1 /*- 2 * Copyright (c) 1993 3 * The Regents of the University of California. All rights reserved. 4 * Modifications/enhancements: 5 * Copyright (c) 1995 John S. Dyson. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)vfs_cluster.c 8.7 (Berkeley) 2/13/94 36 * $FreeBSD$ 37 */ 38 39 #include "opt_debug_cluster.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/proc.h> 45 #include <sys/bio.h> 46 #include <sys/buf.h> 47 #include <sys/vnode.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/resourcevar.h> 51 #include <sys/vmmeter.h> 52 #include <vm/vm.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_page.h> 55 #include <sys/sysctl.h> 56 57 #if defined(CLUSTERDEBUG) 58 #include <sys/sysctl.h> 59 static int rcluster= 0; 60 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, 61 "Debug VFS clustering code"); 62 #endif 63 64 static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer"); 65 66 static struct cluster_save * 67 cluster_collectbufs(struct vnode *vp, struct buf *last_bp); 68 static struct buf * 69 cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn, 70 daddr64_t blkno, long size, int run, struct buf *fbp); 71 72 static int write_behind = 1; 73 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, 74 "Cluster write-behind; 0: disable, 1: enable, 2: backed off"); 75 76 /* Page expended to mark partially backed buffers */ 77 extern vm_page_t bogus_page; 78 79 /* 80 * Number of physical bufs (pbufs) this subsystem is allowed. 81 * Manipulated by vm_pager.c 82 */ 83 extern int cluster_pbuf_freecnt; 84 85 /* 86 * Maximum number of blocks for read-ahead. 87 */ 88 #define MAXRA 32 89 90 /* 91 * Read data to a buf, including read-ahead if we find this to be beneficial. 92 * cluster_read replaces bread. 93 */ 94 int 95 cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp) 96 struct vnode *vp; 97 u_quad_t filesize; 98 daddr_t lblkno; 99 long size; 100 struct ucred *cred; 101 long totread; 102 int seqcount; 103 struct buf **bpp; 104 { 105 struct buf *bp, *rbp, *reqbp; 106 daddr64_t blkno, origblkno; 107 int error, num_ra; 108 int i; 109 int maxra, racluster; 110 long origtotread; 111 112 error = 0; 113 114 /* 115 * Try to limit the amount of read-ahead by a few 116 * ad-hoc parameters. This needs work!!! 117 */ 118 racluster = vp->v_mount->mnt_iosize_max / size; 119 maxra = 2 * racluster + (totread / size); 120 if (maxra > MAXRA) 121 maxra = MAXRA; 122 if (maxra > nbuf/8) 123 maxra = nbuf/8; 124 125 /* 126 * get the requested block 127 */ 128 *bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0); 129 origblkno = lblkno; 130 origtotread = totread; 131 132 /* 133 * if it is in the cache, then check to see if the reads have been 134 * sequential. If they have, then try some read-ahead, otherwise 135 * back-off on prospective read-aheads. 136 */ 137 if (bp->b_flags & B_CACHE) { 138 if (!seqcount) { 139 return 0; 140 } else if ((bp->b_flags & B_RAM) == 0) { 141 return 0; 142 } else { 143 int s; 144 struct buf *tbp; 145 bp->b_flags &= ~B_RAM; 146 /* 147 * We do the spl here so that there is no window 148 * between the incore and the b_usecount increment 149 * below. We opt to keep the spl out of the loop 150 * for efficiency. 151 */ 152 s = splbio(); 153 for (i = 1; i < maxra; i++) { 154 155 if (!(tbp = incore(vp, lblkno+i))) { 156 break; 157 } 158 159 /* 160 * Set another read-ahead mark so we know 161 * to check again. 162 */ 163 if (((i % racluster) == (racluster - 1)) || 164 (i == (maxra - 1))) 165 tbp->b_flags |= B_RAM; 166 } 167 splx(s); 168 if (i >= maxra) { 169 return 0; 170 } 171 lblkno += i; 172 } 173 reqbp = bp = NULL; 174 } else { 175 off_t firstread = bp->b_offset; 176 177 KASSERT(bp->b_offset != NOOFFSET, 178 ("cluster_read: no buffer offset")); 179 if (firstread + totread > filesize) 180 totread = filesize - firstread; 181 if (totread > size) { 182 int nblks = 0; 183 int ncontigafter; 184 while (totread > 0) { 185 nblks++; 186 totread -= size; 187 } 188 if (nblks == 1) 189 goto single_block_read; 190 if (nblks > racluster) 191 nblks = racluster; 192 193 error = VOP_BMAP(vp, lblkno, NULL, 194 &blkno, &ncontigafter, NULL); 195 if (error) 196 goto single_block_read; 197 if (blkno == -1) 198 goto single_block_read; 199 if (ncontigafter == 0) 200 goto single_block_read; 201 if (ncontigafter + 1 < nblks) 202 nblks = ncontigafter + 1; 203 204 bp = cluster_rbuild(vp, filesize, lblkno, 205 blkno, size, nblks, bp); 206 lblkno += (bp->b_bufsize / size); 207 } else { 208 single_block_read: 209 /* 210 * if it isn't in the cache, then get a chunk from 211 * disk if sequential, otherwise just get the block. 212 */ 213 bp->b_flags |= B_RAM; 214 bp->b_iocmd = BIO_READ; 215 lblkno += 1; 216 } 217 } 218 219 /* 220 * if we have been doing sequential I/O, then do some read-ahead 221 */ 222 rbp = NULL; 223 if (seqcount && (lblkno < (origblkno + seqcount))) { 224 /* 225 * we now build the read-ahead buffer if it is desirable. 226 */ 227 if (((u_quad_t)(lblkno + 1) * size) <= filesize && 228 !(error = VOP_BMAP(vp, lblkno, NULL, &blkno, &num_ra, NULL)) && 229 blkno != -1) { 230 int nblksread; 231 int ntoread = num_ra + 1; 232 nblksread = (origtotread + size - 1) / size; 233 if (seqcount < nblksread) 234 seqcount = nblksread; 235 if (seqcount < ntoread) 236 ntoread = seqcount; 237 if (num_ra) { 238 rbp = cluster_rbuild(vp, filesize, lblkno, 239 blkno, size, ntoread, NULL); 240 } else { 241 rbp = getblk(vp, lblkno, size, 0, 0); 242 rbp->b_flags |= B_ASYNC | B_RAM; 243 rbp->b_iocmd = BIO_READ; 244 rbp->b_blkno = blkno; 245 } 246 } 247 } 248 249 /* 250 * handle the synchronous read 251 */ 252 if (bp) { 253 #if defined(CLUSTERDEBUG) 254 if (rcluster) 255 printf("S(%ld,%ld,%d) ", 256 (long)bp->b_lblkno, bp->b_bcount, seqcount); 257 #endif 258 if ((bp->b_flags & B_CLUSTER) == 0) { 259 vfs_busy_pages(bp, 0); 260 } 261 bp->b_flags &= ~B_INVAL; 262 bp->b_ioflags &= ~BIO_ERROR; 263 if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL) 264 BUF_KERNPROC(bp); 265 error = VOP_STRATEGY(vp, bp); 266 curproc->p_stats->p_ru.ru_inblock++; 267 } 268 269 /* 270 * and if we have read-aheads, do them too 271 */ 272 if (rbp) { 273 if (error) { 274 rbp->b_flags &= ~B_ASYNC; 275 brelse(rbp); 276 } else if (rbp->b_flags & B_CACHE) { 277 rbp->b_flags &= ~B_ASYNC; 278 bqrelse(rbp); 279 } else { 280 #if defined(CLUSTERDEBUG) 281 if (rcluster) { 282 if (bp) 283 printf("A+(%ld,%ld,%ld,%d) ", 284 (long)rbp->b_lblkno, rbp->b_bcount, 285 (long)(rbp->b_lblkno - origblkno), 286 seqcount); 287 else 288 printf("A(%ld,%ld,%ld,%d) ", 289 (long)rbp->b_lblkno, rbp->b_bcount, 290 (long)(rbp->b_lblkno - origblkno), 291 seqcount); 292 } 293 #endif 294 295 if ((rbp->b_flags & B_CLUSTER) == 0) { 296 vfs_busy_pages(rbp, 0); 297 } 298 rbp->b_flags &= ~B_INVAL; 299 rbp->b_ioflags &= ~BIO_ERROR; 300 if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL) 301 BUF_KERNPROC(rbp); 302 (void) VOP_STRATEGY(vp, rbp); 303 curproc->p_stats->p_ru.ru_inblock++; 304 } 305 } 306 if (reqbp) 307 return (bufwait(reqbp)); 308 else 309 return (error); 310 } 311 312 /* 313 * If blocks are contiguous on disk, use this to provide clustered 314 * read ahead. We will read as many blocks as possible sequentially 315 * and then parcel them up into logical blocks in the buffer hash table. 316 */ 317 static struct buf * 318 cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp) 319 struct vnode *vp; 320 u_quad_t filesize; 321 daddr_t lbn; 322 daddr64_t blkno; 323 long size; 324 int run; 325 struct buf *fbp; 326 { 327 struct buf *bp, *tbp; 328 daddr_t bn; 329 int i, inc, j; 330 331 GIANT_REQUIRED; 332 333 KASSERT(size == vp->v_mount->mnt_stat.f_iosize, 334 ("cluster_rbuild: size %ld != filesize %ld\n", 335 size, vp->v_mount->mnt_stat.f_iosize)); 336 337 /* 338 * avoid a division 339 */ 340 while ((u_quad_t) size * (lbn + run) > filesize) { 341 --run; 342 } 343 344 if (fbp) { 345 tbp = fbp; 346 tbp->b_iocmd = BIO_READ; 347 } else { 348 tbp = getblk(vp, lbn, size, 0, 0); 349 if (tbp->b_flags & B_CACHE) 350 return tbp; 351 tbp->b_flags |= B_ASYNC | B_RAM; 352 tbp->b_iocmd = BIO_READ; 353 } 354 355 tbp->b_blkno = blkno; 356 if( (tbp->b_flags & B_MALLOC) || 357 ((tbp->b_flags & B_VMIO) == 0) || (run <= 1) ) 358 return tbp; 359 360 bp = trypbuf(&cluster_pbuf_freecnt); 361 if (bp == 0) 362 return tbp; 363 364 /* 365 * We are synthesizing a buffer out of vm_page_t's, but 366 * if the block size is not page aligned then the starting 367 * address may not be either. Inherit the b_data offset 368 * from the original buffer. 369 */ 370 bp->b_data = (char *)((vm_offset_t)bp->b_data | 371 ((vm_offset_t)tbp->b_data & PAGE_MASK)); 372 bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO; 373 bp->b_iocmd = BIO_READ; 374 bp->b_iodone = cluster_callback; 375 bp->b_blkno = blkno; 376 bp->b_lblkno = lbn; 377 bp->b_offset = tbp->b_offset; 378 KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset")); 379 pbgetvp(vp, bp); 380 381 TAILQ_INIT(&bp->b_cluster.cluster_head); 382 383 bp->b_bcount = 0; 384 bp->b_bufsize = 0; 385 bp->b_npages = 0; 386 387 inc = btodb(size); 388 for (bn = blkno, i = 0; i < run; ++i, bn += inc) { 389 if (i != 0) { 390 if ((bp->b_npages * PAGE_SIZE) + 391 round_page(size) > vp->v_mount->mnt_iosize_max) { 392 break; 393 } 394 395 /* 396 * Shortcut some checks and try to avoid buffers that 397 * would block in the lock. The same checks have to 398 * be made again after we officially get the buffer. 399 */ 400 if ((tbp = incore(vp, lbn + i)) != NULL) { 401 if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) 402 break; 403 BUF_UNLOCK(tbp); 404 405 for (j = 0; j < tbp->b_npages; j++) { 406 if (tbp->b_pages[j]->valid) 407 break; 408 } 409 410 if (j != tbp->b_npages) 411 break; 412 413 if (tbp->b_bcount != size) 414 break; 415 } 416 417 tbp = getblk(vp, lbn + i, size, 0, 0); 418 419 /* 420 * Stop scanning if the buffer is fully valid 421 * (marked B_CACHE), or locked (may be doing a 422 * background write), or if the buffer is not 423 * VMIO backed. The clustering code can only deal 424 * with VMIO-backed buffers. 425 */ 426 if ((tbp->b_flags & (B_CACHE|B_LOCKED)) || 427 (tbp->b_flags & B_VMIO) == 0) { 428 bqrelse(tbp); 429 break; 430 } 431 432 /* 433 * The buffer must be completely invalid in order to 434 * take part in the cluster. If it is partially valid 435 * then we stop. 436 */ 437 for (j = 0;j < tbp->b_npages; j++) { 438 if (tbp->b_pages[j]->valid) 439 break; 440 } 441 if (j != tbp->b_npages) { 442 bqrelse(tbp); 443 break; 444 } 445 446 /* 447 * Set a read-ahead mark as appropriate 448 */ 449 if ((fbp && (i == 1)) || (i == (run - 1))) 450 tbp->b_flags |= B_RAM; 451 452 /* 453 * Set the buffer up for an async read (XXX should 454 * we do this only if we do not wind up brelse()ing?). 455 * Set the block number if it isn't set, otherwise 456 * if it is make sure it matches the block number we 457 * expect. 458 */ 459 tbp->b_flags |= B_ASYNC; 460 tbp->b_iocmd = BIO_READ; 461 if (tbp->b_blkno == tbp->b_lblkno) { 462 tbp->b_blkno = bn; 463 } else if (tbp->b_blkno != bn) { 464 brelse(tbp); 465 break; 466 } 467 } 468 /* 469 * XXX fbp from caller may not be B_ASYNC, but we are going 470 * to biodone() it in cluster_callback() anyway 471 */ 472 BUF_KERNPROC(tbp); 473 TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head, 474 tbp, b_cluster.cluster_entry); 475 for (j = 0; j < tbp->b_npages; j += 1) { 476 vm_page_t m; 477 m = tbp->b_pages[j]; 478 vm_page_io_start(m); 479 vm_object_pip_add(m->object, 1); 480 if ((bp->b_npages == 0) || 481 (bp->b_pages[bp->b_npages-1] != m)) { 482 bp->b_pages[bp->b_npages] = m; 483 bp->b_npages++; 484 } 485 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) 486 tbp->b_pages[j] = bogus_page; 487 } 488 /* 489 * XXX shouldn't this be += size for both, like in 490 * cluster_wbuild()? 491 * 492 * Don't inherit tbp->b_bufsize as it may be larger due to 493 * a non-page-aligned size. Instead just aggregate using 494 * 'size'. 495 */ 496 if (tbp->b_bcount != size) 497 printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size); 498 if (tbp->b_bufsize != size) 499 printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size); 500 bp->b_bcount += size; 501 bp->b_bufsize += size; 502 } 503 504 /* 505 * Fully valid pages in the cluster are already good and do not need 506 * to be re-read from disk. Replace the page with bogus_page 507 */ 508 for (j = 0; j < bp->b_npages; j++) { 509 if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) == 510 VM_PAGE_BITS_ALL) { 511 bp->b_pages[j] = bogus_page; 512 } 513 } 514 if (bp->b_bufsize > bp->b_kvasize) 515 panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n", 516 bp->b_bufsize, bp->b_kvasize); 517 bp->b_kvasize = bp->b_bufsize; 518 519 pmap_qenter(trunc_page((vm_offset_t) bp->b_data), 520 (vm_page_t *)bp->b_pages, bp->b_npages); 521 return (bp); 522 } 523 524 /* 525 * Cleanup after a clustered read or write. 526 * This is complicated by the fact that any of the buffers might have 527 * extra memory (if there were no empty buffer headers at allocbuf time) 528 * that we will need to shift around. 529 */ 530 void 531 cluster_callback(bp) 532 struct buf *bp; 533 { 534 struct buf *nbp, *tbp; 535 int error = 0; 536 537 GIANT_REQUIRED; 538 539 /* 540 * Must propogate errors to all the components. 541 */ 542 if (bp->b_ioflags & BIO_ERROR) 543 error = bp->b_error; 544 545 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 546 /* 547 * Move memory from the large cluster buffer into the component 548 * buffers and mark IO as done on these. 549 */ 550 for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head); 551 tbp; tbp = nbp) { 552 nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry); 553 if (error) { 554 tbp->b_ioflags |= BIO_ERROR; 555 tbp->b_error = error; 556 } else { 557 tbp->b_dirtyoff = tbp->b_dirtyend = 0; 558 tbp->b_flags &= ~B_INVAL; 559 tbp->b_ioflags &= ~BIO_ERROR; 560 /* 561 * XXX the bdwrite()/bqrelse() issued during 562 * cluster building clears B_RELBUF (see bqrelse() 563 * comment). If direct I/O was specified, we have 564 * to restore it here to allow the buffer and VM 565 * to be freed. 566 */ 567 if (tbp->b_flags & B_DIRECT) 568 tbp->b_flags |= B_RELBUF; 569 } 570 bufdone(tbp); 571 } 572 relpbuf(bp, &cluster_pbuf_freecnt); 573 } 574 575 /* 576 * cluster_wbuild_wb: 577 * 578 * Implement modified write build for cluster. 579 * 580 * write_behind = 0 write behind disabled 581 * write_behind = 1 write behind normal (default) 582 * write_behind = 2 write behind backed-off 583 */ 584 585 static __inline int 586 cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len) 587 { 588 int r = 0; 589 590 switch(write_behind) { 591 case 2: 592 if (start_lbn < len) 593 break; 594 start_lbn -= len; 595 /* fall through */ 596 case 1: 597 r = cluster_wbuild(vp, size, start_lbn, len); 598 /* fall through */ 599 default: 600 /* fall through */ 601 break; 602 } 603 return(r); 604 } 605 606 /* 607 * Do clustered write for FFS. 608 * 609 * Three cases: 610 * 1. Write is not sequential (write asynchronously) 611 * Write is sequential: 612 * 2. beginning of cluster - begin cluster 613 * 3. middle of a cluster - add to cluster 614 * 4. end of a cluster - asynchronously write cluster 615 */ 616 void 617 cluster_write(bp, filesize, seqcount) 618 struct buf *bp; 619 u_quad_t filesize; 620 int seqcount; 621 { 622 struct vnode *vp; 623 daddr_t lbn; 624 int maxclen, cursize; 625 int lblocksize; 626 int async; 627 628 vp = bp->b_vp; 629 if (vp->v_type == VREG) { 630 async = vp->v_mount->mnt_flag & MNT_ASYNC; 631 lblocksize = vp->v_mount->mnt_stat.f_iosize; 632 } else { 633 async = 0; 634 lblocksize = bp->b_bufsize; 635 } 636 lbn = bp->b_lblkno; 637 KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset")); 638 639 /* Initialize vnode to beginning of file. */ 640 if (lbn == 0) 641 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0; 642 643 if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 || 644 (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) { 645 maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1; 646 if (vp->v_clen != 0) { 647 /* 648 * Next block is not sequential. 649 * 650 * If we are not writing at end of file, the process 651 * seeked to another point in the file since its last 652 * write, or we have reached our maximum cluster size, 653 * then push the previous cluster. Otherwise try 654 * reallocating to make it sequential. 655 * 656 * Change to algorithm: only push previous cluster if 657 * it was sequential from the point of view of the 658 * seqcount heuristic, otherwise leave the buffer 659 * intact so we can potentially optimize the I/O 660 * later on in the buf_daemon or update daemon 661 * flush. 662 */ 663 cursize = vp->v_lastw - vp->v_cstart + 1; 664 if (((u_quad_t) bp->b_offset + lblocksize) != filesize || 665 lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) { 666 if (!async && seqcount > 0) { 667 cluster_wbuild_wb(vp, lblocksize, 668 vp->v_cstart, cursize); 669 } 670 } else { 671 struct buf **bpp, **endbp; 672 struct cluster_save *buflist; 673 674 buflist = cluster_collectbufs(vp, bp); 675 endbp = &buflist->bs_children 676 [buflist->bs_nchildren - 1]; 677 if (VOP_REALLOCBLKS(vp, buflist)) { 678 /* 679 * Failed, push the previous cluster 680 * if *really* writing sequentially 681 * in the logical file (seqcount > 1), 682 * otherwise delay it in the hopes that 683 * the low level disk driver can 684 * optimize the write ordering. 685 */ 686 for (bpp = buflist->bs_children; 687 bpp < endbp; bpp++) 688 brelse(*bpp); 689 free(buflist, M_SEGMENT); 690 if (seqcount > 1) { 691 cluster_wbuild_wb(vp, 692 lblocksize, vp->v_cstart, 693 cursize); 694 } 695 } else { 696 /* 697 * Succeeded, keep building cluster. 698 */ 699 for (bpp = buflist->bs_children; 700 bpp <= endbp; bpp++) 701 bdwrite(*bpp); 702 free(buflist, M_SEGMENT); 703 vp->v_lastw = lbn; 704 vp->v_lasta = bp->b_blkno; 705 return; 706 } 707 } 708 } 709 /* 710 * Consider beginning a cluster. If at end of file, make 711 * cluster as large as possible, otherwise find size of 712 * existing cluster. 713 */ 714 if ((vp->v_type == VREG) && 715 ((u_quad_t) bp->b_offset + lblocksize) != filesize && 716 (bp->b_blkno == bp->b_lblkno) && 717 (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) || 718 bp->b_blkno == -1)) { 719 bawrite(bp); 720 vp->v_clen = 0; 721 vp->v_lasta = bp->b_blkno; 722 vp->v_cstart = lbn + 1; 723 vp->v_lastw = lbn; 724 return; 725 } 726 vp->v_clen = maxclen; 727 if (!async && maxclen == 0) { /* I/O not contiguous */ 728 vp->v_cstart = lbn + 1; 729 bawrite(bp); 730 } else { /* Wait for rest of cluster */ 731 vp->v_cstart = lbn; 732 bdwrite(bp); 733 } 734 } else if (lbn == vp->v_cstart + vp->v_clen) { 735 /* 736 * At end of cluster, write it out if seqcount tells us we 737 * are operating sequentially, otherwise let the buf or 738 * update daemon handle it. 739 */ 740 bdwrite(bp); 741 if (seqcount > 1) 742 cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1); 743 vp->v_clen = 0; 744 vp->v_cstart = lbn + 1; 745 } else if (vm_page_count_severe()) { 746 /* 747 * We are low on memory, get it going NOW 748 */ 749 bawrite(bp); 750 } else { 751 /* 752 * In the middle of a cluster, so just delay the I/O for now. 753 */ 754 bdwrite(bp); 755 } 756 vp->v_lastw = lbn; 757 vp->v_lasta = bp->b_blkno; 758 } 759 760 761 /* 762 * This is an awful lot like cluster_rbuild...wish they could be combined. 763 * The last lbn argument is the current block on which I/O is being 764 * performed. Check to see that it doesn't fall in the middle of 765 * the current block (if last_bp == NULL). 766 */ 767 int 768 cluster_wbuild(vp, size, start_lbn, len) 769 struct vnode *vp; 770 long size; 771 daddr_t start_lbn; 772 int len; 773 { 774 struct buf *bp, *tbp; 775 int i, j, s; 776 int totalwritten = 0; 777 int dbsize = btodb(size); 778 779 GIANT_REQUIRED; 780 781 while (len > 0) { 782 s = splbio(); 783 /* 784 * If the buffer is not delayed-write (i.e. dirty), or it 785 * is delayed-write but either locked or inval, it cannot 786 * partake in the clustered write. 787 */ 788 if (((tbp = gbincore(vp, start_lbn)) == NULL) || 789 ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI) || 790 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) { 791 ++start_lbn; 792 --len; 793 splx(s); 794 continue; 795 } 796 bremfree(tbp); 797 tbp->b_flags &= ~B_DONE; 798 splx(s); 799 800 /* 801 * Extra memory in the buffer, punt on this buffer. 802 * XXX we could handle this in most cases, but we would 803 * have to push the extra memory down to after our max 804 * possible cluster size and then potentially pull it back 805 * up if the cluster was terminated prematurely--too much 806 * hassle. 807 */ 808 if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) != 809 (B_CLUSTEROK | B_VMIO)) || 810 (tbp->b_bcount != tbp->b_bufsize) || 811 (tbp->b_bcount != size) || 812 (len == 1) || 813 ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) { 814 totalwritten += tbp->b_bufsize; 815 bawrite(tbp); 816 ++start_lbn; 817 --len; 818 continue; 819 } 820 821 /* 822 * We got a pbuf to make the cluster in. 823 * so initialise it. 824 */ 825 TAILQ_INIT(&bp->b_cluster.cluster_head); 826 bp->b_bcount = 0; 827 bp->b_magic = tbp->b_magic; 828 bp->b_op = tbp->b_op; 829 bp->b_bufsize = 0; 830 bp->b_npages = 0; 831 if (tbp->b_wcred != NOCRED) 832 bp->b_wcred = crhold(tbp->b_wcred); 833 834 bp->b_blkno = tbp->b_blkno; 835 bp->b_lblkno = tbp->b_lblkno; 836 bp->b_offset = tbp->b_offset; 837 838 /* 839 * We are synthesizing a buffer out of vm_page_t's, but 840 * if the block size is not page aligned then the starting 841 * address may not be either. Inherit the b_data offset 842 * from the original buffer. 843 */ 844 bp->b_data = (char *)((vm_offset_t)bp->b_data | 845 ((vm_offset_t)tbp->b_data & PAGE_MASK)); 846 bp->b_flags |= B_CLUSTER | 847 (tbp->b_flags & (B_VMIO | B_NEEDCOMMIT | B_NOWDRAIN)); 848 bp->b_iodone = cluster_callback; 849 pbgetvp(vp, bp); 850 /* 851 * From this location in the file, scan forward to see 852 * if there are buffers with adjacent data that need to 853 * be written as well. 854 */ 855 for (i = 0; i < len; ++i, ++start_lbn) { 856 if (i != 0) { /* If not the first buffer */ 857 s = splbio(); 858 /* 859 * If the adjacent data is not even in core it 860 * can't need to be written. 861 */ 862 if ((tbp = gbincore(vp, start_lbn)) == NULL) { 863 splx(s); 864 break; 865 } 866 867 /* 868 * If it IS in core, but has different 869 * characteristics, or is locked (which 870 * means it could be undergoing a background 871 * I/O or be in a weird state), then don't 872 * cluster with it. 873 */ 874 if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK | 875 B_INVAL | B_DELWRI | B_NEEDCOMMIT)) 876 != (B_DELWRI | B_CLUSTEROK | 877 (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) || 878 (tbp->b_flags & B_LOCKED) || 879 tbp->b_wcred != bp->b_wcred || 880 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) { 881 splx(s); 882 break; 883 } 884 885 /* 886 * Check that the combined cluster 887 * would make sense with regard to pages 888 * and would not be too large 889 */ 890 if ((tbp->b_bcount != size) || 891 ((bp->b_blkno + (dbsize * i)) != 892 tbp->b_blkno) || 893 ((tbp->b_npages + bp->b_npages) > 894 (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) { 895 BUF_UNLOCK(tbp); 896 splx(s); 897 break; 898 } 899 /* 900 * Ok, it's passed all the tests, 901 * so remove it from the free list 902 * and mark it busy. We will use it. 903 */ 904 bremfree(tbp); 905 tbp->b_flags &= ~B_DONE; 906 splx(s); 907 } /* end of code for non-first buffers only */ 908 /* check for latent dependencies to be handled */ 909 if ((LIST_FIRST(&tbp->b_dep)) != NULL) 910 buf_start(tbp); 911 /* 912 * If the IO is via the VM then we do some 913 * special VM hackery (yuck). Since the buffer's 914 * block size may not be page-aligned it is possible 915 * for a page to be shared between two buffers. We 916 * have to get rid of the duplication when building 917 * the cluster. 918 */ 919 if (tbp->b_flags & B_VMIO) { 920 vm_page_t m; 921 922 if (i != 0) { /* if not first buffer */ 923 for (j = 0; j < tbp->b_npages; j += 1) { 924 m = tbp->b_pages[j]; 925 if (m->flags & PG_BUSY) { 926 bqrelse(tbp); 927 goto finishcluster; 928 } 929 } 930 } 931 932 for (j = 0; j < tbp->b_npages; j += 1) { 933 m = tbp->b_pages[j]; 934 vm_page_io_start(m); 935 vm_object_pip_add(m->object, 1); 936 if ((bp->b_npages == 0) || 937 (bp->b_pages[bp->b_npages - 1] != m)) { 938 bp->b_pages[bp->b_npages] = m; 939 bp->b_npages++; 940 } 941 } 942 } 943 bp->b_bcount += size; 944 bp->b_bufsize += size; 945 946 s = splbio(); 947 bundirty(tbp); 948 tbp->b_flags &= ~B_DONE; 949 tbp->b_ioflags &= ~BIO_ERROR; 950 tbp->b_flags |= B_ASYNC; 951 tbp->b_iocmd = BIO_WRITE; 952 reassignbuf(tbp, tbp->b_vp); /* put on clean list */ 953 ++tbp->b_vp->v_numoutput; 954 splx(s); 955 BUF_KERNPROC(tbp); 956 TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head, 957 tbp, b_cluster.cluster_entry); 958 } 959 finishcluster: 960 pmap_qenter(trunc_page((vm_offset_t) bp->b_data), 961 (vm_page_t *) bp->b_pages, bp->b_npages); 962 if (bp->b_bufsize > bp->b_kvasize) 963 panic( 964 "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n", 965 bp->b_bufsize, bp->b_kvasize); 966 bp->b_kvasize = bp->b_bufsize; 967 totalwritten += bp->b_bufsize; 968 bp->b_dirtyoff = 0; 969 bp->b_dirtyend = bp->b_bufsize; 970 bawrite(bp); 971 972 len -= i; 973 } 974 return totalwritten; 975 } 976 977 /* 978 * Collect together all the buffers in a cluster. 979 * Plus add one additional buffer. 980 */ 981 static struct cluster_save * 982 cluster_collectbufs(vp, last_bp) 983 struct vnode *vp; 984 struct buf *last_bp; 985 { 986 struct cluster_save *buflist; 987 struct buf *bp; 988 daddr_t lbn; 989 int i, len; 990 991 len = vp->v_lastw - vp->v_cstart + 1; 992 buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist), 993 M_SEGMENT, M_WAITOK); 994 buflist->bs_nchildren = 0; 995 buflist->bs_children = (struct buf **) (buflist + 1); 996 for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) { 997 (void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp); 998 buflist->bs_children[i] = bp; 999 if (bp->b_blkno == bp->b_lblkno) 1000 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, 1001 NULL, NULL); 1002 } 1003 buflist->bs_children[i] = bp = last_bp; 1004 if (bp->b_blkno == bp->b_lblkno) 1005 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, 1006 NULL, NULL); 1007 buflist->bs_nchildren = i + 1; 1008 return (buflist); 1009 } 1010