1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed 6 * to Berkeley by John Heidemann of the UCLA Ficus project. 7 * 8 * Source: * @(#)i405_init.c 2.10 92/04/27 UCLA Ficus project 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * 39 * $FreeBSD$ 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bio.h> 45 #include <sys/buf.h> 46 #include <sys/conf.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mutex.h> 52 #include <sys/unistd.h> 53 #include <sys/vnode.h> 54 #include <sys/poll.h> 55 56 #include <machine/limits.h> 57 58 #include <vm/vm.h> 59 #include <vm/vm_object.h> 60 #include <vm/vm_extern.h> 61 #include <vm/pmap.h> 62 #include <vm/vm_map.h> 63 #include <vm/vm_page.h> 64 #include <vm/vm_pager.h> 65 #include <vm/vnode_pager.h> 66 67 static int vop_nolookup(struct vop_lookup_args *); 68 static int vop_nostrategy(struct vop_strategy_args *); 69 static int vop_nospecstrategy(struct vop_specstrategy_args *); 70 71 /* 72 * This vnode table stores what we want to do if the filesystem doesn't 73 * implement a particular VOP. 74 * 75 * If there is no specific entry here, we will return EOPNOTSUPP. 76 * 77 */ 78 79 vop_t **default_vnodeop_p; 80 static struct vnodeopv_entry_desc default_vnodeop_entries[] = { 81 { &vop_default_desc, (vop_t *) vop_eopnotsupp }, 82 { &vop_advlock_desc, (vop_t *) vop_einval }, 83 { &vop_bmap_desc, (vop_t *) vop_stdbmap }, 84 { &vop_close_desc, (vop_t *) vop_null }, 85 { &vop_createvobject_desc, (vop_t *) vop_stdcreatevobject }, 86 { &vop_destroyvobject_desc, (vop_t *) vop_stddestroyvobject }, 87 { &vop_fsync_desc, (vop_t *) vop_null }, 88 { &vop_getpages_desc, (vop_t *) vop_stdgetpages }, 89 { &vop_getvobject_desc, (vop_t *) vop_stdgetvobject }, 90 { &vop_inactive_desc, (vop_t *) vop_stdinactive }, 91 { &vop_ioctl_desc, (vop_t *) vop_enotty }, 92 { &vop_islocked_desc, (vop_t *) vop_stdislocked }, 93 { &vop_lease_desc, (vop_t *) vop_null }, 94 { &vop_lock_desc, (vop_t *) vop_stdlock }, 95 { &vop_lookup_desc, (vop_t *) vop_nolookup }, 96 { &vop_open_desc, (vop_t *) vop_null }, 97 { &vop_pathconf_desc, (vop_t *) vop_einval }, 98 { &vop_poll_desc, (vop_t *) vop_nopoll }, 99 { &vop_putpages_desc, (vop_t *) vop_stdputpages }, 100 { &vop_readlink_desc, (vop_t *) vop_einval }, 101 { &vop_revoke_desc, (vop_t *) vop_revoke }, 102 { &vop_specstrategy_desc, (vop_t *) vop_nospecstrategy }, 103 { &vop_strategy_desc, (vop_t *) vop_nostrategy }, 104 { &vop_unlock_desc, (vop_t *) vop_stdunlock }, 105 { NULL, NULL } 106 }; 107 108 static struct vnodeopv_desc default_vnodeop_opv_desc = 109 { &default_vnodeop_p, default_vnodeop_entries }; 110 111 VNODEOP_SET(default_vnodeop_opv_desc); 112 113 /* 114 * Series of placeholder functions for various error returns for 115 * VOPs. 116 */ 117 118 int 119 vop_eopnotsupp(struct vop_generic_args *ap) 120 { 121 /* 122 printf("vop_notsupp[%s]\n", ap->a_desc->vdesc_name); 123 */ 124 125 return (EOPNOTSUPP); 126 } 127 128 int 129 vop_ebadf(struct vop_generic_args *ap) 130 { 131 132 return (EBADF); 133 } 134 135 int 136 vop_enotty(struct vop_generic_args *ap) 137 { 138 139 return (ENOTTY); 140 } 141 142 int 143 vop_einval(struct vop_generic_args *ap) 144 { 145 146 return (EINVAL); 147 } 148 149 int 150 vop_null(struct vop_generic_args *ap) 151 { 152 153 return (0); 154 } 155 156 /* 157 * Used to make a defined VOP fall back to the default VOP. 158 */ 159 int 160 vop_defaultop(struct vop_generic_args *ap) 161 { 162 163 return (VOCALL(default_vnodeop_p, ap->a_desc->vdesc_offset, ap)); 164 } 165 166 /* 167 * Helper function to panic on some bad VOPs in some filesystems. 168 */ 169 int 170 vop_panic(struct vop_generic_args *ap) 171 { 172 173 panic("filesystem goof: vop_panic[%s]", ap->a_desc->vdesc_name); 174 } 175 176 /* 177 * vop_std<something> and vop_no<something> are default functions for use by 178 * filesystems that need the "default reasonable" implementation for a 179 * particular operation. 180 * 181 * The documentation for the operations they implement exists (if it exists) 182 * in the VOP_<SOMETHING>(9) manpage (all uppercase). 183 */ 184 185 /* 186 * Default vop for filesystems that do not support name lookup 187 */ 188 static int 189 vop_nolookup(ap) 190 struct vop_lookup_args /* { 191 struct vnode *a_dvp; 192 struct vnode **a_vpp; 193 struct componentname *a_cnp; 194 } */ *ap; 195 { 196 197 *ap->a_vpp = NULL; 198 return (ENOTDIR); 199 } 200 201 /* 202 * vop_nostrategy: 203 * 204 * Strategy routine for VFS devices that have none. 205 * 206 * BIO_ERROR and B_INVAL must be cleared prior to calling any strategy 207 * routine. Typically this is done for a BIO_READ strategy call. 208 * Typically B_INVAL is assumed to already be clear prior to a write 209 * and should not be cleared manually unless you just made the buffer 210 * invalid. BIO_ERROR should be cleared either way. 211 */ 212 213 static int 214 vop_nostrategy (struct vop_strategy_args *ap) 215 { 216 printf("No strategy for buffer at %p\n", ap->a_bp); 217 vprint("vnode", ap->a_vp); 218 vprint("device vnode", ap->a_bp->b_vp); 219 ap->a_bp->b_ioflags |= BIO_ERROR; 220 ap->a_bp->b_error = EOPNOTSUPP; 221 bufdone(ap->a_bp); 222 return (EOPNOTSUPP); 223 } 224 225 /* 226 * vop_nospecstrategy: 227 * 228 * This shouldn't happen. VOP_SPECSTRATEGY should always have a VCHR 229 * argument vnode, and thos have a method for specstrategy over in 230 * specfs, so we only ever get here if somebody botched it. 231 * Pass the call to VOP_STRATEGY() and get on with life. 232 * The first time we print some info useful for debugging. 233 */ 234 235 static int 236 vop_nospecstrategy (struct vop_specstrategy_args *ap) 237 { 238 static int once; 239 240 if (!once) { 241 vprint("VOP_SPECSTRATEGY on non-VCHR", ap->a_vp); 242 backtrace(); 243 once++; 244 } 245 return VOP_STRATEGY(ap->a_vp, ap->a_bp); 246 } 247 248 /* 249 * vop_stdpathconf: 250 * 251 * Standard implementation of POSIX pathconf, to get information about limits 252 * for a filesystem. 253 * Override per filesystem for the case where the filesystem has smaller 254 * limits. 255 */ 256 int 257 vop_stdpathconf(ap) 258 struct vop_pathconf_args /* { 259 struct vnode *a_vp; 260 int a_name; 261 int *a_retval; 262 } */ *ap; 263 { 264 265 switch (ap->a_name) { 266 case _PC_LINK_MAX: 267 *ap->a_retval = LINK_MAX; 268 return (0); 269 case _PC_MAX_CANON: 270 *ap->a_retval = MAX_CANON; 271 return (0); 272 case _PC_MAX_INPUT: 273 *ap->a_retval = MAX_INPUT; 274 return (0); 275 case _PC_PIPE_BUF: 276 *ap->a_retval = PIPE_BUF; 277 return (0); 278 case _PC_CHOWN_RESTRICTED: 279 *ap->a_retval = 1; 280 return (0); 281 case _PC_VDISABLE: 282 *ap->a_retval = _POSIX_VDISABLE; 283 return (0); 284 default: 285 return (EINVAL); 286 } 287 /* NOTREACHED */ 288 } 289 290 /* 291 * Standard lock, unlock and islocked functions. 292 */ 293 int 294 vop_stdlock(ap) 295 struct vop_lock_args /* { 296 struct vnode *a_vp; 297 int a_flags; 298 struct thread *a_td; 299 } */ *ap; 300 { 301 struct vnode *vp = ap->a_vp; 302 303 #ifndef DEBUG_LOCKS 304 return (lockmgr(vp->v_vnlock, ap->a_flags, VI_MTX(vp), ap->a_td)); 305 #else 306 return (debuglockmgr(vp->v_vnlock, ap->a_flags, VI_MTX(vp), 307 ap->a_td, "vop_stdlock", vp->filename, vp->line)); 308 #endif 309 } 310 311 /* See above. */ 312 int 313 vop_stdunlock(ap) 314 struct vop_unlock_args /* { 315 struct vnode *a_vp; 316 int a_flags; 317 struct thread *a_td; 318 } */ *ap; 319 { 320 struct vnode *vp = ap->a_vp; 321 322 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, VI_MTX(vp), 323 ap->a_td)); 324 } 325 326 /* See above. */ 327 int 328 vop_stdislocked(ap) 329 struct vop_islocked_args /* { 330 struct vnode *a_vp; 331 struct thread *a_td; 332 } */ *ap; 333 { 334 335 return (lockstatus(ap->a_vp->v_vnlock, ap->a_td)); 336 } 337 338 /* Mark the vnode inactive */ 339 int 340 vop_stdinactive(ap) 341 struct vop_inactive_args /* { 342 struct vnode *a_vp; 343 struct thread *a_td; 344 } */ *ap; 345 { 346 347 VOP_UNLOCK(ap->a_vp, 0, ap->a_td); 348 return (0); 349 } 350 351 /* 352 * Return true for select/poll. 353 */ 354 int 355 vop_nopoll(ap) 356 struct vop_poll_args /* { 357 struct vnode *a_vp; 358 int a_events; 359 struct ucred *a_cred; 360 struct thread *a_td; 361 } */ *ap; 362 { 363 /* 364 * Return true for read/write. If the user asked for something 365 * special, return POLLNVAL, so that clients have a way of 366 * determining reliably whether or not the extended 367 * functionality is present without hard-coding knowledge 368 * of specific filesystem implementations. 369 */ 370 if (ap->a_events & ~POLLSTANDARD) 371 return (POLLNVAL); 372 373 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 374 } 375 376 /* 377 * Implement poll for local filesystems that support it. 378 */ 379 int 380 vop_stdpoll(ap) 381 struct vop_poll_args /* { 382 struct vnode *a_vp; 383 int a_events; 384 struct ucred *a_cred; 385 struct thread *a_td; 386 } */ *ap; 387 { 388 if (ap->a_events & ~POLLSTANDARD) 389 return (vn_pollrecord(ap->a_vp, ap->a_td, ap->a_events)); 390 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 391 } 392 393 /* 394 * Stubs to use when there is no locking to be done on the underlying object. 395 * A minimal shared lock is necessary to ensure that the underlying object 396 * is not revoked while an operation is in progress. So, an active shared 397 * count is maintained in an auxillary vnode lock structure. 398 */ 399 int 400 vop_sharedlock(ap) 401 struct vop_lock_args /* { 402 struct vnode *a_vp; 403 int a_flags; 404 struct thread *a_td; 405 } */ *ap; 406 { 407 /* 408 * This code cannot be used until all the non-locking filesystems 409 * (notably NFS) are converted to properly lock and release nodes. 410 * Also, certain vnode operations change the locking state within 411 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 412 * and symlink). Ideally these operations should not change the 413 * lock state, but should be changed to let the caller of the 414 * function unlock them. Otherwise all intermediate vnode layers 415 * (such as union, umapfs, etc) must catch these functions to do 416 * the necessary locking at their layer. Note that the inactive 417 * and lookup operations also change their lock state, but this 418 * cannot be avoided, so these two operations will always need 419 * to be handled in intermediate layers. 420 */ 421 struct vnode *vp = ap->a_vp; 422 int vnflags, flags = ap->a_flags; 423 424 switch (flags & LK_TYPE_MASK) { 425 case LK_DRAIN: 426 vnflags = LK_DRAIN; 427 break; 428 case LK_EXCLUSIVE: 429 #ifdef DEBUG_VFS_LOCKS 430 /* 431 * Normally, we use shared locks here, but that confuses 432 * the locking assertions. 433 */ 434 vnflags = LK_EXCLUSIVE; 435 break; 436 #endif 437 case LK_SHARED: 438 vnflags = LK_SHARED; 439 break; 440 case LK_UPGRADE: 441 case LK_EXCLUPGRADE: 442 case LK_DOWNGRADE: 443 return (0); 444 case LK_RELEASE: 445 default: 446 panic("vop_sharedlock: bad operation %d", flags & LK_TYPE_MASK); 447 } 448 vnflags |= flags & (LK_INTERLOCK | LK_EXTFLG_MASK); 449 #ifndef DEBUG_LOCKS 450 return (lockmgr(vp->v_vnlock, vnflags, VI_MTX(vp), ap->a_td)); 451 #else 452 return (debuglockmgr(vp->v_vnlock, vnflags, VI_MTX(vp), ap->a_td, 453 "vop_sharedlock", vp->filename, vp->line)); 454 #endif 455 } 456 457 /* 458 * Stubs to use when there is no locking to be done on the underlying object. 459 * A minimal shared lock is necessary to ensure that the underlying object 460 * is not revoked while an operation is in progress. So, an active shared 461 * count is maintained in an auxillary vnode lock structure. 462 */ 463 int 464 vop_nolock(ap) 465 struct vop_lock_args /* { 466 struct vnode *a_vp; 467 int a_flags; 468 struct thread *a_td; 469 } */ *ap; 470 { 471 #ifdef notyet 472 /* 473 * This code cannot be used until all the non-locking filesystems 474 * (notably NFS) are converted to properly lock and release nodes. 475 * Also, certain vnode operations change the locking state within 476 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 477 * and symlink). Ideally these operations should not change the 478 * lock state, but should be changed to let the caller of the 479 * function unlock them. Otherwise all intermediate vnode layers 480 * (such as union, umapfs, etc) must catch these functions to do 481 * the necessary locking at their layer. Note that the inactive 482 * and lookup operations also change their lock state, but this 483 * cannot be avoided, so these two operations will always need 484 * to be handled in intermediate layers. 485 */ 486 struct vnode *vp = ap->a_vp; 487 int vnflags, flags = ap->a_flags; 488 489 switch (flags & LK_TYPE_MASK) { 490 case LK_DRAIN: 491 vnflags = LK_DRAIN; 492 break; 493 case LK_EXCLUSIVE: 494 case LK_SHARED: 495 vnflags = LK_SHARED; 496 break; 497 case LK_UPGRADE: 498 case LK_EXCLUPGRADE: 499 case LK_DOWNGRADE: 500 return (0); 501 case LK_RELEASE: 502 default: 503 panic("vop_nolock: bad operation %d", flags & LK_TYPE_MASK); 504 } 505 vnflags |= flags & (LK_INTERLOCK | LK_EXTFLG_MASK); 506 return(lockmgr(vp->v_vnlock, vnflags, VI_MTX(vp), ap->a_td)); 507 #else /* for now */ 508 /* 509 * Since we are not using the lock manager, we must clear 510 * the interlock here. 511 */ 512 if (ap->a_flags & LK_INTERLOCK) 513 VI_UNLOCK(ap->a_vp); 514 return (0); 515 #endif 516 } 517 518 /* 519 * Do the inverse of vop_nolock, handling the interlock in a compatible way. 520 */ 521 int 522 vop_nounlock(ap) 523 struct vop_unlock_args /* { 524 struct vnode *a_vp; 525 int a_flags; 526 struct thread *a_td; 527 } */ *ap; 528 { 529 530 /* 531 * Since we are not using the lock manager, we must clear 532 * the interlock here. 533 */ 534 if (ap->a_flags & LK_INTERLOCK) 535 VI_UNLOCK(ap->a_vp); 536 return (0); 537 } 538 539 /* 540 * Return whether or not the node is in use. 541 */ 542 int 543 vop_noislocked(ap) 544 struct vop_islocked_args /* { 545 struct vnode *a_vp; 546 struct thread *a_td; 547 } */ *ap; 548 { 549 550 return (0); 551 } 552 553 /* 554 * Return our mount point, as we will take charge of the writes. 555 */ 556 int 557 vop_stdgetwritemount(ap) 558 struct vop_getwritemount_args /* { 559 struct vnode *a_vp; 560 struct mount **a_mpp; 561 } */ *ap; 562 { 563 564 *(ap->a_mpp) = ap->a_vp->v_mount; 565 return (0); 566 } 567 568 /* Create the VM system backing object for this vnode */ 569 int 570 vop_stdcreatevobject(ap) 571 struct vop_createvobject_args /* { 572 struct vnode *vp; 573 struct ucred *cred; 574 struct thread *td; 575 } */ *ap; 576 { 577 struct vnode *vp = ap->a_vp; 578 struct ucred *cred = ap->a_cred; 579 struct thread *td = ap->a_td; 580 struct vattr vat; 581 vm_object_t object; 582 int error = 0; 583 584 GIANT_REQUIRED; 585 586 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 587 return (0); 588 589 retry: 590 if ((object = vp->v_object) == NULL) { 591 if (vp->v_type == VREG || vp->v_type == VDIR) { 592 if ((error = VOP_GETATTR(vp, &vat, cred, td)) != 0) 593 goto retn; 594 object = vnode_pager_alloc(vp, vat.va_size, 0, 0); 595 } else if (devsw(vp->v_rdev) != NULL) { 596 /* 597 * This simply allocates the biggest object possible 598 * for a disk vnode. This should be fixed, but doesn't 599 * cause any problems (yet). 600 */ 601 object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0); 602 } else { 603 goto retn; 604 } 605 /* 606 * Dereference the reference we just created. This assumes 607 * that the object is associated with the vp. 608 */ 609 object->ref_count--; 610 vrele(vp); 611 } else { 612 if (object->flags & OBJ_DEAD) { 613 VOP_UNLOCK(vp, 0, td); 614 tsleep(object, PVM, "vodead", 0); 615 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 616 goto retry; 617 } 618 } 619 620 KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object")); 621 vp->v_vflag |= VV_OBJBUF; 622 623 retn: 624 return (error); 625 } 626 627 /* Destroy the VM system object associated with this vnode */ 628 int 629 vop_stddestroyvobject(ap) 630 struct vop_destroyvobject_args /* { 631 struct vnode *vp; 632 } */ *ap; 633 { 634 struct vnode *vp = ap->a_vp; 635 vm_object_t obj = vp->v_object; 636 637 GIANT_REQUIRED; 638 639 if (vp->v_object == NULL) 640 return (0); 641 642 if (obj->ref_count == 0) { 643 /* 644 * vclean() may be called twice. The first time 645 * removes the primary reference to the object, 646 * the second time goes one further and is a 647 * special-case to terminate the object. 648 * 649 * don't double-terminate the object 650 */ 651 if ((obj->flags & OBJ_DEAD) == 0) 652 vm_object_terminate(obj); 653 } else { 654 /* 655 * Woe to the process that tries to page now :-). 656 */ 657 vm_pager_deallocate(obj); 658 } 659 return (0); 660 } 661 662 /* 663 * Return the underlying VM object. This routine may be called with or 664 * without the vnode interlock held. If called without, the returned 665 * object is not guarenteed to be valid. The syncer typically gets the 666 * object without holding the interlock in order to quickly test whether 667 * it might be dirty before going heavy-weight. vm_object's use zalloc 668 * and thus stable-storage, so this is safe. 669 */ 670 int 671 vop_stdgetvobject(ap) 672 struct vop_getvobject_args /* { 673 struct vnode *vp; 674 struct vm_object **objpp; 675 } */ *ap; 676 { 677 struct vnode *vp = ap->a_vp; 678 struct vm_object **objpp = ap->a_objpp; 679 680 if (objpp) 681 *objpp = vp->v_object; 682 return (vp->v_object ? 0 : EINVAL); 683 } 684 685 /* XXX Needs good comment and VOP_BMAP(9) manpage */ 686 int 687 vop_stdbmap(ap) 688 struct vop_bmap_args /* { 689 struct vnode *a_vp; 690 daddr_t a_bn; 691 struct vnode **a_vpp; 692 daddr_t *a_bnp; 693 int *a_runp; 694 int *a_runb; 695 } */ *ap; 696 { 697 698 if (ap->a_vpp != NULL) 699 *ap->a_vpp = ap->a_vp; 700 if (ap->a_bnp != NULL) 701 *ap->a_bnp = ap->a_bn * btodb(ap->a_vp->v_mount->mnt_stat.f_iosize); 702 if (ap->a_runp != NULL) 703 *ap->a_runp = 0; 704 if (ap->a_runb != NULL) 705 *ap->a_runb = 0; 706 return (0); 707 } 708 709 int 710 vop_stdfsync(ap) 711 struct vop_fsync_args /* { 712 struct vnode *a_vp; 713 struct ucred *a_cred; 714 int a_waitfor; 715 struct thread *a_td; 716 } */ *ap; 717 { 718 struct vnode *vp = ap->a_vp; 719 struct buf *bp; 720 struct buf *nbp; 721 int s, error = 0; 722 int maxretry = 100; /* large, arbitrarily chosen */ 723 724 VI_LOCK(vp); 725 loop1: 726 /* 727 * MARK/SCAN initialization to avoid infinite loops. 728 */ 729 s = splbio(); 730 TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 731 bp->b_vflags &= ~BV_SCANNED; 732 bp->b_error = 0; 733 } 734 splx(s); 735 736 /* 737 * Flush all dirty buffers associated with a block device. 738 */ 739 loop2: 740 s = splbio(); 741 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp != NULL; bp = nbp) { 742 nbp = TAILQ_NEXT(bp, b_vnbufs); 743 if ((bp->b_vflags & BV_SCANNED) != 0) 744 continue; 745 bp->b_vflags |= BV_SCANNED; 746 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 747 continue; 748 VI_UNLOCK(vp); 749 if ((bp->b_flags & B_DELWRI) == 0) 750 panic("fsync: not dirty"); 751 if ((vp->v_vflag & VV_OBJBUF) && (bp->b_flags & B_CLUSTEROK)) { 752 vfs_bio_awrite(bp); 753 splx(s); 754 } else { 755 bremfree(bp); 756 splx(s); 757 bawrite(bp); 758 } 759 VI_LOCK(vp); 760 goto loop2; 761 } 762 763 /* 764 * If synchronous the caller expects us to completely resolve all 765 * dirty buffers in the system. Wait for in-progress I/O to 766 * complete (which could include background bitmap writes), then 767 * retry if dirty blocks still exist. 768 */ 769 if (ap->a_waitfor == MNT_WAIT) { 770 while (vp->v_numoutput) { 771 vp->v_iflag |= VI_BWAIT; 772 msleep((caddr_t)&vp->v_numoutput, VI_MTX(vp), 773 PRIBIO + 1, "fsync", 0); 774 } 775 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) { 776 /* 777 * If we are unable to write any of these buffers 778 * then we fail now rather than trying endlessly 779 * to write them out. 780 */ 781 TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) 782 if ((error = bp->b_error) == 0) 783 continue; 784 if (error == 0 && --maxretry >= 0) { 785 splx(s); 786 goto loop1; 787 } 788 vprint("fsync: giving up on dirty", vp); 789 error = EAGAIN; 790 } 791 } 792 VI_UNLOCK(vp); 793 splx(s); 794 795 return (error); 796 } 797 798 /* XXX Needs good comment and more info in the manpage (VOP_GETPAGES(9)). */ 799 int 800 vop_stdgetpages(ap) 801 struct vop_getpages_args /* { 802 struct vnode *a_vp; 803 vm_page_t *a_m; 804 int a_count; 805 int a_reqpage; 806 vm_ooffset_t a_offset; 807 } */ *ap; 808 { 809 810 return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, 811 ap->a_count, ap->a_reqpage); 812 } 813 814 /* XXX Needs good comment and more info in the manpage (VOP_PUTPAGES(9)). */ 815 int 816 vop_stdputpages(ap) 817 struct vop_putpages_args /* { 818 struct vnode *a_vp; 819 vm_page_t *a_m; 820 int a_count; 821 int a_sync; 822 int *a_rtvals; 823 vm_ooffset_t a_offset; 824 } */ *ap; 825 { 826 827 return vnode_pager_generic_putpages(ap->a_vp, ap->a_m, ap->a_count, 828 ap->a_sync, ap->a_rtvals); 829 } 830 831 /* 832 * vfs default ops 833 * used to fill the vfs function table to get reasonable default return values. 834 */ 835 int 836 vfs_stdroot (mp, vpp) 837 struct mount *mp; 838 struct vnode **vpp; 839 { 840 return (EOPNOTSUPP); 841 } 842 843 int 844 vfs_stdstatfs (mp, sbp, td) 845 struct mount *mp; 846 struct statfs *sbp; 847 struct thread *td; 848 { 849 return (EOPNOTSUPP); 850 } 851 852 int 853 vfs_stdvptofh (vp, fhp) 854 struct vnode *vp; 855 struct fid *fhp; 856 { 857 return (EOPNOTSUPP); 858 } 859 860 int 861 vfs_stdstart (mp, flags, td) 862 struct mount *mp; 863 int flags; 864 struct thread *td; 865 { 866 return (0); 867 } 868 869 int 870 vfs_stdquotactl (mp, cmds, uid, arg, td) 871 struct mount *mp; 872 int cmds; 873 uid_t uid; 874 caddr_t arg; 875 struct thread *td; 876 { 877 return (EOPNOTSUPP); 878 } 879 880 int 881 vfs_stdsync(mp, waitfor, cred, td) 882 struct mount *mp; 883 int waitfor; 884 struct ucred *cred; 885 struct thread *td; 886 { 887 struct vnode *vp, *nvp; 888 int error, lockreq, allerror = 0; 889 890 lockreq = LK_EXCLUSIVE | LK_INTERLOCK; 891 if (waitfor != MNT_WAIT) 892 lockreq |= LK_NOWAIT; 893 /* 894 * Force stale buffer cache information to be flushed. 895 */ 896 mtx_lock(&mntvnode_mtx); 897 loop: 898 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) { 899 /* 900 * If the vnode that we are about to sync is no longer 901 * associated with this mount point, start over. 902 */ 903 if (vp->v_mount != mp) 904 goto loop; 905 906 nvp = TAILQ_NEXT(vp, v_nmntvnodes); 907 908 VI_LOCK(vp); 909 if (TAILQ_EMPTY(&vp->v_dirtyblkhd)) { 910 VI_UNLOCK(vp); 911 continue; 912 } 913 mtx_unlock(&mntvnode_mtx); 914 915 if ((error = vget(vp, lockreq, td)) != 0) { 916 if (error == ENOENT) 917 goto loop; 918 continue; 919 } 920 error = VOP_FSYNC(vp, cred, waitfor, td); 921 if (error) 922 allerror = error; 923 924 mtx_lock(&mntvnode_mtx); 925 if (nvp != TAILQ_NEXT(vp, v_nmntvnodes)) { 926 vput(vp); 927 goto loop; 928 } 929 vput(vp); 930 } 931 mtx_unlock(&mntvnode_mtx); 932 return (allerror); 933 } 934 935 int 936 vfs_stdnosync (mp, waitfor, cred, td) 937 struct mount *mp; 938 int waitfor; 939 struct ucred *cred; 940 struct thread *td; 941 { 942 return (0); 943 } 944 945 int 946 vfs_stdvget (mp, ino, flags, vpp) 947 struct mount *mp; 948 ino_t ino; 949 int flags; 950 struct vnode **vpp; 951 { 952 return (EOPNOTSUPP); 953 } 954 955 int 956 vfs_stdfhtovp (mp, fhp, vpp) 957 struct mount *mp; 958 struct fid *fhp; 959 struct vnode **vpp; 960 { 961 return (EOPNOTSUPP); 962 } 963 964 int 965 vfs_stdinit (vfsp) 966 struct vfsconf *vfsp; 967 { 968 return (0); 969 } 970 971 int 972 vfs_stduninit (vfsp) 973 struct vfsconf *vfsp; 974 { 975 return(0); 976 } 977 978 int 979 vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, attrname, td) 980 struct mount *mp; 981 int cmd; 982 struct vnode *filename_vp; 983 int attrnamespace; 984 const char *attrname; 985 struct thread *td; 986 { 987 if (filename_vp != NULL) 988 VOP_UNLOCK(filename_vp, 0, td); 989 return(EOPNOTSUPP); 990 } 991 992 /* end of vfs default ops */ 993