xref: /freebsd/sys/kern/vfs_cluster.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Modifications/enhancements:
5  * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36  * $FreeBSD$
37  */
38 
39 #include "opt_debug_cluster.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/vnode.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/resourcevar.h>
50 #include <vm/vm.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_page.h>
53 #include <sys/sysctl.h>
54 
55 #if defined(CLUSTERDEBUG)
56 #include <sys/sysctl.h>
57 static int	rcluster= 0;
58 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
59 #endif
60 
61 static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer");
62 
63 static struct cluster_save *
64 	cluster_collectbufs __P((struct vnode *vp, struct buf *last_bp));
65 static struct buf *
66 	cluster_rbuild __P((struct vnode *vp, u_quad_t filesize, daddr_t lbn,
67 			    daddr_t blkno, long size, int run, struct buf *fbp));
68 
69 static int write_behind = 1;
70 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
71 
72 extern vm_page_t	bogus_page;
73 
74 extern int cluster_pbuf_freecnt;
75 
76 /*
77  * Maximum number of blocks for read-ahead.
78  */
79 #define MAXRA 32
80 
81 /*
82  * This replaces bread.
83  */
84 int
85 cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp)
86 	struct vnode *vp;
87 	u_quad_t filesize;
88 	daddr_t lblkno;
89 	long size;
90 	struct ucred *cred;
91 	long totread;
92 	int seqcount;
93 	struct buf **bpp;
94 {
95 	struct buf *bp, *rbp, *reqbp;
96 	daddr_t blkno, origblkno;
97 	int error, num_ra;
98 	int i;
99 	int maxra, racluster;
100 	long origtotread;
101 
102 	error = 0;
103 
104 	/*
105 	 * Try to limit the amount of read-ahead by a few
106 	 * ad-hoc parameters.  This needs work!!!
107 	 */
108 	racluster = vp->v_mount->mnt_iosize_max / size;
109 	maxra = 2 * racluster + (totread / size);
110 	if (maxra > MAXRA)
111 		maxra = MAXRA;
112 	if (maxra > nbuf/8)
113 		maxra = nbuf/8;
114 
115 	/*
116 	 * get the requested block
117 	 */
118 	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0);
119 	origblkno = lblkno;
120 	origtotread = totread;
121 
122 	/*
123 	 * if it is in the cache, then check to see if the reads have been
124 	 * sequential.  If they have, then try some read-ahead, otherwise
125 	 * back-off on prospective read-aheads.
126 	 */
127 	if (bp->b_flags & B_CACHE) {
128 		if (!seqcount) {
129 			return 0;
130 		} else if ((bp->b_flags & B_RAM) == 0) {
131 			return 0;
132 		} else {
133 			int s;
134 			struct buf *tbp;
135 			bp->b_flags &= ~B_RAM;
136 			/*
137 			 * We do the spl here so that there is no window
138 			 * between the incore and the b_usecount increment
139 			 * below.  We opt to keep the spl out of the loop
140 			 * for efficiency.
141 			 */
142 			s = splbio();
143 			for (i = 1; i < maxra; i++) {
144 
145 				if (!(tbp = incore(vp, lblkno+i))) {
146 					break;
147 				}
148 
149 				/*
150 				 * Set another read-ahead mark so we know
151 				 * to check again.
152 				 */
153 				if (((i % racluster) == (racluster - 1)) ||
154 					(i == (maxra - 1)))
155 					tbp->b_flags |= B_RAM;
156 			}
157 			splx(s);
158 			if (i >= maxra) {
159 				return 0;
160 			}
161 			lblkno += i;
162 		}
163 		reqbp = bp = NULL;
164 	} else {
165 		off_t firstread = bp->b_offset;
166 
167 		KASSERT(bp->b_offset != NOOFFSET,
168 		    ("cluster_read: no buffer offset"));
169 		if (firstread + totread > filesize)
170 			totread = filesize - firstread;
171 		if (totread > size) {
172 			int nblks = 0;
173 			int ncontigafter;
174 			while (totread > 0) {
175 				nblks++;
176 				totread -= size;
177 			}
178 			if (nblks == 1)
179 				goto single_block_read;
180 			if (nblks > racluster)
181 				nblks = racluster;
182 
183 	    		error = VOP_BMAP(vp, lblkno, NULL,
184 				&blkno, &ncontigafter, NULL);
185 			if (error)
186 				goto single_block_read;
187 			if (blkno == -1)
188 				goto single_block_read;
189 			if (ncontigafter == 0)
190 				goto single_block_read;
191 			if (ncontigafter + 1 < nblks)
192 				nblks = ncontigafter + 1;
193 
194 			bp = cluster_rbuild(vp, filesize, lblkno,
195 				blkno, size, nblks, bp);
196 			lblkno += (bp->b_bufsize / size);
197 		} else {
198 single_block_read:
199 			/*
200 			 * if it isn't in the cache, then get a chunk from
201 			 * disk if sequential, otherwise just get the block.
202 			 */
203 			bp->b_flags |= B_READ | B_RAM;
204 			lblkno += 1;
205 		}
206 	}
207 
208 	/*
209 	 * if we have been doing sequential I/O, then do some read-ahead
210 	 */
211 	rbp = NULL;
212 	if (seqcount && (lblkno < (origblkno + seqcount))) {
213 		/*
214 		 * we now build the read-ahead buffer if it is desirable.
215 		 */
216 		if (((u_quad_t)(lblkno + 1) * size) <= filesize &&
217 		    !(error = VOP_BMAP(vp, lblkno, NULL, &blkno, &num_ra, NULL)) &&
218 		    blkno != -1) {
219 			int nblksread;
220 			int ntoread = num_ra + 1;
221 			nblksread = (origtotread + size - 1) / size;
222 			if (seqcount < nblksread)
223 				seqcount = nblksread;
224 			if (seqcount < ntoread)
225 				ntoread = seqcount;
226 			if (num_ra) {
227 				rbp = cluster_rbuild(vp, filesize, lblkno,
228 					blkno, size, ntoread, NULL);
229 			} else {
230 				rbp = getblk(vp, lblkno, size, 0, 0);
231 				rbp->b_flags |= B_READ | B_ASYNC | B_RAM;
232 				rbp->b_blkno = blkno;
233 			}
234 		}
235 	}
236 
237 	/*
238 	 * handle the synchronous read
239 	 */
240 	if (bp) {
241 #if defined(CLUSTERDEBUG)
242 		if (rcluster)
243 			printf("S(%ld,%ld,%d) ",
244 			    (long)bp->b_lblkno, bp->b_bcount, seqcount);
245 #endif
246 		if ((bp->b_flags & B_CLUSTER) == 0)
247 			vfs_busy_pages(bp, 0);
248 		bp->b_flags &= ~(B_ERROR|B_INVAL);
249 		if (bp->b_flags & (B_ASYNC|B_CALL))
250 			BUF_KERNPROC(bp);
251 		error = VOP_STRATEGY(vp, bp);
252 		curproc->p_stats->p_ru.ru_inblock++;
253 	}
254 
255 	/*
256 	 * and if we have read-aheads, do them too
257 	 */
258 	if (rbp) {
259 		if (error) {
260 			rbp->b_flags &= ~(B_ASYNC | B_READ);
261 			brelse(rbp);
262 		} else if (rbp->b_flags & B_CACHE) {
263 			rbp->b_flags &= ~(B_ASYNC | B_READ);
264 			bqrelse(rbp);
265 		} else {
266 #if defined(CLUSTERDEBUG)
267 			if (rcluster) {
268 				if (bp)
269 					printf("A+(%ld,%ld,%ld,%d) ",
270 					    (long)rbp->b_lblkno, rbp->b_bcount,
271 					    (long)(rbp->b_lblkno - origblkno),
272 					    seqcount);
273 				else
274 					printf("A(%ld,%ld,%ld,%d) ",
275 					    (long)rbp->b_lblkno, rbp->b_bcount,
276 					    (long)(rbp->b_lblkno - origblkno),
277 					    seqcount);
278 			}
279 #endif
280 
281 			if ((rbp->b_flags & B_CLUSTER) == 0)
282 				vfs_busy_pages(rbp, 0);
283 			rbp->b_flags &= ~(B_ERROR|B_INVAL);
284 			if (rbp->b_flags & (B_ASYNC|B_CALL))
285 				BUF_KERNPROC(rbp);
286 			(void) VOP_STRATEGY(vp, rbp);
287 			curproc->p_stats->p_ru.ru_inblock++;
288 		}
289 	}
290 	if (reqbp)
291 		return (biowait(reqbp));
292 	else
293 		return (error);
294 }
295 
296 /*
297  * If blocks are contiguous on disk, use this to provide clustered
298  * read ahead.  We will read as many blocks as possible sequentially
299  * and then parcel them up into logical blocks in the buffer hash table.
300  */
301 static struct buf *
302 cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp)
303 	struct vnode *vp;
304 	u_quad_t filesize;
305 	daddr_t lbn;
306 	daddr_t blkno;
307 	long size;
308 	int run;
309 	struct buf *fbp;
310 {
311 	struct buf *bp, *tbp;
312 	daddr_t bn;
313 	int i, inc, j;
314 
315 	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
316 	    ("cluster_rbuild: size %ld != filesize %ld\n",
317 	    size, vp->v_mount->mnt_stat.f_iosize));
318 
319 	/*
320 	 * avoid a division
321 	 */
322 	while ((u_quad_t) size * (lbn + run) > filesize) {
323 		--run;
324 	}
325 
326 	if (fbp) {
327 		tbp = fbp;
328 		tbp->b_flags |= B_READ;
329 	} else {
330 		tbp = getblk(vp, lbn, size, 0, 0);
331 		if (tbp->b_flags & B_CACHE)
332 			return tbp;
333 		tbp->b_flags |= B_ASYNC | B_READ | B_RAM;
334 	}
335 
336 	tbp->b_blkno = blkno;
337 	if( (tbp->b_flags & B_MALLOC) ||
338 		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
339 		return tbp;
340 
341 	bp = trypbuf(&cluster_pbuf_freecnt);
342 	if (bp == 0)
343 		return tbp;
344 
345 	bp->b_data = (char *)((vm_offset_t)bp->b_data |
346 	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
347 	bp->b_flags = B_ASYNC | B_READ | B_CALL | B_CLUSTER | B_VMIO;
348 	bp->b_iodone = cluster_callback;
349 	bp->b_blkno = blkno;
350 	bp->b_lblkno = lbn;
351 	bp->b_offset = tbp->b_offset;
352 	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
353 	pbgetvp(vp, bp);
354 
355 	TAILQ_INIT(&bp->b_cluster.cluster_head);
356 
357 	bp->b_bcount = 0;
358 	bp->b_bufsize = 0;
359 	bp->b_npages = 0;
360 
361 	inc = btodb(size);
362 	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
363 		if (i != 0) {
364 			if ((bp->b_npages * PAGE_SIZE) +
365 				round_page(size) > vp->v_mount->mnt_iosize_max)
366 				break;
367 
368 			if ((tbp = incore(vp, lbn + i)) != NULL) {
369 				if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT))
370 					break;
371 				BUF_UNLOCK(tbp);
372 
373 				for (j = 0; j < tbp->b_npages; j++)
374 					if (tbp->b_pages[j]->valid)
375 						break;
376 
377 				if (j != tbp->b_npages)
378 					break;
379 
380 				if (tbp->b_bcount != size)
381 					break;
382 			}
383 
384 			tbp = getblk(vp, lbn + i, size, 0, 0);
385 
386 			if ((tbp->b_flags & B_CACHE) ||
387 				(tbp->b_flags & B_VMIO) == 0) {
388 				bqrelse(tbp);
389 				break;
390 			}
391 
392 			for (j = 0;j < tbp->b_npages; j++)
393 				if (tbp->b_pages[j]->valid)
394 					break;
395 
396 			if (j != tbp->b_npages) {
397 				bqrelse(tbp);
398 				break;
399 			}
400 
401 			if ((fbp && (i == 1)) || (i == (run - 1)))
402 				tbp->b_flags |= B_RAM;
403 			tbp->b_flags |= B_READ | B_ASYNC;
404 			if (tbp->b_blkno == tbp->b_lblkno) {
405 				tbp->b_blkno = bn;
406 			} else if (tbp->b_blkno != bn) {
407 				brelse(tbp);
408 				break;
409 			}
410 		}
411 		/*
412 		 * XXX fbp from caller may not be B_ASYNC, but we are going
413 		 * to biodone() it in cluster_callback() anyway
414 		 */
415 		BUF_KERNPROC(tbp);
416 		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
417 			tbp, b_cluster.cluster_entry);
418 		for (j = 0; j < tbp->b_npages; j += 1) {
419 			vm_page_t m;
420 			m = tbp->b_pages[j];
421 			vm_page_io_start(m);
422 			vm_object_pip_add(m->object, 1);
423 			if ((bp->b_npages == 0) ||
424 				(bp->b_pages[bp->b_npages-1] != m)) {
425 				bp->b_pages[bp->b_npages] = m;
426 				bp->b_npages++;
427 			}
428 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
429 				tbp->b_pages[j] = bogus_page;
430 		}
431 		bp->b_bcount += tbp->b_bcount;
432 		bp->b_bufsize += tbp->b_bufsize;
433 	}
434 
435 	for(j=0;j<bp->b_npages;j++) {
436 		if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) ==
437 			VM_PAGE_BITS_ALL)
438 			bp->b_pages[j] = bogus_page;
439 	}
440 	if (bp->b_bufsize > bp->b_kvasize)
441 		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
442 		    bp->b_bufsize, bp->b_kvasize);
443 	bp->b_kvasize = bp->b_bufsize;
444 
445 	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
446 		(vm_page_t *)bp->b_pages, bp->b_npages);
447 	return (bp);
448 }
449 
450 /*
451  * Cleanup after a clustered read or write.
452  * This is complicated by the fact that any of the buffers might have
453  * extra memory (if there were no empty buffer headers at allocbuf time)
454  * that we will need to shift around.
455  */
456 void
457 cluster_callback(bp)
458 	struct buf *bp;
459 {
460 	struct buf *nbp, *tbp;
461 	int error = 0;
462 
463 	/*
464 	 * Must propogate errors to all the components.
465 	 */
466 	if (bp->b_flags & B_ERROR)
467 		error = bp->b_error;
468 
469 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
470 	/*
471 	 * Move memory from the large cluster buffer into the component
472 	 * buffers and mark IO as done on these.
473 	 */
474 	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
475 		tbp; tbp = nbp) {
476 		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
477 		if (error) {
478 			tbp->b_flags |= B_ERROR;
479 			tbp->b_error = error;
480 		} else {
481 			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
482 			tbp->b_flags &= ~(B_ERROR|B_INVAL);
483 		}
484 		biodone(tbp);
485 	}
486 	relpbuf(bp, &cluster_pbuf_freecnt);
487 }
488 
489 /*
490  *	cluster_wbuild_wb:
491  *
492  *	Implement modified write build for cluster.
493  *
494  *		write_behind = 0	write behind disabled
495  *		write_behind = 1	write behind normal (default)
496  *		write_behind = 2	write behind backed-off
497  */
498 
499 static __inline int
500 cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len)
501 {
502 	int r = 0;
503 
504 	switch(write_behind) {
505 	case 2:
506 		if (start_lbn < len)
507 			break;
508 		start_lbn -= len;
509 		/* fall through */
510 	case 1:
511 		r = cluster_wbuild(vp, size, start_lbn, len);
512 		/* fall through */
513 	default:
514 		/* fall through */
515 		break;
516 	}
517 	return(r);
518 }
519 
520 /*
521  * Do clustered write for FFS.
522  *
523  * Three cases:
524  *	1. Write is not sequential (write asynchronously)
525  *	Write is sequential:
526  *	2.	beginning of cluster - begin cluster
527  *	3.	middle of a cluster - add to cluster
528  *	4.	end of a cluster - asynchronously write cluster
529  */
530 void
531 cluster_write(bp, filesize)
532 	struct buf *bp;
533 	u_quad_t filesize;
534 {
535 	struct vnode *vp;
536 	daddr_t lbn;
537 	int maxclen, cursize;
538 	int lblocksize;
539 	int async;
540 
541 	vp = bp->b_vp;
542 	if (vp->v_type == VREG) {
543 		async = vp->v_mount->mnt_flag & MNT_ASYNC;
544 		lblocksize = vp->v_mount->mnt_stat.f_iosize;
545 	} else {
546 		async = 0;
547 		lblocksize = bp->b_bufsize;
548 	}
549 	lbn = bp->b_lblkno;
550 	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
551 
552 	/* Initialize vnode to beginning of file. */
553 	if (lbn == 0)
554 		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
555 
556 	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
557 	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
558 		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
559 		if (vp->v_clen != 0) {
560 			/*
561 			 * Next block is not sequential.
562 			 *
563 			 * If we are not writing at end of file, the process
564 			 * seeked to another point in the file since its last
565 			 * write, or we have reached our maximum cluster size,
566 			 * then push the previous cluster. Otherwise try
567 			 * reallocating to make it sequential.
568 			 */
569 			cursize = vp->v_lastw - vp->v_cstart + 1;
570 			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
571 			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
572 				if (!async)
573 					cluster_wbuild_wb(vp, lblocksize,
574 						vp->v_cstart, cursize);
575 			} else {
576 				struct buf **bpp, **endbp;
577 				struct cluster_save *buflist;
578 
579 				buflist = cluster_collectbufs(vp, bp);
580 				endbp = &buflist->bs_children
581 				    [buflist->bs_nchildren - 1];
582 				if (VOP_REALLOCBLKS(vp, buflist)) {
583 					/*
584 					 * Failed, push the previous cluster.
585 					 */
586 					for (bpp = buflist->bs_children;
587 					     bpp < endbp; bpp++)
588 						brelse(*bpp);
589 					free(buflist, M_SEGMENT);
590 					cluster_wbuild_wb(vp, lblocksize,
591 					    vp->v_cstart, cursize);
592 				} else {
593 					/*
594 					 * Succeeded, keep building cluster.
595 					 */
596 					for (bpp = buflist->bs_children;
597 					     bpp <= endbp; bpp++)
598 						bdwrite(*bpp);
599 					free(buflist, M_SEGMENT);
600 					vp->v_lastw = lbn;
601 					vp->v_lasta = bp->b_blkno;
602 					return;
603 				}
604 			}
605 		}
606 		/*
607 		 * Consider beginning a cluster. If at end of file, make
608 		 * cluster as large as possible, otherwise find size of
609 		 * existing cluster.
610 		 */
611 		if ((vp->v_type == VREG) &&
612 			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
613 		    (bp->b_blkno == bp->b_lblkno) &&
614 		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
615 		     bp->b_blkno == -1)) {
616 			bawrite(bp);
617 			vp->v_clen = 0;
618 			vp->v_lasta = bp->b_blkno;
619 			vp->v_cstart = lbn + 1;
620 			vp->v_lastw = lbn;
621 			return;
622 		}
623 		vp->v_clen = maxclen;
624 		if (!async && maxclen == 0) {	/* I/O not contiguous */
625 			vp->v_cstart = lbn + 1;
626 			bawrite(bp);
627 		} else {	/* Wait for rest of cluster */
628 			vp->v_cstart = lbn;
629 			bdwrite(bp);
630 		}
631 	} else if (lbn == vp->v_cstart + vp->v_clen) {
632 		/*
633 		 * At end of cluster, write it out.
634 		 */
635 		bdwrite(bp);
636 		cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1);
637 		vp->v_clen = 0;
638 		vp->v_cstart = lbn + 1;
639 	} else
640 		/*
641 		 * In the middle of a cluster, so just delay the I/O for now.
642 		 */
643 		bdwrite(bp);
644 	vp->v_lastw = lbn;
645 	vp->v_lasta = bp->b_blkno;
646 }
647 
648 
649 /*
650  * This is an awful lot like cluster_rbuild...wish they could be combined.
651  * The last lbn argument is the current block on which I/O is being
652  * performed.  Check to see that it doesn't fall in the middle of
653  * the current block (if last_bp == NULL).
654  */
655 int
656 cluster_wbuild(vp, size, start_lbn, len)
657 	struct vnode *vp;
658 	long size;
659 	daddr_t start_lbn;
660 	int len;
661 {
662 	struct buf *bp, *tbp;
663 	int i, j, s;
664 	int totalwritten = 0;
665 	int dbsize = btodb(size);
666 
667 	while (len > 0) {
668 		s = splbio();
669 		if (((tbp = gbincore(vp, start_lbn)) == NULL) ||
670 		  ((tbp->b_flags & (B_INVAL | B_DELWRI)) != B_DELWRI) ||
671 		  BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
672 			++start_lbn;
673 			--len;
674 			splx(s);
675 			continue;
676 		}
677 		bremfree(tbp);
678 		tbp->b_flags &= ~B_DONE;
679 		splx(s);
680 
681 		/*
682 		 * Extra memory in the buffer, punt on this buffer.
683 		 * XXX we could handle this in most cases, but we would
684 		 * have to push the extra memory down to after our max
685 		 * possible cluster size and then potentially pull it back
686 		 * up if the cluster was terminated prematurely--too much
687 		 * hassle.
688 		 */
689 		if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
690 		  (tbp->b_bcount != tbp->b_bufsize) ||
691 		  (tbp->b_bcount != size) ||
692 		  (len == 1) ||
693 		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
694 			totalwritten += tbp->b_bufsize;
695 			bawrite(tbp);
696 			++start_lbn;
697 			--len;
698 			continue;
699 		}
700 
701 		/*
702 		 * We got a pbuf to make the cluster in.
703 		 * so initialise it.
704 		 */
705 		TAILQ_INIT(&bp->b_cluster.cluster_head);
706 		bp->b_bcount = 0;
707 		bp->b_bufsize = 0;
708 		bp->b_npages = 0;
709 		if (tbp->b_wcred != NOCRED) {
710 		    bp->b_wcred = tbp->b_wcred;
711 		    crhold(bp->b_wcred);
712 		}
713 
714 		bp->b_blkno = tbp->b_blkno;
715 		bp->b_lblkno = tbp->b_lblkno;
716 		bp->b_offset = tbp->b_offset;
717 		bp->b_data = (char *)((vm_offset_t)bp->b_data |
718 		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
719 		bp->b_flags |= B_CALL | B_CLUSTER |
720 				(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT));
721 		bp->b_iodone = cluster_callback;
722 		pbgetvp(vp, bp);
723 		/*
724 		 * From this location in the file, scan forward to see
725 		 * if there are buffers with adjacent data that need to
726 		 * be written as well.
727 		 */
728 		for (i = 0; i < len; ++i, ++start_lbn) {
729 			if (i != 0) { /* If not the first buffer */
730 				s = splbio();
731 				/*
732 				 * If the adjacent data is not even in core it
733 				 * can't need to be written.
734 				 */
735 				if ((tbp = gbincore(vp, start_lbn)) == NULL) {
736 					splx(s);
737 					break;
738 				}
739 
740 				/*
741 				 * If it IS in core, but has different
742 				 * characteristics, don't cluster with it.
743 				 */
744 				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
745 				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
746 				  != (B_DELWRI | B_CLUSTEROK |
747 				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
748 				    tbp->b_wcred != bp->b_wcred ||
749 				    BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
750 					splx(s);
751 					break;
752 				}
753 
754 				/*
755 				 * Check that the combined cluster
756 				 * would make sense with regard to pages
757 				 * and would not be too large
758 				 */
759 				if ((tbp->b_bcount != size) ||
760 				  ((bp->b_blkno + (dbsize * i)) !=
761 				    tbp->b_blkno) ||
762 				  ((tbp->b_npages + bp->b_npages) >
763 				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
764 					BUF_UNLOCK(tbp);
765 					splx(s);
766 					break;
767 				}
768 				/*
769 				 * Ok, it's passed all the tests,
770 				 * so remove it from the free list
771 				 * and mark it busy. We will use it.
772 				 */
773 				bremfree(tbp);
774 				tbp->b_flags &= ~B_DONE;
775 				splx(s);
776 			} /* end of code for non-first buffers only */
777 			/* check for latent dependencies to be handled */
778 			if ((LIST_FIRST(&tbp->b_dep)) != NULL &&
779 			    bioops.io_start)
780 				(*bioops.io_start)(tbp);
781 			/*
782 			 * If the IO is via the VM then we do some
783 			 * special VM hackery. (yuck)
784 			 */
785 			if (tbp->b_flags & B_VMIO) {
786 				vm_page_t m;
787 
788 				if (i != 0) { /* if not first buffer */
789 					for (j = 0; j < tbp->b_npages; j += 1) {
790 						m = tbp->b_pages[j];
791 						if (m->flags & PG_BUSY) {
792 							bqrelse(tbp);
793 							goto finishcluster;
794 						}
795 					}
796 				}
797 
798 				for (j = 0; j < tbp->b_npages; j += 1) {
799 					m = tbp->b_pages[j];
800 					vm_page_io_start(m);
801 					vm_object_pip_add(m->object, 1);
802 					if ((bp->b_npages == 0) ||
803 					  (bp->b_pages[bp->b_npages - 1] != m)) {
804 						bp->b_pages[bp->b_npages] = m;
805 						bp->b_npages++;
806 					}
807 				}
808 			}
809 			bp->b_bcount += size;
810 			bp->b_bufsize += size;
811 
812 			s = splbio();
813 			bundirty(tbp);
814 			tbp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
815 			tbp->b_flags |= B_ASYNC;
816 			reassignbuf(tbp, tbp->b_vp);	/* put on clean list */
817 			++tbp->b_vp->v_numoutput;
818 			splx(s);
819 			BUF_KERNPROC(tbp);
820 			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
821 				tbp, b_cluster.cluster_entry);
822 		}
823 	finishcluster:
824 		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
825 			(vm_page_t *) bp->b_pages, bp->b_npages);
826 		if (bp->b_bufsize > bp->b_kvasize)
827 			panic(
828 			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
829 			    bp->b_bufsize, bp->b_kvasize);
830 		bp->b_kvasize = bp->b_bufsize;
831 		totalwritten += bp->b_bufsize;
832 		bp->b_dirtyoff = 0;
833 		bp->b_dirtyend = bp->b_bufsize;
834 		bawrite(bp);
835 
836 		len -= i;
837 	}
838 	return totalwritten;
839 }
840 
841 /*
842  * Collect together all the buffers in a cluster.
843  * Plus add one additional buffer.
844  */
845 static struct cluster_save *
846 cluster_collectbufs(vp, last_bp)
847 	struct vnode *vp;
848 	struct buf *last_bp;
849 {
850 	struct cluster_save *buflist;
851 	struct buf *bp;
852 	daddr_t lbn;
853 	int i, len;
854 
855 	len = vp->v_lastw - vp->v_cstart + 1;
856 	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
857 	    M_SEGMENT, M_WAITOK);
858 	buflist->bs_nchildren = 0;
859 	buflist->bs_children = (struct buf **) (buflist + 1);
860 	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
861 		(void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp);
862 		buflist->bs_children[i] = bp;
863 		if (bp->b_blkno == bp->b_lblkno)
864 			VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
865 				NULL, NULL);
866 	}
867 	buflist->bs_children[i] = bp = last_bp;
868 	if (bp->b_blkno == bp->b_lblkno)
869 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
870 			NULL, NULL);
871 	buflist->bs_nchildren = i + 1;
872 	return (buflist);
873 }
874