1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1999-2004 Poul-Henning Kamp 5 * Copyright (c) 1999 Michael Smith 6 * Copyright (c) 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include <sys/param.h> 43 #include <sys/conf.h> 44 #include <sys/smp.h> 45 #include <sys/eventhandler.h> 46 #include <sys/fcntl.h> 47 #include <sys/jail.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/libkern.h> 51 #include <sys/malloc.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/namei.h> 55 #include <sys/priv.h> 56 #include <sys/proc.h> 57 #include <sys/filedesc.h> 58 #include <sys/reboot.h> 59 #include <sys/sbuf.h> 60 #include <sys/syscallsubr.h> 61 #include <sys/sysproto.h> 62 #include <sys/sx.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysent.h> 65 #include <sys/systm.h> 66 #include <sys/vnode.h> 67 #include <vm/uma.h> 68 69 #include <geom/geom.h> 70 71 #include <machine/stdarg.h> 72 73 #include <security/audit/audit.h> 74 #include <security/mac/mac_framework.h> 75 76 #define VFS_MOUNTARG_SIZE_MAX (1024 * 64) 77 78 static int vfs_domount(struct thread *td, const char *fstype, char *fspath, 79 uint64_t fsflags, struct vfsoptlist **optlist); 80 static void free_mntarg(struct mntarg *ma); 81 82 static int usermount = 0; 83 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0, 84 "Unprivileged users may mount and unmount file systems"); 85 86 static bool default_autoro = false; 87 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0, 88 "Retry failed r/w mount as r/o if no explicit ro/rw option is specified"); 89 90 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure"); 91 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure"); 92 static uma_zone_t mount_zone; 93 94 /* List of mounted filesystems. */ 95 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); 96 97 /* For any iteration/modification of mountlist */ 98 struct mtx mountlist_mtx; 99 MTX_SYSINIT(mountlist, &mountlist_mtx, "mountlist", MTX_DEF); 100 101 EVENTHANDLER_LIST_DEFINE(vfs_mounted); 102 EVENTHANDLER_LIST_DEFINE(vfs_unmounted); 103 104 /* 105 * Global opts, taken by all filesystems 106 */ 107 static const char *global_opts[] = { 108 "errmsg", 109 "fstype", 110 "fspath", 111 "ro", 112 "rw", 113 "nosuid", 114 "noexec", 115 NULL 116 }; 117 118 static int 119 mount_init(void *mem, int size, int flags) 120 { 121 struct mount *mp; 122 123 mp = (struct mount *)mem; 124 mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF); 125 mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF); 126 lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0); 127 mp->mnt_thread_in_ops_pcpu = uma_zalloc_pcpu(pcpu_zone_int, 128 M_WAITOK | M_ZERO); 129 mp->mnt_ref_pcpu = uma_zalloc_pcpu(pcpu_zone_int, 130 M_WAITOK | M_ZERO); 131 mp->mnt_lockref_pcpu = uma_zalloc_pcpu(pcpu_zone_int, 132 M_WAITOK | M_ZERO); 133 mp->mnt_writeopcount_pcpu = uma_zalloc_pcpu(pcpu_zone_int, 134 M_WAITOK | M_ZERO); 135 mp->mnt_ref = 0; 136 mp->mnt_vfs_ops = 1; 137 mp->mnt_rootvnode = NULL; 138 return (0); 139 } 140 141 static void 142 mount_fini(void *mem, int size) 143 { 144 struct mount *mp; 145 146 mp = (struct mount *)mem; 147 uma_zfree_pcpu(pcpu_zone_int, mp->mnt_writeopcount_pcpu); 148 uma_zfree_pcpu(pcpu_zone_int, mp->mnt_lockref_pcpu); 149 uma_zfree_pcpu(pcpu_zone_int, mp->mnt_ref_pcpu); 150 uma_zfree_pcpu(pcpu_zone_int, mp->mnt_thread_in_ops_pcpu); 151 lockdestroy(&mp->mnt_explock); 152 mtx_destroy(&mp->mnt_listmtx); 153 mtx_destroy(&mp->mnt_mtx); 154 } 155 156 static void 157 vfs_mount_init(void *dummy __unused) 158 { 159 160 mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL, 161 NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE); 162 } 163 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL); 164 165 /* 166 * --------------------------------------------------------------------- 167 * Functions for building and sanitizing the mount options 168 */ 169 170 /* Remove one mount option. */ 171 static void 172 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt) 173 { 174 175 TAILQ_REMOVE(opts, opt, link); 176 free(opt->name, M_MOUNT); 177 if (opt->value != NULL) 178 free(opt->value, M_MOUNT); 179 free(opt, M_MOUNT); 180 } 181 182 /* Release all resources related to the mount options. */ 183 void 184 vfs_freeopts(struct vfsoptlist *opts) 185 { 186 struct vfsopt *opt; 187 188 while (!TAILQ_EMPTY(opts)) { 189 opt = TAILQ_FIRST(opts); 190 vfs_freeopt(opts, opt); 191 } 192 free(opts, M_MOUNT); 193 } 194 195 void 196 vfs_deleteopt(struct vfsoptlist *opts, const char *name) 197 { 198 struct vfsopt *opt, *temp; 199 200 if (opts == NULL) 201 return; 202 TAILQ_FOREACH_SAFE(opt, opts, link, temp) { 203 if (strcmp(opt->name, name) == 0) 204 vfs_freeopt(opts, opt); 205 } 206 } 207 208 static int 209 vfs_isopt_ro(const char *opt) 210 { 211 212 if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 || 213 strcmp(opt, "norw") == 0) 214 return (1); 215 return (0); 216 } 217 218 static int 219 vfs_isopt_rw(const char *opt) 220 { 221 222 if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0) 223 return (1); 224 return (0); 225 } 226 227 /* 228 * Check if options are equal (with or without the "no" prefix). 229 */ 230 static int 231 vfs_equalopts(const char *opt1, const char *opt2) 232 { 233 char *p; 234 235 /* "opt" vs. "opt" or "noopt" vs. "noopt" */ 236 if (strcmp(opt1, opt2) == 0) 237 return (1); 238 /* "noopt" vs. "opt" */ 239 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0) 240 return (1); 241 /* "opt" vs. "noopt" */ 242 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0) 243 return (1); 244 while ((p = strchr(opt1, '.')) != NULL && 245 !strncmp(opt1, opt2, ++p - opt1)) { 246 opt2 += p - opt1; 247 opt1 = p; 248 /* "foo.noopt" vs. "foo.opt" */ 249 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0) 250 return (1); 251 /* "foo.opt" vs. "foo.noopt" */ 252 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0) 253 return (1); 254 } 255 /* "ro" / "rdonly" / "norw" / "rw" / "noro" */ 256 if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) && 257 (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2))) 258 return (1); 259 return (0); 260 } 261 262 /* 263 * If a mount option is specified several times, 264 * (with or without the "no" prefix) only keep 265 * the last occurrence of it. 266 */ 267 static void 268 vfs_sanitizeopts(struct vfsoptlist *opts) 269 { 270 struct vfsopt *opt, *opt2, *tmp; 271 272 TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) { 273 opt2 = TAILQ_PREV(opt, vfsoptlist, link); 274 while (opt2 != NULL) { 275 if (vfs_equalopts(opt->name, opt2->name)) { 276 tmp = TAILQ_PREV(opt2, vfsoptlist, link); 277 vfs_freeopt(opts, opt2); 278 opt2 = tmp; 279 } else { 280 opt2 = TAILQ_PREV(opt2, vfsoptlist, link); 281 } 282 } 283 } 284 } 285 286 /* 287 * Build a linked list of mount options from a struct uio. 288 */ 289 int 290 vfs_buildopts(struct uio *auio, struct vfsoptlist **options) 291 { 292 struct vfsoptlist *opts; 293 struct vfsopt *opt; 294 size_t memused, namelen, optlen; 295 unsigned int i, iovcnt; 296 int error; 297 298 opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK); 299 TAILQ_INIT(opts); 300 memused = 0; 301 iovcnt = auio->uio_iovcnt; 302 for (i = 0; i < iovcnt; i += 2) { 303 namelen = auio->uio_iov[i].iov_len; 304 optlen = auio->uio_iov[i + 1].iov_len; 305 memused += sizeof(struct vfsopt) + optlen + namelen; 306 /* 307 * Avoid consuming too much memory, and attempts to overflow 308 * memused. 309 */ 310 if (memused > VFS_MOUNTARG_SIZE_MAX || 311 optlen > VFS_MOUNTARG_SIZE_MAX || 312 namelen > VFS_MOUNTARG_SIZE_MAX) { 313 error = EINVAL; 314 goto bad; 315 } 316 317 opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK); 318 opt->name = malloc(namelen, M_MOUNT, M_WAITOK); 319 opt->value = NULL; 320 opt->len = 0; 321 opt->pos = i / 2; 322 opt->seen = 0; 323 324 /* 325 * Do this early, so jumps to "bad" will free the current 326 * option. 327 */ 328 TAILQ_INSERT_TAIL(opts, opt, link); 329 330 if (auio->uio_segflg == UIO_SYSSPACE) { 331 bcopy(auio->uio_iov[i].iov_base, opt->name, namelen); 332 } else { 333 error = copyin(auio->uio_iov[i].iov_base, opt->name, 334 namelen); 335 if (error) 336 goto bad; 337 } 338 /* Ensure names are null-terminated strings. */ 339 if (namelen == 0 || opt->name[namelen - 1] != '\0') { 340 error = EINVAL; 341 goto bad; 342 } 343 if (optlen != 0) { 344 opt->len = optlen; 345 opt->value = malloc(optlen, M_MOUNT, M_WAITOK); 346 if (auio->uio_segflg == UIO_SYSSPACE) { 347 bcopy(auio->uio_iov[i + 1].iov_base, opt->value, 348 optlen); 349 } else { 350 error = copyin(auio->uio_iov[i + 1].iov_base, 351 opt->value, optlen); 352 if (error) 353 goto bad; 354 } 355 } 356 } 357 vfs_sanitizeopts(opts); 358 *options = opts; 359 return (0); 360 bad: 361 vfs_freeopts(opts); 362 return (error); 363 } 364 365 /* 366 * Merge the old mount options with the new ones passed 367 * in the MNT_UPDATE case. 368 * 369 * XXX: This function will keep a "nofoo" option in the new 370 * options. E.g, if the option's canonical name is "foo", 371 * "nofoo" ends up in the mount point's active options. 372 */ 373 static void 374 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts) 375 { 376 struct vfsopt *opt, *new; 377 378 TAILQ_FOREACH(opt, oldopts, link) { 379 new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK); 380 new->name = strdup(opt->name, M_MOUNT); 381 if (opt->len != 0) { 382 new->value = malloc(opt->len, M_MOUNT, M_WAITOK); 383 bcopy(opt->value, new->value, opt->len); 384 } else 385 new->value = NULL; 386 new->len = opt->len; 387 new->seen = opt->seen; 388 TAILQ_INSERT_HEAD(toopts, new, link); 389 } 390 vfs_sanitizeopts(toopts); 391 } 392 393 /* 394 * Mount a filesystem. 395 */ 396 #ifndef _SYS_SYSPROTO_H_ 397 struct nmount_args { 398 struct iovec *iovp; 399 unsigned int iovcnt; 400 int flags; 401 }; 402 #endif 403 int 404 sys_nmount(struct thread *td, struct nmount_args *uap) 405 { 406 struct uio *auio; 407 int error; 408 u_int iovcnt; 409 uint64_t flags; 410 411 /* 412 * Mount flags are now 64-bits. On 32-bit archtectures only 413 * 32-bits are passed in, but from here on everything handles 414 * 64-bit flags correctly. 415 */ 416 flags = uap->flags; 417 418 AUDIT_ARG_FFLAGS(flags); 419 CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__, 420 uap->iovp, uap->iovcnt, flags); 421 422 /* 423 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 424 * userspace to set this flag, but we must filter it out if we want 425 * MNT_UPDATE on the root file system to work. 426 * MNT_ROOTFS should only be set by the kernel when mounting its 427 * root file system. 428 */ 429 flags &= ~MNT_ROOTFS; 430 431 iovcnt = uap->iovcnt; 432 /* 433 * Check that we have an even number of iovec's 434 * and that we have at least two options. 435 */ 436 if ((iovcnt & 1) || (iovcnt < 4)) { 437 CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__, 438 uap->iovcnt); 439 return (EINVAL); 440 } 441 442 error = copyinuio(uap->iovp, iovcnt, &auio); 443 if (error) { 444 CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno", 445 __func__, error); 446 return (error); 447 } 448 error = vfs_donmount(td, flags, auio); 449 450 free(auio, M_IOV); 451 return (error); 452 } 453 454 /* 455 * --------------------------------------------------------------------- 456 * Various utility functions 457 */ 458 459 void 460 vfs_ref(struct mount *mp) 461 { 462 463 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 464 if (vfs_op_thread_enter(mp)) { 465 vfs_mp_count_add_pcpu(mp, ref, 1); 466 vfs_op_thread_exit(mp); 467 return; 468 } 469 470 MNT_ILOCK(mp); 471 MNT_REF(mp); 472 MNT_IUNLOCK(mp); 473 } 474 475 void 476 vfs_rel(struct mount *mp) 477 { 478 479 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 480 if (vfs_op_thread_enter(mp)) { 481 vfs_mp_count_sub_pcpu(mp, ref, 1); 482 vfs_op_thread_exit(mp); 483 return; 484 } 485 486 MNT_ILOCK(mp); 487 MNT_REL(mp); 488 MNT_IUNLOCK(mp); 489 } 490 491 /* 492 * Allocate and initialize the mount point struct. 493 */ 494 struct mount * 495 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath, 496 struct ucred *cred) 497 { 498 struct mount *mp; 499 500 mp = uma_zalloc(mount_zone, M_WAITOK); 501 bzero(&mp->mnt_startzero, 502 __rangeof(struct mount, mnt_startzero, mnt_endzero)); 503 TAILQ_INIT(&mp->mnt_nvnodelist); 504 mp->mnt_nvnodelistsize = 0; 505 TAILQ_INIT(&mp->mnt_lazyvnodelist); 506 mp->mnt_lazyvnodelistsize = 0; 507 if (mp->mnt_ref != 0 || mp->mnt_lockref != 0 || 508 mp->mnt_writeopcount != 0) 509 panic("%s: non-zero counters on new mp %p\n", __func__, mp); 510 if (mp->mnt_vfs_ops != 1) 511 panic("%s: vfs_ops should be 1 but %d found\n", __func__, 512 mp->mnt_vfs_ops); 513 (void) vfs_busy(mp, MBF_NOWAIT); 514 atomic_add_acq_int(&vfsp->vfc_refcount, 1); 515 mp->mnt_op = vfsp->vfc_vfsops; 516 mp->mnt_vfc = vfsp; 517 mp->mnt_stat.f_type = vfsp->vfc_typenum; 518 mp->mnt_gen++; 519 strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN); 520 mp->mnt_vnodecovered = vp; 521 mp->mnt_cred = crdup(cred); 522 mp->mnt_stat.f_owner = cred->cr_uid; 523 strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN); 524 mp->mnt_iosize_max = DFLTPHYS; 525 #ifdef MAC 526 mac_mount_init(mp); 527 mac_mount_create(cred, mp); 528 #endif 529 arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0); 530 TAILQ_INIT(&mp->mnt_uppers); 531 return (mp); 532 } 533 534 /* 535 * Destroy the mount struct previously allocated by vfs_mount_alloc(). 536 */ 537 void 538 vfs_mount_destroy(struct mount *mp) 539 { 540 541 if (mp->mnt_vfs_ops == 0) 542 panic("%s: entered with zero vfs_ops\n", __func__); 543 544 vfs_assert_mount_counters(mp); 545 546 MNT_ILOCK(mp); 547 mp->mnt_kern_flag |= MNTK_REFEXPIRE; 548 if (mp->mnt_kern_flag & MNTK_MWAIT) { 549 mp->mnt_kern_flag &= ~MNTK_MWAIT; 550 wakeup(mp); 551 } 552 while (mp->mnt_ref) 553 msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0); 554 KASSERT(mp->mnt_ref == 0, 555 ("%s: invalid refcount in the drain path @ %s:%d", __func__, 556 __FILE__, __LINE__)); 557 if (mp->mnt_writeopcount != 0) 558 panic("vfs_mount_destroy: nonzero writeopcount"); 559 if (mp->mnt_secondary_writes != 0) 560 panic("vfs_mount_destroy: nonzero secondary_writes"); 561 atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1); 562 if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) { 563 struct vnode *vp; 564 565 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) 566 vn_printf(vp, "dangling vnode "); 567 panic("unmount: dangling vnode"); 568 } 569 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers")); 570 if (mp->mnt_nvnodelistsize != 0) 571 panic("vfs_mount_destroy: nonzero nvnodelistsize"); 572 if (mp->mnt_lazyvnodelistsize != 0) 573 panic("vfs_mount_destroy: nonzero lazyvnodelistsize"); 574 if (mp->mnt_lockref != 0) 575 panic("vfs_mount_destroy: nonzero lock refcount"); 576 MNT_IUNLOCK(mp); 577 578 if (mp->mnt_vfs_ops != 1) 579 panic("%s: vfs_ops should be 1 but %d found\n", __func__, 580 mp->mnt_vfs_ops); 581 582 if (mp->mnt_rootvnode != NULL) 583 panic("%s: mount point still has a root vnode %p\n", __func__, 584 mp->mnt_rootvnode); 585 586 if (mp->mnt_vnodecovered != NULL) 587 vrele(mp->mnt_vnodecovered); 588 #ifdef MAC 589 mac_mount_destroy(mp); 590 #endif 591 if (mp->mnt_opt != NULL) 592 vfs_freeopts(mp->mnt_opt); 593 crfree(mp->mnt_cred); 594 uma_zfree(mount_zone, mp); 595 } 596 597 static bool 598 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error) 599 { 600 /* This is an upgrade of an exisiting mount. */ 601 if ((fsflags & MNT_UPDATE) != 0) 602 return (false); 603 /* This is already an R/O mount. */ 604 if ((fsflags & MNT_RDONLY) != 0) 605 return (false); 606 607 switch (error) { 608 case ENODEV: /* generic, geom, ... */ 609 case EACCES: /* cam/scsi, ... */ 610 case EROFS: /* md, mmcsd, ... */ 611 /* 612 * These errors can be returned by the storage layer to signal 613 * that the media is read-only. No harm in the R/O mount 614 * attempt if the error was returned for some other reason. 615 */ 616 return (true); 617 default: 618 return (false); 619 } 620 } 621 622 int 623 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions) 624 { 625 struct vfsoptlist *optlist; 626 struct vfsopt *opt, *tmp_opt; 627 char *fstype, *fspath, *errmsg; 628 int error, fstypelen, fspathlen, errmsg_len, errmsg_pos; 629 bool autoro; 630 631 errmsg = fspath = NULL; 632 errmsg_len = fspathlen = 0; 633 errmsg_pos = -1; 634 autoro = default_autoro; 635 636 error = vfs_buildopts(fsoptions, &optlist); 637 if (error) 638 return (error); 639 640 if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0) 641 errmsg_pos = vfs_getopt_pos(optlist, "errmsg"); 642 643 /* 644 * We need these two options before the others, 645 * and they are mandatory for any filesystem. 646 * Ensure they are NUL terminated as well. 647 */ 648 fstypelen = 0; 649 error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen); 650 if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') { 651 error = EINVAL; 652 if (errmsg != NULL) 653 strncpy(errmsg, "Invalid fstype", errmsg_len); 654 goto bail; 655 } 656 fspathlen = 0; 657 error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen); 658 if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') { 659 error = EINVAL; 660 if (errmsg != NULL) 661 strncpy(errmsg, "Invalid fspath", errmsg_len); 662 goto bail; 663 } 664 665 /* 666 * We need to see if we have the "update" option 667 * before we call vfs_domount(), since vfs_domount() has special 668 * logic based on MNT_UPDATE. This is very important 669 * when we want to update the root filesystem. 670 */ 671 TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) { 672 int do_freeopt = 0; 673 674 if (strcmp(opt->name, "update") == 0) { 675 fsflags |= MNT_UPDATE; 676 do_freeopt = 1; 677 } 678 else if (strcmp(opt->name, "async") == 0) 679 fsflags |= MNT_ASYNC; 680 else if (strcmp(opt->name, "force") == 0) { 681 fsflags |= MNT_FORCE; 682 do_freeopt = 1; 683 } 684 else if (strcmp(opt->name, "reload") == 0) { 685 fsflags |= MNT_RELOAD; 686 do_freeopt = 1; 687 } 688 else if (strcmp(opt->name, "multilabel") == 0) 689 fsflags |= MNT_MULTILABEL; 690 else if (strcmp(opt->name, "noasync") == 0) 691 fsflags &= ~MNT_ASYNC; 692 else if (strcmp(opt->name, "noatime") == 0) 693 fsflags |= MNT_NOATIME; 694 else if (strcmp(opt->name, "atime") == 0) { 695 free(opt->name, M_MOUNT); 696 opt->name = strdup("nonoatime", M_MOUNT); 697 } 698 else if (strcmp(opt->name, "noclusterr") == 0) 699 fsflags |= MNT_NOCLUSTERR; 700 else if (strcmp(opt->name, "clusterr") == 0) { 701 free(opt->name, M_MOUNT); 702 opt->name = strdup("nonoclusterr", M_MOUNT); 703 } 704 else if (strcmp(opt->name, "noclusterw") == 0) 705 fsflags |= MNT_NOCLUSTERW; 706 else if (strcmp(opt->name, "clusterw") == 0) { 707 free(opt->name, M_MOUNT); 708 opt->name = strdup("nonoclusterw", M_MOUNT); 709 } 710 else if (strcmp(opt->name, "noexec") == 0) 711 fsflags |= MNT_NOEXEC; 712 else if (strcmp(opt->name, "exec") == 0) { 713 free(opt->name, M_MOUNT); 714 opt->name = strdup("nonoexec", M_MOUNT); 715 } 716 else if (strcmp(opt->name, "nosuid") == 0) 717 fsflags |= MNT_NOSUID; 718 else if (strcmp(opt->name, "suid") == 0) { 719 free(opt->name, M_MOUNT); 720 opt->name = strdup("nonosuid", M_MOUNT); 721 } 722 else if (strcmp(opt->name, "nosymfollow") == 0) 723 fsflags |= MNT_NOSYMFOLLOW; 724 else if (strcmp(opt->name, "symfollow") == 0) { 725 free(opt->name, M_MOUNT); 726 opt->name = strdup("nonosymfollow", M_MOUNT); 727 } 728 else if (strcmp(opt->name, "noro") == 0) { 729 fsflags &= ~MNT_RDONLY; 730 autoro = false; 731 } 732 else if (strcmp(opt->name, "rw") == 0) { 733 fsflags &= ~MNT_RDONLY; 734 autoro = false; 735 } 736 else if (strcmp(opt->name, "ro") == 0) { 737 fsflags |= MNT_RDONLY; 738 autoro = false; 739 } 740 else if (strcmp(opt->name, "rdonly") == 0) { 741 free(opt->name, M_MOUNT); 742 opt->name = strdup("ro", M_MOUNT); 743 fsflags |= MNT_RDONLY; 744 autoro = false; 745 } 746 else if (strcmp(opt->name, "autoro") == 0) { 747 do_freeopt = 1; 748 autoro = true; 749 } 750 else if (strcmp(opt->name, "suiddir") == 0) 751 fsflags |= MNT_SUIDDIR; 752 else if (strcmp(opt->name, "sync") == 0) 753 fsflags |= MNT_SYNCHRONOUS; 754 else if (strcmp(opt->name, "union") == 0) 755 fsflags |= MNT_UNION; 756 else if (strcmp(opt->name, "automounted") == 0) { 757 fsflags |= MNT_AUTOMOUNTED; 758 do_freeopt = 1; 759 } else if (strcmp(opt->name, "nocover") == 0) { 760 fsflags |= MNT_NOCOVER; 761 do_freeopt = 1; 762 } else if (strcmp(opt->name, "cover") == 0) { 763 fsflags &= ~MNT_NOCOVER; 764 do_freeopt = 1; 765 } else if (strcmp(opt->name, "emptydir") == 0) { 766 fsflags |= MNT_EMPTYDIR; 767 do_freeopt = 1; 768 } else if (strcmp(opt->name, "noemptydir") == 0) { 769 fsflags &= ~MNT_EMPTYDIR; 770 do_freeopt = 1; 771 } 772 if (do_freeopt) 773 vfs_freeopt(optlist, opt); 774 } 775 776 /* 777 * Be ultra-paranoid about making sure the type and fspath 778 * variables will fit in our mp buffers, including the 779 * terminating NUL. 780 */ 781 if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) { 782 error = ENAMETOOLONG; 783 goto bail; 784 } 785 786 error = vfs_domount(td, fstype, fspath, fsflags, &optlist); 787 788 /* 789 * See if we can mount in the read-only mode if the error code suggests 790 * that it could be possible and the mount options allow for that. 791 * Never try it if "[no]{ro|rw}" has been explicitly requested and not 792 * overridden by "autoro". 793 */ 794 if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) { 795 printf("%s: R/W mount failed, possibly R/O media," 796 " trying R/O mount\n", __func__); 797 fsflags |= MNT_RDONLY; 798 error = vfs_domount(td, fstype, fspath, fsflags, &optlist); 799 } 800 bail: 801 /* copyout the errmsg */ 802 if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt) 803 && errmsg_len > 0 && errmsg != NULL) { 804 if (fsoptions->uio_segflg == UIO_SYSSPACE) { 805 bcopy(errmsg, 806 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base, 807 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len); 808 } else { 809 copyout(errmsg, 810 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base, 811 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len); 812 } 813 } 814 815 if (optlist != NULL) 816 vfs_freeopts(optlist); 817 return (error); 818 } 819 820 /* 821 * Old mount API. 822 */ 823 #ifndef _SYS_SYSPROTO_H_ 824 struct mount_args { 825 char *type; 826 char *path; 827 int flags; 828 caddr_t data; 829 }; 830 #endif 831 /* ARGSUSED */ 832 int 833 sys_mount(struct thread *td, struct mount_args *uap) 834 { 835 char *fstype; 836 struct vfsconf *vfsp = NULL; 837 struct mntarg *ma = NULL; 838 uint64_t flags; 839 int error; 840 841 /* 842 * Mount flags are now 64-bits. On 32-bit architectures only 843 * 32-bits are passed in, but from here on everything handles 844 * 64-bit flags correctly. 845 */ 846 flags = uap->flags; 847 848 AUDIT_ARG_FFLAGS(flags); 849 850 /* 851 * Filter out MNT_ROOTFS. We do not want clients of mount() in 852 * userspace to set this flag, but we must filter it out if we want 853 * MNT_UPDATE on the root file system to work. 854 * MNT_ROOTFS should only be set by the kernel when mounting its 855 * root file system. 856 */ 857 flags &= ~MNT_ROOTFS; 858 859 fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK); 860 error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL); 861 if (error) { 862 free(fstype, M_TEMP); 863 return (error); 864 } 865 866 AUDIT_ARG_TEXT(fstype); 867 vfsp = vfs_byname_kld(fstype, td, &error); 868 free(fstype, M_TEMP); 869 if (vfsp == NULL) 870 return (ENOENT); 871 if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 && 872 vfsp->vfc_vfsops_sd->vfs_cmount == NULL) || 873 ((vfsp->vfc_flags & VFCF_SBDRY) == 0 && 874 vfsp->vfc_vfsops->vfs_cmount == NULL)) 875 return (EOPNOTSUPP); 876 877 ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN); 878 ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN); 879 ma = mount_argb(ma, flags & MNT_RDONLY, "noro"); 880 ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid"); 881 ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec"); 882 883 if ((vfsp->vfc_flags & VFCF_SBDRY) != 0) 884 return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags)); 885 return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags)); 886 } 887 888 /* 889 * vfs_domount_first(): first file system mount (not update) 890 */ 891 static int 892 vfs_domount_first( 893 struct thread *td, /* Calling thread. */ 894 struct vfsconf *vfsp, /* File system type. */ 895 char *fspath, /* Mount path. */ 896 struct vnode *vp, /* Vnode to be covered. */ 897 uint64_t fsflags, /* Flags common to all filesystems. */ 898 struct vfsoptlist **optlist /* Options local to the filesystem. */ 899 ) 900 { 901 struct vattr va; 902 struct mount *mp; 903 struct vnode *newdp, *rootvp; 904 int error, error1; 905 906 ASSERT_VOP_ELOCKED(vp, __func__); 907 KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here")); 908 909 if ((fsflags & MNT_EMPTYDIR) != 0) { 910 error = vfs_emptydir(vp); 911 if (error != 0) { 912 vput(vp); 913 return (error); 914 } 915 } 916 917 /* 918 * If the jail of the calling thread lacks permission for this type of 919 * file system, deny immediately. 920 */ 921 if (jailed(td->td_ucred) && !prison_allow(td->td_ucred, 922 vfsp->vfc_prison_flag)) { 923 vput(vp); 924 return (EPERM); 925 } 926 927 /* 928 * If the user is not root, ensure that they own the directory 929 * onto which we are attempting to mount. 930 */ 931 error = VOP_GETATTR(vp, &va, td->td_ucred); 932 if (error == 0 && va.va_uid != td->td_ucred->cr_uid) 933 error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN); 934 if (error == 0) 935 error = vinvalbuf(vp, V_SAVE, 0, 0); 936 if (error == 0 && vp->v_type != VDIR) 937 error = ENOTDIR; 938 if (error == 0) { 939 VI_LOCK(vp); 940 if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL) 941 vp->v_iflag |= VI_MOUNT; 942 else 943 error = EBUSY; 944 VI_UNLOCK(vp); 945 } 946 if (error != 0) { 947 vput(vp); 948 return (error); 949 } 950 vn_seqc_write_begin(vp); 951 VOP_UNLOCK(vp); 952 953 /* Allocate and initialize the filesystem. */ 954 mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred); 955 /* XXXMAC: pass to vfs_mount_alloc? */ 956 mp->mnt_optnew = *optlist; 957 /* Set the mount level flags. */ 958 mp->mnt_flag = (fsflags & (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY)); 959 960 /* 961 * Mount the filesystem. 962 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they 963 * get. No freeing of cn_pnbuf. 964 */ 965 error1 = 0; 966 if ((error = VFS_MOUNT(mp)) != 0 || 967 (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 || 968 (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) { 969 if (error1 != 0) { 970 error = error1; 971 rootvp = vfs_cache_root_clear(mp); 972 if (rootvp != NULL) 973 vrele(rootvp); 974 if ((error1 = VFS_UNMOUNT(mp, 0)) != 0) 975 printf("VFS_UNMOUNT returned %d\n", error1); 976 } 977 vfs_unbusy(mp); 978 mp->mnt_vnodecovered = NULL; 979 vfs_mount_destroy(mp); 980 VI_LOCK(vp); 981 vp->v_iflag &= ~VI_MOUNT; 982 VI_UNLOCK(vp); 983 vn_seqc_write_end(vp); 984 vrele(vp); 985 return (error); 986 } 987 vn_seqc_write_begin(newdp); 988 VOP_UNLOCK(newdp); 989 990 if (mp->mnt_opt != NULL) 991 vfs_freeopts(mp->mnt_opt); 992 mp->mnt_opt = mp->mnt_optnew; 993 *optlist = NULL; 994 995 /* 996 * Prevent external consumers of mount options from reading mnt_optnew. 997 */ 998 mp->mnt_optnew = NULL; 999 1000 MNT_ILOCK(mp); 1001 if ((mp->mnt_flag & MNT_ASYNC) != 0 && 1002 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0) 1003 mp->mnt_kern_flag |= MNTK_ASYNC; 1004 else 1005 mp->mnt_kern_flag &= ~MNTK_ASYNC; 1006 MNT_IUNLOCK(mp); 1007 1008 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1009 cache_purge(vp); 1010 VI_LOCK(vp); 1011 vp->v_iflag &= ~VI_MOUNT; 1012 VI_UNLOCK(vp); 1013 vp->v_mountedhere = mp; 1014 /* Place the new filesystem at the end of the mount list. */ 1015 mtx_lock(&mountlist_mtx); 1016 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list); 1017 mtx_unlock(&mountlist_mtx); 1018 vfs_event_signal(NULL, VQ_MOUNT, 0); 1019 vn_lock(newdp, LK_EXCLUSIVE | LK_RETRY); 1020 VOP_UNLOCK(vp); 1021 EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td); 1022 VOP_UNLOCK(newdp); 1023 mountcheckdirs(vp, newdp); 1024 vn_seqc_write_end(vp); 1025 vn_seqc_write_end(newdp); 1026 vrele(newdp); 1027 if ((mp->mnt_flag & MNT_RDONLY) == 0) 1028 vfs_allocate_syncvnode(mp); 1029 vfs_op_exit(mp); 1030 vfs_unbusy(mp); 1031 return (0); 1032 } 1033 1034 /* 1035 * vfs_domount_update(): update of mounted file system 1036 */ 1037 static int 1038 vfs_domount_update( 1039 struct thread *td, /* Calling thread. */ 1040 struct vnode *vp, /* Mount point vnode. */ 1041 uint64_t fsflags, /* Flags common to all filesystems. */ 1042 struct vfsoptlist **optlist /* Options local to the filesystem. */ 1043 ) 1044 { 1045 struct export_args export; 1046 struct o2export_args o2export; 1047 struct vnode *rootvp; 1048 void *bufp; 1049 struct mount *mp; 1050 int error, export_error, i, len; 1051 uint64_t flag; 1052 gid_t *grps; 1053 1054 ASSERT_VOP_ELOCKED(vp, __func__); 1055 KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here")); 1056 mp = vp->v_mount; 1057 1058 if ((vp->v_vflag & VV_ROOT) == 0) { 1059 if (vfs_copyopt(*optlist, "export", &export, sizeof(export)) 1060 == 0) 1061 error = EXDEV; 1062 else 1063 error = EINVAL; 1064 vput(vp); 1065 return (error); 1066 } 1067 1068 /* 1069 * We only allow the filesystem to be reloaded if it 1070 * is currently mounted read-only. 1071 */ 1072 flag = mp->mnt_flag; 1073 if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) { 1074 vput(vp); 1075 return (EOPNOTSUPP); /* Needs translation */ 1076 } 1077 /* 1078 * Only privileged root, or (if MNT_USER is set) the user that 1079 * did the original mount is permitted to update it. 1080 */ 1081 error = vfs_suser(mp, td); 1082 if (error != 0) { 1083 vput(vp); 1084 return (error); 1085 } 1086 if (vfs_busy(mp, MBF_NOWAIT)) { 1087 vput(vp); 1088 return (EBUSY); 1089 } 1090 VI_LOCK(vp); 1091 if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) { 1092 VI_UNLOCK(vp); 1093 vfs_unbusy(mp); 1094 vput(vp); 1095 return (EBUSY); 1096 } 1097 vp->v_iflag |= VI_MOUNT; 1098 VI_UNLOCK(vp); 1099 VOP_UNLOCK(vp); 1100 1101 vfs_op_enter(mp); 1102 vn_seqc_write_begin(vp); 1103 1104 rootvp = NULL; 1105 MNT_ILOCK(mp); 1106 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 1107 MNT_IUNLOCK(mp); 1108 error = EBUSY; 1109 goto end; 1110 } 1111 mp->mnt_flag &= ~MNT_UPDATEMASK; 1112 mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE | 1113 MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY); 1114 if ((mp->mnt_flag & MNT_ASYNC) == 0) 1115 mp->mnt_kern_flag &= ~MNTK_ASYNC; 1116 rootvp = vfs_cache_root_clear(mp); 1117 MNT_IUNLOCK(mp); 1118 mp->mnt_optnew = *optlist; 1119 vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt); 1120 1121 /* 1122 * Mount the filesystem. 1123 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they 1124 * get. No freeing of cn_pnbuf. 1125 */ 1126 error = VFS_MOUNT(mp); 1127 1128 export_error = 0; 1129 /* Process the export option. */ 1130 if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp, 1131 &len) == 0) { 1132 /* Assume that there is only 1 ABI for each length. */ 1133 switch (len) { 1134 case (sizeof(struct oexport_args)): 1135 bzero(&o2export, sizeof(o2export)); 1136 /* FALLTHROUGH */ 1137 case (sizeof(o2export)): 1138 bcopy(bufp, &o2export, len); 1139 export.ex_flags = (uint64_t)o2export.ex_flags; 1140 export.ex_root = o2export.ex_root; 1141 export.ex_uid = o2export.ex_anon.cr_uid; 1142 export.ex_groups = NULL; 1143 export.ex_ngroups = o2export.ex_anon.cr_ngroups; 1144 if (export.ex_ngroups > 0) { 1145 if (export.ex_ngroups <= XU_NGROUPS) { 1146 export.ex_groups = malloc( 1147 export.ex_ngroups * sizeof(gid_t), 1148 M_TEMP, M_WAITOK); 1149 for (i = 0; i < export.ex_ngroups; i++) 1150 export.ex_groups[i] = 1151 o2export.ex_anon.cr_groups[i]; 1152 } else 1153 export_error = EINVAL; 1154 } else if (export.ex_ngroups < 0) 1155 export_error = EINVAL; 1156 export.ex_addr = o2export.ex_addr; 1157 export.ex_addrlen = o2export.ex_addrlen; 1158 export.ex_mask = o2export.ex_mask; 1159 export.ex_masklen = o2export.ex_masklen; 1160 export.ex_indexfile = o2export.ex_indexfile; 1161 export.ex_numsecflavors = o2export.ex_numsecflavors; 1162 if (export.ex_numsecflavors < MAXSECFLAVORS) { 1163 for (i = 0; i < export.ex_numsecflavors; i++) 1164 export.ex_secflavors[i] = 1165 o2export.ex_secflavors[i]; 1166 } else 1167 export_error = EINVAL; 1168 if (export_error == 0) 1169 export_error = vfs_export(mp, &export); 1170 free(export.ex_groups, M_TEMP); 1171 break; 1172 case (sizeof(export)): 1173 bcopy(bufp, &export, len); 1174 grps = NULL; 1175 if (export.ex_ngroups > 0) { 1176 if (export.ex_ngroups <= NGROUPS_MAX) { 1177 grps = malloc(export.ex_ngroups * 1178 sizeof(gid_t), M_TEMP, M_WAITOK); 1179 export_error = copyin(export.ex_groups, 1180 grps, export.ex_ngroups * 1181 sizeof(gid_t)); 1182 if (export_error == 0) 1183 export.ex_groups = grps; 1184 } else 1185 export_error = EINVAL; 1186 } else if (export.ex_ngroups == 0) 1187 export.ex_groups = NULL; 1188 else 1189 export_error = EINVAL; 1190 if (export_error == 0) 1191 export_error = vfs_export(mp, &export); 1192 free(grps, M_TEMP); 1193 break; 1194 default: 1195 export_error = EINVAL; 1196 break; 1197 } 1198 } 1199 1200 MNT_ILOCK(mp); 1201 if (error == 0) { 1202 mp->mnt_flag &= ~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE | 1203 MNT_SNAPSHOT); 1204 } else { 1205 /* 1206 * If we fail, restore old mount flags. MNT_QUOTA is special, 1207 * because it is not part of MNT_UPDATEMASK, but it could have 1208 * changed in the meantime if quotactl(2) was called. 1209 * All in all we want current value of MNT_QUOTA, not the old 1210 * one. 1211 */ 1212 mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA); 1213 } 1214 if ((mp->mnt_flag & MNT_ASYNC) != 0 && 1215 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0) 1216 mp->mnt_kern_flag |= MNTK_ASYNC; 1217 else 1218 mp->mnt_kern_flag &= ~MNTK_ASYNC; 1219 MNT_IUNLOCK(mp); 1220 1221 if (error != 0) 1222 goto end; 1223 1224 if (mp->mnt_opt != NULL) 1225 vfs_freeopts(mp->mnt_opt); 1226 mp->mnt_opt = mp->mnt_optnew; 1227 *optlist = NULL; 1228 (void)VFS_STATFS(mp, &mp->mnt_stat); 1229 /* 1230 * Prevent external consumers of mount options from reading 1231 * mnt_optnew. 1232 */ 1233 mp->mnt_optnew = NULL; 1234 1235 if ((mp->mnt_flag & MNT_RDONLY) == 0) 1236 vfs_allocate_syncvnode(mp); 1237 else 1238 vfs_deallocate_syncvnode(mp); 1239 end: 1240 vfs_op_exit(mp); 1241 if (rootvp != NULL) { 1242 vn_seqc_write_end(rootvp); 1243 vrele(rootvp); 1244 } 1245 vn_seqc_write_end(vp); 1246 vfs_unbusy(mp); 1247 VI_LOCK(vp); 1248 vp->v_iflag &= ~VI_MOUNT; 1249 VI_UNLOCK(vp); 1250 vrele(vp); 1251 return (error != 0 ? error : export_error); 1252 } 1253 1254 /* 1255 * vfs_domount(): actually attempt a filesystem mount. 1256 */ 1257 static int 1258 vfs_domount( 1259 struct thread *td, /* Calling thread. */ 1260 const char *fstype, /* Filesystem type. */ 1261 char *fspath, /* Mount path. */ 1262 uint64_t fsflags, /* Flags common to all filesystems. */ 1263 struct vfsoptlist **optlist /* Options local to the filesystem. */ 1264 ) 1265 { 1266 struct vfsconf *vfsp; 1267 struct nameidata nd; 1268 struct vnode *vp; 1269 char *pathbuf; 1270 int error; 1271 1272 /* 1273 * Be ultra-paranoid about making sure the type and fspath 1274 * variables will fit in our mp buffers, including the 1275 * terminating NUL. 1276 */ 1277 if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN) 1278 return (ENAMETOOLONG); 1279 1280 if (jailed(td->td_ucred) || usermount == 0) { 1281 if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0) 1282 return (error); 1283 } 1284 1285 /* 1286 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users. 1287 */ 1288 if (fsflags & MNT_EXPORTED) { 1289 error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED); 1290 if (error) 1291 return (error); 1292 } 1293 if (fsflags & MNT_SUIDDIR) { 1294 error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR); 1295 if (error) 1296 return (error); 1297 } 1298 /* 1299 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users. 1300 */ 1301 if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) { 1302 if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0) 1303 fsflags |= MNT_NOSUID | MNT_USER; 1304 } 1305 1306 /* Load KLDs before we lock the covered vnode to avoid reversals. */ 1307 vfsp = NULL; 1308 if ((fsflags & MNT_UPDATE) == 0) { 1309 /* Don't try to load KLDs if we're mounting the root. */ 1310 if (fsflags & MNT_ROOTFS) 1311 vfsp = vfs_byname(fstype); 1312 else 1313 vfsp = vfs_byname_kld(fstype, td, &error); 1314 if (vfsp == NULL) 1315 return (ENODEV); 1316 } 1317 1318 /* 1319 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE. 1320 */ 1321 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, 1322 UIO_SYSSPACE, fspath, td); 1323 error = namei(&nd); 1324 if (error != 0) 1325 return (error); 1326 NDFREE(&nd, NDF_ONLY_PNBUF); 1327 vp = nd.ni_vp; 1328 if ((fsflags & MNT_UPDATE) == 0) { 1329 if ((vp->v_vflag & VV_ROOT) != 0 && 1330 (fsflags & MNT_NOCOVER) != 0) { 1331 vput(vp); 1332 return (EBUSY); 1333 } 1334 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK); 1335 strcpy(pathbuf, fspath); 1336 error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN); 1337 if (error == 0) { 1338 error = vfs_domount_first(td, vfsp, pathbuf, vp, 1339 fsflags, optlist); 1340 } 1341 free(pathbuf, M_TEMP); 1342 } else 1343 error = vfs_domount_update(td, vp, fsflags, optlist); 1344 1345 return (error); 1346 } 1347 1348 /* 1349 * Unmount a filesystem. 1350 * 1351 * Note: unmount takes a path to the vnode mounted on as argument, not 1352 * special file (as before). 1353 */ 1354 #ifndef _SYS_SYSPROTO_H_ 1355 struct unmount_args { 1356 char *path; 1357 int flags; 1358 }; 1359 #endif 1360 /* ARGSUSED */ 1361 int 1362 sys_unmount(struct thread *td, struct unmount_args *uap) 1363 { 1364 1365 return (kern_unmount(td, uap->path, uap->flags)); 1366 } 1367 1368 int 1369 kern_unmount(struct thread *td, const char *path, int flags) 1370 { 1371 struct nameidata nd; 1372 struct mount *mp; 1373 char *pathbuf; 1374 int error, id0, id1; 1375 1376 AUDIT_ARG_VALUE(flags); 1377 if (jailed(td->td_ucred) || usermount == 0) { 1378 error = priv_check(td, PRIV_VFS_UNMOUNT); 1379 if (error) 1380 return (error); 1381 } 1382 1383 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK); 1384 error = copyinstr(path, pathbuf, MNAMELEN, NULL); 1385 if (error) { 1386 free(pathbuf, M_TEMP); 1387 return (error); 1388 } 1389 if (flags & MNT_BYFSID) { 1390 AUDIT_ARG_TEXT(pathbuf); 1391 /* Decode the filesystem ID. */ 1392 if (sscanf(pathbuf, "FSID:%d:%d", &id0, &id1) != 2) { 1393 free(pathbuf, M_TEMP); 1394 return (EINVAL); 1395 } 1396 1397 mtx_lock(&mountlist_mtx); 1398 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) { 1399 if (mp->mnt_stat.f_fsid.val[0] == id0 && 1400 mp->mnt_stat.f_fsid.val[1] == id1) { 1401 vfs_ref(mp); 1402 break; 1403 } 1404 } 1405 mtx_unlock(&mountlist_mtx); 1406 } else { 1407 /* 1408 * Try to find global path for path argument. 1409 */ 1410 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, 1411 UIO_SYSSPACE, pathbuf, td); 1412 if (namei(&nd) == 0) { 1413 NDFREE(&nd, NDF_ONLY_PNBUF); 1414 error = vn_path_to_global_path(td, nd.ni_vp, pathbuf, 1415 MNAMELEN); 1416 if (error == 0) 1417 vput(nd.ni_vp); 1418 } 1419 mtx_lock(&mountlist_mtx); 1420 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) { 1421 if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) { 1422 vfs_ref(mp); 1423 break; 1424 } 1425 } 1426 mtx_unlock(&mountlist_mtx); 1427 } 1428 free(pathbuf, M_TEMP); 1429 if (mp == NULL) { 1430 /* 1431 * Previously we returned ENOENT for a nonexistent path and 1432 * EINVAL for a non-mountpoint. We cannot tell these apart 1433 * now, so in the !MNT_BYFSID case return the more likely 1434 * EINVAL for compatibility. 1435 */ 1436 return ((flags & MNT_BYFSID) ? ENOENT : EINVAL); 1437 } 1438 1439 /* 1440 * Don't allow unmounting the root filesystem. 1441 */ 1442 if (mp->mnt_flag & MNT_ROOTFS) { 1443 vfs_rel(mp); 1444 return (EINVAL); 1445 } 1446 error = dounmount(mp, flags, td); 1447 return (error); 1448 } 1449 1450 /* 1451 * Return error if any of the vnodes, ignoring the root vnode 1452 * and the syncer vnode, have non-zero usecount. 1453 * 1454 * This function is purely advisory - it can return false positives 1455 * and negatives. 1456 */ 1457 static int 1458 vfs_check_usecounts(struct mount *mp) 1459 { 1460 struct vnode *vp, *mvp; 1461 1462 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 1463 if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON && 1464 vp->v_usecount != 0) { 1465 VI_UNLOCK(vp); 1466 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 1467 return (EBUSY); 1468 } 1469 VI_UNLOCK(vp); 1470 } 1471 1472 return (0); 1473 } 1474 1475 static void 1476 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags) 1477 { 1478 1479 mtx_assert(MNT_MTX(mp), MA_OWNED); 1480 mp->mnt_kern_flag &= ~mntkflags; 1481 if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) { 1482 mp->mnt_kern_flag &= ~MNTK_MWAIT; 1483 wakeup(mp); 1484 } 1485 vfs_op_exit_locked(mp); 1486 MNT_IUNLOCK(mp); 1487 if (coveredvp != NULL) { 1488 VOP_UNLOCK(coveredvp); 1489 vdrop(coveredvp); 1490 } 1491 vn_finished_write(mp); 1492 } 1493 1494 /* 1495 * There are various reference counters associated with the mount point. 1496 * Normally it is permitted to modify them without taking the mnt ilock, 1497 * but this behavior can be temporarily disabled if stable value is needed 1498 * or callers are expected to block (e.g. to not allow new users during 1499 * forced unmount). 1500 */ 1501 void 1502 vfs_op_enter(struct mount *mp) 1503 { 1504 int cpu; 1505 1506 MNT_ILOCK(mp); 1507 mp->mnt_vfs_ops++; 1508 if (mp->mnt_vfs_ops > 1) { 1509 MNT_IUNLOCK(mp); 1510 return; 1511 } 1512 vfs_op_barrier_wait(mp); 1513 CPU_FOREACH(cpu) { 1514 mp->mnt_ref += 1515 zpcpu_replace_cpu(mp->mnt_ref_pcpu, 0, cpu); 1516 mp->mnt_lockref += 1517 zpcpu_replace_cpu(mp->mnt_lockref_pcpu, 0, cpu); 1518 mp->mnt_writeopcount += 1519 zpcpu_replace_cpu(mp->mnt_writeopcount_pcpu, 0, cpu); 1520 } 1521 MNT_IUNLOCK(mp); 1522 vfs_assert_mount_counters(mp); 1523 } 1524 1525 void 1526 vfs_op_exit_locked(struct mount *mp) 1527 { 1528 1529 mtx_assert(MNT_MTX(mp), MA_OWNED); 1530 1531 if (mp->mnt_vfs_ops <= 0) 1532 panic("%s: invalid vfs_ops count %d for mp %p\n", 1533 __func__, mp->mnt_vfs_ops, mp); 1534 mp->mnt_vfs_ops--; 1535 } 1536 1537 void 1538 vfs_op_exit(struct mount *mp) 1539 { 1540 1541 MNT_ILOCK(mp); 1542 vfs_op_exit_locked(mp); 1543 MNT_IUNLOCK(mp); 1544 } 1545 1546 struct vfs_op_barrier_ipi { 1547 struct mount *mp; 1548 struct smp_rendezvous_cpus_retry_arg srcra; 1549 }; 1550 1551 static void 1552 vfs_op_action_func(void *arg) 1553 { 1554 struct vfs_op_barrier_ipi *vfsopipi; 1555 struct mount *mp; 1556 1557 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra); 1558 mp = vfsopipi->mp; 1559 1560 if (!vfs_op_thread_entered(mp)) 1561 smp_rendezvous_cpus_done(arg); 1562 } 1563 1564 static void 1565 vfs_op_wait_func(void *arg, int cpu) 1566 { 1567 struct vfs_op_barrier_ipi *vfsopipi; 1568 struct mount *mp; 1569 int *in_op; 1570 1571 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra); 1572 mp = vfsopipi->mp; 1573 1574 in_op = zpcpu_get_cpu(mp->mnt_thread_in_ops_pcpu, cpu); 1575 while (atomic_load_int(in_op)) 1576 cpu_spinwait(); 1577 } 1578 1579 void 1580 vfs_op_barrier_wait(struct mount *mp) 1581 { 1582 struct vfs_op_barrier_ipi vfsopipi; 1583 1584 vfsopipi.mp = mp; 1585 1586 smp_rendezvous_cpus_retry(all_cpus, 1587 smp_no_rendezvous_barrier, 1588 vfs_op_action_func, 1589 smp_no_rendezvous_barrier, 1590 vfs_op_wait_func, 1591 &vfsopipi.srcra); 1592 } 1593 1594 #ifdef DIAGNOSTIC 1595 void 1596 vfs_assert_mount_counters(struct mount *mp) 1597 { 1598 int cpu; 1599 1600 if (mp->mnt_vfs_ops == 0) 1601 return; 1602 1603 CPU_FOREACH(cpu) { 1604 if (*zpcpu_get_cpu(mp->mnt_ref_pcpu, cpu) != 0 || 1605 *zpcpu_get_cpu(mp->mnt_lockref_pcpu, cpu) != 0 || 1606 *zpcpu_get_cpu(mp->mnt_writeopcount_pcpu, cpu) != 0) 1607 vfs_dump_mount_counters(mp); 1608 } 1609 } 1610 1611 void 1612 vfs_dump_mount_counters(struct mount *mp) 1613 { 1614 int cpu, *count; 1615 int ref, lockref, writeopcount; 1616 1617 printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops); 1618 1619 printf(" ref : "); 1620 ref = mp->mnt_ref; 1621 CPU_FOREACH(cpu) { 1622 count = zpcpu_get_cpu(mp->mnt_ref_pcpu, cpu); 1623 printf("%d ", *count); 1624 ref += *count; 1625 } 1626 printf("\n"); 1627 printf(" lockref : "); 1628 lockref = mp->mnt_lockref; 1629 CPU_FOREACH(cpu) { 1630 count = zpcpu_get_cpu(mp->mnt_lockref_pcpu, cpu); 1631 printf("%d ", *count); 1632 lockref += *count; 1633 } 1634 printf("\n"); 1635 printf("writeopcount: "); 1636 writeopcount = mp->mnt_writeopcount; 1637 CPU_FOREACH(cpu) { 1638 count = zpcpu_get_cpu(mp->mnt_writeopcount_pcpu, cpu); 1639 printf("%d ", *count); 1640 writeopcount += *count; 1641 } 1642 printf("\n"); 1643 1644 printf("counter struct total\n"); 1645 printf("ref %-5d %-5d\n", mp->mnt_ref, ref); 1646 printf("lockref %-5d %-5d\n", mp->mnt_lockref, lockref); 1647 printf("writeopcount %-5d %-5d\n", mp->mnt_writeopcount, writeopcount); 1648 1649 panic("invalid counts on struct mount"); 1650 } 1651 #endif 1652 1653 int 1654 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which) 1655 { 1656 int *base, *pcpu; 1657 int cpu, sum; 1658 1659 switch (which) { 1660 case MNT_COUNT_REF: 1661 base = &mp->mnt_ref; 1662 pcpu = mp->mnt_ref_pcpu; 1663 break; 1664 case MNT_COUNT_LOCKREF: 1665 base = &mp->mnt_lockref; 1666 pcpu = mp->mnt_lockref_pcpu; 1667 break; 1668 case MNT_COUNT_WRITEOPCOUNT: 1669 base = &mp->mnt_writeopcount; 1670 pcpu = mp->mnt_writeopcount_pcpu; 1671 break; 1672 } 1673 1674 sum = *base; 1675 CPU_FOREACH(cpu) { 1676 sum += *zpcpu_get_cpu(pcpu, cpu); 1677 } 1678 return (sum); 1679 } 1680 1681 /* 1682 * Do the actual filesystem unmount. 1683 */ 1684 int 1685 dounmount(struct mount *mp, int flags, struct thread *td) 1686 { 1687 struct vnode *coveredvp, *rootvp; 1688 int error; 1689 uint64_t async_flag; 1690 int mnt_gen_r; 1691 1692 if ((coveredvp = mp->mnt_vnodecovered) != NULL) { 1693 mnt_gen_r = mp->mnt_gen; 1694 VI_LOCK(coveredvp); 1695 vholdl(coveredvp); 1696 vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY); 1697 /* 1698 * Check for mp being unmounted while waiting for the 1699 * covered vnode lock. 1700 */ 1701 if (coveredvp->v_mountedhere != mp || 1702 coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) { 1703 VOP_UNLOCK(coveredvp); 1704 vdrop(coveredvp); 1705 vfs_rel(mp); 1706 return (EBUSY); 1707 } 1708 } 1709 1710 /* 1711 * Only privileged root, or (if MNT_USER is set) the user that did the 1712 * original mount is permitted to unmount this filesystem. 1713 */ 1714 error = vfs_suser(mp, td); 1715 if (error != 0) { 1716 if (coveredvp != NULL) { 1717 VOP_UNLOCK(coveredvp); 1718 vdrop(coveredvp); 1719 } 1720 vfs_rel(mp); 1721 return (error); 1722 } 1723 1724 vfs_op_enter(mp); 1725 1726 vn_start_write(NULL, &mp, V_WAIT | V_MNTREF); 1727 MNT_ILOCK(mp); 1728 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 || 1729 (mp->mnt_flag & MNT_UPDATE) != 0 || 1730 !TAILQ_EMPTY(&mp->mnt_uppers)) { 1731 dounmount_cleanup(mp, coveredvp, 0); 1732 return (EBUSY); 1733 } 1734 mp->mnt_kern_flag |= MNTK_UNMOUNT; 1735 rootvp = vfs_cache_root_clear(mp); 1736 if (coveredvp != NULL) 1737 vn_seqc_write_begin(coveredvp); 1738 if (flags & MNT_NONBUSY) { 1739 MNT_IUNLOCK(mp); 1740 error = vfs_check_usecounts(mp); 1741 MNT_ILOCK(mp); 1742 if (error != 0) { 1743 vn_seqc_write_end(coveredvp); 1744 dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT); 1745 if (rootvp != NULL) { 1746 vn_seqc_write_end(rootvp); 1747 vrele(rootvp); 1748 } 1749 return (error); 1750 } 1751 } 1752 /* Allow filesystems to detect that a forced unmount is in progress. */ 1753 if (flags & MNT_FORCE) { 1754 mp->mnt_kern_flag |= MNTK_UNMOUNTF; 1755 MNT_IUNLOCK(mp); 1756 /* 1757 * Must be done after setting MNTK_UNMOUNTF and before 1758 * waiting for mnt_lockref to become 0. 1759 */ 1760 VFS_PURGE(mp); 1761 MNT_ILOCK(mp); 1762 } 1763 error = 0; 1764 if (mp->mnt_lockref) { 1765 mp->mnt_kern_flag |= MNTK_DRAINING; 1766 error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS, 1767 "mount drain", 0); 1768 } 1769 MNT_IUNLOCK(mp); 1770 KASSERT(mp->mnt_lockref == 0, 1771 ("%s: invalid lock refcount in the drain path @ %s:%d", 1772 __func__, __FILE__, __LINE__)); 1773 KASSERT(error == 0, 1774 ("%s: invalid return value for msleep in the drain path @ %s:%d", 1775 __func__, __FILE__, __LINE__)); 1776 1777 /* 1778 * We want to keep the vnode around so that we can vn_seqc_write_end 1779 * after we are done with unmount. Downgrade our reference to a mere 1780 * hold count so that we don't interefere with anything. 1781 */ 1782 if (rootvp != NULL) { 1783 vhold(rootvp); 1784 vrele(rootvp); 1785 } 1786 1787 if (mp->mnt_flag & MNT_EXPUBLIC) 1788 vfs_setpublicfs(NULL, NULL, NULL); 1789 1790 vfs_periodic(mp, MNT_WAIT); 1791 MNT_ILOCK(mp); 1792 async_flag = mp->mnt_flag & MNT_ASYNC; 1793 mp->mnt_flag &= ~MNT_ASYNC; 1794 mp->mnt_kern_flag &= ~MNTK_ASYNC; 1795 MNT_IUNLOCK(mp); 1796 cache_purgevfs(mp, false); /* remove cache entries for this file sys */ 1797 vfs_deallocate_syncvnode(mp); 1798 error = VFS_UNMOUNT(mp, flags); 1799 vn_finished_write(mp); 1800 /* 1801 * If we failed to flush the dirty blocks for this mount point, 1802 * undo all the cdir/rdir and rootvnode changes we made above. 1803 * Unless we failed to do so because the device is reporting that 1804 * it doesn't exist anymore. 1805 */ 1806 if (error && error != ENXIO) { 1807 MNT_ILOCK(mp); 1808 if ((mp->mnt_flag & MNT_RDONLY) == 0) { 1809 MNT_IUNLOCK(mp); 1810 vfs_allocate_syncvnode(mp); 1811 MNT_ILOCK(mp); 1812 } 1813 mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF); 1814 mp->mnt_flag |= async_flag; 1815 if ((mp->mnt_flag & MNT_ASYNC) != 0 && 1816 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0) 1817 mp->mnt_kern_flag |= MNTK_ASYNC; 1818 if (mp->mnt_kern_flag & MNTK_MWAIT) { 1819 mp->mnt_kern_flag &= ~MNTK_MWAIT; 1820 wakeup(mp); 1821 } 1822 vfs_op_exit_locked(mp); 1823 MNT_IUNLOCK(mp); 1824 if (coveredvp) { 1825 vn_seqc_write_end(coveredvp); 1826 VOP_UNLOCK(coveredvp); 1827 vdrop(coveredvp); 1828 } 1829 if (rootvp != NULL) { 1830 vn_seqc_write_end(rootvp); 1831 vdrop(rootvp); 1832 } 1833 return (error); 1834 } 1835 mtx_lock(&mountlist_mtx); 1836 TAILQ_REMOVE(&mountlist, mp, mnt_list); 1837 mtx_unlock(&mountlist_mtx); 1838 EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td); 1839 if (coveredvp != NULL) { 1840 coveredvp->v_mountedhere = NULL; 1841 vn_seqc_write_end(coveredvp); 1842 VOP_UNLOCK(coveredvp); 1843 vdrop(coveredvp); 1844 } 1845 if (rootvp != NULL) { 1846 vn_seqc_write_end(rootvp); 1847 vdrop(rootvp); 1848 } 1849 vfs_event_signal(NULL, VQ_UNMOUNT, 0); 1850 if (rootvnode != NULL && mp == rootvnode->v_mount) { 1851 vrele(rootvnode); 1852 rootvnode = NULL; 1853 } 1854 if (mp == rootdevmp) 1855 rootdevmp = NULL; 1856 vfs_mount_destroy(mp); 1857 return (0); 1858 } 1859 1860 /* 1861 * Report errors during filesystem mounting. 1862 */ 1863 void 1864 vfs_mount_error(struct mount *mp, const char *fmt, ...) 1865 { 1866 struct vfsoptlist *moptlist = mp->mnt_optnew; 1867 va_list ap; 1868 int error, len; 1869 char *errmsg; 1870 1871 error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len); 1872 if (error || errmsg == NULL || len <= 0) 1873 return; 1874 1875 va_start(ap, fmt); 1876 vsnprintf(errmsg, (size_t)len, fmt, ap); 1877 va_end(ap); 1878 } 1879 1880 void 1881 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...) 1882 { 1883 va_list ap; 1884 int error, len; 1885 char *errmsg; 1886 1887 error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len); 1888 if (error || errmsg == NULL || len <= 0) 1889 return; 1890 1891 va_start(ap, fmt); 1892 vsnprintf(errmsg, (size_t)len, fmt, ap); 1893 va_end(ap); 1894 } 1895 1896 /* 1897 * --------------------------------------------------------------------- 1898 * Functions for querying mount options/arguments from filesystems. 1899 */ 1900 1901 /* 1902 * Check that no unknown options are given 1903 */ 1904 int 1905 vfs_filteropt(struct vfsoptlist *opts, const char **legal) 1906 { 1907 struct vfsopt *opt; 1908 char errmsg[255]; 1909 const char **t, *p, *q; 1910 int ret = 0; 1911 1912 TAILQ_FOREACH(opt, opts, link) { 1913 p = opt->name; 1914 q = NULL; 1915 if (p[0] == 'n' && p[1] == 'o') 1916 q = p + 2; 1917 for(t = global_opts; *t != NULL; t++) { 1918 if (strcmp(*t, p) == 0) 1919 break; 1920 if (q != NULL) { 1921 if (strcmp(*t, q) == 0) 1922 break; 1923 } 1924 } 1925 if (*t != NULL) 1926 continue; 1927 for(t = legal; *t != NULL; t++) { 1928 if (strcmp(*t, p) == 0) 1929 break; 1930 if (q != NULL) { 1931 if (strcmp(*t, q) == 0) 1932 break; 1933 } 1934 } 1935 if (*t != NULL) 1936 continue; 1937 snprintf(errmsg, sizeof(errmsg), 1938 "mount option <%s> is unknown", p); 1939 ret = EINVAL; 1940 } 1941 if (ret != 0) { 1942 TAILQ_FOREACH(opt, opts, link) { 1943 if (strcmp(opt->name, "errmsg") == 0) { 1944 strncpy((char *)opt->value, errmsg, opt->len); 1945 break; 1946 } 1947 } 1948 if (opt == NULL) 1949 printf("%s\n", errmsg); 1950 } 1951 return (ret); 1952 } 1953 1954 /* 1955 * Get a mount option by its name. 1956 * 1957 * Return 0 if the option was found, ENOENT otherwise. 1958 * If len is non-NULL it will be filled with the length 1959 * of the option. If buf is non-NULL, it will be filled 1960 * with the address of the option. 1961 */ 1962 int 1963 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len) 1964 { 1965 struct vfsopt *opt; 1966 1967 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL")); 1968 1969 TAILQ_FOREACH(opt, opts, link) { 1970 if (strcmp(name, opt->name) == 0) { 1971 opt->seen = 1; 1972 if (len != NULL) 1973 *len = opt->len; 1974 if (buf != NULL) 1975 *buf = opt->value; 1976 return (0); 1977 } 1978 } 1979 return (ENOENT); 1980 } 1981 1982 int 1983 vfs_getopt_pos(struct vfsoptlist *opts, const char *name) 1984 { 1985 struct vfsopt *opt; 1986 1987 if (opts == NULL) 1988 return (-1); 1989 1990 TAILQ_FOREACH(opt, opts, link) { 1991 if (strcmp(name, opt->name) == 0) { 1992 opt->seen = 1; 1993 return (opt->pos); 1994 } 1995 } 1996 return (-1); 1997 } 1998 1999 int 2000 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value) 2001 { 2002 char *opt_value, *vtp; 2003 quad_t iv; 2004 int error, opt_len; 2005 2006 error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len); 2007 if (error != 0) 2008 return (error); 2009 if (opt_len == 0 || opt_value == NULL) 2010 return (EINVAL); 2011 if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0') 2012 return (EINVAL); 2013 iv = strtoq(opt_value, &vtp, 0); 2014 if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0')) 2015 return (EINVAL); 2016 if (iv < 0) 2017 return (EINVAL); 2018 switch (vtp[0]) { 2019 case 't': case 'T': 2020 iv *= 1024; 2021 /* FALLTHROUGH */ 2022 case 'g': case 'G': 2023 iv *= 1024; 2024 /* FALLTHROUGH */ 2025 case 'm': case 'M': 2026 iv *= 1024; 2027 /* FALLTHROUGH */ 2028 case 'k': case 'K': 2029 iv *= 1024; 2030 case '\0': 2031 break; 2032 default: 2033 return (EINVAL); 2034 } 2035 *value = iv; 2036 2037 return (0); 2038 } 2039 2040 char * 2041 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error) 2042 { 2043 struct vfsopt *opt; 2044 2045 *error = 0; 2046 TAILQ_FOREACH(opt, opts, link) { 2047 if (strcmp(name, opt->name) != 0) 2048 continue; 2049 opt->seen = 1; 2050 if (opt->len == 0 || 2051 ((char *)opt->value)[opt->len - 1] != '\0') { 2052 *error = EINVAL; 2053 return (NULL); 2054 } 2055 return (opt->value); 2056 } 2057 *error = ENOENT; 2058 return (NULL); 2059 } 2060 2061 int 2062 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w, 2063 uint64_t val) 2064 { 2065 struct vfsopt *opt; 2066 2067 TAILQ_FOREACH(opt, opts, link) { 2068 if (strcmp(name, opt->name) == 0) { 2069 opt->seen = 1; 2070 if (w != NULL) 2071 *w |= val; 2072 return (1); 2073 } 2074 } 2075 if (w != NULL) 2076 *w &= ~val; 2077 return (0); 2078 } 2079 2080 int 2081 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...) 2082 { 2083 va_list ap; 2084 struct vfsopt *opt; 2085 int ret; 2086 2087 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL")); 2088 2089 TAILQ_FOREACH(opt, opts, link) { 2090 if (strcmp(name, opt->name) != 0) 2091 continue; 2092 opt->seen = 1; 2093 if (opt->len == 0 || opt->value == NULL) 2094 return (0); 2095 if (((char *)opt->value)[opt->len - 1] != '\0') 2096 return (0); 2097 va_start(ap, fmt); 2098 ret = vsscanf(opt->value, fmt, ap); 2099 va_end(ap); 2100 return (ret); 2101 } 2102 return (0); 2103 } 2104 2105 int 2106 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len) 2107 { 2108 struct vfsopt *opt; 2109 2110 TAILQ_FOREACH(opt, opts, link) { 2111 if (strcmp(name, opt->name) != 0) 2112 continue; 2113 opt->seen = 1; 2114 if (opt->value == NULL) 2115 opt->len = len; 2116 else { 2117 if (opt->len != len) 2118 return (EINVAL); 2119 bcopy(value, opt->value, len); 2120 } 2121 return (0); 2122 } 2123 return (ENOENT); 2124 } 2125 2126 int 2127 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len) 2128 { 2129 struct vfsopt *opt; 2130 2131 TAILQ_FOREACH(opt, opts, link) { 2132 if (strcmp(name, opt->name) != 0) 2133 continue; 2134 opt->seen = 1; 2135 if (opt->value == NULL) 2136 opt->len = len; 2137 else { 2138 if (opt->len < len) 2139 return (EINVAL); 2140 opt->len = len; 2141 bcopy(value, opt->value, len); 2142 } 2143 return (0); 2144 } 2145 return (ENOENT); 2146 } 2147 2148 int 2149 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value) 2150 { 2151 struct vfsopt *opt; 2152 2153 TAILQ_FOREACH(opt, opts, link) { 2154 if (strcmp(name, opt->name) != 0) 2155 continue; 2156 opt->seen = 1; 2157 if (opt->value == NULL) 2158 opt->len = strlen(value) + 1; 2159 else if (strlcpy(opt->value, value, opt->len) >= opt->len) 2160 return (EINVAL); 2161 return (0); 2162 } 2163 return (ENOENT); 2164 } 2165 2166 /* 2167 * Find and copy a mount option. 2168 * 2169 * The size of the buffer has to be specified 2170 * in len, if it is not the same length as the 2171 * mount option, EINVAL is returned. 2172 * Returns ENOENT if the option is not found. 2173 */ 2174 int 2175 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len) 2176 { 2177 struct vfsopt *opt; 2178 2179 KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL")); 2180 2181 TAILQ_FOREACH(opt, opts, link) { 2182 if (strcmp(name, opt->name) == 0) { 2183 opt->seen = 1; 2184 if (len != opt->len) 2185 return (EINVAL); 2186 bcopy(opt->value, dest, opt->len); 2187 return (0); 2188 } 2189 } 2190 return (ENOENT); 2191 } 2192 2193 int 2194 __vfs_statfs(struct mount *mp, struct statfs *sbp) 2195 { 2196 2197 /* 2198 * Filesystems only fill in part of the structure for updates, we 2199 * have to read the entirety first to get all content. 2200 */ 2201 if (sbp != &mp->mnt_stat) 2202 memcpy(sbp, &mp->mnt_stat, sizeof(*sbp)); 2203 2204 /* 2205 * Set these in case the underlying filesystem fails to do so. 2206 */ 2207 sbp->f_version = STATFS_VERSION; 2208 sbp->f_namemax = NAME_MAX; 2209 sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK; 2210 2211 return (mp->mnt_op->vfs_statfs(mp, sbp)); 2212 } 2213 2214 void 2215 vfs_mountedfrom(struct mount *mp, const char *from) 2216 { 2217 2218 bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname); 2219 strlcpy(mp->mnt_stat.f_mntfromname, from, 2220 sizeof mp->mnt_stat.f_mntfromname); 2221 } 2222 2223 /* 2224 * --------------------------------------------------------------------- 2225 * This is the api for building mount args and mounting filesystems from 2226 * inside the kernel. 2227 * 2228 * The API works by accumulation of individual args. First error is 2229 * latched. 2230 * 2231 * XXX: should be documented in new manpage kernel_mount(9) 2232 */ 2233 2234 /* A memory allocation which must be freed when we are done */ 2235 struct mntaarg { 2236 SLIST_ENTRY(mntaarg) next; 2237 }; 2238 2239 /* The header for the mount arguments */ 2240 struct mntarg { 2241 struct iovec *v; 2242 int len; 2243 int error; 2244 SLIST_HEAD(, mntaarg) list; 2245 }; 2246 2247 /* 2248 * Add a boolean argument. 2249 * 2250 * flag is the boolean value. 2251 * name must start with "no". 2252 */ 2253 struct mntarg * 2254 mount_argb(struct mntarg *ma, int flag, const char *name) 2255 { 2256 2257 KASSERT(name[0] == 'n' && name[1] == 'o', 2258 ("mount_argb(...,%s): name must start with 'no'", name)); 2259 2260 return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0)); 2261 } 2262 2263 /* 2264 * Add an argument printf style 2265 */ 2266 struct mntarg * 2267 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...) 2268 { 2269 va_list ap; 2270 struct mntaarg *maa; 2271 struct sbuf *sb; 2272 int len; 2273 2274 if (ma == NULL) { 2275 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO); 2276 SLIST_INIT(&ma->list); 2277 } 2278 if (ma->error) 2279 return (ma); 2280 2281 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2), 2282 M_MOUNT, M_WAITOK); 2283 ma->v[ma->len].iov_base = (void *)(uintptr_t)name; 2284 ma->v[ma->len].iov_len = strlen(name) + 1; 2285 ma->len++; 2286 2287 sb = sbuf_new_auto(); 2288 va_start(ap, fmt); 2289 sbuf_vprintf(sb, fmt, ap); 2290 va_end(ap); 2291 sbuf_finish(sb); 2292 len = sbuf_len(sb) + 1; 2293 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO); 2294 SLIST_INSERT_HEAD(&ma->list, maa, next); 2295 bcopy(sbuf_data(sb), maa + 1, len); 2296 sbuf_delete(sb); 2297 2298 ma->v[ma->len].iov_base = maa + 1; 2299 ma->v[ma->len].iov_len = len; 2300 ma->len++; 2301 2302 return (ma); 2303 } 2304 2305 /* 2306 * Add an argument which is a userland string. 2307 */ 2308 struct mntarg * 2309 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len) 2310 { 2311 struct mntaarg *maa; 2312 char *tbuf; 2313 2314 if (val == NULL) 2315 return (ma); 2316 if (ma == NULL) { 2317 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO); 2318 SLIST_INIT(&ma->list); 2319 } 2320 if (ma->error) 2321 return (ma); 2322 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO); 2323 SLIST_INSERT_HEAD(&ma->list, maa, next); 2324 tbuf = (void *)(maa + 1); 2325 ma->error = copyinstr(val, tbuf, len, NULL); 2326 return (mount_arg(ma, name, tbuf, -1)); 2327 } 2328 2329 /* 2330 * Plain argument. 2331 * 2332 * If length is -1, treat value as a C string. 2333 */ 2334 struct mntarg * 2335 mount_arg(struct mntarg *ma, const char *name, const void *val, int len) 2336 { 2337 2338 if (ma == NULL) { 2339 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO); 2340 SLIST_INIT(&ma->list); 2341 } 2342 if (ma->error) 2343 return (ma); 2344 2345 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2), 2346 M_MOUNT, M_WAITOK); 2347 ma->v[ma->len].iov_base = (void *)(uintptr_t)name; 2348 ma->v[ma->len].iov_len = strlen(name) + 1; 2349 ma->len++; 2350 2351 ma->v[ma->len].iov_base = (void *)(uintptr_t)val; 2352 if (len < 0) 2353 ma->v[ma->len].iov_len = strlen(val) + 1; 2354 else 2355 ma->v[ma->len].iov_len = len; 2356 ma->len++; 2357 return (ma); 2358 } 2359 2360 /* 2361 * Free a mntarg structure 2362 */ 2363 static void 2364 free_mntarg(struct mntarg *ma) 2365 { 2366 struct mntaarg *maa; 2367 2368 while (!SLIST_EMPTY(&ma->list)) { 2369 maa = SLIST_FIRST(&ma->list); 2370 SLIST_REMOVE_HEAD(&ma->list, next); 2371 free(maa, M_MOUNT); 2372 } 2373 free(ma->v, M_MOUNT); 2374 free(ma, M_MOUNT); 2375 } 2376 2377 /* 2378 * Mount a filesystem 2379 */ 2380 int 2381 kernel_mount(struct mntarg *ma, uint64_t flags) 2382 { 2383 struct uio auio; 2384 int error; 2385 2386 KASSERT(ma != NULL, ("kernel_mount NULL ma")); 2387 KASSERT(ma->v != NULL, ("kernel_mount NULL ma->v")); 2388 KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len)); 2389 2390 auio.uio_iov = ma->v; 2391 auio.uio_iovcnt = ma->len; 2392 auio.uio_segflg = UIO_SYSSPACE; 2393 2394 error = ma->error; 2395 if (!error) 2396 error = vfs_donmount(curthread, flags, &auio); 2397 free_mntarg(ma); 2398 return (error); 2399 } 2400 2401 /* 2402 * A printflike function to mount a filesystem. 2403 */ 2404 int 2405 kernel_vmount(int flags, ...) 2406 { 2407 struct mntarg *ma = NULL; 2408 va_list ap; 2409 const char *cp; 2410 const void *vp; 2411 int error; 2412 2413 va_start(ap, flags); 2414 for (;;) { 2415 cp = va_arg(ap, const char *); 2416 if (cp == NULL) 2417 break; 2418 vp = va_arg(ap, const void *); 2419 ma = mount_arg(ma, cp, vp, (vp != NULL ? -1 : 0)); 2420 } 2421 va_end(ap); 2422 2423 error = kernel_mount(ma, flags); 2424 return (error); 2425 } 2426