xref: /freebsd/sys/kern/vfs_mount.c (revision 41ce62251c1ed0003fc13b8735de5f9eff4c5c03)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2004 Poul-Henning Kamp
5  * Copyright (c) 1999 Michael Smith
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/smp.h>
45 #include <sys/devctl.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/libkern.h>
52 #include <sys/malloc.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/namei.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/filedesc.h>
59 #include <sys/reboot.h>
60 #include <sys/sbuf.h>
61 #include <sys/syscallsubr.h>
62 #include <sys/sysproto.h>
63 #include <sys/sx.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysent.h>
66 #include <sys/systm.h>
67 #include <sys/vnode.h>
68 #include <vm/uma.h>
69 
70 #include <geom/geom.h>
71 
72 #include <machine/stdarg.h>
73 
74 #include <security/audit/audit.h>
75 #include <security/mac/mac_framework.h>
76 
77 #define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
78 
79 static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
80 		    uint64_t fsflags, struct vfsoptlist **optlist);
81 static void	free_mntarg(struct mntarg *ma);
82 
83 static int	usermount = 0;
84 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
85     "Unprivileged users may mount and unmount file systems");
86 
87 static bool	default_autoro = false;
88 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
89     "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
90 
91 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
92 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
93 static uma_zone_t mount_zone;
94 
95 /* List of mounted filesystems. */
96 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
97 
98 /* For any iteration/modification of mountlist */
99 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
100 MTX_SYSINIT(mountlist, &mountlist_mtx, "mountlist", MTX_DEF);
101 
102 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
103 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
104 
105 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
106 
107 /*
108  * Global opts, taken by all filesystems
109  */
110 static const char *global_opts[] = {
111 	"errmsg",
112 	"fstype",
113 	"fspath",
114 	"ro",
115 	"rw",
116 	"nosuid",
117 	"noexec",
118 	NULL
119 };
120 
121 static int
122 mount_init(void *mem, int size, int flags)
123 {
124 	struct mount *mp;
125 
126 	mp = (struct mount *)mem;
127 	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
128 	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
129 	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
130 	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
131 	mp->mnt_ref = 0;
132 	mp->mnt_vfs_ops = 1;
133 	mp->mnt_rootvnode = NULL;
134 	return (0);
135 }
136 
137 static void
138 mount_fini(void *mem, int size)
139 {
140 	struct mount *mp;
141 
142 	mp = (struct mount *)mem;
143 	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
144 	lockdestroy(&mp->mnt_explock);
145 	mtx_destroy(&mp->mnt_listmtx);
146 	mtx_destroy(&mp->mnt_mtx);
147 }
148 
149 static void
150 vfs_mount_init(void *dummy __unused)
151 {
152 
153 	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
154 	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
155 }
156 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
157 
158 /*
159  * ---------------------------------------------------------------------
160  * Functions for building and sanitizing the mount options
161  */
162 
163 /* Remove one mount option. */
164 static void
165 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
166 {
167 
168 	TAILQ_REMOVE(opts, opt, link);
169 	free(opt->name, M_MOUNT);
170 	if (opt->value != NULL)
171 		free(opt->value, M_MOUNT);
172 	free(opt, M_MOUNT);
173 }
174 
175 /* Release all resources related to the mount options. */
176 void
177 vfs_freeopts(struct vfsoptlist *opts)
178 {
179 	struct vfsopt *opt;
180 
181 	while (!TAILQ_EMPTY(opts)) {
182 		opt = TAILQ_FIRST(opts);
183 		vfs_freeopt(opts, opt);
184 	}
185 	free(opts, M_MOUNT);
186 }
187 
188 void
189 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
190 {
191 	struct vfsopt *opt, *temp;
192 
193 	if (opts == NULL)
194 		return;
195 	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
196 		if (strcmp(opt->name, name) == 0)
197 			vfs_freeopt(opts, opt);
198 	}
199 }
200 
201 static int
202 vfs_isopt_ro(const char *opt)
203 {
204 
205 	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
206 	    strcmp(opt, "norw") == 0)
207 		return (1);
208 	return (0);
209 }
210 
211 static int
212 vfs_isopt_rw(const char *opt)
213 {
214 
215 	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
216 		return (1);
217 	return (0);
218 }
219 
220 /*
221  * Check if options are equal (with or without the "no" prefix).
222  */
223 static int
224 vfs_equalopts(const char *opt1, const char *opt2)
225 {
226 	char *p;
227 
228 	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
229 	if (strcmp(opt1, opt2) == 0)
230 		return (1);
231 	/* "noopt" vs. "opt" */
232 	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
233 		return (1);
234 	/* "opt" vs. "noopt" */
235 	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
236 		return (1);
237 	while ((p = strchr(opt1, '.')) != NULL &&
238 	    !strncmp(opt1, opt2, ++p - opt1)) {
239 		opt2 += p - opt1;
240 		opt1 = p;
241 		/* "foo.noopt" vs. "foo.opt" */
242 		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
243 			return (1);
244 		/* "foo.opt" vs. "foo.noopt" */
245 		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
246 			return (1);
247 	}
248 	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
249 	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
250 	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
251 		return (1);
252 	return (0);
253 }
254 
255 /*
256  * If a mount option is specified several times,
257  * (with or without the "no" prefix) only keep
258  * the last occurrence of it.
259  */
260 static void
261 vfs_sanitizeopts(struct vfsoptlist *opts)
262 {
263 	struct vfsopt *opt, *opt2, *tmp;
264 
265 	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
266 		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
267 		while (opt2 != NULL) {
268 			if (vfs_equalopts(opt->name, opt2->name)) {
269 				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
270 				vfs_freeopt(opts, opt2);
271 				opt2 = tmp;
272 			} else {
273 				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
274 			}
275 		}
276 	}
277 }
278 
279 /*
280  * Build a linked list of mount options from a struct uio.
281  */
282 int
283 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
284 {
285 	struct vfsoptlist *opts;
286 	struct vfsopt *opt;
287 	size_t memused, namelen, optlen;
288 	unsigned int i, iovcnt;
289 	int error;
290 
291 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
292 	TAILQ_INIT(opts);
293 	memused = 0;
294 	iovcnt = auio->uio_iovcnt;
295 	for (i = 0; i < iovcnt; i += 2) {
296 		namelen = auio->uio_iov[i].iov_len;
297 		optlen = auio->uio_iov[i + 1].iov_len;
298 		memused += sizeof(struct vfsopt) + optlen + namelen;
299 		/*
300 		 * Avoid consuming too much memory, and attempts to overflow
301 		 * memused.
302 		 */
303 		if (memused > VFS_MOUNTARG_SIZE_MAX ||
304 		    optlen > VFS_MOUNTARG_SIZE_MAX ||
305 		    namelen > VFS_MOUNTARG_SIZE_MAX) {
306 			error = EINVAL;
307 			goto bad;
308 		}
309 
310 		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
311 		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
312 		opt->value = NULL;
313 		opt->len = 0;
314 		opt->pos = i / 2;
315 		opt->seen = 0;
316 
317 		/*
318 		 * Do this early, so jumps to "bad" will free the current
319 		 * option.
320 		 */
321 		TAILQ_INSERT_TAIL(opts, opt, link);
322 
323 		if (auio->uio_segflg == UIO_SYSSPACE) {
324 			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
325 		} else {
326 			error = copyin(auio->uio_iov[i].iov_base, opt->name,
327 			    namelen);
328 			if (error)
329 				goto bad;
330 		}
331 		/* Ensure names are null-terminated strings. */
332 		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
333 			error = EINVAL;
334 			goto bad;
335 		}
336 		if (optlen != 0) {
337 			opt->len = optlen;
338 			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
339 			if (auio->uio_segflg == UIO_SYSSPACE) {
340 				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
341 				    optlen);
342 			} else {
343 				error = copyin(auio->uio_iov[i + 1].iov_base,
344 				    opt->value, optlen);
345 				if (error)
346 					goto bad;
347 			}
348 		}
349 	}
350 	vfs_sanitizeopts(opts);
351 	*options = opts;
352 	return (0);
353 bad:
354 	vfs_freeopts(opts);
355 	return (error);
356 }
357 
358 /*
359  * Merge the old mount options with the new ones passed
360  * in the MNT_UPDATE case.
361  *
362  * XXX: This function will keep a "nofoo" option in the new
363  * options.  E.g, if the option's canonical name is "foo",
364  * "nofoo" ends up in the mount point's active options.
365  */
366 static void
367 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
368 {
369 	struct vfsopt *opt, *new;
370 
371 	TAILQ_FOREACH(opt, oldopts, link) {
372 		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
373 		new->name = strdup(opt->name, M_MOUNT);
374 		if (opt->len != 0) {
375 			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
376 			bcopy(opt->value, new->value, opt->len);
377 		} else
378 			new->value = NULL;
379 		new->len = opt->len;
380 		new->seen = opt->seen;
381 		TAILQ_INSERT_HEAD(toopts, new, link);
382 	}
383 	vfs_sanitizeopts(toopts);
384 }
385 
386 /*
387  * Mount a filesystem.
388  */
389 #ifndef _SYS_SYSPROTO_H_
390 struct nmount_args {
391 	struct iovec *iovp;
392 	unsigned int iovcnt;
393 	int flags;
394 };
395 #endif
396 int
397 sys_nmount(struct thread *td, struct nmount_args *uap)
398 {
399 	struct uio *auio;
400 	int error;
401 	u_int iovcnt;
402 	uint64_t flags;
403 
404 	/*
405 	 * Mount flags are now 64-bits. On 32-bit archtectures only
406 	 * 32-bits are passed in, but from here on everything handles
407 	 * 64-bit flags correctly.
408 	 */
409 	flags = uap->flags;
410 
411 	AUDIT_ARG_FFLAGS(flags);
412 	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
413 	    uap->iovp, uap->iovcnt, flags);
414 
415 	/*
416 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
417 	 * userspace to set this flag, but we must filter it out if we want
418 	 * MNT_UPDATE on the root file system to work.
419 	 * MNT_ROOTFS should only be set by the kernel when mounting its
420 	 * root file system.
421 	 */
422 	flags &= ~MNT_ROOTFS;
423 
424 	iovcnt = uap->iovcnt;
425 	/*
426 	 * Check that we have an even number of iovec's
427 	 * and that we have at least two options.
428 	 */
429 	if ((iovcnt & 1) || (iovcnt < 4)) {
430 		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
431 		    uap->iovcnt);
432 		return (EINVAL);
433 	}
434 
435 	error = copyinuio(uap->iovp, iovcnt, &auio);
436 	if (error) {
437 		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
438 		    __func__, error);
439 		return (error);
440 	}
441 	error = vfs_donmount(td, flags, auio);
442 
443 	free(auio, M_IOV);
444 	return (error);
445 }
446 
447 /*
448  * ---------------------------------------------------------------------
449  * Various utility functions
450  */
451 
452 void
453 vfs_ref(struct mount *mp)
454 {
455 	struct mount_pcpu *mpcpu;
456 
457 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
458 	if (vfs_op_thread_enter(mp, mpcpu)) {
459 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
460 		vfs_op_thread_exit(mp, mpcpu);
461 		return;
462 	}
463 
464 	MNT_ILOCK(mp);
465 	MNT_REF(mp);
466 	MNT_IUNLOCK(mp);
467 }
468 
469 void
470 vfs_rel(struct mount *mp)
471 {
472 	struct mount_pcpu *mpcpu;
473 
474 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
475 	if (vfs_op_thread_enter(mp, mpcpu)) {
476 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
477 		vfs_op_thread_exit(mp, mpcpu);
478 		return;
479 	}
480 
481 	MNT_ILOCK(mp);
482 	MNT_REL(mp);
483 	MNT_IUNLOCK(mp);
484 }
485 
486 /*
487  * Allocate and initialize the mount point struct.
488  */
489 struct mount *
490 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
491     struct ucred *cred)
492 {
493 	struct mount *mp;
494 
495 	mp = uma_zalloc(mount_zone, M_WAITOK);
496 	bzero(&mp->mnt_startzero,
497 	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
498 	mp->mnt_kern_flag = 0;
499 	mp->mnt_flag = 0;
500 	mp->mnt_rootvnode = NULL;
501 	mp->mnt_vnodecovered = NULL;
502 	mp->mnt_op = NULL;
503 	mp->mnt_vfc = NULL;
504 	TAILQ_INIT(&mp->mnt_nvnodelist);
505 	mp->mnt_nvnodelistsize = 0;
506 	TAILQ_INIT(&mp->mnt_lazyvnodelist);
507 	mp->mnt_lazyvnodelistsize = 0;
508 	if (mp->mnt_ref != 0 || mp->mnt_lockref != 0 ||
509 	    mp->mnt_writeopcount != 0)
510 		panic("%s: non-zero counters on new mp %p\n", __func__, mp);
511 	if (mp->mnt_vfs_ops != 1)
512 		panic("%s: vfs_ops should be 1 but %d found\n", __func__,
513 		    mp->mnt_vfs_ops);
514 	(void) vfs_busy(mp, MBF_NOWAIT);
515 	atomic_add_acq_int(&vfsp->vfc_refcount, 1);
516 	mp->mnt_op = vfsp->vfc_vfsops;
517 	mp->mnt_vfc = vfsp;
518 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
519 	mp->mnt_gen++;
520 	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
521 	mp->mnt_vnodecovered = vp;
522 	mp->mnt_cred = crdup(cred);
523 	mp->mnt_stat.f_owner = cred->cr_uid;
524 	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
525 	mp->mnt_iosize_max = DFLTPHYS;
526 #ifdef MAC
527 	mac_mount_init(mp);
528 	mac_mount_create(cred, mp);
529 #endif
530 	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
531 	TAILQ_INIT(&mp->mnt_uppers);
532 	return (mp);
533 }
534 
535 /*
536  * Destroy the mount struct previously allocated by vfs_mount_alloc().
537  */
538 void
539 vfs_mount_destroy(struct mount *mp)
540 {
541 
542 	if (mp->mnt_vfs_ops == 0)
543 		panic("%s: entered with zero vfs_ops\n", __func__);
544 
545 	vfs_assert_mount_counters(mp);
546 
547 	MNT_ILOCK(mp);
548 	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
549 	if (mp->mnt_kern_flag & MNTK_MWAIT) {
550 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
551 		wakeup(mp);
552 	}
553 	while (mp->mnt_ref)
554 		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
555 	KASSERT(mp->mnt_ref == 0,
556 	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
557 	    __FILE__, __LINE__));
558 	if (mp->mnt_writeopcount != 0)
559 		panic("vfs_mount_destroy: nonzero writeopcount");
560 	if (mp->mnt_secondary_writes != 0)
561 		panic("vfs_mount_destroy: nonzero secondary_writes");
562 	atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
563 	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
564 		struct vnode *vp;
565 
566 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
567 			vn_printf(vp, "dangling vnode ");
568 		panic("unmount: dangling vnode");
569 	}
570 	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
571 	if (mp->mnt_nvnodelistsize != 0)
572 		panic("vfs_mount_destroy: nonzero nvnodelistsize");
573 	if (mp->mnt_lazyvnodelistsize != 0)
574 		panic("vfs_mount_destroy: nonzero lazyvnodelistsize");
575 	if (mp->mnt_lockref != 0)
576 		panic("vfs_mount_destroy: nonzero lock refcount");
577 	MNT_IUNLOCK(mp);
578 
579 	if (mp->mnt_vfs_ops != 1)
580 		panic("%s: vfs_ops should be 1 but %d found\n", __func__,
581 		    mp->mnt_vfs_ops);
582 
583 	if (mp->mnt_rootvnode != NULL)
584 		panic("%s: mount point still has a root vnode %p\n", __func__,
585 		    mp->mnt_rootvnode);
586 
587 	if (mp->mnt_vnodecovered != NULL)
588 		vrele(mp->mnt_vnodecovered);
589 #ifdef MAC
590 	mac_mount_destroy(mp);
591 #endif
592 	if (mp->mnt_opt != NULL)
593 		vfs_freeopts(mp->mnt_opt);
594 	crfree(mp->mnt_cred);
595 	uma_zfree(mount_zone, mp);
596 }
597 
598 static bool
599 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
600 {
601 	/* This is an upgrade of an exisiting mount. */
602 	if ((fsflags & MNT_UPDATE) != 0)
603 		return (false);
604 	/* This is already an R/O mount. */
605 	if ((fsflags & MNT_RDONLY) != 0)
606 		return (false);
607 
608 	switch (error) {
609 	case ENODEV:	/* generic, geom, ... */
610 	case EACCES:	/* cam/scsi, ... */
611 	case EROFS:	/* md, mmcsd, ... */
612 		/*
613 		 * These errors can be returned by the storage layer to signal
614 		 * that the media is read-only.  No harm in the R/O mount
615 		 * attempt if the error was returned for some other reason.
616 		 */
617 		return (true);
618 	default:
619 		return (false);
620 	}
621 }
622 
623 int
624 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
625 {
626 	struct vfsoptlist *optlist;
627 	struct vfsopt *opt, *tmp_opt;
628 	char *fstype, *fspath, *errmsg;
629 	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
630 	bool autoro;
631 
632 	errmsg = fspath = NULL;
633 	errmsg_len = fspathlen = 0;
634 	errmsg_pos = -1;
635 	autoro = default_autoro;
636 
637 	error = vfs_buildopts(fsoptions, &optlist);
638 	if (error)
639 		return (error);
640 
641 	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
642 		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
643 
644 	/*
645 	 * We need these two options before the others,
646 	 * and they are mandatory for any filesystem.
647 	 * Ensure they are NUL terminated as well.
648 	 */
649 	fstypelen = 0;
650 	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
651 	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
652 		error = EINVAL;
653 		if (errmsg != NULL)
654 			strncpy(errmsg, "Invalid fstype", errmsg_len);
655 		goto bail;
656 	}
657 	fspathlen = 0;
658 	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
659 	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
660 		error = EINVAL;
661 		if (errmsg != NULL)
662 			strncpy(errmsg, "Invalid fspath", errmsg_len);
663 		goto bail;
664 	}
665 
666 	/*
667 	 * We need to see if we have the "update" option
668 	 * before we call vfs_domount(), since vfs_domount() has special
669 	 * logic based on MNT_UPDATE.  This is very important
670 	 * when we want to update the root filesystem.
671 	 */
672 	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
673 		int do_freeopt = 0;
674 
675 		if (strcmp(opt->name, "update") == 0) {
676 			fsflags |= MNT_UPDATE;
677 			do_freeopt = 1;
678 		}
679 		else if (strcmp(opt->name, "async") == 0)
680 			fsflags |= MNT_ASYNC;
681 		else if (strcmp(opt->name, "force") == 0) {
682 			fsflags |= MNT_FORCE;
683 			do_freeopt = 1;
684 		}
685 		else if (strcmp(opt->name, "reload") == 0) {
686 			fsflags |= MNT_RELOAD;
687 			do_freeopt = 1;
688 		}
689 		else if (strcmp(opt->name, "multilabel") == 0)
690 			fsflags |= MNT_MULTILABEL;
691 		else if (strcmp(opt->name, "noasync") == 0)
692 			fsflags &= ~MNT_ASYNC;
693 		else if (strcmp(opt->name, "noatime") == 0)
694 			fsflags |= MNT_NOATIME;
695 		else if (strcmp(opt->name, "atime") == 0) {
696 			free(opt->name, M_MOUNT);
697 			opt->name = strdup("nonoatime", M_MOUNT);
698 		}
699 		else if (strcmp(opt->name, "noclusterr") == 0)
700 			fsflags |= MNT_NOCLUSTERR;
701 		else if (strcmp(opt->name, "clusterr") == 0) {
702 			free(opt->name, M_MOUNT);
703 			opt->name = strdup("nonoclusterr", M_MOUNT);
704 		}
705 		else if (strcmp(opt->name, "noclusterw") == 0)
706 			fsflags |= MNT_NOCLUSTERW;
707 		else if (strcmp(opt->name, "clusterw") == 0) {
708 			free(opt->name, M_MOUNT);
709 			opt->name = strdup("nonoclusterw", M_MOUNT);
710 		}
711 		else if (strcmp(opt->name, "noexec") == 0)
712 			fsflags |= MNT_NOEXEC;
713 		else if (strcmp(opt->name, "exec") == 0) {
714 			free(opt->name, M_MOUNT);
715 			opt->name = strdup("nonoexec", M_MOUNT);
716 		}
717 		else if (strcmp(opt->name, "nosuid") == 0)
718 			fsflags |= MNT_NOSUID;
719 		else if (strcmp(opt->name, "suid") == 0) {
720 			free(opt->name, M_MOUNT);
721 			opt->name = strdup("nonosuid", M_MOUNT);
722 		}
723 		else if (strcmp(opt->name, "nosymfollow") == 0)
724 			fsflags |= MNT_NOSYMFOLLOW;
725 		else if (strcmp(opt->name, "symfollow") == 0) {
726 			free(opt->name, M_MOUNT);
727 			opt->name = strdup("nonosymfollow", M_MOUNT);
728 		}
729 		else if (strcmp(opt->name, "noro") == 0) {
730 			fsflags &= ~MNT_RDONLY;
731 			autoro = false;
732 		}
733 		else if (strcmp(opt->name, "rw") == 0) {
734 			fsflags &= ~MNT_RDONLY;
735 			autoro = false;
736 		}
737 		else if (strcmp(opt->name, "ro") == 0) {
738 			fsflags |= MNT_RDONLY;
739 			autoro = false;
740 		}
741 		else if (strcmp(opt->name, "rdonly") == 0) {
742 			free(opt->name, M_MOUNT);
743 			opt->name = strdup("ro", M_MOUNT);
744 			fsflags |= MNT_RDONLY;
745 			autoro = false;
746 		}
747 		else if (strcmp(opt->name, "autoro") == 0) {
748 			do_freeopt = 1;
749 			autoro = true;
750 		}
751 		else if (strcmp(opt->name, "suiddir") == 0)
752 			fsflags |= MNT_SUIDDIR;
753 		else if (strcmp(opt->name, "sync") == 0)
754 			fsflags |= MNT_SYNCHRONOUS;
755 		else if (strcmp(opt->name, "union") == 0)
756 			fsflags |= MNT_UNION;
757 		else if (strcmp(opt->name, "automounted") == 0) {
758 			fsflags |= MNT_AUTOMOUNTED;
759 			do_freeopt = 1;
760 		} else if (strcmp(opt->name, "nocover") == 0) {
761 			fsflags |= MNT_NOCOVER;
762 			do_freeopt = 1;
763 		} else if (strcmp(opt->name, "cover") == 0) {
764 			fsflags &= ~MNT_NOCOVER;
765 			do_freeopt = 1;
766 		} else if (strcmp(opt->name, "emptydir") == 0) {
767 			fsflags |= MNT_EMPTYDIR;
768 			do_freeopt = 1;
769 		} else if (strcmp(opt->name, "noemptydir") == 0) {
770 			fsflags &= ~MNT_EMPTYDIR;
771 			do_freeopt = 1;
772 		}
773 		if (do_freeopt)
774 			vfs_freeopt(optlist, opt);
775 	}
776 
777 	/*
778 	 * Be ultra-paranoid about making sure the type and fspath
779 	 * variables will fit in our mp buffers, including the
780 	 * terminating NUL.
781 	 */
782 	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
783 		error = ENAMETOOLONG;
784 		goto bail;
785 	}
786 
787 	error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
788 
789 	/*
790 	 * See if we can mount in the read-only mode if the error code suggests
791 	 * that it could be possible and the mount options allow for that.
792 	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
793 	 * overridden by "autoro".
794 	 */
795 	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
796 		printf("%s: R/W mount failed, possibly R/O media,"
797 		    " trying R/O mount\n", __func__);
798 		fsflags |= MNT_RDONLY;
799 		error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
800 	}
801 bail:
802 	/* copyout the errmsg */
803 	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
804 	    && errmsg_len > 0 && errmsg != NULL) {
805 		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
806 			bcopy(errmsg,
807 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
808 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
809 		} else {
810 			copyout(errmsg,
811 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
812 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
813 		}
814 	}
815 
816 	if (optlist != NULL)
817 		vfs_freeopts(optlist);
818 	return (error);
819 }
820 
821 /*
822  * Old mount API.
823  */
824 #ifndef _SYS_SYSPROTO_H_
825 struct mount_args {
826 	char	*type;
827 	char	*path;
828 	int	flags;
829 	caddr_t	data;
830 };
831 #endif
832 /* ARGSUSED */
833 int
834 sys_mount(struct thread *td, struct mount_args *uap)
835 {
836 	char *fstype;
837 	struct vfsconf *vfsp = NULL;
838 	struct mntarg *ma = NULL;
839 	uint64_t flags;
840 	int error;
841 
842 	/*
843 	 * Mount flags are now 64-bits. On 32-bit architectures only
844 	 * 32-bits are passed in, but from here on everything handles
845 	 * 64-bit flags correctly.
846 	 */
847 	flags = uap->flags;
848 
849 	AUDIT_ARG_FFLAGS(flags);
850 
851 	/*
852 	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
853 	 * userspace to set this flag, but we must filter it out if we want
854 	 * MNT_UPDATE on the root file system to work.
855 	 * MNT_ROOTFS should only be set by the kernel when mounting its
856 	 * root file system.
857 	 */
858 	flags &= ~MNT_ROOTFS;
859 
860 	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
861 	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
862 	if (error) {
863 		free(fstype, M_TEMP);
864 		return (error);
865 	}
866 
867 	AUDIT_ARG_TEXT(fstype);
868 	vfsp = vfs_byname_kld(fstype, td, &error);
869 	free(fstype, M_TEMP);
870 	if (vfsp == NULL)
871 		return (ENOENT);
872 	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
873 	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
874 	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
875 	    vfsp->vfc_vfsops->vfs_cmount == NULL))
876 		return (EOPNOTSUPP);
877 
878 	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
879 	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
880 	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
881 	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
882 	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
883 
884 	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
885 		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
886 	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
887 }
888 
889 /*
890  * vfs_domount_first(): first file system mount (not update)
891  */
892 static int
893 vfs_domount_first(
894 	struct thread *td,		/* Calling thread. */
895 	struct vfsconf *vfsp,		/* File system type. */
896 	char *fspath,			/* Mount path. */
897 	struct vnode *vp,		/* Vnode to be covered. */
898 	uint64_t fsflags,		/* Flags common to all filesystems. */
899 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
900 	)
901 {
902 	struct vattr va;
903 	struct mount *mp;
904 	struct vnode *newdp, *rootvp;
905 	int error, error1;
906 
907 	ASSERT_VOP_ELOCKED(vp, __func__);
908 	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
909 
910 	if ((fsflags & MNT_EMPTYDIR) != 0) {
911 		error = vfs_emptydir(vp);
912 		if (error != 0) {
913 			vput(vp);
914 			return (error);
915 		}
916 	}
917 
918 	/*
919 	 * If the jail of the calling thread lacks permission for this type of
920 	 * file system, deny immediately.
921 	 */
922 	if (jailed(td->td_ucred) && !prison_allow(td->td_ucred,
923 	    vfsp->vfc_prison_flag)) {
924 		vput(vp);
925 		return (EPERM);
926 	}
927 
928 	/*
929 	 * If the user is not root, ensure that they own the directory
930 	 * onto which we are attempting to mount.
931 	 */
932 	error = VOP_GETATTR(vp, &va, td->td_ucred);
933 	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
934 		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
935 	if (error == 0)
936 		error = vinvalbuf(vp, V_SAVE, 0, 0);
937 	if (error == 0 && vp->v_type != VDIR)
938 		error = ENOTDIR;
939 	if (error == 0) {
940 		VI_LOCK(vp);
941 		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
942 			vp->v_iflag |= VI_MOUNT;
943 		else
944 			error = EBUSY;
945 		VI_UNLOCK(vp);
946 	}
947 	if (error != 0) {
948 		vput(vp);
949 		return (error);
950 	}
951 	vn_seqc_write_begin(vp);
952 	VOP_UNLOCK(vp);
953 
954 	/* Allocate and initialize the filesystem. */
955 	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
956 	/* XXXMAC: pass to vfs_mount_alloc? */
957 	mp->mnt_optnew = *optlist;
958 	/* Set the mount level flags. */
959 	mp->mnt_flag = (fsflags & (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY));
960 
961 	/*
962 	 * Mount the filesystem.
963 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
964 	 * get.  No freeing of cn_pnbuf.
965 	 */
966 	error1 = 0;
967 	if ((error = VFS_MOUNT(mp)) != 0 ||
968 	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
969 	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
970 		rootvp = NULL;
971 		if (error1 != 0) {
972 			error = error1;
973 			rootvp = vfs_cache_root_clear(mp);
974 			if (rootvp != NULL) {
975 				vhold(rootvp);
976 				vrele(rootvp);
977 			}
978 			if ((error1 = VFS_UNMOUNT(mp, 0)) != 0)
979 				printf("VFS_UNMOUNT returned %d\n", error1);
980 		}
981 		vfs_unbusy(mp);
982 		mp->mnt_vnodecovered = NULL;
983 		vfs_mount_destroy(mp);
984 		VI_LOCK(vp);
985 		vp->v_iflag &= ~VI_MOUNT;
986 		VI_UNLOCK(vp);
987 		if (rootvp != NULL) {
988 			vn_seqc_write_end(rootvp);
989 			vdrop(rootvp);
990 		}
991 		vn_seqc_write_end(vp);
992 		vrele(vp);
993 		return (error);
994 	}
995 	vn_seqc_write_begin(newdp);
996 	VOP_UNLOCK(newdp);
997 
998 	if (mp->mnt_opt != NULL)
999 		vfs_freeopts(mp->mnt_opt);
1000 	mp->mnt_opt = mp->mnt_optnew;
1001 	*optlist = NULL;
1002 
1003 	/*
1004 	 * Prevent external consumers of mount options from reading mnt_optnew.
1005 	 */
1006 	mp->mnt_optnew = NULL;
1007 
1008 	MNT_ILOCK(mp);
1009 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1010 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1011 		mp->mnt_kern_flag |= MNTK_ASYNC;
1012 	else
1013 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1014 	MNT_IUNLOCK(mp);
1015 
1016 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1017 	cache_purge(vp);
1018 	VI_LOCK(vp);
1019 	vp->v_iflag &= ~VI_MOUNT;
1020 	VI_UNLOCK(vp);
1021 	vp->v_mountedhere = mp;
1022 	/* Place the new filesystem at the end of the mount list. */
1023 	mtx_lock(&mountlist_mtx);
1024 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1025 	mtx_unlock(&mountlist_mtx);
1026 	vfs_event_signal(NULL, VQ_MOUNT, 0);
1027 	vn_lock(newdp, LK_EXCLUSIVE | LK_RETRY);
1028 	VOP_UNLOCK(vp);
1029 	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1030 	VOP_UNLOCK(newdp);
1031 	mount_devctl_event("MOUNT", mp, false);
1032 	mountcheckdirs(vp, newdp);
1033 	vn_seqc_write_end(vp);
1034 	vn_seqc_write_end(newdp);
1035 	vrele(newdp);
1036 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1037 		vfs_allocate_syncvnode(mp);
1038 	vfs_op_exit(mp);
1039 	vfs_unbusy(mp);
1040 	return (0);
1041 }
1042 
1043 /*
1044  * vfs_domount_update(): update of mounted file system
1045  */
1046 static int
1047 vfs_domount_update(
1048 	struct thread *td,		/* Calling thread. */
1049 	struct vnode *vp,		/* Mount point vnode. */
1050 	uint64_t fsflags,		/* Flags common to all filesystems. */
1051 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1052 	)
1053 {
1054 	struct export_args export;
1055 	struct o2export_args o2export;
1056 	struct vnode *rootvp;
1057 	void *bufp;
1058 	struct mount *mp;
1059 	int error, export_error, i, len;
1060 	uint64_t flag;
1061 	gid_t *grps;
1062 
1063 	ASSERT_VOP_ELOCKED(vp, __func__);
1064 	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1065 	mp = vp->v_mount;
1066 
1067 	if ((vp->v_vflag & VV_ROOT) == 0) {
1068 		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1069 		    == 0)
1070 			error = EXDEV;
1071 		else
1072 			error = EINVAL;
1073 		vput(vp);
1074 		return (error);
1075 	}
1076 
1077 	/*
1078 	 * We only allow the filesystem to be reloaded if it
1079 	 * is currently mounted read-only.
1080 	 */
1081 	flag = mp->mnt_flag;
1082 	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1083 		vput(vp);
1084 		return (EOPNOTSUPP);	/* Needs translation */
1085 	}
1086 	/*
1087 	 * Only privileged root, or (if MNT_USER is set) the user that
1088 	 * did the original mount is permitted to update it.
1089 	 */
1090 	error = vfs_suser(mp, td);
1091 	if (error != 0) {
1092 		vput(vp);
1093 		return (error);
1094 	}
1095 	if (vfs_busy(mp, MBF_NOWAIT)) {
1096 		vput(vp);
1097 		return (EBUSY);
1098 	}
1099 	VI_LOCK(vp);
1100 	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1101 		VI_UNLOCK(vp);
1102 		vfs_unbusy(mp);
1103 		vput(vp);
1104 		return (EBUSY);
1105 	}
1106 	vp->v_iflag |= VI_MOUNT;
1107 	VI_UNLOCK(vp);
1108 	VOP_UNLOCK(vp);
1109 
1110 	vfs_op_enter(mp);
1111 	vn_seqc_write_begin(vp);
1112 
1113 	rootvp = NULL;
1114 	MNT_ILOCK(mp);
1115 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1116 		MNT_IUNLOCK(mp);
1117 		error = EBUSY;
1118 		goto end;
1119 	}
1120 	mp->mnt_flag &= ~MNT_UPDATEMASK;
1121 	mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1122 	    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1123 	if ((mp->mnt_flag & MNT_ASYNC) == 0)
1124 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1125 	rootvp = vfs_cache_root_clear(mp);
1126 	MNT_IUNLOCK(mp);
1127 	mp->mnt_optnew = *optlist;
1128 	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1129 
1130 	/*
1131 	 * Mount the filesystem.
1132 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1133 	 * get.  No freeing of cn_pnbuf.
1134 	 */
1135 	error = VFS_MOUNT(mp);
1136 
1137 	export_error = 0;
1138 	/* Process the export option. */
1139 	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1140 	    &len) == 0) {
1141 		/* Assume that there is only 1 ABI for each length. */
1142 		switch (len) {
1143 		case (sizeof(struct oexport_args)):
1144 			bzero(&o2export, sizeof(o2export));
1145 			/* FALLTHROUGH */
1146 		case (sizeof(o2export)):
1147 			bcopy(bufp, &o2export, len);
1148 			export.ex_flags = (uint64_t)o2export.ex_flags;
1149 			export.ex_root = o2export.ex_root;
1150 			export.ex_uid = o2export.ex_anon.cr_uid;
1151 			export.ex_groups = NULL;
1152 			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1153 			if (export.ex_ngroups > 0) {
1154 				if (export.ex_ngroups <= XU_NGROUPS) {
1155 					export.ex_groups = malloc(
1156 					    export.ex_ngroups * sizeof(gid_t),
1157 					    M_TEMP, M_WAITOK);
1158 					for (i = 0; i < export.ex_ngroups; i++)
1159 						export.ex_groups[i] =
1160 						  o2export.ex_anon.cr_groups[i];
1161 				} else
1162 					export_error = EINVAL;
1163 			} else if (export.ex_ngroups < 0)
1164 				export_error = EINVAL;
1165 			export.ex_addr = o2export.ex_addr;
1166 			export.ex_addrlen = o2export.ex_addrlen;
1167 			export.ex_mask = o2export.ex_mask;
1168 			export.ex_masklen = o2export.ex_masklen;
1169 			export.ex_indexfile = o2export.ex_indexfile;
1170 			export.ex_numsecflavors = o2export.ex_numsecflavors;
1171 			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1172 				for (i = 0; i < export.ex_numsecflavors; i++)
1173 					export.ex_secflavors[i] =
1174 					    o2export.ex_secflavors[i];
1175 			} else
1176 				export_error = EINVAL;
1177 			if (export_error == 0)
1178 				export_error = vfs_export(mp, &export);
1179 			free(export.ex_groups, M_TEMP);
1180 			break;
1181 		case (sizeof(export)):
1182 			bcopy(bufp, &export, len);
1183 			grps = NULL;
1184 			if (export.ex_ngroups > 0) {
1185 				if (export.ex_ngroups <= NGROUPS_MAX) {
1186 					grps = malloc(export.ex_ngroups *
1187 					    sizeof(gid_t), M_TEMP, M_WAITOK);
1188 					export_error = copyin(export.ex_groups,
1189 					    grps, export.ex_ngroups *
1190 					    sizeof(gid_t));
1191 					if (export_error == 0)
1192 						export.ex_groups = grps;
1193 				} else
1194 					export_error = EINVAL;
1195 			} else if (export.ex_ngroups == 0)
1196 				export.ex_groups = NULL;
1197 			else
1198 				export_error = EINVAL;
1199 			if (export_error == 0)
1200 				export_error = vfs_export(mp, &export);
1201 			free(grps, M_TEMP);
1202 			break;
1203 		default:
1204 			export_error = EINVAL;
1205 			break;
1206 		}
1207 	}
1208 
1209 	MNT_ILOCK(mp);
1210 	if (error == 0) {
1211 		mp->mnt_flag &=	~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1212 		    MNT_SNAPSHOT);
1213 	} else {
1214 		/*
1215 		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1216 		 * because it is not part of MNT_UPDATEMASK, but it could have
1217 		 * changed in the meantime if quotactl(2) was called.
1218 		 * All in all we want current value of MNT_QUOTA, not the old
1219 		 * one.
1220 		 */
1221 		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1222 	}
1223 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1224 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1225 		mp->mnt_kern_flag |= MNTK_ASYNC;
1226 	else
1227 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1228 	MNT_IUNLOCK(mp);
1229 
1230 	if (error != 0)
1231 		goto end;
1232 
1233 	mount_devctl_event("REMOUNT", mp, true);
1234 	if (mp->mnt_opt != NULL)
1235 		vfs_freeopts(mp->mnt_opt);
1236 	mp->mnt_opt = mp->mnt_optnew;
1237 	*optlist = NULL;
1238 	(void)VFS_STATFS(mp, &mp->mnt_stat);
1239 	/*
1240 	 * Prevent external consumers of mount options from reading
1241 	 * mnt_optnew.
1242 	 */
1243 	mp->mnt_optnew = NULL;
1244 
1245 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1246 		vfs_allocate_syncvnode(mp);
1247 	else
1248 		vfs_deallocate_syncvnode(mp);
1249 end:
1250 	vfs_op_exit(mp);
1251 	if (rootvp != NULL) {
1252 		vn_seqc_write_end(rootvp);
1253 		vrele(rootvp);
1254 	}
1255 	vn_seqc_write_end(vp);
1256 	vfs_unbusy(mp);
1257 	VI_LOCK(vp);
1258 	vp->v_iflag &= ~VI_MOUNT;
1259 	VI_UNLOCK(vp);
1260 	vrele(vp);
1261 	return (error != 0 ? error : export_error);
1262 }
1263 
1264 /*
1265  * vfs_domount(): actually attempt a filesystem mount.
1266  */
1267 static int
1268 vfs_domount(
1269 	struct thread *td,		/* Calling thread. */
1270 	const char *fstype,		/* Filesystem type. */
1271 	char *fspath,			/* Mount path. */
1272 	uint64_t fsflags,		/* Flags common to all filesystems. */
1273 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1274 	)
1275 {
1276 	struct vfsconf *vfsp;
1277 	struct nameidata nd;
1278 	struct vnode *vp;
1279 	char *pathbuf;
1280 	int error;
1281 
1282 	/*
1283 	 * Be ultra-paranoid about making sure the type and fspath
1284 	 * variables will fit in our mp buffers, including the
1285 	 * terminating NUL.
1286 	 */
1287 	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1288 		return (ENAMETOOLONG);
1289 
1290 	if (jailed(td->td_ucred) || usermount == 0) {
1291 		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1292 			return (error);
1293 	}
1294 
1295 	/*
1296 	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1297 	 */
1298 	if (fsflags & MNT_EXPORTED) {
1299 		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1300 		if (error)
1301 			return (error);
1302 	}
1303 	if (fsflags & MNT_SUIDDIR) {
1304 		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1305 		if (error)
1306 			return (error);
1307 	}
1308 	/*
1309 	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1310 	 */
1311 	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1312 		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1313 			fsflags |= MNT_NOSUID | MNT_USER;
1314 	}
1315 
1316 	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1317 	vfsp = NULL;
1318 	if ((fsflags & MNT_UPDATE) == 0) {
1319 		/* Don't try to load KLDs if we're mounting the root. */
1320 		if (fsflags & MNT_ROOTFS)
1321 			vfsp = vfs_byname(fstype);
1322 		else
1323 			vfsp = vfs_byname_kld(fstype, td, &error);
1324 		if (vfsp == NULL)
1325 			return (ENODEV);
1326 	}
1327 
1328 	/*
1329 	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1330 	 */
1331 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1332 	    UIO_SYSSPACE, fspath, td);
1333 	error = namei(&nd);
1334 	if (error != 0)
1335 		return (error);
1336 	NDFREE(&nd, NDF_ONLY_PNBUF);
1337 	vp = nd.ni_vp;
1338 	if ((fsflags & MNT_UPDATE) == 0) {
1339 		if ((vp->v_vflag & VV_ROOT) != 0 &&
1340 		    (fsflags & MNT_NOCOVER) != 0) {
1341 			vput(vp);
1342 			return (EBUSY);
1343 		}
1344 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1345 		strcpy(pathbuf, fspath);
1346 		error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN);
1347 		if (error == 0) {
1348 			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1349 			    fsflags, optlist);
1350 		}
1351 		free(pathbuf, M_TEMP);
1352 	} else
1353 		error = vfs_domount_update(td, vp, fsflags, optlist);
1354 
1355 	return (error);
1356 }
1357 
1358 /*
1359  * Unmount a filesystem.
1360  *
1361  * Note: unmount takes a path to the vnode mounted on as argument, not
1362  * special file (as before).
1363  */
1364 #ifndef _SYS_SYSPROTO_H_
1365 struct unmount_args {
1366 	char	*path;
1367 	int	flags;
1368 };
1369 #endif
1370 /* ARGSUSED */
1371 int
1372 sys_unmount(struct thread *td, struct unmount_args *uap)
1373 {
1374 
1375 	return (kern_unmount(td, uap->path, uap->flags));
1376 }
1377 
1378 int
1379 kern_unmount(struct thread *td, const char *path, int flags)
1380 {
1381 	struct nameidata nd;
1382 	struct mount *mp;
1383 	char *pathbuf;
1384 	int error, id0, id1;
1385 
1386 	AUDIT_ARG_VALUE(flags);
1387 	if (jailed(td->td_ucred) || usermount == 0) {
1388 		error = priv_check(td, PRIV_VFS_UNMOUNT);
1389 		if (error)
1390 			return (error);
1391 	}
1392 
1393 	pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1394 	error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1395 	if (error) {
1396 		free(pathbuf, M_TEMP);
1397 		return (error);
1398 	}
1399 	if (flags & MNT_BYFSID) {
1400 		AUDIT_ARG_TEXT(pathbuf);
1401 		/* Decode the filesystem ID. */
1402 		if (sscanf(pathbuf, "FSID:%d:%d", &id0, &id1) != 2) {
1403 			free(pathbuf, M_TEMP);
1404 			return (EINVAL);
1405 		}
1406 
1407 		mtx_lock(&mountlist_mtx);
1408 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1409 			if (mp->mnt_stat.f_fsid.val[0] == id0 &&
1410 			    mp->mnt_stat.f_fsid.val[1] == id1) {
1411 				vfs_ref(mp);
1412 				break;
1413 			}
1414 		}
1415 		mtx_unlock(&mountlist_mtx);
1416 	} else {
1417 		/*
1418 		 * Try to find global path for path argument.
1419 		 */
1420 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1421 		    UIO_SYSSPACE, pathbuf, td);
1422 		if (namei(&nd) == 0) {
1423 			NDFREE(&nd, NDF_ONLY_PNBUF);
1424 			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1425 			    MNAMELEN);
1426 			if (error == 0)
1427 				vput(nd.ni_vp);
1428 		}
1429 		mtx_lock(&mountlist_mtx);
1430 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1431 			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1432 				vfs_ref(mp);
1433 				break;
1434 			}
1435 		}
1436 		mtx_unlock(&mountlist_mtx);
1437 	}
1438 	free(pathbuf, M_TEMP);
1439 	if (mp == NULL) {
1440 		/*
1441 		 * Previously we returned ENOENT for a nonexistent path and
1442 		 * EINVAL for a non-mountpoint.  We cannot tell these apart
1443 		 * now, so in the !MNT_BYFSID case return the more likely
1444 		 * EINVAL for compatibility.
1445 		 */
1446 		return ((flags & MNT_BYFSID) ? ENOENT : EINVAL);
1447 	}
1448 
1449 	/*
1450 	 * Don't allow unmounting the root filesystem.
1451 	 */
1452 	if (mp->mnt_flag & MNT_ROOTFS) {
1453 		vfs_rel(mp);
1454 		return (EINVAL);
1455 	}
1456 	error = dounmount(mp, flags, td);
1457 	return (error);
1458 }
1459 
1460 /*
1461  * Return error if any of the vnodes, ignoring the root vnode
1462  * and the syncer vnode, have non-zero usecount.
1463  *
1464  * This function is purely advisory - it can return false positives
1465  * and negatives.
1466  */
1467 static int
1468 vfs_check_usecounts(struct mount *mp)
1469 {
1470 	struct vnode *vp, *mvp;
1471 
1472 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1473 		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1474 		    vp->v_usecount != 0) {
1475 			VI_UNLOCK(vp);
1476 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1477 			return (EBUSY);
1478 		}
1479 		VI_UNLOCK(vp);
1480 	}
1481 
1482 	return (0);
1483 }
1484 
1485 static void
1486 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1487 {
1488 
1489 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1490 	mp->mnt_kern_flag &= ~mntkflags;
1491 	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1492 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1493 		wakeup(mp);
1494 	}
1495 	vfs_op_exit_locked(mp);
1496 	MNT_IUNLOCK(mp);
1497 	if (coveredvp != NULL) {
1498 		VOP_UNLOCK(coveredvp);
1499 		vdrop(coveredvp);
1500 	}
1501 	vn_finished_write(mp);
1502 }
1503 
1504 /*
1505  * There are various reference counters associated with the mount point.
1506  * Normally it is permitted to modify them without taking the mnt ilock,
1507  * but this behavior can be temporarily disabled if stable value is needed
1508  * or callers are expected to block (e.g. to not allow new users during
1509  * forced unmount).
1510  */
1511 void
1512 vfs_op_enter(struct mount *mp)
1513 {
1514 	struct mount_pcpu *mpcpu;
1515 	int cpu;
1516 
1517 	MNT_ILOCK(mp);
1518 	mp->mnt_vfs_ops++;
1519 	if (mp->mnt_vfs_ops > 1) {
1520 		MNT_IUNLOCK(mp);
1521 		return;
1522 	}
1523 	vfs_op_barrier_wait(mp);
1524 	CPU_FOREACH(cpu) {
1525 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1526 
1527 		mp->mnt_ref += mpcpu->mntp_ref;
1528 		mpcpu->mntp_ref = 0;
1529 
1530 		mp->mnt_lockref += mpcpu->mntp_lockref;
1531 		mpcpu->mntp_lockref = 0;
1532 
1533 		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1534 		mpcpu->mntp_writeopcount = 0;
1535 	}
1536 	if (mp->mnt_ref <= 0 || mp->mnt_lockref < 0 || mp->mnt_writeopcount < 0)
1537 		panic("%s: invalid count(s) on mp %p: ref %d lockref %d writeopcount %d\n",
1538 		    __func__, mp, mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount);
1539 	MNT_IUNLOCK(mp);
1540 	vfs_assert_mount_counters(mp);
1541 }
1542 
1543 void
1544 vfs_op_exit_locked(struct mount *mp)
1545 {
1546 
1547 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1548 
1549 	if (mp->mnt_vfs_ops <= 0)
1550 		panic("%s: invalid vfs_ops count %d for mp %p\n",
1551 		    __func__, mp->mnt_vfs_ops, mp);
1552 	mp->mnt_vfs_ops--;
1553 }
1554 
1555 void
1556 vfs_op_exit(struct mount *mp)
1557 {
1558 
1559 	MNT_ILOCK(mp);
1560 	vfs_op_exit_locked(mp);
1561 	MNT_IUNLOCK(mp);
1562 }
1563 
1564 struct vfs_op_barrier_ipi {
1565 	struct mount *mp;
1566 	struct smp_rendezvous_cpus_retry_arg srcra;
1567 };
1568 
1569 static void
1570 vfs_op_action_func(void *arg)
1571 {
1572 	struct vfs_op_barrier_ipi *vfsopipi;
1573 	struct mount *mp;
1574 
1575 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1576 	mp = vfsopipi->mp;
1577 
1578 	if (!vfs_op_thread_entered(mp))
1579 		smp_rendezvous_cpus_done(arg);
1580 }
1581 
1582 static void
1583 vfs_op_wait_func(void *arg, int cpu)
1584 {
1585 	struct vfs_op_barrier_ipi *vfsopipi;
1586 	struct mount *mp;
1587 	struct mount_pcpu *mpcpu;
1588 
1589 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1590 	mp = vfsopipi->mp;
1591 
1592 	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1593 	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1594 		cpu_spinwait();
1595 }
1596 
1597 void
1598 vfs_op_barrier_wait(struct mount *mp)
1599 {
1600 	struct vfs_op_barrier_ipi vfsopipi;
1601 
1602 	vfsopipi.mp = mp;
1603 
1604 	smp_rendezvous_cpus_retry(all_cpus,
1605 	    smp_no_rendezvous_barrier,
1606 	    vfs_op_action_func,
1607 	    smp_no_rendezvous_barrier,
1608 	    vfs_op_wait_func,
1609 	    &vfsopipi.srcra);
1610 }
1611 
1612 #ifdef DIAGNOSTIC
1613 void
1614 vfs_assert_mount_counters(struct mount *mp)
1615 {
1616 	struct mount_pcpu *mpcpu;
1617 	int cpu;
1618 
1619 	if (mp->mnt_vfs_ops == 0)
1620 		return;
1621 
1622 	CPU_FOREACH(cpu) {
1623 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1624 		if (mpcpu->mntp_ref != 0 ||
1625 		    mpcpu->mntp_lockref != 0 ||
1626 		    mpcpu->mntp_writeopcount != 0)
1627 			vfs_dump_mount_counters(mp);
1628 	}
1629 }
1630 
1631 void
1632 vfs_dump_mount_counters(struct mount *mp)
1633 {
1634 	struct mount_pcpu *mpcpu;
1635 	int ref, lockref, writeopcount;
1636 	int cpu;
1637 
1638 	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1639 
1640 	printf("        ref : ");
1641 	ref = mp->mnt_ref;
1642 	CPU_FOREACH(cpu) {
1643 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1644 		printf("%d ", mpcpu->mntp_ref);
1645 		ref += mpcpu->mntp_ref;
1646 	}
1647 	printf("\n");
1648 	printf("    lockref : ");
1649 	lockref = mp->mnt_lockref;
1650 	CPU_FOREACH(cpu) {
1651 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1652 		printf("%d ", mpcpu->mntp_lockref);
1653 		lockref += mpcpu->mntp_lockref;
1654 	}
1655 	printf("\n");
1656 	printf("writeopcount: ");
1657 	writeopcount = mp->mnt_writeopcount;
1658 	CPU_FOREACH(cpu) {
1659 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1660 		printf("%d ", mpcpu->mntp_writeopcount);
1661 		writeopcount += mpcpu->mntp_writeopcount;
1662 	}
1663 	printf("\n");
1664 
1665 	printf("counter       struct total\n");
1666 	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
1667 	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
1668 	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
1669 
1670 	panic("invalid counts on struct mount");
1671 }
1672 #endif
1673 
1674 int
1675 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
1676 {
1677 	struct mount_pcpu *mpcpu;
1678 	int cpu, sum;
1679 
1680 	switch (which) {
1681 	case MNT_COUNT_REF:
1682 		sum = mp->mnt_ref;
1683 		break;
1684 	case MNT_COUNT_LOCKREF:
1685 		sum = mp->mnt_lockref;
1686 		break;
1687 	case MNT_COUNT_WRITEOPCOUNT:
1688 		sum = mp->mnt_writeopcount;
1689 		break;
1690 	}
1691 
1692 	CPU_FOREACH(cpu) {
1693 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1694 		switch (which) {
1695 		case MNT_COUNT_REF:
1696 			sum += mpcpu->mntp_ref;
1697 			break;
1698 		case MNT_COUNT_LOCKREF:
1699 			sum += mpcpu->mntp_lockref;
1700 			break;
1701 		case MNT_COUNT_WRITEOPCOUNT:
1702 			sum += mpcpu->mntp_writeopcount;
1703 			break;
1704 		}
1705 	}
1706 	return (sum);
1707 }
1708 
1709 /*
1710  * Do the actual filesystem unmount.
1711  */
1712 int
1713 dounmount(struct mount *mp, int flags, struct thread *td)
1714 {
1715 	struct vnode *coveredvp, *rootvp;
1716 	int error;
1717 	uint64_t async_flag;
1718 	int mnt_gen_r;
1719 
1720 	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
1721 		mnt_gen_r = mp->mnt_gen;
1722 		VI_LOCK(coveredvp);
1723 		vholdl(coveredvp);
1724 		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
1725 		/*
1726 		 * Check for mp being unmounted while waiting for the
1727 		 * covered vnode lock.
1728 		 */
1729 		if (coveredvp->v_mountedhere != mp ||
1730 		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
1731 			VOP_UNLOCK(coveredvp);
1732 			vdrop(coveredvp);
1733 			vfs_rel(mp);
1734 			return (EBUSY);
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * Only privileged root, or (if MNT_USER is set) the user that did the
1740 	 * original mount is permitted to unmount this filesystem.
1741 	 */
1742 	error = vfs_suser(mp, td);
1743 	if (error != 0) {
1744 		if (coveredvp != NULL) {
1745 			VOP_UNLOCK(coveredvp);
1746 			vdrop(coveredvp);
1747 		}
1748 		vfs_rel(mp);
1749 		return (error);
1750 	}
1751 
1752 	vfs_op_enter(mp);
1753 
1754 	vn_start_write(NULL, &mp, V_WAIT | V_MNTREF);
1755 	MNT_ILOCK(mp);
1756 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
1757 	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
1758 	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
1759 		dounmount_cleanup(mp, coveredvp, 0);
1760 		return (EBUSY);
1761 	}
1762 	mp->mnt_kern_flag |= MNTK_UNMOUNT;
1763 	rootvp = vfs_cache_root_clear(mp);
1764 	if (coveredvp != NULL)
1765 		vn_seqc_write_begin(coveredvp);
1766 	if (flags & MNT_NONBUSY) {
1767 		MNT_IUNLOCK(mp);
1768 		error = vfs_check_usecounts(mp);
1769 		MNT_ILOCK(mp);
1770 		if (error != 0) {
1771 			vn_seqc_write_end(coveredvp);
1772 			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
1773 			if (rootvp != NULL) {
1774 				vn_seqc_write_end(rootvp);
1775 				vrele(rootvp);
1776 			}
1777 			return (error);
1778 		}
1779 	}
1780 	/* Allow filesystems to detect that a forced unmount is in progress. */
1781 	if (flags & MNT_FORCE) {
1782 		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
1783 		MNT_IUNLOCK(mp);
1784 		/*
1785 		 * Must be done after setting MNTK_UNMOUNTF and before
1786 		 * waiting for mnt_lockref to become 0.
1787 		 */
1788 		VFS_PURGE(mp);
1789 		MNT_ILOCK(mp);
1790 	}
1791 	error = 0;
1792 	if (mp->mnt_lockref) {
1793 		mp->mnt_kern_flag |= MNTK_DRAINING;
1794 		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
1795 		    "mount drain", 0);
1796 	}
1797 	MNT_IUNLOCK(mp);
1798 	KASSERT(mp->mnt_lockref == 0,
1799 	    ("%s: invalid lock refcount in the drain path @ %s:%d",
1800 	    __func__, __FILE__, __LINE__));
1801 	KASSERT(error == 0,
1802 	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
1803 	    __func__, __FILE__, __LINE__));
1804 
1805 	/*
1806 	 * We want to keep the vnode around so that we can vn_seqc_write_end
1807 	 * after we are done with unmount. Downgrade our reference to a mere
1808 	 * hold count so that we don't interefere with anything.
1809 	 */
1810 	if (rootvp != NULL) {
1811 		vhold(rootvp);
1812 		vrele(rootvp);
1813 	}
1814 
1815 	if (mp->mnt_flag & MNT_EXPUBLIC)
1816 		vfs_setpublicfs(NULL, NULL, NULL);
1817 
1818 	vfs_periodic(mp, MNT_WAIT);
1819 	MNT_ILOCK(mp);
1820 	async_flag = mp->mnt_flag & MNT_ASYNC;
1821 	mp->mnt_flag &= ~MNT_ASYNC;
1822 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
1823 	MNT_IUNLOCK(mp);
1824 	vfs_deallocate_syncvnode(mp);
1825 	error = VFS_UNMOUNT(mp, flags);
1826 	vn_finished_write(mp);
1827 	/*
1828 	 * If we failed to flush the dirty blocks for this mount point,
1829 	 * undo all the cdir/rdir and rootvnode changes we made above.
1830 	 * Unless we failed to do so because the device is reporting that
1831 	 * it doesn't exist anymore.
1832 	 */
1833 	if (error && error != ENXIO) {
1834 		MNT_ILOCK(mp);
1835 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1836 			MNT_IUNLOCK(mp);
1837 			vfs_allocate_syncvnode(mp);
1838 			MNT_ILOCK(mp);
1839 		}
1840 		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
1841 		mp->mnt_flag |= async_flag;
1842 		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1843 		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1844 			mp->mnt_kern_flag |= MNTK_ASYNC;
1845 		if (mp->mnt_kern_flag & MNTK_MWAIT) {
1846 			mp->mnt_kern_flag &= ~MNTK_MWAIT;
1847 			wakeup(mp);
1848 		}
1849 		vfs_op_exit_locked(mp);
1850 		MNT_IUNLOCK(mp);
1851 		if (coveredvp) {
1852 			vn_seqc_write_end(coveredvp);
1853 			VOP_UNLOCK(coveredvp);
1854 			vdrop(coveredvp);
1855 		}
1856 		if (rootvp != NULL) {
1857 			vn_seqc_write_end(rootvp);
1858 			vdrop(rootvp);
1859 		}
1860 		return (error);
1861 	}
1862 	mtx_lock(&mountlist_mtx);
1863 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
1864 	mtx_unlock(&mountlist_mtx);
1865 	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
1866 	if (coveredvp != NULL) {
1867 		coveredvp->v_mountedhere = NULL;
1868 		vn_seqc_write_end(coveredvp);
1869 		VOP_UNLOCK(coveredvp);
1870 		vdrop(coveredvp);
1871 	}
1872 	mount_devctl_event("UNMOUNT", mp, false);
1873 	if (rootvp != NULL) {
1874 		vn_seqc_write_end(rootvp);
1875 		vdrop(rootvp);
1876 	}
1877 	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
1878 	if (rootvnode != NULL && mp == rootvnode->v_mount) {
1879 		vrele(rootvnode);
1880 		rootvnode = NULL;
1881 	}
1882 	if (mp == rootdevmp)
1883 		rootdevmp = NULL;
1884 	vfs_mount_destroy(mp);
1885 	return (0);
1886 }
1887 
1888 /*
1889  * Report errors during filesystem mounting.
1890  */
1891 void
1892 vfs_mount_error(struct mount *mp, const char *fmt, ...)
1893 {
1894 	struct vfsoptlist *moptlist = mp->mnt_optnew;
1895 	va_list ap;
1896 	int error, len;
1897 	char *errmsg;
1898 
1899 	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
1900 	if (error || errmsg == NULL || len <= 0)
1901 		return;
1902 
1903 	va_start(ap, fmt);
1904 	vsnprintf(errmsg, (size_t)len, fmt, ap);
1905 	va_end(ap);
1906 }
1907 
1908 void
1909 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
1910 {
1911 	va_list ap;
1912 	int error, len;
1913 	char *errmsg;
1914 
1915 	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
1916 	if (error || errmsg == NULL || len <= 0)
1917 		return;
1918 
1919 	va_start(ap, fmt);
1920 	vsnprintf(errmsg, (size_t)len, fmt, ap);
1921 	va_end(ap);
1922 }
1923 
1924 /*
1925  * ---------------------------------------------------------------------
1926  * Functions for querying mount options/arguments from filesystems.
1927  */
1928 
1929 /*
1930  * Check that no unknown options are given
1931  */
1932 int
1933 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
1934 {
1935 	struct vfsopt *opt;
1936 	char errmsg[255];
1937 	const char **t, *p, *q;
1938 	int ret = 0;
1939 
1940 	TAILQ_FOREACH(opt, opts, link) {
1941 		p = opt->name;
1942 		q = NULL;
1943 		if (p[0] == 'n' && p[1] == 'o')
1944 			q = p + 2;
1945 		for(t = global_opts; *t != NULL; t++) {
1946 			if (strcmp(*t, p) == 0)
1947 				break;
1948 			if (q != NULL) {
1949 				if (strcmp(*t, q) == 0)
1950 					break;
1951 			}
1952 		}
1953 		if (*t != NULL)
1954 			continue;
1955 		for(t = legal; *t != NULL; t++) {
1956 			if (strcmp(*t, p) == 0)
1957 				break;
1958 			if (q != NULL) {
1959 				if (strcmp(*t, q) == 0)
1960 					break;
1961 			}
1962 		}
1963 		if (*t != NULL)
1964 			continue;
1965 		snprintf(errmsg, sizeof(errmsg),
1966 		    "mount option <%s> is unknown", p);
1967 		ret = EINVAL;
1968 	}
1969 	if (ret != 0) {
1970 		TAILQ_FOREACH(opt, opts, link) {
1971 			if (strcmp(opt->name, "errmsg") == 0) {
1972 				strncpy((char *)opt->value, errmsg, opt->len);
1973 				break;
1974 			}
1975 		}
1976 		if (opt == NULL)
1977 			printf("%s\n", errmsg);
1978 	}
1979 	return (ret);
1980 }
1981 
1982 /*
1983  * Get a mount option by its name.
1984  *
1985  * Return 0 if the option was found, ENOENT otherwise.
1986  * If len is non-NULL it will be filled with the length
1987  * of the option. If buf is non-NULL, it will be filled
1988  * with the address of the option.
1989  */
1990 int
1991 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
1992 {
1993 	struct vfsopt *opt;
1994 
1995 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
1996 
1997 	TAILQ_FOREACH(opt, opts, link) {
1998 		if (strcmp(name, opt->name) == 0) {
1999 			opt->seen = 1;
2000 			if (len != NULL)
2001 				*len = opt->len;
2002 			if (buf != NULL)
2003 				*buf = opt->value;
2004 			return (0);
2005 		}
2006 	}
2007 	return (ENOENT);
2008 }
2009 
2010 int
2011 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2012 {
2013 	struct vfsopt *opt;
2014 
2015 	if (opts == NULL)
2016 		return (-1);
2017 
2018 	TAILQ_FOREACH(opt, opts, link) {
2019 		if (strcmp(name, opt->name) == 0) {
2020 			opt->seen = 1;
2021 			return (opt->pos);
2022 		}
2023 	}
2024 	return (-1);
2025 }
2026 
2027 int
2028 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2029 {
2030 	char *opt_value, *vtp;
2031 	quad_t iv;
2032 	int error, opt_len;
2033 
2034 	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2035 	if (error != 0)
2036 		return (error);
2037 	if (opt_len == 0 || opt_value == NULL)
2038 		return (EINVAL);
2039 	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2040 		return (EINVAL);
2041 	iv = strtoq(opt_value, &vtp, 0);
2042 	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2043 		return (EINVAL);
2044 	if (iv < 0)
2045 		return (EINVAL);
2046 	switch (vtp[0]) {
2047 	case 't': case 'T':
2048 		iv *= 1024;
2049 		/* FALLTHROUGH */
2050 	case 'g': case 'G':
2051 		iv *= 1024;
2052 		/* FALLTHROUGH */
2053 	case 'm': case 'M':
2054 		iv *= 1024;
2055 		/* FALLTHROUGH */
2056 	case 'k': case 'K':
2057 		iv *= 1024;
2058 	case '\0':
2059 		break;
2060 	default:
2061 		return (EINVAL);
2062 	}
2063 	*value = iv;
2064 
2065 	return (0);
2066 }
2067 
2068 char *
2069 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2070 {
2071 	struct vfsopt *opt;
2072 
2073 	*error = 0;
2074 	TAILQ_FOREACH(opt, opts, link) {
2075 		if (strcmp(name, opt->name) != 0)
2076 			continue;
2077 		opt->seen = 1;
2078 		if (opt->len == 0 ||
2079 		    ((char *)opt->value)[opt->len - 1] != '\0') {
2080 			*error = EINVAL;
2081 			return (NULL);
2082 		}
2083 		return (opt->value);
2084 	}
2085 	*error = ENOENT;
2086 	return (NULL);
2087 }
2088 
2089 int
2090 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2091 	uint64_t val)
2092 {
2093 	struct vfsopt *opt;
2094 
2095 	TAILQ_FOREACH(opt, opts, link) {
2096 		if (strcmp(name, opt->name) == 0) {
2097 			opt->seen = 1;
2098 			if (w != NULL)
2099 				*w |= val;
2100 			return (1);
2101 		}
2102 	}
2103 	if (w != NULL)
2104 		*w &= ~val;
2105 	return (0);
2106 }
2107 
2108 int
2109 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2110 {
2111 	va_list ap;
2112 	struct vfsopt *opt;
2113 	int ret;
2114 
2115 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2116 
2117 	TAILQ_FOREACH(opt, opts, link) {
2118 		if (strcmp(name, opt->name) != 0)
2119 			continue;
2120 		opt->seen = 1;
2121 		if (opt->len == 0 || opt->value == NULL)
2122 			return (0);
2123 		if (((char *)opt->value)[opt->len - 1] != '\0')
2124 			return (0);
2125 		va_start(ap, fmt);
2126 		ret = vsscanf(opt->value, fmt, ap);
2127 		va_end(ap);
2128 		return (ret);
2129 	}
2130 	return (0);
2131 }
2132 
2133 int
2134 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2135 {
2136 	struct vfsopt *opt;
2137 
2138 	TAILQ_FOREACH(opt, opts, link) {
2139 		if (strcmp(name, opt->name) != 0)
2140 			continue;
2141 		opt->seen = 1;
2142 		if (opt->value == NULL)
2143 			opt->len = len;
2144 		else {
2145 			if (opt->len != len)
2146 				return (EINVAL);
2147 			bcopy(value, opt->value, len);
2148 		}
2149 		return (0);
2150 	}
2151 	return (ENOENT);
2152 }
2153 
2154 int
2155 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2156 {
2157 	struct vfsopt *opt;
2158 
2159 	TAILQ_FOREACH(opt, opts, link) {
2160 		if (strcmp(name, opt->name) != 0)
2161 			continue;
2162 		opt->seen = 1;
2163 		if (opt->value == NULL)
2164 			opt->len = len;
2165 		else {
2166 			if (opt->len < len)
2167 				return (EINVAL);
2168 			opt->len = len;
2169 			bcopy(value, opt->value, len);
2170 		}
2171 		return (0);
2172 	}
2173 	return (ENOENT);
2174 }
2175 
2176 int
2177 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2178 {
2179 	struct vfsopt *opt;
2180 
2181 	TAILQ_FOREACH(opt, opts, link) {
2182 		if (strcmp(name, opt->name) != 0)
2183 			continue;
2184 		opt->seen = 1;
2185 		if (opt->value == NULL)
2186 			opt->len = strlen(value) + 1;
2187 		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2188 			return (EINVAL);
2189 		return (0);
2190 	}
2191 	return (ENOENT);
2192 }
2193 
2194 /*
2195  * Find and copy a mount option.
2196  *
2197  * The size of the buffer has to be specified
2198  * in len, if it is not the same length as the
2199  * mount option, EINVAL is returned.
2200  * Returns ENOENT if the option is not found.
2201  */
2202 int
2203 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2204 {
2205 	struct vfsopt *opt;
2206 
2207 	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2208 
2209 	TAILQ_FOREACH(opt, opts, link) {
2210 		if (strcmp(name, opt->name) == 0) {
2211 			opt->seen = 1;
2212 			if (len != opt->len)
2213 				return (EINVAL);
2214 			bcopy(opt->value, dest, opt->len);
2215 			return (0);
2216 		}
2217 	}
2218 	return (ENOENT);
2219 }
2220 
2221 int
2222 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2223 {
2224 
2225 	/*
2226 	 * Filesystems only fill in part of the structure for updates, we
2227 	 * have to read the entirety first to get all content.
2228 	 */
2229 	if (sbp != &mp->mnt_stat)
2230 		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2231 
2232 	/*
2233 	 * Set these in case the underlying filesystem fails to do so.
2234 	 */
2235 	sbp->f_version = STATFS_VERSION;
2236 	sbp->f_namemax = NAME_MAX;
2237 	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2238 
2239 	return (mp->mnt_op->vfs_statfs(mp, sbp));
2240 }
2241 
2242 void
2243 vfs_mountedfrom(struct mount *mp, const char *from)
2244 {
2245 
2246 	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2247 	strlcpy(mp->mnt_stat.f_mntfromname, from,
2248 	    sizeof mp->mnt_stat.f_mntfromname);
2249 }
2250 
2251 /*
2252  * ---------------------------------------------------------------------
2253  * This is the api for building mount args and mounting filesystems from
2254  * inside the kernel.
2255  *
2256  * The API works by accumulation of individual args.  First error is
2257  * latched.
2258  *
2259  * XXX: should be documented in new manpage kernel_mount(9)
2260  */
2261 
2262 /* A memory allocation which must be freed when we are done */
2263 struct mntaarg {
2264 	SLIST_ENTRY(mntaarg)	next;
2265 };
2266 
2267 /* The header for the mount arguments */
2268 struct mntarg {
2269 	struct iovec *v;
2270 	int len;
2271 	int error;
2272 	SLIST_HEAD(, mntaarg)	list;
2273 };
2274 
2275 /*
2276  * Add a boolean argument.
2277  *
2278  * flag is the boolean value.
2279  * name must start with "no".
2280  */
2281 struct mntarg *
2282 mount_argb(struct mntarg *ma, int flag, const char *name)
2283 {
2284 
2285 	KASSERT(name[0] == 'n' && name[1] == 'o',
2286 	    ("mount_argb(...,%s): name must start with 'no'", name));
2287 
2288 	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2289 }
2290 
2291 /*
2292  * Add an argument printf style
2293  */
2294 struct mntarg *
2295 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2296 {
2297 	va_list ap;
2298 	struct mntaarg *maa;
2299 	struct sbuf *sb;
2300 	int len;
2301 
2302 	if (ma == NULL) {
2303 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2304 		SLIST_INIT(&ma->list);
2305 	}
2306 	if (ma->error)
2307 		return (ma);
2308 
2309 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2310 	    M_MOUNT, M_WAITOK);
2311 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2312 	ma->v[ma->len].iov_len = strlen(name) + 1;
2313 	ma->len++;
2314 
2315 	sb = sbuf_new_auto();
2316 	va_start(ap, fmt);
2317 	sbuf_vprintf(sb, fmt, ap);
2318 	va_end(ap);
2319 	sbuf_finish(sb);
2320 	len = sbuf_len(sb) + 1;
2321 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2322 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2323 	bcopy(sbuf_data(sb), maa + 1, len);
2324 	sbuf_delete(sb);
2325 
2326 	ma->v[ma->len].iov_base = maa + 1;
2327 	ma->v[ma->len].iov_len = len;
2328 	ma->len++;
2329 
2330 	return (ma);
2331 }
2332 
2333 /*
2334  * Add an argument which is a userland string.
2335  */
2336 struct mntarg *
2337 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2338 {
2339 	struct mntaarg *maa;
2340 	char *tbuf;
2341 
2342 	if (val == NULL)
2343 		return (ma);
2344 	if (ma == NULL) {
2345 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2346 		SLIST_INIT(&ma->list);
2347 	}
2348 	if (ma->error)
2349 		return (ma);
2350 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2351 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2352 	tbuf = (void *)(maa + 1);
2353 	ma->error = copyinstr(val, tbuf, len, NULL);
2354 	return (mount_arg(ma, name, tbuf, -1));
2355 }
2356 
2357 /*
2358  * Plain argument.
2359  *
2360  * If length is -1, treat value as a C string.
2361  */
2362 struct mntarg *
2363 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2364 {
2365 
2366 	if (ma == NULL) {
2367 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2368 		SLIST_INIT(&ma->list);
2369 	}
2370 	if (ma->error)
2371 		return (ma);
2372 
2373 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2374 	    M_MOUNT, M_WAITOK);
2375 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2376 	ma->v[ma->len].iov_len = strlen(name) + 1;
2377 	ma->len++;
2378 
2379 	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2380 	if (len < 0)
2381 		ma->v[ma->len].iov_len = strlen(val) + 1;
2382 	else
2383 		ma->v[ma->len].iov_len = len;
2384 	ma->len++;
2385 	return (ma);
2386 }
2387 
2388 /*
2389  * Free a mntarg structure
2390  */
2391 static void
2392 free_mntarg(struct mntarg *ma)
2393 {
2394 	struct mntaarg *maa;
2395 
2396 	while (!SLIST_EMPTY(&ma->list)) {
2397 		maa = SLIST_FIRST(&ma->list);
2398 		SLIST_REMOVE_HEAD(&ma->list, next);
2399 		free(maa, M_MOUNT);
2400 	}
2401 	free(ma->v, M_MOUNT);
2402 	free(ma, M_MOUNT);
2403 }
2404 
2405 /*
2406  * Mount a filesystem
2407  */
2408 int
2409 kernel_mount(struct mntarg *ma, uint64_t flags)
2410 {
2411 	struct uio auio;
2412 	int error;
2413 
2414 	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2415 	KASSERT(ma->v != NULL, ("kernel_mount NULL ma->v"));
2416 	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2417 
2418 	auio.uio_iov = ma->v;
2419 	auio.uio_iovcnt = ma->len;
2420 	auio.uio_segflg = UIO_SYSSPACE;
2421 
2422 	error = ma->error;
2423 	if (!error)
2424 		error = vfs_donmount(curthread, flags, &auio);
2425 	free_mntarg(ma);
2426 	return (error);
2427 }
2428 
2429 /*
2430  * A printflike function to mount a filesystem.
2431  */
2432 int
2433 kernel_vmount(int flags, ...)
2434 {
2435 	struct mntarg *ma = NULL;
2436 	va_list ap;
2437 	const char *cp;
2438 	const void *vp;
2439 	int error;
2440 
2441 	va_start(ap, flags);
2442 	for (;;) {
2443 		cp = va_arg(ap, const char *);
2444 		if (cp == NULL)
2445 			break;
2446 		vp = va_arg(ap, const void *);
2447 		ma = mount_arg(ma, cp, vp, (vp != NULL ? -1 : 0));
2448 	}
2449 	va_end(ap);
2450 
2451 	error = kernel_mount(ma, flags);
2452 	return (error);
2453 }
2454 
2455 /* Map from mount options to printable formats. */
2456 static struct mntoptnames optnames[] = {
2457 	MNTOPT_NAMES
2458 };
2459 
2460 static void
2461 mount_devctl_event_mntopt(struct sbuf *sb, const char *what, struct vfsoptlist *opts)
2462 {
2463 	struct vfsopt *opt;
2464 
2465 	if (opts == NULL || TAILQ_EMPTY(opts))
2466 		return;
2467 	sbuf_printf(sb, " %s=\"", what);
2468 	TAILQ_FOREACH(opt, opts, link) {
2469 		if (opt->name[0] == '\0' || (opt->len > 0 && *(char *)opt->value == '\0'))
2470 			continue;
2471 		devctl_safe_quote_sb(sb, opt->name);
2472 		if (opt->len > 0) {
2473 			sbuf_putc(sb, '=');
2474 			devctl_safe_quote_sb(sb, opt->value);
2475 		}
2476 		sbuf_putc(sb, ';');
2477 	}
2478 	sbuf_putc(sb, '"');
2479 }
2480 
2481 #define DEVCTL_LEN 1024
2482 static void
2483 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2484 {
2485 	const uint8_t *cp;
2486 	struct mntoptnames *fp;
2487 	struct sbuf sb;
2488 	struct statfs *sfp = &mp->mnt_stat;
2489 	char *buf;
2490 
2491 	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2492 	if (buf == NULL)
2493 		return;
2494 	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2495 	sbuf_cpy(&sb, "mount-point=\"");
2496 	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2497 	sbuf_cat(&sb, "\" mount-dev=\"");
2498 	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2499 	sbuf_cat(&sb, "\" mount-type=\"");
2500 	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2501 	sbuf_cat(&sb, "\" fsid=0x");
2502 	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2503 	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2504 		sbuf_printf(&sb, "%02x", cp[i]);
2505 	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2506 	for (fp = optnames; fp->o_opt != 0; fp++) {
2507 		if ((mp->mnt_flag & fp->o_opt) != 0) {
2508 			sbuf_cat(&sb, fp->o_name);
2509 			sbuf_putc(&sb, ';');
2510 		}
2511 	}
2512 	sbuf_putc(&sb, '"');
2513 	mount_devctl_event_mntopt(&sb, "opt", mp->mnt_opt);
2514 	if (donew)
2515 		mount_devctl_event_mntopt(&sb, "optnew", mp->mnt_optnew);
2516 	sbuf_finish(&sb);
2517 
2518 	if (sbuf_error(&sb) == 0)
2519 		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2520 	sbuf_delete(&sb);
2521 	free(buf, M_MOUNT);
2522 }
2523 
2524 /*
2525  * Suspend write operations on all local writeable filesystems.  Does
2526  * full sync of them in the process.
2527  *
2528  * Iterate over the mount points in reverse order, suspending most
2529  * recently mounted filesystems first.  It handles a case where a
2530  * filesystem mounted from a md(4) vnode-backed device should be
2531  * suspended before the filesystem that owns the vnode.
2532  */
2533 void
2534 suspend_all_fs(void)
2535 {
2536 	struct mount *mp;
2537 	int error;
2538 
2539 	mtx_lock(&mountlist_mtx);
2540 	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
2541 		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
2542 		if (error != 0)
2543 			continue;
2544 		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
2545 		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2546 			mtx_lock(&mountlist_mtx);
2547 			vfs_unbusy(mp);
2548 			continue;
2549 		}
2550 		error = vfs_write_suspend(mp, 0);
2551 		if (error == 0) {
2552 			MNT_ILOCK(mp);
2553 			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
2554 			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
2555 			MNT_IUNLOCK(mp);
2556 			mtx_lock(&mountlist_mtx);
2557 		} else {
2558 			printf("suspend of %s failed, error %d\n",
2559 			    mp->mnt_stat.f_mntonname, error);
2560 			mtx_lock(&mountlist_mtx);
2561 			vfs_unbusy(mp);
2562 		}
2563 	}
2564 	mtx_unlock(&mountlist_mtx);
2565 }
2566 
2567 void
2568 resume_all_fs(void)
2569 {
2570 	struct mount *mp;
2571 
2572 	mtx_lock(&mountlist_mtx);
2573 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2574 		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
2575 			continue;
2576 		mtx_unlock(&mountlist_mtx);
2577 		MNT_ILOCK(mp);
2578 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
2579 		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
2580 		MNT_IUNLOCK(mp);
2581 		vfs_write_resume(mp, 0);
2582 		mtx_lock(&mountlist_mtx);
2583 		vfs_unbusy(mp);
2584 	}
2585 	mtx_unlock(&mountlist_mtx);
2586 }
2587