1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1999-2004 Poul-Henning Kamp 5 * Copyright (c) 1999 Michael Smith 6 * Copyright (c) 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include <sys/param.h> 43 #include <sys/conf.h> 44 #include <sys/smp.h> 45 #include <sys/devctl.h> 46 #include <sys/eventhandler.h> 47 #include <sys/fcntl.h> 48 #include <sys/jail.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/libkern.h> 52 #include <sys/malloc.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/namei.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/filedesc.h> 59 #include <sys/reboot.h> 60 #include <sys/sbuf.h> 61 #include <sys/syscallsubr.h> 62 #include <sys/sysproto.h> 63 #include <sys/sx.h> 64 #include <sys/sysctl.h> 65 #include <sys/sysent.h> 66 #include <sys/systm.h> 67 #include <sys/vnode.h> 68 #include <vm/uma.h> 69 70 #include <geom/geom.h> 71 72 #include <machine/stdarg.h> 73 74 #include <security/audit/audit.h> 75 #include <security/mac/mac_framework.h> 76 77 #define VFS_MOUNTARG_SIZE_MAX (1024 * 64) 78 79 static int vfs_domount(struct thread *td, const char *fstype, char *fspath, 80 uint64_t fsflags, struct vfsoptlist **optlist); 81 static void free_mntarg(struct mntarg *ma); 82 83 static int usermount = 0; 84 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0, 85 "Unprivileged users may mount and unmount file systems"); 86 87 static bool default_autoro = false; 88 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0, 89 "Retry failed r/w mount as r/o if no explicit ro/rw option is specified"); 90 91 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure"); 92 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure"); 93 static uma_zone_t mount_zone; 94 95 /* List of mounted filesystems. */ 96 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); 97 98 /* For any iteration/modification of mountlist */ 99 struct mtx_padalign __exclusive_cache_line mountlist_mtx; 100 MTX_SYSINIT(mountlist, &mountlist_mtx, "mountlist", MTX_DEF); 101 102 EVENTHANDLER_LIST_DEFINE(vfs_mounted); 103 EVENTHANDLER_LIST_DEFINE(vfs_unmounted); 104 105 static void mount_devctl_event(const char *type, struct mount *mp, bool donew); 106 107 /* 108 * Global opts, taken by all filesystems 109 */ 110 static const char *global_opts[] = { 111 "errmsg", 112 "fstype", 113 "fspath", 114 "ro", 115 "rw", 116 "nosuid", 117 "noexec", 118 NULL 119 }; 120 121 static int 122 mount_init(void *mem, int size, int flags) 123 { 124 struct mount *mp; 125 126 mp = (struct mount *)mem; 127 mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF); 128 mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF); 129 lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0); 130 mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO); 131 mp->mnt_ref = 0; 132 mp->mnt_vfs_ops = 1; 133 mp->mnt_rootvnode = NULL; 134 return (0); 135 } 136 137 static void 138 mount_fini(void *mem, int size) 139 { 140 struct mount *mp; 141 142 mp = (struct mount *)mem; 143 uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu); 144 lockdestroy(&mp->mnt_explock); 145 mtx_destroy(&mp->mnt_listmtx); 146 mtx_destroy(&mp->mnt_mtx); 147 } 148 149 static void 150 vfs_mount_init(void *dummy __unused) 151 { 152 153 mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL, 154 NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE); 155 } 156 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL); 157 158 /* 159 * --------------------------------------------------------------------- 160 * Functions for building and sanitizing the mount options 161 */ 162 163 /* Remove one mount option. */ 164 static void 165 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt) 166 { 167 168 TAILQ_REMOVE(opts, opt, link); 169 free(opt->name, M_MOUNT); 170 if (opt->value != NULL) 171 free(opt->value, M_MOUNT); 172 free(opt, M_MOUNT); 173 } 174 175 /* Release all resources related to the mount options. */ 176 void 177 vfs_freeopts(struct vfsoptlist *opts) 178 { 179 struct vfsopt *opt; 180 181 while (!TAILQ_EMPTY(opts)) { 182 opt = TAILQ_FIRST(opts); 183 vfs_freeopt(opts, opt); 184 } 185 free(opts, M_MOUNT); 186 } 187 188 void 189 vfs_deleteopt(struct vfsoptlist *opts, const char *name) 190 { 191 struct vfsopt *opt, *temp; 192 193 if (opts == NULL) 194 return; 195 TAILQ_FOREACH_SAFE(opt, opts, link, temp) { 196 if (strcmp(opt->name, name) == 0) 197 vfs_freeopt(opts, opt); 198 } 199 } 200 201 static int 202 vfs_isopt_ro(const char *opt) 203 { 204 205 if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 || 206 strcmp(opt, "norw") == 0) 207 return (1); 208 return (0); 209 } 210 211 static int 212 vfs_isopt_rw(const char *opt) 213 { 214 215 if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0) 216 return (1); 217 return (0); 218 } 219 220 /* 221 * Check if options are equal (with or without the "no" prefix). 222 */ 223 static int 224 vfs_equalopts(const char *opt1, const char *opt2) 225 { 226 char *p; 227 228 /* "opt" vs. "opt" or "noopt" vs. "noopt" */ 229 if (strcmp(opt1, opt2) == 0) 230 return (1); 231 /* "noopt" vs. "opt" */ 232 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0) 233 return (1); 234 /* "opt" vs. "noopt" */ 235 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0) 236 return (1); 237 while ((p = strchr(opt1, '.')) != NULL && 238 !strncmp(opt1, opt2, ++p - opt1)) { 239 opt2 += p - opt1; 240 opt1 = p; 241 /* "foo.noopt" vs. "foo.opt" */ 242 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0) 243 return (1); 244 /* "foo.opt" vs. "foo.noopt" */ 245 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0) 246 return (1); 247 } 248 /* "ro" / "rdonly" / "norw" / "rw" / "noro" */ 249 if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) && 250 (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2))) 251 return (1); 252 return (0); 253 } 254 255 /* 256 * If a mount option is specified several times, 257 * (with or without the "no" prefix) only keep 258 * the last occurrence of it. 259 */ 260 static void 261 vfs_sanitizeopts(struct vfsoptlist *opts) 262 { 263 struct vfsopt *opt, *opt2, *tmp; 264 265 TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) { 266 opt2 = TAILQ_PREV(opt, vfsoptlist, link); 267 while (opt2 != NULL) { 268 if (vfs_equalopts(opt->name, opt2->name)) { 269 tmp = TAILQ_PREV(opt2, vfsoptlist, link); 270 vfs_freeopt(opts, opt2); 271 opt2 = tmp; 272 } else { 273 opt2 = TAILQ_PREV(opt2, vfsoptlist, link); 274 } 275 } 276 } 277 } 278 279 /* 280 * Build a linked list of mount options from a struct uio. 281 */ 282 int 283 vfs_buildopts(struct uio *auio, struct vfsoptlist **options) 284 { 285 struct vfsoptlist *opts; 286 struct vfsopt *opt; 287 size_t memused, namelen, optlen; 288 unsigned int i, iovcnt; 289 int error; 290 291 opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK); 292 TAILQ_INIT(opts); 293 memused = 0; 294 iovcnt = auio->uio_iovcnt; 295 for (i = 0; i < iovcnt; i += 2) { 296 namelen = auio->uio_iov[i].iov_len; 297 optlen = auio->uio_iov[i + 1].iov_len; 298 memused += sizeof(struct vfsopt) + optlen + namelen; 299 /* 300 * Avoid consuming too much memory, and attempts to overflow 301 * memused. 302 */ 303 if (memused > VFS_MOUNTARG_SIZE_MAX || 304 optlen > VFS_MOUNTARG_SIZE_MAX || 305 namelen > VFS_MOUNTARG_SIZE_MAX) { 306 error = EINVAL; 307 goto bad; 308 } 309 310 opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK); 311 opt->name = malloc(namelen, M_MOUNT, M_WAITOK); 312 opt->value = NULL; 313 opt->len = 0; 314 opt->pos = i / 2; 315 opt->seen = 0; 316 317 /* 318 * Do this early, so jumps to "bad" will free the current 319 * option. 320 */ 321 TAILQ_INSERT_TAIL(opts, opt, link); 322 323 if (auio->uio_segflg == UIO_SYSSPACE) { 324 bcopy(auio->uio_iov[i].iov_base, opt->name, namelen); 325 } else { 326 error = copyin(auio->uio_iov[i].iov_base, opt->name, 327 namelen); 328 if (error) 329 goto bad; 330 } 331 /* Ensure names are null-terminated strings. */ 332 if (namelen == 0 || opt->name[namelen - 1] != '\0') { 333 error = EINVAL; 334 goto bad; 335 } 336 if (optlen != 0) { 337 opt->len = optlen; 338 opt->value = malloc(optlen, M_MOUNT, M_WAITOK); 339 if (auio->uio_segflg == UIO_SYSSPACE) { 340 bcopy(auio->uio_iov[i + 1].iov_base, opt->value, 341 optlen); 342 } else { 343 error = copyin(auio->uio_iov[i + 1].iov_base, 344 opt->value, optlen); 345 if (error) 346 goto bad; 347 } 348 } 349 } 350 vfs_sanitizeopts(opts); 351 *options = opts; 352 return (0); 353 bad: 354 vfs_freeopts(opts); 355 return (error); 356 } 357 358 /* 359 * Merge the old mount options with the new ones passed 360 * in the MNT_UPDATE case. 361 * 362 * XXX: This function will keep a "nofoo" option in the new 363 * options. E.g, if the option's canonical name is "foo", 364 * "nofoo" ends up in the mount point's active options. 365 */ 366 static void 367 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts) 368 { 369 struct vfsopt *opt, *new; 370 371 TAILQ_FOREACH(opt, oldopts, link) { 372 new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK); 373 new->name = strdup(opt->name, M_MOUNT); 374 if (opt->len != 0) { 375 new->value = malloc(opt->len, M_MOUNT, M_WAITOK); 376 bcopy(opt->value, new->value, opt->len); 377 } else 378 new->value = NULL; 379 new->len = opt->len; 380 new->seen = opt->seen; 381 TAILQ_INSERT_HEAD(toopts, new, link); 382 } 383 vfs_sanitizeopts(toopts); 384 } 385 386 /* 387 * Mount a filesystem. 388 */ 389 #ifndef _SYS_SYSPROTO_H_ 390 struct nmount_args { 391 struct iovec *iovp; 392 unsigned int iovcnt; 393 int flags; 394 }; 395 #endif 396 int 397 sys_nmount(struct thread *td, struct nmount_args *uap) 398 { 399 struct uio *auio; 400 int error; 401 u_int iovcnt; 402 uint64_t flags; 403 404 /* 405 * Mount flags are now 64-bits. On 32-bit archtectures only 406 * 32-bits are passed in, but from here on everything handles 407 * 64-bit flags correctly. 408 */ 409 flags = uap->flags; 410 411 AUDIT_ARG_FFLAGS(flags); 412 CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__, 413 uap->iovp, uap->iovcnt, flags); 414 415 /* 416 * Filter out MNT_ROOTFS. We do not want clients of nmount() in 417 * userspace to set this flag, but we must filter it out if we want 418 * MNT_UPDATE on the root file system to work. 419 * MNT_ROOTFS should only be set by the kernel when mounting its 420 * root file system. 421 */ 422 flags &= ~MNT_ROOTFS; 423 424 iovcnt = uap->iovcnt; 425 /* 426 * Check that we have an even number of iovec's 427 * and that we have at least two options. 428 */ 429 if ((iovcnt & 1) || (iovcnt < 4)) { 430 CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__, 431 uap->iovcnt); 432 return (EINVAL); 433 } 434 435 error = copyinuio(uap->iovp, iovcnt, &auio); 436 if (error) { 437 CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno", 438 __func__, error); 439 return (error); 440 } 441 error = vfs_donmount(td, flags, auio); 442 443 free(auio, M_IOV); 444 return (error); 445 } 446 447 /* 448 * --------------------------------------------------------------------- 449 * Various utility functions 450 */ 451 452 void 453 vfs_ref(struct mount *mp) 454 { 455 struct mount_pcpu *mpcpu; 456 457 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 458 if (vfs_op_thread_enter(mp, mpcpu)) { 459 vfs_mp_count_add_pcpu(mpcpu, ref, 1); 460 vfs_op_thread_exit(mp, mpcpu); 461 return; 462 } 463 464 MNT_ILOCK(mp); 465 MNT_REF(mp); 466 MNT_IUNLOCK(mp); 467 } 468 469 void 470 vfs_rel(struct mount *mp) 471 { 472 struct mount_pcpu *mpcpu; 473 474 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 475 if (vfs_op_thread_enter(mp, mpcpu)) { 476 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 477 vfs_op_thread_exit(mp, mpcpu); 478 return; 479 } 480 481 MNT_ILOCK(mp); 482 MNT_REL(mp); 483 MNT_IUNLOCK(mp); 484 } 485 486 /* 487 * Allocate and initialize the mount point struct. 488 */ 489 struct mount * 490 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath, 491 struct ucred *cred) 492 { 493 struct mount *mp; 494 495 mp = uma_zalloc(mount_zone, M_WAITOK); 496 bzero(&mp->mnt_startzero, 497 __rangeof(struct mount, mnt_startzero, mnt_endzero)); 498 mp->mnt_kern_flag = 0; 499 mp->mnt_flag = 0; 500 mp->mnt_rootvnode = NULL; 501 mp->mnt_vnodecovered = NULL; 502 mp->mnt_op = NULL; 503 mp->mnt_vfc = NULL; 504 TAILQ_INIT(&mp->mnt_nvnodelist); 505 mp->mnt_nvnodelistsize = 0; 506 TAILQ_INIT(&mp->mnt_lazyvnodelist); 507 mp->mnt_lazyvnodelistsize = 0; 508 if (mp->mnt_ref != 0 || mp->mnt_lockref != 0 || 509 mp->mnt_writeopcount != 0) 510 panic("%s: non-zero counters on new mp %p\n", __func__, mp); 511 if (mp->mnt_vfs_ops != 1) 512 panic("%s: vfs_ops should be 1 but %d found\n", __func__, 513 mp->mnt_vfs_ops); 514 (void) vfs_busy(mp, MBF_NOWAIT); 515 atomic_add_acq_int(&vfsp->vfc_refcount, 1); 516 mp->mnt_op = vfsp->vfc_vfsops; 517 mp->mnt_vfc = vfsp; 518 mp->mnt_stat.f_type = vfsp->vfc_typenum; 519 mp->mnt_gen++; 520 strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN); 521 mp->mnt_vnodecovered = vp; 522 mp->mnt_cred = crdup(cred); 523 mp->mnt_stat.f_owner = cred->cr_uid; 524 strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN); 525 mp->mnt_iosize_max = DFLTPHYS; 526 #ifdef MAC 527 mac_mount_init(mp); 528 mac_mount_create(cred, mp); 529 #endif 530 arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0); 531 TAILQ_INIT(&mp->mnt_uppers); 532 return (mp); 533 } 534 535 /* 536 * Destroy the mount struct previously allocated by vfs_mount_alloc(). 537 */ 538 void 539 vfs_mount_destroy(struct mount *mp) 540 { 541 542 if (mp->mnt_vfs_ops == 0) 543 panic("%s: entered with zero vfs_ops\n", __func__); 544 545 vfs_assert_mount_counters(mp); 546 547 MNT_ILOCK(mp); 548 mp->mnt_kern_flag |= MNTK_REFEXPIRE; 549 if (mp->mnt_kern_flag & MNTK_MWAIT) { 550 mp->mnt_kern_flag &= ~MNTK_MWAIT; 551 wakeup(mp); 552 } 553 while (mp->mnt_ref) 554 msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0); 555 KASSERT(mp->mnt_ref == 0, 556 ("%s: invalid refcount in the drain path @ %s:%d", __func__, 557 __FILE__, __LINE__)); 558 if (mp->mnt_writeopcount != 0) 559 panic("vfs_mount_destroy: nonzero writeopcount"); 560 if (mp->mnt_secondary_writes != 0) 561 panic("vfs_mount_destroy: nonzero secondary_writes"); 562 atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1); 563 if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) { 564 struct vnode *vp; 565 566 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) 567 vn_printf(vp, "dangling vnode "); 568 panic("unmount: dangling vnode"); 569 } 570 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers")); 571 if (mp->mnt_nvnodelistsize != 0) 572 panic("vfs_mount_destroy: nonzero nvnodelistsize"); 573 if (mp->mnt_lazyvnodelistsize != 0) 574 panic("vfs_mount_destroy: nonzero lazyvnodelistsize"); 575 if (mp->mnt_lockref != 0) 576 panic("vfs_mount_destroy: nonzero lock refcount"); 577 MNT_IUNLOCK(mp); 578 579 if (mp->mnt_vfs_ops != 1) 580 panic("%s: vfs_ops should be 1 but %d found\n", __func__, 581 mp->mnt_vfs_ops); 582 583 if (mp->mnt_rootvnode != NULL) 584 panic("%s: mount point still has a root vnode %p\n", __func__, 585 mp->mnt_rootvnode); 586 587 if (mp->mnt_vnodecovered != NULL) 588 vrele(mp->mnt_vnodecovered); 589 #ifdef MAC 590 mac_mount_destroy(mp); 591 #endif 592 if (mp->mnt_opt != NULL) 593 vfs_freeopts(mp->mnt_opt); 594 crfree(mp->mnt_cred); 595 uma_zfree(mount_zone, mp); 596 } 597 598 static bool 599 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error) 600 { 601 /* This is an upgrade of an exisiting mount. */ 602 if ((fsflags & MNT_UPDATE) != 0) 603 return (false); 604 /* This is already an R/O mount. */ 605 if ((fsflags & MNT_RDONLY) != 0) 606 return (false); 607 608 switch (error) { 609 case ENODEV: /* generic, geom, ... */ 610 case EACCES: /* cam/scsi, ... */ 611 case EROFS: /* md, mmcsd, ... */ 612 /* 613 * These errors can be returned by the storage layer to signal 614 * that the media is read-only. No harm in the R/O mount 615 * attempt if the error was returned for some other reason. 616 */ 617 return (true); 618 default: 619 return (false); 620 } 621 } 622 623 int 624 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions) 625 { 626 struct vfsoptlist *optlist; 627 struct vfsopt *opt, *tmp_opt; 628 char *fstype, *fspath, *errmsg; 629 int error, fstypelen, fspathlen, errmsg_len, errmsg_pos; 630 bool autoro; 631 632 errmsg = fspath = NULL; 633 errmsg_len = fspathlen = 0; 634 errmsg_pos = -1; 635 autoro = default_autoro; 636 637 error = vfs_buildopts(fsoptions, &optlist); 638 if (error) 639 return (error); 640 641 if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0) 642 errmsg_pos = vfs_getopt_pos(optlist, "errmsg"); 643 644 /* 645 * We need these two options before the others, 646 * and they are mandatory for any filesystem. 647 * Ensure they are NUL terminated as well. 648 */ 649 fstypelen = 0; 650 error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen); 651 if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') { 652 error = EINVAL; 653 if (errmsg != NULL) 654 strncpy(errmsg, "Invalid fstype", errmsg_len); 655 goto bail; 656 } 657 fspathlen = 0; 658 error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen); 659 if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') { 660 error = EINVAL; 661 if (errmsg != NULL) 662 strncpy(errmsg, "Invalid fspath", errmsg_len); 663 goto bail; 664 } 665 666 /* 667 * We need to see if we have the "update" option 668 * before we call vfs_domount(), since vfs_domount() has special 669 * logic based on MNT_UPDATE. This is very important 670 * when we want to update the root filesystem. 671 */ 672 TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) { 673 int do_freeopt = 0; 674 675 if (strcmp(opt->name, "update") == 0) { 676 fsflags |= MNT_UPDATE; 677 do_freeopt = 1; 678 } 679 else if (strcmp(opt->name, "async") == 0) 680 fsflags |= MNT_ASYNC; 681 else if (strcmp(opt->name, "force") == 0) { 682 fsflags |= MNT_FORCE; 683 do_freeopt = 1; 684 } 685 else if (strcmp(opt->name, "reload") == 0) { 686 fsflags |= MNT_RELOAD; 687 do_freeopt = 1; 688 } 689 else if (strcmp(opt->name, "multilabel") == 0) 690 fsflags |= MNT_MULTILABEL; 691 else if (strcmp(opt->name, "noasync") == 0) 692 fsflags &= ~MNT_ASYNC; 693 else if (strcmp(opt->name, "noatime") == 0) 694 fsflags |= MNT_NOATIME; 695 else if (strcmp(opt->name, "atime") == 0) { 696 free(opt->name, M_MOUNT); 697 opt->name = strdup("nonoatime", M_MOUNT); 698 } 699 else if (strcmp(opt->name, "noclusterr") == 0) 700 fsflags |= MNT_NOCLUSTERR; 701 else if (strcmp(opt->name, "clusterr") == 0) { 702 free(opt->name, M_MOUNT); 703 opt->name = strdup("nonoclusterr", M_MOUNT); 704 } 705 else if (strcmp(opt->name, "noclusterw") == 0) 706 fsflags |= MNT_NOCLUSTERW; 707 else if (strcmp(opt->name, "clusterw") == 0) { 708 free(opt->name, M_MOUNT); 709 opt->name = strdup("nonoclusterw", M_MOUNT); 710 } 711 else if (strcmp(opt->name, "noexec") == 0) 712 fsflags |= MNT_NOEXEC; 713 else if (strcmp(opt->name, "exec") == 0) { 714 free(opt->name, M_MOUNT); 715 opt->name = strdup("nonoexec", M_MOUNT); 716 } 717 else if (strcmp(opt->name, "nosuid") == 0) 718 fsflags |= MNT_NOSUID; 719 else if (strcmp(opt->name, "suid") == 0) { 720 free(opt->name, M_MOUNT); 721 opt->name = strdup("nonosuid", M_MOUNT); 722 } 723 else if (strcmp(opt->name, "nosymfollow") == 0) 724 fsflags |= MNT_NOSYMFOLLOW; 725 else if (strcmp(opt->name, "symfollow") == 0) { 726 free(opt->name, M_MOUNT); 727 opt->name = strdup("nonosymfollow", M_MOUNT); 728 } 729 else if (strcmp(opt->name, "noro") == 0) { 730 fsflags &= ~MNT_RDONLY; 731 autoro = false; 732 } 733 else if (strcmp(opt->name, "rw") == 0) { 734 fsflags &= ~MNT_RDONLY; 735 autoro = false; 736 } 737 else if (strcmp(opt->name, "ro") == 0) { 738 fsflags |= MNT_RDONLY; 739 autoro = false; 740 } 741 else if (strcmp(opt->name, "rdonly") == 0) { 742 free(opt->name, M_MOUNT); 743 opt->name = strdup("ro", M_MOUNT); 744 fsflags |= MNT_RDONLY; 745 autoro = false; 746 } 747 else if (strcmp(opt->name, "autoro") == 0) { 748 do_freeopt = 1; 749 autoro = true; 750 } 751 else if (strcmp(opt->name, "suiddir") == 0) 752 fsflags |= MNT_SUIDDIR; 753 else if (strcmp(opt->name, "sync") == 0) 754 fsflags |= MNT_SYNCHRONOUS; 755 else if (strcmp(opt->name, "union") == 0) 756 fsflags |= MNT_UNION; 757 else if (strcmp(opt->name, "automounted") == 0) { 758 fsflags |= MNT_AUTOMOUNTED; 759 do_freeopt = 1; 760 } else if (strcmp(opt->name, "nocover") == 0) { 761 fsflags |= MNT_NOCOVER; 762 do_freeopt = 1; 763 } else if (strcmp(opt->name, "cover") == 0) { 764 fsflags &= ~MNT_NOCOVER; 765 do_freeopt = 1; 766 } else if (strcmp(opt->name, "emptydir") == 0) { 767 fsflags |= MNT_EMPTYDIR; 768 do_freeopt = 1; 769 } else if (strcmp(opt->name, "noemptydir") == 0) { 770 fsflags &= ~MNT_EMPTYDIR; 771 do_freeopt = 1; 772 } 773 if (do_freeopt) 774 vfs_freeopt(optlist, opt); 775 } 776 777 /* 778 * Be ultra-paranoid about making sure the type and fspath 779 * variables will fit in our mp buffers, including the 780 * terminating NUL. 781 */ 782 if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) { 783 error = ENAMETOOLONG; 784 goto bail; 785 } 786 787 error = vfs_domount(td, fstype, fspath, fsflags, &optlist); 788 789 /* 790 * See if we can mount in the read-only mode if the error code suggests 791 * that it could be possible and the mount options allow for that. 792 * Never try it if "[no]{ro|rw}" has been explicitly requested and not 793 * overridden by "autoro". 794 */ 795 if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) { 796 printf("%s: R/W mount failed, possibly R/O media," 797 " trying R/O mount\n", __func__); 798 fsflags |= MNT_RDONLY; 799 error = vfs_domount(td, fstype, fspath, fsflags, &optlist); 800 } 801 bail: 802 /* copyout the errmsg */ 803 if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt) 804 && errmsg_len > 0 && errmsg != NULL) { 805 if (fsoptions->uio_segflg == UIO_SYSSPACE) { 806 bcopy(errmsg, 807 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base, 808 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len); 809 } else { 810 copyout(errmsg, 811 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base, 812 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len); 813 } 814 } 815 816 if (optlist != NULL) 817 vfs_freeopts(optlist); 818 return (error); 819 } 820 821 /* 822 * Old mount API. 823 */ 824 #ifndef _SYS_SYSPROTO_H_ 825 struct mount_args { 826 char *type; 827 char *path; 828 int flags; 829 caddr_t data; 830 }; 831 #endif 832 /* ARGSUSED */ 833 int 834 sys_mount(struct thread *td, struct mount_args *uap) 835 { 836 char *fstype; 837 struct vfsconf *vfsp = NULL; 838 struct mntarg *ma = NULL; 839 uint64_t flags; 840 int error; 841 842 /* 843 * Mount flags are now 64-bits. On 32-bit architectures only 844 * 32-bits are passed in, but from here on everything handles 845 * 64-bit flags correctly. 846 */ 847 flags = uap->flags; 848 849 AUDIT_ARG_FFLAGS(flags); 850 851 /* 852 * Filter out MNT_ROOTFS. We do not want clients of mount() in 853 * userspace to set this flag, but we must filter it out if we want 854 * MNT_UPDATE on the root file system to work. 855 * MNT_ROOTFS should only be set by the kernel when mounting its 856 * root file system. 857 */ 858 flags &= ~MNT_ROOTFS; 859 860 fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK); 861 error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL); 862 if (error) { 863 free(fstype, M_TEMP); 864 return (error); 865 } 866 867 AUDIT_ARG_TEXT(fstype); 868 vfsp = vfs_byname_kld(fstype, td, &error); 869 free(fstype, M_TEMP); 870 if (vfsp == NULL) 871 return (ENOENT); 872 if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 && 873 vfsp->vfc_vfsops_sd->vfs_cmount == NULL) || 874 ((vfsp->vfc_flags & VFCF_SBDRY) == 0 && 875 vfsp->vfc_vfsops->vfs_cmount == NULL)) 876 return (EOPNOTSUPP); 877 878 ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN); 879 ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN); 880 ma = mount_argb(ma, flags & MNT_RDONLY, "noro"); 881 ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid"); 882 ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec"); 883 884 if ((vfsp->vfc_flags & VFCF_SBDRY) != 0) 885 return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags)); 886 return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags)); 887 } 888 889 /* 890 * vfs_domount_first(): first file system mount (not update) 891 */ 892 static int 893 vfs_domount_first( 894 struct thread *td, /* Calling thread. */ 895 struct vfsconf *vfsp, /* File system type. */ 896 char *fspath, /* Mount path. */ 897 struct vnode *vp, /* Vnode to be covered. */ 898 uint64_t fsflags, /* Flags common to all filesystems. */ 899 struct vfsoptlist **optlist /* Options local to the filesystem. */ 900 ) 901 { 902 struct vattr va; 903 struct mount *mp; 904 struct vnode *newdp, *rootvp; 905 int error, error1; 906 907 ASSERT_VOP_ELOCKED(vp, __func__); 908 KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here")); 909 910 if ((fsflags & MNT_EMPTYDIR) != 0) { 911 error = vfs_emptydir(vp); 912 if (error != 0) { 913 vput(vp); 914 return (error); 915 } 916 } 917 918 /* 919 * If the jail of the calling thread lacks permission for this type of 920 * file system, deny immediately. 921 */ 922 if (jailed(td->td_ucred) && !prison_allow(td->td_ucred, 923 vfsp->vfc_prison_flag)) { 924 vput(vp); 925 return (EPERM); 926 } 927 928 /* 929 * If the user is not root, ensure that they own the directory 930 * onto which we are attempting to mount. 931 */ 932 error = VOP_GETATTR(vp, &va, td->td_ucred); 933 if (error == 0 && va.va_uid != td->td_ucred->cr_uid) 934 error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN); 935 if (error == 0) 936 error = vinvalbuf(vp, V_SAVE, 0, 0); 937 if (error == 0 && vp->v_type != VDIR) 938 error = ENOTDIR; 939 if (error == 0) { 940 VI_LOCK(vp); 941 if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL) 942 vp->v_iflag |= VI_MOUNT; 943 else 944 error = EBUSY; 945 VI_UNLOCK(vp); 946 } 947 if (error != 0) { 948 vput(vp); 949 return (error); 950 } 951 vn_seqc_write_begin(vp); 952 VOP_UNLOCK(vp); 953 954 /* Allocate and initialize the filesystem. */ 955 mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred); 956 /* XXXMAC: pass to vfs_mount_alloc? */ 957 mp->mnt_optnew = *optlist; 958 /* Set the mount level flags. */ 959 mp->mnt_flag = (fsflags & (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY)); 960 961 /* 962 * Mount the filesystem. 963 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they 964 * get. No freeing of cn_pnbuf. 965 */ 966 error1 = 0; 967 if ((error = VFS_MOUNT(mp)) != 0 || 968 (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 || 969 (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) { 970 rootvp = NULL; 971 if (error1 != 0) { 972 error = error1; 973 rootvp = vfs_cache_root_clear(mp); 974 if (rootvp != NULL) { 975 vhold(rootvp); 976 vrele(rootvp); 977 } 978 if ((error1 = VFS_UNMOUNT(mp, 0)) != 0) 979 printf("VFS_UNMOUNT returned %d\n", error1); 980 } 981 vfs_unbusy(mp); 982 mp->mnt_vnodecovered = NULL; 983 vfs_mount_destroy(mp); 984 VI_LOCK(vp); 985 vp->v_iflag &= ~VI_MOUNT; 986 VI_UNLOCK(vp); 987 if (rootvp != NULL) { 988 vn_seqc_write_end(rootvp); 989 vdrop(rootvp); 990 } 991 vn_seqc_write_end(vp); 992 vrele(vp); 993 return (error); 994 } 995 vn_seqc_write_begin(newdp); 996 VOP_UNLOCK(newdp); 997 998 if (mp->mnt_opt != NULL) 999 vfs_freeopts(mp->mnt_opt); 1000 mp->mnt_opt = mp->mnt_optnew; 1001 *optlist = NULL; 1002 1003 /* 1004 * Prevent external consumers of mount options from reading mnt_optnew. 1005 */ 1006 mp->mnt_optnew = NULL; 1007 1008 MNT_ILOCK(mp); 1009 if ((mp->mnt_flag & MNT_ASYNC) != 0 && 1010 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0) 1011 mp->mnt_kern_flag |= MNTK_ASYNC; 1012 else 1013 mp->mnt_kern_flag &= ~MNTK_ASYNC; 1014 MNT_IUNLOCK(mp); 1015 1016 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1017 cache_purge(vp); 1018 VI_LOCK(vp); 1019 vp->v_iflag &= ~VI_MOUNT; 1020 VI_UNLOCK(vp); 1021 vp->v_mountedhere = mp; 1022 /* Place the new filesystem at the end of the mount list. */ 1023 mtx_lock(&mountlist_mtx); 1024 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list); 1025 mtx_unlock(&mountlist_mtx); 1026 vfs_event_signal(NULL, VQ_MOUNT, 0); 1027 vn_lock(newdp, LK_EXCLUSIVE | LK_RETRY); 1028 VOP_UNLOCK(vp); 1029 EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td); 1030 VOP_UNLOCK(newdp); 1031 mount_devctl_event("MOUNT", mp, false); 1032 mountcheckdirs(vp, newdp); 1033 vn_seqc_write_end(vp); 1034 vn_seqc_write_end(newdp); 1035 vrele(newdp); 1036 if ((mp->mnt_flag & MNT_RDONLY) == 0) 1037 vfs_allocate_syncvnode(mp); 1038 vfs_op_exit(mp); 1039 vfs_unbusy(mp); 1040 return (0); 1041 } 1042 1043 /* 1044 * vfs_domount_update(): update of mounted file system 1045 */ 1046 static int 1047 vfs_domount_update( 1048 struct thread *td, /* Calling thread. */ 1049 struct vnode *vp, /* Mount point vnode. */ 1050 uint64_t fsflags, /* Flags common to all filesystems. */ 1051 struct vfsoptlist **optlist /* Options local to the filesystem. */ 1052 ) 1053 { 1054 struct export_args export; 1055 struct o2export_args o2export; 1056 struct vnode *rootvp; 1057 void *bufp; 1058 struct mount *mp; 1059 int error, export_error, i, len; 1060 uint64_t flag; 1061 gid_t *grps; 1062 1063 ASSERT_VOP_ELOCKED(vp, __func__); 1064 KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here")); 1065 mp = vp->v_mount; 1066 1067 if ((vp->v_vflag & VV_ROOT) == 0) { 1068 if (vfs_copyopt(*optlist, "export", &export, sizeof(export)) 1069 == 0) 1070 error = EXDEV; 1071 else 1072 error = EINVAL; 1073 vput(vp); 1074 return (error); 1075 } 1076 1077 /* 1078 * We only allow the filesystem to be reloaded if it 1079 * is currently mounted read-only. 1080 */ 1081 flag = mp->mnt_flag; 1082 if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) { 1083 vput(vp); 1084 return (EOPNOTSUPP); /* Needs translation */ 1085 } 1086 /* 1087 * Only privileged root, or (if MNT_USER is set) the user that 1088 * did the original mount is permitted to update it. 1089 */ 1090 error = vfs_suser(mp, td); 1091 if (error != 0) { 1092 vput(vp); 1093 return (error); 1094 } 1095 if (vfs_busy(mp, MBF_NOWAIT)) { 1096 vput(vp); 1097 return (EBUSY); 1098 } 1099 VI_LOCK(vp); 1100 if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) { 1101 VI_UNLOCK(vp); 1102 vfs_unbusy(mp); 1103 vput(vp); 1104 return (EBUSY); 1105 } 1106 vp->v_iflag |= VI_MOUNT; 1107 VI_UNLOCK(vp); 1108 VOP_UNLOCK(vp); 1109 1110 vfs_op_enter(mp); 1111 vn_seqc_write_begin(vp); 1112 1113 rootvp = NULL; 1114 MNT_ILOCK(mp); 1115 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 1116 MNT_IUNLOCK(mp); 1117 error = EBUSY; 1118 goto end; 1119 } 1120 mp->mnt_flag &= ~MNT_UPDATEMASK; 1121 mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE | 1122 MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY); 1123 if ((mp->mnt_flag & MNT_ASYNC) == 0) 1124 mp->mnt_kern_flag &= ~MNTK_ASYNC; 1125 rootvp = vfs_cache_root_clear(mp); 1126 MNT_IUNLOCK(mp); 1127 mp->mnt_optnew = *optlist; 1128 vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt); 1129 1130 /* 1131 * Mount the filesystem. 1132 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they 1133 * get. No freeing of cn_pnbuf. 1134 */ 1135 error = VFS_MOUNT(mp); 1136 1137 export_error = 0; 1138 /* Process the export option. */ 1139 if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp, 1140 &len) == 0) { 1141 /* Assume that there is only 1 ABI for each length. */ 1142 switch (len) { 1143 case (sizeof(struct oexport_args)): 1144 bzero(&o2export, sizeof(o2export)); 1145 /* FALLTHROUGH */ 1146 case (sizeof(o2export)): 1147 bcopy(bufp, &o2export, len); 1148 export.ex_flags = (uint64_t)o2export.ex_flags; 1149 export.ex_root = o2export.ex_root; 1150 export.ex_uid = o2export.ex_anon.cr_uid; 1151 export.ex_groups = NULL; 1152 export.ex_ngroups = o2export.ex_anon.cr_ngroups; 1153 if (export.ex_ngroups > 0) { 1154 if (export.ex_ngroups <= XU_NGROUPS) { 1155 export.ex_groups = malloc( 1156 export.ex_ngroups * sizeof(gid_t), 1157 M_TEMP, M_WAITOK); 1158 for (i = 0; i < export.ex_ngroups; i++) 1159 export.ex_groups[i] = 1160 o2export.ex_anon.cr_groups[i]; 1161 } else 1162 export_error = EINVAL; 1163 } else if (export.ex_ngroups < 0) 1164 export_error = EINVAL; 1165 export.ex_addr = o2export.ex_addr; 1166 export.ex_addrlen = o2export.ex_addrlen; 1167 export.ex_mask = o2export.ex_mask; 1168 export.ex_masklen = o2export.ex_masklen; 1169 export.ex_indexfile = o2export.ex_indexfile; 1170 export.ex_numsecflavors = o2export.ex_numsecflavors; 1171 if (export.ex_numsecflavors < MAXSECFLAVORS) { 1172 for (i = 0; i < export.ex_numsecflavors; i++) 1173 export.ex_secflavors[i] = 1174 o2export.ex_secflavors[i]; 1175 } else 1176 export_error = EINVAL; 1177 if (export_error == 0) 1178 export_error = vfs_export(mp, &export); 1179 free(export.ex_groups, M_TEMP); 1180 break; 1181 case (sizeof(export)): 1182 bcopy(bufp, &export, len); 1183 grps = NULL; 1184 if (export.ex_ngroups > 0) { 1185 if (export.ex_ngroups <= NGROUPS_MAX) { 1186 grps = malloc(export.ex_ngroups * 1187 sizeof(gid_t), M_TEMP, M_WAITOK); 1188 export_error = copyin(export.ex_groups, 1189 grps, export.ex_ngroups * 1190 sizeof(gid_t)); 1191 if (export_error == 0) 1192 export.ex_groups = grps; 1193 } else 1194 export_error = EINVAL; 1195 } else if (export.ex_ngroups == 0) 1196 export.ex_groups = NULL; 1197 else 1198 export_error = EINVAL; 1199 if (export_error == 0) 1200 export_error = vfs_export(mp, &export); 1201 free(grps, M_TEMP); 1202 break; 1203 default: 1204 export_error = EINVAL; 1205 break; 1206 } 1207 } 1208 1209 MNT_ILOCK(mp); 1210 if (error == 0) { 1211 mp->mnt_flag &= ~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE | 1212 MNT_SNAPSHOT); 1213 } else { 1214 /* 1215 * If we fail, restore old mount flags. MNT_QUOTA is special, 1216 * because it is not part of MNT_UPDATEMASK, but it could have 1217 * changed in the meantime if quotactl(2) was called. 1218 * All in all we want current value of MNT_QUOTA, not the old 1219 * one. 1220 */ 1221 mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA); 1222 } 1223 if ((mp->mnt_flag & MNT_ASYNC) != 0 && 1224 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0) 1225 mp->mnt_kern_flag |= MNTK_ASYNC; 1226 else 1227 mp->mnt_kern_flag &= ~MNTK_ASYNC; 1228 MNT_IUNLOCK(mp); 1229 1230 if (error != 0) 1231 goto end; 1232 1233 mount_devctl_event("REMOUNT", mp, true); 1234 if (mp->mnt_opt != NULL) 1235 vfs_freeopts(mp->mnt_opt); 1236 mp->mnt_opt = mp->mnt_optnew; 1237 *optlist = NULL; 1238 (void)VFS_STATFS(mp, &mp->mnt_stat); 1239 /* 1240 * Prevent external consumers of mount options from reading 1241 * mnt_optnew. 1242 */ 1243 mp->mnt_optnew = NULL; 1244 1245 if ((mp->mnt_flag & MNT_RDONLY) == 0) 1246 vfs_allocate_syncvnode(mp); 1247 else 1248 vfs_deallocate_syncvnode(mp); 1249 end: 1250 vfs_op_exit(mp); 1251 if (rootvp != NULL) { 1252 vn_seqc_write_end(rootvp); 1253 vrele(rootvp); 1254 } 1255 vn_seqc_write_end(vp); 1256 vfs_unbusy(mp); 1257 VI_LOCK(vp); 1258 vp->v_iflag &= ~VI_MOUNT; 1259 VI_UNLOCK(vp); 1260 vrele(vp); 1261 return (error != 0 ? error : export_error); 1262 } 1263 1264 /* 1265 * vfs_domount(): actually attempt a filesystem mount. 1266 */ 1267 static int 1268 vfs_domount( 1269 struct thread *td, /* Calling thread. */ 1270 const char *fstype, /* Filesystem type. */ 1271 char *fspath, /* Mount path. */ 1272 uint64_t fsflags, /* Flags common to all filesystems. */ 1273 struct vfsoptlist **optlist /* Options local to the filesystem. */ 1274 ) 1275 { 1276 struct vfsconf *vfsp; 1277 struct nameidata nd; 1278 struct vnode *vp; 1279 char *pathbuf; 1280 int error; 1281 1282 /* 1283 * Be ultra-paranoid about making sure the type and fspath 1284 * variables will fit in our mp buffers, including the 1285 * terminating NUL. 1286 */ 1287 if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN) 1288 return (ENAMETOOLONG); 1289 1290 if (jailed(td->td_ucred) || usermount == 0) { 1291 if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0) 1292 return (error); 1293 } 1294 1295 /* 1296 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users. 1297 */ 1298 if (fsflags & MNT_EXPORTED) { 1299 error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED); 1300 if (error) 1301 return (error); 1302 } 1303 if (fsflags & MNT_SUIDDIR) { 1304 error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR); 1305 if (error) 1306 return (error); 1307 } 1308 /* 1309 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users. 1310 */ 1311 if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) { 1312 if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0) 1313 fsflags |= MNT_NOSUID | MNT_USER; 1314 } 1315 1316 /* Load KLDs before we lock the covered vnode to avoid reversals. */ 1317 vfsp = NULL; 1318 if ((fsflags & MNT_UPDATE) == 0) { 1319 /* Don't try to load KLDs if we're mounting the root. */ 1320 if (fsflags & MNT_ROOTFS) 1321 vfsp = vfs_byname(fstype); 1322 else 1323 vfsp = vfs_byname_kld(fstype, td, &error); 1324 if (vfsp == NULL) 1325 return (ENODEV); 1326 } 1327 1328 /* 1329 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE. 1330 */ 1331 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, 1332 UIO_SYSSPACE, fspath, td); 1333 error = namei(&nd); 1334 if (error != 0) 1335 return (error); 1336 NDFREE(&nd, NDF_ONLY_PNBUF); 1337 vp = nd.ni_vp; 1338 if ((fsflags & MNT_UPDATE) == 0) { 1339 if ((vp->v_vflag & VV_ROOT) != 0 && 1340 (fsflags & MNT_NOCOVER) != 0) { 1341 vput(vp); 1342 return (EBUSY); 1343 } 1344 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK); 1345 strcpy(pathbuf, fspath); 1346 error = vn_path_to_global_path(td, vp, pathbuf, MNAMELEN); 1347 if (error == 0) { 1348 error = vfs_domount_first(td, vfsp, pathbuf, vp, 1349 fsflags, optlist); 1350 } 1351 free(pathbuf, M_TEMP); 1352 } else 1353 error = vfs_domount_update(td, vp, fsflags, optlist); 1354 1355 return (error); 1356 } 1357 1358 /* 1359 * Unmount a filesystem. 1360 * 1361 * Note: unmount takes a path to the vnode mounted on as argument, not 1362 * special file (as before). 1363 */ 1364 #ifndef _SYS_SYSPROTO_H_ 1365 struct unmount_args { 1366 char *path; 1367 int flags; 1368 }; 1369 #endif 1370 /* ARGSUSED */ 1371 int 1372 sys_unmount(struct thread *td, struct unmount_args *uap) 1373 { 1374 1375 return (kern_unmount(td, uap->path, uap->flags)); 1376 } 1377 1378 int 1379 kern_unmount(struct thread *td, const char *path, int flags) 1380 { 1381 struct nameidata nd; 1382 struct mount *mp; 1383 char *pathbuf; 1384 int error, id0, id1; 1385 1386 AUDIT_ARG_VALUE(flags); 1387 if (jailed(td->td_ucred) || usermount == 0) { 1388 error = priv_check(td, PRIV_VFS_UNMOUNT); 1389 if (error) 1390 return (error); 1391 } 1392 1393 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK); 1394 error = copyinstr(path, pathbuf, MNAMELEN, NULL); 1395 if (error) { 1396 free(pathbuf, M_TEMP); 1397 return (error); 1398 } 1399 if (flags & MNT_BYFSID) { 1400 AUDIT_ARG_TEXT(pathbuf); 1401 /* Decode the filesystem ID. */ 1402 if (sscanf(pathbuf, "FSID:%d:%d", &id0, &id1) != 2) { 1403 free(pathbuf, M_TEMP); 1404 return (EINVAL); 1405 } 1406 1407 mtx_lock(&mountlist_mtx); 1408 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) { 1409 if (mp->mnt_stat.f_fsid.val[0] == id0 && 1410 mp->mnt_stat.f_fsid.val[1] == id1) { 1411 vfs_ref(mp); 1412 break; 1413 } 1414 } 1415 mtx_unlock(&mountlist_mtx); 1416 } else { 1417 /* 1418 * Try to find global path for path argument. 1419 */ 1420 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, 1421 UIO_SYSSPACE, pathbuf, td); 1422 if (namei(&nd) == 0) { 1423 NDFREE(&nd, NDF_ONLY_PNBUF); 1424 error = vn_path_to_global_path(td, nd.ni_vp, pathbuf, 1425 MNAMELEN); 1426 if (error == 0) 1427 vput(nd.ni_vp); 1428 } 1429 mtx_lock(&mountlist_mtx); 1430 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) { 1431 if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) { 1432 vfs_ref(mp); 1433 break; 1434 } 1435 } 1436 mtx_unlock(&mountlist_mtx); 1437 } 1438 free(pathbuf, M_TEMP); 1439 if (mp == NULL) { 1440 /* 1441 * Previously we returned ENOENT for a nonexistent path and 1442 * EINVAL for a non-mountpoint. We cannot tell these apart 1443 * now, so in the !MNT_BYFSID case return the more likely 1444 * EINVAL for compatibility. 1445 */ 1446 return ((flags & MNT_BYFSID) ? ENOENT : EINVAL); 1447 } 1448 1449 /* 1450 * Don't allow unmounting the root filesystem. 1451 */ 1452 if (mp->mnt_flag & MNT_ROOTFS) { 1453 vfs_rel(mp); 1454 return (EINVAL); 1455 } 1456 error = dounmount(mp, flags, td); 1457 return (error); 1458 } 1459 1460 /* 1461 * Return error if any of the vnodes, ignoring the root vnode 1462 * and the syncer vnode, have non-zero usecount. 1463 * 1464 * This function is purely advisory - it can return false positives 1465 * and negatives. 1466 */ 1467 static int 1468 vfs_check_usecounts(struct mount *mp) 1469 { 1470 struct vnode *vp, *mvp; 1471 1472 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 1473 if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON && 1474 vp->v_usecount != 0) { 1475 VI_UNLOCK(vp); 1476 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 1477 return (EBUSY); 1478 } 1479 VI_UNLOCK(vp); 1480 } 1481 1482 return (0); 1483 } 1484 1485 static void 1486 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags) 1487 { 1488 1489 mtx_assert(MNT_MTX(mp), MA_OWNED); 1490 mp->mnt_kern_flag &= ~mntkflags; 1491 if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) { 1492 mp->mnt_kern_flag &= ~MNTK_MWAIT; 1493 wakeup(mp); 1494 } 1495 vfs_op_exit_locked(mp); 1496 MNT_IUNLOCK(mp); 1497 if (coveredvp != NULL) { 1498 VOP_UNLOCK(coveredvp); 1499 vdrop(coveredvp); 1500 } 1501 vn_finished_write(mp); 1502 } 1503 1504 /* 1505 * There are various reference counters associated with the mount point. 1506 * Normally it is permitted to modify them without taking the mnt ilock, 1507 * but this behavior can be temporarily disabled if stable value is needed 1508 * or callers are expected to block (e.g. to not allow new users during 1509 * forced unmount). 1510 */ 1511 void 1512 vfs_op_enter(struct mount *mp) 1513 { 1514 struct mount_pcpu *mpcpu; 1515 int cpu; 1516 1517 MNT_ILOCK(mp); 1518 mp->mnt_vfs_ops++; 1519 if (mp->mnt_vfs_ops > 1) { 1520 MNT_IUNLOCK(mp); 1521 return; 1522 } 1523 vfs_op_barrier_wait(mp); 1524 CPU_FOREACH(cpu) { 1525 mpcpu = vfs_mount_pcpu_remote(mp, cpu); 1526 1527 mp->mnt_ref += mpcpu->mntp_ref; 1528 mpcpu->mntp_ref = 0; 1529 1530 mp->mnt_lockref += mpcpu->mntp_lockref; 1531 mpcpu->mntp_lockref = 0; 1532 1533 mp->mnt_writeopcount += mpcpu->mntp_writeopcount; 1534 mpcpu->mntp_writeopcount = 0; 1535 } 1536 if (mp->mnt_ref <= 0 || mp->mnt_lockref < 0 || mp->mnt_writeopcount < 0) 1537 panic("%s: invalid count(s) on mp %p: ref %d lockref %d writeopcount %d\n", 1538 __func__, mp, mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount); 1539 MNT_IUNLOCK(mp); 1540 vfs_assert_mount_counters(mp); 1541 } 1542 1543 void 1544 vfs_op_exit_locked(struct mount *mp) 1545 { 1546 1547 mtx_assert(MNT_MTX(mp), MA_OWNED); 1548 1549 if (mp->mnt_vfs_ops <= 0) 1550 panic("%s: invalid vfs_ops count %d for mp %p\n", 1551 __func__, mp->mnt_vfs_ops, mp); 1552 mp->mnt_vfs_ops--; 1553 } 1554 1555 void 1556 vfs_op_exit(struct mount *mp) 1557 { 1558 1559 MNT_ILOCK(mp); 1560 vfs_op_exit_locked(mp); 1561 MNT_IUNLOCK(mp); 1562 } 1563 1564 struct vfs_op_barrier_ipi { 1565 struct mount *mp; 1566 struct smp_rendezvous_cpus_retry_arg srcra; 1567 }; 1568 1569 static void 1570 vfs_op_action_func(void *arg) 1571 { 1572 struct vfs_op_barrier_ipi *vfsopipi; 1573 struct mount *mp; 1574 1575 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra); 1576 mp = vfsopipi->mp; 1577 1578 if (!vfs_op_thread_entered(mp)) 1579 smp_rendezvous_cpus_done(arg); 1580 } 1581 1582 static void 1583 vfs_op_wait_func(void *arg, int cpu) 1584 { 1585 struct vfs_op_barrier_ipi *vfsopipi; 1586 struct mount *mp; 1587 struct mount_pcpu *mpcpu; 1588 1589 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra); 1590 mp = vfsopipi->mp; 1591 1592 mpcpu = vfs_mount_pcpu_remote(mp, cpu); 1593 while (atomic_load_int(&mpcpu->mntp_thread_in_ops)) 1594 cpu_spinwait(); 1595 } 1596 1597 void 1598 vfs_op_barrier_wait(struct mount *mp) 1599 { 1600 struct vfs_op_barrier_ipi vfsopipi; 1601 1602 vfsopipi.mp = mp; 1603 1604 smp_rendezvous_cpus_retry(all_cpus, 1605 smp_no_rendezvous_barrier, 1606 vfs_op_action_func, 1607 smp_no_rendezvous_barrier, 1608 vfs_op_wait_func, 1609 &vfsopipi.srcra); 1610 } 1611 1612 #ifdef DIAGNOSTIC 1613 void 1614 vfs_assert_mount_counters(struct mount *mp) 1615 { 1616 struct mount_pcpu *mpcpu; 1617 int cpu; 1618 1619 if (mp->mnt_vfs_ops == 0) 1620 return; 1621 1622 CPU_FOREACH(cpu) { 1623 mpcpu = vfs_mount_pcpu_remote(mp, cpu); 1624 if (mpcpu->mntp_ref != 0 || 1625 mpcpu->mntp_lockref != 0 || 1626 mpcpu->mntp_writeopcount != 0) 1627 vfs_dump_mount_counters(mp); 1628 } 1629 } 1630 1631 void 1632 vfs_dump_mount_counters(struct mount *mp) 1633 { 1634 struct mount_pcpu *mpcpu; 1635 int ref, lockref, writeopcount; 1636 int cpu; 1637 1638 printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops); 1639 1640 printf(" ref : "); 1641 ref = mp->mnt_ref; 1642 CPU_FOREACH(cpu) { 1643 mpcpu = vfs_mount_pcpu_remote(mp, cpu); 1644 printf("%d ", mpcpu->mntp_ref); 1645 ref += mpcpu->mntp_ref; 1646 } 1647 printf("\n"); 1648 printf(" lockref : "); 1649 lockref = mp->mnt_lockref; 1650 CPU_FOREACH(cpu) { 1651 mpcpu = vfs_mount_pcpu_remote(mp, cpu); 1652 printf("%d ", mpcpu->mntp_lockref); 1653 lockref += mpcpu->mntp_lockref; 1654 } 1655 printf("\n"); 1656 printf("writeopcount: "); 1657 writeopcount = mp->mnt_writeopcount; 1658 CPU_FOREACH(cpu) { 1659 mpcpu = vfs_mount_pcpu_remote(mp, cpu); 1660 printf("%d ", mpcpu->mntp_writeopcount); 1661 writeopcount += mpcpu->mntp_writeopcount; 1662 } 1663 printf("\n"); 1664 1665 printf("counter struct total\n"); 1666 printf("ref %-5d %-5d\n", mp->mnt_ref, ref); 1667 printf("lockref %-5d %-5d\n", mp->mnt_lockref, lockref); 1668 printf("writeopcount %-5d %-5d\n", mp->mnt_writeopcount, writeopcount); 1669 1670 panic("invalid counts on struct mount"); 1671 } 1672 #endif 1673 1674 int 1675 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which) 1676 { 1677 struct mount_pcpu *mpcpu; 1678 int cpu, sum; 1679 1680 switch (which) { 1681 case MNT_COUNT_REF: 1682 sum = mp->mnt_ref; 1683 break; 1684 case MNT_COUNT_LOCKREF: 1685 sum = mp->mnt_lockref; 1686 break; 1687 case MNT_COUNT_WRITEOPCOUNT: 1688 sum = mp->mnt_writeopcount; 1689 break; 1690 } 1691 1692 CPU_FOREACH(cpu) { 1693 mpcpu = vfs_mount_pcpu_remote(mp, cpu); 1694 switch (which) { 1695 case MNT_COUNT_REF: 1696 sum += mpcpu->mntp_ref; 1697 break; 1698 case MNT_COUNT_LOCKREF: 1699 sum += mpcpu->mntp_lockref; 1700 break; 1701 case MNT_COUNT_WRITEOPCOUNT: 1702 sum += mpcpu->mntp_writeopcount; 1703 break; 1704 } 1705 } 1706 return (sum); 1707 } 1708 1709 /* 1710 * Do the actual filesystem unmount. 1711 */ 1712 int 1713 dounmount(struct mount *mp, int flags, struct thread *td) 1714 { 1715 struct vnode *coveredvp, *rootvp; 1716 int error; 1717 uint64_t async_flag; 1718 int mnt_gen_r; 1719 1720 if ((coveredvp = mp->mnt_vnodecovered) != NULL) { 1721 mnt_gen_r = mp->mnt_gen; 1722 VI_LOCK(coveredvp); 1723 vholdl(coveredvp); 1724 vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY); 1725 /* 1726 * Check for mp being unmounted while waiting for the 1727 * covered vnode lock. 1728 */ 1729 if (coveredvp->v_mountedhere != mp || 1730 coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) { 1731 VOP_UNLOCK(coveredvp); 1732 vdrop(coveredvp); 1733 vfs_rel(mp); 1734 return (EBUSY); 1735 } 1736 } 1737 1738 /* 1739 * Only privileged root, or (if MNT_USER is set) the user that did the 1740 * original mount is permitted to unmount this filesystem. 1741 */ 1742 error = vfs_suser(mp, td); 1743 if (error != 0) { 1744 if (coveredvp != NULL) { 1745 VOP_UNLOCK(coveredvp); 1746 vdrop(coveredvp); 1747 } 1748 vfs_rel(mp); 1749 return (error); 1750 } 1751 1752 vfs_op_enter(mp); 1753 1754 vn_start_write(NULL, &mp, V_WAIT | V_MNTREF); 1755 MNT_ILOCK(mp); 1756 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 || 1757 (mp->mnt_flag & MNT_UPDATE) != 0 || 1758 !TAILQ_EMPTY(&mp->mnt_uppers)) { 1759 dounmount_cleanup(mp, coveredvp, 0); 1760 return (EBUSY); 1761 } 1762 mp->mnt_kern_flag |= MNTK_UNMOUNT; 1763 rootvp = vfs_cache_root_clear(mp); 1764 if (coveredvp != NULL) 1765 vn_seqc_write_begin(coveredvp); 1766 if (flags & MNT_NONBUSY) { 1767 MNT_IUNLOCK(mp); 1768 error = vfs_check_usecounts(mp); 1769 MNT_ILOCK(mp); 1770 if (error != 0) { 1771 vn_seqc_write_end(coveredvp); 1772 dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT); 1773 if (rootvp != NULL) { 1774 vn_seqc_write_end(rootvp); 1775 vrele(rootvp); 1776 } 1777 return (error); 1778 } 1779 } 1780 /* Allow filesystems to detect that a forced unmount is in progress. */ 1781 if (flags & MNT_FORCE) { 1782 mp->mnt_kern_flag |= MNTK_UNMOUNTF; 1783 MNT_IUNLOCK(mp); 1784 /* 1785 * Must be done after setting MNTK_UNMOUNTF and before 1786 * waiting for mnt_lockref to become 0. 1787 */ 1788 VFS_PURGE(mp); 1789 MNT_ILOCK(mp); 1790 } 1791 error = 0; 1792 if (mp->mnt_lockref) { 1793 mp->mnt_kern_flag |= MNTK_DRAINING; 1794 error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS, 1795 "mount drain", 0); 1796 } 1797 MNT_IUNLOCK(mp); 1798 KASSERT(mp->mnt_lockref == 0, 1799 ("%s: invalid lock refcount in the drain path @ %s:%d", 1800 __func__, __FILE__, __LINE__)); 1801 KASSERT(error == 0, 1802 ("%s: invalid return value for msleep in the drain path @ %s:%d", 1803 __func__, __FILE__, __LINE__)); 1804 1805 /* 1806 * We want to keep the vnode around so that we can vn_seqc_write_end 1807 * after we are done with unmount. Downgrade our reference to a mere 1808 * hold count so that we don't interefere with anything. 1809 */ 1810 if (rootvp != NULL) { 1811 vhold(rootvp); 1812 vrele(rootvp); 1813 } 1814 1815 if (mp->mnt_flag & MNT_EXPUBLIC) 1816 vfs_setpublicfs(NULL, NULL, NULL); 1817 1818 vfs_periodic(mp, MNT_WAIT); 1819 MNT_ILOCK(mp); 1820 async_flag = mp->mnt_flag & MNT_ASYNC; 1821 mp->mnt_flag &= ~MNT_ASYNC; 1822 mp->mnt_kern_flag &= ~MNTK_ASYNC; 1823 MNT_IUNLOCK(mp); 1824 vfs_deallocate_syncvnode(mp); 1825 error = VFS_UNMOUNT(mp, flags); 1826 vn_finished_write(mp); 1827 /* 1828 * If we failed to flush the dirty blocks for this mount point, 1829 * undo all the cdir/rdir and rootvnode changes we made above. 1830 * Unless we failed to do so because the device is reporting that 1831 * it doesn't exist anymore. 1832 */ 1833 if (error && error != ENXIO) { 1834 MNT_ILOCK(mp); 1835 if ((mp->mnt_flag & MNT_RDONLY) == 0) { 1836 MNT_IUNLOCK(mp); 1837 vfs_allocate_syncvnode(mp); 1838 MNT_ILOCK(mp); 1839 } 1840 mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF); 1841 mp->mnt_flag |= async_flag; 1842 if ((mp->mnt_flag & MNT_ASYNC) != 0 && 1843 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0) 1844 mp->mnt_kern_flag |= MNTK_ASYNC; 1845 if (mp->mnt_kern_flag & MNTK_MWAIT) { 1846 mp->mnt_kern_flag &= ~MNTK_MWAIT; 1847 wakeup(mp); 1848 } 1849 vfs_op_exit_locked(mp); 1850 MNT_IUNLOCK(mp); 1851 if (coveredvp) { 1852 vn_seqc_write_end(coveredvp); 1853 VOP_UNLOCK(coveredvp); 1854 vdrop(coveredvp); 1855 } 1856 if (rootvp != NULL) { 1857 vn_seqc_write_end(rootvp); 1858 vdrop(rootvp); 1859 } 1860 return (error); 1861 } 1862 mtx_lock(&mountlist_mtx); 1863 TAILQ_REMOVE(&mountlist, mp, mnt_list); 1864 mtx_unlock(&mountlist_mtx); 1865 EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td); 1866 if (coveredvp != NULL) { 1867 coveredvp->v_mountedhere = NULL; 1868 vn_seqc_write_end(coveredvp); 1869 VOP_UNLOCK(coveredvp); 1870 vdrop(coveredvp); 1871 } 1872 mount_devctl_event("UNMOUNT", mp, false); 1873 if (rootvp != NULL) { 1874 vn_seqc_write_end(rootvp); 1875 vdrop(rootvp); 1876 } 1877 vfs_event_signal(NULL, VQ_UNMOUNT, 0); 1878 if (rootvnode != NULL && mp == rootvnode->v_mount) { 1879 vrele(rootvnode); 1880 rootvnode = NULL; 1881 } 1882 if (mp == rootdevmp) 1883 rootdevmp = NULL; 1884 vfs_mount_destroy(mp); 1885 return (0); 1886 } 1887 1888 /* 1889 * Report errors during filesystem mounting. 1890 */ 1891 void 1892 vfs_mount_error(struct mount *mp, const char *fmt, ...) 1893 { 1894 struct vfsoptlist *moptlist = mp->mnt_optnew; 1895 va_list ap; 1896 int error, len; 1897 char *errmsg; 1898 1899 error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len); 1900 if (error || errmsg == NULL || len <= 0) 1901 return; 1902 1903 va_start(ap, fmt); 1904 vsnprintf(errmsg, (size_t)len, fmt, ap); 1905 va_end(ap); 1906 } 1907 1908 void 1909 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...) 1910 { 1911 va_list ap; 1912 int error, len; 1913 char *errmsg; 1914 1915 error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len); 1916 if (error || errmsg == NULL || len <= 0) 1917 return; 1918 1919 va_start(ap, fmt); 1920 vsnprintf(errmsg, (size_t)len, fmt, ap); 1921 va_end(ap); 1922 } 1923 1924 /* 1925 * --------------------------------------------------------------------- 1926 * Functions for querying mount options/arguments from filesystems. 1927 */ 1928 1929 /* 1930 * Check that no unknown options are given 1931 */ 1932 int 1933 vfs_filteropt(struct vfsoptlist *opts, const char **legal) 1934 { 1935 struct vfsopt *opt; 1936 char errmsg[255]; 1937 const char **t, *p, *q; 1938 int ret = 0; 1939 1940 TAILQ_FOREACH(opt, opts, link) { 1941 p = opt->name; 1942 q = NULL; 1943 if (p[0] == 'n' && p[1] == 'o') 1944 q = p + 2; 1945 for(t = global_opts; *t != NULL; t++) { 1946 if (strcmp(*t, p) == 0) 1947 break; 1948 if (q != NULL) { 1949 if (strcmp(*t, q) == 0) 1950 break; 1951 } 1952 } 1953 if (*t != NULL) 1954 continue; 1955 for(t = legal; *t != NULL; t++) { 1956 if (strcmp(*t, p) == 0) 1957 break; 1958 if (q != NULL) { 1959 if (strcmp(*t, q) == 0) 1960 break; 1961 } 1962 } 1963 if (*t != NULL) 1964 continue; 1965 snprintf(errmsg, sizeof(errmsg), 1966 "mount option <%s> is unknown", p); 1967 ret = EINVAL; 1968 } 1969 if (ret != 0) { 1970 TAILQ_FOREACH(opt, opts, link) { 1971 if (strcmp(opt->name, "errmsg") == 0) { 1972 strncpy((char *)opt->value, errmsg, opt->len); 1973 break; 1974 } 1975 } 1976 if (opt == NULL) 1977 printf("%s\n", errmsg); 1978 } 1979 return (ret); 1980 } 1981 1982 /* 1983 * Get a mount option by its name. 1984 * 1985 * Return 0 if the option was found, ENOENT otherwise. 1986 * If len is non-NULL it will be filled with the length 1987 * of the option. If buf is non-NULL, it will be filled 1988 * with the address of the option. 1989 */ 1990 int 1991 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len) 1992 { 1993 struct vfsopt *opt; 1994 1995 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL")); 1996 1997 TAILQ_FOREACH(opt, opts, link) { 1998 if (strcmp(name, opt->name) == 0) { 1999 opt->seen = 1; 2000 if (len != NULL) 2001 *len = opt->len; 2002 if (buf != NULL) 2003 *buf = opt->value; 2004 return (0); 2005 } 2006 } 2007 return (ENOENT); 2008 } 2009 2010 int 2011 vfs_getopt_pos(struct vfsoptlist *opts, const char *name) 2012 { 2013 struct vfsopt *opt; 2014 2015 if (opts == NULL) 2016 return (-1); 2017 2018 TAILQ_FOREACH(opt, opts, link) { 2019 if (strcmp(name, opt->name) == 0) { 2020 opt->seen = 1; 2021 return (opt->pos); 2022 } 2023 } 2024 return (-1); 2025 } 2026 2027 int 2028 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value) 2029 { 2030 char *opt_value, *vtp; 2031 quad_t iv; 2032 int error, opt_len; 2033 2034 error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len); 2035 if (error != 0) 2036 return (error); 2037 if (opt_len == 0 || opt_value == NULL) 2038 return (EINVAL); 2039 if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0') 2040 return (EINVAL); 2041 iv = strtoq(opt_value, &vtp, 0); 2042 if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0')) 2043 return (EINVAL); 2044 if (iv < 0) 2045 return (EINVAL); 2046 switch (vtp[0]) { 2047 case 't': case 'T': 2048 iv *= 1024; 2049 /* FALLTHROUGH */ 2050 case 'g': case 'G': 2051 iv *= 1024; 2052 /* FALLTHROUGH */ 2053 case 'm': case 'M': 2054 iv *= 1024; 2055 /* FALLTHROUGH */ 2056 case 'k': case 'K': 2057 iv *= 1024; 2058 case '\0': 2059 break; 2060 default: 2061 return (EINVAL); 2062 } 2063 *value = iv; 2064 2065 return (0); 2066 } 2067 2068 char * 2069 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error) 2070 { 2071 struct vfsopt *opt; 2072 2073 *error = 0; 2074 TAILQ_FOREACH(opt, opts, link) { 2075 if (strcmp(name, opt->name) != 0) 2076 continue; 2077 opt->seen = 1; 2078 if (opt->len == 0 || 2079 ((char *)opt->value)[opt->len - 1] != '\0') { 2080 *error = EINVAL; 2081 return (NULL); 2082 } 2083 return (opt->value); 2084 } 2085 *error = ENOENT; 2086 return (NULL); 2087 } 2088 2089 int 2090 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w, 2091 uint64_t val) 2092 { 2093 struct vfsopt *opt; 2094 2095 TAILQ_FOREACH(opt, opts, link) { 2096 if (strcmp(name, opt->name) == 0) { 2097 opt->seen = 1; 2098 if (w != NULL) 2099 *w |= val; 2100 return (1); 2101 } 2102 } 2103 if (w != NULL) 2104 *w &= ~val; 2105 return (0); 2106 } 2107 2108 int 2109 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...) 2110 { 2111 va_list ap; 2112 struct vfsopt *opt; 2113 int ret; 2114 2115 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL")); 2116 2117 TAILQ_FOREACH(opt, opts, link) { 2118 if (strcmp(name, opt->name) != 0) 2119 continue; 2120 opt->seen = 1; 2121 if (opt->len == 0 || opt->value == NULL) 2122 return (0); 2123 if (((char *)opt->value)[opt->len - 1] != '\0') 2124 return (0); 2125 va_start(ap, fmt); 2126 ret = vsscanf(opt->value, fmt, ap); 2127 va_end(ap); 2128 return (ret); 2129 } 2130 return (0); 2131 } 2132 2133 int 2134 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len) 2135 { 2136 struct vfsopt *opt; 2137 2138 TAILQ_FOREACH(opt, opts, link) { 2139 if (strcmp(name, opt->name) != 0) 2140 continue; 2141 opt->seen = 1; 2142 if (opt->value == NULL) 2143 opt->len = len; 2144 else { 2145 if (opt->len != len) 2146 return (EINVAL); 2147 bcopy(value, opt->value, len); 2148 } 2149 return (0); 2150 } 2151 return (ENOENT); 2152 } 2153 2154 int 2155 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len) 2156 { 2157 struct vfsopt *opt; 2158 2159 TAILQ_FOREACH(opt, opts, link) { 2160 if (strcmp(name, opt->name) != 0) 2161 continue; 2162 opt->seen = 1; 2163 if (opt->value == NULL) 2164 opt->len = len; 2165 else { 2166 if (opt->len < len) 2167 return (EINVAL); 2168 opt->len = len; 2169 bcopy(value, opt->value, len); 2170 } 2171 return (0); 2172 } 2173 return (ENOENT); 2174 } 2175 2176 int 2177 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value) 2178 { 2179 struct vfsopt *opt; 2180 2181 TAILQ_FOREACH(opt, opts, link) { 2182 if (strcmp(name, opt->name) != 0) 2183 continue; 2184 opt->seen = 1; 2185 if (opt->value == NULL) 2186 opt->len = strlen(value) + 1; 2187 else if (strlcpy(opt->value, value, opt->len) >= opt->len) 2188 return (EINVAL); 2189 return (0); 2190 } 2191 return (ENOENT); 2192 } 2193 2194 /* 2195 * Find and copy a mount option. 2196 * 2197 * The size of the buffer has to be specified 2198 * in len, if it is not the same length as the 2199 * mount option, EINVAL is returned. 2200 * Returns ENOENT if the option is not found. 2201 */ 2202 int 2203 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len) 2204 { 2205 struct vfsopt *opt; 2206 2207 KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL")); 2208 2209 TAILQ_FOREACH(opt, opts, link) { 2210 if (strcmp(name, opt->name) == 0) { 2211 opt->seen = 1; 2212 if (len != opt->len) 2213 return (EINVAL); 2214 bcopy(opt->value, dest, opt->len); 2215 return (0); 2216 } 2217 } 2218 return (ENOENT); 2219 } 2220 2221 int 2222 __vfs_statfs(struct mount *mp, struct statfs *sbp) 2223 { 2224 2225 /* 2226 * Filesystems only fill in part of the structure for updates, we 2227 * have to read the entirety first to get all content. 2228 */ 2229 if (sbp != &mp->mnt_stat) 2230 memcpy(sbp, &mp->mnt_stat, sizeof(*sbp)); 2231 2232 /* 2233 * Set these in case the underlying filesystem fails to do so. 2234 */ 2235 sbp->f_version = STATFS_VERSION; 2236 sbp->f_namemax = NAME_MAX; 2237 sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK; 2238 2239 return (mp->mnt_op->vfs_statfs(mp, sbp)); 2240 } 2241 2242 void 2243 vfs_mountedfrom(struct mount *mp, const char *from) 2244 { 2245 2246 bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname); 2247 strlcpy(mp->mnt_stat.f_mntfromname, from, 2248 sizeof mp->mnt_stat.f_mntfromname); 2249 } 2250 2251 /* 2252 * --------------------------------------------------------------------- 2253 * This is the api for building mount args and mounting filesystems from 2254 * inside the kernel. 2255 * 2256 * The API works by accumulation of individual args. First error is 2257 * latched. 2258 * 2259 * XXX: should be documented in new manpage kernel_mount(9) 2260 */ 2261 2262 /* A memory allocation which must be freed when we are done */ 2263 struct mntaarg { 2264 SLIST_ENTRY(mntaarg) next; 2265 }; 2266 2267 /* The header for the mount arguments */ 2268 struct mntarg { 2269 struct iovec *v; 2270 int len; 2271 int error; 2272 SLIST_HEAD(, mntaarg) list; 2273 }; 2274 2275 /* 2276 * Add a boolean argument. 2277 * 2278 * flag is the boolean value. 2279 * name must start with "no". 2280 */ 2281 struct mntarg * 2282 mount_argb(struct mntarg *ma, int flag, const char *name) 2283 { 2284 2285 KASSERT(name[0] == 'n' && name[1] == 'o', 2286 ("mount_argb(...,%s): name must start with 'no'", name)); 2287 2288 return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0)); 2289 } 2290 2291 /* 2292 * Add an argument printf style 2293 */ 2294 struct mntarg * 2295 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...) 2296 { 2297 va_list ap; 2298 struct mntaarg *maa; 2299 struct sbuf *sb; 2300 int len; 2301 2302 if (ma == NULL) { 2303 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO); 2304 SLIST_INIT(&ma->list); 2305 } 2306 if (ma->error) 2307 return (ma); 2308 2309 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2), 2310 M_MOUNT, M_WAITOK); 2311 ma->v[ma->len].iov_base = (void *)(uintptr_t)name; 2312 ma->v[ma->len].iov_len = strlen(name) + 1; 2313 ma->len++; 2314 2315 sb = sbuf_new_auto(); 2316 va_start(ap, fmt); 2317 sbuf_vprintf(sb, fmt, ap); 2318 va_end(ap); 2319 sbuf_finish(sb); 2320 len = sbuf_len(sb) + 1; 2321 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO); 2322 SLIST_INSERT_HEAD(&ma->list, maa, next); 2323 bcopy(sbuf_data(sb), maa + 1, len); 2324 sbuf_delete(sb); 2325 2326 ma->v[ma->len].iov_base = maa + 1; 2327 ma->v[ma->len].iov_len = len; 2328 ma->len++; 2329 2330 return (ma); 2331 } 2332 2333 /* 2334 * Add an argument which is a userland string. 2335 */ 2336 struct mntarg * 2337 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len) 2338 { 2339 struct mntaarg *maa; 2340 char *tbuf; 2341 2342 if (val == NULL) 2343 return (ma); 2344 if (ma == NULL) { 2345 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO); 2346 SLIST_INIT(&ma->list); 2347 } 2348 if (ma->error) 2349 return (ma); 2350 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO); 2351 SLIST_INSERT_HEAD(&ma->list, maa, next); 2352 tbuf = (void *)(maa + 1); 2353 ma->error = copyinstr(val, tbuf, len, NULL); 2354 return (mount_arg(ma, name, tbuf, -1)); 2355 } 2356 2357 /* 2358 * Plain argument. 2359 * 2360 * If length is -1, treat value as a C string. 2361 */ 2362 struct mntarg * 2363 mount_arg(struct mntarg *ma, const char *name, const void *val, int len) 2364 { 2365 2366 if (ma == NULL) { 2367 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO); 2368 SLIST_INIT(&ma->list); 2369 } 2370 if (ma->error) 2371 return (ma); 2372 2373 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2), 2374 M_MOUNT, M_WAITOK); 2375 ma->v[ma->len].iov_base = (void *)(uintptr_t)name; 2376 ma->v[ma->len].iov_len = strlen(name) + 1; 2377 ma->len++; 2378 2379 ma->v[ma->len].iov_base = (void *)(uintptr_t)val; 2380 if (len < 0) 2381 ma->v[ma->len].iov_len = strlen(val) + 1; 2382 else 2383 ma->v[ma->len].iov_len = len; 2384 ma->len++; 2385 return (ma); 2386 } 2387 2388 /* 2389 * Free a mntarg structure 2390 */ 2391 static void 2392 free_mntarg(struct mntarg *ma) 2393 { 2394 struct mntaarg *maa; 2395 2396 while (!SLIST_EMPTY(&ma->list)) { 2397 maa = SLIST_FIRST(&ma->list); 2398 SLIST_REMOVE_HEAD(&ma->list, next); 2399 free(maa, M_MOUNT); 2400 } 2401 free(ma->v, M_MOUNT); 2402 free(ma, M_MOUNT); 2403 } 2404 2405 /* 2406 * Mount a filesystem 2407 */ 2408 int 2409 kernel_mount(struct mntarg *ma, uint64_t flags) 2410 { 2411 struct uio auio; 2412 int error; 2413 2414 KASSERT(ma != NULL, ("kernel_mount NULL ma")); 2415 KASSERT(ma->v != NULL, ("kernel_mount NULL ma->v")); 2416 KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len)); 2417 2418 auio.uio_iov = ma->v; 2419 auio.uio_iovcnt = ma->len; 2420 auio.uio_segflg = UIO_SYSSPACE; 2421 2422 error = ma->error; 2423 if (!error) 2424 error = vfs_donmount(curthread, flags, &auio); 2425 free_mntarg(ma); 2426 return (error); 2427 } 2428 2429 /* 2430 * A printflike function to mount a filesystem. 2431 */ 2432 int 2433 kernel_vmount(int flags, ...) 2434 { 2435 struct mntarg *ma = NULL; 2436 va_list ap; 2437 const char *cp; 2438 const void *vp; 2439 int error; 2440 2441 va_start(ap, flags); 2442 for (;;) { 2443 cp = va_arg(ap, const char *); 2444 if (cp == NULL) 2445 break; 2446 vp = va_arg(ap, const void *); 2447 ma = mount_arg(ma, cp, vp, (vp != NULL ? -1 : 0)); 2448 } 2449 va_end(ap); 2450 2451 error = kernel_mount(ma, flags); 2452 return (error); 2453 } 2454 2455 /* Map from mount options to printable formats. */ 2456 static struct mntoptnames optnames[] = { 2457 MNTOPT_NAMES 2458 }; 2459 2460 static void 2461 mount_devctl_event_mntopt(struct sbuf *sb, const char *what, struct vfsoptlist *opts) 2462 { 2463 struct vfsopt *opt; 2464 2465 if (opts == NULL || TAILQ_EMPTY(opts)) 2466 return; 2467 sbuf_printf(sb, " %s=\"", what); 2468 TAILQ_FOREACH(opt, opts, link) { 2469 if (opt->name[0] == '\0' || (opt->len > 0 && *(char *)opt->value == '\0')) 2470 continue; 2471 devctl_safe_quote_sb(sb, opt->name); 2472 if (opt->len > 0) { 2473 sbuf_putc(sb, '='); 2474 devctl_safe_quote_sb(sb, opt->value); 2475 } 2476 sbuf_putc(sb, ';'); 2477 } 2478 sbuf_putc(sb, '"'); 2479 } 2480 2481 #define DEVCTL_LEN 1024 2482 static void 2483 mount_devctl_event(const char *type, struct mount *mp, bool donew) 2484 { 2485 const uint8_t *cp; 2486 struct mntoptnames *fp; 2487 struct sbuf sb; 2488 struct statfs *sfp = &mp->mnt_stat; 2489 char *buf; 2490 2491 buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT); 2492 if (buf == NULL) 2493 return; 2494 sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN); 2495 sbuf_cpy(&sb, "mount-point=\""); 2496 devctl_safe_quote_sb(&sb, sfp->f_mntonname); 2497 sbuf_cat(&sb, "\" mount-dev=\""); 2498 devctl_safe_quote_sb(&sb, sfp->f_mntfromname); 2499 sbuf_cat(&sb, "\" mount-type=\""); 2500 devctl_safe_quote_sb(&sb, sfp->f_fstypename); 2501 sbuf_cat(&sb, "\" fsid=0x"); 2502 cp = (const uint8_t *)&sfp->f_fsid.val[0]; 2503 for (int i = 0; i < sizeof(sfp->f_fsid); i++) 2504 sbuf_printf(&sb, "%02x", cp[i]); 2505 sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner); 2506 for (fp = optnames; fp->o_opt != 0; fp++) { 2507 if ((mp->mnt_flag & fp->o_opt) != 0) { 2508 sbuf_cat(&sb, fp->o_name); 2509 sbuf_putc(&sb, ';'); 2510 } 2511 } 2512 sbuf_putc(&sb, '"'); 2513 mount_devctl_event_mntopt(&sb, "opt", mp->mnt_opt); 2514 if (donew) 2515 mount_devctl_event_mntopt(&sb, "optnew", mp->mnt_optnew); 2516 sbuf_finish(&sb); 2517 2518 if (sbuf_error(&sb) == 0) 2519 devctl_notify("VFS", "FS", type, sbuf_data(&sb)); 2520 sbuf_delete(&sb); 2521 free(buf, M_MOUNT); 2522 } 2523 2524 /* 2525 * Suspend write operations on all local writeable filesystems. Does 2526 * full sync of them in the process. 2527 * 2528 * Iterate over the mount points in reverse order, suspending most 2529 * recently mounted filesystems first. It handles a case where a 2530 * filesystem mounted from a md(4) vnode-backed device should be 2531 * suspended before the filesystem that owns the vnode. 2532 */ 2533 void 2534 suspend_all_fs(void) 2535 { 2536 struct mount *mp; 2537 int error; 2538 2539 mtx_lock(&mountlist_mtx); 2540 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) { 2541 error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT); 2542 if (error != 0) 2543 continue; 2544 if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL || 2545 (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 2546 mtx_lock(&mountlist_mtx); 2547 vfs_unbusy(mp); 2548 continue; 2549 } 2550 error = vfs_write_suspend(mp, 0); 2551 if (error == 0) { 2552 MNT_ILOCK(mp); 2553 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0); 2554 mp->mnt_kern_flag |= MNTK_SUSPEND_ALL; 2555 MNT_IUNLOCK(mp); 2556 mtx_lock(&mountlist_mtx); 2557 } else { 2558 printf("suspend of %s failed, error %d\n", 2559 mp->mnt_stat.f_mntonname, error); 2560 mtx_lock(&mountlist_mtx); 2561 vfs_unbusy(mp); 2562 } 2563 } 2564 mtx_unlock(&mountlist_mtx); 2565 } 2566 2567 void 2568 resume_all_fs(void) 2569 { 2570 struct mount *mp; 2571 2572 mtx_lock(&mountlist_mtx); 2573 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2574 if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0) 2575 continue; 2576 mtx_unlock(&mountlist_mtx); 2577 MNT_ILOCK(mp); 2578 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0); 2579 mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL; 2580 MNT_IUNLOCK(mp); 2581 vfs_write_resume(mp, 0); 2582 mtx_lock(&mountlist_mtx); 2583 vfs_unbusy(mp); 2584 } 2585 mtx_unlock(&mountlist_mtx); 2586 } 2587