xref: /freebsd/sys/kern/vfs_cluster.c (revision a1a4f1a0d87b594d3f17a97dc0127eec1417e6f6)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Modifications/enhancements:
5  * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36  * $FreeBSD$
37  */
38 
39 #include "opt_debug_cluster.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/vnode.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/resourcevar.h>
50 #include <vm/vm.h>
51 #include <vm/vm_prot.h>
52 #include <vm/vm_object.h>
53 #include <vm/vm_page.h>
54 #include <sys/sysctl.h>
55 
56 #if defined(CLUSTERDEBUG)
57 #include <sys/sysctl.h>
58 static int	rcluster= 0;
59 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
60 #endif
61 
62 static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer");
63 
64 static struct cluster_save *
65 	cluster_collectbufs __P((struct vnode *vp, struct buf *last_bp));
66 static struct buf *
67 	cluster_rbuild __P((struct vnode *vp, u_quad_t filesize, daddr_t lbn,
68 			    daddr_t blkno, long size, int run, struct buf *fbp));
69 
70 static int write_behind = 1;
71 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
72 
73 extern vm_page_t	bogus_page;
74 
75 extern int cluster_pbuf_freecnt;
76 
77 /*
78  * Maximum number of blocks for read-ahead.
79  */
80 #define MAXRA 32
81 
82 /*
83  * This replaces bread.
84  */
85 int
86 cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp)
87 	struct vnode *vp;
88 	u_quad_t filesize;
89 	daddr_t lblkno;
90 	long size;
91 	struct ucred *cred;
92 	long totread;
93 	int seqcount;
94 	struct buf **bpp;
95 {
96 	struct buf *bp, *rbp, *reqbp;
97 	daddr_t blkno, origblkno;
98 	int error, num_ra;
99 	int i;
100 	int maxra, racluster;
101 	long origtotread;
102 
103 	error = 0;
104 	if (vp->v_maxio == 0)
105 		vp->v_maxio = DFLTPHYS;
106 
107 	/*
108 	 * Try to limit the amount of read-ahead by a few
109 	 * ad-hoc parameters.  This needs work!!!
110 	 */
111 	racluster = vp->v_maxio/size;
112 	maxra = 2 * racluster + (totread / size);
113 	if (maxra > MAXRA)
114 		maxra = MAXRA;
115 	if (maxra > nbuf/8)
116 		maxra = nbuf/8;
117 
118 	/*
119 	 * get the requested block
120 	 */
121 	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0);
122 	origblkno = lblkno;
123 	origtotread = totread;
124 
125 	/*
126 	 * if it is in the cache, then check to see if the reads have been
127 	 * sequential.  If they have, then try some read-ahead, otherwise
128 	 * back-off on prospective read-aheads.
129 	 */
130 	if (bp->b_flags & B_CACHE) {
131 		if (!seqcount) {
132 			return 0;
133 		} else if ((bp->b_flags & B_RAM) == 0) {
134 			return 0;
135 		} else {
136 			int s;
137 			struct buf *tbp;
138 			bp->b_flags &= ~B_RAM;
139 			/*
140 			 * We do the spl here so that there is no window
141 			 * between the incore and the b_usecount increment
142 			 * below.  We opt to keep the spl out of the loop
143 			 * for efficiency.
144 			 */
145 			s = splbio();
146 			for (i = 1; i < maxra; i++) {
147 
148 				if (!(tbp = incore(vp, lblkno+i))) {
149 					break;
150 				}
151 
152 				/*
153 				 * Set another read-ahead mark so we know
154 				 * to check again.
155 				 */
156 				if (((i % racluster) == (racluster - 1)) ||
157 					(i == (maxra - 1)))
158 					tbp->b_flags |= B_RAM;
159 			}
160 			splx(s);
161 			if (i >= maxra) {
162 				return 0;
163 			}
164 			lblkno += i;
165 		}
166 		reqbp = bp = NULL;
167 	} else {
168 		off_t firstread = bp->b_offset;
169 
170 		KASSERT(bp->b_offset != NOOFFSET,
171 		    ("cluster_read: no buffer offset"));
172 		if (firstread + totread > filesize)
173 			totread = filesize - firstread;
174 		if (totread > size) {
175 			int nblks = 0;
176 			int ncontigafter;
177 			while (totread > 0) {
178 				nblks++;
179 				totread -= size;
180 			}
181 			if (nblks == 1)
182 				goto single_block_read;
183 			if (nblks > racluster)
184 				nblks = racluster;
185 
186 	    		error = VOP_BMAP(vp, lblkno, NULL,
187 				&blkno, &ncontigafter, NULL);
188 			if (error)
189 				goto single_block_read;
190 			if (blkno == -1)
191 				goto single_block_read;
192 			if (ncontigafter == 0)
193 				goto single_block_read;
194 			if (ncontigafter + 1 < nblks)
195 				nblks = ncontigafter + 1;
196 
197 			bp = cluster_rbuild(vp, filesize, lblkno,
198 				blkno, size, nblks, bp);
199 			lblkno += (bp->b_bufsize / size);
200 		} else {
201 single_block_read:
202 			/*
203 			 * if it isn't in the cache, then get a chunk from
204 			 * disk if sequential, otherwise just get the block.
205 			 */
206 			bp->b_flags |= B_READ | B_RAM;
207 			lblkno += 1;
208 		}
209 	}
210 
211 	/*
212 	 * if we have been doing sequential I/O, then do some read-ahead
213 	 */
214 	rbp = NULL;
215 	if (seqcount && (lblkno < (origblkno + seqcount))) {
216 		/*
217 		 * we now build the read-ahead buffer if it is desirable.
218 		 */
219 		if (((u_quad_t)(lblkno + 1) * size) <= filesize &&
220 		    !(error = VOP_BMAP(vp, lblkno, NULL, &blkno, &num_ra, NULL)) &&
221 		    blkno != -1) {
222 			int nblksread;
223 			int ntoread = num_ra + 1;
224 			nblksread = (origtotread + size - 1) / size;
225 			if (seqcount < nblksread)
226 				seqcount = nblksread;
227 			if (seqcount < ntoread)
228 				ntoread = seqcount;
229 			if (num_ra) {
230 				rbp = cluster_rbuild(vp, filesize, lblkno,
231 					blkno, size, ntoread, NULL);
232 			} else {
233 				rbp = getblk(vp, lblkno, size, 0, 0);
234 				rbp->b_flags |= B_READ | B_ASYNC | B_RAM;
235 				rbp->b_blkno = blkno;
236 			}
237 		}
238 	}
239 
240 	/*
241 	 * handle the synchronous read
242 	 */
243 	if (bp) {
244 #if defined(CLUSTERDEBUG)
245 		if (rcluster)
246 			printf("S(%ld,%ld,%d) ",
247 			    (long)bp->b_lblkno, bp->b_bcount, seqcount);
248 #endif
249 		if ((bp->b_flags & B_CLUSTER) == 0)
250 			vfs_busy_pages(bp, 0);
251 		bp->b_flags &= ~(B_ERROR|B_INVAL);
252 		if (bp->b_flags & (B_ASYNC|B_CALL))
253 			BUF_KERNPROC(bp);
254 		error = VOP_STRATEGY(vp, bp);
255 		curproc->p_stats->p_ru.ru_inblock++;
256 	}
257 
258 	/*
259 	 * and if we have read-aheads, do them too
260 	 */
261 	if (rbp) {
262 		if (error) {
263 			rbp->b_flags &= ~(B_ASYNC | B_READ);
264 			brelse(rbp);
265 		} else if (rbp->b_flags & B_CACHE) {
266 			rbp->b_flags &= ~(B_ASYNC | B_READ);
267 			bqrelse(rbp);
268 		} else {
269 #if defined(CLUSTERDEBUG)
270 			if (rcluster) {
271 				if (bp)
272 					printf("A+(%ld,%ld,%ld,%d) ",
273 					    (long)rbp->b_lblkno, rbp->b_bcount,
274 					    (long)(rbp->b_lblkno - origblkno),
275 					    seqcount);
276 				else
277 					printf("A(%ld,%ld,%ld,%d) ",
278 					    (long)rbp->b_lblkno, rbp->b_bcount,
279 					    (long)(rbp->b_lblkno - origblkno),
280 					    seqcount);
281 			}
282 #endif
283 
284 			if ((rbp->b_flags & B_CLUSTER) == 0)
285 				vfs_busy_pages(rbp, 0);
286 			rbp->b_flags &= ~(B_ERROR|B_INVAL);
287 			if (rbp->b_flags & (B_ASYNC|B_CALL))
288 				BUF_KERNPROC(rbp);
289 			(void) VOP_STRATEGY(vp, rbp);
290 			curproc->p_stats->p_ru.ru_inblock++;
291 		}
292 	}
293 	if (reqbp)
294 		return (biowait(reqbp));
295 	else
296 		return (error);
297 }
298 
299 /*
300  * If blocks are contiguous on disk, use this to provide clustered
301  * read ahead.  We will read as many blocks as possible sequentially
302  * and then parcel them up into logical blocks in the buffer hash table.
303  */
304 static struct buf *
305 cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp)
306 	struct vnode *vp;
307 	u_quad_t filesize;
308 	daddr_t lbn;
309 	daddr_t blkno;
310 	long size;
311 	int run;
312 	struct buf *fbp;
313 {
314 	struct buf *bp, *tbp;
315 	daddr_t bn;
316 	int i, inc, j;
317 
318 	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
319 	    ("cluster_rbuild: size %ld != filesize %ld\n",
320 	    size, vp->v_mount->mnt_stat.f_iosize));
321 
322 	/*
323 	 * avoid a division
324 	 */
325 	while ((u_quad_t) size * (lbn + run) > filesize) {
326 		--run;
327 	}
328 
329 	if (fbp) {
330 		tbp = fbp;
331 		tbp->b_flags |= B_READ;
332 	} else {
333 		tbp = getblk(vp, lbn, size, 0, 0);
334 		if (tbp->b_flags & B_CACHE)
335 			return tbp;
336 		tbp->b_flags |= B_ASYNC | B_READ | B_RAM;
337 	}
338 
339 	tbp->b_blkno = blkno;
340 	if( (tbp->b_flags & B_MALLOC) ||
341 		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
342 		return tbp;
343 
344 	bp = trypbuf(&cluster_pbuf_freecnt);
345 	if (bp == 0)
346 		return tbp;
347 
348 	bp->b_data = (char *)((vm_offset_t)bp->b_data |
349 	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
350 	bp->b_flags = B_ASYNC | B_READ | B_CALL | B_CLUSTER | B_VMIO;
351 	bp->b_iodone = cluster_callback;
352 	bp->b_blkno = blkno;
353 	bp->b_lblkno = lbn;
354 	bp->b_offset = tbp->b_offset;
355 	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
356 	pbgetvp(vp, bp);
357 
358 	TAILQ_INIT(&bp->b_cluster.cluster_head);
359 
360 	bp->b_bcount = 0;
361 	bp->b_bufsize = 0;
362 	bp->b_npages = 0;
363 
364 	if (vp->v_maxio == 0)
365 		vp->v_maxio = DFLTPHYS;
366 	inc = btodb(size);
367 	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
368 		if (i != 0) {
369 			if ((bp->b_npages * PAGE_SIZE) +
370 				round_page(size) > vp->v_maxio)
371 				break;
372 
373 			if ((tbp = incore(vp, lbn + i)) != NULL) {
374 				if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT))
375 					break;
376 				BUF_UNLOCK(tbp);
377 
378 				for (j = 0; j < tbp->b_npages; j++)
379 					if (tbp->b_pages[j]->valid)
380 						break;
381 
382 				if (j != tbp->b_npages)
383 					break;
384 
385 				if (tbp->b_bcount != size)
386 					break;
387 			}
388 
389 			tbp = getblk(vp, lbn + i, size, 0, 0);
390 
391 			if ((tbp->b_flags & B_CACHE) ||
392 				(tbp->b_flags & B_VMIO) == 0) {
393 				bqrelse(tbp);
394 				break;
395 			}
396 
397 			for (j = 0;j < tbp->b_npages; j++)
398 				if (tbp->b_pages[j]->valid)
399 					break;
400 
401 			if (j != tbp->b_npages) {
402 				bqrelse(tbp);
403 				break;
404 			}
405 
406 			if ((fbp && (i == 1)) || (i == (run - 1)))
407 				tbp->b_flags |= B_RAM;
408 			tbp->b_flags |= B_READ | B_ASYNC;
409 			if (tbp->b_blkno == tbp->b_lblkno) {
410 				tbp->b_blkno = bn;
411 			} else if (tbp->b_blkno != bn) {
412 				brelse(tbp);
413 				break;
414 			}
415 		}
416 		/*
417 		 * XXX fbp from caller may not be B_ASYNC, but we are going
418 		 * to biodone() it in cluster_callback() anyway
419 		 */
420 		BUF_KERNPROC(tbp);
421 		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
422 			tbp, b_cluster.cluster_entry);
423 		for (j = 0; j < tbp->b_npages; j += 1) {
424 			vm_page_t m;
425 			m = tbp->b_pages[j];
426 			vm_page_io_start(m);
427 			vm_object_pip_add(m->object, 1);
428 			if ((bp->b_npages == 0) ||
429 				(bp->b_pages[bp->b_npages-1] != m)) {
430 				bp->b_pages[bp->b_npages] = m;
431 				bp->b_npages++;
432 			}
433 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
434 				tbp->b_pages[j] = bogus_page;
435 		}
436 		bp->b_bcount += tbp->b_bcount;
437 		bp->b_bufsize += tbp->b_bufsize;
438 	}
439 
440 	for(j=0;j<bp->b_npages;j++) {
441 		if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) ==
442 			VM_PAGE_BITS_ALL)
443 			bp->b_pages[j] = bogus_page;
444 	}
445 	if (bp->b_bufsize > bp->b_kvasize)
446 		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
447 		    bp->b_bufsize, bp->b_kvasize);
448 	bp->b_kvasize = bp->b_bufsize;
449 
450 	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
451 		(vm_page_t *)bp->b_pages, bp->b_npages);
452 	return (bp);
453 }
454 
455 /*
456  * Cleanup after a clustered read or write.
457  * This is complicated by the fact that any of the buffers might have
458  * extra memory (if there were no empty buffer headers at allocbuf time)
459  * that we will need to shift around.
460  */
461 void
462 cluster_callback(bp)
463 	struct buf *bp;
464 {
465 	struct buf *nbp, *tbp;
466 	int error = 0;
467 
468 	/*
469 	 * Must propogate errors to all the components.
470 	 */
471 	if (bp->b_flags & B_ERROR)
472 		error = bp->b_error;
473 
474 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
475 	/*
476 	 * Move memory from the large cluster buffer into the component
477 	 * buffers and mark IO as done on these.
478 	 */
479 	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
480 		tbp; tbp = nbp) {
481 		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
482 		if (error) {
483 			tbp->b_flags |= B_ERROR;
484 			tbp->b_error = error;
485 		} else {
486 			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
487 			tbp->b_flags &= ~(B_ERROR|B_INVAL);
488 		}
489 		biodone(tbp);
490 	}
491 	relpbuf(bp, &cluster_pbuf_freecnt);
492 }
493 
494 /*
495  *	cluster_wbuild_wb:
496  *
497  *	Implement modified write build for cluster.
498  *
499  *		write_behind = 0	write behind disabled
500  *		write_behind = 1	write behind normal (default)
501  *		write_behind = 2	write behind backed-off
502  */
503 
504 static __inline int
505 cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len)
506 {
507 	int r = 0;
508 
509 	switch(write_behind) {
510 	case 2:
511 		if (start_lbn < len)
512 			break;
513 		start_lbn -= len;
514 		/* fall through */
515 	case 1:
516 		r = cluster_wbuild(vp, size, start_lbn, len);
517 		/* fall through */
518 	default:
519 		/* fall through */
520 		break;
521 	}
522 	return(r);
523 }
524 
525 /*
526  * Do clustered write for FFS.
527  *
528  * Three cases:
529  *	1. Write is not sequential (write asynchronously)
530  *	Write is sequential:
531  *	2.	beginning of cluster - begin cluster
532  *	3.	middle of a cluster - add to cluster
533  *	4.	end of a cluster - asynchronously write cluster
534  */
535 void
536 cluster_write(bp, filesize)
537 	struct buf *bp;
538 	u_quad_t filesize;
539 {
540 	struct vnode *vp;
541 	daddr_t lbn;
542 	int maxclen, cursize;
543 	int lblocksize;
544 	int async;
545 
546 	vp = bp->b_vp;
547 	if (vp->v_maxio == 0)
548 		vp->v_maxio = DFLTPHYS;
549 	if (vp->v_type == VREG) {
550 		async = vp->v_mount->mnt_flag & MNT_ASYNC;
551 		lblocksize = vp->v_mount->mnt_stat.f_iosize;
552 	} else {
553 		async = 0;
554 		lblocksize = bp->b_bufsize;
555 	}
556 	lbn = bp->b_lblkno;
557 	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
558 
559 	/* Initialize vnode to beginning of file. */
560 	if (lbn == 0)
561 		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
562 
563 	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
564 	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
565 		maxclen = vp->v_maxio / lblocksize - 1;
566 		if (vp->v_clen != 0) {
567 			/*
568 			 * Next block is not sequential.
569 			 *
570 			 * If we are not writing at end of file, the process
571 			 * seeked to another point in the file since its last
572 			 * write, or we have reached our maximum cluster size,
573 			 * then push the previous cluster. Otherwise try
574 			 * reallocating to make it sequential.
575 			 */
576 			cursize = vp->v_lastw - vp->v_cstart + 1;
577 			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
578 			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
579 				if (!async)
580 					cluster_wbuild_wb(vp, lblocksize,
581 						vp->v_cstart, cursize);
582 			} else {
583 				struct buf **bpp, **endbp;
584 				struct cluster_save *buflist;
585 
586 				buflist = cluster_collectbufs(vp, bp);
587 				endbp = &buflist->bs_children
588 				    [buflist->bs_nchildren - 1];
589 				if (VOP_REALLOCBLKS(vp, buflist)) {
590 					/*
591 					 * Failed, push the previous cluster.
592 					 */
593 					for (bpp = buflist->bs_children;
594 					     bpp < endbp; bpp++)
595 						brelse(*bpp);
596 					free(buflist, M_SEGMENT);
597 					cluster_wbuild_wb(vp, lblocksize,
598 					    vp->v_cstart, cursize);
599 				} else {
600 					/*
601 					 * Succeeded, keep building cluster.
602 					 */
603 					for (bpp = buflist->bs_children;
604 					     bpp <= endbp; bpp++)
605 						bdwrite(*bpp);
606 					free(buflist, M_SEGMENT);
607 					vp->v_lastw = lbn;
608 					vp->v_lasta = bp->b_blkno;
609 					return;
610 				}
611 			}
612 		}
613 		/*
614 		 * Consider beginning a cluster. If at end of file, make
615 		 * cluster as large as possible, otherwise find size of
616 		 * existing cluster.
617 		 */
618 		if ((vp->v_type == VREG) &&
619 			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
620 		    (bp->b_blkno == bp->b_lblkno) &&
621 		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
622 		     bp->b_blkno == -1)) {
623 			bawrite(bp);
624 			vp->v_clen = 0;
625 			vp->v_lasta = bp->b_blkno;
626 			vp->v_cstart = lbn + 1;
627 			vp->v_lastw = lbn;
628 			return;
629 		}
630 		vp->v_clen = maxclen;
631 		if (!async && maxclen == 0) {	/* I/O not contiguous */
632 			vp->v_cstart = lbn + 1;
633 			bawrite(bp);
634 		} else {	/* Wait for rest of cluster */
635 			vp->v_cstart = lbn;
636 			bdwrite(bp);
637 		}
638 	} else if (lbn == vp->v_cstart + vp->v_clen) {
639 		/*
640 		 * At end of cluster, write it out.
641 		 */
642 		bdwrite(bp);
643 		cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1);
644 		vp->v_clen = 0;
645 		vp->v_cstart = lbn + 1;
646 	} else
647 		/*
648 		 * In the middle of a cluster, so just delay the I/O for now.
649 		 */
650 		bdwrite(bp);
651 	vp->v_lastw = lbn;
652 	vp->v_lasta = bp->b_blkno;
653 }
654 
655 
656 /*
657  * This is an awful lot like cluster_rbuild...wish they could be combined.
658  * The last lbn argument is the current block on which I/O is being
659  * performed.  Check to see that it doesn't fall in the middle of
660  * the current block (if last_bp == NULL).
661  */
662 int
663 cluster_wbuild(vp, size, start_lbn, len)
664 	struct vnode *vp;
665 	long size;
666 	daddr_t start_lbn;
667 	int len;
668 {
669 	struct buf *bp, *tbp;
670 	int i, j, s;
671 	int totalwritten = 0;
672 	int dbsize = btodb(size);
673 
674 	if (vp->v_maxio == 0)
675 		vp->v_maxio = DFLTPHYS;
676 	while (len > 0) {
677 		s = splbio();
678 		if (((tbp = gbincore(vp, start_lbn)) == NULL) ||
679 		  ((tbp->b_flags & (B_INVAL | B_DELWRI)) != B_DELWRI) ||
680 		  BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
681 			++start_lbn;
682 			--len;
683 			splx(s);
684 			continue;
685 		}
686 		bremfree(tbp);
687 		tbp->b_flags &= ~B_DONE;
688 		splx(s);
689 
690 		/*
691 		 * Extra memory in the buffer, punt on this buffer.
692 		 * XXX we could handle this in most cases, but we would
693 		 * have to push the extra memory down to after our max
694 		 * possible cluster size and then potentially pull it back
695 		 * up if the cluster was terminated prematurely--too much
696 		 * hassle.
697 		 */
698 		if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
699 		  (tbp->b_bcount != tbp->b_bufsize) ||
700 		  (tbp->b_bcount != size) ||
701 		  (len == 1) ||
702 		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
703 			totalwritten += tbp->b_bufsize;
704 			bawrite(tbp);
705 			++start_lbn;
706 			--len;
707 			continue;
708 		}
709 
710 		/*
711 		 * We got a pbuf to make the cluster in.
712 		 * so initialise it.
713 		 */
714 		TAILQ_INIT(&bp->b_cluster.cluster_head);
715 		bp->b_bcount = 0;
716 		bp->b_bufsize = 0;
717 		bp->b_npages = 0;
718 		if (tbp->b_wcred != NOCRED) {
719 		    bp->b_wcred = tbp->b_wcred;
720 		    crhold(bp->b_wcred);
721 		}
722 
723 		bp->b_blkno = tbp->b_blkno;
724 		bp->b_lblkno = tbp->b_lblkno;
725 		bp->b_offset = tbp->b_offset;
726 		bp->b_data = (char *)((vm_offset_t)bp->b_data |
727 		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
728 		bp->b_flags |= B_CALL | B_CLUSTER |
729 				(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT));
730 		bp->b_iodone = cluster_callback;
731 		pbgetvp(vp, bp);
732 		/*
733 		 * From this location in the file, scan forward to see
734 		 * if there are buffers with adjacent data that need to
735 		 * be written as well.
736 		 */
737 		for (i = 0; i < len; ++i, ++start_lbn) {
738 			if (i != 0) { /* If not the first buffer */
739 				s = splbio();
740 				/*
741 				 * If the adjacent data is not even in core it
742 				 * can't need to be written.
743 				 */
744 				if ((tbp = gbincore(vp, start_lbn)) == NULL) {
745 					splx(s);
746 					break;
747 				}
748 
749 				/*
750 				 * If it IS in core, but has different
751 				 * characteristics, don't cluster with it.
752 				 */
753 				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
754 				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
755 				  != (B_DELWRI | B_CLUSTEROK |
756 				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
757 				    tbp->b_wcred != bp->b_wcred ||
758 				    BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
759 					splx(s);
760 					break;
761 				}
762 
763 				/*
764 				 * Check that the combined cluster
765 				 * would make sense with regard to pages
766 				 * and would not be too large
767 				 */
768 				if ((tbp->b_bcount != size) ||
769 				  ((bp->b_blkno + (dbsize * i)) !=
770 				    tbp->b_blkno) ||
771 				  ((tbp->b_npages + bp->b_npages) >
772 				    (vp->v_maxio / PAGE_SIZE))) {
773 					BUF_UNLOCK(tbp);
774 					splx(s);
775 					break;
776 				}
777 				/*
778 				 * Ok, it's passed all the tests,
779 				 * so remove it from the free list
780 				 * and mark it busy. We will use it.
781 				 */
782 				bremfree(tbp);
783 				tbp->b_flags &= ~B_DONE;
784 				splx(s);
785 			} /* end of code for non-first buffers only */
786 			/* check for latent dependencies to be handled */
787 			if ((LIST_FIRST(&tbp->b_dep)) != NULL &&
788 			    bioops.io_start)
789 				(*bioops.io_start)(tbp);
790 			/*
791 			 * If the IO is via the VM then we do some
792 			 * special VM hackery. (yuck)
793 			 */
794 			if (tbp->b_flags & B_VMIO) {
795 				vm_page_t m;
796 
797 				if (i != 0) { /* if not first buffer */
798 					for (j = 0; j < tbp->b_npages; j += 1) {
799 						m = tbp->b_pages[j];
800 						if (m->flags & PG_BUSY)
801 							goto finishcluster;
802 					}
803 				}
804 
805 				for (j = 0; j < tbp->b_npages; j += 1) {
806 					m = tbp->b_pages[j];
807 					vm_page_io_start(m);
808 					vm_object_pip_add(m->object, 1);
809 					if ((bp->b_npages == 0) ||
810 					  (bp->b_pages[bp->b_npages - 1] != m)) {
811 						bp->b_pages[bp->b_npages] = m;
812 						bp->b_npages++;
813 					}
814 				}
815 			}
816 			bp->b_bcount += size;
817 			bp->b_bufsize += size;
818 
819 			s = splbio();
820 			bundirty(tbp);
821 			tbp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
822 			tbp->b_flags |= B_ASYNC;
823 			reassignbuf(tbp, tbp->b_vp);	/* put on clean list */
824 			++tbp->b_vp->v_numoutput;
825 			splx(s);
826 			BUF_KERNPROC(tbp);
827 			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
828 				tbp, b_cluster.cluster_entry);
829 		}
830 	finishcluster:
831 		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
832 			(vm_page_t *) bp->b_pages, bp->b_npages);
833 		if (bp->b_bufsize > bp->b_kvasize)
834 			panic(
835 			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
836 			    bp->b_bufsize, bp->b_kvasize);
837 		bp->b_kvasize = bp->b_bufsize;
838 		totalwritten += bp->b_bufsize;
839 		bp->b_dirtyoff = 0;
840 		bp->b_dirtyend = bp->b_bufsize;
841 		bawrite(bp);
842 
843 		len -= i;
844 	}
845 	return totalwritten;
846 }
847 
848 /*
849  * Collect together all the buffers in a cluster.
850  * Plus add one additional buffer.
851  */
852 static struct cluster_save *
853 cluster_collectbufs(vp, last_bp)
854 	struct vnode *vp;
855 	struct buf *last_bp;
856 {
857 	struct cluster_save *buflist;
858 	struct buf *bp;
859 	daddr_t lbn;
860 	int i, len;
861 
862 	len = vp->v_lastw - vp->v_cstart + 1;
863 	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
864 	    M_SEGMENT, M_WAITOK);
865 	buflist->bs_nchildren = 0;
866 	buflist->bs_children = (struct buf **) (buflist + 1);
867 	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
868 		(void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp);
869 		buflist->bs_children[i] = bp;
870 		if (bp->b_blkno == bp->b_lblkno)
871 			VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
872 				NULL, NULL);
873 	}
874 	buflist->bs_children[i] = bp = last_bp;
875 	if (bp->b_blkno == bp->b_lblkno)
876 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
877 			NULL, NULL);
878 	buflist->bs_nchildren = i + 1;
879 	return (buflist);
880 }
881