1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed 6 * to Berkeley by John Heidemann of the UCLA Ficus project. 7 * 8 * Source: * @(#)i405_init.c 2.10 92/04/27 UCLA Ficus project 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bio.h> 45 #include <sys/buf.h> 46 #include <sys/conf.h> 47 #include <sys/kernel.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mount.h> 52 #include <sys/mutex.h> 53 #include <sys/unistd.h> 54 #include <sys/vnode.h> 55 #include <sys/poll.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_object.h> 59 #include <vm/vm_extern.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_page.h> 63 #include <vm/vm_pager.h> 64 #include <vm/vnode_pager.h> 65 66 static int vop_nolookup(struct vop_lookup_args *); 67 static int vop_nostrategy(struct vop_strategy_args *); 68 69 /* 70 * This vnode table stores what we want to do if the filesystem doesn't 71 * implement a particular VOP. 72 * 73 * If there is no specific entry here, we will return EOPNOTSUPP. 74 * 75 */ 76 77 vop_t **default_vnodeop_p; 78 static struct vnodeopv_entry_desc default_vnodeop_entries[] = { 79 { &vop_default_desc, (vop_t *) vop_eopnotsupp }, 80 { &vop_advlock_desc, (vop_t *) vop_einval }, 81 { &vop_bmap_desc, (vop_t *) vop_stdbmap }, 82 { &vop_close_desc, (vop_t *) vop_null }, 83 { &vop_createvobject_desc, (vop_t *) vop_stdcreatevobject }, 84 { &vop_destroyvobject_desc, (vop_t *) vop_stddestroyvobject }, 85 { &vop_fsync_desc, (vop_t *) vop_null }, 86 { &vop_getpages_desc, (vop_t *) vop_stdgetpages }, 87 { &vop_getvobject_desc, (vop_t *) vop_stdgetvobject }, 88 { &vop_inactive_desc, (vop_t *) vop_stdinactive }, 89 { &vop_ioctl_desc, (vop_t *) vop_enotty }, 90 { &vop_islocked_desc, (vop_t *) vop_stdislocked }, 91 { &vop_lease_desc, (vop_t *) vop_null }, 92 { &vop_lock_desc, (vop_t *) vop_stdlock }, 93 { &vop_lookup_desc, (vop_t *) vop_nolookup }, 94 { &vop_open_desc, (vop_t *) vop_null }, 95 { &vop_pathconf_desc, (vop_t *) vop_einval }, 96 { &vop_poll_desc, (vop_t *) vop_nopoll }, 97 { &vop_putpages_desc, (vop_t *) vop_stdputpages }, 98 { &vop_readlink_desc, (vop_t *) vop_einval }, 99 { &vop_revoke_desc, (vop_t *) vop_revoke }, 100 { &vop_specstrategy_desc, (vop_t *) vop_panic }, 101 { &vop_strategy_desc, (vop_t *) vop_nostrategy }, 102 { &vop_unlock_desc, (vop_t *) vop_stdunlock }, 103 { NULL, NULL } 104 }; 105 106 static struct vnodeopv_desc default_vnodeop_opv_desc = 107 { &default_vnodeop_p, default_vnodeop_entries }; 108 109 VNODEOP_SET(default_vnodeop_opv_desc); 110 111 /* 112 * Series of placeholder functions for various error returns for 113 * VOPs. 114 */ 115 116 int 117 vop_eopnotsupp(struct vop_generic_args *ap) 118 { 119 /* 120 printf("vop_notsupp[%s]\n", ap->a_desc->vdesc_name); 121 */ 122 123 return (EOPNOTSUPP); 124 } 125 126 int 127 vop_ebadf(struct vop_generic_args *ap) 128 { 129 130 return (EBADF); 131 } 132 133 int 134 vop_enotty(struct vop_generic_args *ap) 135 { 136 137 return (ENOTTY); 138 } 139 140 int 141 vop_einval(struct vop_generic_args *ap) 142 { 143 144 return (EINVAL); 145 } 146 147 int 148 vop_null(struct vop_generic_args *ap) 149 { 150 151 return (0); 152 } 153 154 /* 155 * Used to make a defined VOP fall back to the default VOP. 156 */ 157 int 158 vop_defaultop(struct vop_generic_args *ap) 159 { 160 161 return (VOCALL(default_vnodeop_p, ap->a_desc->vdesc_offset, ap)); 162 } 163 164 /* 165 * Helper function to panic on some bad VOPs in some filesystems. 166 */ 167 int 168 vop_panic(struct vop_generic_args *ap) 169 { 170 171 panic("filesystem goof: vop_panic[%s]", ap->a_desc->vdesc_name); 172 } 173 174 /* 175 * vop_std<something> and vop_no<something> are default functions for use by 176 * filesystems that need the "default reasonable" implementation for a 177 * particular operation. 178 * 179 * The documentation for the operations they implement exists (if it exists) 180 * in the VOP_<SOMETHING>(9) manpage (all uppercase). 181 */ 182 183 /* 184 * Default vop for filesystems that do not support name lookup 185 */ 186 static int 187 vop_nolookup(ap) 188 struct vop_lookup_args /* { 189 struct vnode *a_dvp; 190 struct vnode **a_vpp; 191 struct componentname *a_cnp; 192 } */ *ap; 193 { 194 195 *ap->a_vpp = NULL; 196 return (ENOTDIR); 197 } 198 199 /* 200 * vop_nostrategy: 201 * 202 * Strategy routine for VFS devices that have none. 203 * 204 * BIO_ERROR and B_INVAL must be cleared prior to calling any strategy 205 * routine. Typically this is done for a BIO_READ strategy call. 206 * Typically B_INVAL is assumed to already be clear prior to a write 207 * and should not be cleared manually unless you just made the buffer 208 * invalid. BIO_ERROR should be cleared either way. 209 */ 210 211 static int 212 vop_nostrategy (struct vop_strategy_args *ap) 213 { 214 KASSERT(ap->a_vp == ap->a_bp->b_vp, ("%s(%p != %p)", 215 __func__, ap->a_vp, ap->a_bp->b_vp)); 216 printf("No strategy for buffer at %p\n", ap->a_bp); 217 vprint("vnode", ap->a_vp); 218 vprint("device vnode", ap->a_bp->b_vp); 219 ap->a_bp->b_ioflags |= BIO_ERROR; 220 ap->a_bp->b_error = EOPNOTSUPP; 221 bufdone(ap->a_bp); 222 return (EOPNOTSUPP); 223 } 224 225 /* 226 * vop_stdpathconf: 227 * 228 * Standard implementation of POSIX pathconf, to get information about limits 229 * for a filesystem. 230 * Override per filesystem for the case where the filesystem has smaller 231 * limits. 232 */ 233 int 234 vop_stdpathconf(ap) 235 struct vop_pathconf_args /* { 236 struct vnode *a_vp; 237 int a_name; 238 int *a_retval; 239 } */ *ap; 240 { 241 242 switch (ap->a_name) { 243 case _PC_LINK_MAX: 244 *ap->a_retval = LINK_MAX; 245 return (0); 246 case _PC_MAX_CANON: 247 *ap->a_retval = MAX_CANON; 248 return (0); 249 case _PC_MAX_INPUT: 250 *ap->a_retval = MAX_INPUT; 251 return (0); 252 case _PC_PIPE_BUF: 253 *ap->a_retval = PIPE_BUF; 254 return (0); 255 case _PC_CHOWN_RESTRICTED: 256 *ap->a_retval = 1; 257 return (0); 258 case _PC_VDISABLE: 259 *ap->a_retval = _POSIX_VDISABLE; 260 return (0); 261 default: 262 return (EINVAL); 263 } 264 /* NOTREACHED */ 265 } 266 267 /* 268 * Standard lock, unlock and islocked functions. 269 */ 270 int 271 vop_stdlock(ap) 272 struct vop_lock_args /* { 273 struct vnode *a_vp; 274 int a_flags; 275 struct thread *a_td; 276 } */ *ap; 277 { 278 struct vnode *vp = ap->a_vp; 279 280 #ifndef DEBUG_LOCKS 281 return (lockmgr(vp->v_vnlock, ap->a_flags, VI_MTX(vp), ap->a_td)); 282 #else 283 return (debuglockmgr(vp->v_vnlock, ap->a_flags, VI_MTX(vp), 284 ap->a_td, "vop_stdlock", vp->filename, vp->line)); 285 #endif 286 } 287 288 /* See above. */ 289 int 290 vop_stdunlock(ap) 291 struct vop_unlock_args /* { 292 struct vnode *a_vp; 293 int a_flags; 294 struct thread *a_td; 295 } */ *ap; 296 { 297 struct vnode *vp = ap->a_vp; 298 299 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, VI_MTX(vp), 300 ap->a_td)); 301 } 302 303 /* See above. */ 304 int 305 vop_stdislocked(ap) 306 struct vop_islocked_args /* { 307 struct vnode *a_vp; 308 struct thread *a_td; 309 } */ *ap; 310 { 311 312 return (lockstatus(ap->a_vp->v_vnlock, ap->a_td)); 313 } 314 315 /* Mark the vnode inactive */ 316 int 317 vop_stdinactive(ap) 318 struct vop_inactive_args /* { 319 struct vnode *a_vp; 320 struct thread *a_td; 321 } */ *ap; 322 { 323 324 VOP_UNLOCK(ap->a_vp, 0, ap->a_td); 325 return (0); 326 } 327 328 /* 329 * Return true for select/poll. 330 */ 331 int 332 vop_nopoll(ap) 333 struct vop_poll_args /* { 334 struct vnode *a_vp; 335 int a_events; 336 struct ucred *a_cred; 337 struct thread *a_td; 338 } */ *ap; 339 { 340 /* 341 * Return true for read/write. If the user asked for something 342 * special, return POLLNVAL, so that clients have a way of 343 * determining reliably whether or not the extended 344 * functionality is present without hard-coding knowledge 345 * of specific filesystem implementations. 346 * Stay in sync with kern_conf.c::no_poll(). 347 */ 348 if (ap->a_events & ~POLLSTANDARD) 349 return (POLLNVAL); 350 351 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 352 } 353 354 /* 355 * Implement poll for local filesystems that support it. 356 */ 357 int 358 vop_stdpoll(ap) 359 struct vop_poll_args /* { 360 struct vnode *a_vp; 361 int a_events; 362 struct ucred *a_cred; 363 struct thread *a_td; 364 } */ *ap; 365 { 366 if (ap->a_events & ~POLLSTANDARD) 367 return (vn_pollrecord(ap->a_vp, ap->a_td, ap->a_events)); 368 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); 369 } 370 371 /* 372 * Stubs to use when there is no locking to be done on the underlying object. 373 * A minimal shared lock is necessary to ensure that the underlying object 374 * is not revoked while an operation is in progress. So, an active shared 375 * count is maintained in an auxillary vnode lock structure. 376 */ 377 int 378 vop_sharedlock(ap) 379 struct vop_lock_args /* { 380 struct vnode *a_vp; 381 int a_flags; 382 struct thread *a_td; 383 } */ *ap; 384 { 385 /* 386 * This code cannot be used until all the non-locking filesystems 387 * (notably NFS) are converted to properly lock and release nodes. 388 * Also, certain vnode operations change the locking state within 389 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 390 * and symlink). Ideally these operations should not change the 391 * lock state, but should be changed to let the caller of the 392 * function unlock them. Otherwise all intermediate vnode layers 393 * (such as union, umapfs, etc) must catch these functions to do 394 * the necessary locking at their layer. Note that the inactive 395 * and lookup operations also change their lock state, but this 396 * cannot be avoided, so these two operations will always need 397 * to be handled in intermediate layers. 398 */ 399 struct vnode *vp = ap->a_vp; 400 int vnflags, flags = ap->a_flags; 401 402 switch (flags & LK_TYPE_MASK) { 403 case LK_DRAIN: 404 vnflags = LK_DRAIN; 405 break; 406 case LK_EXCLUSIVE: 407 #ifdef DEBUG_VFS_LOCKS 408 /* 409 * Normally, we use shared locks here, but that confuses 410 * the locking assertions. 411 */ 412 vnflags = LK_EXCLUSIVE; 413 break; 414 #endif 415 case LK_SHARED: 416 vnflags = LK_SHARED; 417 break; 418 case LK_UPGRADE: 419 case LK_EXCLUPGRADE: 420 case LK_DOWNGRADE: 421 return (0); 422 case LK_RELEASE: 423 default: 424 panic("vop_sharedlock: bad operation %d", flags & LK_TYPE_MASK); 425 } 426 vnflags |= flags & (LK_INTERLOCK | LK_EXTFLG_MASK); 427 #ifndef DEBUG_LOCKS 428 return (lockmgr(vp->v_vnlock, vnflags, VI_MTX(vp), ap->a_td)); 429 #else 430 return (debuglockmgr(vp->v_vnlock, vnflags, VI_MTX(vp), ap->a_td, 431 "vop_sharedlock", vp->filename, vp->line)); 432 #endif 433 } 434 435 /* 436 * Stubs to use when there is no locking to be done on the underlying object. 437 * A minimal shared lock is necessary to ensure that the underlying object 438 * is not revoked while an operation is in progress. So, an active shared 439 * count is maintained in an auxillary vnode lock structure. 440 */ 441 int 442 vop_nolock(ap) 443 struct vop_lock_args /* { 444 struct vnode *a_vp; 445 int a_flags; 446 struct thread *a_td; 447 } */ *ap; 448 { 449 #ifdef notyet 450 /* 451 * This code cannot be used until all the non-locking filesystems 452 * (notably NFS) are converted to properly lock and release nodes. 453 * Also, certain vnode operations change the locking state within 454 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 455 * and symlink). Ideally these operations should not change the 456 * lock state, but should be changed to let the caller of the 457 * function unlock them. Otherwise all intermediate vnode layers 458 * (such as union, umapfs, etc) must catch these functions to do 459 * the necessary locking at their layer. Note that the inactive 460 * and lookup operations also change their lock state, but this 461 * cannot be avoided, so these two operations will always need 462 * to be handled in intermediate layers. 463 */ 464 struct vnode *vp = ap->a_vp; 465 int vnflags, flags = ap->a_flags; 466 467 switch (flags & LK_TYPE_MASK) { 468 case LK_DRAIN: 469 vnflags = LK_DRAIN; 470 break; 471 case LK_EXCLUSIVE: 472 case LK_SHARED: 473 vnflags = LK_SHARED; 474 break; 475 case LK_UPGRADE: 476 case LK_EXCLUPGRADE: 477 case LK_DOWNGRADE: 478 return (0); 479 case LK_RELEASE: 480 default: 481 panic("vop_nolock: bad operation %d", flags & LK_TYPE_MASK); 482 } 483 vnflags |= flags & (LK_INTERLOCK | LK_EXTFLG_MASK); 484 return(lockmgr(vp->v_vnlock, vnflags, VI_MTX(vp), ap->a_td)); 485 #else /* for now */ 486 /* 487 * Since we are not using the lock manager, we must clear 488 * the interlock here. 489 */ 490 if (ap->a_flags & LK_INTERLOCK) 491 VI_UNLOCK(ap->a_vp); 492 return (0); 493 #endif 494 } 495 496 /* 497 * Do the inverse of vop_nolock, handling the interlock in a compatible way. 498 */ 499 int 500 vop_nounlock(ap) 501 struct vop_unlock_args /* { 502 struct vnode *a_vp; 503 int a_flags; 504 struct thread *a_td; 505 } */ *ap; 506 { 507 508 /* 509 * Since we are not using the lock manager, we must clear 510 * the interlock here. 511 */ 512 if (ap->a_flags & LK_INTERLOCK) 513 VI_UNLOCK(ap->a_vp); 514 return (0); 515 } 516 517 /* 518 * Return whether or not the node is in use. 519 */ 520 int 521 vop_noislocked(ap) 522 struct vop_islocked_args /* { 523 struct vnode *a_vp; 524 struct thread *a_td; 525 } */ *ap; 526 { 527 528 return (0); 529 } 530 531 /* 532 * Return our mount point, as we will take charge of the writes. 533 */ 534 int 535 vop_stdgetwritemount(ap) 536 struct vop_getwritemount_args /* { 537 struct vnode *a_vp; 538 struct mount **a_mpp; 539 } */ *ap; 540 { 541 542 *(ap->a_mpp) = ap->a_vp->v_mount; 543 return (0); 544 } 545 546 /* Create the VM system backing object for this vnode */ 547 int 548 vop_stdcreatevobject(ap) 549 struct vop_createvobject_args /* { 550 struct vnode *vp; 551 struct ucred *cred; 552 struct thread *td; 553 } */ *ap; 554 { 555 struct vnode *vp = ap->a_vp; 556 struct ucred *cred = ap->a_cred; 557 struct thread *td = ap->a_td; 558 struct vattr vat; 559 vm_object_t object; 560 int error = 0; 561 562 GIANT_REQUIRED; 563 564 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 565 return (0); 566 567 retry: 568 if ((object = vp->v_object) == NULL) { 569 if (vp->v_type == VREG || vp->v_type == VDIR) { 570 if ((error = VOP_GETATTR(vp, &vat, cred, td)) != 0) 571 goto retn; 572 object = vnode_pager_alloc(vp, vat.va_size, 0, 0); 573 } else if (devsw(vp->v_rdev) != NULL) { 574 /* 575 * This simply allocates the biggest object possible 576 * for a disk vnode. This should be fixed, but doesn't 577 * cause any problems (yet). 578 */ 579 object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0); 580 } else { 581 goto retn; 582 } 583 /* 584 * Dereference the reference we just created. This assumes 585 * that the object is associated with the vp. 586 */ 587 VM_OBJECT_LOCK(object); 588 object->ref_count--; 589 VM_OBJECT_UNLOCK(object); 590 vrele(vp); 591 } else { 592 VM_OBJECT_LOCK(object); 593 if (object->flags & OBJ_DEAD) { 594 VOP_UNLOCK(vp, 0, td); 595 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, 596 "vodead", 0); 597 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 598 goto retry; 599 } 600 VM_OBJECT_UNLOCK(object); 601 } 602 603 KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object")); 604 vp->v_vflag |= VV_OBJBUF; 605 606 retn: 607 return (error); 608 } 609 610 /* Destroy the VM system object associated with this vnode */ 611 int 612 vop_stddestroyvobject(ap) 613 struct vop_destroyvobject_args /* { 614 struct vnode *vp; 615 } */ *ap; 616 { 617 struct vnode *vp = ap->a_vp; 618 vm_object_t obj = vp->v_object; 619 620 GIANT_REQUIRED; 621 622 if (obj == NULL) 623 return (0); 624 VM_OBJECT_LOCK(obj); 625 if (obj->ref_count == 0) { 626 /* 627 * vclean() may be called twice. The first time 628 * removes the primary reference to the object, 629 * the second time goes one further and is a 630 * special-case to terminate the object. 631 * 632 * don't double-terminate the object 633 */ 634 if ((obj->flags & OBJ_DEAD) == 0) 635 vm_object_terminate(obj); 636 else 637 VM_OBJECT_UNLOCK(obj); 638 } else { 639 /* 640 * Woe to the process that tries to page now :-). 641 */ 642 vm_pager_deallocate(obj); 643 VM_OBJECT_UNLOCK(obj); 644 } 645 return (0); 646 } 647 648 /* 649 * Return the underlying VM object. This routine may be called with or 650 * without the vnode interlock held. If called without, the returned 651 * object is not guarenteed to be valid. The syncer typically gets the 652 * object without holding the interlock in order to quickly test whether 653 * it might be dirty before going heavy-weight. vm_object's use zalloc 654 * and thus stable-storage, so this is safe. 655 */ 656 int 657 vop_stdgetvobject(ap) 658 struct vop_getvobject_args /* { 659 struct vnode *vp; 660 struct vm_object **objpp; 661 } */ *ap; 662 { 663 struct vnode *vp = ap->a_vp; 664 struct vm_object **objpp = ap->a_objpp; 665 666 if (objpp) 667 *objpp = vp->v_object; 668 return (vp->v_object ? 0 : EINVAL); 669 } 670 671 /* XXX Needs good comment and VOP_BMAP(9) manpage */ 672 int 673 vop_stdbmap(ap) 674 struct vop_bmap_args /* { 675 struct vnode *a_vp; 676 daddr_t a_bn; 677 struct vnode **a_vpp; 678 daddr_t *a_bnp; 679 int *a_runp; 680 int *a_runb; 681 } */ *ap; 682 { 683 684 if (ap->a_vpp != NULL) 685 *ap->a_vpp = ap->a_vp; 686 if (ap->a_bnp != NULL) 687 *ap->a_bnp = ap->a_bn * btodb(ap->a_vp->v_mount->mnt_stat.f_iosize); 688 if (ap->a_runp != NULL) 689 *ap->a_runp = 0; 690 if (ap->a_runb != NULL) 691 *ap->a_runb = 0; 692 return (0); 693 } 694 695 int 696 vop_stdfsync(ap) 697 struct vop_fsync_args /* { 698 struct vnode *a_vp; 699 struct ucred *a_cred; 700 int a_waitfor; 701 struct thread *a_td; 702 } */ *ap; 703 { 704 struct vnode *vp = ap->a_vp; 705 struct buf *bp; 706 struct buf *nbp; 707 int s, error = 0; 708 int maxretry = 100; /* large, arbitrarily chosen */ 709 710 VI_LOCK(vp); 711 loop1: 712 /* 713 * MARK/SCAN initialization to avoid infinite loops. 714 */ 715 s = splbio(); 716 TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 717 bp->b_vflags &= ~BV_SCANNED; 718 bp->b_error = 0; 719 } 720 splx(s); 721 722 /* 723 * Flush all dirty buffers associated with a block device. 724 */ 725 loop2: 726 s = splbio(); 727 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp != NULL; bp = nbp) { 728 nbp = TAILQ_NEXT(bp, b_vnbufs); 729 if ((bp->b_vflags & BV_SCANNED) != 0) 730 continue; 731 bp->b_vflags |= BV_SCANNED; 732 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 733 continue; 734 VI_UNLOCK(vp); 735 if ((bp->b_flags & B_DELWRI) == 0) 736 panic("fsync: not dirty"); 737 if ((vp->v_vflag & VV_OBJBUF) && (bp->b_flags & B_CLUSTEROK)) { 738 vfs_bio_awrite(bp); 739 splx(s); 740 } else { 741 bremfree(bp); 742 splx(s); 743 bawrite(bp); 744 } 745 VI_LOCK(vp); 746 goto loop2; 747 } 748 749 /* 750 * If synchronous the caller expects us to completely resolve all 751 * dirty buffers in the system. Wait for in-progress I/O to 752 * complete (which could include background bitmap writes), then 753 * retry if dirty blocks still exist. 754 */ 755 if (ap->a_waitfor == MNT_WAIT) { 756 while (vp->v_numoutput) { 757 vp->v_iflag |= VI_BWAIT; 758 msleep((caddr_t)&vp->v_numoutput, VI_MTX(vp), 759 PRIBIO + 1, "fsync", 0); 760 } 761 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) { 762 /* 763 * If we are unable to write any of these buffers 764 * then we fail now rather than trying endlessly 765 * to write them out. 766 */ 767 TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) 768 if ((error = bp->b_error) == 0) 769 continue; 770 if (error == 0 && --maxretry >= 0) { 771 splx(s); 772 goto loop1; 773 } 774 vprint("fsync: giving up on dirty", vp); 775 error = EAGAIN; 776 } 777 } 778 VI_UNLOCK(vp); 779 splx(s); 780 781 return (error); 782 } 783 784 /* XXX Needs good comment and more info in the manpage (VOP_GETPAGES(9)). */ 785 int 786 vop_stdgetpages(ap) 787 struct vop_getpages_args /* { 788 struct vnode *a_vp; 789 vm_page_t *a_m; 790 int a_count; 791 int a_reqpage; 792 vm_ooffset_t a_offset; 793 } */ *ap; 794 { 795 796 return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, 797 ap->a_count, ap->a_reqpage); 798 } 799 800 /* XXX Needs good comment and more info in the manpage (VOP_PUTPAGES(9)). */ 801 int 802 vop_stdputpages(ap) 803 struct vop_putpages_args /* { 804 struct vnode *a_vp; 805 vm_page_t *a_m; 806 int a_count; 807 int a_sync; 808 int *a_rtvals; 809 vm_ooffset_t a_offset; 810 } */ *ap; 811 { 812 813 return vnode_pager_generic_putpages(ap->a_vp, ap->a_m, ap->a_count, 814 ap->a_sync, ap->a_rtvals); 815 } 816 817 /* 818 * vfs default ops 819 * used to fill the vfs function table to get reasonable default return values. 820 */ 821 int 822 vfs_stdroot (mp, vpp) 823 struct mount *mp; 824 struct vnode **vpp; 825 { 826 return (EOPNOTSUPP); 827 } 828 829 int 830 vfs_stdstatfs (mp, sbp, td) 831 struct mount *mp; 832 struct statfs *sbp; 833 struct thread *td; 834 { 835 return (EOPNOTSUPP); 836 } 837 838 int 839 vfs_stdvptofh (vp, fhp) 840 struct vnode *vp; 841 struct fid *fhp; 842 { 843 return (EOPNOTSUPP); 844 } 845 846 int 847 vfs_stdstart (mp, flags, td) 848 struct mount *mp; 849 int flags; 850 struct thread *td; 851 { 852 return (0); 853 } 854 855 int 856 vfs_stdquotactl (mp, cmds, uid, arg, td) 857 struct mount *mp; 858 int cmds; 859 uid_t uid; 860 caddr_t arg; 861 struct thread *td; 862 { 863 return (EOPNOTSUPP); 864 } 865 866 int 867 vfs_stdsync(mp, waitfor, cred, td) 868 struct mount *mp; 869 int waitfor; 870 struct ucred *cred; 871 struct thread *td; 872 { 873 struct vnode *vp, *nvp; 874 int error, lockreq, allerror = 0; 875 876 lockreq = LK_EXCLUSIVE | LK_INTERLOCK; 877 if (waitfor != MNT_WAIT) 878 lockreq |= LK_NOWAIT; 879 /* 880 * Force stale buffer cache information to be flushed. 881 */ 882 MNT_ILOCK(mp); 883 loop: 884 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) { 885 /* 886 * If the vnode that we are about to sync is no longer 887 * associated with this mount point, start over. 888 */ 889 if (vp->v_mount != mp) 890 goto loop; 891 892 nvp = TAILQ_NEXT(vp, v_nmntvnodes); 893 894 VI_LOCK(vp); 895 if (TAILQ_EMPTY(&vp->v_dirtyblkhd)) { 896 VI_UNLOCK(vp); 897 continue; 898 } 899 MNT_IUNLOCK(mp); 900 901 if ((error = vget(vp, lockreq, td)) != 0) { 902 MNT_ILOCK(mp); 903 if (error == ENOENT) 904 goto loop; 905 continue; 906 } 907 error = VOP_FSYNC(vp, cred, waitfor, td); 908 if (error) 909 allerror = error; 910 911 VOP_UNLOCK(vp, 0, td); 912 vrele(vp); 913 MNT_ILOCK(mp); 914 } 915 MNT_IUNLOCK(mp); 916 return (allerror); 917 } 918 919 int 920 vfs_stdnosync (mp, waitfor, cred, td) 921 struct mount *mp; 922 int waitfor; 923 struct ucred *cred; 924 struct thread *td; 925 { 926 return (0); 927 } 928 929 int 930 vfs_stdvget (mp, ino, flags, vpp) 931 struct mount *mp; 932 ino_t ino; 933 int flags; 934 struct vnode **vpp; 935 { 936 return (EOPNOTSUPP); 937 } 938 939 int 940 vfs_stdfhtovp (mp, fhp, vpp) 941 struct mount *mp; 942 struct fid *fhp; 943 struct vnode **vpp; 944 { 945 return (EOPNOTSUPP); 946 } 947 948 int 949 vfs_stdinit (vfsp) 950 struct vfsconf *vfsp; 951 { 952 return (0); 953 } 954 955 int 956 vfs_stduninit (vfsp) 957 struct vfsconf *vfsp; 958 { 959 return(0); 960 } 961 962 int 963 vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, attrname, td) 964 struct mount *mp; 965 int cmd; 966 struct vnode *filename_vp; 967 int attrnamespace; 968 const char *attrname; 969 struct thread *td; 970 { 971 if (filename_vp != NULL) 972 VOP_UNLOCK(filename_vp, 0, td); 973 return(EOPNOTSUPP); 974 } 975 976 /* end of vfs default ops */ 977