xref: /freebsd/sys/kern/vfs_mount.c (revision 031beb4e239bfce798af17f5fe8dba8bcaf13d99)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1999-2004 Poul-Henning Kamp
5  * Copyright (c) 1999 Michael Smith
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include <sys/param.h>
41 #include <sys/conf.h>
42 #include <sys/smp.h>
43 #include <sys/devctl.h>
44 #include <sys/eventhandler.h>
45 #include <sys/fcntl.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/libkern.h>
50 #include <sys/limits.h>
51 #include <sys/malloc.h>
52 #include <sys/mount.h>
53 #include <sys/mutex.h>
54 #include <sys/namei.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/filedesc.h>
58 #include <sys/reboot.h>
59 #include <sys/sbuf.h>
60 #include <sys/syscallsubr.h>
61 #include <sys/sysproto.h>
62 #include <sys/sx.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/taskqueue.h>
66 #include <sys/vnode.h>
67 #include <vm/uma.h>
68 
69 #include <geom/geom.h>
70 
71 #include <machine/stdarg.h>
72 
73 #include <security/audit/audit.h>
74 #include <security/mac/mac_framework.h>
75 
76 #define	VFS_MOUNTARG_SIZE_MAX	(1024 * 64)
77 
78 static int	vfs_domount(struct thread *td, const char *fstype, char *fspath,
79 		    uint64_t fsflags, bool jail_export,
80 		    struct vfsoptlist **optlist);
81 static void	free_mntarg(struct mntarg *ma);
82 
83 static int	usermount = 0;
84 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
85     "Unprivileged users may mount and unmount file systems");
86 
87 static bool	default_autoro = false;
88 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
89     "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
90 
91 static bool	recursive_forced_unmount = false;
92 SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
93     &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
94     " when a file system is forcibly unmounted");
95 
96 static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
97     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
98 
99 static unsigned int	deferred_unmount_retry_limit = 10;
100 SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
101     &deferred_unmount_retry_limit, 0,
102     "Maximum number of retries for deferred unmount failure");
103 
104 static int	deferred_unmount_retry_delay_hz;
105 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
106     &deferred_unmount_retry_delay_hz, 0,
107     "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
108 
109 static int	deferred_unmount_total_retries = 0;
110 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
111     &deferred_unmount_total_retries, 0,
112     "Total number of retried deferred unmounts");
113 
114 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
115 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
116 static uma_zone_t mount_zone;
117 
118 /* List of mounted filesystems. */
119 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
120 
121 /* For any iteration/modification of mountlist */
122 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
123 
124 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
125 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
126 
127 static void vfs_deferred_unmount(void *arg, int pending);
128 static struct timeout_task deferred_unmount_task;
129 static struct mtx deferred_unmount_lock;
130 MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
131     MTX_DEF);
132 static STAILQ_HEAD(, mount) deferred_unmount_list =
133     STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
134 TASKQUEUE_DEFINE_THREAD(deferred_unmount);
135 
136 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
137 
138 /*
139  * Global opts, taken by all filesystems
140  */
141 static const char *global_opts[] = {
142 	"errmsg",
143 	"fstype",
144 	"fspath",
145 	"ro",
146 	"rw",
147 	"nosuid",
148 	"noexec",
149 	NULL
150 };
151 
152 static int
153 mount_init(void *mem, int size, int flags)
154 {
155 	struct mount *mp;
156 
157 	mp = (struct mount *)mem;
158 	mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
159 	mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
160 	lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
161 	mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
162 	mp->mnt_ref = 0;
163 	mp->mnt_vfs_ops = 1;
164 	mp->mnt_rootvnode = NULL;
165 	return (0);
166 }
167 
168 static void
169 mount_fini(void *mem, int size)
170 {
171 	struct mount *mp;
172 
173 	mp = (struct mount *)mem;
174 	uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
175 	lockdestroy(&mp->mnt_explock);
176 	mtx_destroy(&mp->mnt_listmtx);
177 	mtx_destroy(&mp->mnt_mtx);
178 }
179 
180 static void
181 vfs_mount_init(void *dummy __unused)
182 {
183 	TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
184 	    0, vfs_deferred_unmount, NULL);
185 	deferred_unmount_retry_delay_hz = hz;
186 	mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
187 	    NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
188 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
189 }
190 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
191 
192 /*
193  * ---------------------------------------------------------------------
194  * Functions for building and sanitizing the mount options
195  */
196 
197 /* Remove one mount option. */
198 static void
199 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
200 {
201 
202 	TAILQ_REMOVE(opts, opt, link);
203 	free(opt->name, M_MOUNT);
204 	if (opt->value != NULL)
205 		free(opt->value, M_MOUNT);
206 	free(opt, M_MOUNT);
207 }
208 
209 /* Release all resources related to the mount options. */
210 void
211 vfs_freeopts(struct vfsoptlist *opts)
212 {
213 	struct vfsopt *opt;
214 
215 	while (!TAILQ_EMPTY(opts)) {
216 		opt = TAILQ_FIRST(opts);
217 		vfs_freeopt(opts, opt);
218 	}
219 	free(opts, M_MOUNT);
220 }
221 
222 void
223 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
224 {
225 	struct vfsopt *opt, *temp;
226 
227 	if (opts == NULL)
228 		return;
229 	TAILQ_FOREACH_SAFE(opt, opts, link, temp)  {
230 		if (strcmp(opt->name, name) == 0)
231 			vfs_freeopt(opts, opt);
232 	}
233 }
234 
235 static int
236 vfs_isopt_ro(const char *opt)
237 {
238 
239 	if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
240 	    strcmp(opt, "norw") == 0)
241 		return (1);
242 	return (0);
243 }
244 
245 static int
246 vfs_isopt_rw(const char *opt)
247 {
248 
249 	if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
250 		return (1);
251 	return (0);
252 }
253 
254 /*
255  * Check if options are equal (with or without the "no" prefix).
256  */
257 static int
258 vfs_equalopts(const char *opt1, const char *opt2)
259 {
260 	char *p;
261 
262 	/* "opt" vs. "opt" or "noopt" vs. "noopt" */
263 	if (strcmp(opt1, opt2) == 0)
264 		return (1);
265 	/* "noopt" vs. "opt" */
266 	if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
267 		return (1);
268 	/* "opt" vs. "noopt" */
269 	if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
270 		return (1);
271 	while ((p = strchr(opt1, '.')) != NULL &&
272 	    !strncmp(opt1, opt2, ++p - opt1)) {
273 		opt2 += p - opt1;
274 		opt1 = p;
275 		/* "foo.noopt" vs. "foo.opt" */
276 		if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
277 			return (1);
278 		/* "foo.opt" vs. "foo.noopt" */
279 		if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
280 			return (1);
281 	}
282 	/* "ro" / "rdonly" / "norw" / "rw" / "noro" */
283 	if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
284 	    (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
285 		return (1);
286 	return (0);
287 }
288 
289 /*
290  * If a mount option is specified several times,
291  * (with or without the "no" prefix) only keep
292  * the last occurrence of it.
293  */
294 static void
295 vfs_sanitizeopts(struct vfsoptlist *opts)
296 {
297 	struct vfsopt *opt, *opt2, *tmp;
298 
299 	TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
300 		opt2 = TAILQ_PREV(opt, vfsoptlist, link);
301 		while (opt2 != NULL) {
302 			if (vfs_equalopts(opt->name, opt2->name)) {
303 				tmp = TAILQ_PREV(opt2, vfsoptlist, link);
304 				vfs_freeopt(opts, opt2);
305 				opt2 = tmp;
306 			} else {
307 				opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
308 			}
309 		}
310 	}
311 }
312 
313 /*
314  * Build a linked list of mount options from a struct uio.
315  */
316 int
317 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
318 {
319 	struct vfsoptlist *opts;
320 	struct vfsopt *opt;
321 	size_t memused, namelen, optlen;
322 	unsigned int i, iovcnt;
323 	int error;
324 
325 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
326 	TAILQ_INIT(opts);
327 	memused = 0;
328 	iovcnt = auio->uio_iovcnt;
329 	for (i = 0; i < iovcnt; i += 2) {
330 		namelen = auio->uio_iov[i].iov_len;
331 		optlen = auio->uio_iov[i + 1].iov_len;
332 		memused += sizeof(struct vfsopt) + optlen + namelen;
333 		/*
334 		 * Avoid consuming too much memory, and attempts to overflow
335 		 * memused.
336 		 */
337 		if (memused > VFS_MOUNTARG_SIZE_MAX ||
338 		    optlen > VFS_MOUNTARG_SIZE_MAX ||
339 		    namelen > VFS_MOUNTARG_SIZE_MAX) {
340 			error = EINVAL;
341 			goto bad;
342 		}
343 
344 		opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
345 		opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
346 		opt->value = NULL;
347 		opt->len = 0;
348 		opt->pos = i / 2;
349 		opt->seen = 0;
350 
351 		/*
352 		 * Do this early, so jumps to "bad" will free the current
353 		 * option.
354 		 */
355 		TAILQ_INSERT_TAIL(opts, opt, link);
356 
357 		if (auio->uio_segflg == UIO_SYSSPACE) {
358 			bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
359 		} else {
360 			error = copyin(auio->uio_iov[i].iov_base, opt->name,
361 			    namelen);
362 			if (error)
363 				goto bad;
364 		}
365 		/* Ensure names are null-terminated strings. */
366 		if (namelen == 0 || opt->name[namelen - 1] != '\0') {
367 			error = EINVAL;
368 			goto bad;
369 		}
370 		if (optlen != 0) {
371 			opt->len = optlen;
372 			opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
373 			if (auio->uio_segflg == UIO_SYSSPACE) {
374 				bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
375 				    optlen);
376 			} else {
377 				error = copyin(auio->uio_iov[i + 1].iov_base,
378 				    opt->value, optlen);
379 				if (error)
380 					goto bad;
381 			}
382 		}
383 	}
384 	vfs_sanitizeopts(opts);
385 	*options = opts;
386 	return (0);
387 bad:
388 	vfs_freeopts(opts);
389 	return (error);
390 }
391 
392 /*
393  * Merge the old mount options with the new ones passed
394  * in the MNT_UPDATE case.
395  *
396  * XXX: This function will keep a "nofoo" option in the new
397  * options.  E.g, if the option's canonical name is "foo",
398  * "nofoo" ends up in the mount point's active options.
399  */
400 static void
401 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
402 {
403 	struct vfsopt *opt, *new;
404 
405 	TAILQ_FOREACH(opt, oldopts, link) {
406 		new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
407 		new->name = strdup(opt->name, M_MOUNT);
408 		if (opt->len != 0) {
409 			new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
410 			bcopy(opt->value, new->value, opt->len);
411 		} else
412 			new->value = NULL;
413 		new->len = opt->len;
414 		new->seen = opt->seen;
415 		TAILQ_INSERT_HEAD(toopts, new, link);
416 	}
417 	vfs_sanitizeopts(toopts);
418 }
419 
420 /*
421  * Mount a filesystem.
422  */
423 #ifndef _SYS_SYSPROTO_H_
424 struct nmount_args {
425 	struct iovec *iovp;
426 	unsigned int iovcnt;
427 	int flags;
428 };
429 #endif
430 int
431 sys_nmount(struct thread *td, struct nmount_args *uap)
432 {
433 	struct uio *auio;
434 	int error;
435 	u_int iovcnt;
436 	uint64_t flags;
437 
438 	/*
439 	 * Mount flags are now 64-bits. On 32-bit archtectures only
440 	 * 32-bits are passed in, but from here on everything handles
441 	 * 64-bit flags correctly.
442 	 */
443 	flags = uap->flags;
444 
445 	AUDIT_ARG_FFLAGS(flags);
446 	CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
447 	    uap->iovp, uap->iovcnt, flags);
448 
449 	/*
450 	 * Filter out MNT_ROOTFS.  We do not want clients of nmount() in
451 	 * userspace to set this flag, but we must filter it out if we want
452 	 * MNT_UPDATE on the root file system to work.
453 	 * MNT_ROOTFS should only be set by the kernel when mounting its
454 	 * root file system.
455 	 */
456 	flags &= ~MNT_ROOTFS;
457 
458 	iovcnt = uap->iovcnt;
459 	/*
460 	 * Check that we have an even number of iovec's
461 	 * and that we have at least two options.
462 	 */
463 	if ((iovcnt & 1) || (iovcnt < 4)) {
464 		CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
465 		    uap->iovcnt);
466 		return (EINVAL);
467 	}
468 
469 	error = copyinuio(uap->iovp, iovcnt, &auio);
470 	if (error) {
471 		CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
472 		    __func__, error);
473 		return (error);
474 	}
475 	error = vfs_donmount(td, flags, auio);
476 
477 	free(auio, M_IOV);
478 	return (error);
479 }
480 
481 /*
482  * ---------------------------------------------------------------------
483  * Various utility functions
484  */
485 
486 /*
487  * Get a reference on a mount point from a vnode.
488  *
489  * The vnode is allowed to be passed unlocked and race against dooming. Note in
490  * such case there are no guarantees the referenced mount point will still be
491  * associated with it after the function returns.
492  */
493 struct mount *
494 vfs_ref_from_vp(struct vnode *vp)
495 {
496 	struct mount *mp;
497 	struct mount_pcpu *mpcpu;
498 
499 	mp = atomic_load_ptr(&vp->v_mount);
500 	if (__predict_false(mp == NULL)) {
501 		return (mp);
502 	}
503 	if (vfs_op_thread_enter(mp, mpcpu)) {
504 		if (__predict_true(mp == vp->v_mount)) {
505 			vfs_mp_count_add_pcpu(mpcpu, ref, 1);
506 			vfs_op_thread_exit(mp, mpcpu);
507 		} else {
508 			vfs_op_thread_exit(mp, mpcpu);
509 			mp = NULL;
510 		}
511 	} else {
512 		MNT_ILOCK(mp);
513 		if (mp == vp->v_mount) {
514 			MNT_REF(mp);
515 			MNT_IUNLOCK(mp);
516 		} else {
517 			MNT_IUNLOCK(mp);
518 			mp = NULL;
519 		}
520 	}
521 	return (mp);
522 }
523 
524 void
525 vfs_ref(struct mount *mp)
526 {
527 	struct mount_pcpu *mpcpu;
528 
529 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
530 	if (vfs_op_thread_enter(mp, mpcpu)) {
531 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
532 		vfs_op_thread_exit(mp, mpcpu);
533 		return;
534 	}
535 
536 	MNT_ILOCK(mp);
537 	MNT_REF(mp);
538 	MNT_IUNLOCK(mp);
539 }
540 
541 /*
542  * Register ump as an upper mount of the mount associated with
543  * vnode vp.  This registration will be tracked through
544  * mount_upper_node upper, which should be allocated by the
545  * caller and stored in per-mount data associated with mp.
546  *
547  * If successful, this function will return the mount associated
548  * with vp, and will ensure that it cannot be unmounted until
549  * ump has been unregistered as one of its upper mounts.
550  *
551  * Upon failure this function will return NULL.
552  */
553 struct mount *
554 vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
555     struct mount_upper_node *upper)
556 {
557 	struct mount *mp;
558 
559 	mp = atomic_load_ptr(&vp->v_mount);
560 	if (mp == NULL)
561 		return (NULL);
562 	MNT_ILOCK(mp);
563 	if (mp != vp->v_mount ||
564 	    ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
565 		MNT_IUNLOCK(mp);
566 		return (NULL);
567 	}
568 	KASSERT(ump != mp, ("upper and lower mounts are identical"));
569 	upper->mp = ump;
570 	MNT_REF(mp);
571 	TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
572 	MNT_IUNLOCK(mp);
573 	return (mp);
574 }
575 
576 /*
577  * Register upper mount ump to receive vnode unlink/reclaim
578  * notifications from lower mount mp. This registration will
579  * be tracked through mount_upper_node upper, which should be
580  * allocated by the caller and stored in per-mount data
581  * associated with mp.
582  *
583  * ump must already be registered as an upper mount of mp
584  * through a call to vfs_register_upper_from_vp().
585  */
586 void
587 vfs_register_for_notification(struct mount *mp, struct mount *ump,
588     struct mount_upper_node *upper)
589 {
590 	upper->mp = ump;
591 	MNT_ILOCK(mp);
592 	TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
593 	MNT_IUNLOCK(mp);
594 }
595 
596 static void
597 vfs_drain_upper_locked(struct mount *mp)
598 {
599 	mtx_assert(MNT_MTX(mp), MA_OWNED);
600 	while (mp->mnt_upper_pending != 0) {
601 		mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
602 		msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
603 	}
604 }
605 
606 /*
607  * Undo a previous call to vfs_register_for_notification().
608  * The mount represented by upper must be currently registered
609  * as an upper mount for mp.
610  */
611 void
612 vfs_unregister_for_notification(struct mount *mp,
613     struct mount_upper_node *upper)
614 {
615 	MNT_ILOCK(mp);
616 	vfs_drain_upper_locked(mp);
617 	TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
618 	MNT_IUNLOCK(mp);
619 }
620 
621 /*
622  * Undo a previous call to vfs_register_upper_from_vp().
623  * This must be done before mp can be unmounted.
624  */
625 void
626 vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
627 {
628 	MNT_ILOCK(mp);
629 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
630 	    ("registered upper with pending unmount"));
631 	vfs_drain_upper_locked(mp);
632 	TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
633 	if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
634 	    TAILQ_EMPTY(&mp->mnt_uppers)) {
635 		mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
636 		wakeup(&mp->mnt_taskqueue_link);
637 	}
638 	MNT_REL(mp);
639 	MNT_IUNLOCK(mp);
640 }
641 
642 void
643 vfs_rel(struct mount *mp)
644 {
645 	struct mount_pcpu *mpcpu;
646 
647 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
648 	if (vfs_op_thread_enter(mp, mpcpu)) {
649 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
650 		vfs_op_thread_exit(mp, mpcpu);
651 		return;
652 	}
653 
654 	MNT_ILOCK(mp);
655 	MNT_REL(mp);
656 	MNT_IUNLOCK(mp);
657 }
658 
659 /*
660  * Allocate and initialize the mount point struct.
661  */
662 struct mount *
663 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
664     struct ucred *cred)
665 {
666 	struct mount *mp;
667 
668 	mp = uma_zalloc(mount_zone, M_WAITOK);
669 	bzero(&mp->mnt_startzero,
670 	    __rangeof(struct mount, mnt_startzero, mnt_endzero));
671 	mp->mnt_kern_flag = 0;
672 	mp->mnt_flag = 0;
673 	mp->mnt_rootvnode = NULL;
674 	mp->mnt_vnodecovered = NULL;
675 	mp->mnt_op = NULL;
676 	mp->mnt_vfc = NULL;
677 	TAILQ_INIT(&mp->mnt_nvnodelist);
678 	mp->mnt_nvnodelistsize = 0;
679 	TAILQ_INIT(&mp->mnt_lazyvnodelist);
680 	mp->mnt_lazyvnodelistsize = 0;
681 	MPPASS(mp->mnt_ref == 0 && mp->mnt_lockref == 0 &&
682 	    mp->mnt_writeopcount == 0, mp);
683 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
684 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
685 	(void) vfs_busy(mp, MBF_NOWAIT);
686 	atomic_add_acq_int(&vfsp->vfc_refcount, 1);
687 	mp->mnt_op = vfsp->vfc_vfsops;
688 	mp->mnt_vfc = vfsp;
689 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
690 	mp->mnt_gen++;
691 	strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
692 	mp->mnt_vnodecovered = vp;
693 	mp->mnt_cred = crdup(cred);
694 	mp->mnt_stat.f_owner = cred->cr_uid;
695 	strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
696 	mp->mnt_iosize_max = DFLTPHYS;
697 #ifdef MAC
698 	mac_mount_init(mp);
699 	mac_mount_create(cred, mp);
700 #endif
701 	arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
702 	mp->mnt_upper_pending = 0;
703 	TAILQ_INIT(&mp->mnt_uppers);
704 	TAILQ_INIT(&mp->mnt_notify);
705 	mp->mnt_taskqueue_flags = 0;
706 	mp->mnt_unmount_retries = 0;
707 	return (mp);
708 }
709 
710 /*
711  * Destroy the mount struct previously allocated by vfs_mount_alloc().
712  */
713 void
714 vfs_mount_destroy(struct mount *mp)
715 {
716 
717 	MPPASS(mp->mnt_vfs_ops != 0, mp);
718 
719 	vfs_assert_mount_counters(mp);
720 
721 	MNT_ILOCK(mp);
722 	mp->mnt_kern_flag |= MNTK_REFEXPIRE;
723 	if (mp->mnt_kern_flag & MNTK_MWAIT) {
724 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
725 		wakeup(mp);
726 	}
727 	while (mp->mnt_ref)
728 		msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
729 	KASSERT(mp->mnt_ref == 0,
730 	    ("%s: invalid refcount in the drain path @ %s:%d", __func__,
731 	    __FILE__, __LINE__));
732 	MPPASS(mp->mnt_writeopcount == 0, mp);
733 	MPPASS(mp->mnt_secondary_writes == 0, mp);
734 	atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
735 	if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
736 		struct vnode *vp;
737 
738 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
739 			vn_printf(vp, "dangling vnode ");
740 		panic("unmount: dangling vnode");
741 	}
742 	KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
743 	KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
744 	KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
745 	MPPASS(mp->mnt_nvnodelistsize == 0, mp);
746 	MPPASS(mp->mnt_lazyvnodelistsize == 0, mp);
747 	MPPASS(mp->mnt_lockref == 0, mp);
748 	MNT_IUNLOCK(mp);
749 
750 	MPASSERT(mp->mnt_vfs_ops == 1, mp,
751 	    ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
752 
753 	MPASSERT(mp->mnt_rootvnode == NULL, mp,
754 	    ("mount point still has a root vnode %p", mp->mnt_rootvnode));
755 
756 	if (mp->mnt_vnodecovered != NULL)
757 		vrele(mp->mnt_vnodecovered);
758 #ifdef MAC
759 	mac_mount_destroy(mp);
760 #endif
761 	if (mp->mnt_opt != NULL)
762 		vfs_freeopts(mp->mnt_opt);
763 	if (mp->mnt_exjail != NULL) {
764 		atomic_subtract_int(&mp->mnt_exjail->cr_prison->pr_exportcnt,
765 		    1);
766 		crfree(mp->mnt_exjail);
767 	}
768 	if (mp->mnt_export != NULL) {
769 		vfs_free_addrlist(mp->mnt_export);
770 		free(mp->mnt_export, M_MOUNT);
771 	}
772 	crfree(mp->mnt_cred);
773 	uma_zfree(mount_zone, mp);
774 }
775 
776 static bool
777 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
778 {
779 	/* This is an upgrade of an exisiting mount. */
780 	if ((fsflags & MNT_UPDATE) != 0)
781 		return (false);
782 	/* This is already an R/O mount. */
783 	if ((fsflags & MNT_RDONLY) != 0)
784 		return (false);
785 
786 	switch (error) {
787 	case ENODEV:	/* generic, geom, ... */
788 	case EACCES:	/* cam/scsi, ... */
789 	case EROFS:	/* md, mmcsd, ... */
790 		/*
791 		 * These errors can be returned by the storage layer to signal
792 		 * that the media is read-only.  No harm in the R/O mount
793 		 * attempt if the error was returned for some other reason.
794 		 */
795 		return (true);
796 	default:
797 		return (false);
798 	}
799 }
800 
801 int
802 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
803 {
804 	struct vfsoptlist *optlist;
805 	struct vfsopt *opt, *tmp_opt;
806 	char *fstype, *fspath, *errmsg;
807 	int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
808 	bool autoro, has_nonexport, jail_export;
809 
810 	errmsg = fspath = NULL;
811 	errmsg_len = fspathlen = 0;
812 	errmsg_pos = -1;
813 	autoro = default_autoro;
814 
815 	error = vfs_buildopts(fsoptions, &optlist);
816 	if (error)
817 		return (error);
818 
819 	if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
820 		errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
821 
822 	/*
823 	 * We need these two options before the others,
824 	 * and they are mandatory for any filesystem.
825 	 * Ensure they are NUL terminated as well.
826 	 */
827 	fstypelen = 0;
828 	error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
829 	if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
830 		error = EINVAL;
831 		if (errmsg != NULL)
832 			strncpy(errmsg, "Invalid fstype", errmsg_len);
833 		goto bail;
834 	}
835 	fspathlen = 0;
836 	error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
837 	if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
838 		error = EINVAL;
839 		if (errmsg != NULL)
840 			strncpy(errmsg, "Invalid fspath", errmsg_len);
841 		goto bail;
842 	}
843 
844 	/*
845 	 * Check to see that "export" is only used with the "update", "fstype",
846 	 * "fspath", "from" and "errmsg" options when in a vnet jail.
847 	 * These are the ones used to set/update exports by mountd(8).
848 	 * If only the above options are set in a jail that can run mountd(8),
849 	 * then the jail_export argument of vfs_domount() will be true.
850 	 * When jail_export is true, the vfs_suser() check does not cause
851 	 * failure, but limits the update to exports only.
852 	 * This allows mountd(8) running within the vnet jail
853 	 * to export file systems visible within the jail, but
854 	 * mounted outside of the jail.
855 	 */
856 	/*
857 	 * We need to see if we have the "update" option
858 	 * before we call vfs_domount(), since vfs_domount() has special
859 	 * logic based on MNT_UPDATE.  This is very important
860 	 * when we want to update the root filesystem.
861 	 */
862 	has_nonexport = false;
863 	jail_export = false;
864 	TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
865 		int do_freeopt = 0;
866 
867 		if (jailed(td->td_ucred) &&
868 		    strcmp(opt->name, "export") != 0 &&
869 		    strcmp(opt->name, "update") != 0 &&
870 		    strcmp(opt->name, "fstype") != 0 &&
871 		    strcmp(opt->name, "fspath") != 0 &&
872 		    strcmp(opt->name, "from") != 0 &&
873 		    strcmp(opt->name, "errmsg") != 0)
874 			has_nonexport = true;
875 		if (strcmp(opt->name, "update") == 0) {
876 			fsflags |= MNT_UPDATE;
877 			do_freeopt = 1;
878 		}
879 		else if (strcmp(opt->name, "async") == 0)
880 			fsflags |= MNT_ASYNC;
881 		else if (strcmp(opt->name, "force") == 0) {
882 			fsflags |= MNT_FORCE;
883 			do_freeopt = 1;
884 		}
885 		else if (strcmp(opt->name, "reload") == 0) {
886 			fsflags |= MNT_RELOAD;
887 			do_freeopt = 1;
888 		}
889 		else if (strcmp(opt->name, "multilabel") == 0)
890 			fsflags |= MNT_MULTILABEL;
891 		else if (strcmp(opt->name, "noasync") == 0)
892 			fsflags &= ~MNT_ASYNC;
893 		else if (strcmp(opt->name, "noatime") == 0)
894 			fsflags |= MNT_NOATIME;
895 		else if (strcmp(opt->name, "atime") == 0) {
896 			free(opt->name, M_MOUNT);
897 			opt->name = strdup("nonoatime", M_MOUNT);
898 		}
899 		else if (strcmp(opt->name, "noclusterr") == 0)
900 			fsflags |= MNT_NOCLUSTERR;
901 		else if (strcmp(opt->name, "clusterr") == 0) {
902 			free(opt->name, M_MOUNT);
903 			opt->name = strdup("nonoclusterr", M_MOUNT);
904 		}
905 		else if (strcmp(opt->name, "noclusterw") == 0)
906 			fsflags |= MNT_NOCLUSTERW;
907 		else if (strcmp(opt->name, "clusterw") == 0) {
908 			free(opt->name, M_MOUNT);
909 			opt->name = strdup("nonoclusterw", M_MOUNT);
910 		}
911 		else if (strcmp(opt->name, "noexec") == 0)
912 			fsflags |= MNT_NOEXEC;
913 		else if (strcmp(opt->name, "exec") == 0) {
914 			free(opt->name, M_MOUNT);
915 			opt->name = strdup("nonoexec", M_MOUNT);
916 		}
917 		else if (strcmp(opt->name, "nosuid") == 0)
918 			fsflags |= MNT_NOSUID;
919 		else if (strcmp(opt->name, "suid") == 0) {
920 			free(opt->name, M_MOUNT);
921 			opt->name = strdup("nonosuid", M_MOUNT);
922 		}
923 		else if (strcmp(opt->name, "nosymfollow") == 0)
924 			fsflags |= MNT_NOSYMFOLLOW;
925 		else if (strcmp(opt->name, "symfollow") == 0) {
926 			free(opt->name, M_MOUNT);
927 			opt->name = strdup("nonosymfollow", M_MOUNT);
928 		}
929 		else if (strcmp(opt->name, "noro") == 0) {
930 			fsflags &= ~MNT_RDONLY;
931 			autoro = false;
932 		}
933 		else if (strcmp(opt->name, "rw") == 0) {
934 			fsflags &= ~MNT_RDONLY;
935 			autoro = false;
936 		}
937 		else if (strcmp(opt->name, "ro") == 0) {
938 			fsflags |= MNT_RDONLY;
939 			autoro = false;
940 		}
941 		else if (strcmp(opt->name, "rdonly") == 0) {
942 			free(opt->name, M_MOUNT);
943 			opt->name = strdup("ro", M_MOUNT);
944 			fsflags |= MNT_RDONLY;
945 			autoro = false;
946 		}
947 		else if (strcmp(opt->name, "autoro") == 0) {
948 			do_freeopt = 1;
949 			autoro = true;
950 		}
951 		else if (strcmp(opt->name, "suiddir") == 0)
952 			fsflags |= MNT_SUIDDIR;
953 		else if (strcmp(opt->name, "sync") == 0)
954 			fsflags |= MNT_SYNCHRONOUS;
955 		else if (strcmp(opt->name, "union") == 0)
956 			fsflags |= MNT_UNION;
957 		else if (strcmp(opt->name, "export") == 0) {
958 			fsflags |= MNT_EXPORTED;
959 			jail_export = true;
960 		} else if (strcmp(opt->name, "automounted") == 0) {
961 			fsflags |= MNT_AUTOMOUNTED;
962 			do_freeopt = 1;
963 		} else if (strcmp(opt->name, "nocover") == 0) {
964 			fsflags |= MNT_NOCOVER;
965 			do_freeopt = 1;
966 		} else if (strcmp(opt->name, "cover") == 0) {
967 			fsflags &= ~MNT_NOCOVER;
968 			do_freeopt = 1;
969 		} else if (strcmp(opt->name, "emptydir") == 0) {
970 			fsflags |= MNT_EMPTYDIR;
971 			do_freeopt = 1;
972 		} else if (strcmp(opt->name, "noemptydir") == 0) {
973 			fsflags &= ~MNT_EMPTYDIR;
974 			do_freeopt = 1;
975 		}
976 		if (do_freeopt)
977 			vfs_freeopt(optlist, opt);
978 	}
979 
980 	/*
981 	 * Be ultra-paranoid about making sure the type and fspath
982 	 * variables will fit in our mp buffers, including the
983 	 * terminating NUL.
984 	 */
985 	if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
986 		error = ENAMETOOLONG;
987 		goto bail;
988 	}
989 
990 	/*
991 	 * If has_nonexport is true or the caller is not running within a
992 	 * vnet prison that can run mountd(8), set jail_export false.
993 	 */
994 	if (has_nonexport || !jailed(td->td_ucred) ||
995 	    !prison_check_nfsd(td->td_ucred))
996 		jail_export = false;
997 
998 	error = vfs_domount(td, fstype, fspath, fsflags, jail_export, &optlist);
999 	if (error == ENOENT) {
1000 		error = EINVAL;
1001 		if (errmsg != NULL)
1002 			strncpy(errmsg, "Invalid fstype", errmsg_len);
1003 		goto bail;
1004 	}
1005 
1006 	/*
1007 	 * See if we can mount in the read-only mode if the error code suggests
1008 	 * that it could be possible and the mount options allow for that.
1009 	 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
1010 	 * overridden by "autoro".
1011 	 */
1012 	if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
1013 		printf("%s: R/W mount failed, possibly R/O media,"
1014 		    " trying R/O mount\n", __func__);
1015 		fsflags |= MNT_RDONLY;
1016 		error = vfs_domount(td, fstype, fspath, fsflags, jail_export,
1017 		    &optlist);
1018 	}
1019 bail:
1020 	/* copyout the errmsg */
1021 	if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
1022 	    && errmsg_len > 0 && errmsg != NULL) {
1023 		if (fsoptions->uio_segflg == UIO_SYSSPACE) {
1024 			bcopy(errmsg,
1025 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
1026 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1027 		} else {
1028 			copyout(errmsg,
1029 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
1030 			    fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
1031 		}
1032 	}
1033 
1034 	if (optlist != NULL)
1035 		vfs_freeopts(optlist);
1036 	return (error);
1037 }
1038 
1039 /*
1040  * Old mount API.
1041  */
1042 #ifndef _SYS_SYSPROTO_H_
1043 struct mount_args {
1044 	char	*type;
1045 	char	*path;
1046 	int	flags;
1047 	caddr_t	data;
1048 };
1049 #endif
1050 /* ARGSUSED */
1051 int
1052 sys_mount(struct thread *td, struct mount_args *uap)
1053 {
1054 	char *fstype;
1055 	struct vfsconf *vfsp = NULL;
1056 	struct mntarg *ma = NULL;
1057 	uint64_t flags;
1058 	int error;
1059 
1060 	/*
1061 	 * Mount flags are now 64-bits. On 32-bit architectures only
1062 	 * 32-bits are passed in, but from here on everything handles
1063 	 * 64-bit flags correctly.
1064 	 */
1065 	flags = uap->flags;
1066 
1067 	AUDIT_ARG_FFLAGS(flags);
1068 
1069 	/*
1070 	 * Filter out MNT_ROOTFS.  We do not want clients of mount() in
1071 	 * userspace to set this flag, but we must filter it out if we want
1072 	 * MNT_UPDATE on the root file system to work.
1073 	 * MNT_ROOTFS should only be set by the kernel when mounting its
1074 	 * root file system.
1075 	 */
1076 	flags &= ~MNT_ROOTFS;
1077 
1078 	fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1079 	error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1080 	if (error) {
1081 		free(fstype, M_TEMP);
1082 		return (error);
1083 	}
1084 
1085 	AUDIT_ARG_TEXT(fstype);
1086 	vfsp = vfs_byname_kld(fstype, td, &error);
1087 	free(fstype, M_TEMP);
1088 	if (vfsp == NULL)
1089 		return (ENOENT);
1090 	if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1091 	    vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1092 	    ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1093 	    vfsp->vfc_vfsops->vfs_cmount == NULL))
1094 		return (EOPNOTSUPP);
1095 
1096 	ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1097 	ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1098 	ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1099 	ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1100 	ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1101 
1102 	if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1103 		return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1104 	return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1105 }
1106 
1107 /*
1108  * vfs_domount_first(): first file system mount (not update)
1109  */
1110 static int
1111 vfs_domount_first(
1112 	struct thread *td,		/* Calling thread. */
1113 	struct vfsconf *vfsp,		/* File system type. */
1114 	char *fspath,			/* Mount path. */
1115 	struct vnode *vp,		/* Vnode to be covered. */
1116 	uint64_t fsflags,		/* Flags common to all filesystems. */
1117 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1118 	)
1119 {
1120 	struct vattr va;
1121 	struct mount *mp;
1122 	struct vnode *newdp, *rootvp;
1123 	int error, error1;
1124 	bool unmounted;
1125 
1126 	ASSERT_VOP_ELOCKED(vp, __func__);
1127 	KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1128 
1129 	/*
1130 	 * If the jail of the calling thread lacks permission for this type of
1131 	 * file system, or is trying to cover its own root, deny immediately.
1132 	 */
1133 	if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1134 	    vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1135 		vput(vp);
1136 		return (EPERM);
1137 	}
1138 
1139 	/*
1140 	 * If the user is not root, ensure that they own the directory
1141 	 * onto which we are attempting to mount.
1142 	 */
1143 	error = VOP_GETATTR(vp, &va, td->td_ucred);
1144 	if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1145 		error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1146 	if (error == 0)
1147 		error = vinvalbuf(vp, V_SAVE, 0, 0);
1148 	if (vfsp->vfc_flags & VFCF_FILEMOUNT) {
1149 		if (error == 0 && vp->v_type != VDIR && vp->v_type != VREG)
1150 			error = EINVAL;
1151 		/*
1152 		 * For file mounts, ensure that there is only one hardlink to the file.
1153 		 */
1154 		if (error == 0 && vp->v_type == VREG && va.va_nlink != 1)
1155 			error = EINVAL;
1156 	} else {
1157 		if (error == 0 && vp->v_type != VDIR)
1158 			error = ENOTDIR;
1159 	}
1160 	if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1161 		error = vn_dir_check_empty(vp);
1162 	if (error == 0) {
1163 		VI_LOCK(vp);
1164 		if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1165 			vp->v_iflag |= VI_MOUNT;
1166 		else
1167 			error = EBUSY;
1168 		VI_UNLOCK(vp);
1169 	}
1170 	if (error != 0) {
1171 		vput(vp);
1172 		return (error);
1173 	}
1174 	vn_seqc_write_begin(vp);
1175 	VOP_UNLOCK(vp);
1176 
1177 	/* Allocate and initialize the filesystem. */
1178 	mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1179 	/* XXXMAC: pass to vfs_mount_alloc? */
1180 	mp->mnt_optnew = *optlist;
1181 	/* Set the mount level flags. */
1182 	mp->mnt_flag = (fsflags &
1183 	    (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1184 
1185 	/*
1186 	 * Mount the filesystem.
1187 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1188 	 * get.  No freeing of cn_pnbuf.
1189 	 */
1190 	error1 = 0;
1191 	unmounted = true;
1192 	if ((error = VFS_MOUNT(mp)) != 0 ||
1193 	    (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1194 	    (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1195 		rootvp = NULL;
1196 		if (error1 != 0) {
1197 			MPASS(error == 0);
1198 			rootvp = vfs_cache_root_clear(mp);
1199 			if (rootvp != NULL) {
1200 				vhold(rootvp);
1201 				vrele(rootvp);
1202 			}
1203 			(void)vn_start_write(NULL, &mp, V_WAIT);
1204 			MNT_ILOCK(mp);
1205 			mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1206 			MNT_IUNLOCK(mp);
1207 			VFS_PURGE(mp);
1208 			error = VFS_UNMOUNT(mp, 0);
1209 			vn_finished_write(mp);
1210 			if (error != 0) {
1211 				printf(
1212 		    "failed post-mount (%d): rollback unmount returned %d\n",
1213 				    error1, error);
1214 				unmounted = false;
1215 			}
1216 			error = error1;
1217 		}
1218 		vfs_unbusy(mp);
1219 		mp->mnt_vnodecovered = NULL;
1220 		if (unmounted) {
1221 			/* XXXKIB wait for mnt_lockref drain? */
1222 			vfs_mount_destroy(mp);
1223 		}
1224 		VI_LOCK(vp);
1225 		vp->v_iflag &= ~VI_MOUNT;
1226 		VI_UNLOCK(vp);
1227 		if (rootvp != NULL) {
1228 			vn_seqc_write_end(rootvp);
1229 			vdrop(rootvp);
1230 		}
1231 		vn_seqc_write_end(vp);
1232 		vrele(vp);
1233 		return (error);
1234 	}
1235 	vn_seqc_write_begin(newdp);
1236 	VOP_UNLOCK(newdp);
1237 
1238 	if (mp->mnt_opt != NULL)
1239 		vfs_freeopts(mp->mnt_opt);
1240 	mp->mnt_opt = mp->mnt_optnew;
1241 	*optlist = NULL;
1242 
1243 	/*
1244 	 * Prevent external consumers of mount options from reading mnt_optnew.
1245 	 */
1246 	mp->mnt_optnew = NULL;
1247 
1248 	MNT_ILOCK(mp);
1249 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1250 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1251 		mp->mnt_kern_flag |= MNTK_ASYNC;
1252 	else
1253 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1254 	MNT_IUNLOCK(mp);
1255 
1256 	/*
1257 	 * VIRF_MOUNTPOINT and v_mountedhere need to be set under the
1258 	 * vp lock to satisfy vfs_lookup() requirements.
1259 	 */
1260 	VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
1261 	VI_LOCK(vp);
1262 	vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1263 	vp->v_mountedhere = mp;
1264 	VI_UNLOCK(vp);
1265 	VOP_UNLOCK(vp);
1266 	cache_purge(vp);
1267 
1268 	/*
1269 	 * We need to lock both vnodes.
1270 	 *
1271 	 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1272 	 * from different filesystems.
1273 	 */
1274 	vn_lock_pair(vp, false, LK_EXCLUSIVE, newdp, false, LK_EXCLUSIVE);
1275 
1276 	VI_LOCK(vp);
1277 	vp->v_iflag &= ~VI_MOUNT;
1278 	VI_UNLOCK(vp);
1279 	/* Place the new filesystem at the end of the mount list. */
1280 	mtx_lock(&mountlist_mtx);
1281 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1282 	mtx_unlock(&mountlist_mtx);
1283 	vfs_event_signal(NULL, VQ_MOUNT, 0);
1284 	VOP_UNLOCK(vp);
1285 	EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1286 	VOP_UNLOCK(newdp);
1287 	mount_devctl_event("MOUNT", mp, false);
1288 	mountcheckdirs(vp, newdp);
1289 	vn_seqc_write_end(vp);
1290 	vn_seqc_write_end(newdp);
1291 	vrele(newdp);
1292 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1293 		vfs_allocate_syncvnode(mp);
1294 	vfs_op_exit(mp);
1295 	vfs_unbusy(mp);
1296 	return (0);
1297 }
1298 
1299 /*
1300  * vfs_domount_update(): update of mounted file system
1301  */
1302 static int
1303 vfs_domount_update(
1304 	struct thread *td,		/* Calling thread. */
1305 	struct vnode *vp,		/* Mount point vnode. */
1306 	uint64_t fsflags,		/* Flags common to all filesystems. */
1307 	bool jail_export,		/* Got export option in vnet prison. */
1308 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1309 	)
1310 {
1311 	struct export_args export;
1312 	struct o2export_args o2export;
1313 	struct vnode *rootvp;
1314 	void *bufp;
1315 	struct mount *mp;
1316 	int error, export_error, i, len;
1317 	uint64_t flag;
1318 	gid_t *grps;
1319 	bool vfs_suser_failed;
1320 
1321 	ASSERT_VOP_ELOCKED(vp, __func__);
1322 	KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1323 	mp = vp->v_mount;
1324 
1325 	if ((vp->v_vflag & VV_ROOT) == 0) {
1326 		if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1327 		    == 0)
1328 			error = EXDEV;
1329 		else
1330 			error = EINVAL;
1331 		vput(vp);
1332 		return (error);
1333 	}
1334 
1335 	/*
1336 	 * We only allow the filesystem to be reloaded if it
1337 	 * is currently mounted read-only.
1338 	 */
1339 	flag = mp->mnt_flag;
1340 	if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1341 		vput(vp);
1342 		return (EOPNOTSUPP);	/* Needs translation */
1343 	}
1344 	/*
1345 	 * Only privileged root, or (if MNT_USER is set) the user that
1346 	 * did the original mount is permitted to update it.
1347 	 */
1348 	/*
1349 	 * For the case of mountd(8) doing exports in a jail, the vfs_suser()
1350 	 * call does not cause failure.  vfs_domount() has already checked
1351 	 * that "root" is doing this and vfs_suser() will fail when
1352 	 * the file system has been mounted outside the jail.
1353 	 * jail_export set true indicates that "export" is not mixed
1354 	 * with other options that change mount behaviour.
1355 	 */
1356 	vfs_suser_failed = false;
1357 	error = vfs_suser(mp, td);
1358 	if (jail_export && error != 0) {
1359 		error = 0;
1360 		vfs_suser_failed = true;
1361 	}
1362 	if (error != 0) {
1363 		vput(vp);
1364 		return (error);
1365 	}
1366 	if (vfs_busy(mp, MBF_NOWAIT)) {
1367 		vput(vp);
1368 		return (EBUSY);
1369 	}
1370 	VI_LOCK(vp);
1371 	if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1372 		VI_UNLOCK(vp);
1373 		vfs_unbusy(mp);
1374 		vput(vp);
1375 		return (EBUSY);
1376 	}
1377 	vp->v_iflag |= VI_MOUNT;
1378 	VI_UNLOCK(vp);
1379 	VOP_UNLOCK(vp);
1380 
1381 	vfs_op_enter(mp);
1382 	vn_seqc_write_begin(vp);
1383 
1384 	rootvp = NULL;
1385 	MNT_ILOCK(mp);
1386 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1387 		MNT_IUNLOCK(mp);
1388 		error = EBUSY;
1389 		goto end;
1390 	}
1391 	if (vfs_suser_failed) {
1392 		KASSERT((fsflags & (MNT_EXPORTED | MNT_UPDATE)) ==
1393 		    (MNT_EXPORTED | MNT_UPDATE),
1394 		    ("%s: jailed export did not set expected fsflags",
1395 		     __func__));
1396 		/*
1397 		 * For this case, only MNT_UPDATE and
1398 		 * MNT_EXPORTED have been set in fsflags
1399 		 * by the options.  Only set MNT_UPDATE,
1400 		 * since that is the one that would be set
1401 		 * when set in fsflags, below.
1402 		 */
1403 		mp->mnt_flag |= MNT_UPDATE;
1404 	} else {
1405 		mp->mnt_flag &= ~MNT_UPDATEMASK;
1406 		mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1407 		    MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1408 		if ((mp->mnt_flag & MNT_ASYNC) == 0)
1409 			mp->mnt_kern_flag &= ~MNTK_ASYNC;
1410 	}
1411 	rootvp = vfs_cache_root_clear(mp);
1412 	MNT_IUNLOCK(mp);
1413 	mp->mnt_optnew = *optlist;
1414 	vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1415 
1416 	/*
1417 	 * Mount the filesystem.
1418 	 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1419 	 * get.  No freeing of cn_pnbuf.
1420 	 */
1421 	/*
1422 	 * For the case of mountd(8) doing exports from within a vnet jail,
1423 	 * "from" is typically not set correctly such that VFS_MOUNT() will
1424 	 * return ENOENT. It is not obvious that VFS_MOUNT() ever needs to be
1425 	 * called when mountd is doing exports, but this check only applies to
1426 	 * the specific case where it is running inside a vnet jail, to
1427 	 * avoid any POLA violation.
1428 	 */
1429 	error = 0;
1430 	if (!jail_export)
1431 		error = VFS_MOUNT(mp);
1432 
1433 	export_error = 0;
1434 	/* Process the export option. */
1435 	if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1436 	    &len) == 0) {
1437 		/* Assume that there is only 1 ABI for each length. */
1438 		switch (len) {
1439 		case (sizeof(struct oexport_args)):
1440 			bzero(&o2export, sizeof(o2export));
1441 			/* FALLTHROUGH */
1442 		case (sizeof(o2export)):
1443 			bcopy(bufp, &o2export, len);
1444 			export.ex_flags = (uint64_t)o2export.ex_flags;
1445 			export.ex_root = o2export.ex_root;
1446 			export.ex_uid = o2export.ex_anon.cr_uid;
1447 			export.ex_groups = NULL;
1448 			export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1449 			if (export.ex_ngroups > 0) {
1450 				if (export.ex_ngroups <= XU_NGROUPS) {
1451 					export.ex_groups = malloc(
1452 					    export.ex_ngroups * sizeof(gid_t),
1453 					    M_TEMP, M_WAITOK);
1454 					for (i = 0; i < export.ex_ngroups; i++)
1455 						export.ex_groups[i] =
1456 						  o2export.ex_anon.cr_groups[i];
1457 				} else
1458 					export_error = EINVAL;
1459 			} else if (export.ex_ngroups < 0)
1460 				export_error = EINVAL;
1461 			export.ex_addr = o2export.ex_addr;
1462 			export.ex_addrlen = o2export.ex_addrlen;
1463 			export.ex_mask = o2export.ex_mask;
1464 			export.ex_masklen = o2export.ex_masklen;
1465 			export.ex_indexfile = o2export.ex_indexfile;
1466 			export.ex_numsecflavors = o2export.ex_numsecflavors;
1467 			if (export.ex_numsecflavors < MAXSECFLAVORS) {
1468 				for (i = 0; i < export.ex_numsecflavors; i++)
1469 					export.ex_secflavors[i] =
1470 					    o2export.ex_secflavors[i];
1471 			} else
1472 				export_error = EINVAL;
1473 			if (export_error == 0)
1474 				export_error = vfs_export(mp, &export, true);
1475 			free(export.ex_groups, M_TEMP);
1476 			break;
1477 		case (sizeof(export)):
1478 			bcopy(bufp, &export, len);
1479 			grps = NULL;
1480 			if (export.ex_ngroups > 0) {
1481 				if (export.ex_ngroups <= NGROUPS_MAX) {
1482 					grps = malloc(export.ex_ngroups *
1483 					    sizeof(gid_t), M_TEMP, M_WAITOK);
1484 					export_error = copyin(export.ex_groups,
1485 					    grps, export.ex_ngroups *
1486 					    sizeof(gid_t));
1487 					if (export_error == 0)
1488 						export.ex_groups = grps;
1489 				} else
1490 					export_error = EINVAL;
1491 			} else if (export.ex_ngroups == 0)
1492 				export.ex_groups = NULL;
1493 			else
1494 				export_error = EINVAL;
1495 			if (export_error == 0)
1496 				export_error = vfs_export(mp, &export, true);
1497 			free(grps, M_TEMP);
1498 			break;
1499 		default:
1500 			export_error = EINVAL;
1501 			break;
1502 		}
1503 	}
1504 
1505 	MNT_ILOCK(mp);
1506 	if (error == 0) {
1507 		mp->mnt_flag &=	~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1508 		    MNT_SNAPSHOT);
1509 	} else {
1510 		/*
1511 		 * If we fail, restore old mount flags. MNT_QUOTA is special,
1512 		 * because it is not part of MNT_UPDATEMASK, but it could have
1513 		 * changed in the meantime if quotactl(2) was called.
1514 		 * All in all we want current value of MNT_QUOTA, not the old
1515 		 * one.
1516 		 */
1517 		mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1518 	}
1519 	if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1520 	    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1521 		mp->mnt_kern_flag |= MNTK_ASYNC;
1522 	else
1523 		mp->mnt_kern_flag &= ~MNTK_ASYNC;
1524 	MNT_IUNLOCK(mp);
1525 
1526 	if (error != 0)
1527 		goto end;
1528 
1529 	mount_devctl_event("REMOUNT", mp, true);
1530 	if (mp->mnt_opt != NULL)
1531 		vfs_freeopts(mp->mnt_opt);
1532 	mp->mnt_opt = mp->mnt_optnew;
1533 	*optlist = NULL;
1534 	(void)VFS_STATFS(mp, &mp->mnt_stat);
1535 	/*
1536 	 * Prevent external consumers of mount options from reading
1537 	 * mnt_optnew.
1538 	 */
1539 	mp->mnt_optnew = NULL;
1540 
1541 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
1542 		vfs_allocate_syncvnode(mp);
1543 	else
1544 		vfs_deallocate_syncvnode(mp);
1545 end:
1546 	vfs_op_exit(mp);
1547 	if (rootvp != NULL) {
1548 		vn_seqc_write_end(rootvp);
1549 		vrele(rootvp);
1550 	}
1551 	vn_seqc_write_end(vp);
1552 	vfs_unbusy(mp);
1553 	VI_LOCK(vp);
1554 	vp->v_iflag &= ~VI_MOUNT;
1555 	VI_UNLOCK(vp);
1556 	vrele(vp);
1557 	return (error != 0 ? error : export_error);
1558 }
1559 
1560 /*
1561  * vfs_domount(): actually attempt a filesystem mount.
1562  */
1563 static int
1564 vfs_domount(
1565 	struct thread *td,		/* Calling thread. */
1566 	const char *fstype,		/* Filesystem type. */
1567 	char *fspath,			/* Mount path. */
1568 	uint64_t fsflags,		/* Flags common to all filesystems. */
1569 	bool jail_export,		/* Got export option in vnet prison. */
1570 	struct vfsoptlist **optlist	/* Options local to the filesystem. */
1571 	)
1572 {
1573 	struct vfsconf *vfsp;
1574 	struct nameidata nd;
1575 	struct vnode *vp;
1576 	char *pathbuf;
1577 	int error;
1578 
1579 	/*
1580 	 * Be ultra-paranoid about making sure the type and fspath
1581 	 * variables will fit in our mp buffers, including the
1582 	 * terminating NUL.
1583 	 */
1584 	if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1585 		return (ENAMETOOLONG);
1586 
1587 	if (jail_export) {
1588 		error = priv_check(td, PRIV_NFS_DAEMON);
1589 		if (error)
1590 			return (error);
1591 	} else if (jailed(td->td_ucred) || usermount == 0) {
1592 		if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1593 			return (error);
1594 	}
1595 
1596 	/*
1597 	 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1598 	 */
1599 	if (fsflags & MNT_EXPORTED) {
1600 		error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1601 		if (error)
1602 			return (error);
1603 	}
1604 	if (fsflags & MNT_SUIDDIR) {
1605 		error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1606 		if (error)
1607 			return (error);
1608 	}
1609 	/*
1610 	 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1611 	 */
1612 	if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1613 		if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1614 			fsflags |= MNT_NOSUID | MNT_USER;
1615 	}
1616 
1617 	/* Load KLDs before we lock the covered vnode to avoid reversals. */
1618 	vfsp = NULL;
1619 	if ((fsflags & MNT_UPDATE) == 0) {
1620 		/* Don't try to load KLDs if we're mounting the root. */
1621 		if (fsflags & MNT_ROOTFS) {
1622 			if ((vfsp = vfs_byname(fstype)) == NULL)
1623 				return (ENODEV);
1624 		} else {
1625 			if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1626 				return (error);
1627 		}
1628 	}
1629 
1630 	/*
1631 	 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1632 	 */
1633 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1 | WANTPARENT,
1634 	    UIO_SYSSPACE, fspath);
1635 	error = namei(&nd);
1636 	if (error != 0)
1637 		return (error);
1638 	vp = nd.ni_vp;
1639 	/*
1640 	 * Don't allow stacking file mounts to work around problems with the way
1641 	 * that namei sets nd.ni_dvp to vp_crossmp for these.
1642 	 */
1643 	if (vp->v_type == VREG)
1644 		fsflags |= MNT_NOCOVER;
1645 	if ((fsflags & MNT_UPDATE) == 0) {
1646 		if ((vp->v_vflag & VV_ROOT) != 0 &&
1647 		    (fsflags & MNT_NOCOVER) != 0) {
1648 			vput(vp);
1649 			error = EBUSY;
1650 			goto out;
1651 		}
1652 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1653 		strcpy(pathbuf, fspath);
1654 		/*
1655 		 * Note: we allow any vnode type here. If the path sanity check
1656 		 * succeeds, the type will be validated in vfs_domount_first
1657 		 * above.
1658 		 */
1659 		if (vp->v_type == VDIR)
1660 			error = vn_path_to_global_path(td, vp, pathbuf,
1661 			    MNAMELEN);
1662 		else
1663 			error = vn_path_to_global_path_hardlink(td, vp,
1664 			    nd.ni_dvp, pathbuf, MNAMELEN,
1665 			    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
1666 		if (error == 0) {
1667 			error = vfs_domount_first(td, vfsp, pathbuf, vp,
1668 			    fsflags, optlist);
1669 		}
1670 		free(pathbuf, M_TEMP);
1671 	} else
1672 		error = vfs_domount_update(td, vp, fsflags, jail_export,
1673 		    optlist);
1674 
1675 out:
1676 	NDFREE_PNBUF(&nd);
1677 	vrele(nd.ni_dvp);
1678 
1679 	return (error);
1680 }
1681 
1682 /*
1683  * Unmount a filesystem.
1684  *
1685  * Note: unmount takes a path to the vnode mounted on as argument, not
1686  * special file (as before).
1687  */
1688 #ifndef _SYS_SYSPROTO_H_
1689 struct unmount_args {
1690 	char	*path;
1691 	int	flags;
1692 };
1693 #endif
1694 /* ARGSUSED */
1695 int
1696 sys_unmount(struct thread *td, struct unmount_args *uap)
1697 {
1698 
1699 	return (kern_unmount(td, uap->path, uap->flags));
1700 }
1701 
1702 int
1703 kern_unmount(struct thread *td, const char *path, int flags)
1704 {
1705 	struct nameidata nd;
1706 	struct mount *mp;
1707 	char *fsidbuf, *pathbuf;
1708 	fsid_t fsid;
1709 	int error;
1710 
1711 	AUDIT_ARG_VALUE(flags);
1712 	if (jailed(td->td_ucred) || usermount == 0) {
1713 		error = priv_check(td, PRIV_VFS_UNMOUNT);
1714 		if (error)
1715 			return (error);
1716 	}
1717 
1718 	if (flags & MNT_BYFSID) {
1719 		fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1720 		error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1721 		if (error) {
1722 			free(fsidbuf, M_TEMP);
1723 			return (error);
1724 		}
1725 
1726 		AUDIT_ARG_TEXT(fsidbuf);
1727 		/* Decode the filesystem ID. */
1728 		if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1729 			free(fsidbuf, M_TEMP);
1730 			return (EINVAL);
1731 		}
1732 
1733 		mp = vfs_getvfs(&fsid);
1734 		free(fsidbuf, M_TEMP);
1735 		if (mp == NULL) {
1736 			return (ENOENT);
1737 		}
1738 	} else {
1739 		pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1740 		error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1741 		if (error) {
1742 			free(pathbuf, M_TEMP);
1743 			return (error);
1744 		}
1745 
1746 		/*
1747 		 * Try to find global path for path argument.
1748 		 */
1749 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1750 		    UIO_SYSSPACE, pathbuf);
1751 		if (namei(&nd) == 0) {
1752 			NDFREE_PNBUF(&nd);
1753 			error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1754 			    MNAMELEN);
1755 			if (error == 0)
1756 				vput(nd.ni_vp);
1757 		}
1758 		mtx_lock(&mountlist_mtx);
1759 		TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1760 			if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1761 				vfs_ref(mp);
1762 				break;
1763 			}
1764 		}
1765 		mtx_unlock(&mountlist_mtx);
1766 		free(pathbuf, M_TEMP);
1767 		if (mp == NULL) {
1768 			/*
1769 			 * Previously we returned ENOENT for a nonexistent path and
1770 			 * EINVAL for a non-mountpoint.  We cannot tell these apart
1771 			 * now, so in the !MNT_BYFSID case return the more likely
1772 			 * EINVAL for compatibility.
1773 			 */
1774 			return (EINVAL);
1775 		}
1776 	}
1777 
1778 	/*
1779 	 * Don't allow unmounting the root filesystem.
1780 	 */
1781 	if (mp->mnt_flag & MNT_ROOTFS) {
1782 		vfs_rel(mp);
1783 		return (EINVAL);
1784 	}
1785 	error = dounmount(mp, flags, td);
1786 	return (error);
1787 }
1788 
1789 /*
1790  * Return error if any of the vnodes, ignoring the root vnode
1791  * and the syncer vnode, have non-zero usecount.
1792  *
1793  * This function is purely advisory - it can return false positives
1794  * and negatives.
1795  */
1796 static int
1797 vfs_check_usecounts(struct mount *mp)
1798 {
1799 	struct vnode *vp, *mvp;
1800 
1801 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1802 		if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1803 		    vp->v_usecount != 0) {
1804 			VI_UNLOCK(vp);
1805 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1806 			return (EBUSY);
1807 		}
1808 		VI_UNLOCK(vp);
1809 	}
1810 
1811 	return (0);
1812 }
1813 
1814 static void
1815 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1816 {
1817 
1818 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1819 	mp->mnt_kern_flag &= ~mntkflags;
1820 	if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1821 		mp->mnt_kern_flag &= ~MNTK_MWAIT;
1822 		wakeup(mp);
1823 	}
1824 	vfs_op_exit_locked(mp);
1825 	MNT_IUNLOCK(mp);
1826 	if (coveredvp != NULL) {
1827 		VOP_UNLOCK(coveredvp);
1828 		vdrop(coveredvp);
1829 	}
1830 	vn_finished_write(mp);
1831 	vfs_rel(mp);
1832 }
1833 
1834 /*
1835  * There are various reference counters associated with the mount point.
1836  * Normally it is permitted to modify them without taking the mnt ilock,
1837  * but this behavior can be temporarily disabled if stable value is needed
1838  * or callers are expected to block (e.g. to not allow new users during
1839  * forced unmount).
1840  */
1841 void
1842 vfs_op_enter(struct mount *mp)
1843 {
1844 	struct mount_pcpu *mpcpu;
1845 	int cpu;
1846 
1847 	MNT_ILOCK(mp);
1848 	mp->mnt_vfs_ops++;
1849 	if (mp->mnt_vfs_ops > 1) {
1850 		MNT_IUNLOCK(mp);
1851 		return;
1852 	}
1853 	vfs_op_barrier_wait(mp);
1854 	CPU_FOREACH(cpu) {
1855 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1856 
1857 		mp->mnt_ref += mpcpu->mntp_ref;
1858 		mpcpu->mntp_ref = 0;
1859 
1860 		mp->mnt_lockref += mpcpu->mntp_lockref;
1861 		mpcpu->mntp_lockref = 0;
1862 
1863 		mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1864 		mpcpu->mntp_writeopcount = 0;
1865 	}
1866 	MPASSERT(mp->mnt_ref > 0 && mp->mnt_lockref >= 0 &&
1867 	    mp->mnt_writeopcount >= 0, mp,
1868 	    ("invalid count(s): ref %d lockref %d writeopcount %d",
1869 	    mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount));
1870 	MNT_IUNLOCK(mp);
1871 	vfs_assert_mount_counters(mp);
1872 }
1873 
1874 void
1875 vfs_op_exit_locked(struct mount *mp)
1876 {
1877 
1878 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1879 
1880 	MPASSERT(mp->mnt_vfs_ops > 0, mp,
1881 	    ("invalid vfs_ops count %d", mp->mnt_vfs_ops));
1882 	MPASSERT(mp->mnt_vfs_ops > 1 ||
1883 	    (mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_SUSPEND)) == 0, mp,
1884 	    ("vfs_ops too low %d in unmount or suspend", mp->mnt_vfs_ops));
1885 	mp->mnt_vfs_ops--;
1886 }
1887 
1888 void
1889 vfs_op_exit(struct mount *mp)
1890 {
1891 
1892 	MNT_ILOCK(mp);
1893 	vfs_op_exit_locked(mp);
1894 	MNT_IUNLOCK(mp);
1895 }
1896 
1897 struct vfs_op_barrier_ipi {
1898 	struct mount *mp;
1899 	struct smp_rendezvous_cpus_retry_arg srcra;
1900 };
1901 
1902 static void
1903 vfs_op_action_func(void *arg)
1904 {
1905 	struct vfs_op_barrier_ipi *vfsopipi;
1906 	struct mount *mp;
1907 
1908 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1909 	mp = vfsopipi->mp;
1910 
1911 	if (!vfs_op_thread_entered(mp))
1912 		smp_rendezvous_cpus_done(arg);
1913 }
1914 
1915 static void
1916 vfs_op_wait_func(void *arg, int cpu)
1917 {
1918 	struct vfs_op_barrier_ipi *vfsopipi;
1919 	struct mount *mp;
1920 	struct mount_pcpu *mpcpu;
1921 
1922 	vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1923 	mp = vfsopipi->mp;
1924 
1925 	mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1926 	while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1927 		cpu_spinwait();
1928 }
1929 
1930 void
1931 vfs_op_barrier_wait(struct mount *mp)
1932 {
1933 	struct vfs_op_barrier_ipi vfsopipi;
1934 
1935 	vfsopipi.mp = mp;
1936 
1937 	smp_rendezvous_cpus_retry(all_cpus,
1938 	    smp_no_rendezvous_barrier,
1939 	    vfs_op_action_func,
1940 	    smp_no_rendezvous_barrier,
1941 	    vfs_op_wait_func,
1942 	    &vfsopipi.srcra);
1943 }
1944 
1945 #ifdef DIAGNOSTIC
1946 void
1947 vfs_assert_mount_counters(struct mount *mp)
1948 {
1949 	struct mount_pcpu *mpcpu;
1950 	int cpu;
1951 
1952 	if (mp->mnt_vfs_ops == 0)
1953 		return;
1954 
1955 	CPU_FOREACH(cpu) {
1956 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1957 		if (mpcpu->mntp_ref != 0 ||
1958 		    mpcpu->mntp_lockref != 0 ||
1959 		    mpcpu->mntp_writeopcount != 0)
1960 			vfs_dump_mount_counters(mp);
1961 	}
1962 }
1963 
1964 void
1965 vfs_dump_mount_counters(struct mount *mp)
1966 {
1967 	struct mount_pcpu *mpcpu;
1968 	int ref, lockref, writeopcount;
1969 	int cpu;
1970 
1971 	printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1972 
1973 	printf("        ref : ");
1974 	ref = mp->mnt_ref;
1975 	CPU_FOREACH(cpu) {
1976 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1977 		printf("%d ", mpcpu->mntp_ref);
1978 		ref += mpcpu->mntp_ref;
1979 	}
1980 	printf("\n");
1981 	printf("    lockref : ");
1982 	lockref = mp->mnt_lockref;
1983 	CPU_FOREACH(cpu) {
1984 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1985 		printf("%d ", mpcpu->mntp_lockref);
1986 		lockref += mpcpu->mntp_lockref;
1987 	}
1988 	printf("\n");
1989 	printf("writeopcount: ");
1990 	writeopcount = mp->mnt_writeopcount;
1991 	CPU_FOREACH(cpu) {
1992 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1993 		printf("%d ", mpcpu->mntp_writeopcount);
1994 		writeopcount += mpcpu->mntp_writeopcount;
1995 	}
1996 	printf("\n");
1997 
1998 	printf("counter       struct total\n");
1999 	printf("ref             %-5d  %-5d\n", mp->mnt_ref, ref);
2000 	printf("lockref         %-5d  %-5d\n", mp->mnt_lockref, lockref);
2001 	printf("writeopcount    %-5d  %-5d\n", mp->mnt_writeopcount, writeopcount);
2002 
2003 	panic("invalid counts on struct mount");
2004 }
2005 #endif
2006 
2007 int
2008 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
2009 {
2010 	struct mount_pcpu *mpcpu;
2011 	int cpu, sum;
2012 
2013 	switch (which) {
2014 	case MNT_COUNT_REF:
2015 		sum = mp->mnt_ref;
2016 		break;
2017 	case MNT_COUNT_LOCKREF:
2018 		sum = mp->mnt_lockref;
2019 		break;
2020 	case MNT_COUNT_WRITEOPCOUNT:
2021 		sum = mp->mnt_writeopcount;
2022 		break;
2023 	}
2024 
2025 	CPU_FOREACH(cpu) {
2026 		mpcpu = vfs_mount_pcpu_remote(mp, cpu);
2027 		switch (which) {
2028 		case MNT_COUNT_REF:
2029 			sum += mpcpu->mntp_ref;
2030 			break;
2031 		case MNT_COUNT_LOCKREF:
2032 			sum += mpcpu->mntp_lockref;
2033 			break;
2034 		case MNT_COUNT_WRITEOPCOUNT:
2035 			sum += mpcpu->mntp_writeopcount;
2036 			break;
2037 		}
2038 	}
2039 	return (sum);
2040 }
2041 
2042 static bool
2043 deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
2044     int timeout_ticks)
2045 {
2046 	bool enqueued;
2047 
2048 	enqueued = false;
2049 	mtx_lock(&deferred_unmount_lock);
2050 	if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
2051 		mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
2052 		STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
2053 		    mnt_taskqueue_link);
2054 		enqueued = true;
2055 	}
2056 	mtx_unlock(&deferred_unmount_lock);
2057 
2058 	if (enqueued) {
2059 		taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
2060 		    &deferred_unmount_task, timeout_ticks);
2061 	}
2062 
2063 	return (enqueued);
2064 }
2065 
2066 /*
2067  * Taskqueue handler for processing async/recursive unmounts
2068  */
2069 static void
2070 vfs_deferred_unmount(void *argi __unused, int pending __unused)
2071 {
2072 	STAILQ_HEAD(, mount) local_unmounts;
2073 	uint64_t flags;
2074 	struct mount *mp, *tmp;
2075 	int error;
2076 	unsigned int retries;
2077 	bool unmounted;
2078 
2079 	STAILQ_INIT(&local_unmounts);
2080 	mtx_lock(&deferred_unmount_lock);
2081 	STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
2082 	mtx_unlock(&deferred_unmount_lock);
2083 
2084 	STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
2085 		flags = mp->mnt_taskqueue_flags;
2086 		KASSERT((flags & MNT_DEFERRED) != 0,
2087 		    ("taskqueue unmount without MNT_DEFERRED"));
2088 		error = dounmount(mp, flags, curthread);
2089 		if (error != 0) {
2090 			MNT_ILOCK(mp);
2091 			unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
2092 			MNT_IUNLOCK(mp);
2093 
2094 			/*
2095 			 * The deferred unmount thread is the only thread that
2096 			 * modifies the retry counts, so locking/atomics aren't
2097 			 * needed here.
2098 			 */
2099 			retries = (mp->mnt_unmount_retries)++;
2100 			deferred_unmount_total_retries++;
2101 			if (!unmounted && retries < deferred_unmount_retry_limit) {
2102 				deferred_unmount_enqueue(mp, flags, true,
2103 				    -deferred_unmount_retry_delay_hz);
2104 			} else {
2105 				if (retries >= deferred_unmount_retry_limit) {
2106 					printf("giving up on deferred unmount "
2107 					    "of %s after %d retries, error %d\n",
2108 					    mp->mnt_stat.f_mntonname, retries, error);
2109 				}
2110 				vfs_rel(mp);
2111 			}
2112 		}
2113 	}
2114 }
2115 
2116 /*
2117  * Do the actual filesystem unmount.
2118  */
2119 int
2120 dounmount(struct mount *mp, uint64_t flags, struct thread *td)
2121 {
2122 	struct mount_upper_node *upper;
2123 	struct vnode *coveredvp, *rootvp;
2124 	int error;
2125 	uint64_t async_flag;
2126 	int mnt_gen_r;
2127 	unsigned int retries;
2128 
2129 	KASSERT((flags & MNT_DEFERRED) == 0 ||
2130 	    (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2131 	    ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2132 
2133 	/*
2134 	 * If the caller has explicitly requested the unmount to be handled by
2135 	 * the taskqueue and we're not already in taskqueue context, queue
2136 	 * up the unmount request and exit.  This is done prior to any
2137 	 * credential checks; MNT_DEFERRED should be used only for kernel-
2138 	 * initiated unmounts and will therefore be processed with the
2139 	 * (kernel) credentials of the taskqueue thread.  Still, callers
2140 	 * should be sure this is the behavior they want.
2141 	 */
2142 	if ((flags & MNT_DEFERRED) != 0 &&
2143 	    taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2144 		if (!deferred_unmount_enqueue(mp, flags, false, 0))
2145 			vfs_rel(mp);
2146 		return (EINPROGRESS);
2147 	}
2148 
2149 	/*
2150 	 * Only privileged root, or (if MNT_USER is set) the user that did the
2151 	 * original mount is permitted to unmount this filesystem.
2152 	 * This check should be made prior to queueing up any recursive
2153 	 * unmounts of upper filesystems.  Those unmounts will be executed
2154 	 * with kernel thread credentials and are expected to succeed, so
2155 	 * we must at least ensure the originating context has sufficient
2156 	 * privilege to unmount the base filesystem before proceeding with
2157 	 * the uppers.
2158 	 */
2159 	error = vfs_suser(mp, td);
2160 	if (error != 0) {
2161 		KASSERT((flags & MNT_DEFERRED) == 0,
2162 		    ("taskqueue unmount with insufficient privilege"));
2163 		vfs_rel(mp);
2164 		return (error);
2165 	}
2166 
2167 	if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2168 		flags |= MNT_RECURSE;
2169 
2170 	if ((flags & MNT_RECURSE) != 0) {
2171 		KASSERT((flags & MNT_FORCE) != 0,
2172 		    ("MNT_RECURSE requires MNT_FORCE"));
2173 
2174 		MNT_ILOCK(mp);
2175 		/*
2176 		 * Set MNTK_RECURSE to prevent new upper mounts from being
2177 		 * added, and note that an operation on the uppers list is in
2178 		 * progress.  This will ensure that unregistration from the
2179 		 * uppers list, and therefore any pending unmount of the upper
2180 		 * FS, can't complete until after we finish walking the list.
2181 		 */
2182 		mp->mnt_kern_flag |= MNTK_RECURSE;
2183 		mp->mnt_upper_pending++;
2184 		TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2185 			retries = upper->mp->mnt_unmount_retries;
2186 			if (retries > deferred_unmount_retry_limit) {
2187 				error = EBUSY;
2188 				continue;
2189 			}
2190 			MNT_IUNLOCK(mp);
2191 
2192 			vfs_ref(upper->mp);
2193 			if (!deferred_unmount_enqueue(upper->mp, flags,
2194 			    false, 0))
2195 				vfs_rel(upper->mp);
2196 			MNT_ILOCK(mp);
2197 		}
2198 		mp->mnt_upper_pending--;
2199 		if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2200 		    mp->mnt_upper_pending == 0) {
2201 			mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2202 			wakeup(&mp->mnt_uppers);
2203 		}
2204 
2205 		/*
2206 		 * If we're not on the taskqueue, wait until the uppers list
2207 		 * is drained before proceeding with unmount.  Otherwise, if
2208 		 * we are on the taskqueue and there are still pending uppers,
2209 		 * just re-enqueue on the end of the taskqueue.
2210 		 */
2211 		if ((flags & MNT_DEFERRED) == 0) {
2212 			while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2213 				mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2214 				error = msleep(&mp->mnt_taskqueue_link,
2215 				    MNT_MTX(mp), PCATCH, "umntqw", 0);
2216 			}
2217 			if (error != 0) {
2218 				MNT_REL(mp);
2219 				MNT_IUNLOCK(mp);
2220 				return (error);
2221 			}
2222 		} else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2223 			MNT_IUNLOCK(mp);
2224 			if (error == 0)
2225 				deferred_unmount_enqueue(mp, flags, true, 0);
2226 			return (error);
2227 		}
2228 		MNT_IUNLOCK(mp);
2229 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2230 	}
2231 
2232 	/* Allow the taskqueue to safely re-enqueue on failure */
2233 	if ((flags & MNT_DEFERRED) != 0)
2234 		vfs_ref(mp);
2235 
2236 	if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2237 		mnt_gen_r = mp->mnt_gen;
2238 		VI_LOCK(coveredvp);
2239 		vholdl(coveredvp);
2240 		vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2241 		/*
2242 		 * Check for mp being unmounted while waiting for the
2243 		 * covered vnode lock.
2244 		 */
2245 		if (coveredvp->v_mountedhere != mp ||
2246 		    coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2247 			VOP_UNLOCK(coveredvp);
2248 			vdrop(coveredvp);
2249 			vfs_rel(mp);
2250 			return (EBUSY);
2251 		}
2252 	}
2253 
2254 	vfs_op_enter(mp);
2255 
2256 	vn_start_write(NULL, &mp, V_WAIT);
2257 	MNT_ILOCK(mp);
2258 	if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2259 	    (mp->mnt_flag & MNT_UPDATE) != 0 ||
2260 	    !TAILQ_EMPTY(&mp->mnt_uppers)) {
2261 		dounmount_cleanup(mp, coveredvp, 0);
2262 		return (EBUSY);
2263 	}
2264 	mp->mnt_kern_flag |= MNTK_UNMOUNT;
2265 	rootvp = vfs_cache_root_clear(mp);
2266 	if (coveredvp != NULL)
2267 		vn_seqc_write_begin(coveredvp);
2268 	if (flags & MNT_NONBUSY) {
2269 		MNT_IUNLOCK(mp);
2270 		error = vfs_check_usecounts(mp);
2271 		MNT_ILOCK(mp);
2272 		if (error != 0) {
2273 			vn_seqc_write_end(coveredvp);
2274 			dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2275 			if (rootvp != NULL) {
2276 				vn_seqc_write_end(rootvp);
2277 				vrele(rootvp);
2278 			}
2279 			return (error);
2280 		}
2281 	}
2282 	/* Allow filesystems to detect that a forced unmount is in progress. */
2283 	if (flags & MNT_FORCE) {
2284 		mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2285 		MNT_IUNLOCK(mp);
2286 		/*
2287 		 * Must be done after setting MNTK_UNMOUNTF and before
2288 		 * waiting for mnt_lockref to become 0.
2289 		 */
2290 		VFS_PURGE(mp);
2291 		MNT_ILOCK(mp);
2292 	}
2293 	error = 0;
2294 	if (mp->mnt_lockref) {
2295 		mp->mnt_kern_flag |= MNTK_DRAINING;
2296 		error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2297 		    "mount drain", 0);
2298 	}
2299 	MNT_IUNLOCK(mp);
2300 	KASSERT(mp->mnt_lockref == 0,
2301 	    ("%s: invalid lock refcount in the drain path @ %s:%d",
2302 	    __func__, __FILE__, __LINE__));
2303 	KASSERT(error == 0,
2304 	    ("%s: invalid return value for msleep in the drain path @ %s:%d",
2305 	    __func__, __FILE__, __LINE__));
2306 
2307 	/*
2308 	 * We want to keep the vnode around so that we can vn_seqc_write_end
2309 	 * after we are done with unmount. Downgrade our reference to a mere
2310 	 * hold count so that we don't interefere with anything.
2311 	 */
2312 	if (rootvp != NULL) {
2313 		vhold(rootvp);
2314 		vrele(rootvp);
2315 	}
2316 
2317 	if (mp->mnt_flag & MNT_EXPUBLIC)
2318 		vfs_setpublicfs(NULL, NULL, NULL);
2319 
2320 	vfs_periodic(mp, MNT_WAIT);
2321 	MNT_ILOCK(mp);
2322 	async_flag = mp->mnt_flag & MNT_ASYNC;
2323 	mp->mnt_flag &= ~MNT_ASYNC;
2324 	mp->mnt_kern_flag &= ~MNTK_ASYNC;
2325 	MNT_IUNLOCK(mp);
2326 	vfs_deallocate_syncvnode(mp);
2327 	error = VFS_UNMOUNT(mp, flags);
2328 	vn_finished_write(mp);
2329 	vfs_rel(mp);
2330 	/*
2331 	 * If we failed to flush the dirty blocks for this mount point,
2332 	 * undo all the cdir/rdir and rootvnode changes we made above.
2333 	 * Unless we failed to do so because the device is reporting that
2334 	 * it doesn't exist anymore.
2335 	 */
2336 	if (error && error != ENXIO) {
2337 		MNT_ILOCK(mp);
2338 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2339 			MNT_IUNLOCK(mp);
2340 			vfs_allocate_syncvnode(mp);
2341 			MNT_ILOCK(mp);
2342 		}
2343 		mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2344 		mp->mnt_flag |= async_flag;
2345 		if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2346 		    (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2347 			mp->mnt_kern_flag |= MNTK_ASYNC;
2348 		if (mp->mnt_kern_flag & MNTK_MWAIT) {
2349 			mp->mnt_kern_flag &= ~MNTK_MWAIT;
2350 			wakeup(mp);
2351 		}
2352 		vfs_op_exit_locked(mp);
2353 		MNT_IUNLOCK(mp);
2354 		if (coveredvp) {
2355 			vn_seqc_write_end(coveredvp);
2356 			VOP_UNLOCK(coveredvp);
2357 			vdrop(coveredvp);
2358 		}
2359 		if (rootvp != NULL) {
2360 			vn_seqc_write_end(rootvp);
2361 			vdrop(rootvp);
2362 		}
2363 		return (error);
2364 	}
2365 
2366 	mtx_lock(&mountlist_mtx);
2367 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
2368 	mtx_unlock(&mountlist_mtx);
2369 	EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2370 	if (coveredvp != NULL) {
2371 		VI_LOCK(coveredvp);
2372 		vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2373 		coveredvp->v_mountedhere = NULL;
2374 		vn_seqc_write_end_locked(coveredvp);
2375 		VI_UNLOCK(coveredvp);
2376 		VOP_UNLOCK(coveredvp);
2377 		vdrop(coveredvp);
2378 	}
2379 	mount_devctl_event("UNMOUNT", mp, false);
2380 	if (rootvp != NULL) {
2381 		vn_seqc_write_end(rootvp);
2382 		vdrop(rootvp);
2383 	}
2384 	vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2385 	if (rootvnode != NULL && mp == rootvnode->v_mount) {
2386 		vrele(rootvnode);
2387 		rootvnode = NULL;
2388 	}
2389 	if (mp == rootdevmp)
2390 		rootdevmp = NULL;
2391 	if ((flags & MNT_DEFERRED) != 0)
2392 		vfs_rel(mp);
2393 	vfs_mount_destroy(mp);
2394 	return (0);
2395 }
2396 
2397 /*
2398  * Report errors during filesystem mounting.
2399  */
2400 void
2401 vfs_mount_error(struct mount *mp, const char *fmt, ...)
2402 {
2403 	struct vfsoptlist *moptlist = mp->mnt_optnew;
2404 	va_list ap;
2405 	int error, len;
2406 	char *errmsg;
2407 
2408 	error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2409 	if (error || errmsg == NULL || len <= 0)
2410 		return;
2411 
2412 	va_start(ap, fmt);
2413 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2414 	va_end(ap);
2415 }
2416 
2417 void
2418 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2419 {
2420 	va_list ap;
2421 	int error, len;
2422 	char *errmsg;
2423 
2424 	error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2425 	if (error || errmsg == NULL || len <= 0)
2426 		return;
2427 
2428 	va_start(ap, fmt);
2429 	vsnprintf(errmsg, (size_t)len, fmt, ap);
2430 	va_end(ap);
2431 }
2432 
2433 /*
2434  * ---------------------------------------------------------------------
2435  * Functions for querying mount options/arguments from filesystems.
2436  */
2437 
2438 /*
2439  * Check that no unknown options are given
2440  */
2441 int
2442 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2443 {
2444 	struct vfsopt *opt;
2445 	char errmsg[255];
2446 	const char **t, *p, *q;
2447 	int ret = 0;
2448 
2449 	TAILQ_FOREACH(opt, opts, link) {
2450 		p = opt->name;
2451 		q = NULL;
2452 		if (p[0] == 'n' && p[1] == 'o')
2453 			q = p + 2;
2454 		for(t = global_opts; *t != NULL; t++) {
2455 			if (strcmp(*t, p) == 0)
2456 				break;
2457 			if (q != NULL) {
2458 				if (strcmp(*t, q) == 0)
2459 					break;
2460 			}
2461 		}
2462 		if (*t != NULL)
2463 			continue;
2464 		for(t = legal; *t != NULL; t++) {
2465 			if (strcmp(*t, p) == 0)
2466 				break;
2467 			if (q != NULL) {
2468 				if (strcmp(*t, q) == 0)
2469 					break;
2470 			}
2471 		}
2472 		if (*t != NULL)
2473 			continue;
2474 		snprintf(errmsg, sizeof(errmsg),
2475 		    "mount option <%s> is unknown", p);
2476 		ret = EINVAL;
2477 	}
2478 	if (ret != 0) {
2479 		TAILQ_FOREACH(opt, opts, link) {
2480 			if (strcmp(opt->name, "errmsg") == 0) {
2481 				strncpy((char *)opt->value, errmsg, opt->len);
2482 				break;
2483 			}
2484 		}
2485 		if (opt == NULL)
2486 			printf("%s\n", errmsg);
2487 	}
2488 	return (ret);
2489 }
2490 
2491 /*
2492  * Get a mount option by its name.
2493  *
2494  * Return 0 if the option was found, ENOENT otherwise.
2495  * If len is non-NULL it will be filled with the length
2496  * of the option. If buf is non-NULL, it will be filled
2497  * with the address of the option.
2498  */
2499 int
2500 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2501 {
2502 	struct vfsopt *opt;
2503 
2504 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2505 
2506 	TAILQ_FOREACH(opt, opts, link) {
2507 		if (strcmp(name, opt->name) == 0) {
2508 			opt->seen = 1;
2509 			if (len != NULL)
2510 				*len = opt->len;
2511 			if (buf != NULL)
2512 				*buf = opt->value;
2513 			return (0);
2514 		}
2515 	}
2516 	return (ENOENT);
2517 }
2518 
2519 int
2520 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2521 {
2522 	struct vfsopt *opt;
2523 
2524 	if (opts == NULL)
2525 		return (-1);
2526 
2527 	TAILQ_FOREACH(opt, opts, link) {
2528 		if (strcmp(name, opt->name) == 0) {
2529 			opt->seen = 1;
2530 			return (opt->pos);
2531 		}
2532 	}
2533 	return (-1);
2534 }
2535 
2536 int
2537 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2538 {
2539 	char *opt_value, *vtp;
2540 	quad_t iv;
2541 	int error, opt_len;
2542 
2543 	error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2544 	if (error != 0)
2545 		return (error);
2546 	if (opt_len == 0 || opt_value == NULL)
2547 		return (EINVAL);
2548 	if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2549 		return (EINVAL);
2550 	iv = strtoq(opt_value, &vtp, 0);
2551 	if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2552 		return (EINVAL);
2553 	if (iv < 0)
2554 		return (EINVAL);
2555 	switch (vtp[0]) {
2556 	case 't': case 'T':
2557 		iv *= 1024;
2558 		/* FALLTHROUGH */
2559 	case 'g': case 'G':
2560 		iv *= 1024;
2561 		/* FALLTHROUGH */
2562 	case 'm': case 'M':
2563 		iv *= 1024;
2564 		/* FALLTHROUGH */
2565 	case 'k': case 'K':
2566 		iv *= 1024;
2567 	case '\0':
2568 		break;
2569 	default:
2570 		return (EINVAL);
2571 	}
2572 	*value = iv;
2573 
2574 	return (0);
2575 }
2576 
2577 char *
2578 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2579 {
2580 	struct vfsopt *opt;
2581 
2582 	*error = 0;
2583 	TAILQ_FOREACH(opt, opts, link) {
2584 		if (strcmp(name, opt->name) != 0)
2585 			continue;
2586 		opt->seen = 1;
2587 		if (opt->len == 0 ||
2588 		    ((char *)opt->value)[opt->len - 1] != '\0') {
2589 			*error = EINVAL;
2590 			return (NULL);
2591 		}
2592 		return (opt->value);
2593 	}
2594 	*error = ENOENT;
2595 	return (NULL);
2596 }
2597 
2598 int
2599 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2600 	uint64_t val)
2601 {
2602 	struct vfsopt *opt;
2603 
2604 	TAILQ_FOREACH(opt, opts, link) {
2605 		if (strcmp(name, opt->name) == 0) {
2606 			opt->seen = 1;
2607 			if (w != NULL)
2608 				*w |= val;
2609 			return (1);
2610 		}
2611 	}
2612 	if (w != NULL)
2613 		*w &= ~val;
2614 	return (0);
2615 }
2616 
2617 int
2618 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2619 {
2620 	va_list ap;
2621 	struct vfsopt *opt;
2622 	int ret;
2623 
2624 	KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2625 
2626 	TAILQ_FOREACH(opt, opts, link) {
2627 		if (strcmp(name, opt->name) != 0)
2628 			continue;
2629 		opt->seen = 1;
2630 		if (opt->len == 0 || opt->value == NULL)
2631 			return (0);
2632 		if (((char *)opt->value)[opt->len - 1] != '\0')
2633 			return (0);
2634 		va_start(ap, fmt);
2635 		ret = vsscanf(opt->value, fmt, ap);
2636 		va_end(ap);
2637 		return (ret);
2638 	}
2639 	return (0);
2640 }
2641 
2642 int
2643 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2644 {
2645 	struct vfsopt *opt;
2646 
2647 	TAILQ_FOREACH(opt, opts, link) {
2648 		if (strcmp(name, opt->name) != 0)
2649 			continue;
2650 		opt->seen = 1;
2651 		if (opt->value == NULL)
2652 			opt->len = len;
2653 		else {
2654 			if (opt->len != len)
2655 				return (EINVAL);
2656 			bcopy(value, opt->value, len);
2657 		}
2658 		return (0);
2659 	}
2660 	return (ENOENT);
2661 }
2662 
2663 int
2664 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2665 {
2666 	struct vfsopt *opt;
2667 
2668 	TAILQ_FOREACH(opt, opts, link) {
2669 		if (strcmp(name, opt->name) != 0)
2670 			continue;
2671 		opt->seen = 1;
2672 		if (opt->value == NULL)
2673 			opt->len = len;
2674 		else {
2675 			if (opt->len < len)
2676 				return (EINVAL);
2677 			opt->len = len;
2678 			bcopy(value, opt->value, len);
2679 		}
2680 		return (0);
2681 	}
2682 	return (ENOENT);
2683 }
2684 
2685 int
2686 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2687 {
2688 	struct vfsopt *opt;
2689 
2690 	TAILQ_FOREACH(opt, opts, link) {
2691 		if (strcmp(name, opt->name) != 0)
2692 			continue;
2693 		opt->seen = 1;
2694 		if (opt->value == NULL)
2695 			opt->len = strlen(value) + 1;
2696 		else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2697 			return (EINVAL);
2698 		return (0);
2699 	}
2700 	return (ENOENT);
2701 }
2702 
2703 /*
2704  * Find and copy a mount option.
2705  *
2706  * The size of the buffer has to be specified
2707  * in len, if it is not the same length as the
2708  * mount option, EINVAL is returned.
2709  * Returns ENOENT if the option is not found.
2710  */
2711 int
2712 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2713 {
2714 	struct vfsopt *opt;
2715 
2716 	KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2717 
2718 	TAILQ_FOREACH(opt, opts, link) {
2719 		if (strcmp(name, opt->name) == 0) {
2720 			opt->seen = 1;
2721 			if (len != opt->len)
2722 				return (EINVAL);
2723 			bcopy(opt->value, dest, opt->len);
2724 			return (0);
2725 		}
2726 	}
2727 	return (ENOENT);
2728 }
2729 
2730 int
2731 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2732 {
2733 	/*
2734 	 * Filesystems only fill in part of the structure for updates, we
2735 	 * have to read the entirety first to get all content.
2736 	 */
2737 	if (sbp != &mp->mnt_stat)
2738 		memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2739 
2740 	/*
2741 	 * Set these in case the underlying filesystem fails to do so.
2742 	 */
2743 	sbp->f_version = STATFS_VERSION;
2744 	sbp->f_namemax = NAME_MAX;
2745 	sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2746 	sbp->f_nvnodelistsize = mp->mnt_nvnodelistsize;
2747 
2748 	return (mp->mnt_op->vfs_statfs(mp, sbp));
2749 }
2750 
2751 void
2752 vfs_mountedfrom(struct mount *mp, const char *from)
2753 {
2754 
2755 	bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2756 	strlcpy(mp->mnt_stat.f_mntfromname, from,
2757 	    sizeof mp->mnt_stat.f_mntfromname);
2758 }
2759 
2760 /*
2761  * ---------------------------------------------------------------------
2762  * This is the api for building mount args and mounting filesystems from
2763  * inside the kernel.
2764  *
2765  * The API works by accumulation of individual args.  First error is
2766  * latched.
2767  *
2768  * XXX: should be documented in new manpage kernel_mount(9)
2769  */
2770 
2771 /* A memory allocation which must be freed when we are done */
2772 struct mntaarg {
2773 	SLIST_ENTRY(mntaarg)	next;
2774 };
2775 
2776 /* The header for the mount arguments */
2777 struct mntarg {
2778 	struct iovec *v;
2779 	int len;
2780 	int error;
2781 	SLIST_HEAD(, mntaarg)	list;
2782 };
2783 
2784 /*
2785  * Add a boolean argument.
2786  *
2787  * flag is the boolean value.
2788  * name must start with "no".
2789  */
2790 struct mntarg *
2791 mount_argb(struct mntarg *ma, int flag, const char *name)
2792 {
2793 
2794 	KASSERT(name[0] == 'n' && name[1] == 'o',
2795 	    ("mount_argb(...,%s): name must start with 'no'", name));
2796 
2797 	return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2798 }
2799 
2800 /*
2801  * Add an argument printf style
2802  */
2803 struct mntarg *
2804 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2805 {
2806 	va_list ap;
2807 	struct mntaarg *maa;
2808 	struct sbuf *sb;
2809 	int len;
2810 
2811 	if (ma == NULL) {
2812 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2813 		SLIST_INIT(&ma->list);
2814 	}
2815 	if (ma->error)
2816 		return (ma);
2817 
2818 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2819 	    M_MOUNT, M_WAITOK);
2820 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2821 	ma->v[ma->len].iov_len = strlen(name) + 1;
2822 	ma->len++;
2823 
2824 	sb = sbuf_new_auto();
2825 	va_start(ap, fmt);
2826 	sbuf_vprintf(sb, fmt, ap);
2827 	va_end(ap);
2828 	sbuf_finish(sb);
2829 	len = sbuf_len(sb) + 1;
2830 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2831 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2832 	bcopy(sbuf_data(sb), maa + 1, len);
2833 	sbuf_delete(sb);
2834 
2835 	ma->v[ma->len].iov_base = maa + 1;
2836 	ma->v[ma->len].iov_len = len;
2837 	ma->len++;
2838 
2839 	return (ma);
2840 }
2841 
2842 /*
2843  * Add an argument which is a userland string.
2844  */
2845 struct mntarg *
2846 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2847 {
2848 	struct mntaarg *maa;
2849 	char *tbuf;
2850 
2851 	if (val == NULL)
2852 		return (ma);
2853 	if (ma == NULL) {
2854 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2855 		SLIST_INIT(&ma->list);
2856 	}
2857 	if (ma->error)
2858 		return (ma);
2859 	maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2860 	SLIST_INSERT_HEAD(&ma->list, maa, next);
2861 	tbuf = (void *)(maa + 1);
2862 	ma->error = copyinstr(val, tbuf, len, NULL);
2863 	return (mount_arg(ma, name, tbuf, -1));
2864 }
2865 
2866 /*
2867  * Plain argument.
2868  *
2869  * If length is -1, treat value as a C string.
2870  */
2871 struct mntarg *
2872 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2873 {
2874 
2875 	if (ma == NULL) {
2876 		ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2877 		SLIST_INIT(&ma->list);
2878 	}
2879 	if (ma->error)
2880 		return (ma);
2881 
2882 	ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2883 	    M_MOUNT, M_WAITOK);
2884 	ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2885 	ma->v[ma->len].iov_len = strlen(name) + 1;
2886 	ma->len++;
2887 
2888 	ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2889 	if (len < 0)
2890 		ma->v[ma->len].iov_len = strlen(val) + 1;
2891 	else
2892 		ma->v[ma->len].iov_len = len;
2893 	ma->len++;
2894 	return (ma);
2895 }
2896 
2897 /*
2898  * Free a mntarg structure
2899  */
2900 static void
2901 free_mntarg(struct mntarg *ma)
2902 {
2903 	struct mntaarg *maa;
2904 
2905 	while (!SLIST_EMPTY(&ma->list)) {
2906 		maa = SLIST_FIRST(&ma->list);
2907 		SLIST_REMOVE_HEAD(&ma->list, next);
2908 		free(maa, M_MOUNT);
2909 	}
2910 	free(ma->v, M_MOUNT);
2911 	free(ma, M_MOUNT);
2912 }
2913 
2914 /*
2915  * Mount a filesystem
2916  */
2917 int
2918 kernel_mount(struct mntarg *ma, uint64_t flags)
2919 {
2920 	struct uio auio;
2921 	int error;
2922 
2923 	KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2924 	KASSERT(ma->error != 0 || ma->v != NULL, ("kernel_mount NULL ma->v"));
2925 	KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2926 
2927 	error = ma->error;
2928 	if (error == 0) {
2929 		auio.uio_iov = ma->v;
2930 		auio.uio_iovcnt = ma->len;
2931 		auio.uio_segflg = UIO_SYSSPACE;
2932 		error = vfs_donmount(curthread, flags, &auio);
2933 	}
2934 	free_mntarg(ma);
2935 	return (error);
2936 }
2937 
2938 /* Map from mount options to printable formats. */
2939 static struct mntoptnames optnames[] = {
2940 	MNTOPT_NAMES
2941 };
2942 
2943 #define DEVCTL_LEN 1024
2944 static void
2945 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2946 {
2947 	const uint8_t *cp;
2948 	struct mntoptnames *fp;
2949 	struct sbuf sb;
2950 	struct statfs *sfp = &mp->mnt_stat;
2951 	char *buf;
2952 
2953 	buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2954 	if (buf == NULL)
2955 		return;
2956 	sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2957 	sbuf_cpy(&sb, "mount-point=\"");
2958 	devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2959 	sbuf_cat(&sb, "\" mount-dev=\"");
2960 	devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2961 	sbuf_cat(&sb, "\" mount-type=\"");
2962 	devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2963 	sbuf_cat(&sb, "\" fsid=0x");
2964 	cp = (const uint8_t *)&sfp->f_fsid.val[0];
2965 	for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2966 		sbuf_printf(&sb, "%02x", cp[i]);
2967 	sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2968 	for (fp = optnames; fp->o_opt != 0; fp++) {
2969 		if ((mp->mnt_flag & fp->o_opt) != 0) {
2970 			sbuf_cat(&sb, fp->o_name);
2971 			sbuf_putc(&sb, ';');
2972 		}
2973 	}
2974 	sbuf_putc(&sb, '"');
2975 	sbuf_finish(&sb);
2976 
2977 	/*
2978 	 * Options are not published because the form of the options depends on
2979 	 * the file system and may include binary data. In addition, they don't
2980 	 * necessarily provide enough useful information to be actionable when
2981 	 * devd processes them.
2982 	 */
2983 
2984 	if (sbuf_error(&sb) == 0)
2985 		devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2986 	sbuf_delete(&sb);
2987 	free(buf, M_MOUNT);
2988 }
2989 
2990 /*
2991  * Force remount specified mount point to read-only.  The argument
2992  * must be busied to avoid parallel unmount attempts.
2993  *
2994  * Intended use is to prevent further writes if some metadata
2995  * inconsistency is detected.  Note that the function still flushes
2996  * all cached metadata and data for the mount point, which might be
2997  * not always suitable.
2998  */
2999 int
3000 vfs_remount_ro(struct mount *mp)
3001 {
3002 	struct vfsoptlist *opts;
3003 	struct vfsopt *opt;
3004 	struct vnode *vp_covered, *rootvp;
3005 	int error;
3006 
3007 	KASSERT(mp->mnt_lockref > 0,
3008 	    ("vfs_remount_ro: mp %p is not busied", mp));
3009 	KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
3010 	    ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
3011 
3012 	rootvp = NULL;
3013 	vp_covered = mp->mnt_vnodecovered;
3014 	error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
3015 	if (error != 0)
3016 		return (error);
3017 	VI_LOCK(vp_covered);
3018 	if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
3019 		VI_UNLOCK(vp_covered);
3020 		vput(vp_covered);
3021 		return (EBUSY);
3022 	}
3023 	vp_covered->v_iflag |= VI_MOUNT;
3024 	VI_UNLOCK(vp_covered);
3025 	vfs_op_enter(mp);
3026 	vn_seqc_write_begin(vp_covered);
3027 
3028 	MNT_ILOCK(mp);
3029 	if ((mp->mnt_flag & MNT_RDONLY) != 0) {
3030 		MNT_IUNLOCK(mp);
3031 		error = EBUSY;
3032 		goto out;
3033 	}
3034 	mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
3035 	rootvp = vfs_cache_root_clear(mp);
3036 	MNT_IUNLOCK(mp);
3037 
3038 	opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
3039 	TAILQ_INIT(opts);
3040 	opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
3041 	opt->name = strdup("ro", M_MOUNT);
3042 	opt->value = NULL;
3043 	TAILQ_INSERT_TAIL(opts, opt, link);
3044 	vfs_mergeopts(opts, mp->mnt_opt);
3045 	mp->mnt_optnew = opts;
3046 
3047 	error = VFS_MOUNT(mp);
3048 
3049 	if (error == 0) {
3050 		MNT_ILOCK(mp);
3051 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
3052 		MNT_IUNLOCK(mp);
3053 		vfs_deallocate_syncvnode(mp);
3054 		if (mp->mnt_opt != NULL)
3055 			vfs_freeopts(mp->mnt_opt);
3056 		mp->mnt_opt = mp->mnt_optnew;
3057 	} else {
3058 		MNT_ILOCK(mp);
3059 		mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
3060 		MNT_IUNLOCK(mp);
3061 		vfs_freeopts(mp->mnt_optnew);
3062 	}
3063 	mp->mnt_optnew = NULL;
3064 
3065 out:
3066 	vfs_op_exit(mp);
3067 	VI_LOCK(vp_covered);
3068 	vp_covered->v_iflag &= ~VI_MOUNT;
3069 	VI_UNLOCK(vp_covered);
3070 	vput(vp_covered);
3071 	vn_seqc_write_end(vp_covered);
3072 	if (rootvp != NULL) {
3073 		vn_seqc_write_end(rootvp);
3074 		vrele(rootvp);
3075 	}
3076 	return (error);
3077 }
3078 
3079 /*
3080  * Suspend write operations on all local writeable filesystems.  Does
3081  * full sync of them in the process.
3082  *
3083  * Iterate over the mount points in reverse order, suspending most
3084  * recently mounted filesystems first.  It handles a case where a
3085  * filesystem mounted from a md(4) vnode-backed device should be
3086  * suspended before the filesystem that owns the vnode.
3087  */
3088 void
3089 suspend_all_fs(void)
3090 {
3091 	struct mount *mp;
3092 	int error;
3093 
3094 	mtx_lock(&mountlist_mtx);
3095 	TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
3096 		error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
3097 		if (error != 0)
3098 			continue;
3099 		if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
3100 		    (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
3101 			mtx_lock(&mountlist_mtx);
3102 			vfs_unbusy(mp);
3103 			continue;
3104 		}
3105 		error = vfs_write_suspend(mp, 0);
3106 		if (error == 0) {
3107 			MNT_ILOCK(mp);
3108 			MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
3109 			mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
3110 			MNT_IUNLOCK(mp);
3111 			mtx_lock(&mountlist_mtx);
3112 		} else {
3113 			printf("suspend of %s failed, error %d\n",
3114 			    mp->mnt_stat.f_mntonname, error);
3115 			mtx_lock(&mountlist_mtx);
3116 			vfs_unbusy(mp);
3117 		}
3118 	}
3119 	mtx_unlock(&mountlist_mtx);
3120 }
3121 
3122 void
3123 resume_all_fs(void)
3124 {
3125 	struct mount *mp;
3126 
3127 	mtx_lock(&mountlist_mtx);
3128 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3129 		if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3130 			continue;
3131 		mtx_unlock(&mountlist_mtx);
3132 		MNT_ILOCK(mp);
3133 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3134 		mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3135 		MNT_IUNLOCK(mp);
3136 		vfs_write_resume(mp, 0);
3137 		mtx_lock(&mountlist_mtx);
3138 		vfs_unbusy(mp);
3139 	}
3140 	mtx_unlock(&mountlist_mtx);
3141 }
3142