xref: /freebsd/sys/kern/vfs_cluster.c (revision 81d1ffee089aab2652954909acbe6aadd8a1a72c)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Modifications/enhancements:
5  * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36  * $FreeBSD$
37  */
38 
39 #include "opt_debug_cluster.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/stdint.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/bio.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <vm/vm.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_page.h>
56 #include <sys/sysctl.h>
57 
58 #if defined(CLUSTERDEBUG)
59 static int	rcluster= 0;
60 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0,
61     "Debug VFS clustering code");
62 #endif
63 
64 static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer");
65 
66 static struct cluster_save *
67 	cluster_collectbufs(struct vnode *vp, struct buf *last_bp);
68 static struct buf *
69 	cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
70 			 daddr_t blkno, long size, int run, struct buf *fbp);
71 
72 static int write_behind = 1;
73 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
74     "Cluster write-behind; 0: disable, 1: enable, 2: backed off");
75 
76 /* Page expended to mark partially backed buffers */
77 extern vm_page_t	bogus_page;
78 
79 /*
80  * Number of physical bufs (pbufs) this subsystem is allowed.
81  * Manipulated by vm_pager.c
82  */
83 extern int cluster_pbuf_freecnt;
84 
85 /*
86  * Maximum number of blocks for read-ahead.
87  */
88 #define MAXRA 32
89 
90 /*
91  * Read data to a buf, including read-ahead if we find this to be beneficial.
92  * cluster_read replaces bread.
93  */
94 int
95 cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp)
96 	struct vnode *vp;
97 	u_quad_t filesize;
98 	daddr_t lblkno;
99 	long size;
100 	struct ucred *cred;
101 	long totread;
102 	int seqcount;
103 	struct buf **bpp;
104 {
105 	struct buf *bp, *rbp, *reqbp;
106 	daddr_t blkno, origblkno;
107 	int error, num_ra;
108 	int i;
109 	int maxra, racluster;
110 	long origtotread;
111 
112 	error = 0;
113 
114 	/*
115 	 * Try to limit the amount of read-ahead by a few
116 	 * ad-hoc parameters.  This needs work!!!
117 	 */
118 	racluster = vp->v_mount->mnt_iosize_max / size;
119 	maxra = 2 * racluster + (totread / size);
120 	if (maxra > MAXRA)
121 		maxra = MAXRA;
122 	if (maxra > nbuf/8)
123 		maxra = nbuf/8;
124 
125 	/*
126 	 * get the requested block
127 	 */
128 	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0, 0);
129 	origblkno = lblkno;
130 	origtotread = totread;
131 
132 	/*
133 	 * if it is in the cache, then check to see if the reads have been
134 	 * sequential.  If they have, then try some read-ahead, otherwise
135 	 * back-off on prospective read-aheads.
136 	 */
137 	if (bp->b_flags & B_CACHE) {
138 		if (!seqcount) {
139 			return 0;
140 		} else if ((bp->b_flags & B_RAM) == 0) {
141 			return 0;
142 		} else {
143 			int s;
144 			struct buf *tbp;
145 			bp->b_flags &= ~B_RAM;
146 			/*
147 			 * We do the spl here so that there is no window
148 			 * between the incore and the b_usecount increment
149 			 * below.  We opt to keep the spl out of the loop
150 			 * for efficiency.
151 			 */
152 			s = splbio();
153 			VI_LOCK(vp);
154 			for (i = 1; i < maxra; i++) {
155 				/*
156 				 * Stop if the buffer does not exist or it
157 				 * is invalid (about to go away?)
158 				 */
159 				tbp = gbincore(vp, lblkno+i);
160 				if (tbp == NULL || (tbp->b_flags & B_INVAL))
161 					break;
162 
163 				/*
164 				 * Set another read-ahead mark so we know
165 				 * to check again.
166 				 */
167 				if (((i % racluster) == (racluster - 1)) ||
168 					(i == (maxra - 1)))
169 					tbp->b_flags |= B_RAM;
170 			}
171 			VI_UNLOCK(vp);
172 			splx(s);
173 			if (i >= maxra) {
174 				return 0;
175 			}
176 			lblkno += i;
177 		}
178 		reqbp = bp = NULL;
179 	/*
180 	 * If it isn't in the cache, then get a chunk from
181 	 * disk if sequential, otherwise just get the block.
182 	 */
183 	} else {
184 		off_t firstread = bp->b_offset;
185 		int nblks;
186 		int ncontigafter;
187 
188 		KASSERT(bp->b_offset != NOOFFSET,
189 		    ("cluster_read: no buffer offset"));
190 
191 		ncontigafter = 0;
192 
193 		/*
194 		 * Compute the total number of blocks that we should read
195 		 * synchronously.
196 		 */
197 		if (firstread + totread > filesize)
198 			totread = filesize - firstread;
199 		nblks = howmany(totread, size);
200 		if (nblks > racluster)
201 			nblks = racluster;
202 
203 		/*
204 		 * Now compute the number of contiguous blocks.
205 		 */
206 		if (nblks > 1) {
207 	    		error = VOP_BMAP(vp, lblkno, NULL,
208 				&blkno, &ncontigafter, NULL);
209 			/*
210 			 * If this failed to map just do the original block.
211 			 */
212 			if (error || blkno == -1)
213 				ncontigafter = 0;
214 		}
215 
216 		/*
217 		 * If we have contiguous data available do a cluster
218 		 * otherwise just read the requested block.
219 		 */
220 		if (ncontigafter) {
221 			/* Account for our first block. */
222 			ncontigafter++;
223 			if (ncontigafter < nblks)
224 				nblks = ncontigafter;
225 			bp = cluster_rbuild(vp, filesize, lblkno,
226 				blkno, size, nblks, bp);
227 			lblkno += (bp->b_bufsize / size);
228 		} else {
229 			bp->b_flags |= B_RAM;
230 			bp->b_iocmd = BIO_READ;
231 			lblkno += 1;
232 		}
233 	}
234 
235 	/*
236 	 * if we have been doing sequential I/O, then do some read-ahead
237 	 */
238 	rbp = NULL;
239 	if (seqcount && (lblkno < (origblkno + seqcount))) {
240 		/*
241 		 * we now build the read-ahead buffer if it is desirable.
242 		 */
243 		if (((u_quad_t)(lblkno + 1) * size) <= filesize &&
244 		    !(error = VOP_BMAP(vp, lblkno, NULL, &blkno, &num_ra, NULL)) &&
245 		    blkno != -1) {
246 			int nblksread;
247 			int ntoread = num_ra + 1;
248 			nblksread = (origtotread + size - 1) / size;
249 			if (seqcount < nblksread)
250 				seqcount = nblksread;
251 			if (seqcount < ntoread)
252 				ntoread = seqcount;
253 			if (num_ra) {
254 				rbp = cluster_rbuild(vp, filesize, lblkno,
255 					blkno, size, ntoread, NULL);
256 			} else {
257 				rbp = getblk(vp, lblkno, size, 0, 0, 0);
258 				rbp->b_flags |= B_ASYNC | B_RAM;
259 				rbp->b_iocmd = BIO_READ;
260 				rbp->b_blkno = blkno;
261 			}
262 		}
263 	}
264 
265 	/*
266 	 * handle the synchronous read
267 	 */
268 	if (bp) {
269 #if defined(CLUSTERDEBUG)
270 		if (rcluster)
271 			printf("S(%ld,%ld,%d) ",
272 			    (long)bp->b_lblkno, bp->b_bcount, seqcount);
273 #endif
274 		if ((bp->b_flags & B_CLUSTER) == 0) {
275 			vfs_busy_pages(bp, 0);
276 		}
277 		bp->b_flags &= ~B_INVAL;
278 		bp->b_ioflags &= ~BIO_ERROR;
279 		if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
280 			BUF_KERNPROC(bp);
281 		error = VOP_STRATEGY(vp, bp);
282 		curproc->p_stats->p_ru.ru_inblock++;
283 	}
284 
285 	/*
286 	 * and if we have read-aheads, do them too
287 	 */
288 	if (rbp) {
289 		if (error) {
290 			rbp->b_flags &= ~B_ASYNC;
291 			brelse(rbp);
292 		} else if (rbp->b_flags & B_CACHE) {
293 			rbp->b_flags &= ~B_ASYNC;
294 			bqrelse(rbp);
295 		} else {
296 #if defined(CLUSTERDEBUG)
297 			if (rcluster) {
298 				if (bp)
299 					printf("A+");
300 				else
301 					printf("A");
302 				printf("(%jd,%jd,%jd,%jd) ",
303 				    (intmax_t)rbp->b_lblkno,
304 				    (intmax_t)rbp->b_bcount,
305 				    (intmax_t)(rbp->b_lblkno - origblkno),
306 				    (intmax_t)seqcount);
307 			}
308 #endif
309 
310 			if ((rbp->b_flags & B_CLUSTER) == 0) {
311 				vfs_busy_pages(rbp, 0);
312 			}
313 			rbp->b_flags &= ~B_INVAL;
314 			rbp->b_ioflags &= ~BIO_ERROR;
315 			if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
316 				BUF_KERNPROC(rbp);
317 			(void) VOP_STRATEGY(vp, rbp);
318 			curproc->p_stats->p_ru.ru_inblock++;
319 		}
320 	}
321 	if (reqbp)
322 		return (bufwait(reqbp));
323 	else
324 		return (error);
325 }
326 
327 /*
328  * If blocks are contiguous on disk, use this to provide clustered
329  * read ahead.  We will read as many blocks as possible sequentially
330  * and then parcel them up into logical blocks in the buffer hash table.
331  */
332 static struct buf *
333 cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp)
334 	struct vnode *vp;
335 	u_quad_t filesize;
336 	daddr_t lbn;
337 	daddr_t blkno;
338 	long size;
339 	int run;
340 	struct buf *fbp;
341 {
342 	struct buf *bp, *tbp;
343 	daddr_t bn;
344 	int i, inc, j;
345 
346 	GIANT_REQUIRED;
347 
348 	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
349 	    ("cluster_rbuild: size %ld != filesize %ld\n",
350 	    size, vp->v_mount->mnt_stat.f_iosize));
351 
352 	/*
353 	 * avoid a division
354 	 */
355 	while ((u_quad_t) size * (lbn + run) > filesize) {
356 		--run;
357 	}
358 
359 	if (fbp) {
360 		tbp = fbp;
361 		tbp->b_iocmd = BIO_READ;
362 	} else {
363 		tbp = getblk(vp, lbn, size, 0, 0, 0);
364 		if (tbp->b_flags & B_CACHE)
365 			return tbp;
366 		tbp->b_flags |= B_ASYNC | B_RAM;
367 		tbp->b_iocmd = BIO_READ;
368 	}
369 
370 	tbp->b_blkno = blkno;
371 	if( (tbp->b_flags & B_MALLOC) ||
372 		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
373 		return tbp;
374 
375 	bp = trypbuf(&cluster_pbuf_freecnt);
376 	if (bp == 0)
377 		return tbp;
378 
379 	/*
380 	 * We are synthesizing a buffer out of vm_page_t's, but
381 	 * if the block size is not page aligned then the starting
382 	 * address may not be either.  Inherit the b_data offset
383 	 * from the original buffer.
384 	 */
385 	bp->b_data = (char *)((vm_offset_t)bp->b_data |
386 	    ((vm_offset_t)tbp->b_data & PAGE_MASK));
387 	bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
388 	bp->b_iocmd = BIO_READ;
389 	bp->b_iodone = cluster_callback;
390 	bp->b_blkno = blkno;
391 	bp->b_lblkno = lbn;
392 	bp->b_offset = tbp->b_offset;
393 	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
394 	pbgetvp(vp, bp);
395 
396 	TAILQ_INIT(&bp->b_cluster.cluster_head);
397 
398 	bp->b_bcount = 0;
399 	bp->b_bufsize = 0;
400 	bp->b_npages = 0;
401 
402 	inc = btodb(size);
403 	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
404 		if (i != 0) {
405 			if ((bp->b_npages * PAGE_SIZE) +
406 			    round_page(size) > vp->v_mount->mnt_iosize_max) {
407 				break;
408 			}
409 
410 			tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT);
411 
412 			/* Don't wait around for locked bufs. */
413 			if (tbp == NULL)
414 				break;
415 
416 			/*
417 			 * Stop scanning if the buffer is fully valid
418 			 * (marked B_CACHE), or locked (may be doing a
419 			 * background write), or if the buffer is not
420 			 * VMIO backed.  The clustering code can only deal
421 			 * with VMIO-backed buffers.
422 			 */
423 			if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
424 				(tbp->b_flags & B_VMIO) == 0) {
425 				bqrelse(tbp);
426 				break;
427 			}
428 
429 			/*
430 			 * The buffer must be completely invalid in order to
431 			 * take part in the cluster.  If it is partially valid
432 			 * then we stop.
433 			 */
434 			for (j = 0;j < tbp->b_npages; j++) {
435 				if (tbp->b_pages[j]->valid)
436 					break;
437 			}
438 			if (j != tbp->b_npages) {
439 				bqrelse(tbp);
440 				break;
441 			}
442 
443 			/*
444 			 * Set a read-ahead mark as appropriate
445 			 */
446 			if ((fbp && (i == 1)) || (i == (run - 1)))
447 				tbp->b_flags |= B_RAM;
448 
449 			/*
450 			 * Set the buffer up for an async read (XXX should
451 			 * we do this only if we do not wind up brelse()ing?).
452 			 * Set the block number if it isn't set, otherwise
453 			 * if it is make sure it matches the block number we
454 			 * expect.
455 			 */
456 			tbp->b_flags |= B_ASYNC;
457 			tbp->b_iocmd = BIO_READ;
458 			if (tbp->b_blkno == tbp->b_lblkno) {
459 				tbp->b_blkno = bn;
460 			} else if (tbp->b_blkno != bn) {
461 				brelse(tbp);
462 				break;
463 			}
464 		}
465 		/*
466 		 * XXX fbp from caller may not be B_ASYNC, but we are going
467 		 * to biodone() it in cluster_callback() anyway
468 		 */
469 		BUF_KERNPROC(tbp);
470 		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
471 			tbp, b_cluster.cluster_entry);
472 		vm_page_lock_queues();
473 		for (j = 0; j < tbp->b_npages; j += 1) {
474 			vm_page_t m;
475 			m = tbp->b_pages[j];
476 			vm_page_io_start(m);
477 			vm_object_pip_add(m->object, 1);
478 			if ((bp->b_npages == 0) ||
479 				(bp->b_pages[bp->b_npages-1] != m)) {
480 				bp->b_pages[bp->b_npages] = m;
481 				bp->b_npages++;
482 			}
483 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
484 				tbp->b_pages[j] = bogus_page;
485 		}
486 		vm_page_unlock_queues();
487 		/*
488 		 * XXX shouldn't this be += size for both, like in
489 		 * cluster_wbuild()?
490 		 *
491 		 * Don't inherit tbp->b_bufsize as it may be larger due to
492 		 * a non-page-aligned size.  Instead just aggregate using
493 		 * 'size'.
494 		 */
495 		if (tbp->b_bcount != size)
496 			printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
497 		if (tbp->b_bufsize != size)
498 			printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
499 		bp->b_bcount += size;
500 		bp->b_bufsize += size;
501 	}
502 
503 	/*
504 	 * Fully valid pages in the cluster are already good and do not need
505 	 * to be re-read from disk.  Replace the page with bogus_page
506 	 */
507 	for (j = 0; j < bp->b_npages; j++) {
508 		if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) ==
509 		    VM_PAGE_BITS_ALL) {
510 			bp->b_pages[j] = bogus_page;
511 		}
512 	}
513 	if (bp->b_bufsize > bp->b_kvasize)
514 		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
515 		    bp->b_bufsize, bp->b_kvasize);
516 	bp->b_kvasize = bp->b_bufsize;
517 
518 	pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
519 		(vm_page_t *)bp->b_pages, bp->b_npages);
520 	return (bp);
521 }
522 
523 /*
524  * Cleanup after a clustered read or write.
525  * This is complicated by the fact that any of the buffers might have
526  * extra memory (if there were no empty buffer headers at allocbuf time)
527  * that we will need to shift around.
528  */
529 void
530 cluster_callback(bp)
531 	struct buf *bp;
532 {
533 	struct buf *nbp, *tbp;
534 	int error = 0;
535 
536 	GIANT_REQUIRED;
537 
538 	/*
539 	 * Must propogate errors to all the components.
540 	 */
541 	if (bp->b_ioflags & BIO_ERROR)
542 		error = bp->b_error;
543 
544 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
545 	/*
546 	 * Move memory from the large cluster buffer into the component
547 	 * buffers and mark IO as done on these.
548 	 */
549 	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
550 		tbp; tbp = nbp) {
551 		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
552 		if (error) {
553 			tbp->b_ioflags |= BIO_ERROR;
554 			tbp->b_error = error;
555 		} else {
556 			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
557 			tbp->b_flags &= ~B_INVAL;
558 			tbp->b_ioflags &= ~BIO_ERROR;
559 			/*
560 			 * XXX the bdwrite()/bqrelse() issued during
561 			 * cluster building clears B_RELBUF (see bqrelse()
562 			 * comment).  If direct I/O was specified, we have
563 			 * to restore it here to allow the buffer and VM
564 			 * to be freed.
565 			 */
566 			if (tbp->b_flags & B_DIRECT)
567 				tbp->b_flags |= B_RELBUF;
568 		}
569 		bufdone(tbp);
570 	}
571 	relpbuf(bp, &cluster_pbuf_freecnt);
572 }
573 
574 /*
575  *	cluster_wbuild_wb:
576  *
577  *	Implement modified write build for cluster.
578  *
579  *		write_behind = 0	write behind disabled
580  *		write_behind = 1	write behind normal (default)
581  *		write_behind = 2	write behind backed-off
582  */
583 
584 static __inline int
585 cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len)
586 {
587 	int r = 0;
588 
589 	switch(write_behind) {
590 	case 2:
591 		if (start_lbn < len)
592 			break;
593 		start_lbn -= len;
594 		/* FALLTHROUGH */
595 	case 1:
596 		r = cluster_wbuild(vp, size, start_lbn, len);
597 		/* FALLTHROUGH */
598 	default:
599 		/* FALLTHROUGH */
600 		break;
601 	}
602 	return(r);
603 }
604 
605 /*
606  * Do clustered write for FFS.
607  *
608  * Three cases:
609  *	1. Write is not sequential (write asynchronously)
610  *	Write is sequential:
611  *	2.	beginning of cluster - begin cluster
612  *	3.	middle of a cluster - add to cluster
613  *	4.	end of a cluster - asynchronously write cluster
614  */
615 void
616 cluster_write(bp, filesize, seqcount)
617 	struct buf *bp;
618 	u_quad_t filesize;
619 	int seqcount;
620 {
621 	struct vnode *vp;
622 	daddr_t lbn;
623 	int maxclen, cursize;
624 	int lblocksize;
625 	int async;
626 
627 	vp = bp->b_vp;
628 	if (vp->v_type == VREG) {
629 		async = vp->v_mount->mnt_flag & MNT_ASYNC;
630 		lblocksize = vp->v_mount->mnt_stat.f_iosize;
631 	} else {
632 		async = 0;
633 		lblocksize = bp->b_bufsize;
634 	}
635 	lbn = bp->b_lblkno;
636 	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
637 
638 	/* Initialize vnode to beginning of file. */
639 	if (lbn == 0)
640 		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
641 
642 	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
643 	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
644 		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
645 		if (vp->v_clen != 0) {
646 			/*
647 			 * Next block is not sequential.
648 			 *
649 			 * If we are not writing at end of file, the process
650 			 * seeked to another point in the file since its last
651 			 * write, or we have reached our maximum cluster size,
652 			 * then push the previous cluster. Otherwise try
653 			 * reallocating to make it sequential.
654 			 *
655 			 * Change to algorithm: only push previous cluster if
656 			 * it was sequential from the point of view of the
657 			 * seqcount heuristic, otherwise leave the buffer
658 			 * intact so we can potentially optimize the I/O
659 			 * later on in the buf_daemon or update daemon
660 			 * flush.
661 			 */
662 			cursize = vp->v_lastw - vp->v_cstart + 1;
663 			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
664 			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
665 				if (!async && seqcount > 0) {
666 					cluster_wbuild_wb(vp, lblocksize,
667 						vp->v_cstart, cursize);
668 				}
669 			} else {
670 				struct buf **bpp, **endbp;
671 				struct cluster_save *buflist;
672 
673 				buflist = cluster_collectbufs(vp, bp);
674 				endbp = &buflist->bs_children
675 				    [buflist->bs_nchildren - 1];
676 				if (VOP_REALLOCBLKS(vp, buflist)) {
677 					/*
678 					 * Failed, push the previous cluster
679 					 * if *really* writing sequentially
680 					 * in the logical file (seqcount > 1),
681 					 * otherwise delay it in the hopes that
682 					 * the low level disk driver can
683 					 * optimize the write ordering.
684 					 */
685 					for (bpp = buflist->bs_children;
686 					     bpp < endbp; bpp++)
687 						brelse(*bpp);
688 					free(buflist, M_SEGMENT);
689 					if (seqcount > 1) {
690 						cluster_wbuild_wb(vp,
691 						    lblocksize, vp->v_cstart,
692 						    cursize);
693 					}
694 				} else {
695 					/*
696 					 * Succeeded, keep building cluster.
697 					 */
698 					for (bpp = buflist->bs_children;
699 					     bpp <= endbp; bpp++)
700 						bdwrite(*bpp);
701 					free(buflist, M_SEGMENT);
702 					vp->v_lastw = lbn;
703 					vp->v_lasta = bp->b_blkno;
704 					return;
705 				}
706 			}
707 		}
708 		/*
709 		 * Consider beginning a cluster. If at end of file, make
710 		 * cluster as large as possible, otherwise find size of
711 		 * existing cluster.
712 		 */
713 		if ((vp->v_type == VREG) &&
714 			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
715 		    (bp->b_blkno == bp->b_lblkno) &&
716 		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
717 		     bp->b_blkno == -1)) {
718 			bawrite(bp);
719 			vp->v_clen = 0;
720 			vp->v_lasta = bp->b_blkno;
721 			vp->v_cstart = lbn + 1;
722 			vp->v_lastw = lbn;
723 			return;
724 		}
725 		vp->v_clen = maxclen;
726 		if (!async && maxclen == 0) {	/* I/O not contiguous */
727 			vp->v_cstart = lbn + 1;
728 			bawrite(bp);
729 		} else {	/* Wait for rest of cluster */
730 			vp->v_cstart = lbn;
731 			bdwrite(bp);
732 		}
733 	} else if (lbn == vp->v_cstart + vp->v_clen) {
734 		/*
735 		 * At end of cluster, write it out if seqcount tells us we
736 		 * are operating sequentially, otherwise let the buf or
737 		 * update daemon handle it.
738 		 */
739 		bdwrite(bp);
740 		if (seqcount > 1)
741 			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1);
742 		vp->v_clen = 0;
743 		vp->v_cstart = lbn + 1;
744 	} else if (vm_page_count_severe()) {
745 		/*
746 		 * We are low on memory, get it going NOW
747 		 */
748 		bawrite(bp);
749 	} else {
750 		/*
751 		 * In the middle of a cluster, so just delay the I/O for now.
752 		 */
753 		bdwrite(bp);
754 	}
755 	vp->v_lastw = lbn;
756 	vp->v_lasta = bp->b_blkno;
757 }
758 
759 
760 /*
761  * This is an awful lot like cluster_rbuild...wish they could be combined.
762  * The last lbn argument is the current block on which I/O is being
763  * performed.  Check to see that it doesn't fall in the middle of
764  * the current block (if last_bp == NULL).
765  */
766 int
767 cluster_wbuild(vp, size, start_lbn, len)
768 	struct vnode *vp;
769 	long size;
770 	daddr_t start_lbn;
771 	int len;
772 {
773 	struct buf *bp, *tbp;
774 	int i, j, s;
775 	int totalwritten = 0;
776 	int dbsize = btodb(size);
777 
778 	GIANT_REQUIRED;
779 
780 	while (len > 0) {
781 		s = splbio();
782 		/*
783 		 * If the buffer is not delayed-write (i.e. dirty), or it
784 		 * is delayed-write but either locked or inval, it cannot
785 		 * partake in the clustered write.
786 		 */
787 		VI_LOCK(vp);
788 		if ((tbp = gbincore(vp, start_lbn)) == NULL) {
789 			VI_UNLOCK(vp);
790 			++start_lbn;
791 			--len;
792 			splx(s);
793 			continue;
794 		}
795 		if (BUF_LOCK(tbp,
796 		    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, VI_MTX(vp))) {
797 			++start_lbn;
798 			--len;
799 			splx(s);
800 			continue;
801 		}
802 		if ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) !=
803 		    B_DELWRI) {
804 			BUF_UNLOCK(tbp);
805 			++start_lbn;
806 			--len;
807 			splx(s);
808 			continue;
809 		}
810 		bremfree(tbp);
811 		tbp->b_flags &= ~B_DONE;
812 		splx(s);
813 
814 		/*
815 		 * Extra memory in the buffer, punt on this buffer.
816 		 * XXX we could handle this in most cases, but we would
817 		 * have to push the extra memory down to after our max
818 		 * possible cluster size and then potentially pull it back
819 		 * up if the cluster was terminated prematurely--too much
820 		 * hassle.
821 		 */
822 		if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) !=
823 		     (B_CLUSTEROK | B_VMIO)) ||
824 		  (tbp->b_bcount != tbp->b_bufsize) ||
825 		  (tbp->b_bcount != size) ||
826 		  (len == 1) ||
827 		  ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
828 			totalwritten += tbp->b_bufsize;
829 			bawrite(tbp);
830 			++start_lbn;
831 			--len;
832 			continue;
833 		}
834 
835 		/*
836 		 * We got a pbuf to make the cluster in.
837 		 * so initialise it.
838 		 */
839 		TAILQ_INIT(&bp->b_cluster.cluster_head);
840 		bp->b_bcount = 0;
841 		bp->b_magic = tbp->b_magic;
842 		bp->b_op = tbp->b_op;
843 		bp->b_bufsize = 0;
844 		bp->b_npages = 0;
845 		if (tbp->b_wcred != NOCRED)
846 			bp->b_wcred = crhold(tbp->b_wcred);
847 
848 		bp->b_blkno = tbp->b_blkno;
849 		bp->b_lblkno = tbp->b_lblkno;
850 		bp->b_offset = tbp->b_offset;
851 
852 		/*
853 		 * We are synthesizing a buffer out of vm_page_t's, but
854 		 * if the block size is not page aligned then the starting
855 		 * address may not be either.  Inherit the b_data offset
856 		 * from the original buffer.
857 		 */
858 		bp->b_data = (char *)((vm_offset_t)bp->b_data |
859 		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
860 		bp->b_flags |= B_CLUSTER |
861 				(tbp->b_flags & (B_VMIO | B_NEEDCOMMIT | B_NOWDRAIN));
862 		bp->b_iodone = cluster_callback;
863 		pbgetvp(vp, bp);
864 		/*
865 		 * From this location in the file, scan forward to see
866 		 * if there are buffers with adjacent data that need to
867 		 * be written as well.
868 		 */
869 		for (i = 0; i < len; ++i, ++start_lbn) {
870 			if (i != 0) { /* If not the first buffer */
871 				s = splbio();
872 				/*
873 				 * If the adjacent data is not even in core it
874 				 * can't need to be written.
875 				 */
876 				VI_LOCK(vp);
877 				if ((tbp = gbincore(vp, start_lbn)) == NULL) {
878 					VI_UNLOCK(vp);
879 					splx(s);
880 					break;
881 				}
882 
883 				/*
884 				 * If it IS in core, but has different
885 				 * characteristics, or is locked (which
886 				 * means it could be undergoing a background
887 				 * I/O or be in a weird state), then don't
888 				 * cluster with it.
889 				 */
890 				if (BUF_LOCK(tbp,
891 				    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
892 				    VI_MTX(vp))) {
893 					splx(s);
894 					break;
895 				}
896 
897 				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
898 				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
899 				    != (B_DELWRI | B_CLUSTEROK |
900 				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
901 				    (tbp->b_flags & B_LOCKED) ||
902 				    tbp->b_wcred != bp->b_wcred) {
903 					BUF_UNLOCK(bp);
904 					splx(s);
905 					break;
906 				}
907 
908 				/*
909 				 * Check that the combined cluster
910 				 * would make sense with regard to pages
911 				 * and would not be too large
912 				 */
913 				if ((tbp->b_bcount != size) ||
914 				  ((bp->b_blkno + (dbsize * i)) !=
915 				    tbp->b_blkno) ||
916 				  ((tbp->b_npages + bp->b_npages) >
917 				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
918 					BUF_UNLOCK(tbp);
919 					splx(s);
920 					break;
921 				}
922 				/*
923 				 * Ok, it's passed all the tests,
924 				 * so remove it from the free list
925 				 * and mark it busy. We will use it.
926 				 */
927 				bremfree(tbp);
928 				tbp->b_flags &= ~B_DONE;
929 				splx(s);
930 			} /* end of code for non-first buffers only */
931 			/* check for latent dependencies to be handled */
932 			if ((LIST_FIRST(&tbp->b_dep)) != NULL)
933 				buf_start(tbp);
934 			/*
935 			 * If the IO is via the VM then we do some
936 			 * special VM hackery (yuck).  Since the buffer's
937 			 * block size may not be page-aligned it is possible
938 			 * for a page to be shared between two buffers.  We
939 			 * have to get rid of the duplication when building
940 			 * the cluster.
941 			 */
942 			if (tbp->b_flags & B_VMIO) {
943 				vm_page_t m;
944 
945 				if (i != 0) { /* if not first buffer */
946 					for (j = 0; j < tbp->b_npages; j += 1) {
947 						m = tbp->b_pages[j];
948 						if (m->flags & PG_BUSY) {
949 							bqrelse(tbp);
950 							goto finishcluster;
951 						}
952 					}
953 				}
954 				vm_page_lock_queues();
955 				for (j = 0; j < tbp->b_npages; j += 1) {
956 					m = tbp->b_pages[j];
957 					vm_page_io_start(m);
958 					vm_object_pip_add(m->object, 1);
959 					if ((bp->b_npages == 0) ||
960 					  (bp->b_pages[bp->b_npages - 1] != m)) {
961 						bp->b_pages[bp->b_npages] = m;
962 						bp->b_npages++;
963 					}
964 				}
965 				vm_page_unlock_queues();
966 			}
967 			bp->b_bcount += size;
968 			bp->b_bufsize += size;
969 
970 			s = splbio();
971 			bundirty(tbp);
972 			tbp->b_flags &= ~B_DONE;
973 			tbp->b_ioflags &= ~BIO_ERROR;
974 			tbp->b_flags |= B_ASYNC;
975 			tbp->b_iocmd = BIO_WRITE;
976 			reassignbuf(tbp, tbp->b_vp);	/* put on clean list */
977 			VI_LOCK(tbp->b_vp);
978 			++tbp->b_vp->v_numoutput;
979 			VI_UNLOCK(tbp->b_vp);
980 			splx(s);
981 			BUF_KERNPROC(tbp);
982 			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
983 				tbp, b_cluster.cluster_entry);
984 		}
985 	finishcluster:
986 		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
987 			(vm_page_t *) bp->b_pages, bp->b_npages);
988 		if (bp->b_bufsize > bp->b_kvasize)
989 			panic(
990 			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
991 			    bp->b_bufsize, bp->b_kvasize);
992 		bp->b_kvasize = bp->b_bufsize;
993 		totalwritten += bp->b_bufsize;
994 		bp->b_dirtyoff = 0;
995 		bp->b_dirtyend = bp->b_bufsize;
996 		bawrite(bp);
997 
998 		len -= i;
999 	}
1000 	return totalwritten;
1001 }
1002 
1003 /*
1004  * Collect together all the buffers in a cluster.
1005  * Plus add one additional buffer.
1006  */
1007 static struct cluster_save *
1008 cluster_collectbufs(vp, last_bp)
1009 	struct vnode *vp;
1010 	struct buf *last_bp;
1011 {
1012 	struct cluster_save *buflist;
1013 	struct buf *bp;
1014 	daddr_t lbn;
1015 	int i, len;
1016 
1017 	len = vp->v_lastw - vp->v_cstart + 1;
1018 	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
1019 	    M_SEGMENT, M_WAITOK);
1020 	buflist->bs_nchildren = 0;
1021 	buflist->bs_children = (struct buf **) (buflist + 1);
1022 	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
1023 		(void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp);
1024 		buflist->bs_children[i] = bp;
1025 		if (bp->b_blkno == bp->b_lblkno)
1026 			VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
1027 				NULL, NULL);
1028 	}
1029 	buflist->bs_children[i] = bp = last_bp;
1030 	if (bp->b_blkno == bp->b_lblkno)
1031 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
1032 			NULL, NULL);
1033 	buflist->bs_nchildren = i + 1;
1034 	return (buflist);
1035 }
1036