4) vnode-backed device should be
2966  * suspended before the filesystem that owns the vnode.
2967  */
2968 void
2969 suspend_all_fs(void)
2970 {
2971 	struct mount *mp;
2972 	int error;
2973 
2974 	mtx_lock(&mountlist_mtx);
2975 	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
2976 		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
2977 		if (error != 0)
2978 			continue;
2979 		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
2980 		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2981 			mtx_lock(&mountlist_mtx);
2982 			vfs_unbusy(mp);
2983 			continue;
2984 		}
2985 		error = vfs_write_suspend(mp, 0);
2986 		if (error == 0) {
2987 			MNT_ILOCK(mp);
2988 			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
2989 			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
2990 			MNT_IUNLOCK(mp);
2991 			mtx_lock(&mountlist_mtx);
2992 		} else {
2993 			printf("suspend of %s failed, error %d\n",
2994 			    mp->mnt_stat.f_mntonname, error);
2995 			mtx_lock(&mountlist_mtx);
2996 			vfs_unbusy(mp);
2997 		}
2998 	}
2999 	mtx_unlock(&mountlist_mtx);
3000 }
3001 
3002 void
3003 resume_all_fs(void)
3004 {
3005 	struct mount *mp;
3006 
3007 	mtx_lock(&mountlist_mtx);
3008 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3009 		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3010 			continue;
3011 		mtx_unlock(&mountlist_mtx);
3012 		MNT_ILOCK(mp);
3013 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3014 		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3015 		MNT_IUNLOCK(mp);
3016 		vfs_write_resume(mp, 0);
3017 		mtx_lock(&mountlist_mtx);
3018 		vfs_unbusy(mp);
3019 	}
3020 	mtx_unlock(&mountlist_mtx);
3021 }
3022