xref: /freebsd/sys/kern/vfs_mount.c (revision 5b5b7e2ca2fa9a2418dd51749f4ef6f881ae7179)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2004 Poul-Henning Kamp
5  * Copyright (c) 1999 Michael Smith
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/smp.h>
45 #include <sys/devctl.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/libkern.h>
52 #include <sys/limits.h>
53 #include <sys/malloc.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/filedesc.h>
60 #include <sys/reboot.h>
61 #include <sys/sbuf.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysproto.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/taskqueue.h>
68 #include <sys/vnode.h>
69 #include <vm/uma.h>
70 
71 #include <geom/geom.h>
72 
73 #include <machine/stdarg.h>
74 
75 #include <security/audit/audit.h>
76 #include <security/mac/mac_framework.h>
77 
78 #define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
79 
80 static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
81 		    uint64_t fsflags, struct vfsoptlist **optlist);
82 static void	free_mntarg(struct mntarg *ma);
83 
84 static int	usermount = 0;
85 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
86     "Unprivileged users may mount and unmount file systems");
87 
88 static bool	default_autoro = false;
89 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
90     "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
91 
92 static bool	recursive_forced_unmount = false;
93 SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
94     &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
95     " when a file system is forcibly unmounted");
96 
97 static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
98     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
99 
100 static unsigned int	deferred_unmount_retry_limit = 10;
101 SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
102     &deferred_unmount_retry_limit, 0,
103     "Maximum number of retries for deferred unmount failure");
104 
105 static int	deferred_unmount_retry_delay_hz;
106 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
107     &deferred_unmount_retry_delay_hz, 0,
108     "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
109 
110 static int	deferred_unmount_total_retries = 0;
111 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
112     &deferred_unmount_total_retries, 0,
113     "Total number of retried deferred unmounts");
114 
115 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
116 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
117 static uma_zone_t mount_zone;
118 
119 /* List of mounted filesystems. */
120 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
121 
122 /* For any iteration/modification of mountlist */
123 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
124 
125 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
126 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
127 
128 static void vfs_deferred_unmount(void *arg, int pending);
129 static struct timeout_task deferred_unmount_task;
130 static struct mtx deferred_unmount_lock;
131 MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
132     MTX_DEF);
133 static STAILQ_HEAD(, mount) deferred_unmount_list =
134     STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
135 TASKQUEUE_DEFINE_THREAD(deferred_unmount);
136 
137 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
138 
139 /*
140  * Global opts, taken by all filesystems
141  */
142 static const char *global_opts[] = {
143 	"errmsg",
144 	"fstype",
145 	"fspath",
146 	"ro",
147 	"rw",
148 	"nosuid",
149 	"noexec",
150 	NULL
151 };
152 
153 static int
154 mount_init(void *mem, int size, int flags)
155 {
156 	struct mount *mp;
157 
158 	mp = (struct mount *)mem;
159 	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
160 	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
161 	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
162 	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
163 	mp->mnt_ref = 0;
164 	mp->mnt_vfs_ops = 1;
165 	mp->mnt_rootvnode = NULL;
166 	return (0);
167 }
168 
169 static void
170 mount_fini(void *mem, int size)
171 {
172 	struct mount *mp;
173 
174 	mp = (struct mount *)mem;
175 	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
176 	lockdestroy(&mp->mnt_explock);
177 	mtx_destroy(&mp->mnt_listmtx);
178 	mtx_destroy(&mp->mnt_mtx);
179 }
180 
181 static void
182 vfs_mount_init(void *dummy __unused)
183 {
184 	TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
185 	    0, vfs_deferred_unmount, NULL);
186 	deferred_unmount_retry_delay_hz = hz;
187 	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
188 	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
189 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
190 }
191 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
192 
193 /*
194  * ---------------------------------------------------------------------
195  * Functions for building and sanitizing the mount options
196  */
197 
198 /* Remove one mount option. */
199 static void
200 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
201 {
202 
203 	TAILQ_REMOVE(opts, opt, link);
204 	free(opt->name, M_MOUNT);
205 	if (opt->value != NULL)
206 		free(opt->value, M_MOUNT);
207 	free(opt, M_MOUNT);
208 }
209 
210 /* Release all resources related to the mount options. */
211 void
212 vfs_freeopts(struct vfsoptlist *opts)
213 {
214 	struct vfsopt *opt;
215 
216 	while (!TAILQ_EMPTY(opts)) {
217 		opt = TAILQ_FIRST(opts);
218 		vfs_freeopt(opts, opt);
219 	}
220 	free(opts, M_MOUNT);
221 }
222 
223 void
224 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
225 {
226 	struct vfsopt *opt, *temp;
227 
228 	if (opts == NULL)
229 		return;
230 	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
231 		if (strcmp(opt->name, name) == 0)
232 			vfs_freeopt(opts, opt);
233 	}
234 }
235 
236 static int
237 vfs_isopt_ro(const char *opt)
238 {
239 
240 	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
241 	    strcmp(opt, "norw") == 0)
242 		return (1);
243 	return (0);
244 }
245 
246 static int
247 vfs_isopt_rw(const char *opt)
248 {
249 
250 	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
251 		return (1);
252 	return (0);
253 }
254 
255 /*
256  * Check if options are equal (with or without the "no" prefix).
257  */
258 static int
259 vfs_equalopts(const char *opt1, const char *opt2)
260 {
261 	char *p;
262 
263 	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
264 	if (strcmp(opt1, opt2) == 0)
265 		return (1);
266 	/* "noopt" vs. "opt" */
267 	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
268 		return (1);
269 	/* "opt" vs. "noopt" */
270 	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
271 		return (1);
272 	while ((p = strchr(opt1, '.')) != NULL &&
273 	    !strncmp(opt1, opt2, ++p - opt1)) {
274 		opt2 += p - opt1;
275 		opt1 = p;
276 		/* "foo.noopt" vs. "foo.opt" */
277 		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
278 			return (1);
279 		/* "foo.opt" vs. "foo.noopt" */
280 		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
281 			return (1);
282 	}
283 	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
284 	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
285 	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
286 		return (1);
287 	return (0);
288 }
289 
290 /*
291  * If a mount option is specified several times,
292  * (with or without the "no" prefix) only keep
293  * the last occurrence of it.
294  */
295 static void
296 vfs_sanitizeopts(struct vfsoptlist *opts)
297 {
298 	struct vfsopt *opt, *opt2, *tmp;
299 
300 	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
301 		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
302 		while (opt2 != NULL) {
303 			if (vfs_equalopts(opt->name, opt2->name)) {
304 				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
305 				vfs_freeopt(opts, opt2);
306 				opt2 = tmp;
307 			} else {
308 				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
309 			}
310 		}
311 	}
312 }
313 
314 /*
315  * Build a linked list of mount options from a struct uio.
316  */
317 int
318 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
319 {
320 	struct vfsoptlist *opts;
321 	struct vfsopt *opt;
322 	size_t memused, namelen, optlen;
323 	unsigned int i, iovcnt;
324 	int error;
325 
326 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
327 	TAILQ_INIT(opts);
328 	memused = 0;
329 	iovcnt = auio->uio_iovcnt;
330 	for (i = 0; i < iovcnt; i += 2) {
331 		namelen = auio->uio_iov[i].iov_len;
332 		optlen = auio->uio_iov[i + 1].iov_len;
333 		memused += sizeof(struct vfsopt) + optlen + namelen;
334 		/*
335 		 * Avoid consuming too much memory, and attempts to overflow
336 		 * memused.
337 		 */
338 		if (memused > VFS_MOUNTARG_SIZE_MAX ||
339 		    optlen > VFS_MOUNTARG_SIZE_MAX ||
340 		    namelen > VFS_MOUNTARG_SIZE_MAX) {
341 			error = EINVAL;
342 			goto bad;
343 		}
344 
345 		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
346 		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
347 		opt->value = NULL;
348 		opt->len = 0;
349 		opt->pos = i / 2;
350 		opt->seen = 0;
351 
352 		/*
353 		 * Do this early, so jumps to "bad" will free the current
354 		 * option.
355 		 */
356 		TAILQ_INSERT_TAIL(opts, opt, link);
357 
358 		if (auio->uio_segflg == UIO_SYSSPACE) {
359 			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
360 		} else {
361 			error = copyin(auio->uio_iov[i].iov_base, opt->name,
362 			    namelen);
363 			if (error)
364 				goto bad;
365 		}
366 		/* Ensure names are null-terminated strings. */
367 		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
368 			error = EINVAL;
369 			goto bad;
370 		}
371 		if (optlen != 0) {
372 			opt->len = optlen;
373 			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
374 			if (auio->uio_segflg == UIO_SYSSPACE) {
375 				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
376 				    optlen);
377 			} else {
378 				error = copyin(auio->uio_iov[i + 1].iov_base,
379 				    opt->value, optlen);
380 				if (error)
381 					goto bad;
382 			}
383 		}
384 	}
385 	vfs_sanitizeopts(opts);
386 	*options = opts;
387 	return (0);
388 bad:
389 	vfs_freeopts(opts);
390 	return (error);
391 }
392 
393 /*
394  * Merge the old mount options with the new ones passed
395  * in the MNT_UPDATE case.
396  *
397  * XXX: This function will keep a "nofoo" option in the new
398  * options.  E.g, if the option's canonical name is "foo",
399  * "nofoo" ends up in the mount point's active options.
400  */
401 static void
402 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
403 {
404 	struct vfsopt *opt, *new;
405 
406 	TAILQ_FOREACH(opt, oldopts, link) {
407 		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
408 		new->name = strdup(opt->name, M_MOUNT);
409 		if (opt->len != 0) {
410 			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
411 			bcopy(opt->value, new->value, opt->len);
412 		} else
413 			new->value = NULL;
414 		new->len = opt->len;
415 		new->seen = opt->seen;
416 		TAILQ_INSERT_HEAD(toopts, new, link);
417 	}
418 	vfs_sanitizeopts(toopts);
419 }
420 
421 /*
422  * Mount a filesystem.
423  */
424 #ifndef _SYS_SYSPROTO_H_
425 struct nmount_args {
426 	struct iovec *iovp;
427 	unsigned int iovcnt;
428 	int flags;
429 };
430 #endif
431 int
432 sys_nmount(struct thread *td, struct nmount_args *uap)
433 {
434 	struct uio *auio;
435 	int error;
436 	u_int iovcnt;
437 	uint64_t flags;
438 
439 	/*
440 	 * Mount flags are now 64-bits. On 32-bit archtectures only
441 	 * 32-bits are passed in, but from here on everything handles
442 	 * 64-bit flags correctly.
443 	 */
444 	flags = uap->flags;
445 
446 	AUDIT_ARG_FFLAGS(flags);
447 	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
448 	    uap->iovp, uap->iovcnt, flags);
449 
450 	/*
451 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
452 	 * userspace to set this flag, but we must filter it out if we want
453 	 * MNT_UPDATE on the root file system to work.
454 	 * MNT_ROOTFS should only be set by the kernel when mounting its
455 	 * root file system.
456 	 */
457 	flags &= ~MNT_ROOTFS;
458 
459 	iovcnt = uap->iovcnt;
460 	/*
461 	 * Check that we have an even number of iovec's
462 	 * and that we have at least two options.
463 	 */
464 	if ((iovcnt & 1) || (iovcnt < 4)) {
465 		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
466 		    uap->iovcnt);
467 		return (EINVAL);
468 	}
469 
470 	error = copyinuio(uap->iovp, iovcnt, &auio);
471 	if (error) {
472 		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
473 		    __func__, error);
474 		return (error);
475 	}
476 	error = vfs_donmount(td, flags, auio);
477 
478 	free(auio, M_IOV);
479 	return (error);
480 }
481 
482 /*
483  * ---------------------------------------------------------------------
484  * Various utility functions
485  */
486 
487 /*
488  * Get a reference on a mount point from a vnode.
489  *
490  * The vnode is allowed to be passed unlocked and race against dooming. Note in
491  * such case there are no guarantees the referenced mount point will still be
492  * associated with it after the function returns.
493  */
494 struct mount *
495 vfs_ref_from_vp(struct vnode *vp)
496 {
497 	struct mount *mp;
498 	struct mount_pcpu *mpcpu;
499 
500 	mp = atomic_load_ptr(&vp->v_mount);
501 	if (__predict_false(mp == NULL)) {
502 		return (mp);
503 	}
504 	if (vfs_op_thread_enter(mp, mpcpu)) {
505 		if (__predict_true(mp == vp->v_mount)) {
506 			vfs_mp_count_add_pcpu(mpcpu, ref, 1);
507 			vfs_op_thread_exit(mp, mpcpu);
508 		} else {
509 			vfs_op_thread_exit(mp, mpcpu);
510 			mp = NULL;
511 		}
512 	} else {
513 		MNT_ILOCK(mp);
514 		if (mp == vp->v_mount) {
515 			MNT_REF(mp);
516 			MNT_IUNLOCK(mp);
517 		} else {
518 			MNT_IUNLOCK(mp);
519 			mp = NULL;
520 		}
521 	}
522 	return (mp);
523 }
524 
525 void
526 vfs_ref(struct mount *mp)
527 {
528 	struct mount_pcpu *mpcpu;
529 
530 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
531 	if (vfs_op_thread_enter(mp, mpcpu)) {
532 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
533 		vfs_op_thread_exit(mp, mpcpu);
534 		return;
535 	}
536 
537 	MNT_ILOCK(mp);
538 	MNT_REF(mp);
539 	MNT_IUNLOCK(mp);
540 }
541 
542 /*
543  * Register ump as an upper mount of the mount associated with
544  * vnode vp.  This registration will be tracked through
545  * mount_upper_node upper, which should be allocated by the
546  * caller and stored in per-mount data associated with mp.
547  *
548  * If successful, this function will return the mount associated
549  * with vp, and will ensure that it cannot be unmounted until
550  * ump has been unregistered as one of its upper mounts.
551  *
552  * Upon failure this function will return NULL.
553  */
554 struct mount *
555 vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
556     struct mount_upper_node *upper)
557 {
558 	struct mount *mp;
559 
560 	mp = atomic_load_ptr(&vp->v_mount);
561 	if (mp == NULL)
562 		return (NULL);
563 	MNT_ILOCK(mp);
564 	if (mp != vp->v_mount ||
565 	    ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
566 		MNT_IUNLOCK(mp);
567 		return (NULL);
568 	}
569 	KASSERT(ump != mp, ("upper and lower mounts are identical"));
570 	upper->mp = ump;
571 	MNT_REF(mp);
572 	TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
573 	MNT_IUNLOCK(mp);
574 	return (mp);
575 }
576 
577 /*
578  * Register upper mount ump to receive vnode unlink/reclaim
579  * notifications from lower mount mp. This registration will
580  * be tracked through mount_upper_node upper, which should be
581  * allocated by the caller and stored in per-mount data
582  * associated with mp.
583  *
584  * ump must already be registered as an upper mount of mp
585  * through a call to vfs_register_upper_from_vp().
586  */
587 void
588 vfs_register_for_notification(struct mount *mp, struct mount *ump,
589     struct mount_upper_node *upper)
590 {
591 	upper->mp = ump;
592 	MNT_ILOCK(mp);
593 	TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
594 	MNT_IUNLOCK(mp);
595 }
596 
597 static void
598 vfs_drain_upper_locked(struct mount *mp)
599 {
600 	mtx_assert(MNT_MTX(mp), MA_OWNED);
601 	while (mp->mnt_upper_pending != 0) {
602 		mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
603 		msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
604 	}
605 }
606 
607 /*
608  * Undo a previous call to vfs_register_for_notification().
609  * The mount represented by upper must be currently registered
610  * as an upper mount for mp.
611  */
612 void
613 vfs_unregister_for_notification(struct mount *mp,
614     struct mount_upper_node *upper)
615 {
616 	MNT_ILOCK(mp);
617 	vfs_drain_upper_locked(mp);
618 	TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
619 	MNT_IUNLOCK(mp);
620 }
621 
622 /*
623  * Undo a previous call to vfs_register_upper_from_vp().
624  * This must be done before mp can be unmounted.
625  */
626 void
627 vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
628 {
629 	MNT_ILOCK(mp);
630 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
631 	    ("registered upper with pending unmount"));
632 	vfs_drain_upper_locked(mp);
633 	TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
634 	if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
635 	    TAILQ_EMPTY(&mp->mnt_uppers)) {
636 		mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
637 		wakeup(&mp->mnt_taskqueue_link);
638 	}
639 	MNT_REL(mp);
640 	MNT_IUNLOCK(mp);
641 }
642 
643 void
644 vfs_rel(struct mount *mp)
645 {
646 	struct mount_pcpu *mpcpu;
647 
648 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
649 	if (vfs_op_thread_enter(mp, mpcpu)) {
650 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
651 		vfs_op_thread_exit(mp, mpcpu);
652 		return;
653 	}
654 
655 	MNT_ILOCK(mp);
656 	MNT_REL(mp);
657 	MNT_IUNLOCK(mp);
658 }
659 
660 /*
661  * Allocate and initialize the mount point struct.
662  */
663 struct mount *
664 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
665     struct ucred *cred)
666 {
667 	struct mount *mp;
668 
669 	mp = uma_zalloc(mount_zone, M_WAITOK);
670 	bzero(&mp->mnt_startzero,
671 	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
672 	mp->mnt_kern_flag = 0;
673 	mp->mnt_flag = 0;
674 	mp->mnt_rootvnode = NULL;
675 	mp->mnt_vnodecovered = NULL;
676 	mp->mnt_op = NULL;
677 	mp->mnt_vfc = NULL;
678 	TAILQ_INIT(&mp->mnt_nvnodelist);
679 	mp->mnt_nvnodelistsize = 0;
680 	TAILQ_INIT(&mp->mnt_lazyvnodelist);
681 	mp->mnt_lazyvnodelistsize = 0;
682 	MPPASS(mp->mnt_ref == 0 && mp->mnt_lockref == 0 &&
683 	    mp->mnt_writeopcount == 0, mp);
684 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
685 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
686 	(void) vfs_busy(mp, MBF_NOWAIT);
687 	atomic_add_acq_int(&vfsp->vfc_refcount, 1);
688 	mp->mnt_op = vfsp->vfc_vfsops;
689 	mp->mnt_vfc = vfsp;
690 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
691 	mp->mnt_gen++;
692 	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
693 	mp->mnt_vnodecovered = vp;
694 	mp->mnt_cred = crdup(cred);
695 	mp->mnt_stat.f_owner = cred->cr_uid;
696 	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
697 	mp->mnt_iosize_max = DFLTPHYS;
698 #ifdef MAC
699 	mac_mount_init(mp);
700 	mac_mount_create(cred, mp);
701 #endif
702 	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
703 	mp->mnt_upper_pending = 0;
704 	TAILQ_INIT(&mp->mnt_uppers);
705 	TAILQ_INIT(&mp->mnt_notify);
706 	mp->mnt_taskqueue_flags = 0;
707 	mp->mnt_unmount_retries = 0;
708 	return (mp);
709 }
710 
711 /*
712  * Destroy the mount struct previously allocated by vfs_mount_alloc().
713  */
714 void
715 vfs_mount_destroy(struct mount *mp)
716 {
717 
718 	MPPASS(mp->mnt_vfs_ops != 0, mp);
719 
720 	vfs_assert_mount_counters(mp);
721 
722 	MNT_ILOCK(mp);
723 	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
724 	if (mp->mnt_kern_flag & MNTK_MWAIT) {
725 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
726 		wakeup(mp);
727 	}
728 	while (mp->mnt_ref)
729 		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
730 	KASSERT(mp->mnt_ref == 0,
731 	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
732 	    __FILE__, __LINE__));
733 	MPPASS(mp->mnt_writeopcount == 0, mp);
734 	MPPASS(mp->mnt_secondary_writes == 0, mp);
735 	atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
736 	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
737 		struct vnode *vp;
738 
739 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
740 			vn_printf(vp, "dangling vnode ");
741 		panic("unmount: dangling vnode");
742 	}
743 	KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
744 	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
745 	KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
746 	MPPASS(mp->mnt_nvnodelistsize == 0, mp);
747 	MPPASS(mp->mnt_lazyvnodelistsize == 0, mp);
748 	MPPASS(mp->mnt_lockref == 0, mp);
749 	MNT_IUNLOCK(mp);
750 
751 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
752 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
753 
754 	MPASSERT(mp->mnt_rootvnode == NULL, mp,
755 	    ("mount point still has a root vnode %p", mp->mnt_rootvnode));
756 
757 	if (mp->mnt_vnodecovered != NULL)
758 		vrele(mp->mnt_vnodecovered);
759 #ifdef MAC
760 	mac_mount_destroy(mp);
761 #endif
762 	if (mp->mnt_opt != NULL)
763 		vfs_freeopts(mp->mnt_opt);
764 	crfree(mp->mnt_cred);
765 	uma_zfree(mount_zone, mp);
766 }
767 
768 static bool
769 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
770 {
771 	/* This is an upgrade of an exisiting mount. */
772 	if ((fsflags & MNT_UPDATE) != 0)
773 		return (false);
774 	/* This is already an R/O mount. */
775 	if ((fsflags & MNT_RDONLY) != 0)
776 		return (false);
777 
778 	switch (error) {
779 	case ENODEV:	/* generic, geom, ... */
780 	case EACCES:	/* cam/scsi, ... */
781 	case EROFS:	/* md, mmcsd, ... */
782 		/*
783 		 * These errors can be returned by the storage layer to signal
784 		 * that the media is read-only.  No harm in the R/O mount
785 		 * attempt if the error was returned for some other reason.
786 		 */
787 		return (true);
788 	default:
789 		return (false);
790 	}
791 }
792 
793 int
794 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
795 {
796 	struct vfsoptlist *optlist;
797 	struct vfsopt *opt, *tmp_opt;
798 	char *fstype, *fspath, *errmsg;
799 	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
800 	bool autoro;
801 
802 	errmsg = fspath = NULL;
803 	errmsg_len = fspathlen = 0;
804 	errmsg_pos = -1;
805 	autoro = default_autoro;
806 
807 	error = vfs_buildopts(fsoptions, &optlist);
808 	if (error)
809 		return (error);
810 
811 	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
812 		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
813 
814 	/*
815 	 * We need these two options before the others,
816 	 * and they are mandatory for any filesystem.
817 	 * Ensure they are NUL terminated as well.
818 	 */
819 	fstypelen = 0;
820 	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
821 	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
822 		error = EINVAL;
823 		if (errmsg != NULL)
824 			strncpy(errmsg, "Invalid fstype", errmsg_len);
825 		goto bail;
826 	}
827 	fspathlen = 0;
828 	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
829 	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
830 		error = EINVAL;
831 		if (errmsg != NULL)
832 			strncpy(errmsg, "Invalid fspath", errmsg_len);
833 		goto bail;
834 	}
835 
836 	/*
837 	 * We need to see if we have the "update" option
838 	 * before we call vfs_domount(), since vfs_domount() has special
839 	 * logic based on MNT_UPDATE.  This is very important
840 	 * when we want to update the root filesystem.
841 	 */
842 	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
843 		int do_freeopt = 0;
844 
845 		if (strcmp(opt->name, "update") == 0) {
846 			fsflags |= MNT_UPDATE;
847 			do_freeopt = 1;
848 		}
849 		else if (strcmp(opt->name, "async") == 0)
850 			fsflags |= MNT_ASYNC;
851 		else if (strcmp(opt->name, "force") == 0) {
852 			fsflags |= MNT_FORCE;
853 			do_freeopt = 1;
854 		}
855 		else if (strcmp(opt->name, "reload") == 0) {
856 			fsflags |= MNT_RELOAD;
857 			do_freeopt = 1;
858 		}
859 		else if (strcmp(opt->name, "multilabel") == 0)
860 			fsflags |= MNT_MULTILABEL;
861 		else if (strcmp(opt->name, "noasync") == 0)
862 			fsflags &= ~MNT_ASYNC;
863 		else if (strcmp(opt->name, "noatime") == 0)
864 			fsflags |= MNT_NOATIME;
865 		else if (strcmp(opt->name, "atime") == 0) {
866 			free(opt->name, M_MOUNT);
867 			opt->name = strdup("nonoatime", M_MOUNT);
868 		}
869 		else if (strcmp(opt->name, "noclusterr") == 0)
870 			fsflags |= MNT_NOCLUSTERR;
871 		else if (strcmp(opt->name, "clusterr") == 0) {
872 			free(opt->name, M_MOUNT);
873 			opt->name = strdup("nonoclusterr", M_MOUNT);
874 		}
875 		else if (strcmp(opt->name, "noclusterw") == 0)
876 			fsflags |= MNT_NOCLUSTERW;
877 		else if (strcmp(opt->name, "clusterw") == 0) {
878 			free(opt->name, M_MOUNT);
879 			opt->name = strdup("nonoclusterw", M_MOUNT);
880 		}
881 		else if (strcmp(opt->name, "noexec") == 0)
882 			fsflags |= MNT_NOEXEC;
883 		else if (strcmp(opt->name, "exec") == 0) {
884 			free(opt->name, M_MOUNT);
885 			opt->name = strdup("nonoexec", M_MOUNT);
886 		}
887 		else if (strcmp(opt->name, "nosuid") == 0)
888 			fsflags |= MNT_NOSUID;
889 		else if (strcmp(opt->name, "suid") == 0) {
890 			free(opt->name, M_MOUNT);
891 			opt->name = strdup("nonosuid", M_MOUNT);
892 		}
893 		else if (strcmp(opt->name, "nosymfollow") == 0)
894 			fsflags |= MNT_NOSYMFOLLOW;
895 		else if (strcmp(opt->name, "symfollow") == 0) {
896 			free(opt->name, M_MOUNT);
897 			opt->name = strdup("nonosymfollow", M_MOUNT);
898 		}
899 		else if (strcmp(opt->name, "noro") == 0) {
900 			fsflags &= ~MNT_RDONLY;
901 			autoro = false;
902 		}
903 		else if (strcmp(opt->name, "rw") == 0) {
904 			fsflags &= ~MNT_RDONLY;
905 			autoro = false;
906 		}
907 		else if (strcmp(opt->name, "ro") == 0) {
908 			fsflags |= MNT_RDONLY;
909 			autoro = false;
910 		}
911 		else if (strcmp(opt->name, "rdonly") == 0) {
912 			free(opt->name, M_MOUNT);
913 			opt->name = strdup("ro", M_MOUNT);
914 			fsflags |= MNT_RDONLY;
915 			autoro = false;
916 		}
917 		else if (strcmp(opt->name, "autoro") == 0) {
918 			do_freeopt = 1;
919 			autoro = true;
920 		}
921 		else if (strcmp(opt->name, "suiddir") == 0)
922 			fsflags |= MNT_SUIDDIR;
923 		else if (strcmp(opt->name, "sync") == 0)
924 			fsflags |= MNT_SYNCHRONOUS;
925 		else if (strcmp(opt->name, "union") == 0)
926 			fsflags |= MNT_UNION;
927 		else if (strcmp(opt->name, "automounted") == 0) {
928 			fsflags |= MNT_AUTOMOUNTED;
929 			do_freeopt = 1;
930 		} else if (strcmp(opt->name, "nocover") == 0) {
931 			fsflags |= MNT_NOCOVER;
932 			do_freeopt = 1;
933 		} else if (strcmp(opt->name, "cover") == 0) {
934 			fsflags &= ~MNT_NOCOVER;
935 			do_freeopt = 1;
936 		} else if (strcmp(opt->name, "emptydir") == 0) {
937 			fsflags |= MNT_EMPTYDIR;
938 			do_freeopt = 1;
939 		} else if (strcmp(opt->name, "noemptydir") == 0) {
940 			fsflags &= ~MNT_EMPTYDIR;
941 			do_freeopt = 1;
942 		}
943 		if (do_freeopt)
944 			vfs_freeopt(optlist, opt);
945 	}
946 
947 	/*
948 	 * Be ultra-paranoid about making sure the type and fspath
949 	 * variables will fit in our mp buffers, including the
950 	 * terminating NUL.
951 	 */
952 	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
953 		error = ENAMETOOLONG;
954 		goto bail;
955 	}
956 
957 	error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
958 	if (error == ENOENT) {
959 		error = EINVAL;
960 		if (errmsg != NULL)
961 			strncpy(errmsg, "Invalid fstype", errmsg_len);
962 		goto bail;
963 	}
964 
965 	/*
966 	 * See if we can mount in the read-only mode if the error code suggests
967 	 * that it could be possible and the mount options allow for that.
968 	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
969 	 * overridden by "autoro".
970 	 */
971 	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
972 		printf("%s: R/W mount failed, possibly R/O media,"
973 		    " trying R/O mount\n", __func__);
974 		fsflags |= MNT_RDONLY;
975 		error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
976 	}
977 bail:
978 	/* copyout the errmsg */
979 	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
980 	    && errmsg_len > 0 && errmsg != NULL) {
981 		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
982 			bcopy(errmsg,
983 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
984 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
985 		} else {
986 			copyout(errmsg,
987 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
988 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
989 		}
990 	}
991 
992 	if (optlist != NULL)
993 		vfs_freeopts(optlist);
994 	return (error);
995 }
996 
997 /*
998  * Old mount API.
999  */
1000 #ifndef _SYS_SYSPROTO_H_
1001 struct mount_args {
1002 	char	*type;
1003 	char	*path;
1004 	int	flags;
1005 	caddr_t	data;
1006 };
1007 #endif
1008 /* ARGSUSED */
1009 int
1010 sys_mount(struct thread *td, struct mount_args *uap)
1011 {
1012 	char *fstype;
1013 	struct vfsconf *vfsp = NULL;
1014 	struct mntarg *ma = NULL;
1015 	uint64_t flags;
1016 	int error;
1017 
1018 	/*
1019 	 * Mount flags are now 64-bits. On 32-bit architectures only
1020 	 * 32-bits are passed in, but from here on everything handles
1021 	 * 64-bit flags correctly.
1022 	 */
1023 	flags = uap->flags;
1024 
1025 	AUDIT_ARG_FFLAGS(flags);
1026 
1027 	/*
1028 	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
1029 	 * userspace to set this flag, but we must filter it out if we want
1030 	 * MNT_UPDATE on the root file system to work.
1031 	 * MNT_ROOTFS should only be set by the kernel when mounting its
1032 	 * root file system.
1033 	 */
1034 	flags &= ~MNT_ROOTFS;
1035 
1036 	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1037 	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1038 	if (error) {
1039 		free(fstype, M_TEMP);
1040 		return (error);
1041 	}
1042 
1043 	AUDIT_ARG_TEXT(fstype);
1044 	vfsp = vfs_byname_kld(fstype, td, &error);
1045 	free(fstype, M_TEMP);
1046 	if (vfsp == NULL)
1047 		return (ENOENT);
1048 	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1049 	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1050 	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1051 	    vfsp->vfc_vfsops->vfs_cmount == NULL))
1052 		return (EOPNOTSUPP);
1053 
1054 	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1055 	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1056 	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1057 	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1058 	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1059 
1060 	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1061 		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1062 	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1063 }
1064 
1065 /*
1066  * vfs_domount_first(): first file system mount (not update)
1067  */
1068 static int
1069 vfs_domount_first(
1070 	struct thread *td,		/* Calling thread. */
1071 	struct vfsconf *vfsp,		/* File system type. */
1072 	char *fspath,			/* Mount path. */
1073 	struct vnode *vp,		/* Vnode to be covered. */
1074 	uint64_t fsflags,		/* Flags common to all filesystems. */
1075 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1076 	)
1077 {
1078 	struct vattr va;
1079 	struct mount *mp;
1080 	struct vnode *newdp, *rootvp;
1081 	int error, error1;
1082 	bool unmounted;
1083 
1084 	ASSERT_VOP_ELOCKED(vp, __func__);
1085 	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1086 
1087 	/*
1088 	 * If the jail of the calling thread lacks permission for this type of
1089 	 * file system, or is trying to cover its own root, deny immediately.
1090 	 */
1091 	if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1092 	    vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1093 		vput(vp);
1094 		return (EPERM);
1095 	}
1096 
1097 	/*
1098 	 * If the user is not root, ensure that they own the directory
1099 	 * onto which we are attempting to mount.
1100 	 */
1101 	error = VOP_GETATTR(vp, &va, td->td_ucred);
1102 	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1103 		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1104 	if (error == 0)
1105 		error = vinvalbuf(vp, V_SAVE, 0, 0);
1106 	if (error == 0 && vp->v_type != VDIR)
1107 		error = ENOTDIR;
1108 	if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1109 		error = vfs_emptydir(vp);
1110 	if (error == 0) {
1111 		VI_LOCK(vp);
1112 		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1113 			vp->v_iflag |= VI_MOUNT;
1114 		else
1115 			error = EBUSY;
1116 		VI_UNLOCK(vp);
1117 	}
1118 	if (error != 0) {
1119 		vput(vp);
1120 		return (error);
1121 	}
1122 	vn_seqc_write_begin(vp);
1123 	VOP_UNLOCK(vp);
1124 
1125 	/* Allocate and initialize the filesystem. */
1126 	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1127 	/* XXXMAC: pass to vfs_mount_alloc? */
1128 	mp->mnt_optnew = *optlist;
1129 	/* Set the mount level flags. */
1130 	mp->mnt_flag = (fsflags &
1131 	    (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1132 
1133 	/*
1134 	 * Mount the filesystem.
1135 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1136 	 * get.  No freeing of cn_pnbuf.
1137 	 */
1138 	error1 = 0;
1139 	unmounted = true;
1140 	if ((error = VFS_MOUNT(mp)) != 0 ||
1141 	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1142 	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1143 		rootvp = NULL;
1144 		if (error1 != 0) {
1145 			MPASS(error == 0);
1146 			rootvp = vfs_cache_root_clear(mp);
1147 			if (rootvp != NULL) {
1148 				vhold(rootvp);
1149 				vrele(rootvp);
1150 			}
1151 			(void)vn_start_write(NULL, &mp, V_WAIT);
1152 			MNT_ILOCK(mp);
1153 			mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1154 			MNT_IUNLOCK(mp);
1155 			VFS_PURGE(mp);
1156 			error = VFS_UNMOUNT(mp, 0);
1157 			vn_finished_write(mp);
1158 			if (error != 0) {
1159 				printf(
1160 		    "failed post-mount (%d): rollback unmount returned %d\n",
1161 				    error1, error);
1162 				unmounted = false;
1163 			}
1164 			error = error1;
1165 		}
1166 		vfs_unbusy(mp);
1167 		mp->mnt_vnodecovered = NULL;
1168 		if (unmounted) {
1169 			/* XXXKIB wait for mnt_lockref drain? */
1170 			vfs_mount_destroy(mp);
1171 		}
1172 		VI_LOCK(vp);
1173 		vp->v_iflag &= ~VI_MOUNT;
1174 		VI_UNLOCK(vp);
1175 		if (rootvp != NULL) {
1176 			vn_seqc_write_end(rootvp);
1177 			vdrop(rootvp);
1178 		}
1179 		vn_seqc_write_end(vp);
1180 		vrele(vp);
1181 		return (error);
1182 	}
1183 	vn_seqc_write_begin(newdp);
1184 	VOP_UNLOCK(newdp);
1185 
1186 	if (mp->mnt_opt != NULL)
1187 		vfs_freeopts(mp->mnt_opt);
1188 	mp->mnt_opt = mp->mnt_optnew;
1189 	*optlist = NULL;
1190 
1191 	/*
1192 	 * Prevent external consumers of mount options from reading mnt_optnew.
1193 	 */
1194 	mp->mnt_optnew = NULL;
1195 
1196 	MNT_ILOCK(mp);
1197 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1198 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1199 		mp->mnt_kern_flag |= MNTK_ASYNC;
1200 	else
1201 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1202 	MNT_IUNLOCK(mp);
1203 
1204 	VI_LOCK(vp);
1205 	vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1206 	vp->v_mountedhere = mp;
1207 	VI_UNLOCK(vp);
1208 	cache_purge(vp);
1209 
1210 	/*
1211 	 * We need to lock both vnodes.
1212 	 *
1213 	 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1214 	 * from different filesystems.
1215 	 */
1216 	vn_lock_pair(vp, false, newdp, false);
1217 
1218 	VI_LOCK(vp);
1219 	vp->v_iflag &= ~VI_MOUNT;
1220 	VI_UNLOCK(vp);
1221 	/* Place the new filesystem at the end of the mount list. */
1222 	mtx_lock(&mountlist_mtx);
1223 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1224 	mtx_unlock(&mountlist_mtx);
1225 	vfs_event_signal(NULL, VQ_MOUNT, 0);
1226 	VOP_UNLOCK(vp);
1227 	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1228 	VOP_UNLOCK(newdp);
1229 	mount_devctl_event("MOUNT", mp, false);
1230 	mountcheckdirs(vp, newdp);
1231 	vn_seqc_write_end(vp);
1232 	vn_seqc_write_end(newdp);
1233 	vrele(newdp);
1234 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1235 		vfs_allocate_syncvnode(mp);
1236 	vfs_op_exit(mp);
1237 	vfs_unbusy(mp);
1238 	return (0);
1239 }
1240 
1241 /*
1242  * vfs_domount_update(): update of mounted file system
1243  */
1244 static int
1245 vfs_domount_update(
1246 	struct thread *td,		/* Calling thread. */
1247 	struct vnode *vp,		/* Mount point vnode. */
1248 	uint64_t fsflags,		/* Flags common to all filesystems. */
1249 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1250 	)
1251 {
1252 	struct export_args export;
1253 	struct o2export_args o2export;
1254 	struct vnode *rootvp;
1255 	void *bufp;
1256 	struct mount *mp;
1257 	int error, export_error, i, len;
1258 	uint64_t flag;
1259 	gid_t *grps;
1260 
1261 	ASSERT_VOP_ELOCKED(vp, __func__);
1262 	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1263 	mp = vp->v_mount;
1264 
1265 	if ((vp->v_vflag & VV_ROOT) == 0) {
1266 		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1267 		    == 0)
1268 			error = EXDEV;
1269 		else
1270 			error = EINVAL;
1271 		vput(vp);
1272 		return (error);
1273 	}
1274 
1275 	/*
1276 	 * We only allow the filesystem to be reloaded if it
1277 	 * is currently mounted read-only.
1278 	 */
1279 	flag = mp->mnt_flag;
1280 	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1281 		vput(vp);
1282 		return (EOPNOTSUPP);	/* Needs translation */
1283 	}
1284 	/*
1285 	 * Only privileged root, or (if MNT_USER is set) the user that
1286 	 * did the original mount is permitted to update it.
1287 	 */
1288 	error = vfs_suser(mp, td);
1289 	if (error != 0) {
1290 		vput(vp);
1291 		return (error);
1292 	}
1293 	if (vfs_busy(mp, MBF_NOWAIT)) {
1294 		vput(vp);
1295 		return (EBUSY);
1296 	}
1297 	VI_LOCK(vp);
1298 	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1299 		VI_UNLOCK(vp);
1300 		vfs_unbusy(mp);
1301 		vput(vp);
1302 		return (EBUSY);
1303 	}
1304 	vp->v_iflag |= VI_MOUNT;
1305 	VI_UNLOCK(vp);
1306 	VOP_UNLOCK(vp);
1307 
1308 	vfs_op_enter(mp);
1309 	vn_seqc_write_begin(vp);
1310 
1311 	rootvp = NULL;
1312 	MNT_ILOCK(mp);
1313 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1314 		MNT_IUNLOCK(mp);
1315 		error = EBUSY;
1316 		goto end;
1317 	}
1318 	mp->mnt_flag &= ~MNT_UPDATEMASK;
1319 	mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1320 	    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1321 	if ((mp->mnt_flag & MNT_ASYNC) == 0)
1322 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1323 	rootvp = vfs_cache_root_clear(mp);
1324 	MNT_IUNLOCK(mp);
1325 	mp->mnt_optnew = *optlist;
1326 	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1327 
1328 	/*
1329 	 * Mount the filesystem.
1330 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1331 	 * get.  No freeing of cn_pnbuf.
1332 	 */
1333 	error = VFS_MOUNT(mp);
1334 
1335 	export_error = 0;
1336 	/* Process the export option. */
1337 	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1338 	    &len) == 0) {
1339 		/* Assume that there is only 1 ABI for each length. */
1340 		switch (len) {
1341 		case (sizeof(struct oexport_args)):
1342 			bzero(&o2export, sizeof(o2export));
1343 			/* FALLTHROUGH */
1344 		case (sizeof(o2export)):
1345 			bcopy(bufp, &o2export, len);
1346 			export.ex_flags = (uint64_t)o2export.ex_flags;
1347 			export.ex_root = o2export.ex_root;
1348 			export.ex_uid = o2export.ex_anon.cr_uid;
1349 			export.ex_groups = NULL;
1350 			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1351 			if (export.ex_ngroups > 0) {
1352 				if (export.ex_ngroups <= XU_NGROUPS) {
1353 					export.ex_groups = malloc(
1354 					    export.ex_ngroups * sizeof(gid_t),
1355 					    M_TEMP, M_WAITOK);
1356 					for (i = 0; i < export.ex_ngroups; i++)
1357 						export.ex_groups[i] =
1358 						  o2export.ex_anon.cr_groups[i];
1359 				} else
1360 					export_error = EINVAL;
1361 			} else if (export.ex_ngroups < 0)
1362 				export_error = EINVAL;
1363 			export.ex_addr = o2export.ex_addr;
1364 			export.ex_addrlen = o2export.ex_addrlen;
1365 			export.ex_mask = o2export.ex_mask;
1366 			export.ex_masklen = o2export.ex_masklen;
1367 			export.ex_indexfile = o2export.ex_indexfile;
1368 			export.ex_numsecflavors = o2export.ex_numsecflavors;
1369 			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1370 				for (i = 0; i < export.ex_numsecflavors; i++)
1371 					export.ex_secflavors[i] =
1372 					    o2export.ex_secflavors[i];
1373 			} else
1374 				export_error = EINVAL;
1375 			if (export_error == 0)
1376 				export_error = vfs_export(mp, &export);
1377 			free(export.ex_groups, M_TEMP);
1378 			break;
1379 		case (sizeof(export)):
1380 			bcopy(bufp, &export, len);
1381 			grps = NULL;
1382 			if (export.ex_ngroups > 0) {
1383 				if (export.ex_ngroups <= NGROUPS_MAX) {
1384 					grps = malloc(export.ex_ngroups *
1385 					    sizeof(gid_t), M_TEMP, M_WAITOK);
1386 					export_error = copyin(export.ex_groups,
1387 					    grps, export.ex_ngroups *
1388 					    sizeof(gid_t));
1389 					if (export_error == 0)
1390 						export.ex_groups = grps;
1391 				} else
1392 					export_error = EINVAL;
1393 			} else if (export.ex_ngroups == 0)
1394 				export.ex_groups = NULL;
1395 			else
1396 				export_error = EINVAL;
1397 			if (export_error == 0)
1398 				export_error = vfs_export(mp, &export);
1399 			free(grps, M_TEMP);
1400 			break;
1401 		default:
1402 			export_error = EINVAL;
1403 			break;
1404 		}
1405 	}
1406 
1407 	MNT_ILOCK(mp);
1408 	if (error == 0) {
1409 		mp->mnt_flag &=	~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1410 		    MNT_SNAPSHOT);
1411 	} else {
1412 		/*
1413 		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1414 		 * because it is not part of MNT_UPDATEMASK, but it could have
1415 		 * changed in the meantime if quotactl(2) was called.
1416 		 * All in all we want current value of MNT_QUOTA, not the old
1417 		 * one.
1418 		 */
1419 		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1420 	}
1421 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1422 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1423 		mp->mnt_kern_flag |= MNTK_ASYNC;
1424 	else
1425 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1426 	MNT_IUNLOCK(mp);
1427 
1428 	if (error != 0)
1429 		goto end;
1430 
1431 	mount_devctl_event("REMOUNT", mp, true);
1432 	if (mp->mnt_opt != NULL)
1433 		vfs_freeopts(mp->mnt_opt);
1434 	mp->mnt_opt = mp->mnt_optnew;
1435 	*optlist = NULL;
1436 	(void)VFS_STATFS(mp, &mp->mnt_stat);
1437 	/*
1438 	 * Prevent external consumers of mount options from reading
1439 	 * mnt_optnew.
1440 	 */
1441 	mp->mnt_optnew = NULL;
1442 
1443 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1444 		vfs_allocate_syncvnode(mp);
1445 	else
1446 		vfs_deallocate_syncvnode(mp);
1447 end:
1448 	vfs_op_exit(mp);
1449 	if (rootvp != NULL) {
1450 		vn_seqc_write_end(rootvp);
1451 		vrele(rootvp);
1452 	}
1453 	vn_seqc_write_end(vp);
1454 	vfs_unbusy(mp);
1455 	VI_LOCK(vp);
1456 	vp->v_iflag &= ~VI_MOUNT;
1457 	VI_UNLOCK(vp);
1458 	vrele(vp);
1459 	return (error != 0 ? error : export_error);
1460 }
1461 
1462 /*
1463  * vfs_domount(): actually attempt a filesystem mount.
1464  */
1465 static int
1466 vfs_domount(
1467 	struct thread *td,		/* Calling thread. */
1468 	const char *fstype,		/* Filesystem type. */
1469 	char *fspath,			/* Mount path. */
1470 	uint64_t fsflags,		/* Flags common to all filesystems. */
1471 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1472 	)
1473 {
1474 	struct vfsconf *vfsp;
1475 	struct nameidata nd;
1476 	struct vnode *vp;
1477 	char *pathbuf;
1478 	int error;
1479 
1480 	/*
1481 	 * Be ultra-paranoid about making sure the type and fspath
1482 	 * variables will fit in our mp buffers, including the
1483 	 * terminating NUL.
1484 	 */
1485 	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1486 		return (ENAMETOOLONG);
1487 
1488 	if (jailed(td->td_ucred) || usermount == 0) {
1489 		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1490 			return (error);
1491 	}
1492 
1493 	/*
1494 	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1495 	 */
1496 	if (fsflags & MNT_EXPORTED) {
1497 		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1498 		if (error)
1499 			return (error);
1500 	}
1501 	if (fsflags & MNT_SUIDDIR) {
1502 		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1503 		if (error)
1504 			return (error);
1505 	}
1506 	/*
1507 	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1508 	 */
1509 	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1510 		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1511 			fsflags |= MNT_NOSUID | MNT_USER;
1512 	}
1513 
1514 	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1515 	vfsp = NULL;
1516 	if ((fsflags & MNT_UPDATE) == 0) {
1517 		/* Don't try to load KLDs if we're mounting the root. */
1518 		if (fsflags & MNT_ROOTFS) {
1519 			if ((vfsp = vfs_byname(fstype)) == NULL)
1520 				return (ENODEV);
1521 		} else {
1522 			if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1523 				return (error);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1529 	 */
1530 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE,
1531 	    fspath);
1532 	error = namei(&nd);
1533 	if (error != 0)
1534 		return (error);
1535 	NDFREE_PNBUF(&nd);
1536 	vp = nd.ni_vp;
1537 	if ((fsflags & MNT_UPDATE) == 0) {
1538 		if ((vp->v_vflag & VV_ROOT) != 0 &&
1539 		    (fsflags & MNT_NOCOVER) != 0) {
1540 			vput(vp);
1541 			return (EBUSY);
1542 		}
1543 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1544 		strcpy(pathbuf, fspath);
1545 		error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN);
1546 		if (error == 0) {
1547 			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1548 			    fsflags, optlist);
1549 		}
1550 		free(pathbuf, M_TEMP);
1551 	} else
1552 		error = vfs_domount_update(td, vp, fsflags, optlist);
1553 
1554 	return (error);
1555 }
1556 
1557 /*
1558  * Unmount a filesystem.
1559  *
1560  * Note: unmount takes a path to the vnode mounted on as argument, not
1561  * special file (as before).
1562  */
1563 #ifndef _SYS_SYSPROTO_H_
1564 struct unmount_args {
1565 	char	*path;
1566 	int	flags;
1567 };
1568 #endif
1569 /* ARGSUSED */
1570 int
1571 sys_unmount(struct thread *td, struct unmount_args *uap)
1572 {
1573 
1574 	return (kern_unmount(td, uap->path, uap->flags));
1575 }
1576 
1577 int
1578 kern_unmount(struct thread *td, const char *path, int flags)
1579 {
1580 	struct nameidata nd;
1581 	struct mount *mp;
1582 	char *fsidbuf, *pathbuf;
1583 	fsid_t fsid;
1584 	int error;
1585 
1586 	AUDIT_ARG_VALUE(flags);
1587 	if (jailed(td->td_ucred) || usermount == 0) {
1588 		error = priv_check(td, PRIV_VFS_UNMOUNT);
1589 		if (error)
1590 			return (error);
1591 	}
1592 
1593 	if (flags & MNT_BYFSID) {
1594 		fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1595 		error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1596 		if (error) {
1597 			free(fsidbuf, M_TEMP);
1598 			return (error);
1599 		}
1600 
1601 		AUDIT_ARG_TEXT(fsidbuf);
1602 		/* Decode the filesystem ID. */
1603 		if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1604 			free(fsidbuf, M_TEMP);
1605 			return (EINVAL);
1606 		}
1607 
1608 		mp = vfs_getvfs(&fsid);
1609 		free(fsidbuf, M_TEMP);
1610 		if (mp == NULL) {
1611 			return (ENOENT);
1612 		}
1613 	} else {
1614 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1615 		error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1616 		if (error) {
1617 			free(pathbuf, M_TEMP);
1618 			return (error);
1619 		}
1620 
1621 		/*
1622 		 * Try to find global path for path argument.
1623 		 */
1624 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1625 		    UIO_SYSSPACE, pathbuf);
1626 		if (namei(&nd) == 0) {
1627 			NDFREE_PNBUF(&nd);
1628 			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1629 			    MNAMELEN);
1630 			if (error == 0)
1631 				vput(nd.ni_vp);
1632 		}
1633 		mtx_lock(&mountlist_mtx);
1634 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1635 			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1636 				vfs_ref(mp);
1637 				break;
1638 			}
1639 		}
1640 		mtx_unlock(&mountlist_mtx);
1641 		free(pathbuf, M_TEMP);
1642 		if (mp == NULL) {
1643 			/*
1644 			 * Previously we returned ENOENT for a nonexistent path and
1645 			 * EINVAL for a non-mountpoint.  We cannot tell these apart
1646 			 * now, so in the !MNT_BYFSID case return the more likely
1647 			 * EINVAL for compatibility.
1648 			 */
1649 			return (EINVAL);
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * Don't allow unmounting the root filesystem.
1655 	 */
1656 	if (mp->mnt_flag & MNT_ROOTFS) {
1657 		vfs_rel(mp);
1658 		return (EINVAL);
1659 	}
1660 	error = dounmount(mp, flags, td);
1661 	return (error);
1662 }
1663 
1664 /*
1665  * Return error if any of the vnodes, ignoring the root vnode
1666  * and the syncer vnode, have non-zero usecount.
1667  *
1668  * This function is purely advisory - it can return false positives
1669  * and negatives.
1670  */
1671 static int
1672 vfs_check_usecounts(struct mount *mp)
1673 {
1674 	struct vnode *vp, *mvp;
1675 
1676 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1677 		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1678 		    vp->v_usecount != 0) {
1679 			VI_UNLOCK(vp);
1680 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1681 			return (EBUSY);
1682 		}
1683 		VI_UNLOCK(vp);
1684 	}
1685 
1686 	return (0);
1687 }
1688 
1689 static void
1690 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1691 {
1692 
1693 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1694 	mp->mnt_kern_flag &= ~mntkflags;
1695 	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1696 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1697 		wakeup(mp);
1698 	}
1699 	vfs_op_exit_locked(mp);
1700 	MNT_IUNLOCK(mp);
1701 	if (coveredvp != NULL) {
1702 		VOP_UNLOCK(coveredvp);
1703 		vdrop(coveredvp);
1704 	}
1705 	vn_finished_write(mp);
1706 	vfs_rel(mp);
1707 }
1708 
1709 /*
1710  * There are various reference counters associated with the mount point.
1711  * Normally it is permitted to modify them without taking the mnt ilock,
1712  * but this behavior can be temporarily disabled if stable value is needed
1713  * or callers are expected to block (e.g. to not allow new users during
1714  * forced unmount).
1715  */
1716 void
1717 vfs_op_enter(struct mount *mp)
1718 {
1719 	struct mount_pcpu *mpcpu;
1720 	int cpu;
1721 
1722 	MNT_ILOCK(mp);
1723 	mp->mnt_vfs_ops++;
1724 	if (mp->mnt_vfs_ops > 1) {
1725 		MNT_IUNLOCK(mp);
1726 		return;
1727 	}
1728 	vfs_op_barrier_wait(mp);
1729 	CPU_FOREACH(cpu) {
1730 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1731 
1732 		mp->mnt_ref += mpcpu->mntp_ref;
1733 		mpcpu->mntp_ref = 0;
1734 
1735 		mp->mnt_lockref += mpcpu->mntp_lockref;
1736 		mpcpu->mntp_lockref = 0;
1737 
1738 		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1739 		mpcpu->mntp_writeopcount = 0;
1740 	}
1741 	MPASSERT(mp->mnt_ref > 0 && mp->mnt_lockref >= 0 &&
1742 	    mp->mnt_writeopcount >= 0, mp,
1743 	    ("invalid count(s): ref %d lockref %d writeopcount %d",
1744 	    mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount));
1745 	MNT_IUNLOCK(mp);
1746 	vfs_assert_mount_counters(mp);
1747 }
1748 
1749 void
1750 vfs_op_exit_locked(struct mount *mp)
1751 {
1752 
1753 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1754 
1755 	MPASSERT(mp->mnt_vfs_ops > 0, mp,
1756 	    ("invalid vfs_ops count %d", mp->mnt_vfs_ops));
1757 	MPASSERT(mp->mnt_vfs_ops > 1 ||
1758 	    (mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_SUSPEND)) == 0, mp,
1759 	    ("vfs_ops too low %d in unmount or suspend", mp->mnt_vfs_ops));
1760 	mp->mnt_vfs_ops--;
1761 }
1762 
1763 void
1764 vfs_op_exit(struct mount *mp)
1765 {
1766 
1767 	MNT_ILOCK(mp);
1768 	vfs_op_exit_locked(mp);
1769 	MNT_IUNLOCK(mp);
1770 }
1771 
1772 struct vfs_op_barrier_ipi {
1773 	struct mount *mp;
1774 	struct smp_rendezvous_cpus_retry_arg srcra;
1775 };
1776 
1777 static void
1778 vfs_op_action_func(void *arg)
1779 {
1780 	struct vfs_op_barrier_ipi *vfsopipi;
1781 	struct mount *mp;
1782 
1783 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1784 	mp = vfsopipi->mp;
1785 
1786 	if (!vfs_op_thread_entered(mp))
1787 		smp_rendezvous_cpus_done(arg);
1788 }
1789 
1790 static void
1791 vfs_op_wait_func(void *arg, int cpu)
1792 {
1793 	struct vfs_op_barrier_ipi *vfsopipi;
1794 	struct mount *mp;
1795 	struct mount_pcpu *mpcpu;
1796 
1797 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1798 	mp = vfsopipi->mp;
1799 
1800 	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1801 	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1802 		cpu_spinwait();
1803 }
1804 
1805 void
1806 vfs_op_barrier_wait(struct mount *mp)
1807 {
1808 	struct vfs_op_barrier_ipi vfsopipi;
1809 
1810 	vfsopipi.mp = mp;
1811 
1812 	smp_rendezvous_cpus_retry(all_cpus,
1813 	    smp_no_rendezvous_barrier,
1814 	    vfs_op_action_func,
1815 	    smp_no_rendezvous_barrier,
1816 	    vfs_op_wait_func,
1817 	    &vfsopipi.srcra);
1818 }
1819 
1820 #ifdef DIAGNOSTIC
1821 void
1822 vfs_assert_mount_counters(struct mount *mp)
1823 {
1824 	struct mount_pcpu *mpcpu;
1825 	int cpu;
1826 
1827 	if (mp->mnt_vfs_ops == 0)
1828 		return;
1829 
1830 	CPU_FOREACH(cpu) {
1831 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1832 		if (mpcpu->mntp_ref != 0 ||
1833 		    mpcpu->mntp_lockref != 0 ||
1834 		    mpcpu->mntp_writeopcount != 0)
1835 			vfs_dump_mount_counters(mp);
1836 	}
1837 }
1838 
1839 void
1840 vfs_dump_mount_counters(struct mount *mp)
1841 {
1842 	struct mount_pcpu *mpcpu;
1843 	int ref, lockref, writeopcount;
1844 	int cpu;
1845 
1846 	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1847 
1848 	printf("        ref : ");
1849 	ref = mp->mnt_ref;
1850 	CPU_FOREACH(cpu) {
1851 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1852 		printf("%d ", mpcpu->mntp_ref);
1853 		ref += mpcpu->mntp_ref;
1854 	}
1855 	printf("\n");
1856 	printf("    lockref : ");
1857 	lockref = mp->mnt_lockref;
1858 	CPU_FOREACH(cpu) {
1859 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1860 		printf("%d ", mpcpu->mntp_lockref);
1861 		lockref += mpcpu->mntp_lockref;
1862 	}
1863 	printf("\n");
1864 	printf("writeopcount: ");
1865 	writeopcount = mp->mnt_writeopcount;
1866 	CPU_FOREACH(cpu) {
1867 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1868 		printf("%d ", mpcpu->mntp_writeopcount);
1869 		writeopcount += mpcpu->mntp_writeopcount;
1870 	}
1871 	printf("\n");
1872 
1873 	printf("counter       struct total\n");
1874 	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
1875 	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
1876 	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
1877 
1878 	panic("invalid counts on struct mount");
1879 }
1880 #endif
1881 
1882 int
1883 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
1884 {
1885 	struct mount_pcpu *mpcpu;
1886 	int cpu, sum;
1887 
1888 	switch (which) {
1889 	case MNT_COUNT_REF:
1890 		sum = mp->mnt_ref;
1891 		break;
1892 	case MNT_COUNT_LOCKREF:
1893 		sum = mp->mnt_lockref;
1894 		break;
1895 	case MNT_COUNT_WRITEOPCOUNT:
1896 		sum = mp->mnt_writeopcount;
1897 		break;
1898 	}
1899 
1900 	CPU_FOREACH(cpu) {
1901 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1902 		switch (which) {
1903 		case MNT_COUNT_REF:
1904 			sum += mpcpu->mntp_ref;
1905 			break;
1906 		case MNT_COUNT_LOCKREF:
1907 			sum += mpcpu->mntp_lockref;
1908 			break;
1909 		case MNT_COUNT_WRITEOPCOUNT:
1910 			sum += mpcpu->mntp_writeopcount;
1911 			break;
1912 		}
1913 	}
1914 	return (sum);
1915 }
1916 
1917 static bool
1918 deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
1919     int timeout_ticks)
1920 {
1921 	bool enqueued;
1922 
1923 	enqueued = false;
1924 	mtx_lock(&deferred_unmount_lock);
1925 	if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
1926 		mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
1927 		STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
1928 		    mnt_taskqueue_link);
1929 		enqueued = true;
1930 	}
1931 	mtx_unlock(&deferred_unmount_lock);
1932 
1933 	if (enqueued) {
1934 		taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
1935 		    &deferred_unmount_task, timeout_ticks);
1936 	}
1937 
1938 	return (enqueued);
1939 }
1940 
1941 /*
1942  * Taskqueue handler for processing async/recursive unmounts
1943  */
1944 static void
1945 vfs_deferred_unmount(void *argi __unused, int pending __unused)
1946 {
1947 	STAILQ_HEAD(, mount) local_unmounts;
1948 	uint64_t flags;
1949 	struct mount *mp, *tmp;
1950 	int error;
1951 	unsigned int retries;
1952 	bool unmounted;
1953 
1954 	STAILQ_INIT(&local_unmounts);
1955 	mtx_lock(&deferred_unmount_lock);
1956 	STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
1957 	mtx_unlock(&deferred_unmount_lock);
1958 
1959 	STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
1960 		flags = mp->mnt_taskqueue_flags;
1961 		KASSERT((flags & MNT_DEFERRED) != 0,
1962 		    ("taskqueue unmount without MNT_DEFERRED"));
1963 		error = dounmount(mp, flags, curthread);
1964 		if (error != 0) {
1965 			MNT_ILOCK(mp);
1966 			unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
1967 			MNT_IUNLOCK(mp);
1968 
1969 			/*
1970 			 * The deferred unmount thread is the only thread that
1971 			 * modifies the retry counts, so locking/atomics aren't
1972 			 * needed here.
1973 			 */
1974 			retries = (mp->mnt_unmount_retries)++;
1975 			deferred_unmount_total_retries++;
1976 			if (!unmounted && retries < deferred_unmount_retry_limit) {
1977 				deferred_unmount_enqueue(mp, flags, true,
1978 				    -deferred_unmount_retry_delay_hz);
1979 			} else {
1980 				if (retries >= deferred_unmount_retry_limit) {
1981 					printf("giving up on deferred unmount "
1982 					    "of %s after %d retries, error %d\n",
1983 					    mp->mnt_stat.f_mntonname, retries, error);
1984 				}
1985 				vfs_rel(mp);
1986 			}
1987 		}
1988 	}
1989 }
1990 
1991 /*
1992  * Do the actual filesystem unmount.
1993  */
1994 int
1995 dounmount(struct mount *mp, uint64_t flags, struct thread *td)
1996 {
1997 	struct mount_upper_node *upper;
1998 	struct vnode *coveredvp, *rootvp;
1999 	int error;
2000 	uint64_t async_flag;
2001 	int mnt_gen_r;
2002 	unsigned int retries;
2003 
2004 	KASSERT((flags & MNT_DEFERRED) == 0 ||
2005 	    (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2006 	    ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2007 
2008 	/*
2009 	 * If the caller has explicitly requested the unmount to be handled by
2010 	 * the taskqueue and we're not already in taskqueue context, queue
2011 	 * up the unmount request and exit.  This is done prior to any
2012 	 * credential checks; MNT_DEFERRED should be used only for kernel-
2013 	 * initiated unmounts and will therefore be processed with the
2014 	 * (kernel) credentials of the taskqueue thread.  Still, callers
2015 	 * should be sure this is the behavior they want.
2016 	 */
2017 	if ((flags & MNT_DEFERRED) != 0 &&
2018 	    taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2019 		if (!deferred_unmount_enqueue(mp, flags, false, 0))
2020 			vfs_rel(mp);
2021 		return (EINPROGRESS);
2022 	}
2023 
2024 	/*
2025 	 * Only privileged root, or (if MNT_USER is set) the user that did the
2026 	 * original mount is permitted to unmount this filesystem.
2027 	 * This check should be made prior to queueing up any recursive
2028 	 * unmounts of upper filesystems.  Those unmounts will be executed
2029 	 * with kernel thread credentials and are expected to succeed, so
2030 	 * we must at least ensure the originating context has sufficient
2031 	 * privilege to unmount the base filesystem before proceeding with
2032 	 * the uppers.
2033 	 */
2034 	error = vfs_suser(mp, td);
2035 	if (error != 0) {
2036 		KASSERT((flags & MNT_DEFERRED) == 0,
2037 		    ("taskqueue unmount with insufficient privilege"));
2038 		vfs_rel(mp);
2039 		return (error);
2040 	}
2041 
2042 	if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2043 		flags |= MNT_RECURSE;
2044 
2045 	if ((flags & MNT_RECURSE) != 0) {
2046 		KASSERT((flags & MNT_FORCE) != 0,
2047 		    ("MNT_RECURSE requires MNT_FORCE"));
2048 
2049 		MNT_ILOCK(mp);
2050 		/*
2051 		 * Set MNTK_RECURSE to prevent new upper mounts from being
2052 		 * added, and note that an operation on the uppers list is in
2053 		 * progress.  This will ensure that unregistration from the
2054 		 * uppers list, and therefore any pending unmount of the upper
2055 		 * FS, can't complete until after we finish walking the list.
2056 		 */
2057 		mp->mnt_kern_flag |= MNTK_RECURSE;
2058 		mp->mnt_upper_pending++;
2059 		TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2060 			retries = upper->mp->mnt_unmount_retries;
2061 			if (retries > deferred_unmount_retry_limit) {
2062 				error = EBUSY;
2063 				continue;
2064 			}
2065 			MNT_IUNLOCK(mp);
2066 
2067 			vfs_ref(upper->mp);
2068 			if (!deferred_unmount_enqueue(upper->mp, flags,
2069 			    false, 0))
2070 				vfs_rel(upper->mp);
2071 			MNT_ILOCK(mp);
2072 		}
2073 		mp->mnt_upper_pending--;
2074 		if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2075 		    mp->mnt_upper_pending == 0) {
2076 			mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2077 			wakeup(&mp->mnt_uppers);
2078 		}
2079 
2080 		/*
2081 		 * If we're not on the taskqueue, wait until the uppers list
2082 		 * is drained before proceeding with unmount.  Otherwise, if
2083 		 * we are on the taskqueue and there are still pending uppers,
2084 		 * just re-enqueue on the end of the taskqueue.
2085 		 */
2086 		if ((flags & MNT_DEFERRED) == 0) {
2087 			while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2088 				mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2089 				error = msleep(&mp->mnt_taskqueue_link,
2090 				    MNT_MTX(mp), PCATCH, "umntqw", 0);
2091 			}
2092 			if (error != 0) {
2093 				MNT_REL(mp);
2094 				MNT_IUNLOCK(mp);
2095 				return (error);
2096 			}
2097 		} else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2098 			MNT_IUNLOCK(mp);
2099 			if (error == 0)
2100 				deferred_unmount_enqueue(mp, flags, true, 0);
2101 			return (error);
2102 		}
2103 		MNT_IUNLOCK(mp);
2104 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2105 	}
2106 
2107 	/* Allow the taskqueue to safely re-enqueue on failure */
2108 	if ((flags & MNT_DEFERRED) != 0)
2109 		vfs_ref(mp);
2110 
2111 	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2112 		mnt_gen_r = mp->mnt_gen;
2113 		VI_LOCK(coveredvp);
2114 		vholdl(coveredvp);
2115 		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2116 		/*
2117 		 * Check for mp being unmounted while waiting for the
2118 		 * covered vnode lock.
2119 		 */
2120 		if (coveredvp->v_mountedhere != mp ||
2121 		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2122 			VOP_UNLOCK(coveredvp);
2123 			vdrop(coveredvp);
2124 			vfs_rel(mp);
2125 			return (EBUSY);
2126 		}
2127 	}
2128 
2129 	vfs_op_enter(mp);
2130 
2131 	vn_start_write(NULL, &mp, V_WAIT);
2132 	MNT_ILOCK(mp);
2133 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2134 	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
2135 	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
2136 		dounmount_cleanup(mp, coveredvp, 0);
2137 		return (EBUSY);
2138 	}
2139 	mp->mnt_kern_flag |= MNTK_UNMOUNT;
2140 	rootvp = vfs_cache_root_clear(mp);
2141 	if (coveredvp != NULL)
2142 		vn_seqc_write_begin(coveredvp);
2143 	if (flags & MNT_NONBUSY) {
2144 		MNT_IUNLOCK(mp);
2145 		error = vfs_check_usecounts(mp);
2146 		MNT_ILOCK(mp);
2147 		if (error != 0) {
2148 			vn_seqc_write_end(coveredvp);
2149 			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2150 			if (rootvp != NULL) {
2151 				vn_seqc_write_end(rootvp);
2152 				vrele(rootvp);
2153 			}
2154 			return (error);
2155 		}
2156 	}
2157 	/* Allow filesystems to detect that a forced unmount is in progress. */
2158 	if (flags & MNT_FORCE) {
2159 		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2160 		MNT_IUNLOCK(mp);
2161 		/*
2162 		 * Must be done after setting MNTK_UNMOUNTF and before
2163 		 * waiting for mnt_lockref to become 0.
2164 		 */
2165 		VFS_PURGE(mp);
2166 		MNT_ILOCK(mp);
2167 	}
2168 	error = 0;
2169 	if (mp->mnt_lockref) {
2170 		mp->mnt_kern_flag |= MNTK_DRAINING;
2171 		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2172 		    "mount drain", 0);
2173 	}
2174 	MNT_IUNLOCK(mp);
2175 	KASSERT(mp->mnt_lockref == 0,
2176 	    ("%s: invalid lock refcount in the drain path @ %s:%d",
2177 	    __func__, __FILE__, __LINE__));
2178 	KASSERT(error == 0,
2179 	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
2180 	    __func__, __FILE__, __LINE__));
2181 
2182 	/*
2183 	 * We want to keep the vnode around so that we can vn_seqc_write_end
2184 	 * after we are done with unmount. Downgrade our reference to a mere
2185 	 * hold count so that we don't interefere with anything.
2186 	 */
2187 	if (rootvp != NULL) {
2188 		vhold(rootvp);
2189 		vrele(rootvp);
2190 	}
2191 
2192 	if (mp->mnt_flag & MNT_EXPUBLIC)
2193 		vfs_setpublicfs(NULL, NULL, NULL);
2194 
2195 	vfs_periodic(mp, MNT_WAIT);
2196 	MNT_ILOCK(mp);
2197 	async_flag = mp->mnt_flag & MNT_ASYNC;
2198 	mp->mnt_flag &= ~MNT_ASYNC;
2199 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
2200 	MNT_IUNLOCK(mp);
2201 	vfs_deallocate_syncvnode(mp);
2202 	error = VFS_UNMOUNT(mp, flags);
2203 	vn_finished_write(mp);
2204 	vfs_rel(mp);
2205 	/*
2206 	 * If we failed to flush the dirty blocks for this mount point,
2207 	 * undo all the cdir/rdir and rootvnode changes we made above.
2208 	 * Unless we failed to do so because the device is reporting that
2209 	 * it doesn't exist anymore.
2210 	 */
2211 	if (error && error != ENXIO) {
2212 		MNT_ILOCK(mp);
2213 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2214 			MNT_IUNLOCK(mp);
2215 			vfs_allocate_syncvnode(mp);
2216 			MNT_ILOCK(mp);
2217 		}
2218 		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2219 		mp->mnt_flag |= async_flag;
2220 		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2221 		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2222 			mp->mnt_kern_flag |= MNTK_ASYNC;
2223 		if (mp->mnt_kern_flag & MNTK_MWAIT) {
2224 			mp->mnt_kern_flag &= ~MNTK_MWAIT;
2225 			wakeup(mp);
2226 		}
2227 		vfs_op_exit_locked(mp);
2228 		MNT_IUNLOCK(mp);
2229 		if (coveredvp) {
2230 			vn_seqc_write_end(coveredvp);
2231 			VOP_UNLOCK(coveredvp);
2232 			vdrop(coveredvp);
2233 		}
2234 		if (rootvp != NULL) {
2235 			vn_seqc_write_end(rootvp);
2236 			vdrop(rootvp);
2237 		}
2238 		return (error);
2239 	}
2240 
2241 	mtx_lock(&mountlist_mtx);
2242 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
2243 	mtx_unlock(&mountlist_mtx);
2244 	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2245 	if (coveredvp != NULL) {
2246 		VI_LOCK(coveredvp);
2247 		vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2248 		coveredvp->v_mountedhere = NULL;
2249 		vn_seqc_write_end_locked(coveredvp);
2250 		VI_UNLOCK(coveredvp);
2251 		VOP_UNLOCK(coveredvp);
2252 		vdrop(coveredvp);
2253 	}
2254 	mount_devctl_event("UNMOUNT", mp, false);
2255 	if (rootvp != NULL) {
2256 		vn_seqc_write_end(rootvp);
2257 		vdrop(rootvp);
2258 	}
2259 	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2260 	if (rootvnode != NULL && mp == rootvnode->v_mount) {
2261 		vrele(rootvnode);
2262 		rootvnode = NULL;
2263 	}
2264 	if (mp == rootdevmp)
2265 		rootdevmp = NULL;
2266 	if ((flags & MNT_DEFERRED) != 0)
2267 		vfs_rel(mp);
2268 	vfs_mount_destroy(mp);
2269 	return (0);
2270 }
2271 
2272 /*
2273  * Report errors during filesystem mounting.
2274  */
2275 void
2276 vfs_mount_error(struct mount *mp, const char *fmt, ...)
2277 {
2278 	struct vfsoptlist *moptlist = mp->mnt_optnew;
2279 	va_list ap;
2280 	int error, len;
2281 	char *errmsg;
2282 
2283 	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2284 	if (error || errmsg == NULL || len <= 0)
2285 		return;
2286 
2287 	va_start(ap, fmt);
2288 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2289 	va_end(ap);
2290 }
2291 
2292 void
2293 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2294 {
2295 	va_list ap;
2296 	int error, len;
2297 	char *errmsg;
2298 
2299 	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2300 	if (error || errmsg == NULL || len <= 0)
2301 		return;
2302 
2303 	va_start(ap, fmt);
2304 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2305 	va_end(ap);
2306 }
2307 
2308 /*
2309  * ---------------------------------------------------------------------
2310  * Functions for querying mount options/arguments from filesystems.
2311  */
2312 
2313 /*
2314  * Check that no unknown options are given
2315  */
2316 int
2317 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2318 {
2319 	struct vfsopt *opt;
2320 	char errmsg[255];
2321 	const char **t, *p, *q;
2322 	int ret = 0;
2323 
2324 	TAILQ_FOREACH(opt, opts, link) {
2325 		p = opt->name;
2326 		q = NULL;
2327 		if (p[0] == 'n' && p[1] == 'o')
2328 			q = p + 2;
2329 		for(t = global_opts; *t != NULL; t++) {
2330 			if (strcmp(*t, p) == 0)
2331 				break;
2332 			if (q != NULL) {
2333 				if (strcmp(*t, q) == 0)
2334 					break;
2335 			}
2336 		}
2337 		if (*t != NULL)
2338 			continue;
2339 		for(t = legal; *t != NULL; t++) {
2340 			if (strcmp(*t, p) == 0)
2341 				break;
2342 			if (q != NULL) {
2343 				if (strcmp(*t, q) == 0)
2344 					break;
2345 			}
2346 		}
2347 		if (*t != NULL)
2348 			continue;
2349 		snprintf(errmsg, sizeof(errmsg),
2350 		    "mount option <%s> is unknown", p);
2351 		ret = EINVAL;
2352 	}
2353 	if (ret != 0) {
2354 		TAILQ_FOREACH(opt, opts, link) {
2355 			if (strcmp(opt->name, "errmsg") == 0) {
2356 				strncpy((char *)opt->value, errmsg, opt->len);
2357 				break;
2358 			}
2359 		}
2360 		if (opt == NULL)
2361 			printf("%s\n", errmsg);
2362 	}
2363 	return (ret);
2364 }
2365 
2366 /*
2367  * Get a mount option by its name.
2368  *
2369  * Return 0 if the option was found, ENOENT otherwise.
2370  * If len is non-NULL it will be filled with the length
2371  * of the option. If buf is non-NULL, it will be filled
2372  * with the address of the option.
2373  */
2374 int
2375 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2376 {
2377 	struct vfsopt *opt;
2378 
2379 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2380 
2381 	TAILQ_FOREACH(opt, opts, link) {
2382 		if (strcmp(name, opt->name) == 0) {
2383 			opt->seen = 1;
2384 			if (len != NULL)
2385 				*len = opt->len;
2386 			if (buf != NULL)
2387 				*buf = opt->value;
2388 			return (0);
2389 		}
2390 	}
2391 	return (ENOENT);
2392 }
2393 
2394 int
2395 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2396 {
2397 	struct vfsopt *opt;
2398 
2399 	if (opts == NULL)
2400 		return (-1);
2401 
2402 	TAILQ_FOREACH(opt, opts, link) {
2403 		if (strcmp(name, opt->name) == 0) {
2404 			opt->seen = 1;
2405 			return (opt->pos);
2406 		}
2407 	}
2408 	return (-1);
2409 }
2410 
2411 int
2412 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2413 {
2414 	char *opt_value, *vtp;
2415 	quad_t iv;
2416 	int error, opt_len;
2417 
2418 	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2419 	if (error != 0)
2420 		return (error);
2421 	if (opt_len == 0 || opt_value == NULL)
2422 		return (EINVAL);
2423 	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2424 		return (EINVAL);
2425 	iv = strtoq(opt_value, &vtp, 0);
2426 	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2427 		return (EINVAL);
2428 	if (iv < 0)
2429 		return (EINVAL);
2430 	switch (vtp[0]) {
2431 	case 't': case 'T':
2432 		iv *= 1024;
2433 		/* FALLTHROUGH */
2434 	case 'g': case 'G':
2435 		iv *= 1024;
2436 		/* FALLTHROUGH */
2437 	case 'm': case 'M':
2438 		iv *= 1024;
2439 		/* FALLTHROUGH */
2440 	case 'k': case 'K':
2441 		iv *= 1024;
2442 	case '\0':
2443 		break;
2444 	default:
2445 		return (EINVAL);
2446 	}
2447 	*value = iv;
2448 
2449 	return (0);
2450 }
2451 
2452 char *
2453 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2454 {
2455 	struct vfsopt *opt;
2456 
2457 	*error = 0;
2458 	TAILQ_FOREACH(opt, opts, link) {
2459 		if (strcmp(name, opt->name) != 0)
2460 			continue;
2461 		opt->seen = 1;
2462 		if (opt->len == 0 ||
2463 		    ((char *)opt->value)[opt->len - 1] != '\0') {
2464 			*error = EINVAL;
2465 			return (NULL);
2466 		}
2467 		return (opt->value);
2468 	}
2469 	*error = ENOENT;
2470 	return (NULL);
2471 }
2472 
2473 int
2474 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2475 	uint64_t val)
2476 {
2477 	struct vfsopt *opt;
2478 
2479 	TAILQ_FOREACH(opt, opts, link) {
2480 		if (strcmp(name, opt->name) == 0) {
2481 			opt->seen = 1;
2482 			if (w != NULL)
2483 				*w |= val;
2484 			return (1);
2485 		}
2486 	}
2487 	if (w != NULL)
2488 		*w &= ~val;
2489 	return (0);
2490 }
2491 
2492 int
2493 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2494 {
2495 	va_list ap;
2496 	struct vfsopt *opt;
2497 	int ret;
2498 
2499 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2500 
2501 	TAILQ_FOREACH(opt, opts, link) {
2502 		if (strcmp(name, opt->name) != 0)
2503 			continue;
2504 		opt->seen = 1;
2505 		if (opt->len == 0 || opt->value == NULL)
2506 			return (0);
2507 		if (((char *)opt->value)[opt->len - 1] != '\0')
2508 			return (0);
2509 		va_start(ap, fmt);
2510 		ret = vsscanf(opt->value, fmt, ap);
2511 		va_end(ap);
2512 		return (ret);
2513 	}
2514 	return (0);
2515 }
2516 
2517 int
2518 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2519 {
2520 	struct vfsopt *opt;
2521 
2522 	TAILQ_FOREACH(opt, opts, link) {
2523 		if (strcmp(name, opt->name) != 0)
2524 			continue;
2525 		opt->seen = 1;
2526 		if (opt->value == NULL)
2527 			opt->len = len;
2528 		else {
2529 			if (opt->len != len)
2530 				return (EINVAL);
2531 			bcopy(value, opt->value, len);
2532 		}
2533 		return (0);
2534 	}
2535 	return (ENOENT);
2536 }
2537 
2538 int
2539 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2540 {
2541 	struct vfsopt *opt;
2542 
2543 	TAILQ_FOREACH(opt, opts, link) {
2544 		if (strcmp(name, opt->name) != 0)
2545 			continue;
2546 		opt->seen = 1;
2547 		if (opt->value == NULL)
2548 			opt->len = len;
2549 		else {
2550 			if (opt->len < len)
2551 				return (EINVAL);
2552 			opt->len = len;
2553 			bcopy(value, opt->value, len);
2554 		}
2555 		return (0);
2556 	}
2557 	return (ENOENT);
2558 }
2559 
2560 int
2561 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2562 {
2563 	struct vfsopt *opt;
2564 
2565 	TAILQ_FOREACH(opt, opts, link) {
2566 		if (strcmp(name, opt->name) != 0)
2567 			continue;
2568 		opt->seen = 1;
2569 		if (opt->value == NULL)
2570 			opt->len = strlen(value) + 1;
2571 		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2572 			return (EINVAL);
2573 		return (0);
2574 	}
2575 	return (ENOENT);
2576 }
2577 
2578 /*
2579  * Find and copy a mount option.
2580  *
2581  * The size of the buffer has to be specified
2582  * in len, if it is not the same length as the
2583  * mount option, EINVAL is returned.
2584  * Returns ENOENT if the option is not found.
2585  */
2586 int
2587 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2588 {
2589 	struct vfsopt *opt;
2590 
2591 	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2592 
2593 	TAILQ_FOREACH(opt, opts, link) {
2594 		if (strcmp(name, opt->name) == 0) {
2595 			opt->seen = 1;
2596 			if (len != opt->len)
2597 				return (EINVAL);
2598 			bcopy(opt->value, dest, opt->len);
2599 			return (0);
2600 		}
2601 	}
2602 	return (ENOENT);
2603 }
2604 
2605 int
2606 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2607 {
2608 	/*
2609 	 * Filesystems only fill in part of the structure for updates, we
2610 	 * have to read the entirety first to get all content.
2611 	 */
2612 	if (sbp != &mp->mnt_stat)
2613 		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2614 
2615 	/*
2616 	 * Set these in case the underlying filesystem fails to do so.
2617 	 */
2618 	sbp->f_version = STATFS_VERSION;
2619 	sbp->f_namemax = NAME_MAX;
2620 	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2621 	sbp->f_nvnodelistsize = mp->mnt_nvnodelistsize;
2622 
2623 	return (mp->mnt_op->vfs_statfs(mp, sbp));
2624 }
2625 
2626 void
2627 vfs_mountedfrom(struct mount *mp, const char *from)
2628 {
2629 
2630 	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2631 	strlcpy(mp->mnt_stat.f_mntfromname, from,
2632 	    sizeof mp->mnt_stat.f_mntfromname);
2633 }
2634 
2635 /*
2636  * ---------------------------------------------------------------------
2637  * This is the api for building mount args and mounting filesystems from
2638  * inside the kernel.
2639  *
2640  * The API works by accumulation of individual args.  First error is
2641  * latched.
2642  *
2643  * XXX: should be documented in new manpage kernel_mount(9)
2644  */
2645 
2646 /* A memory allocation which must be freed when we are done */
2647 struct mntaarg {
2648 	SLIST_ENTRY(mntaarg)	next;
2649 };
2650 
2651 /* The header for the mount arguments */
2652 struct mntarg {
2653 	struct iovec *v;
2654 	int len;
2655 	int error;
2656 	SLIST_HEAD(, mntaarg)	list;
2657 };
2658 
2659 /*
2660  * Add a boolean argument.
2661  *
2662  * flag is the boolean value.
2663  * name must start with "no".
2664  */
2665 struct mntarg *
2666 mount_argb(struct mntarg *ma, int flag, const char *name)
2667 {
2668 
2669 	KASSERT(name[0] == 'n' && name[1] == 'o',
2670 	    ("mount_argb(...,%s): name must start with 'no'", name));
2671 
2672 	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2673 }
2674 
2675 /*
2676  * Add an argument printf style
2677  */
2678 struct mntarg *
2679 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2680 {
2681 	va_list ap;
2682 	struct mntaarg *maa;
2683 	struct sbuf *sb;
2684 	int len;
2685 
2686 	if (ma == NULL) {
2687 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2688 		SLIST_INIT(&ma->list);
2689 	}
2690 	if (ma->error)
2691 		return (ma);
2692 
2693 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2694 	    M_MOUNT, M_WAITOK);
2695 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2696 	ma->v[ma->len].iov_len = strlen(name) + 1;
2697 	ma->len++;
2698 
2699 	sb = sbuf_new_auto();
2700 	va_start(ap, fmt);
2701 	sbuf_vprintf(sb, fmt, ap);
2702 	va_end(ap);
2703 	sbuf_finish(sb);
2704 	len = sbuf_len(sb) + 1;
2705 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2706 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2707 	bcopy(sbuf_data(sb), maa + 1, len);
2708 	sbuf_delete(sb);
2709 
2710 	ma->v[ma->len].iov_base = maa + 1;
2711 	ma->v[ma->len].iov_len = len;
2712 	ma->len++;
2713 
2714 	return (ma);
2715 }
2716 
2717 /*
2718  * Add an argument which is a userland string.
2719  */
2720 struct mntarg *
2721 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2722 {
2723 	struct mntaarg *maa;
2724 	char *tbuf;
2725 
2726 	if (val == NULL)
2727 		return (ma);
2728 	if (ma == NULL) {
2729 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2730 		SLIST_INIT(&ma->list);
2731 	}
2732 	if (ma->error)
2733 		return (ma);
2734 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2735 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2736 	tbuf = (void *)(maa + 1);
2737 	ma->error = copyinstr(val, tbuf, len, NULL);
2738 	return (mount_arg(ma, name, tbuf, -1));
2739 }
2740 
2741 /*
2742  * Plain argument.
2743  *
2744  * If length is -1, treat value as a C string.
2745  */
2746 struct mntarg *
2747 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2748 {
2749 
2750 	if (ma == NULL) {
2751 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2752 		SLIST_INIT(&ma->list);
2753 	}
2754 	if (ma->error)
2755 		return (ma);
2756 
2757 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2758 	    M_MOUNT, M_WAITOK);
2759 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2760 	ma->v[ma->len].iov_len = strlen(name) + 1;
2761 	ma->len++;
2762 
2763 	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2764 	if (len < 0)
2765 		ma->v[ma->len].iov_len = strlen(val) + 1;
2766 	else
2767 		ma->v[ma->len].iov_len = len;
2768 	ma->len++;
2769 	return (ma);
2770 }
2771 
2772 /*
2773  * Free a mntarg structure
2774  */
2775 static void
2776 free_mntarg(struct mntarg *ma)
2777 {
2778 	struct mntaarg *maa;
2779 
2780 	while (!SLIST_EMPTY(&ma->list)) {
2781 		maa = SLIST_FIRST(&ma->list);
2782 		SLIST_REMOVE_HEAD(&ma->list, next);
2783 		free(maa, M_MOUNT);
2784 	}
2785 	free(ma->v, M_MOUNT);
2786 	free(ma, M_MOUNT);
2787 }
2788 
2789 /*
2790  * Mount a filesystem
2791  */
2792 int
2793 kernel_mount(struct mntarg *ma, uint64_t flags)
2794 {
2795 	struct uio auio;
2796 	int error;
2797 
2798 	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2799 	KASSERT(ma->error != 0 || ma->v != NULL, ("kernel_mount NULL ma->v"));
2800 	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2801 
2802 	error = ma->error;
2803 	if (error == 0) {
2804 		auio.uio_iov = ma->v;
2805 		auio.uio_iovcnt = ma->len;
2806 		auio.uio_segflg = UIO_SYSSPACE;
2807 		error = vfs_donmount(curthread, flags, &auio);
2808 	}
2809 	free_mntarg(ma);
2810 	return (error);
2811 }
2812 
2813 /* Map from mount options to printable formats. */
2814 static struct mntoptnames optnames[] = {
2815 	MNTOPT_NAMES
2816 };
2817 
2818 #define DEVCTL_LEN 1024
2819 static void
2820 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2821 {
2822 	const uint8_t *cp;
2823 	struct mntoptnames *fp;
2824 	struct sbuf sb;
2825 	struct statfs *sfp = &mp->mnt_stat;
2826 	char *buf;
2827 
2828 	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2829 	if (buf == NULL)
2830 		return;
2831 	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2832 	sbuf_cpy(&sb, "mount-point=\"");
2833 	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2834 	sbuf_cat(&sb, "\" mount-dev=\"");
2835 	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2836 	sbuf_cat(&sb, "\" mount-type=\"");
2837 	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2838 	sbuf_cat(&sb, "\" fsid=0x");
2839 	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2840 	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2841 		sbuf_printf(&sb, "%02x", cp[i]);
2842 	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2843 	for (fp = optnames; fp->o_opt != 0; fp++) {
2844 		if ((mp->mnt_flag & fp->o_opt) != 0) {
2845 			sbuf_cat(&sb, fp->o_name);
2846 			sbuf_putc(&sb, ';');
2847 		}
2848 	}
2849 	sbuf_putc(&sb, '"');
2850 	sbuf_finish(&sb);
2851 
2852 	/*
2853 	 * Options are not published because the form of the options depends on
2854 	 * the file system and may include binary data. In addition, they don't
2855 	 * necessarily provide enough useful information to be actionable when
2856 	 * devd processes them.
2857 	 */
2858 
2859 	if (sbuf_error(&sb) == 0)
2860 		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2861 	sbuf_delete(&sb);
2862 	free(buf, M_MOUNT);
2863 }
2864 
2865 /*
2866  * Force remount specified mount point to read-only.  The argument
2867  * must be busied to avoid parallel unmount attempts.
2868  *
2869  * Intended use is to prevent further writes if some metadata
2870  * inconsistency is detected.  Note that the function still flushes
2871  * all cached metadata and data for the mount point, which might be
2872  * not always suitable.
2873  */
2874 int
2875 vfs_remount_ro(struct mount *mp)
2876 {
2877 	struct vfsoptlist *opts;
2878 	struct vfsopt *opt;
2879 	struct vnode *vp_covered, *rootvp;
2880 	int error;
2881 
2882 	KASSERT(mp->mnt_lockref > 0,
2883 	    ("vfs_remount_ro: mp %p is not busied", mp));
2884 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
2885 	    ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
2886 
2887 	rootvp = NULL;
2888 	vp_covered = mp->mnt_vnodecovered;
2889 	error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
2890 	if (error != 0)
2891 		return (error);
2892 	VI_LOCK(vp_covered);
2893 	if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
2894 		VI_UNLOCK(vp_covered);
2895 		vput(vp_covered);
2896 		return (EBUSY);
2897 	}
2898 	vp_covered->v_iflag |= VI_MOUNT;
2899 	VI_UNLOCK(vp_covered);
2900 	vfs_op_enter(mp);
2901 	vn_seqc_write_begin(vp_covered);
2902 
2903 	MNT_ILOCK(mp);
2904 	if ((mp->mnt_flag & MNT_RDONLY) != 0) {
2905 		MNT_IUNLOCK(mp);
2906 		error = EBUSY;
2907 		goto out;
2908 	}
2909 	mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
2910 	rootvp = vfs_cache_root_clear(mp);
2911 	MNT_IUNLOCK(mp);
2912 
2913 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
2914 	TAILQ_INIT(opts);
2915 	opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
2916 	opt->name = strdup("ro", M_MOUNT);
2917 	opt->value = NULL;
2918 	TAILQ_INSERT_TAIL(opts, opt, link);
2919 	vfs_mergeopts(opts, mp->mnt_opt);
2920 	mp->mnt_optnew = opts;
2921 
2922 	error = VFS_MOUNT(mp);
2923 
2924 	if (error == 0) {
2925 		MNT_ILOCK(mp);
2926 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
2927 		MNT_IUNLOCK(mp);
2928 		vfs_deallocate_syncvnode(mp);
2929 		if (mp->mnt_opt != NULL)
2930 			vfs_freeopts(mp->mnt_opt);
2931 		mp->mnt_opt = mp->mnt_optnew;
2932 	} else {
2933 		MNT_ILOCK(mp);
2934 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
2935 		MNT_IUNLOCK(mp);
2936 		vfs_freeopts(mp->mnt_optnew);
2937 	}
2938 	mp->mnt_optnew = NULL;
2939 
2940 out:
2941 	vfs_op_exit(mp);
2942 	VI_LOCK(vp_covered);
2943 	vp_covered->v_iflag &= ~VI_MOUNT;
2944 	VI_UNLOCK(vp_covered);
2945 	vput(vp_covered);
2946 	vn_seqc_write_end(vp_covered);
2947 	if (rootvp != NULL) {
2948 		vn_seqc_write_end(rootvp);
2949 		vrele(rootvp);
2950 	}
2951 	return (error);
2952 }
2953 
2954 /*
2955  * Suspend write operations on all local writeable filesystems.  Does
2956  * full sync of them in the process.
2957  *
2958  * Iterate over the mount points in reverse order, suspending most
2959  * recently mounted filesystems first.  It handles a case where a
2960  * filesystem mounted from a md(4) vnode-backed device should be
2961  * suspended before the filesystem that owns the vnode.
2962  */
2963 void
2964 suspend_all_fs(void)
2965 {
2966 	struct mount *mp;
2967 	int error;
2968 
2969 	mtx_lock(&mountlist_mtx);
2970 	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
2971 		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
2972 		if (error != 0)
2973 			continue;
2974 		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
2975 		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2976 			mtx_lock(&mountlist_mtx);
2977 			vfs_unbusy(mp);
2978 			continue;
2979 		}
2980 		error = vfs_write_suspend(mp, 0);
2981 		if (error == 0) {
2982 			MNT_ILOCK(mp);
2983 			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
2984 			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
2985 			MNT_IUNLOCK(mp);
2986 			mtx_lock(&mountlist_mtx);
2987 		} else {
2988 			printf("suspend of %s failed, error %d\n",
2989 			    mp->mnt_stat.f_mntonname, error);
2990 			mtx_lock(&mountlist_mtx);
2991 			vfs_unbusy(mp);
2992 		}
2993 	}
2994 	mtx_unlock(&mountlist_mtx);
2995 }
2996 
2997 void
2998 resume_all_fs(void)
2999 {
3000 	struct mount *mp;
3001 
3002 	mtx_lock(&mountlist_mtx);
3003 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3004 		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3005 			continue;
3006 		mtx_unlock(&mountlist_mtx);
3007 		MNT_ILOCK(mp);
3008 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3009 		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3010 		MNT_IUNLOCK(mp);
3011 		vfs_write_resume(mp, 0);
3012 		mtx_lock(&mountlist_mtx);
3013 		vfs_unbusy(mp);
3014 	}
3015 	mtx_unlock(&mountlist_mtx);
3016 }
3017