xref: /freebsd/sys/kern/vfs_mount.c (revision 8ddb146abcdf061be9f2c0db7e391697dafad85c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2004 Poul-Henning Kamp
5  * Copyright (c) 1999 Michael Smith
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/smp.h>
45 #include <sys/devctl.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/libkern.h>
52 #include <sys/limits.h>
53 #include <sys/malloc.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/filedesc.h>
60 #include <sys/reboot.h>
61 #include <sys/sbuf.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysproto.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/taskqueue.h>
68 #include <sys/vnode.h>
69 #include <vm/uma.h>
70 
71 #include <geom/geom.h>
72 
73 #include <machine/stdarg.h>
74 
75 #include <security/audit/audit.h>
76 #include <security/mac/mac_framework.h>
77 
78 #define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
79 
80 static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
81 		    uint64_t fsflags, struct vfsoptlist **optlist);
82 static void	free_mntarg(struct mntarg *ma);
83 
84 static int	usermount = 0;
85 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
86     "Unprivileged users may mount and unmount file systems");
87 
88 static bool	default_autoro = false;
89 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
90     "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
91 
92 static bool	recursive_forced_unmount = false;
93 SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
94     &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
95     " when a file system is forcibly unmounted");
96 
97 static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
98     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
99 
100 static unsigned int	deferred_unmount_retry_limit = 10;
101 SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
102     &deferred_unmount_retry_limit, 0,
103     "Maximum number of retries for deferred unmount failure");
104 
105 static int	deferred_unmount_retry_delay_hz;
106 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
107     &deferred_unmount_retry_delay_hz, 0,
108     "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
109 
110 static int	deferred_unmount_total_retries = 0;
111 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
112     &deferred_unmount_total_retries, 0,
113     "Total number of retried deferred unmounts");
114 
115 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
116 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
117 static uma_zone_t mount_zone;
118 
119 /* List of mounted filesystems. */
120 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
121 
122 /* For any iteration/modification of mountlist */
123 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
124 
125 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
126 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
127 
128 static void vfs_deferred_unmount(void *arg, int pending);
129 static struct timeout_task deferred_unmount_task;
130 static struct mtx deferred_unmount_lock;
131 MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
132     MTX_DEF);
133 static STAILQ_HEAD(, mount) deferred_unmount_list =
134     STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
135 TASKQUEUE_DEFINE_THREAD(deferred_unmount);
136 
137 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
138 
139 /*
140  * Global opts, taken by all filesystems
141  */
142 static const char *global_opts[] = {
143 	"errmsg",
144 	"fstype",
145 	"fspath",
146 	"ro",
147 	"rw",
148 	"nosuid",
149 	"noexec",
150 	NULL
151 };
152 
153 static int
154 mount_init(void *mem, int size, int flags)
155 {
156 	struct mount *mp;
157 
158 	mp = (struct mount *)mem;
159 	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
160 	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
161 	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
162 	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
163 	mp->mnt_ref = 0;
164 	mp->mnt_vfs_ops = 1;
165 	mp->mnt_rootvnode = NULL;
166 	return (0);
167 }
168 
169 static void
170 mount_fini(void *mem, int size)
171 {
172 	struct mount *mp;
173 
174 	mp = (struct mount *)mem;
175 	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
176 	lockdestroy(&mp->mnt_explock);
177 	mtx_destroy(&mp->mnt_listmtx);
178 	mtx_destroy(&mp->mnt_mtx);
179 }
180 
181 static void
182 vfs_mount_init(void *dummy __unused)
183 {
184 	TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
185 	    0, vfs_deferred_unmount, NULL);
186 	deferred_unmount_retry_delay_hz = hz;
187 	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
188 	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
189 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
190 }
191 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
192 
193 /*
194  * ---------------------------------------------------------------------
195  * Functions for building and sanitizing the mount options
196  */
197 
198 /* Remove one mount option. */
199 static void
200 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
201 {
202 
203 	TAILQ_REMOVE(opts, opt, link);
204 	free(opt->name, M_MOUNT);
205 	if (opt->value != NULL)
206 		free(opt->value, M_MOUNT);
207 	free(opt, M_MOUNT);
208 }
209 
210 /* Release all resources related to the mount options. */
211 void
212 vfs_freeopts(struct vfsoptlist *opts)
213 {
214 	struct vfsopt *opt;
215 
216 	while (!TAILQ_EMPTY(opts)) {
217 		opt = TAILQ_FIRST(opts);
218 		vfs_freeopt(opts, opt);
219 	}
220 	free(opts, M_MOUNT);
221 }
222 
223 void
224 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
225 {
226 	struct vfsopt *opt, *temp;
227 
228 	if (opts == NULL)
229 		return;
230 	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
231 		if (strcmp(opt->name, name) == 0)
232 			vfs_freeopt(opts, opt);
233 	}
234 }
235 
236 static int
237 vfs_isopt_ro(const char *opt)
238 {
239 
240 	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
241 	    strcmp(opt, "norw") == 0)
242 		return (1);
243 	return (0);
244 }
245 
246 static int
247 vfs_isopt_rw(const char *opt)
248 {
249 
250 	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
251 		return (1);
252 	return (0);
253 }
254 
255 /*
256  * Check if options are equal (with or without the "no" prefix).
257  */
258 static int
259 vfs_equalopts(const char *opt1, const char *opt2)
260 {
261 	char *p;
262 
263 	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
264 	if (strcmp(opt1, opt2) == 0)
265 		return (1);
266 	/* "noopt" vs. "opt" */
267 	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
268 		return (1);
269 	/* "opt" vs. "noopt" */
270 	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
271 		return (1);
272 	while ((p = strchr(opt1, '.')) != NULL &&
273 	    !strncmp(opt1, opt2, ++p - opt1)) {
274 		opt2 += p - opt1;
275 		opt1 = p;
276 		/* "foo.noopt" vs. "foo.opt" */
277 		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
278 			return (1);
279 		/* "foo.opt" vs. "foo.noopt" */
280 		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
281 			return (1);
282 	}
283 	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
284 	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
285 	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
286 		return (1);
287 	return (0);
288 }
289 
290 /*
291  * If a mount option is specified several times,
292  * (with or without the "no" prefix) only keep
293  * the last occurrence of it.
294  */
295 static void
296 vfs_sanitizeopts(struct vfsoptlist *opts)
297 {
298 	struct vfsopt *opt, *opt2, *tmp;
299 
300 	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
301 		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
302 		while (opt2 != NULL) {
303 			if (vfs_equalopts(opt->name, opt2->name)) {
304 				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
305 				vfs_freeopt(opts, opt2);
306 				opt2 = tmp;
307 			} else {
308 				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
309 			}
310 		}
311 	}
312 }
313 
314 /*
315  * Build a linked list of mount options from a struct uio.
316  */
317 int
318 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
319 {
320 	struct vfsoptlist *opts;
321 	struct vfsopt *opt;
322 	size_t memused, namelen, optlen;
323 	unsigned int i, iovcnt;
324 	int error;
325 
326 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
327 	TAILQ_INIT(opts);
328 	memused = 0;
329 	iovcnt = auio->uio_iovcnt;
330 	for (i = 0; i < iovcnt; i += 2) {
331 		namelen = auio->uio_iov[i].iov_len;
332 		optlen = auio->uio_iov[i + 1].iov_len;
333 		memused += sizeof(struct vfsopt) + optlen + namelen;
334 		/*
335 		 * Avoid consuming too much memory, and attempts to overflow
336 		 * memused.
337 		 */
338 		if (memused > VFS_MOUNTARG_SIZE_MAX ||
339 		    optlen > VFS_MOUNTARG_SIZE_MAX ||
340 		    namelen > VFS_MOUNTARG_SIZE_MAX) {
341 			error = EINVAL;
342 			goto bad;
343 		}
344 
345 		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
346 		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
347 		opt->value = NULL;
348 		opt->len = 0;
349 		opt->pos = i / 2;
350 		opt->seen = 0;
351 
352 		/*
353 		 * Do this early, so jumps to "bad" will free the current
354 		 * option.
355 		 */
356 		TAILQ_INSERT_TAIL(opts, opt, link);
357 
358 		if (auio->uio_segflg == UIO_SYSSPACE) {
359 			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
360 		} else {
361 			error = copyin(auio->uio_iov[i].iov_base, opt->name,
362 			    namelen);
363 			if (error)
364 				goto bad;
365 		}
366 		/* Ensure names are null-terminated strings. */
367 		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
368 			error = EINVAL;
369 			goto bad;
370 		}
371 		if (optlen != 0) {
372 			opt->len = optlen;
373 			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
374 			if (auio->uio_segflg == UIO_SYSSPACE) {
375 				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
376 				    optlen);
377 			} else {
378 				error = copyin(auio->uio_iov[i + 1].iov_base,
379 				    opt->value, optlen);
380 				if (error)
381 					goto bad;
382 			}
383 		}
384 	}
385 	vfs_sanitizeopts(opts);
386 	*options = opts;
387 	return (0);
388 bad:
389 	vfs_freeopts(opts);
390 	return (error);
391 }
392 
393 /*
394  * Merge the old mount options with the new ones passed
395  * in the MNT_UPDATE case.
396  *
397  * XXX: This function will keep a "nofoo" option in the new
398  * options.  E.g, if the option's canonical name is "foo",
399  * "nofoo" ends up in the mount point's active options.
400  */
401 static void
402 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
403 {
404 	struct vfsopt *opt, *new;
405 
406 	TAILQ_FOREACH(opt, oldopts, link) {
407 		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
408 		new->name = strdup(opt->name, M_MOUNT);
409 		if (opt->len != 0) {
410 			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
411 			bcopy(opt->value, new->value, opt->len);
412 		} else
413 			new->value = NULL;
414 		new->len = opt->len;
415 		new->seen = opt->seen;
416 		TAILQ_INSERT_HEAD(toopts, new, link);
417 	}
418 	vfs_sanitizeopts(toopts);
419 }
420 
421 /*
422  * Mount a filesystem.
423  */
424 #ifndef _SYS_SYSPROTO_H_
425 struct nmount_args {
426 	struct iovec *iovp;
427 	unsigned int iovcnt;
428 	int flags;
429 };
430 #endif
431 int
432 sys_nmount(struct thread *td, struct nmount_args *uap)
433 {
434 	struct uio *auio;
435 	int error;
436 	u_int iovcnt;
437 	uint64_t flags;
438 
439 	/*
440 	 * Mount flags are now 64-bits. On 32-bit archtectures only
441 	 * 32-bits are passed in, but from here on everything handles
442 	 * 64-bit flags correctly.
443 	 */
444 	flags = uap->flags;
445 
446 	AUDIT_ARG_FFLAGS(flags);
447 	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
448 	    uap->iovp, uap->iovcnt, flags);
449 
450 	/*
451 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
452 	 * userspace to set this flag, but we must filter it out if we want
453 	 * MNT_UPDATE on the root file system to work.
454 	 * MNT_ROOTFS should only be set by the kernel when mounting its
455 	 * root file system.
456 	 */
457 	flags &= ~MNT_ROOTFS;
458 
459 	iovcnt = uap->iovcnt;
460 	/*
461 	 * Check that we have an even number of iovec's
462 	 * and that we have at least two options.
463 	 */
464 	if ((iovcnt & 1) || (iovcnt < 4)) {
465 		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
466 		    uap->iovcnt);
467 		return (EINVAL);
468 	}
469 
470 	error = copyinuio(uap->iovp, iovcnt, &auio);
471 	if (error) {
472 		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
473 		    __func__, error);
474 		return (error);
475 	}
476 	error = vfs_donmount(td, flags, auio);
477 
478 	free(auio, M_IOV);
479 	return (error);
480 }
481 
482 /*
483  * ---------------------------------------------------------------------
484  * Various utility functions
485  */
486 
487 /*
488  * Get a reference on a mount point from a vnode.
489  *
490  * The vnode is allowed to be passed unlocked and race against dooming. Note in
491  * such case there are no guarantees the referenced mount point will still be
492  * associated with it after the function returns.
493  */
494 struct mount *
495 vfs_ref_from_vp(struct vnode *vp)
496 {
497 	struct mount *mp;
498 	struct mount_pcpu *mpcpu;
499 
500 	mp = atomic_load_ptr(&vp->v_mount);
501 	if (__predict_false(mp == NULL)) {
502 		return (mp);
503 	}
504 	if (vfs_op_thread_enter(mp, mpcpu)) {
505 		if (__predict_true(mp == vp->v_mount)) {
506 			vfs_mp_count_add_pcpu(mpcpu, ref, 1);
507 			vfs_op_thread_exit(mp, mpcpu);
508 		} else {
509 			vfs_op_thread_exit(mp, mpcpu);
510 			mp = NULL;
511 		}
512 	} else {
513 		MNT_ILOCK(mp);
514 		if (mp == vp->v_mount) {
515 			MNT_REF(mp);
516 			MNT_IUNLOCK(mp);
517 		} else {
518 			MNT_IUNLOCK(mp);
519 			mp = NULL;
520 		}
521 	}
522 	return (mp);
523 }
524 
525 void
526 vfs_ref(struct mount *mp)
527 {
528 	struct mount_pcpu *mpcpu;
529 
530 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
531 	if (vfs_op_thread_enter(mp, mpcpu)) {
532 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
533 		vfs_op_thread_exit(mp, mpcpu);
534 		return;
535 	}
536 
537 	MNT_ILOCK(mp);
538 	MNT_REF(mp);
539 	MNT_IUNLOCK(mp);
540 }
541 
542 /*
543  * Register ump as an upper mount of the mount associated with
544  * vnode vp.  This registration will be tracked through
545  * mount_upper_node upper, which should be allocated by the
546  * caller and stored in per-mount data associated with mp.
547  *
548  * If successful, this function will return the mount associated
549  * with vp, and will ensure that it cannot be unmounted until
550  * ump has been unregistered as one of its upper mounts.
551  *
552  * Upon failure this function will return NULL.
553  */
554 struct mount *
555 vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
556     struct mount_upper_node *upper)
557 {
558 	struct mount *mp;
559 
560 	mp = atomic_load_ptr(&vp->v_mount);
561 	if (mp == NULL)
562 		return (NULL);
563 	MNT_ILOCK(mp);
564 	if (mp != vp->v_mount ||
565 	    ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
566 		MNT_IUNLOCK(mp);
567 		return (NULL);
568 	}
569 	KASSERT(ump != mp, ("upper and lower mounts are identical"));
570 	upper->mp = ump;
571 	MNT_REF(mp);
572 	TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
573 	MNT_IUNLOCK(mp);
574 	return (mp);
575 }
576 
577 /*
578  * Register upper mount ump to receive vnode unlink/reclaim
579  * notifications from lower mount mp. This registration will
580  * be tracked through mount_upper_node upper, which should be
581  * allocated by the caller and stored in per-mount data
582  * associated with mp.
583  *
584  * ump must already be registered as an upper mount of mp
585  * through a call to vfs_register_upper_from_vp().
586  */
587 void
588 vfs_register_for_notification(struct mount *mp, struct mount *ump,
589     struct mount_upper_node *upper)
590 {
591 	upper->mp = ump;
592 	MNT_ILOCK(mp);
593 	TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
594 	MNT_IUNLOCK(mp);
595 }
596 
597 static void
598 vfs_drain_upper_locked(struct mount *mp)
599 {
600 	mtx_assert(MNT_MTX(mp), MA_OWNED);
601 	while (mp->mnt_upper_pending != 0) {
602 		mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
603 		msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
604 	}
605 }
606 
607 /*
608  * Undo a previous call to vfs_register_for_notification().
609  * The mount represented by upper must be currently registered
610  * as an upper mount for mp.
611  */
612 void
613 vfs_unregister_for_notification(struct mount *mp,
614     struct mount_upper_node *upper)
615 {
616 	MNT_ILOCK(mp);
617 	vfs_drain_upper_locked(mp);
618 	TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
619 	MNT_IUNLOCK(mp);
620 }
621 
622 /*
623  * Undo a previous call to vfs_register_upper_from_vp().
624  * This must be done before mp can be unmounted.
625  */
626 void
627 vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
628 {
629 	MNT_ILOCK(mp);
630 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
631 	    ("registered upper with pending unmount"));
632 	vfs_drain_upper_locked(mp);
633 	TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
634 	if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
635 	    TAILQ_EMPTY(&mp->mnt_uppers)) {
636 		mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
637 		wakeup(&mp->mnt_taskqueue_link);
638 	}
639 	MNT_REL(mp);
640 	MNT_IUNLOCK(mp);
641 }
642 
643 void
644 vfs_rel(struct mount *mp)
645 {
646 	struct mount_pcpu *mpcpu;
647 
648 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
649 	if (vfs_op_thread_enter(mp, mpcpu)) {
650 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
651 		vfs_op_thread_exit(mp, mpcpu);
652 		return;
653 	}
654 
655 	MNT_ILOCK(mp);
656 	MNT_REL(mp);
657 	MNT_IUNLOCK(mp);
658 }
659 
660 /*
661  * Allocate and initialize the mount point struct.
662  */
663 struct mount *
664 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
665     struct ucred *cred)
666 {
667 	struct mount *mp;
668 
669 	mp = uma_zalloc(mount_zone, M_WAITOK);
670 	bzero(&mp->mnt_startzero,
671 	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
672 	mp->mnt_kern_flag = 0;
673 	mp->mnt_flag = 0;
674 	mp->mnt_rootvnode = NULL;
675 	mp->mnt_vnodecovered = NULL;
676 	mp->mnt_op = NULL;
677 	mp->mnt_vfc = NULL;
678 	TAILQ_INIT(&mp->mnt_nvnodelist);
679 	mp->mnt_nvnodelistsize = 0;
680 	TAILQ_INIT(&mp->mnt_lazyvnodelist);
681 	mp->mnt_lazyvnodelistsize = 0;
682 	MPPASS(mp->mnt_ref == 0 && mp->mnt_lockref == 0 &&
683 	    mp->mnt_writeopcount == 0, mp);
684 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
685 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
686 	(void) vfs_busy(mp, MBF_NOWAIT);
687 	atomic_add_acq_int(&vfsp->vfc_refcount, 1);
688 	mp->mnt_op = vfsp->vfc_vfsops;
689 	mp->mnt_vfc = vfsp;
690 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
691 	mp->mnt_gen++;
692 	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
693 	mp->mnt_vnodecovered = vp;
694 	mp->mnt_cred = crdup(cred);
695 	mp->mnt_stat.f_owner = cred->cr_uid;
696 	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
697 	mp->mnt_iosize_max = DFLTPHYS;
698 #ifdef MAC
699 	mac_mount_init(mp);
700 	mac_mount_create(cred, mp);
701 #endif
702 	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
703 	mp->mnt_upper_pending = 0;
704 	TAILQ_INIT(&mp->mnt_uppers);
705 	TAILQ_INIT(&mp->mnt_notify);
706 	mp->mnt_taskqueue_flags = 0;
707 	mp->mnt_unmount_retries = 0;
708 	return (mp);
709 }
710 
711 /*
712  * Destroy the mount struct previously allocated by vfs_mount_alloc().
713  */
714 void
715 vfs_mount_destroy(struct mount *mp)
716 {
717 
718 	MPPASS(mp->mnt_vfs_ops != 0, mp);
719 
720 	vfs_assert_mount_counters(mp);
721 
722 	MNT_ILOCK(mp);
723 	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
724 	if (mp->mnt_kern_flag & MNTK_MWAIT) {
725 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
726 		wakeup(mp);
727 	}
728 	while (mp->mnt_ref)
729 		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
730 	KASSERT(mp->mnt_ref == 0,
731 	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
732 	    __FILE__, __LINE__));
733 	MPPASS(mp->mnt_writeopcount == 0, mp);
734 	MPPASS(mp->mnt_secondary_writes == 0, mp);
735 	atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
736 	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
737 		struct vnode *vp;
738 
739 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
740 			vn_printf(vp, "dangling vnode ");
741 		panic("unmount: dangling vnode");
742 	}
743 	KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
744 	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
745 	KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
746 	MPPASS(mp->mnt_nvnodelistsize == 0, mp);
747 	MPPASS(mp->mnt_lazyvnodelistsize == 0, mp);
748 	MPPASS(mp->mnt_lockref == 0, mp);
749 	MNT_IUNLOCK(mp);
750 
751 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
752 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
753 
754 	MPASSERT(mp->mnt_rootvnode == NULL, mp,
755 	    ("mount point still has a root vnode %p", mp->mnt_rootvnode));
756 
757 	if (mp->mnt_vnodecovered != NULL)
758 		vrele(mp->mnt_vnodecovered);
759 #ifdef MAC
760 	mac_mount_destroy(mp);
761 #endif
762 	if (mp->mnt_opt != NULL)
763 		vfs_freeopts(mp->mnt_opt);
764 	crfree(mp->mnt_cred);
765 	uma_zfree(mount_zone, mp);
766 }
767 
768 static bool
769 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
770 {
771 	/* This is an upgrade of an exisiting mount. */
772 	if ((fsflags & MNT_UPDATE) != 0)
773 		return (false);
774 	/* This is already an R/O mount. */
775 	if ((fsflags & MNT_RDONLY) != 0)
776 		return (false);
777 
778 	switch (error) {
779 	case ENODEV:	/* generic, geom, ... */
780 	case EACCES:	/* cam/scsi, ... */
781 	case EROFS:	/* md, mmcsd, ... */
782 		/*
783 		 * These errors can be returned by the storage layer to signal
784 		 * that the media is read-only.  No harm in the R/O mount
785 		 * attempt if the error was returned for some other reason.
786 		 */
787 		return (true);
788 	default:
789 		return (false);
790 	}
791 }
792 
793 int
794 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
795 {
796 	struct vfsoptlist *optlist;
797 	struct vfsopt *opt, *tmp_opt;
798 	char *fstype, *fspath, *errmsg;
799 	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
800 	bool autoro;
801 
802 	errmsg = fspath = NULL;
803 	errmsg_len = fspathlen = 0;
804 	errmsg_pos = -1;
805 	autoro = default_autoro;
806 
807 	error = vfs_buildopts(fsoptions, &optlist);
808 	if (error)
809 		return (error);
810 
811 	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
812 		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
813 
814 	/*
815 	 * We need these two options before the others,
816 	 * and they are mandatory for any filesystem.
817 	 * Ensure they are NUL terminated as well.
818 	 */
819 	fstypelen = 0;
820 	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
821 	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
822 		error = EINVAL;
823 		if (errmsg != NULL)
824 			strncpy(errmsg, "Invalid fstype", errmsg_len);
825 		goto bail;
826 	}
827 	fspathlen = 0;
828 	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
829 	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
830 		error = EINVAL;
831 		if (errmsg != NULL)
832 			strncpy(errmsg, "Invalid fspath", errmsg_len);
833 		goto bail;
834 	}
835 
836 	/*
837 	 * We need to see if we have the "update" option
838 	 * before we call vfs_domount(), since vfs_domount() has special
839 	 * logic based on MNT_UPDATE.  This is very important
840 	 * when we want to update the root filesystem.
841 	 */
842 	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
843 		int do_freeopt = 0;
844 
845 		if (strcmp(opt->name, "update") == 0) {
846 			fsflags |= MNT_UPDATE;
847 			do_freeopt = 1;
848 		}
849 		else if (strcmp(opt->name, "async") == 0)
850 			fsflags |= MNT_ASYNC;
851 		else if (strcmp(opt->name, "force") == 0) {
852 			fsflags |= MNT_FORCE;
853 			do_freeopt = 1;
854 		}
855 		else if (strcmp(opt->name, "reload") == 0) {
856 			fsflags |= MNT_RELOAD;
857 			do_freeopt = 1;
858 		}
859 		else if (strcmp(opt->name, "multilabel") == 0)
860 			fsflags |= MNT_MULTILABEL;
861 		else if (strcmp(opt->name, "noasync") == 0)
862 			fsflags &= ~MNT_ASYNC;
863 		else if (strcmp(opt->name, "noatime") == 0)
864 			fsflags |= MNT_NOATIME;
865 		else if (strcmp(opt->name, "atime") == 0) {
866 			free(opt->name, M_MOUNT);
867 			opt->name = strdup("nonoatime", M_MOUNT);
868 		}
869 		else if (strcmp(opt->name, "noclusterr") == 0)
870 			fsflags |= MNT_NOCLUSTERR;
871 		else if (strcmp(opt->name, "clusterr") == 0) {
872 			free(opt->name, M_MOUNT);
873 			opt->name = strdup("nonoclusterr", M_MOUNT);
874 		}
875 		else if (strcmp(opt->name, "noclusterw") == 0)
876 			fsflags |= MNT_NOCLUSTERW;
877 		else if (strcmp(opt->name, "clusterw") == 0) {
878 			free(opt->name, M_MOUNT);
879 			opt->name = strdup("nonoclusterw", M_MOUNT);
880 		}
881 		else if (strcmp(opt->name, "noexec") == 0)
882 			fsflags |= MNT_NOEXEC;
883 		else if (strcmp(opt->name, "exec") == 0) {
884 			free(opt->name, M_MOUNT);
885 			opt->name = strdup("nonoexec", M_MOUNT);
886 		}
887 		else if (strcmp(opt->name, "nosuid") == 0)
888 			fsflags |= MNT_NOSUID;
889 		else if (strcmp(opt->name, "suid") == 0) {
890 			free(opt->name, M_MOUNT);
891 			opt->name = strdup("nonosuid", M_MOUNT);
892 		}
893 		else if (strcmp(opt->name, "nosymfollow") == 0)
894 			fsflags |= MNT_NOSYMFOLLOW;
895 		else if (strcmp(opt->name, "symfollow") == 0) {
896 			free(opt->name, M_MOUNT);
897 			opt->name = strdup("nonosymfollow", M_MOUNT);
898 		}
899 		else if (strcmp(opt->name, "noro") == 0) {
900 			fsflags &= ~MNT_RDONLY;
901 			autoro = false;
902 		}
903 		else if (strcmp(opt->name, "rw") == 0) {
904 			fsflags &= ~MNT_RDONLY;
905 			autoro = false;
906 		}
907 		else if (strcmp(opt->name, "ro") == 0) {
908 			fsflags |= MNT_RDONLY;
909 			autoro = false;
910 		}
911 		else if (strcmp(opt->name, "rdonly") == 0) {
912 			free(opt->name, M_MOUNT);
913 			opt->name = strdup("ro", M_MOUNT);
914 			fsflags |= MNT_RDONLY;
915 			autoro = false;
916 		}
917 		else if (strcmp(opt->name, "autoro") == 0) {
918 			do_freeopt = 1;
919 			autoro = true;
920 		}
921 		else if (strcmp(opt->name, "suiddir") == 0)
922 			fsflags |= MNT_SUIDDIR;
923 		else if (strcmp(opt->name, "sync") == 0)
924 			fsflags |= MNT_SYNCHRONOUS;
925 		else if (strcmp(opt->name, "union") == 0)
926 			fsflags |= MNT_UNION;
927 		else if (strcmp(opt->name, "automounted") == 0) {
928 			fsflags |= MNT_AUTOMOUNTED;
929 			do_freeopt = 1;
930 		} else if (strcmp(opt->name, "nocover") == 0) {
931 			fsflags |= MNT_NOCOVER;
932 			do_freeopt = 1;
933 		} else if (strcmp(opt->name, "cover") == 0) {
934 			fsflags &= ~MNT_NOCOVER;
935 			do_freeopt = 1;
936 		} else if (strcmp(opt->name, "emptydir") == 0) {
937 			fsflags |= MNT_EMPTYDIR;
938 			do_freeopt = 1;
939 		} else if (strcmp(opt->name, "noemptydir") == 0) {
940 			fsflags &= ~MNT_EMPTYDIR;
941 			do_freeopt = 1;
942 		}
943 		if (do_freeopt)
944 			vfs_freeopt(optlist, opt);
945 	}
946 
947 	/*
948 	 * Be ultra-paranoid about making sure the type and fspath
949 	 * variables will fit in our mp buffers, including the
950 	 * terminating NUL.
951 	 */
952 	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
953 		error = ENAMETOOLONG;
954 		goto bail;
955 	}
956 
957 	error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
958 	if (error == ENOENT) {
959 		error = EINVAL;
960 		if (errmsg != NULL)
961 			strncpy(errmsg, "Invalid fstype", errmsg_len);
962 		goto bail;
963 	}
964 
965 	/*
966 	 * See if we can mount in the read-only mode if the error code suggests
967 	 * that it could be possible and the mount options allow for that.
968 	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
969 	 * overridden by "autoro".
970 	 */
971 	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
972 		printf("%s: R/W mount failed, possibly R/O media,"
973 		    " trying R/O mount\n", __func__);
974 		fsflags |= MNT_RDONLY;
975 		error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
976 	}
977 bail:
978 	/* copyout the errmsg */
979 	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
980 	    && errmsg_len > 0 && errmsg != NULL) {
981 		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
982 			bcopy(errmsg,
983 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
984 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
985 		} else {
986 			copyout(errmsg,
987 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
988 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
989 		}
990 	}
991 
992 	if (optlist != NULL)
993 		vfs_freeopts(optlist);
994 	return (error);
995 }
996 
997 /*
998  * Old mount API.
999  */
1000 #ifndef _SYS_SYSPROTO_H_
1001 struct mount_args {
1002 	char	*type;
1003 	char	*path;
1004 	int	flags;
1005 	caddr_t	data;
1006 };
1007 #endif
1008 /* ARGSUSED */
1009 int
1010 sys_mount(struct thread *td, struct mount_args *uap)
1011 {
1012 	char *fstype;
1013 	struct vfsconf *vfsp = NULL;
1014 	struct mntarg *ma = NULL;
1015 	uint64_t flags;
1016 	int error;
1017 
1018 	/*
1019 	 * Mount flags are now 64-bits. On 32-bit architectures only
1020 	 * 32-bits are passed in, but from here on everything handles
1021 	 * 64-bit flags correctly.
1022 	 */
1023 	flags = uap->flags;
1024 
1025 	AUDIT_ARG_FFLAGS(flags);
1026 
1027 	/*
1028 	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
1029 	 * userspace to set this flag, but we must filter it out if we want
1030 	 * MNT_UPDATE on the root file system to work.
1031 	 * MNT_ROOTFS should only be set by the kernel when mounting its
1032 	 * root file system.
1033 	 */
1034 	flags &= ~MNT_ROOTFS;
1035 
1036 	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1037 	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1038 	if (error) {
1039 		free(fstype, M_TEMP);
1040 		return (error);
1041 	}
1042 
1043 	AUDIT_ARG_TEXT(fstype);
1044 	vfsp = vfs_byname_kld(fstype, td, &error);
1045 	free(fstype, M_TEMP);
1046 	if (vfsp == NULL)
1047 		return (ENOENT);
1048 	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1049 	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1050 	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1051 	    vfsp->vfc_vfsops->vfs_cmount == NULL))
1052 		return (EOPNOTSUPP);
1053 
1054 	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1055 	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1056 	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1057 	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1058 	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1059 
1060 	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1061 		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1062 	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1063 }
1064 
1065 /*
1066  * vfs_domount_first(): first file system mount (not update)
1067  */
1068 static int
1069 vfs_domount_first(
1070 	struct thread *td,		/* Calling thread. */
1071 	struct vfsconf *vfsp,		/* File system type. */
1072 	char *fspath,			/* Mount path. */
1073 	struct vnode *vp,		/* Vnode to be covered. */
1074 	uint64_t fsflags,		/* Flags common to all filesystems. */
1075 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1076 	)
1077 {
1078 	struct vattr va;
1079 	struct mount *mp;
1080 	struct vnode *newdp, *rootvp;
1081 	int error, error1;
1082 	bool unmounted;
1083 
1084 	ASSERT_VOP_ELOCKED(vp, __func__);
1085 	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1086 
1087 	/*
1088 	 * If the jail of the calling thread lacks permission for this type of
1089 	 * file system, or is trying to cover its own root, deny immediately.
1090 	 */
1091 	if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1092 	    vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1093 		vput(vp);
1094 		return (EPERM);
1095 	}
1096 
1097 	/*
1098 	 * If the user is not root, ensure that they own the directory
1099 	 * onto which we are attempting to mount.
1100 	 */
1101 	error = VOP_GETATTR(vp, &va, td->td_ucred);
1102 	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1103 		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1104 	if (error == 0)
1105 		error = vinvalbuf(vp, V_SAVE, 0, 0);
1106 	if (error == 0 && vp->v_type != VDIR)
1107 		error = ENOTDIR;
1108 	if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1109 		error = vfs_emptydir(vp);
1110 	if (error == 0) {
1111 		VI_LOCK(vp);
1112 		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1113 			vp->v_iflag |= VI_MOUNT;
1114 		else
1115 			error = EBUSY;
1116 		VI_UNLOCK(vp);
1117 	}
1118 	if (error != 0) {
1119 		vput(vp);
1120 		return (error);
1121 	}
1122 	vn_seqc_write_begin(vp);
1123 	VOP_UNLOCK(vp);
1124 
1125 	/* Allocate and initialize the filesystem. */
1126 	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1127 	/* XXXMAC: pass to vfs_mount_alloc? */
1128 	mp->mnt_optnew = *optlist;
1129 	/* Set the mount level flags. */
1130 	mp->mnt_flag = (fsflags &
1131 	    (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1132 
1133 	/*
1134 	 * Mount the filesystem.
1135 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1136 	 * get.  No freeing of cn_pnbuf.
1137 	 */
1138 	error1 = 0;
1139 	unmounted = true;
1140 	if ((error = VFS_MOUNT(mp)) != 0 ||
1141 	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1142 	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1143 		rootvp = NULL;
1144 		if (error1 != 0) {
1145 			MPASS(error == 0);
1146 			rootvp = vfs_cache_root_clear(mp);
1147 			if (rootvp != NULL) {
1148 				vhold(rootvp);
1149 				vrele(rootvp);
1150 			}
1151 			(void)vn_start_write(NULL, &mp, V_WAIT);
1152 			MNT_ILOCK(mp);
1153 			mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1154 			MNT_IUNLOCK(mp);
1155 			VFS_PURGE(mp);
1156 			error = VFS_UNMOUNT(mp, 0);
1157 			vn_finished_write(mp);
1158 			if (error != 0) {
1159 				printf(
1160 		    "failed post-mount (%d): rollback unmount returned %d\n",
1161 				    error1, error);
1162 				unmounted = false;
1163 			}
1164 			error = error1;
1165 		}
1166 		vfs_unbusy(mp);
1167 		mp->mnt_vnodecovered = NULL;
1168 		if (unmounted) {
1169 			/* XXXKIB wait for mnt_lockref drain? */
1170 			vfs_mount_destroy(mp);
1171 		}
1172 		VI_LOCK(vp);
1173 		vp->v_iflag &= ~VI_MOUNT;
1174 		VI_UNLOCK(vp);
1175 		if (rootvp != NULL) {
1176 			vn_seqc_write_end(rootvp);
1177 			vdrop(rootvp);
1178 		}
1179 		vn_seqc_write_end(vp);
1180 		vrele(vp);
1181 		return (error);
1182 	}
1183 	vn_seqc_write_begin(newdp);
1184 	VOP_UNLOCK(newdp);
1185 
1186 	if (mp->mnt_opt != NULL)
1187 		vfs_freeopts(mp->mnt_opt);
1188 	mp->mnt_opt = mp->mnt_optnew;
1189 	*optlist = NULL;
1190 
1191 	/*
1192 	 * Prevent external consumers of mount options from reading mnt_optnew.
1193 	 */
1194 	mp->mnt_optnew = NULL;
1195 
1196 	MNT_ILOCK(mp);
1197 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1198 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1199 		mp->mnt_kern_flag |= MNTK_ASYNC;
1200 	else
1201 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1202 	MNT_IUNLOCK(mp);
1203 
1204 	VI_LOCK(vp);
1205 	vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1206 	vp->v_mountedhere = mp;
1207 	VI_UNLOCK(vp);
1208 	cache_purge(vp);
1209 
1210 	/*
1211 	 * We need to lock both vnodes.
1212 	 *
1213 	 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1214 	 * from different filesystems.
1215 	 */
1216 	vn_lock_pair(vp, false, newdp, false);
1217 
1218 	VI_LOCK(vp);
1219 	vp->v_iflag &= ~VI_MOUNT;
1220 	VI_UNLOCK(vp);
1221 	/* Place the new filesystem at the end of the mount list. */
1222 	mtx_lock(&mountlist_mtx);
1223 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1224 	mtx_unlock(&mountlist_mtx);
1225 	vfs_event_signal(NULL, VQ_MOUNT, 0);
1226 	VOP_UNLOCK(vp);
1227 	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1228 	VOP_UNLOCK(newdp);
1229 	mount_devctl_event("MOUNT", mp, false);
1230 	mountcheckdirs(vp, newdp);
1231 	vn_seqc_write_end(vp);
1232 	vn_seqc_write_end(newdp);
1233 	vrele(newdp);
1234 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1235 		vfs_allocate_syncvnode(mp);
1236 	vfs_op_exit(mp);
1237 	vfs_unbusy(mp);
1238 	return (0);
1239 }
1240 
1241 /*
1242  * vfs_domount_update(): update of mounted file system
1243  */
1244 static int
1245 vfs_domount_update(
1246 	struct thread *td,		/* Calling thread. */
1247 	struct vnode *vp,		/* Mount point vnode. */
1248 	uint64_t fsflags,		/* Flags common to all filesystems. */
1249 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1250 	)
1251 {
1252 	struct export_args export;
1253 	struct o2export_args o2export;
1254 	struct vnode *rootvp;
1255 	void *bufp;
1256 	struct mount *mp;
1257 	int error, export_error, i, len;
1258 	uint64_t flag;
1259 	gid_t *grps;
1260 
1261 	ASSERT_VOP_ELOCKED(vp, __func__);
1262 	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1263 	mp = vp->v_mount;
1264 
1265 	if ((vp->v_vflag & VV_ROOT) == 0) {
1266 		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1267 		    == 0)
1268 			error = EXDEV;
1269 		else
1270 			error = EINVAL;
1271 		vput(vp);
1272 		return (error);
1273 	}
1274 
1275 	/*
1276 	 * We only allow the filesystem to be reloaded if it
1277 	 * is currently mounted read-only.
1278 	 */
1279 	flag = mp->mnt_flag;
1280 	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1281 		vput(vp);
1282 		return (EOPNOTSUPP);	/* Needs translation */
1283 	}
1284 	/*
1285 	 * Only privileged root, or (if MNT_USER is set) the user that
1286 	 * did the original mount is permitted to update it.
1287 	 */
1288 	error = vfs_suser(mp, td);
1289 	if (error != 0) {
1290 		vput(vp);
1291 		return (error);
1292 	}
1293 	if (vfs_busy(mp, MBF_NOWAIT)) {
1294 		vput(vp);
1295 		return (EBUSY);
1296 	}
1297 	VI_LOCK(vp);
1298 	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1299 		VI_UNLOCK(vp);
1300 		vfs_unbusy(mp);
1301 		vput(vp);
1302 		return (EBUSY);
1303 	}
1304 	vp->v_iflag |= VI_MOUNT;
1305 	VI_UNLOCK(vp);
1306 	VOP_UNLOCK(vp);
1307 
1308 	vfs_op_enter(mp);
1309 	vn_seqc_write_begin(vp);
1310 
1311 	rootvp = NULL;
1312 	MNT_ILOCK(mp);
1313 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1314 		MNT_IUNLOCK(mp);
1315 		error = EBUSY;
1316 		goto end;
1317 	}
1318 	mp->mnt_flag &= ~MNT_UPDATEMASK;
1319 	mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1320 	    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1321 	if ((mp->mnt_flag & MNT_ASYNC) == 0)
1322 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1323 	rootvp = vfs_cache_root_clear(mp);
1324 	MNT_IUNLOCK(mp);
1325 	mp->mnt_optnew = *optlist;
1326 	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1327 
1328 	/*
1329 	 * Mount the filesystem.
1330 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1331 	 * get.  No freeing of cn_pnbuf.
1332 	 */
1333 	error = VFS_MOUNT(mp);
1334 
1335 	export_error = 0;
1336 	/* Process the export option. */
1337 	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1338 	    &len) == 0) {
1339 		/* Assume that there is only 1 ABI for each length. */
1340 		switch (len) {
1341 		case (sizeof(struct oexport_args)):
1342 			bzero(&o2export, sizeof(o2export));
1343 			/* FALLTHROUGH */
1344 		case (sizeof(o2export)):
1345 			bcopy(bufp, &o2export, len);
1346 			export.ex_flags = (uint64_t)o2export.ex_flags;
1347 			export.ex_root = o2export.ex_root;
1348 			export.ex_uid = o2export.ex_anon.cr_uid;
1349 			export.ex_groups = NULL;
1350 			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1351 			if (export.ex_ngroups > 0) {
1352 				if (export.ex_ngroups <= XU_NGROUPS) {
1353 					export.ex_groups = malloc(
1354 					    export.ex_ngroups * sizeof(gid_t),
1355 					    M_TEMP, M_WAITOK);
1356 					for (i = 0; i < export.ex_ngroups; i++)
1357 						export.ex_groups[i] =
1358 						  o2export.ex_anon.cr_groups[i];
1359 				} else
1360 					export_error = EINVAL;
1361 			} else if (export.ex_ngroups < 0)
1362 				export_error = EINVAL;
1363 			export.ex_addr = o2export.ex_addr;
1364 			export.ex_addrlen = o2export.ex_addrlen;
1365 			export.ex_mask = o2export.ex_mask;
1366 			export.ex_masklen = o2export.ex_masklen;
1367 			export.ex_indexfile = o2export.ex_indexfile;
1368 			export.ex_numsecflavors = o2export.ex_numsecflavors;
1369 			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1370 				for (i = 0; i < export.ex_numsecflavors; i++)
1371 					export.ex_secflavors[i] =
1372 					    o2export.ex_secflavors[i];
1373 			} else
1374 				export_error = EINVAL;
1375 			if (export_error == 0)
1376 				export_error = vfs_export(mp, &export);
1377 			free(export.ex_groups, M_TEMP);
1378 			break;
1379 		case (sizeof(export)):
1380 			bcopy(bufp, &export, len);
1381 			grps = NULL;
1382 			if (export.ex_ngroups > 0) {
1383 				if (export.ex_ngroups <= NGROUPS_MAX) {
1384 					grps = malloc(export.ex_ngroups *
1385 					    sizeof(gid_t), M_TEMP, M_WAITOK);
1386 					export_error = copyin(export.ex_groups,
1387 					    grps, export.ex_ngroups *
1388 					    sizeof(gid_t));
1389 					if (export_error == 0)
1390 						export.ex_groups = grps;
1391 				} else
1392 					export_error = EINVAL;
1393 			} else if (export.ex_ngroups == 0)
1394 				export.ex_groups = NULL;
1395 			else
1396 				export_error = EINVAL;
1397 			if (export_error == 0)
1398 				export_error = vfs_export(mp, &export);
1399 			free(grps, M_TEMP);
1400 			break;
1401 		default:
1402 			export_error = EINVAL;
1403 			break;
1404 		}
1405 	}
1406 
1407 	MNT_ILOCK(mp);
1408 	if (error == 0) {
1409 		mp->mnt_flag &=	~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1410 		    MNT_SNAPSHOT);
1411 	} else {
1412 		/*
1413 		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1414 		 * because it is not part of MNT_UPDATEMASK, but it could have
1415 		 * changed in the meantime if quotactl(2) was called.
1416 		 * All in all we want current value of MNT_QUOTA, not the old
1417 		 * one.
1418 		 */
1419 		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1420 	}
1421 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1422 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1423 		mp->mnt_kern_flag |= MNTK_ASYNC;
1424 	else
1425 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1426 	MNT_IUNLOCK(mp);
1427 
1428 	if (error != 0)
1429 		goto end;
1430 
1431 	mount_devctl_event("REMOUNT", mp, true);
1432 	if (mp->mnt_opt != NULL)
1433 		vfs_freeopts(mp->mnt_opt);
1434 	mp->mnt_opt = mp->mnt_optnew;
1435 	*optlist = NULL;
1436 	(void)VFS_STATFS(mp, &mp->mnt_stat);
1437 	/*
1438 	 * Prevent external consumers of mount options from reading
1439 	 * mnt_optnew.
1440 	 */
1441 	mp->mnt_optnew = NULL;
1442 
1443 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1444 		vfs_allocate_syncvnode(mp);
1445 	else
1446 		vfs_deallocate_syncvnode(mp);
1447 end:
1448 	vfs_op_exit(mp);
1449 	if (rootvp != NULL) {
1450 		vn_seqc_write_end(rootvp);
1451 		vrele(rootvp);
1452 	}
1453 	vn_seqc_write_end(vp);
1454 	vfs_unbusy(mp);
1455 	VI_LOCK(vp);
1456 	vp->v_iflag &= ~VI_MOUNT;
1457 	VI_UNLOCK(vp);
1458 	vrele(vp);
1459 	return (error != 0 ? error : export_error);
1460 }
1461 
1462 /*
1463  * vfs_domount(): actually attempt a filesystem mount.
1464  */
1465 static int
1466 vfs_domount(
1467 	struct thread *td,		/* Calling thread. */
1468 	const char *fstype,		/* Filesystem type. */
1469 	char *fspath,			/* Mount path. */
1470 	uint64_t fsflags,		/* Flags common to all filesystems. */
1471 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1472 	)
1473 {
1474 	struct vfsconf *vfsp;
1475 	struct nameidata nd;
1476 	struct vnode *vp;
1477 	char *pathbuf;
1478 	int error;
1479 
1480 	/*
1481 	 * Be ultra-paranoid about making sure the type and fspath
1482 	 * variables will fit in our mp buffers, including the
1483 	 * terminating NUL.
1484 	 */
1485 	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1486 		return (ENAMETOOLONG);
1487 
1488 	if (jailed(td->td_ucred) || usermount == 0) {
1489 		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1490 			return (error);
1491 	}
1492 
1493 	/*
1494 	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1495 	 */
1496 	if (fsflags & MNT_EXPORTED) {
1497 		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1498 		if (error)
1499 			return (error);
1500 	}
1501 	if (fsflags & MNT_SUIDDIR) {
1502 		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1503 		if (error)
1504 			return (error);
1505 	}
1506 	/*
1507 	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1508 	 */
1509 	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1510 		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1511 			fsflags |= MNT_NOSUID | MNT_USER;
1512 	}
1513 
1514 	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1515 	vfsp = NULL;
1516 	if ((fsflags & MNT_UPDATE) == 0) {
1517 		/* Don't try to load KLDs if we're mounting the root. */
1518 		if (fsflags & MNT_ROOTFS) {
1519 			if ((vfsp = vfs_byname(fstype)) == NULL)
1520 				return (ENODEV);
1521 		} else {
1522 			if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1523 				return (error);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1529 	 */
1530 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE,
1531 	    fspath);
1532 	error = namei(&nd);
1533 	if (error != 0)
1534 		return (error);
1535 	NDFREE_PNBUF(&nd);
1536 	vp = nd.ni_vp;
1537 	if ((fsflags & MNT_UPDATE) == 0) {
1538 		if ((vp->v_vflag & VV_ROOT) != 0 &&
1539 		    (fsflags & MNT_NOCOVER) != 0) {
1540 			vput(vp);
1541 			return (EBUSY);
1542 		}
1543 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1544 		strcpy(pathbuf, fspath);
1545 		error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN);
1546 		if (error == 0) {
1547 			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1548 			    fsflags, optlist);
1549 		}
1550 		free(pathbuf, M_TEMP);
1551 	} else
1552 		error = vfs_domount_update(td, vp, fsflags, optlist);
1553 
1554 	return (error);
1555 }
1556 
1557 /*
1558  * Unmount a filesystem.
1559  *
1560  * Note: unmount takes a path to the vnode mounted on as argument, not
1561  * special file (as before).
1562  */
1563 #ifndef _SYS_SYSPROTO_H_
1564 struct unmount_args {
1565 	char	*path;
1566 	int	flags;
1567 };
1568 #endif
1569 /* ARGSUSED */
1570 int
1571 sys_unmount(struct thread *td, struct unmount_args *uap)
1572 {
1573 
1574 	return (kern_unmount(td, uap->path, uap->flags));
1575 }
1576 
1577 int
1578 kern_unmount(struct thread *td, const char *path, int flags)
1579 {
1580 	struct nameidata nd;
1581 	struct mount *mp;
1582 	char *fsidbuf, *pathbuf;
1583 	fsid_t fsid;
1584 	int error;
1585 
1586 	AUDIT_ARG_VALUE(flags);
1587 	if (jailed(td->td_ucred) || usermount == 0) {
1588 		error = priv_check(td, PRIV_VFS_UNMOUNT);
1589 		if (error)
1590 			return (error);
1591 	}
1592 
1593 	if (flags & MNT_BYFSID) {
1594 		fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1595 		error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1596 		if (error) {
1597 			free(fsidbuf, M_TEMP);
1598 			return (error);
1599 		}
1600 
1601 		AUDIT_ARG_TEXT(fsidbuf);
1602 		/* Decode the filesystem ID. */
1603 		if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1604 			free(fsidbuf, M_TEMP);
1605 			return (EINVAL);
1606 		}
1607 
1608 		mp = vfs_getvfs(&fsid);
1609 		free(fsidbuf, M_TEMP);
1610 		if (mp == NULL) {
1611 			return (ENOENT);
1612 		}
1613 	} else {
1614 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1615 		error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1616 		if (error) {
1617 			free(pathbuf, M_TEMP);
1618 			return (error);
1619 		}
1620 
1621 		/*
1622 		 * Try to find global path for path argument.
1623 		 */
1624 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1625 		    UIO_SYSSPACE, pathbuf);
1626 		if (namei(&nd) == 0) {
1627 			NDFREE_PNBUF(&nd);
1628 			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1629 			    MNAMELEN);
1630 			if (error == 0)
1631 				vput(nd.ni_vp);
1632 		}
1633 		mtx_lock(&mountlist_mtx);
1634 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1635 			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1636 				vfs_ref(mp);
1637 				break;
1638 			}
1639 		}
1640 		mtx_unlock(&mountlist_mtx);
1641 		free(pathbuf, M_TEMP);
1642 		if (mp == NULL) {
1643 			/*
1644 			 * Previously we returned ENOENT for a nonexistent path and
1645 			 * EINVAL for a non-mountpoint.  We cannot tell these apart
1646 			 * now, so in the !MNT_BYFSID case return the more likely
1647 			 * EINVAL for compatibility.
1648 			 */
1649 			return (EINVAL);
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * Don't allow unmounting the root filesystem.
1655 	 */
1656 	if (mp->mnt_flag & MNT_ROOTFS) {
1657 		vfs_rel(mp);
1658 		return (EINVAL);
1659 	}
1660 	error = dounmount(mp, flags, td);
1661 	return (error);
1662 }
1663 
1664 /*
1665  * Return error if any of the vnodes, ignoring the root vnode
1666  * and the syncer vnode, have non-zero usecount.
1667  *
1668  * This function is purely advisory - it can return false positives
1669  * and negatives.
1670  */
1671 static int
1672 vfs_check_usecounts(struct mount *mp)
1673 {
1674 	struct vnode *vp, *mvp;
1675 
1676 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1677 		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1678 		    vp->v_usecount != 0) {
1679 			VI_UNLOCK(vp);
1680 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1681 			return (EBUSY);
1682 		}
1683 		VI_UNLOCK(vp);
1684 	}
1685 
1686 	return (0);
1687 }
1688 
1689 static void
1690 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1691 {
1692 
1693 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1694 	mp->mnt_kern_flag &= ~mntkflags;
1695 	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1696 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1697 		wakeup(mp);
1698 	}
1699 	vfs_op_exit_locked(mp);
1700 	MNT_IUNLOCK(mp);
1701 	if (coveredvp != NULL) {
1702 		VOP_UNLOCK(coveredvp);
1703 		vdrop(coveredvp);
1704 	}
1705 	vn_finished_write(mp);
1706 }
1707 
1708 /*
1709  * There are various reference counters associated with the mount point.
1710  * Normally it is permitted to modify them without taking the mnt ilock,
1711  * but this behavior can be temporarily disabled if stable value is needed
1712  * or callers are expected to block (e.g. to not allow new users during
1713  * forced unmount).
1714  */
1715 void
1716 vfs_op_enter(struct mount *mp)
1717 {
1718 	struct mount_pcpu *mpcpu;
1719 	int cpu;
1720 
1721 	MNT_ILOCK(mp);
1722 	mp->mnt_vfs_ops++;
1723 	if (mp->mnt_vfs_ops > 1) {
1724 		MNT_IUNLOCK(mp);
1725 		return;
1726 	}
1727 	vfs_op_barrier_wait(mp);
1728 	CPU_FOREACH(cpu) {
1729 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1730 
1731 		mp->mnt_ref += mpcpu->mntp_ref;
1732 		mpcpu->mntp_ref = 0;
1733 
1734 		mp->mnt_lockref += mpcpu->mntp_lockref;
1735 		mpcpu->mntp_lockref = 0;
1736 
1737 		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1738 		mpcpu->mntp_writeopcount = 0;
1739 	}
1740 	MPASSERT(mp->mnt_ref > 0 && mp->mnt_lockref >= 0 &&
1741 	    mp->mnt_writeopcount >= 0, mp,
1742 	    ("invalid count(s): ref %d lockref %d writeopcount %d",
1743 	    mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount));
1744 	MNT_IUNLOCK(mp);
1745 	vfs_assert_mount_counters(mp);
1746 }
1747 
1748 void
1749 vfs_op_exit_locked(struct mount *mp)
1750 {
1751 
1752 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1753 
1754 	MPASSERT(mp->mnt_vfs_ops > 0, mp,
1755 	    ("invalid vfs_ops count %d", mp->mnt_vfs_ops));
1756 	MPASSERT(mp->mnt_vfs_ops > 1 ||
1757 	    (mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_SUSPEND)) == 0, mp,
1758 	    ("vfs_ops too low %d in unmount or suspend", mp->mnt_vfs_ops));
1759 	mp->mnt_vfs_ops--;
1760 }
1761 
1762 void
1763 vfs_op_exit(struct mount *mp)
1764 {
1765 
1766 	MNT_ILOCK(mp);
1767 	vfs_op_exit_locked(mp);
1768 	MNT_IUNLOCK(mp);
1769 }
1770 
1771 struct vfs_op_barrier_ipi {
1772 	struct mount *mp;
1773 	struct smp_rendezvous_cpus_retry_arg srcra;
1774 };
1775 
1776 static void
1777 vfs_op_action_func(void *arg)
1778 {
1779 	struct vfs_op_barrier_ipi *vfsopipi;
1780 	struct mount *mp;
1781 
1782 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1783 	mp = vfsopipi->mp;
1784 
1785 	if (!vfs_op_thread_entered(mp))
1786 		smp_rendezvous_cpus_done(arg);
1787 }
1788 
1789 static void
1790 vfs_op_wait_func(void *arg, int cpu)
1791 {
1792 	struct vfs_op_barrier_ipi *vfsopipi;
1793 	struct mount *mp;
1794 	struct mount_pcpu *mpcpu;
1795 
1796 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1797 	mp = vfsopipi->mp;
1798 
1799 	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1800 	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1801 		cpu_spinwait();
1802 }
1803 
1804 void
1805 vfs_op_barrier_wait(struct mount *mp)
1806 {
1807 	struct vfs_op_barrier_ipi vfsopipi;
1808 
1809 	vfsopipi.mp = mp;
1810 
1811 	smp_rendezvous_cpus_retry(all_cpus,
1812 	    smp_no_rendezvous_barrier,
1813 	    vfs_op_action_func,
1814 	    smp_no_rendezvous_barrier,
1815 	    vfs_op_wait_func,
1816 	    &vfsopipi.srcra);
1817 }
1818 
1819 #ifdef DIAGNOSTIC
1820 void
1821 vfs_assert_mount_counters(struct mount *mp)
1822 {
1823 	struct mount_pcpu *mpcpu;
1824 	int cpu;
1825 
1826 	if (mp->mnt_vfs_ops == 0)
1827 		return;
1828 
1829 	CPU_FOREACH(cpu) {
1830 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1831 		if (mpcpu->mntp_ref != 0 ||
1832 		    mpcpu->mntp_lockref != 0 ||
1833 		    mpcpu->mntp_writeopcount != 0)
1834 			vfs_dump_mount_counters(mp);
1835 	}
1836 }
1837 
1838 void
1839 vfs_dump_mount_counters(struct mount *mp)
1840 {
1841 	struct mount_pcpu *mpcpu;
1842 	int ref, lockref, writeopcount;
1843 	int cpu;
1844 
1845 	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1846 
1847 	printf("        ref : ");
1848 	ref = mp->mnt_ref;
1849 	CPU_FOREACH(cpu) {
1850 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1851 		printf("%d ", mpcpu->mntp_ref);
1852 		ref += mpcpu->mntp_ref;
1853 	}
1854 	printf("\n");
1855 	printf("    lockref : ");
1856 	lockref = mp->mnt_lockref;
1857 	CPU_FOREACH(cpu) {
1858 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1859 		printf("%d ", mpcpu->mntp_lockref);
1860 		lockref += mpcpu->mntp_lockref;
1861 	}
1862 	printf("\n");
1863 	printf("writeopcount: ");
1864 	writeopcount = mp->mnt_writeopcount;
1865 	CPU_FOREACH(cpu) {
1866 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1867 		printf("%d ", mpcpu->mntp_writeopcount);
1868 		writeopcount += mpcpu->mntp_writeopcount;
1869 	}
1870 	printf("\n");
1871 
1872 	printf("counter       struct total\n");
1873 	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
1874 	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
1875 	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
1876 
1877 	panic("invalid counts on struct mount");
1878 }
1879 #endif
1880 
1881 int
1882 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
1883 {
1884 	struct mount_pcpu *mpcpu;
1885 	int cpu, sum;
1886 
1887 	switch (which) {
1888 	case MNT_COUNT_REF:
1889 		sum = mp->mnt_ref;
1890 		break;
1891 	case MNT_COUNT_LOCKREF:
1892 		sum = mp->mnt_lockref;
1893 		break;
1894 	case MNT_COUNT_WRITEOPCOUNT:
1895 		sum = mp->mnt_writeopcount;
1896 		break;
1897 	}
1898 
1899 	CPU_FOREACH(cpu) {
1900 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1901 		switch (which) {
1902 		case MNT_COUNT_REF:
1903 			sum += mpcpu->mntp_ref;
1904 			break;
1905 		case MNT_COUNT_LOCKREF:
1906 			sum += mpcpu->mntp_lockref;
1907 			break;
1908 		case MNT_COUNT_WRITEOPCOUNT:
1909 			sum += mpcpu->mntp_writeopcount;
1910 			break;
1911 		}
1912 	}
1913 	return (sum);
1914 }
1915 
1916 static bool
1917 deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
1918     int timeout_ticks)
1919 {
1920 	bool enqueued;
1921 
1922 	enqueued = false;
1923 	mtx_lock(&deferred_unmount_lock);
1924 	if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
1925 		mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
1926 		STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
1927 		    mnt_taskqueue_link);
1928 		enqueued = true;
1929 	}
1930 	mtx_unlock(&deferred_unmount_lock);
1931 
1932 	if (enqueued) {
1933 		taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
1934 		    &deferred_unmount_task, timeout_ticks);
1935 	}
1936 
1937 	return (enqueued);
1938 }
1939 
1940 /*
1941  * Taskqueue handler for processing async/recursive unmounts
1942  */
1943 static void
1944 vfs_deferred_unmount(void *argi __unused, int pending __unused)
1945 {
1946 	STAILQ_HEAD(, mount) local_unmounts;
1947 	uint64_t flags;
1948 	struct mount *mp, *tmp;
1949 	int error;
1950 	unsigned int retries;
1951 	bool unmounted;
1952 
1953 	STAILQ_INIT(&local_unmounts);
1954 	mtx_lock(&deferred_unmount_lock);
1955 	STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
1956 	mtx_unlock(&deferred_unmount_lock);
1957 
1958 	STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
1959 		flags = mp->mnt_taskqueue_flags;
1960 		KASSERT((flags & MNT_DEFERRED) != 0,
1961 		    ("taskqueue unmount without MNT_DEFERRED"));
1962 		error = dounmount(mp, flags, curthread);
1963 		if (error != 0) {
1964 			MNT_ILOCK(mp);
1965 			unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
1966 			MNT_IUNLOCK(mp);
1967 
1968 			/*
1969 			 * The deferred unmount thread is the only thread that
1970 			 * modifies the retry counts, so locking/atomics aren't
1971 			 * needed here.
1972 			 */
1973 			retries = (mp->mnt_unmount_retries)++;
1974 			deferred_unmount_total_retries++;
1975 			if (!unmounted && retries < deferred_unmount_retry_limit) {
1976 				deferred_unmount_enqueue(mp, flags, true,
1977 				    -deferred_unmount_retry_delay_hz);
1978 			} else {
1979 				if (retries >= deferred_unmount_retry_limit) {
1980 					printf("giving up on deferred unmount "
1981 					    "of %s after %d retries, error %d\n",
1982 					    mp->mnt_stat.f_mntonname, retries, error);
1983 				}
1984 				vfs_rel(mp);
1985 			}
1986 		}
1987 	}
1988 }
1989 
1990 /*
1991  * Do the actual filesystem unmount.
1992  */
1993 int
1994 dounmount(struct mount *mp, uint64_t flags, struct thread *td)
1995 {
1996 	struct mount_upper_node *upper;
1997 	struct vnode *coveredvp, *rootvp;
1998 	int error;
1999 	uint64_t async_flag;
2000 	int mnt_gen_r;
2001 	unsigned int retries;
2002 
2003 	KASSERT((flags & MNT_DEFERRED) == 0 ||
2004 	    (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2005 	    ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2006 
2007 	/*
2008 	 * If the caller has explicitly requested the unmount to be handled by
2009 	 * the taskqueue and we're not already in taskqueue context, queue
2010 	 * up the unmount request and exit.  This is done prior to any
2011 	 * credential checks; MNT_DEFERRED should be used only for kernel-
2012 	 * initiated unmounts and will therefore be processed with the
2013 	 * (kernel) credentials of the taskqueue thread.  Still, callers
2014 	 * should be sure this is the behavior they want.
2015 	 */
2016 	if ((flags & MNT_DEFERRED) != 0 &&
2017 	    taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2018 		if (!deferred_unmount_enqueue(mp, flags, false, 0))
2019 			vfs_rel(mp);
2020 		return (EINPROGRESS);
2021 	}
2022 
2023 	/*
2024 	 * Only privileged root, or (if MNT_USER is set) the user that did the
2025 	 * original mount is permitted to unmount this filesystem.
2026 	 * This check should be made prior to queueing up any recursive
2027 	 * unmounts of upper filesystems.  Those unmounts will be executed
2028 	 * with kernel thread credentials and are expected to succeed, so
2029 	 * we must at least ensure the originating context has sufficient
2030 	 * privilege to unmount the base filesystem before proceeding with
2031 	 * the uppers.
2032 	 */
2033 	error = vfs_suser(mp, td);
2034 	if (error != 0) {
2035 		KASSERT((flags & MNT_DEFERRED) == 0,
2036 		    ("taskqueue unmount with insufficient privilege"));
2037 		vfs_rel(mp);
2038 		return (error);
2039 	}
2040 
2041 	if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2042 		flags |= MNT_RECURSE;
2043 
2044 	if ((flags & MNT_RECURSE) != 0) {
2045 		KASSERT((flags & MNT_FORCE) != 0,
2046 		    ("MNT_RECURSE requires MNT_FORCE"));
2047 
2048 		MNT_ILOCK(mp);
2049 		/*
2050 		 * Set MNTK_RECURSE to prevent new upper mounts from being
2051 		 * added, and note that an operation on the uppers list is in
2052 		 * progress.  This will ensure that unregistration from the
2053 		 * uppers list, and therefore any pending unmount of the upper
2054 		 * FS, can't complete until after we finish walking the list.
2055 		 */
2056 		mp->mnt_kern_flag |= MNTK_RECURSE;
2057 		mp->mnt_upper_pending++;
2058 		TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2059 			retries = upper->mp->mnt_unmount_retries;
2060 			if (retries > deferred_unmount_retry_limit) {
2061 				error = EBUSY;
2062 				continue;
2063 			}
2064 			MNT_IUNLOCK(mp);
2065 
2066 			vfs_ref(upper->mp);
2067 			if (!deferred_unmount_enqueue(upper->mp, flags,
2068 			    false, 0))
2069 				vfs_rel(upper->mp);
2070 			MNT_ILOCK(mp);
2071 		}
2072 		mp->mnt_upper_pending--;
2073 		if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2074 		    mp->mnt_upper_pending == 0) {
2075 			mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2076 			wakeup(&mp->mnt_uppers);
2077 		}
2078 
2079 		/*
2080 		 * If we're not on the taskqueue, wait until the uppers list
2081 		 * is drained before proceeding with unmount.  Otherwise, if
2082 		 * we are on the taskqueue and there are still pending uppers,
2083 		 * just re-enqueue on the end of the taskqueue.
2084 		 */
2085 		if ((flags & MNT_DEFERRED) == 0) {
2086 			while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2087 				mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2088 				error = msleep(&mp->mnt_taskqueue_link,
2089 				    MNT_MTX(mp), PCATCH, "umntqw", 0);
2090 			}
2091 			if (error != 0) {
2092 				MNT_REL(mp);
2093 				MNT_IUNLOCK(mp);
2094 				return (error);
2095 			}
2096 		} else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2097 			MNT_IUNLOCK(mp);
2098 			if (error == 0)
2099 				deferred_unmount_enqueue(mp, flags, true, 0);
2100 			return (error);
2101 		}
2102 		MNT_IUNLOCK(mp);
2103 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2104 	}
2105 
2106 	/* Allow the taskqueue to safely re-enqueue on failure */
2107 	if ((flags & MNT_DEFERRED) != 0)
2108 		vfs_ref(mp);
2109 
2110 	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2111 		mnt_gen_r = mp->mnt_gen;
2112 		VI_LOCK(coveredvp);
2113 		vholdl(coveredvp);
2114 		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2115 		/*
2116 		 * Check for mp being unmounted while waiting for the
2117 		 * covered vnode lock.
2118 		 */
2119 		if (coveredvp->v_mountedhere != mp ||
2120 		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2121 			VOP_UNLOCK(coveredvp);
2122 			vdrop(coveredvp);
2123 			vfs_rel(mp);
2124 			return (EBUSY);
2125 		}
2126 	}
2127 
2128 	vfs_op_enter(mp);
2129 
2130 	vn_start_write(NULL, &mp, V_WAIT | V_MNTREF);
2131 	MNT_ILOCK(mp);
2132 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2133 	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
2134 	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
2135 		dounmount_cleanup(mp, coveredvp, 0);
2136 		return (EBUSY);
2137 	}
2138 	mp->mnt_kern_flag |= MNTK_UNMOUNT;
2139 	rootvp = vfs_cache_root_clear(mp);
2140 	if (coveredvp != NULL)
2141 		vn_seqc_write_begin(coveredvp);
2142 	if (flags & MNT_NONBUSY) {
2143 		MNT_IUNLOCK(mp);
2144 		error = vfs_check_usecounts(mp);
2145 		MNT_ILOCK(mp);
2146 		if (error != 0) {
2147 			vn_seqc_write_end(coveredvp);
2148 			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2149 			if (rootvp != NULL) {
2150 				vn_seqc_write_end(rootvp);
2151 				vrele(rootvp);
2152 			}
2153 			return (error);
2154 		}
2155 	}
2156 	/* Allow filesystems to detect that a forced unmount is in progress. */
2157 	if (flags & MNT_FORCE) {
2158 		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2159 		MNT_IUNLOCK(mp);
2160 		/*
2161 		 * Must be done after setting MNTK_UNMOUNTF and before
2162 		 * waiting for mnt_lockref to become 0.
2163 		 */
2164 		VFS_PURGE(mp);
2165 		MNT_ILOCK(mp);
2166 	}
2167 	error = 0;
2168 	if (mp->mnt_lockref) {
2169 		mp->mnt_kern_flag |= MNTK_DRAINING;
2170 		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2171 		    "mount drain", 0);
2172 	}
2173 	MNT_IUNLOCK(mp);
2174 	KASSERT(mp->mnt_lockref == 0,
2175 	    ("%s: invalid lock refcount in the drain path @ %s:%d",
2176 	    __func__, __FILE__, __LINE__));
2177 	KASSERT(error == 0,
2178 	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
2179 	    __func__, __FILE__, __LINE__));
2180 
2181 	/*
2182 	 * We want to keep the vnode around so that we can vn_seqc_write_end
2183 	 * after we are done with unmount. Downgrade our reference to a mere
2184 	 * hold count so that we don't interefere with anything.
2185 	 */
2186 	if (rootvp != NULL) {
2187 		vhold(rootvp);
2188 		vrele(rootvp);
2189 	}
2190 
2191 	if (mp->mnt_flag & MNT_EXPUBLIC)
2192 		vfs_setpublicfs(NULL, NULL, NULL);
2193 
2194 	vfs_periodic(mp, MNT_WAIT);
2195 	MNT_ILOCK(mp);
2196 	async_flag = mp->mnt_flag & MNT_ASYNC;
2197 	mp->mnt_flag &= ~MNT_ASYNC;
2198 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
2199 	MNT_IUNLOCK(mp);
2200 	vfs_deallocate_syncvnode(mp);
2201 	error = VFS_UNMOUNT(mp, flags);
2202 	vn_finished_write(mp);
2203 	/*
2204 	 * If we failed to flush the dirty blocks for this mount point,
2205 	 * undo all the cdir/rdir and rootvnode changes we made above.
2206 	 * Unless we failed to do so because the device is reporting that
2207 	 * it doesn't exist anymore.
2208 	 */
2209 	if (error && error != ENXIO) {
2210 		MNT_ILOCK(mp);
2211 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2212 			MNT_IUNLOCK(mp);
2213 			vfs_allocate_syncvnode(mp);
2214 			MNT_ILOCK(mp);
2215 		}
2216 		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2217 		mp->mnt_flag |= async_flag;
2218 		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2219 		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2220 			mp->mnt_kern_flag |= MNTK_ASYNC;
2221 		if (mp->mnt_kern_flag & MNTK_MWAIT) {
2222 			mp->mnt_kern_flag &= ~MNTK_MWAIT;
2223 			wakeup(mp);
2224 		}
2225 		vfs_op_exit_locked(mp);
2226 		MNT_IUNLOCK(mp);
2227 		if (coveredvp) {
2228 			vn_seqc_write_end(coveredvp);
2229 			VOP_UNLOCK(coveredvp);
2230 			vdrop(coveredvp);
2231 		}
2232 		if (rootvp != NULL) {
2233 			vn_seqc_write_end(rootvp);
2234 			vdrop(rootvp);
2235 		}
2236 		return (error);
2237 	}
2238 
2239 	mtx_lock(&mountlist_mtx);
2240 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
2241 	mtx_unlock(&mountlist_mtx);
2242 	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2243 	if (coveredvp != NULL) {
2244 		VI_LOCK(coveredvp);
2245 		vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2246 		coveredvp->v_mountedhere = NULL;
2247 		vn_seqc_write_end_locked(coveredvp);
2248 		VI_UNLOCK(coveredvp);
2249 		VOP_UNLOCK(coveredvp);
2250 		vdrop(coveredvp);
2251 	}
2252 	mount_devctl_event("UNMOUNT", mp, false);
2253 	if (rootvp != NULL) {
2254 		vn_seqc_write_end(rootvp);
2255 		vdrop(rootvp);
2256 	}
2257 	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2258 	if (rootvnode != NULL && mp == rootvnode->v_mount) {
2259 		vrele(rootvnode);
2260 		rootvnode = NULL;
2261 	}
2262 	if (mp == rootdevmp)
2263 		rootdevmp = NULL;
2264 	if ((flags & MNT_DEFERRED) != 0)
2265 		vfs_rel(mp);
2266 	vfs_mount_destroy(mp);
2267 	return (0);
2268 }
2269 
2270 /*
2271  * Report errors during filesystem mounting.
2272  */
2273 void
2274 vfs_mount_error(struct mount *mp, const char *fmt, ...)
2275 {
2276 	struct vfsoptlist *moptlist = mp->mnt_optnew;
2277 	va_list ap;
2278 	int error, len;
2279 	char *errmsg;
2280 
2281 	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2282 	if (error || errmsg == NULL || len <= 0)
2283 		return;
2284 
2285 	va_start(ap, fmt);
2286 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2287 	va_end(ap);
2288 }
2289 
2290 void
2291 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2292 {
2293 	va_list ap;
2294 	int error, len;
2295 	char *errmsg;
2296 
2297 	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2298 	if (error || errmsg == NULL || len <= 0)
2299 		return;
2300 
2301 	va_start(ap, fmt);
2302 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2303 	va_end(ap);
2304 }
2305 
2306 /*
2307  * ---------------------------------------------------------------------
2308  * Functions for querying mount options/arguments from filesystems.
2309  */
2310 
2311 /*
2312  * Check that no unknown options are given
2313  */
2314 int
2315 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2316 {
2317 	struct vfsopt *opt;
2318 	char errmsg[255];
2319 	const char **t, *p, *q;
2320 	int ret = 0;
2321 
2322 	TAILQ_FOREACH(opt, opts, link) {
2323 		p = opt->name;
2324 		q = NULL;
2325 		if (p[0] == 'n' && p[1] == 'o')
2326 			q = p + 2;
2327 		for(t = global_opts; *t != NULL; t++) {
2328 			if (strcmp(*t, p) == 0)
2329 				break;
2330 			if (q != NULL) {
2331 				if (strcmp(*t, q) == 0)
2332 					break;
2333 			}
2334 		}
2335 		if (*t != NULL)
2336 			continue;
2337 		for(t = legal; *t != NULL; t++) {
2338 			if (strcmp(*t, p) == 0)
2339 				break;
2340 			if (q != NULL) {
2341 				if (strcmp(*t, q) == 0)
2342 					break;
2343 			}
2344 		}
2345 		if (*t != NULL)
2346 			continue;
2347 		snprintf(errmsg, sizeof(errmsg),
2348 		    "mount option <%s> is unknown", p);
2349 		ret = EINVAL;
2350 	}
2351 	if (ret != 0) {
2352 		TAILQ_FOREACH(opt, opts, link) {
2353 			if (strcmp(opt->name, "errmsg") == 0) {
2354 				strncpy((char *)opt->value, errmsg, opt->len);
2355 				break;
2356 			}
2357 		}
2358 		if (opt == NULL)
2359 			printf("%s\n", errmsg);
2360 	}
2361 	return (ret);
2362 }
2363 
2364 /*
2365  * Get a mount option by its name.
2366  *
2367  * Return 0 if the option was found, ENOENT otherwise.
2368  * If len is non-NULL it will be filled with the length
2369  * of the option. If buf is non-NULL, it will be filled
2370  * with the address of the option.
2371  */
2372 int
2373 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2374 {
2375 	struct vfsopt *opt;
2376 
2377 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2378 
2379 	TAILQ_FOREACH(opt, opts, link) {
2380 		if (strcmp(name, opt->name) == 0) {
2381 			opt->seen = 1;
2382 			if (len != NULL)
2383 				*len = opt->len;
2384 			if (buf != NULL)
2385 				*buf = opt->value;
2386 			return (0);
2387 		}
2388 	}
2389 	return (ENOENT);
2390 }
2391 
2392 int
2393 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2394 {
2395 	struct vfsopt *opt;
2396 
2397 	if (opts == NULL)
2398 		return (-1);
2399 
2400 	TAILQ_FOREACH(opt, opts, link) {
2401 		if (strcmp(name, opt->name) == 0) {
2402 			opt->seen = 1;
2403 			return (opt->pos);
2404 		}
2405 	}
2406 	return (-1);
2407 }
2408 
2409 int
2410 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2411 {
2412 	char *opt_value, *vtp;
2413 	quad_t iv;
2414 	int error, opt_len;
2415 
2416 	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2417 	if (error != 0)
2418 		return (error);
2419 	if (opt_len == 0 || opt_value == NULL)
2420 		return (EINVAL);
2421 	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2422 		return (EINVAL);
2423 	iv = strtoq(opt_value, &vtp, 0);
2424 	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2425 		return (EINVAL);
2426 	if (iv < 0)
2427 		return (EINVAL);
2428 	switch (vtp[0]) {
2429 	case 't': case 'T':
2430 		iv *= 1024;
2431 		/* FALLTHROUGH */
2432 	case 'g': case 'G':
2433 		iv *= 1024;
2434 		/* FALLTHROUGH */
2435 	case 'm': case 'M':
2436 		iv *= 1024;
2437 		/* FALLTHROUGH */
2438 	case 'k': case 'K':
2439 		iv *= 1024;
2440 	case '\0':
2441 		break;
2442 	default:
2443 		return (EINVAL);
2444 	}
2445 	*value = iv;
2446 
2447 	return (0);
2448 }
2449 
2450 char *
2451 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2452 {
2453 	struct vfsopt *opt;
2454 
2455 	*error = 0;
2456 	TAILQ_FOREACH(opt, opts, link) {
2457 		if (strcmp(name, opt->name) != 0)
2458 			continue;
2459 		opt->seen = 1;
2460 		if (opt->len == 0 ||
2461 		    ((char *)opt->value)[opt->len - 1] != '\0') {
2462 			*error = EINVAL;
2463 			return (NULL);
2464 		}
2465 		return (opt->value);
2466 	}
2467 	*error = ENOENT;
2468 	return (NULL);
2469 }
2470 
2471 int
2472 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2473 	uint64_t val)
2474 {
2475 	struct vfsopt *opt;
2476 
2477 	TAILQ_FOREACH(opt, opts, link) {
2478 		if (strcmp(name, opt->name) == 0) {
2479 			opt->seen = 1;
2480 			if (w != NULL)
2481 				*w |= val;
2482 			return (1);
2483 		}
2484 	}
2485 	if (w != NULL)
2486 		*w &= ~val;
2487 	return (0);
2488 }
2489 
2490 int
2491 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2492 {
2493 	va_list ap;
2494 	struct vfsopt *opt;
2495 	int ret;
2496 
2497 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2498 
2499 	TAILQ_FOREACH(opt, opts, link) {
2500 		if (strcmp(name, opt->name) != 0)
2501 			continue;
2502 		opt->seen = 1;
2503 		if (opt->len == 0 || opt->value == NULL)
2504 			return (0);
2505 		if (((char *)opt->value)[opt->len - 1] != '\0')
2506 			return (0);
2507 		va_start(ap, fmt);
2508 		ret = vsscanf(opt->value, fmt, ap);
2509 		va_end(ap);
2510 		return (ret);
2511 	}
2512 	return (0);
2513 }
2514 
2515 int
2516 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2517 {
2518 	struct vfsopt *opt;
2519 
2520 	TAILQ_FOREACH(opt, opts, link) {
2521 		if (strcmp(name, opt->name) != 0)
2522 			continue;
2523 		opt->seen = 1;
2524 		if (opt->value == NULL)
2525 			opt->len = len;
2526 		else {
2527 			if (opt->len != len)
2528 				return (EINVAL);
2529 			bcopy(value, opt->value, len);
2530 		}
2531 		return (0);
2532 	}
2533 	return (ENOENT);
2534 }
2535 
2536 int
2537 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2538 {
2539 	struct vfsopt *opt;
2540 
2541 	TAILQ_FOREACH(opt, opts, link) {
2542 		if (strcmp(name, opt->name) != 0)
2543 			continue;
2544 		opt->seen = 1;
2545 		if (opt->value == NULL)
2546 			opt->len = len;
2547 		else {
2548 			if (opt->len < len)
2549 				return (EINVAL);
2550 			opt->len = len;
2551 			bcopy(value, opt->value, len);
2552 		}
2553 		return (0);
2554 	}
2555 	return (ENOENT);
2556 }
2557 
2558 int
2559 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2560 {
2561 	struct vfsopt *opt;
2562 
2563 	TAILQ_FOREACH(opt, opts, link) {
2564 		if (strcmp(name, opt->name) != 0)
2565 			continue;
2566 		opt->seen = 1;
2567 		if (opt->value == NULL)
2568 			opt->len = strlen(value) + 1;
2569 		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2570 			return (EINVAL);
2571 		return (0);
2572 	}
2573 	return (ENOENT);
2574 }
2575 
2576 /*
2577  * Find and copy a mount option.
2578  *
2579  * The size of the buffer has to be specified
2580  * in len, if it is not the same length as the
2581  * mount option, EINVAL is returned.
2582  * Returns ENOENT if the option is not found.
2583  */
2584 int
2585 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2586 {
2587 	struct vfsopt *opt;
2588 
2589 	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2590 
2591 	TAILQ_FOREACH(opt, opts, link) {
2592 		if (strcmp(name, opt->name) == 0) {
2593 			opt->seen = 1;
2594 			if (len != opt->len)
2595 				return (EINVAL);
2596 			bcopy(opt->value, dest, opt->len);
2597 			return (0);
2598 		}
2599 	}
2600 	return (ENOENT);
2601 }
2602 
2603 int
2604 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2605 {
2606 	/*
2607 	 * Filesystems only fill in part of the structure for updates, we
2608 	 * have to read the entirety first to get all content.
2609 	 */
2610 	if (sbp != &mp->mnt_stat)
2611 		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2612 
2613 	/*
2614 	 * Set these in case the underlying filesystem fails to do so.
2615 	 */
2616 	sbp->f_version = STATFS_VERSION;
2617 	sbp->f_namemax = NAME_MAX;
2618 	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2619 	sbp->f_nvnodelistsize = mp->mnt_nvnodelistsize;
2620 
2621 	return (mp->mnt_op->vfs_statfs(mp, sbp));
2622 }
2623 
2624 void
2625 vfs_mountedfrom(struct mount *mp, const char *from)
2626 {
2627 
2628 	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2629 	strlcpy(mp->mnt_stat.f_mntfromname, from,
2630 	    sizeof mp->mnt_stat.f_mntfromname);
2631 }
2632 
2633 /*
2634  * ---------------------------------------------------------------------
2635  * This is the api for building mount args and mounting filesystems from
2636  * inside the kernel.
2637  *
2638  * The API works by accumulation of individual args.  First error is
2639  * latched.
2640  *
2641  * XXX: should be documented in new manpage kernel_mount(9)
2642  */
2643 
2644 /* A memory allocation which must be freed when we are done */
2645 struct mntaarg {
2646 	SLIST_ENTRY(mntaarg)	next;
2647 };
2648 
2649 /* The header for the mount arguments */
2650 struct mntarg {
2651 	struct iovec *v;
2652 	int len;
2653 	int error;
2654 	SLIST_HEAD(, mntaarg)	list;
2655 };
2656 
2657 /*
2658  * Add a boolean argument.
2659  *
2660  * flag is the boolean value.
2661  * name must start with "no".
2662  */
2663 struct mntarg *
2664 mount_argb(struct mntarg *ma, int flag, const char *name)
2665 {
2666 
2667 	KASSERT(name[0] == 'n' && name[1] == 'o',
2668 	    ("mount_argb(...,%s): name must start with 'no'", name));
2669 
2670 	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2671 }
2672 
2673 /*
2674  * Add an argument printf style
2675  */
2676 struct mntarg *
2677 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2678 {
2679 	va_list ap;
2680 	struct mntaarg *maa;
2681 	struct sbuf *sb;
2682 	int len;
2683 
2684 	if (ma == NULL) {
2685 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2686 		SLIST_INIT(&ma->list);
2687 	}
2688 	if (ma->error)
2689 		return (ma);
2690 
2691 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2692 	    M_MOUNT, M_WAITOK);
2693 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2694 	ma->v[ma->len].iov_len = strlen(name) + 1;
2695 	ma->len++;
2696 
2697 	sb = sbuf_new_auto();
2698 	va_start(ap, fmt);
2699 	sbuf_vprintf(sb, fmt, ap);
2700 	va_end(ap);
2701 	sbuf_finish(sb);
2702 	len = sbuf_len(sb) + 1;
2703 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2704 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2705 	bcopy(sbuf_data(sb), maa + 1, len);
2706 	sbuf_delete(sb);
2707 
2708 	ma->v[ma->len].iov_base = maa + 1;
2709 	ma->v[ma->len].iov_len = len;
2710 	ma->len++;
2711 
2712 	return (ma);
2713 }
2714 
2715 /*
2716  * Add an argument which is a userland string.
2717  */
2718 struct mntarg *
2719 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2720 {
2721 	struct mntaarg *maa;
2722 	char *tbuf;
2723 
2724 	if (val == NULL)
2725 		return (ma);
2726 	if (ma == NULL) {
2727 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2728 		SLIST_INIT(&ma->list);
2729 	}
2730 	if (ma->error)
2731 		return (ma);
2732 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2733 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2734 	tbuf = (void *)(maa + 1);
2735 	ma->error = copyinstr(val, tbuf, len, NULL);
2736 	return (mount_arg(ma, name, tbuf, -1));
2737 }
2738 
2739 /*
2740  * Plain argument.
2741  *
2742  * If length is -1, treat value as a C string.
2743  */
2744 struct mntarg *
2745 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2746 {
2747 
2748 	if (ma == NULL) {
2749 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2750 		SLIST_INIT(&ma->list);
2751 	}
2752 	if (ma->error)
2753 		return (ma);
2754 
2755 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2756 	    M_MOUNT, M_WAITOK);
2757 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2758 	ma->v[ma->len].iov_len = strlen(name) + 1;
2759 	ma->len++;
2760 
2761 	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2762 	if (len < 0)
2763 		ma->v[ma->len].iov_len = strlen(val) + 1;
2764 	else
2765 		ma->v[ma->len].iov_len = len;
2766 	ma->len++;
2767 	return (ma);
2768 }
2769 
2770 /*
2771  * Free a mntarg structure
2772  */
2773 static void
2774 free_mntarg(struct mntarg *ma)
2775 {
2776 	struct mntaarg *maa;
2777 
2778 	while (!SLIST_EMPTY(&ma->list)) {
2779 		maa = SLIST_FIRST(&ma->list);
2780 		SLIST_REMOVE_HEAD(&ma->list, next);
2781 		free(maa, M_MOUNT);
2782 	}
2783 	free(ma->v, M_MOUNT);
2784 	free(ma, M_MOUNT);
2785 }
2786 
2787 /*
2788  * Mount a filesystem
2789  */
2790 int
2791 kernel_mount(struct mntarg *ma, uint64_t flags)
2792 {
2793 	struct uio auio;
2794 	int error;
2795 
2796 	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2797 	KASSERT(ma->error != 0 || ma->v != NULL, ("kernel_mount NULL ma->v"));
2798 	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2799 
2800 	error = ma->error;
2801 	if (error == 0) {
2802 		auio.uio_iov = ma->v;
2803 		auio.uio_iovcnt = ma->len;
2804 		auio.uio_segflg = UIO_SYSSPACE;
2805 		error = vfs_donmount(curthread, flags, &auio);
2806 	}
2807 	free_mntarg(ma);
2808 	return (error);
2809 }
2810 
2811 /* Map from mount options to printable formats. */
2812 static struct mntoptnames optnames[] = {
2813 	MNTOPT_NAMES
2814 };
2815 
2816 #define DEVCTL_LEN 1024
2817 static void
2818 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2819 {
2820 	const uint8_t *cp;
2821 	struct mntoptnames *fp;
2822 	struct sbuf sb;
2823 	struct statfs *sfp = &mp->mnt_stat;
2824 	char *buf;
2825 
2826 	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2827 	if (buf == NULL)
2828 		return;
2829 	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2830 	sbuf_cpy(&sb, "mount-point=\"");
2831 	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2832 	sbuf_cat(&sb, "\" mount-dev=\"");
2833 	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2834 	sbuf_cat(&sb, "\" mount-type=\"");
2835 	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2836 	sbuf_cat(&sb, "\" fsid=0x");
2837 	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2838 	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2839 		sbuf_printf(&sb, "%02x", cp[i]);
2840 	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2841 	for (fp = optnames; fp->o_opt != 0; fp++) {
2842 		if ((mp->mnt_flag & fp->o_opt) != 0) {
2843 			sbuf_cat(&sb, fp->o_name);
2844 			sbuf_putc(&sb, ';');
2845 		}
2846 	}
2847 	sbuf_putc(&sb, '"');
2848 	sbuf_finish(&sb);
2849 
2850 	/*
2851 	 * Options are not published because the form of the options depends on
2852 	 * the file system and may include binary data. In addition, they don't
2853 	 * necessarily provide enough useful information to be actionable when
2854 	 * devd processes them.
2855 	 */
2856 
2857 	if (sbuf_error(&sb) == 0)
2858 		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2859 	sbuf_delete(&sb);
2860 	free(buf, M_MOUNT);
2861 }
2862 
2863 /*
2864  * Force remount specified mount point to read-only.  The argument
2865  * must be busied to avoid parallel unmount attempts.
2866  *
2867  * Intended use is to prevent further writes if some metadata
2868  * inconsistency is detected.  Note that the function still flushes
2869  * all cached metadata and data for the mount point, which might be
2870  * not always suitable.
2871  */
2872 int
2873 vfs_remount_ro(struct mount *mp)
2874 {
2875 	struct vfsoptlist *opts;
2876 	struct vfsopt *opt;
2877 	struct vnode *vp_covered, *rootvp;
2878 	int error;
2879 
2880 	KASSERT(mp->mnt_lockref > 0,
2881 	    ("vfs_remount_ro: mp %p is not busied", mp));
2882 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
2883 	    ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
2884 
2885 	rootvp = NULL;
2886 	vp_covered = mp->mnt_vnodecovered;
2887 	error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
2888 	if (error != 0)
2889 		return (error);
2890 	VI_LOCK(vp_covered);
2891 	if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
2892 		VI_UNLOCK(vp_covered);
2893 		vput(vp_covered);
2894 		return (EBUSY);
2895 	}
2896 	vp_covered->v_iflag |= VI_MOUNT;
2897 	VI_UNLOCK(vp_covered);
2898 	vfs_op_enter(mp);
2899 	vn_seqc_write_begin(vp_covered);
2900 
2901 	MNT_ILOCK(mp);
2902 	if ((mp->mnt_flag & MNT_RDONLY) != 0) {
2903 		MNT_IUNLOCK(mp);
2904 		error = EBUSY;
2905 		goto out;
2906 	}
2907 	mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
2908 	rootvp = vfs_cache_root_clear(mp);
2909 	MNT_IUNLOCK(mp);
2910 
2911 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
2912 	TAILQ_INIT(opts);
2913 	opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
2914 	opt->name = strdup("ro", M_MOUNT);
2915 	opt->value = NULL;
2916 	TAILQ_INSERT_TAIL(opts, opt, link);
2917 	vfs_mergeopts(opts, mp->mnt_opt);
2918 	mp->mnt_optnew = opts;
2919 
2920 	error = VFS_MOUNT(mp);
2921 
2922 	if (error == 0) {
2923 		MNT_ILOCK(mp);
2924 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
2925 		MNT_IUNLOCK(mp);
2926 		vfs_deallocate_syncvnode(mp);
2927 		if (mp->mnt_opt != NULL)
2928 			vfs_freeopts(mp->mnt_opt);
2929 		mp->mnt_opt = mp->mnt_optnew;
2930 	} else {
2931 		MNT_ILOCK(mp);
2932 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
2933 		MNT_IUNLOCK(mp);
2934 		vfs_freeopts(mp->mnt_optnew);
2935 	}
2936 	mp->mnt_optnew = NULL;
2937 
2938 out:
2939 	vfs_op_exit(mp);
2940 	VI_LOCK(vp_covered);
2941 	vp_covered->v_iflag &= ~VI_MOUNT;
2942 	VI_UNLOCK(vp_covered);
2943 	vput(vp_covered);
2944 	vn_seqc_write_end(vp_covered);
2945 	if (rootvp != NULL) {
2946 		vn_seqc_write_end(rootvp);
2947 		vrele(rootvp);
2948 	}
2949 	return (error);
2950 }
2951 
2952 /*
2953  * Suspend write operations on all local writeable filesystems.  Does
2954  * full sync of them in the process.
2955  *
2956  * Iterate over the mount points in reverse order, suspending most
2957  * recently mounted filesystems first.  It handles a case where a
2958  * filesystem mounted from a md(4) vnode-backed device should be
2959  * suspended before the filesystem that owns the vnode.
2960  */
2961 void
2962 suspend_all_fs(void)
2963 {
2964 	struct mount *mp;
2965 	int error;
2966 
2967 	mtx_lock(&mountlist_mtx);
2968 	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
2969 		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
2970 		if (error != 0)
2971 			continue;
2972 		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
2973 		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2974 			mtx_lock(&mountlist_mtx);
2975 			vfs_unbusy(mp);
2976 			continue;
2977 		}
2978 		error = vfs_write_suspend(mp, 0);
2979 		if (error == 0) {
2980 			MNT_ILOCK(mp);
2981 			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
2982 			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
2983 			MNT_IUNLOCK(mp);
2984 			mtx_lock(&mountlist_mtx);
2985 		} else {
2986 			printf("suspend of %s failed, error %d\n",
2987 			    mp->mnt_stat.f_mntonname, error);
2988 			mtx_lock(&mountlist_mtx);
2989 			vfs_unbusy(mp);
2990 		}
2991 	}
2992 	mtx_unlock(&mountlist_mtx);
2993 }
2994 
2995 void
2996 resume_all_fs(void)
2997 {
2998 	struct mount *mp;
2999 
3000 	mtx_lock(&mountlist_mtx);
3001 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3002 		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3003 			continue;
3004 		mtx_unlock(&mountlist_mtx);
3005 		MNT_ILOCK(mp);
3006 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3007 		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3008 		MNT_IUNLOCK(mp);
3009 		vfs_write_resume(mp, 0);
3010 		mtx_lock(&mountlist_mtx);
3011 		vfs_unbusy(mp);
3012 	}
3013 	mtx_unlock(&mountlist_mtx);
3014 }
3015