xref: /freebsd/sys/kern/vfs_cluster.c (revision 8fa113e5fc65fe6abc757f0089f477a87ee4d185)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Modifications/enhancements:
5  * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36  * $FreeBSD$
37  */
38 
39 #include "opt_debug_cluster.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/bio.h>
46 #include <sys/buf.h>
47 #include <sys/vnode.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <sys/sysctl.h>
56 
57 #if defined(CLUSTERDEBUG)
58 #include <sys/sysctl.h>
59 static int	rcluster= 0;
60 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
61 #endif
62 
63 static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer");
64 
65 static struct cluster_save *
66 	cluster_collectbufs __P((struct vnode *vp, struct buf *last_bp));
67 static struct buf *
68 	cluster_rbuild __P((struct vnode *vp, u_quad_t filesize, daddr_t lbn,
69 			    daddr_t blkno, long size, int run, struct buf *fbp));
70 
71 static int write_behind = 1;
72 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
73 
74 extern vm_page_t	bogus_page;
75 
76 extern int cluster_pbuf_freecnt;
77 
78 /*
79  * Maximum number of blocks for read-ahead.
80  */
81 #define MAXRA 32
82 
83 /*
84  * This replaces bread.
85  */
86 int
87 cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp)
88 	struct vnode *vp;
89 	u_quad_t filesize;
90 	daddr_t lblkno;
91 	long size;
92 	struct ucred *cred;
93 	long totread;
94 	int seqcount;
95 	struct buf **bpp;
96 {
97 	struct buf *bp, *rbp, *reqbp;
98 	daddr_t blkno, origblkno;
99 	int error, num_ra;
100 	int i;
101 	int maxra, racluster;
102 	long origtotread;
103 
104 	error = 0;
105 
106 	/*
107 	 * Try to limit the amount of read-ahead by a few
108 	 * ad-hoc parameters.  This needs work!!!
109 	 */
110 	racluster = vp->v_mount->mnt_iosize_max / size;
111 	maxra = 2 * racluster + (totread / size);
112 	if (maxra > MAXRA)
113 		maxra = MAXRA;
114 	if (maxra > nbuf/8)
115 		maxra = nbuf/8;
116 
117 	/*
118 	 * get the requested block
119 	 */
120 	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0);
121 	origblkno = lblkno;
122 	origtotread = totread;
123 
124 	/*
125 	 * if it is in the cache, then check to see if the reads have been
126 	 * sequential.  If they have, then try some read-ahead, otherwise
127 	 * back-off on prospective read-aheads.
128 	 */
129 	if (bp->b_flags & B_CACHE) {
130 		if (!seqcount) {
131 			return 0;
132 		} else if ((bp->b_flags & B_RAM) == 0) {
133 			return 0;
134 		} else {
135 			int s;
136 			struct buf *tbp;
137 			bp->b_flags &= ~B_RAM;
138 			/*
139 			 * We do the spl here so that there is no window
140 			 * between the incore and the b_usecount increment
141 			 * below.  We opt to keep the spl out of the loop
142 			 * for efficiency.
143 			 */
144 			s = splbio();
145 			for (i = 1; i < maxra; i++) {
146 
147 				if (!(tbp = incore(vp, lblkno+i))) {
148 					break;
149 				}
150 
151 				/*
152 				 * Set another read-ahead mark so we know
153 				 * to check again.
154 				 */
155 				if (((i % racluster) == (racluster - 1)) ||
156 					(i == (maxra - 1)))
157 					tbp->b_flags |= B_RAM;
158 			}
159 			splx(s);
160 			if (i >= maxra) {
161 				return 0;
162 			}
163 			lblkno += i;
164 		}
165 		reqbp = bp = NULL;
166 	} else {
167 		off_t firstread = bp->b_offset;
168 
169 		KASSERT(bp->b_offset != NOOFFSET,
170 		    ("cluster_read: no buffer offset"));
171 		if (firstread + totread > filesize)
172 			totread = filesize - firstread;
173 		if (totread > size) {
174 			int nblks = 0;
175 			int ncontigafter;
176 			while (totread > 0) {
177 				nblks++;
178 				totread -= size;
179 			}
180 			if (nblks == 1)
181 				goto single_block_read;
182 			if (nblks > racluster)
183 				nblks = racluster;
184 
185 	    		error = VOP_BMAP(vp, lblkno, NULL,
186 				&blkno, &ncontigafter, NULL);
187 			if (error)
188 				goto single_block_read;
189 			if (blkno == -1)
190 				goto single_block_read;
191 			if (ncontigafter == 0)
192 				goto single_block_read;
193 			if (ncontigafter + 1 < nblks)
194 				nblks = ncontigafter + 1;
195 
196 			bp = cluster_rbuild(vp, filesize, lblkno,
197 				blkno, size, nblks, bp);
198 			lblkno += (bp->b_bufsize / size);
199 		} else {
200 single_block_read:
201 			/*
202 			 * if it isn't in the cache, then get a chunk from
203 			 * disk if sequential, otherwise just get the block.
204 			 */
205 			bp->b_flags |= B_RAM;
206 			bp->b_iocmd = BIO_READ;
207 			lblkno += 1;
208 		}
209 	}
210 
211 	/*
212 	 * if we have been doing sequential I/O, then do some read-ahead
213 	 */
214 	rbp = NULL;
215 	if (seqcount && (lblkno < (origblkno + seqcount))) {
216 		/*
217 		 * we now build the read-ahead buffer if it is desirable.
218 		 */
219 		if (((u_quad_t)(lblkno + 1) * size) <= filesize &&
220 		    !(error = VOP_BMAP(vp, lblkno, NULL, &blkno, &num_ra, NULL)) &&
221 		    blkno != -1) {
222 			int nblksread;
223 			int ntoread = num_ra + 1;
224 			nblksread = (origtotread + size - 1) / size;
225 			if (seqcount < nblksread)
226 				seqcount = nblksread;
227 			if (seqcount < ntoread)
228 				ntoread = seqcount;
229 			if (num_ra) {
230 				rbp = cluster_rbuild(vp, filesize, lblkno,
231 					blkno, size, ntoread, NULL);
232 			} else {
233 				rbp = getblk(vp, lblkno, size, 0, 0);
234 				rbp->b_flags |= B_ASYNC | B_RAM;
235 				rbp->b_iocmd = BIO_READ;
236 				rbp->b_blkno = blkno;
237 			}
238 		}
239 	}
240 
241 	/*
242 	 * handle the synchronous read
243 	 */
244 	if (bp) {
245 #if defined(CLUSTERDEBUG)
246 		if (rcluster)
247 			printf("S(%ld,%ld,%d) ",
248 			    (long)bp->b_lblkno, bp->b_bcount, seqcount);
249 #endif
250 		if ((bp->b_flags & B_CLUSTER) == 0) {
251 			vfs_busy_pages(bp, 0);
252 		}
253 		bp->b_flags &= ~B_INVAL;
254 		bp->b_ioflags &= ~BIO_ERROR;
255 		if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
256 			BUF_KERNPROC(bp);
257 		error = VOP_STRATEGY(vp, bp);
258 		curproc->p_stats->p_ru.ru_inblock++;
259 	}
260 
261 	/*
262 	 * and if we have read-aheads, do them too
263 	 */
264 	if (rbp) {
265 		if (error) {
266 			rbp->b_flags &= ~B_ASYNC;
267 			brelse(rbp);
268 		} else if (rbp->b_flags & B_CACHE) {
269 			rbp->b_flags &= ~B_ASYNC;
270 			bqrelse(rbp);
271 		} else {
272 #if defined(CLUSTERDEBUG)
273 			if (rcluster) {
274 				if (bp)
275 					printf("A+(%ld,%ld,%ld,%d) ",
276 					    (long)rbp->b_lblkno, rbp->b_bcount,
277 					    (long)(rbp->b_lblkno - origblkno),
278 					    seqcount);
279 				else
280 					printf("A(%ld,%ld,%ld,%d) ",
281 					    (long)rbp->b_lblkno, rbp->b_bcount,
282 					    (long)(rbp->b_lblkno - origblkno),
283 					    seqcount);
284 			}
285 #endif
286 
287 			if ((rbp->b_flags & B_CLUSTER) == 0) {
288 				vfs_busy_pages(rbp, 0);
289 			}
290 			rbp->b_flags &= ~B_INVAL;
291 			rbp->b_ioflags &= ~BIO_ERROR;
292 			if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
293 				BUF_KERNPROC(rbp);
294 			(void) VOP_STRATEGY(vp, rbp);
295 			curproc->p_stats->p_ru.ru_inblock++;
296 		}
297 	}
298 	if (reqbp)
299 		return (bufwait(reqbp));
300 	else
301 		return (error);
302 }
303 
304 /*
305  * If blocks are contiguous on disk, use this to provide clustered
306  * read ahead.  We will read as many blocks as possible sequentially
307  * and then parcel them up into logical blocks in the buffer hash table.
308  */
309 static struct buf *
310 cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp)
311 	struct vnode *vp;
312 	u_quad_t filesize;
313 	daddr_t lbn;
314 	daddr_t blkno;
315 	long size;
316 	int run;
317 	struct buf *fbp;
318 {
319 	struct buf *bp, *tbp;
320 	daddr_t bn;
321 	int i, inc, j;
322 
323 	GIANT_REQUIRED;
324 
325 	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
326 	    ("cluster_rbuild: size %ld != filesize %ld\n",
327 	    size, vp->v_mount->mnt_stat.f_iosize));
328 
329 	/*
330 	 * avoid a division
331 	 */
332 	while ((u_quad_t) size * (lbn + run) > filesize) {
333 		--run;
334 	}
335 
336 	if (fbp) {
337 		tbp = fbp;
338 		tbp->b_iocmd = BIO_READ;
339 	} else {
340 		tbp = getblk(vp, lbn, size, 0, 0);
341 		if (tbp->b_flags & B_CACHE)
342 			return tbp;
343 		tbp->b_flags |= B_ASYNC | B_RAM;
344 		tbp->b_iocmd = BIO_READ;
345 	}
346 
347 	tbp->b_blkno = blkno;
348 	if( (tbp->b_flags & B_MALLOC) ||
349 		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
350 		return tbp;
351 
352 	bp = trypbuf(&cluster_pbuf_freecnt);
353 	if (bp == 0)
354 		return tbp;
355 
356 	/*
357 	 * We are synthesizing a buffer out of vm_page_t's, but
358 	 * if the block size is not page aligned then the starting
359 	 * address may not be either.  Inherit the b_data offset
360 	 * from the original buffer.
361 	 */
362 	bp->b_data = (char *)((vm_offset_t)bp->b_data |
363 	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
364 	bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
365 	bp->b_iocmd = BIO_READ;
366 	bp->b_iodone = cluster_callback;
367 	bp->b_blkno = blkno;
368 	bp->b_lblkno = lbn;
369 	bp->b_offset = tbp->b_offset;
370 	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
371 	pbgetvp(vp, bp);
372 
373 	TAILQ_INIT(&bp->b_cluster.cluster_head);
374 
375 	bp->b_bcount = 0;
376 	bp->b_bufsize = 0;
377 	bp->b_npages = 0;
378 
379 	inc = btodb(size);
380 	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
381 		if (i != 0) {
382 			if ((bp->b_npages * PAGE_SIZE) +
383 			    round_page(size) > vp->v_mount->mnt_iosize_max) {
384 				break;
385 			}
386 
387 			/*
388 			 * Shortcut some checks and try to avoid buffers that
389 			 * would block in the lock.  The same checks have to
390 			 * be made again after we officially get the buffer.
391 			 */
392 			if ((tbp = incore(vp, lbn + i)) != NULL) {
393 				if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT))
394 					break;
395 				BUF_UNLOCK(tbp);
396 
397 				for (j = 0; j < tbp->b_npages; j++) {
398 					if (tbp->b_pages[j]->valid)
399 						break;
400 				}
401 
402 				if (j != tbp->b_npages)
403 					break;
404 
405 				if (tbp->b_bcount != size)
406 					break;
407 			}
408 
409 			tbp = getblk(vp, lbn + i, size, 0, 0);
410 
411 			/*
412 			 * Stop scanning if the buffer is fully valid
413 			 * (marked B_CACHE), or locked (may be doing a
414 			 * background write), or if the buffer is not
415 			 * VMIO backed.  The clustering code can only deal
416 			 * with VMIO-backed buffers.
417 			 */
418 			if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
419 				(tbp->b_flags & B_VMIO) == 0) {
420 				bqrelse(tbp);
421 				break;
422 			}
423 
424 			/*
425 			 * The buffer must be completely invalid in order to
426 			 * take part in the cluster.  If it is partially valid
427 			 * then we stop.
428 			 */
429 			for (j = 0;j < tbp->b_npages; j++) {
430 				if (tbp->b_pages[j]->valid)
431 					break;
432 			}
433 			if (j != tbp->b_npages) {
434 				bqrelse(tbp);
435 				break;
436 			}
437 
438 			/*
439 			 * Set a read-ahead mark as appropriate
440 			 */
441 			if ((fbp && (i == 1)) || (i == (run - 1)))
442 				tbp->b_flags |= B_RAM;
443 
444 			/*
445 			 * Set the buffer up for an async read (XXX should
446 			 * we do this only if we do not wind up brelse()ing?).
447 			 * Set the block number if it isn't set, otherwise
448 			 * if it is make sure it matches the block number we
449 			 * expect.
450 			 */
451 			tbp->b_flags |= B_ASYNC;
452 			tbp->b_iocmd = BIO_READ;
453 			if (tbp->b_blkno == tbp->b_lblkno) {
454 				tbp->b_blkno = bn;
455 			} else if (tbp->b_blkno != bn) {
456 				brelse(tbp);
457 				break;
458 			}
459 		}
460 		/*
461 		 * XXX fbp from caller may not be B_ASYNC, but we are going
462 		 * to biodone() it in cluster_callback() anyway
463 		 */
464 		BUF_KERNPROC(tbp);
465 		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
466 			tbp, b_cluster.cluster_entry);
467 		for (j = 0; j < tbp->b_npages; j += 1) {
468 			vm_page_t m;
469 			m = tbp->b_pages[j];
470 			vm_page_io_start(m);
471 			vm_object_pip_add(m->object, 1);
472 			if ((bp->b_npages == 0) ||
473 				(bp->b_pages[bp->b_npages-1] != m)) {
474 				bp->b_pages[bp->b_npages] = m;
475 				bp->b_npages++;
476 			}
477 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
478 				tbp->b_pages[j] = bogus_page;
479 		}
480 		/*
481 		 * XXX shouldn't this be += size for both, like in
482 		 * cluster_wbuild()?
483 		 *
484 		 * Don't inherit tbp->b_bufsize as it may be larger due to
485 		 * a non-page-aligned size.  Instead just aggregate using
486 		 * 'size'.
487 		 */
488 		if (tbp->b_bcount != size)
489 			printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
490 		if (tbp->b_bufsize != size)
491 			printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
492 		bp->b_bcount += size;
493 		bp->b_bufsize += size;
494 	}
495 
496 	/*
497 	 * Fully valid pages in the cluster are already good and do not need
498 	 * to be re-read from disk.  Replace the page with bogus_page
499 	 */
500 	for (j = 0; j < bp->b_npages; j++) {
501 		if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) ==
502 		    VM_PAGE_BITS_ALL) {
503 			bp->b_pages[j] = bogus_page;
504 		}
505 	}
506 	if (bp->b_bufsize > bp->b_kvasize)
507 		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
508 		    bp->b_bufsize, bp->b_kvasize);
509 	bp->b_kvasize = bp->b_bufsize;
510 
511 	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
512 		(vm_page_t *)bp->b_pages, bp->b_npages);
513 	return (bp);
514 }
515 
516 /*
517  * Cleanup after a clustered read or write.
518  * This is complicated by the fact that any of the buffers might have
519  * extra memory (if there were no empty buffer headers at allocbuf time)
520  * that we will need to shift around.
521  */
522 void
523 cluster_callback(bp)
524 	struct buf *bp;
525 {
526 	struct buf *nbp, *tbp;
527 	int error = 0;
528 
529 	GIANT_REQUIRED;
530 
531 	/*
532 	 * Must propogate errors to all the components.
533 	 */
534 	if (bp->b_ioflags & BIO_ERROR)
535 		error = bp->b_error;
536 
537 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
538 	/*
539 	 * Move memory from the large cluster buffer into the component
540 	 * buffers and mark IO as done on these.
541 	 */
542 	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
543 		tbp; tbp = nbp) {
544 		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
545 		if (error) {
546 			tbp->b_ioflags |= BIO_ERROR;
547 			tbp->b_error = error;
548 		} else {
549 			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
550 			tbp->b_flags &= ~B_INVAL;
551 			tbp->b_ioflags &= ~BIO_ERROR;
552 			/*
553 			 * XXX the bdwrite()/bqrelse() issued during
554 			 * cluster building clears B_RELBUF (see bqrelse()
555 			 * comment).  If direct I/O was specified, we have
556 			 * to restore it here to allow the buffer and VM
557 			 * to be freed.
558 			 */
559 			if (tbp->b_flags & B_DIRECT)
560 				tbp->b_flags |= B_RELBUF;
561 		}
562 		bufdone(tbp);
563 	}
564 	relpbuf(bp, &cluster_pbuf_freecnt);
565 }
566 
567 /*
568  *	cluster_wbuild_wb:
569  *
570  *	Implement modified write build for cluster.
571  *
572  *		write_behind = 0	write behind disabled
573  *		write_behind = 1	write behind normal (default)
574  *		write_behind = 2	write behind backed-off
575  */
576 
577 static __inline int
578 cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len)
579 {
580 	int r = 0;
581 
582 	switch(write_behind) {
583 	case 2:
584 		if (start_lbn < len)
585 			break;
586 		start_lbn -= len;
587 		/* fall through */
588 	case 1:
589 		r = cluster_wbuild(vp, size, start_lbn, len);
590 		/* fall through */
591 	default:
592 		/* fall through */
593 		break;
594 	}
595 	return(r);
596 }
597 
598 /*
599  * Do clustered write for FFS.
600  *
601  * Three cases:
602  *	1. Write is not sequential (write asynchronously)
603  *	Write is sequential:
604  *	2.	beginning of cluster - begin cluster
605  *	3.	middle of a cluster - add to cluster
606  *	4.	end of a cluster - asynchronously write cluster
607  */
608 void
609 cluster_write(bp, filesize, seqcount)
610 	struct buf *bp;
611 	u_quad_t filesize;
612 	int seqcount;
613 {
614 	struct vnode *vp;
615 	daddr_t lbn;
616 	int maxclen, cursize;
617 	int lblocksize;
618 	int async;
619 
620 	vp = bp->b_vp;
621 	if (vp->v_type == VREG) {
622 		async = vp->v_mount->mnt_flag & MNT_ASYNC;
623 		lblocksize = vp->v_mount->mnt_stat.f_iosize;
624 	} else {
625 		async = 0;
626 		lblocksize = bp->b_bufsize;
627 	}
628 	lbn = bp->b_lblkno;
629 	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
630 
631 	/* Initialize vnode to beginning of file. */
632 	if (lbn == 0)
633 		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
634 
635 	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
636 	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
637 		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
638 		if (vp->v_clen != 0) {
639 			/*
640 			 * Next block is not sequential.
641 			 *
642 			 * If we are not writing at end of file, the process
643 			 * seeked to another point in the file since its last
644 			 * write, or we have reached our maximum cluster size,
645 			 * then push the previous cluster. Otherwise try
646 			 * reallocating to make it sequential.
647 			 *
648 			 * Change to algorithm: only push previous cluster if
649 			 * it was sequential from the point of view of the
650 			 * seqcount heuristic, otherwise leave the buffer
651 			 * intact so we can potentially optimize the I/O
652 			 * later on in the buf_daemon or update daemon
653 			 * flush.
654 			 */
655 			cursize = vp->v_lastw - vp->v_cstart + 1;
656 			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
657 			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
658 				if (!async && seqcount > 0) {
659 					cluster_wbuild_wb(vp, lblocksize,
660 						vp->v_cstart, cursize);
661 				}
662 			} else {
663 				struct buf **bpp, **endbp;
664 				struct cluster_save *buflist;
665 
666 				buflist = cluster_collectbufs(vp, bp);
667 				endbp = &buflist->bs_children
668 				    [buflist->bs_nchildren - 1];
669 				if (VOP_REALLOCBLKS(vp, buflist)) {
670 					/*
671 					 * Failed, push the previous cluster
672 					 * if *really* writing sequentially
673 					 * in the logical file (seqcount > 1),
674 					 * otherwise delay it in the hopes that
675 					 * the low level disk driver can
676 					 * optimize the write ordering.
677 					 */
678 					for (bpp = buflist->bs_children;
679 					     bpp < endbp; bpp++)
680 						brelse(*bpp);
681 					free(buflist, M_SEGMENT);
682 					if (seqcount > 1) {
683 						cluster_wbuild_wb(vp,
684 						    lblocksize, vp->v_cstart,
685 						    cursize);
686 					}
687 				} else {
688 					/*
689 					 * Succeeded, keep building cluster.
690 					 */
691 					for (bpp = buflist->bs_children;
692 					     bpp <= endbp; bpp++)
693 						bdwrite(*bpp);
694 					free(buflist, M_SEGMENT);
695 					vp->v_lastw = lbn;
696 					vp->v_lasta = bp->b_blkno;
697 					return;
698 				}
699 			}
700 		}
701 		/*
702 		 * Consider beginning a cluster. If at end of file, make
703 		 * cluster as large as possible, otherwise find size of
704 		 * existing cluster.
705 		 */
706 		if ((vp->v_type == VREG) &&
707 			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
708 		    (bp->b_blkno == bp->b_lblkno) &&
709 		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
710 		     bp->b_blkno == -1)) {
711 			bawrite(bp);
712 			vp->v_clen = 0;
713 			vp->v_lasta = bp->b_blkno;
714 			vp->v_cstart = lbn + 1;
715 			vp->v_lastw = lbn;
716 			return;
717 		}
718 		vp->v_clen = maxclen;
719 		if (!async && maxclen == 0) {	/* I/O not contiguous */
720 			vp->v_cstart = lbn + 1;
721 			bawrite(bp);
722 		} else {	/* Wait for rest of cluster */
723 			vp->v_cstart = lbn;
724 			bdwrite(bp);
725 		}
726 	} else if (lbn == vp->v_cstart + vp->v_clen) {
727 		/*
728 		 * At end of cluster, write it out if seqcount tells us we
729 		 * are operating sequentially, otherwise let the buf or
730 		 * update daemon handle it.
731 		 */
732 		bdwrite(bp);
733 		if (seqcount > 1)
734 			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1);
735 		vp->v_clen = 0;
736 		vp->v_cstart = lbn + 1;
737 	} else if (vm_page_count_severe()) {
738 		/*
739 		 * We are low on memory, get it going NOW
740 		 */
741 		bawrite(bp);
742 	} else {
743 		/*
744 		 * In the middle of a cluster, so just delay the I/O for now.
745 		 */
746 		bdwrite(bp);
747 	}
748 	vp->v_lastw = lbn;
749 	vp->v_lasta = bp->b_blkno;
750 }
751 
752 
753 /*
754  * This is an awful lot like cluster_rbuild...wish they could be combined.
755  * The last lbn argument is the current block on which I/O is being
756  * performed.  Check to see that it doesn't fall in the middle of
757  * the current block (if last_bp == NULL).
758  */
759 int
760 cluster_wbuild(vp, size, start_lbn, len)
761 	struct vnode *vp;
762 	long size;
763 	daddr_t start_lbn;
764 	int len;
765 {
766 	struct buf *bp, *tbp;
767 	int i, j, s;
768 	int totalwritten = 0;
769 	int dbsize = btodb(size);
770 
771 	GIANT_REQUIRED;
772 
773 	while (len > 0) {
774 		s = splbio();
775 		/*
776 		 * If the buffer is not delayed-write (i.e. dirty), or it
777 		 * is delayed-write but either locked or inval, it cannot
778 		 * partake in the clustered write.
779 		 */
780 		if (((tbp = gbincore(vp, start_lbn)) == NULL) ||
781 		  ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI) ||
782 		  BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
783 			++start_lbn;
784 			--len;
785 			splx(s);
786 			continue;
787 		}
788 		bremfree(tbp);
789 		tbp->b_flags &= ~B_DONE;
790 		splx(s);
791 
792 		/*
793 		 * Extra memory in the buffer, punt on this buffer.
794 		 * XXX we could handle this in most cases, but we would
795 		 * have to push the extra memory down to after our max
796 		 * possible cluster size and then potentially pull it back
797 		 * up if the cluster was terminated prematurely--too much
798 		 * hassle.
799 		 */
800 		if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) !=
801 		     (B_CLUSTEROK | B_VMIO)) ||
802 		  (tbp->b_bcount != tbp->b_bufsize) ||
803 		  (tbp->b_bcount != size) ||
804 		  (len == 1) ||
805 		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
806 			totalwritten += tbp->b_bufsize;
807 			bawrite(tbp);
808 			++start_lbn;
809 			--len;
810 			continue;
811 		}
812 
813 		/*
814 		 * We got a pbuf to make the cluster in.
815 		 * so initialise it.
816 		 */
817 		TAILQ_INIT(&bp->b_cluster.cluster_head);
818 		bp->b_bcount = 0;
819 		bp->b_magic = tbp->b_magic;
820 		bp->b_op = tbp->b_op;
821 		bp->b_bufsize = 0;
822 		bp->b_npages = 0;
823 		if (tbp->b_wcred != NOCRED)
824 			bp->b_wcred = crhold(tbp->b_wcred);
825 
826 		bp->b_blkno = tbp->b_blkno;
827 		bp->b_lblkno = tbp->b_lblkno;
828 		bp->b_offset = tbp->b_offset;
829 
830 		/*
831 		 * We are synthesizing a buffer out of vm_page_t's, but
832 		 * if the block size is not page aligned then the starting
833 		 * address may not be either.  Inherit the b_data offset
834 		 * from the original buffer.
835 		 */
836 		bp->b_data = (char *)((vm_offset_t)bp->b_data |
837 		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
838 		bp->b_flags |= B_CLUSTER |
839 				(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT | B_NOWDRAIN));
840 		bp->b_iodone = cluster_callback;
841 		pbgetvp(vp, bp);
842 		/*
843 		 * From this location in the file, scan forward to see
844 		 * if there are buffers with adjacent data that need to
845 		 * be written as well.
846 		 */
847 		for (i = 0; i < len; ++i, ++start_lbn) {
848 			if (i != 0) { /* If not the first buffer */
849 				s = splbio();
850 				/*
851 				 * If the adjacent data is not even in core it
852 				 * can't need to be written.
853 				 */
854 				if ((tbp = gbincore(vp, start_lbn)) == NULL) {
855 					splx(s);
856 					break;
857 				}
858 
859 				/*
860 				 * If it IS in core, but has different
861 				 * characteristics, or is locked (which
862 				 * means it could be undergoing a background
863 				 * I/O or be in a weird state), then don't
864 				 * cluster with it.
865 				 */
866 				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
867 				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
868 				  != (B_DELWRI | B_CLUSTEROK |
869 				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
870 				    (tbp->b_flags & B_LOCKED) ||
871 				    tbp->b_wcred != bp->b_wcred ||
872 				    BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
873 					splx(s);
874 					break;
875 				}
876 
877 				/*
878 				 * Check that the combined cluster
879 				 * would make sense with regard to pages
880 				 * and would not be too large
881 				 */
882 				if ((tbp->b_bcount != size) ||
883 				  ((bp->b_blkno + (dbsize * i)) !=
884 				    tbp->b_blkno) ||
885 				  ((tbp->b_npages + bp->b_npages) >
886 				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
887 					BUF_UNLOCK(tbp);
888 					splx(s);
889 					break;
890 				}
891 				/*
892 				 * Ok, it's passed all the tests,
893 				 * so remove it from the free list
894 				 * and mark it busy. We will use it.
895 				 */
896 				bremfree(tbp);
897 				tbp->b_flags &= ~B_DONE;
898 				splx(s);
899 			} /* end of code for non-first buffers only */
900 			/* check for latent dependencies to be handled */
901 			if ((LIST_FIRST(&tbp->b_dep)) != NULL)
902 				buf_start(tbp);
903 			/*
904 			 * If the IO is via the VM then we do some
905 			 * special VM hackery (yuck).  Since the buffer's
906 			 * block size may not be page-aligned it is possible
907 			 * for a page to be shared between two buffers.  We
908 			 * have to get rid of the duplication when building
909 			 * the cluster.
910 			 */
911 			if (tbp->b_flags & B_VMIO) {
912 				vm_page_t m;
913 
914 				if (i != 0) { /* if not first buffer */
915 					for (j = 0; j < tbp->b_npages; j += 1) {
916 						m = tbp->b_pages[j];
917 						if (m->flags & PG_BUSY) {
918 							bqrelse(tbp);
919 							goto finishcluster;
920 						}
921 					}
922 				}
923 
924 				for (j = 0; j < tbp->b_npages; j += 1) {
925 					m = tbp->b_pages[j];
926 					vm_page_io_start(m);
927 					vm_object_pip_add(m->object, 1);
928 					if ((bp->b_npages == 0) ||
929 					  (bp->b_pages[bp->b_npages - 1] != m)) {
930 						bp->b_pages[bp->b_npages] = m;
931 						bp->b_npages++;
932 					}
933 				}
934 			}
935 			bp->b_bcount += size;
936 			bp->b_bufsize += size;
937 
938 			s = splbio();
939 			bundirty(tbp);
940 			tbp->b_flags &= ~B_DONE;
941 			tbp->b_ioflags &= ~BIO_ERROR;
942 			tbp->b_flags |= B_ASYNC;
943 			tbp->b_iocmd = BIO_WRITE;
944 			reassignbuf(tbp, tbp->b_vp);	/* put on clean list */
945 			++tbp->b_vp->v_numoutput;
946 			splx(s);
947 			BUF_KERNPROC(tbp);
948 			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
949 				tbp, b_cluster.cluster_entry);
950 		}
951 	finishcluster:
952 		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
953 			(vm_page_t *) bp->b_pages, bp->b_npages);
954 		if (bp->b_bufsize > bp->b_kvasize)
955 			panic(
956 			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
957 			    bp->b_bufsize, bp->b_kvasize);
958 		bp->b_kvasize = bp->b_bufsize;
959 		totalwritten += bp->b_bufsize;
960 		bp->b_dirtyoff = 0;
961 		bp->b_dirtyend = bp->b_bufsize;
962 		bawrite(bp);
963 
964 		len -= i;
965 	}
966 	return totalwritten;
967 }
968 
969 /*
970  * Collect together all the buffers in a cluster.
971  * Plus add one additional buffer.
972  */
973 static struct cluster_save *
974 cluster_collectbufs(vp, last_bp)
975 	struct vnode *vp;
976 	struct buf *last_bp;
977 {
978 	struct cluster_save *buflist;
979 	struct buf *bp;
980 	daddr_t lbn;
981 	int i, len;
982 
983 	len = vp->v_lastw - vp->v_cstart + 1;
984 	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
985 	    M_SEGMENT, M_WAITOK);
986 	buflist->bs_nchildren = 0;
987 	buflist->bs_children = (struct buf **) (buflist + 1);
988 	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
989 		(void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp);
990 		buflist->bs_children[i] = bp;
991 		if (bp->b_blkno == bp->b_lblkno)
992 			VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
993 				NULL, NULL);
994 	}
995 	buflist->bs_children[i] = bp = last_bp;
996 	if (bp->b_blkno == bp->b_lblkno)
997 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
998 			NULL, NULL);
999 	buflist->bs_nchildren = i + 1;
1000 	return (buflist);
1001 }
1002