1 /*- 2 * Copyright (c) 1993 3 * The Regents of the University of California. All rights reserved. 4 * Modifications/enhancements: 5 * Copyright (c) 1995 John S. Dyson. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)vfs_cluster.c 8.7 (Berkeley) 2/13/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_debug_cluster.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/proc.h> 43 #include <sys/bio.h> 44 #include <sys/buf.h> 45 #include <sys/vnode.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/resourcevar.h> 49 #include <sys/vmmeter.h> 50 #include <vm/vm.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <sys/sysctl.h> 54 55 #if defined(CLUSTERDEBUG) 56 static int rcluster= 0; 57 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, 58 "Debug VFS clustering code"); 59 #endif 60 61 static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer"); 62 63 static struct cluster_save * 64 cluster_collectbufs(struct vnode *vp, struct buf *last_bp); 65 static struct buf * 66 cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn, 67 daddr_t blkno, long size, int run, struct buf *fbp); 68 69 static int write_behind = 1; 70 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, 71 "Cluster write-behind; 0: disable, 1: enable, 2: backed off"); 72 73 static int read_max = 8; 74 SYSCTL_INT(_vfs, OID_AUTO, read_max, CTLFLAG_RW, &read_max, 0, 75 "Cluster read-ahead max block count"); 76 77 /* Page expended to mark partially backed buffers */ 78 extern vm_page_t bogus_page; 79 80 /* 81 * Number of physical bufs (pbufs) this subsystem is allowed. 82 * Manipulated by vm_pager.c 83 */ 84 extern int cluster_pbuf_freecnt; 85 86 /* 87 * Read data to a buf, including read-ahead if we find this to be beneficial. 88 * cluster_read replaces bread. 89 */ 90 int 91 cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp) 92 struct vnode *vp; 93 u_quad_t filesize; 94 daddr_t lblkno; 95 long size; 96 struct ucred *cred; 97 long totread; 98 int seqcount; 99 struct buf **bpp; 100 { 101 struct buf *bp, *rbp, *reqbp; 102 daddr_t blkno, origblkno; 103 int maxra, racluster; 104 int error, ncontig; 105 int i; 106 107 error = 0; 108 109 /* 110 * Try to limit the amount of read-ahead by a few 111 * ad-hoc parameters. This needs work!!! 112 */ 113 racluster = vp->v_mount->mnt_iosize_max / size; 114 maxra = seqcount; 115 maxra = min(read_max, maxra); 116 maxra = min(nbuf/8, maxra); 117 if (((u_quad_t)(lblkno + maxra + 1) * size) > filesize) 118 maxra = (filesize / size) - lblkno; 119 120 /* 121 * get the requested block 122 */ 123 *bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0, 0); 124 origblkno = lblkno; 125 126 /* 127 * if it is in the cache, then check to see if the reads have been 128 * sequential. If they have, then try some read-ahead, otherwise 129 * back-off on prospective read-aheads. 130 */ 131 if (bp->b_flags & B_CACHE) { 132 if (!seqcount) { 133 return 0; 134 } else if ((bp->b_flags & B_RAM) == 0) { 135 return 0; 136 } else { 137 int s; 138 bp->b_flags &= ~B_RAM; 139 /* 140 * We do the spl here so that there is no window 141 * between the incore and the b_usecount increment 142 * below. We opt to keep the spl out of the loop 143 * for efficiency. 144 */ 145 s = splbio(); 146 VI_LOCK(vp); 147 for (i = 1; i < maxra; i++) { 148 /* 149 * Stop if the buffer does not exist or it 150 * is invalid (about to go away?) 151 */ 152 rbp = gbincore(&vp->v_bufobj, lblkno+i); 153 if (rbp == NULL || (rbp->b_flags & B_INVAL)) 154 break; 155 156 /* 157 * Set another read-ahead mark so we know 158 * to check again. 159 */ 160 if (((i % racluster) == (racluster - 1)) || 161 (i == (maxra - 1))) 162 rbp->b_flags |= B_RAM; 163 } 164 VI_UNLOCK(vp); 165 splx(s); 166 if (i >= maxra) { 167 return 0; 168 } 169 lblkno += i; 170 } 171 reqbp = bp = NULL; 172 /* 173 * If it isn't in the cache, then get a chunk from 174 * disk if sequential, otherwise just get the block. 175 */ 176 } else { 177 off_t firstread = bp->b_offset; 178 int nblks; 179 180 KASSERT(bp->b_offset != NOOFFSET, 181 ("cluster_read: no buffer offset")); 182 183 ncontig = 0; 184 185 /* 186 * Compute the total number of blocks that we should read 187 * synchronously. 188 */ 189 if (firstread + totread > filesize) 190 totread = filesize - firstread; 191 nblks = howmany(totread, size); 192 if (nblks > racluster) 193 nblks = racluster; 194 195 /* 196 * Now compute the number of contiguous blocks. 197 */ 198 if (nblks > 1) { 199 error = VOP_BMAP(vp, lblkno, NULL, 200 &blkno, &ncontig, NULL); 201 /* 202 * If this failed to map just do the original block. 203 */ 204 if (error || blkno == -1) 205 ncontig = 0; 206 } 207 208 /* 209 * If we have contiguous data available do a cluster 210 * otherwise just read the requested block. 211 */ 212 if (ncontig) { 213 /* Account for our first block. */ 214 ncontig = min(ncontig + 1, nblks); 215 if (ncontig < nblks) 216 nblks = ncontig; 217 bp = cluster_rbuild(vp, filesize, lblkno, 218 blkno, size, nblks, bp); 219 lblkno += (bp->b_bufsize / size); 220 } else { 221 bp->b_flags |= B_RAM; 222 bp->b_iocmd = BIO_READ; 223 lblkno += 1; 224 } 225 } 226 227 /* 228 * handle the synchronous read so that it is available ASAP. 229 */ 230 if (bp) { 231 if ((bp->b_flags & B_CLUSTER) == 0) { 232 vfs_busy_pages(bp, 0); 233 } 234 bp->b_flags &= ~B_INVAL; 235 bp->b_ioflags &= ~BIO_ERROR; 236 if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL) 237 BUF_KERNPROC(bp); 238 bp->b_iooffset = dbtob(bp->b_blkno); 239 bstrategy(bp); 240 curproc->p_stats->p_ru.ru_inblock++; 241 } 242 243 /* 244 * If we have been doing sequential I/O, then do some read-ahead. 245 */ 246 while (lblkno < (origblkno + maxra)) { 247 error = VOP_BMAP(vp, lblkno, NULL, &blkno, &ncontig, NULL); 248 if (error) 249 break; 250 251 if (blkno == -1) 252 break; 253 254 /* 255 * We could throttle ncontig here by maxra but we might as 256 * well read the data if it is contiguous. We're throttled 257 * by racluster anyway. 258 */ 259 if (ncontig) { 260 ncontig = min(ncontig + 1, racluster); 261 rbp = cluster_rbuild(vp, filesize, lblkno, blkno, 262 size, ncontig, NULL); 263 lblkno += (rbp->b_bufsize / size); 264 if (rbp->b_flags & B_DELWRI) { 265 bqrelse(rbp); 266 continue; 267 } 268 } else { 269 rbp = getblk(vp, lblkno, size, 0, 0, 0); 270 lblkno += 1; 271 if (rbp->b_flags & B_DELWRI) { 272 bqrelse(rbp); 273 continue; 274 } 275 rbp->b_flags |= B_ASYNC | B_RAM; 276 rbp->b_iocmd = BIO_READ; 277 rbp->b_blkno = blkno; 278 } 279 if (rbp->b_flags & B_CACHE) { 280 rbp->b_flags &= ~B_ASYNC; 281 bqrelse(rbp); 282 continue; 283 } 284 if ((rbp->b_flags & B_CLUSTER) == 0) { 285 vfs_busy_pages(rbp, 0); 286 } 287 rbp->b_flags &= ~B_INVAL; 288 rbp->b_ioflags &= ~BIO_ERROR; 289 if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL) 290 BUF_KERNPROC(rbp); 291 rbp->b_iooffset = dbtob(rbp->b_blkno); 292 bstrategy(rbp); 293 curproc->p_stats->p_ru.ru_inblock++; 294 } 295 296 if (reqbp) 297 return (bufwait(reqbp)); 298 else 299 return (error); 300 } 301 302 /* 303 * If blocks are contiguous on disk, use this to provide clustered 304 * read ahead. We will read as many blocks as possible sequentially 305 * and then parcel them up into logical blocks in the buffer hash table. 306 */ 307 static struct buf * 308 cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp) 309 struct vnode *vp; 310 u_quad_t filesize; 311 daddr_t lbn; 312 daddr_t blkno; 313 long size; 314 int run; 315 struct buf *fbp; 316 { 317 struct buf *bp, *tbp; 318 daddr_t bn; 319 int i, inc, j; 320 321 KASSERT(size == vp->v_mount->mnt_stat.f_iosize, 322 ("cluster_rbuild: size %ld != filesize %jd\n", 323 size, (intmax_t)vp->v_mount->mnt_stat.f_iosize)); 324 325 /* 326 * avoid a division 327 */ 328 while ((u_quad_t) size * (lbn + run) > filesize) { 329 --run; 330 } 331 332 if (fbp) { 333 tbp = fbp; 334 tbp->b_iocmd = BIO_READ; 335 } else { 336 tbp = getblk(vp, lbn, size, 0, 0, 0); 337 if (tbp->b_flags & B_CACHE) 338 return tbp; 339 tbp->b_flags |= B_ASYNC | B_RAM; 340 tbp->b_iocmd = BIO_READ; 341 } 342 343 tbp->b_blkno = blkno; 344 if( (tbp->b_flags & B_MALLOC) || 345 ((tbp->b_flags & B_VMIO) == 0) || (run <= 1) ) 346 return tbp; 347 348 bp = trypbuf(&cluster_pbuf_freecnt); 349 if (bp == 0) 350 return tbp; 351 352 /* 353 * We are synthesizing a buffer out of vm_page_t's, but 354 * if the block size is not page aligned then the starting 355 * address may not be either. Inherit the b_data offset 356 * from the original buffer. 357 */ 358 bp->b_data = (char *)((vm_offset_t)bp->b_data | 359 ((vm_offset_t)tbp->b_data & PAGE_MASK)); 360 bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO; 361 bp->b_iocmd = BIO_READ; 362 bp->b_iodone = cluster_callback; 363 bp->b_blkno = blkno; 364 bp->b_lblkno = lbn; 365 bp->b_offset = tbp->b_offset; 366 KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset")); 367 pbgetvp(vp, bp); 368 369 TAILQ_INIT(&bp->b_cluster.cluster_head); 370 371 bp->b_bcount = 0; 372 bp->b_bufsize = 0; 373 bp->b_npages = 0; 374 375 inc = btodb(size); 376 for (bn = blkno, i = 0; i < run; ++i, bn += inc) { 377 if (i != 0) { 378 if ((bp->b_npages * PAGE_SIZE) + 379 round_page(size) > vp->v_mount->mnt_iosize_max) { 380 break; 381 } 382 383 tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT); 384 385 /* Don't wait around for locked bufs. */ 386 if (tbp == NULL) 387 break; 388 389 /* 390 * Stop scanning if the buffer is fully valid 391 * (marked B_CACHE), or locked (may be doing a 392 * background write), or if the buffer is not 393 * VMIO backed. The clustering code can only deal 394 * with VMIO-backed buffers. 395 */ 396 VI_LOCK(vp); 397 if ((tbp->b_vflags & BV_BKGRDINPROG) || 398 (tbp->b_flags & B_CACHE) || 399 (tbp->b_flags & B_VMIO) == 0) { 400 VI_UNLOCK(vp); 401 bqrelse(tbp); 402 break; 403 } 404 VI_UNLOCK(vp); 405 406 /* 407 * The buffer must be completely invalid in order to 408 * take part in the cluster. If it is partially valid 409 * then we stop. 410 */ 411 VM_OBJECT_LOCK(tbp->b_bufobj->bo_object); 412 for (j = 0;j < tbp->b_npages; j++) { 413 VM_OBJECT_LOCK_ASSERT(tbp->b_pages[j]->object, 414 MA_OWNED); 415 if (tbp->b_pages[j]->valid) 416 break; 417 } 418 VM_OBJECT_UNLOCK(tbp->b_bufobj->bo_object); 419 if (j != tbp->b_npages) { 420 bqrelse(tbp); 421 break; 422 } 423 424 /* 425 * Set a read-ahead mark as appropriate 426 */ 427 if ((fbp && (i == 1)) || (i == (run - 1))) 428 tbp->b_flags |= B_RAM; 429 430 /* 431 * Set the buffer up for an async read (XXX should 432 * we do this only if we do not wind up brelse()ing?). 433 * Set the block number if it isn't set, otherwise 434 * if it is make sure it matches the block number we 435 * expect. 436 */ 437 tbp->b_flags |= B_ASYNC; 438 tbp->b_iocmd = BIO_READ; 439 if (tbp->b_blkno == tbp->b_lblkno) { 440 tbp->b_blkno = bn; 441 } else if (tbp->b_blkno != bn) { 442 brelse(tbp); 443 break; 444 } 445 } 446 /* 447 * XXX fbp from caller may not be B_ASYNC, but we are going 448 * to biodone() it in cluster_callback() anyway 449 */ 450 BUF_KERNPROC(tbp); 451 TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head, 452 tbp, b_cluster.cluster_entry); 453 VM_OBJECT_LOCK(tbp->b_bufobj->bo_object); 454 for (j = 0; j < tbp->b_npages; j += 1) { 455 vm_page_t m; 456 m = tbp->b_pages[j]; 457 vm_page_io_start(m); 458 vm_object_pip_add(m->object, 1); 459 if ((bp->b_npages == 0) || 460 (bp->b_pages[bp->b_npages-1] != m)) { 461 bp->b_pages[bp->b_npages] = m; 462 bp->b_npages++; 463 } 464 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) 465 tbp->b_pages[j] = bogus_page; 466 } 467 VM_OBJECT_UNLOCK(tbp->b_bufobj->bo_object); 468 /* 469 * XXX shouldn't this be += size for both, like in 470 * cluster_wbuild()? 471 * 472 * Don't inherit tbp->b_bufsize as it may be larger due to 473 * a non-page-aligned size. Instead just aggregate using 474 * 'size'. 475 */ 476 if (tbp->b_bcount != size) 477 printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size); 478 if (tbp->b_bufsize != size) 479 printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size); 480 bp->b_bcount += size; 481 bp->b_bufsize += size; 482 } 483 484 /* 485 * Fully valid pages in the cluster are already good and do not need 486 * to be re-read from disk. Replace the page with bogus_page 487 */ 488 VM_OBJECT_LOCK(bp->b_bufobj->bo_object); 489 for (j = 0; j < bp->b_npages; j++) { 490 VM_OBJECT_LOCK_ASSERT(bp->b_pages[j]->object, MA_OWNED); 491 if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) == 492 VM_PAGE_BITS_ALL) { 493 bp->b_pages[j] = bogus_page; 494 } 495 } 496 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object); 497 if (bp->b_bufsize > bp->b_kvasize) 498 panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n", 499 bp->b_bufsize, bp->b_kvasize); 500 bp->b_kvasize = bp->b_bufsize; 501 502 pmap_qenter(trunc_page((vm_offset_t) bp->b_data), 503 (vm_page_t *)bp->b_pages, bp->b_npages); 504 return (bp); 505 } 506 507 /* 508 * Cleanup after a clustered read or write. 509 * This is complicated by the fact that any of the buffers might have 510 * extra memory (if there were no empty buffer headers at allocbuf time) 511 * that we will need to shift around. 512 */ 513 void 514 cluster_callback(bp) 515 struct buf *bp; 516 { 517 struct buf *nbp, *tbp; 518 int error = 0; 519 520 /* 521 * Must propogate errors to all the components. 522 */ 523 if (bp->b_ioflags & BIO_ERROR) 524 error = bp->b_error; 525 526 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 527 /* 528 * Move memory from the large cluster buffer into the component 529 * buffers and mark IO as done on these. 530 */ 531 for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head); 532 tbp; tbp = nbp) { 533 nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry); 534 if (error) { 535 tbp->b_ioflags |= BIO_ERROR; 536 tbp->b_error = error; 537 } else { 538 tbp->b_dirtyoff = tbp->b_dirtyend = 0; 539 tbp->b_flags &= ~B_INVAL; 540 tbp->b_ioflags &= ~BIO_ERROR; 541 /* 542 * XXX the bdwrite()/bqrelse() issued during 543 * cluster building clears B_RELBUF (see bqrelse() 544 * comment). If direct I/O was specified, we have 545 * to restore it here to allow the buffer and VM 546 * to be freed. 547 */ 548 if (tbp->b_flags & B_DIRECT) 549 tbp->b_flags |= B_RELBUF; 550 } 551 bufdone(tbp); 552 } 553 pbrelvp(bp); 554 relpbuf(bp, &cluster_pbuf_freecnt); 555 } 556 557 /* 558 * cluster_wbuild_wb: 559 * 560 * Implement modified write build for cluster. 561 * 562 * write_behind = 0 write behind disabled 563 * write_behind = 1 write behind normal (default) 564 * write_behind = 2 write behind backed-off 565 */ 566 567 static __inline int 568 cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len) 569 { 570 int r = 0; 571 572 switch(write_behind) { 573 case 2: 574 if (start_lbn < len) 575 break; 576 start_lbn -= len; 577 /* FALLTHROUGH */ 578 case 1: 579 r = cluster_wbuild(vp, size, start_lbn, len); 580 /* FALLTHROUGH */ 581 default: 582 /* FALLTHROUGH */ 583 break; 584 } 585 return(r); 586 } 587 588 /* 589 * Do clustered write for FFS. 590 * 591 * Three cases: 592 * 1. Write is not sequential (write asynchronously) 593 * Write is sequential: 594 * 2. beginning of cluster - begin cluster 595 * 3. middle of a cluster - add to cluster 596 * 4. end of a cluster - asynchronously write cluster 597 */ 598 void 599 cluster_write(struct vnode *vp, struct buf *bp, u_quad_t filesize, int seqcount) 600 { 601 daddr_t lbn; 602 int maxclen, cursize; 603 int lblocksize; 604 int async; 605 606 if (vp->v_type == VREG) { 607 async = vp->v_mount->mnt_flag & MNT_ASYNC; 608 lblocksize = vp->v_mount->mnt_stat.f_iosize; 609 } else { 610 async = 0; 611 lblocksize = bp->b_bufsize; 612 } 613 lbn = bp->b_lblkno; 614 KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset")); 615 616 /* Initialize vnode to beginning of file. */ 617 if (lbn == 0) 618 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0; 619 620 if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 || 621 (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) { 622 maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1; 623 if (vp->v_clen != 0) { 624 /* 625 * Next block is not sequential. 626 * 627 * If we are not writing at end of file, the process 628 * seeked to another point in the file since its last 629 * write, or we have reached our maximum cluster size, 630 * then push the previous cluster. Otherwise try 631 * reallocating to make it sequential. 632 * 633 * Change to algorithm: only push previous cluster if 634 * it was sequential from the point of view of the 635 * seqcount heuristic, otherwise leave the buffer 636 * intact so we can potentially optimize the I/O 637 * later on in the buf_daemon or update daemon 638 * flush. 639 */ 640 cursize = vp->v_lastw - vp->v_cstart + 1; 641 if (((u_quad_t) bp->b_offset + lblocksize) != filesize || 642 lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) { 643 if (!async && seqcount > 0) { 644 cluster_wbuild_wb(vp, lblocksize, 645 vp->v_cstart, cursize); 646 } 647 } else { 648 struct buf **bpp, **endbp; 649 struct cluster_save *buflist; 650 651 buflist = cluster_collectbufs(vp, bp); 652 endbp = &buflist->bs_children 653 [buflist->bs_nchildren - 1]; 654 if (VOP_REALLOCBLKS(vp, buflist)) { 655 /* 656 * Failed, push the previous cluster 657 * if *really* writing sequentially 658 * in the logical file (seqcount > 1), 659 * otherwise delay it in the hopes that 660 * the low level disk driver can 661 * optimize the write ordering. 662 */ 663 for (bpp = buflist->bs_children; 664 bpp < endbp; bpp++) 665 brelse(*bpp); 666 free(buflist, M_SEGMENT); 667 if (seqcount > 1) { 668 cluster_wbuild_wb(vp, 669 lblocksize, vp->v_cstart, 670 cursize); 671 } 672 } else { 673 /* 674 * Succeeded, keep building cluster. 675 */ 676 for (bpp = buflist->bs_children; 677 bpp <= endbp; bpp++) 678 bdwrite(*bpp); 679 free(buflist, M_SEGMENT); 680 vp->v_lastw = lbn; 681 vp->v_lasta = bp->b_blkno; 682 return; 683 } 684 } 685 } 686 /* 687 * Consider beginning a cluster. If at end of file, make 688 * cluster as large as possible, otherwise find size of 689 * existing cluster. 690 */ 691 if ((vp->v_type == VREG) && 692 ((u_quad_t) bp->b_offset + lblocksize) != filesize && 693 (bp->b_blkno == bp->b_lblkno) && 694 (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) || 695 bp->b_blkno == -1)) { 696 bawrite(bp); 697 vp->v_clen = 0; 698 vp->v_lasta = bp->b_blkno; 699 vp->v_cstart = lbn + 1; 700 vp->v_lastw = lbn; 701 return; 702 } 703 vp->v_clen = maxclen; 704 if (!async && maxclen == 0) { /* I/O not contiguous */ 705 vp->v_cstart = lbn + 1; 706 bawrite(bp); 707 } else { /* Wait for rest of cluster */ 708 vp->v_cstart = lbn; 709 bdwrite(bp); 710 } 711 } else if (lbn == vp->v_cstart + vp->v_clen) { 712 /* 713 * At end of cluster, write it out if seqcount tells us we 714 * are operating sequentially, otherwise let the buf or 715 * update daemon handle it. 716 */ 717 bdwrite(bp); 718 if (seqcount > 1) 719 cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1); 720 vp->v_clen = 0; 721 vp->v_cstart = lbn + 1; 722 } else if (vm_page_count_severe()) { 723 /* 724 * We are low on memory, get it going NOW 725 */ 726 bawrite(bp); 727 } else { 728 /* 729 * In the middle of a cluster, so just delay the I/O for now. 730 */ 731 bdwrite(bp); 732 } 733 vp->v_lastw = lbn; 734 vp->v_lasta = bp->b_blkno; 735 } 736 737 738 /* 739 * This is an awful lot like cluster_rbuild...wish they could be combined. 740 * The last lbn argument is the current block on which I/O is being 741 * performed. Check to see that it doesn't fall in the middle of 742 * the current block (if last_bp == NULL). 743 */ 744 int 745 cluster_wbuild(vp, size, start_lbn, len) 746 struct vnode *vp; 747 long size; 748 daddr_t start_lbn; 749 int len; 750 { 751 struct buf *bp, *tbp; 752 int i, j, s; 753 int totalwritten = 0; 754 int dbsize = btodb(size); 755 756 while (len > 0) { 757 s = splbio(); 758 /* 759 * If the buffer is not delayed-write (i.e. dirty), or it 760 * is delayed-write but either locked or inval, it cannot 761 * partake in the clustered write. 762 */ 763 VI_LOCK(vp); 764 if ((tbp = gbincore(&vp->v_bufobj, start_lbn)) == NULL || 765 (tbp->b_vflags & BV_BKGRDINPROG)) { 766 VI_UNLOCK(vp); 767 ++start_lbn; 768 --len; 769 splx(s); 770 continue; 771 } 772 if (BUF_LOCK(tbp, 773 LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, VI_MTX(vp))) { 774 ++start_lbn; 775 --len; 776 splx(s); 777 continue; 778 } 779 if ((tbp->b_flags & (B_INVAL | B_DELWRI)) != B_DELWRI) { 780 BUF_UNLOCK(tbp); 781 ++start_lbn; 782 --len; 783 splx(s); 784 continue; 785 } 786 bremfree(tbp); 787 tbp->b_flags &= ~B_DONE; 788 splx(s); 789 790 /* 791 * Extra memory in the buffer, punt on this buffer. 792 * XXX we could handle this in most cases, but we would 793 * have to push the extra memory down to after our max 794 * possible cluster size and then potentially pull it back 795 * up if the cluster was terminated prematurely--too much 796 * hassle. 797 */ 798 if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) != 799 (B_CLUSTEROK | B_VMIO)) || 800 (tbp->b_bcount != tbp->b_bufsize) || 801 (tbp->b_bcount != size) || 802 (len == 1) || 803 ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) { 804 totalwritten += tbp->b_bufsize; 805 bawrite(tbp); 806 ++start_lbn; 807 --len; 808 continue; 809 } 810 811 /* 812 * We got a pbuf to make the cluster in. 813 * so initialise it. 814 */ 815 TAILQ_INIT(&bp->b_cluster.cluster_head); 816 bp->b_bcount = 0; 817 bp->b_bufsize = 0; 818 bp->b_npages = 0; 819 if (tbp->b_wcred != NOCRED) 820 bp->b_wcred = crhold(tbp->b_wcred); 821 822 bp->b_blkno = tbp->b_blkno; 823 bp->b_lblkno = tbp->b_lblkno; 824 bp->b_offset = tbp->b_offset; 825 826 /* 827 * We are synthesizing a buffer out of vm_page_t's, but 828 * if the block size is not page aligned then the starting 829 * address may not be either. Inherit the b_data offset 830 * from the original buffer. 831 */ 832 bp->b_data = (char *)((vm_offset_t)bp->b_data | 833 ((vm_offset_t)tbp->b_data & PAGE_MASK)); 834 bp->b_flags |= B_CLUSTER | 835 (tbp->b_flags & (B_VMIO | B_NEEDCOMMIT)); 836 bp->b_iodone = cluster_callback; 837 pbgetvp(vp, bp); 838 /* 839 * From this location in the file, scan forward to see 840 * if there are buffers with adjacent data that need to 841 * be written as well. 842 */ 843 for (i = 0; i < len; ++i, ++start_lbn) { 844 if (i != 0) { /* If not the first buffer */ 845 s = splbio(); 846 /* 847 * If the adjacent data is not even in core it 848 * can't need to be written. 849 */ 850 VI_LOCK(vp); 851 if ((tbp = gbincore(&vp->v_bufobj, start_lbn)) == NULL || 852 (tbp->b_vflags & BV_BKGRDINPROG)) { 853 VI_UNLOCK(vp); 854 splx(s); 855 break; 856 } 857 858 /* 859 * If it IS in core, but has different 860 * characteristics, or is locked (which 861 * means it could be undergoing a background 862 * I/O or be in a weird state), then don't 863 * cluster with it. 864 */ 865 if (BUF_LOCK(tbp, 866 LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, 867 VI_MTX(vp))) { 868 splx(s); 869 break; 870 } 871 872 if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK | 873 B_INVAL | B_DELWRI | B_NEEDCOMMIT)) 874 != (B_DELWRI | B_CLUSTEROK | 875 (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) || 876 tbp->b_wcred != bp->b_wcred) { 877 BUF_UNLOCK(tbp); 878 splx(s); 879 break; 880 } 881 882 /* 883 * Check that the combined cluster 884 * would make sense with regard to pages 885 * and would not be too large 886 */ 887 if ((tbp->b_bcount != size) || 888 ((bp->b_blkno + (dbsize * i)) != 889 tbp->b_blkno) || 890 ((tbp->b_npages + bp->b_npages) > 891 (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) { 892 BUF_UNLOCK(tbp); 893 splx(s); 894 break; 895 } 896 /* 897 * Ok, it's passed all the tests, 898 * so remove it from the free list 899 * and mark it busy. We will use it. 900 */ 901 bremfree(tbp); 902 tbp->b_flags &= ~B_DONE; 903 splx(s); 904 } /* end of code for non-first buffers only */ 905 /* check for latent dependencies to be handled */ 906 if ((LIST_FIRST(&tbp->b_dep)) != NULL) { 907 tbp->b_iocmd = BIO_WRITE; 908 buf_start(tbp); 909 } 910 /* 911 * If the IO is via the VM then we do some 912 * special VM hackery (yuck). Since the buffer's 913 * block size may not be page-aligned it is possible 914 * for a page to be shared between two buffers. We 915 * have to get rid of the duplication when building 916 * the cluster. 917 */ 918 if (tbp->b_flags & B_VMIO) { 919 vm_page_t m; 920 921 VM_OBJECT_LOCK(tbp->b_bufobj->bo_object); 922 if (i != 0) { /* if not first buffer */ 923 for (j = 0; j < tbp->b_npages; j += 1) { 924 m = tbp->b_pages[j]; 925 if (m->flags & PG_BUSY) { 926 VM_OBJECT_UNLOCK( 927 tbp->b_object); 928 bqrelse(tbp); 929 goto finishcluster; 930 } 931 } 932 } 933 for (j = 0; j < tbp->b_npages; j += 1) { 934 m = tbp->b_pages[j]; 935 vm_page_io_start(m); 936 vm_object_pip_add(m->object, 1); 937 if ((bp->b_npages == 0) || 938 (bp->b_pages[bp->b_npages - 1] != m)) { 939 bp->b_pages[bp->b_npages] = m; 940 bp->b_npages++; 941 } 942 } 943 VM_OBJECT_UNLOCK(tbp->b_bufobj->bo_object); 944 } 945 bp->b_bcount += size; 946 bp->b_bufsize += size; 947 948 s = splbio(); 949 bundirty(tbp); 950 tbp->b_flags &= ~B_DONE; 951 tbp->b_ioflags &= ~BIO_ERROR; 952 tbp->b_flags |= B_ASYNC; 953 tbp->b_iocmd = BIO_WRITE; 954 reassignbuf(tbp); /* put on clean list */ 955 bufobj_wref(tbp->b_bufobj); 956 splx(s); 957 BUF_KERNPROC(tbp); 958 TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head, 959 tbp, b_cluster.cluster_entry); 960 } 961 finishcluster: 962 pmap_qenter(trunc_page((vm_offset_t) bp->b_data), 963 (vm_page_t *) bp->b_pages, bp->b_npages); 964 if (bp->b_bufsize > bp->b_kvasize) 965 panic( 966 "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n", 967 bp->b_bufsize, bp->b_kvasize); 968 bp->b_kvasize = bp->b_bufsize; 969 totalwritten += bp->b_bufsize; 970 bp->b_dirtyoff = 0; 971 bp->b_dirtyend = bp->b_bufsize; 972 bawrite(bp); 973 974 len -= i; 975 } 976 return totalwritten; 977 } 978 979 /* 980 * Collect together all the buffers in a cluster. 981 * Plus add one additional buffer. 982 */ 983 static struct cluster_save * 984 cluster_collectbufs(vp, last_bp) 985 struct vnode *vp; 986 struct buf *last_bp; 987 { 988 struct cluster_save *buflist; 989 struct buf *bp; 990 daddr_t lbn; 991 int i, len; 992 993 len = vp->v_lastw - vp->v_cstart + 1; 994 buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist), 995 M_SEGMENT, M_WAITOK); 996 buflist->bs_nchildren = 0; 997 buflist->bs_children = (struct buf **) (buflist + 1); 998 for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) { 999 (void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp); 1000 buflist->bs_children[i] = bp; 1001 if (bp->b_blkno == bp->b_lblkno) 1002 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, 1003 NULL, NULL); 1004 } 1005 buflist->bs_children[i] = bp = last_bp; 1006 if (bp->b_blkno == bp->b_lblkno) 1007 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 1008 buflist->bs_nchildren = i + 1; 1009 return (buflist); 1010 } 1011