xref: /freebsd/sys/kern/vfs_cluster.c (revision 17ee9d00bc1ae1e598c38f25826f861e4bc6c3ce)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Modifications/enhancements:
5  * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
36  * $Id: vfs_cluster.c,v 1.9 1995/01/24 10:00:46 davidg Exp $
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/buf.h>
43 #include <sys/vnode.h>
44 #include <sys/mount.h>
45 #include <sys/trace.h>
46 #include <sys/malloc.h>
47 #include <sys/resourcevar.h>
48 #include <sys/vmmeter.h>
49 #include <miscfs/specfs/specdev.h>
50 #include <vm/vm.h>
51 #include <vm/vm_pageout.h>
52 
53 #ifdef DEBUG
54 #include <vm/vm.h>
55 #include <sys/sysctl.h>
56 int doreallocblks = 0;
57 struct ctldebug debug13 = {"doreallocblks", &doreallocblks};
58 
59 #else
60 /* XXX for cluster_write */
61 #define doreallocblks 0
62 #endif
63 
64 /*
65  * Local declarations
66  */
67 struct buf *cluster_rbuild __P((struct vnode *, u_quad_t, struct buf *,
68     daddr_t, daddr_t, long, int, long));
69 void cluster_wbuild __P((struct vnode *, struct buf *, long, daddr_t, int, daddr_t));
70 struct cluster_save *cluster_collectbufs __P((struct vnode *, struct buf *));
71 
72 int totreads;
73 int totreadblocks;
74 
75 #ifdef DIAGNOSTIC
76 /*
77  * Set to 1 if reads of block zero should cause readahead to be done.
78  * Set to 0 treats a read of block zero as a non-sequential read.
79  *
80  * Setting to one assumes that most reads of block zero of files are due to
81  * sequential passes over the files (e.g. cat, sum) where additional blocks
82  * will soon be needed.  Setting to zero assumes that the majority are
83  * surgical strikes to get particular info (e.g. size, file) where readahead
84  * blocks will not be used and, in fact, push out other potentially useful
85  * blocks from the cache.  The former seems intuitive, but some quick tests
86  * showed that the latter performed better from a system-wide point of view.
87  */
88 	int doclusterraz = 0;
89 
90 #define ISSEQREAD(vp, blk) \
91 	(((blk) != 0 || doclusterraz) && \
92 	 ((blk) == (vp)->v_lastr + 1 || (blk) == (vp)->v_lastr))
93 #else
94 #define ISSEQREAD(vp, blk) \
95 	(/* (blk) != 0 && */ ((blk) == (vp)->v_lastr + 1 || (blk) == (vp)->v_lastr))
96 #endif
97 
98 /*
99  * This replaces bread.  If this is a bread at the beginning of a file and
100  * lastr is 0, we assume this is the first read and we'll read up to two
101  * blocks if they are sequential.  After that, we'll do regular read ahead
102  * in clustered chunks.
103  * 	bp is the block requested.
104  *	rbp is the read-ahead block.
105  *	If either is NULL, then you don't have to do the I/O.
106  */
107 int
108 cluster_read(vp, filesize, lblkno, size, cred, bpp)
109 	struct vnode *vp;
110 	u_quad_t filesize;
111 	daddr_t lblkno;
112 	long size;
113 	struct ucred *cred;
114 	struct buf **bpp;
115 {
116 	struct buf *bp, *rbp;
117 	daddr_t blkno, rablkno, origlblkno;
118 	long flags;
119 	int error, num_ra, alreadyincore;
120 
121 	origlblkno = lblkno;
122 	error = 0;
123 	/*
124 	 * get the requested block
125 	 */
126 	*bpp = bp = getblk(vp, lblkno, size, 0, 0);
127 	/*
128 	 * if it is in the cache, then check to see if the reads have been
129 	 * sequential.  If they have, then try some read-ahead, otherwise
130 	 * back-off on prospective read-aheads.
131 	 */
132 	if (bp->b_flags & B_CACHE) {
133 		int i;
134 
135 		if (!ISSEQREAD(vp, origlblkno)) {
136 			vp->v_maxra = bp->b_lblkno + bp->b_bcount / size;
137 			vp->v_ralen >>= 1;
138 			return 0;
139 		} else if( vp->v_maxra >= origlblkno) {
140 			if ((vp->v_ralen + 1) < (MAXPHYS / size))
141 				vp->v_ralen++;
142 			if ( vp->v_maxra >= (origlblkno + vp->v_ralen))
143 				return 0;
144 			lblkno = vp->v_maxra;
145 		}
146 		bp = NULL;
147 	} else {
148 		/*
149 		 * if it isn't in the cache, then get a chunk from disk if
150 		 * sequential, otherwise just get the block.
151 		 */
152 		bp->b_flags |= B_READ;
153 		lblkno += 1;
154 		curproc->p_stats->p_ru.ru_inblock++;	/* XXX */
155 	}
156 	/*
157 	 * if ralen is "none", then try a little
158 	 */
159 	if (vp->v_ralen == 0)
160 		vp->v_ralen = 1;
161 	/*
162 	 * assume no read-ahead
163 	 */
164 	alreadyincore = 1;
165 	rablkno = lblkno;
166 
167 	/*
168 	 * if we have been doing sequential I/O, then do some read-ahead
169 	 */
170 	if (ISSEQREAD(vp, origlblkno)) {
171 		int i;
172 
173 		/*
174 		 * this code makes sure that the stuff that we have read-ahead
175 		 * is still in the cache.  If it isn't, we have been reading
176 		 * ahead too much, and we need to back-off, otherwise we might
177 		 * try to read more.
178 		 */
179 		for (i = 0; i < vp->v_ralen; i++) {
180 			rablkno = lblkno + i;
181 			alreadyincore = (int) incore(vp, rablkno);
182 			if (!alreadyincore) {
183 				if (rablkno < vp->v_maxra) {
184 					vp->v_maxra = rablkno;
185 					vp->v_ralen >>= 1;
186 					alreadyincore = 1;
187 				} else {
188 					if (inmem(vp, rablkno)) {
189 						if( vp->v_maxra < rablkno)
190 							vp->v_maxra = rablkno + 1;
191 						continue;
192 					}
193 					if ((vp->v_ralen + 1) < MAXPHYS / size)
194 						vp->v_ralen++;
195 				}
196 				break;
197 			} else if( vp->v_maxra < rablkno) {
198 				vp->v_maxra = rablkno + 1;
199 			}
200 		}
201 	}
202 	/*
203 	 * we now build the read-ahead buffer if it is desirable.
204 	 */
205 	rbp = NULL;
206 	if (!alreadyincore &&
207 	    (rablkno + 1) * size <= filesize &&
208 	    !(error = VOP_BMAP(vp, rablkno, NULL, &blkno, &num_ra)) &&
209 	    blkno != -1) {
210 		if ((vp->v_ralen + 1) < MAXPHYS / size)
211 			vp->v_ralen++;
212 		if (num_ra > vp->v_ralen)
213 			num_ra = vp->v_ralen;
214 
215 		if (num_ra) {
216 			rbp = cluster_rbuild(vp, filesize,
217 			    NULL, rablkno, blkno, size, num_ra, B_READ | B_ASYNC);
218 		} else {
219 			rbp = getblk(vp, rablkno, size, 0, 0);
220 			rbp->b_flags |= B_READ | B_ASYNC;
221 			rbp->b_blkno = blkno;
222 		}
223 	}
224 
225 	/*
226 	 * if the synchronous read is a cluster, handle it, otherwise do a
227 	 * simple, non-clustered read.
228 	 */
229 	if (bp) {
230 		if (bp->b_flags & (B_DONE | B_DELWRI))
231 			panic("cluster_read: DONE bp");
232 		else {
233 			vfs_busy_pages(bp, 0);
234 			error = VOP_STRATEGY(bp);
235 			vp->v_maxra = bp->b_lblkno + bp->b_bcount / size;
236 			totreads++;
237 			totreadblocks += bp->b_bcount / size;
238 			curproc->p_stats->p_ru.ru_inblock++;
239 		}
240 	}
241 	/*
242 	 * and if we have read-aheads, do them too
243 	 */
244 	if (rbp) {
245 		vp->v_maxra = rbp->b_lblkno + rbp->b_bcount / size;
246 		if (error || (rbp->b_flags & B_CACHE)) {
247 			rbp->b_flags &= ~(B_ASYNC | B_READ);
248 			brelse(rbp);
249 		} else {
250 			vfs_busy_pages(rbp, 0);
251 			(void) VOP_STRATEGY(rbp);
252 			totreads++;
253 			totreadblocks += rbp->b_bcount / size;
254 			curproc->p_stats->p_ru.ru_inblock++;
255 		}
256 	}
257 	if (bp && ((bp->b_flags & B_ASYNC) == 0))
258 		return (biowait(bp));
259 	return (error);
260 }
261 
262 /*
263  * If blocks are contiguous on disk, use this to provide clustered
264  * read ahead.  We will read as many blocks as possible sequentially
265  * and then parcel them up into logical blocks in the buffer hash table.
266  */
267 struct buf *
268 cluster_rbuild(vp, filesize, bp, lbn, blkno, size, run, flags)
269 	struct vnode *vp;
270 	u_quad_t filesize;
271 	struct buf *bp;
272 	daddr_t lbn;
273 	daddr_t blkno;
274 	long size;
275 	int run;
276 	long flags;
277 {
278 	struct cluster_save *b_save;
279 	struct buf *tbp;
280 	daddr_t bn;
281 	int i, inc, j;
282 
283 #ifdef DIAGNOSTIC
284 	if (size != vp->v_mount->mnt_stat.f_iosize)
285 		panic("cluster_rbuild: size %d != filesize %d\n",
286 		    size, vp->v_mount->mnt_stat.f_iosize);
287 #endif
288 	if (size * (lbn + run + 1) > filesize)
289 		--run;
290 	if (run == 0) {
291 		if (!bp) {
292 			bp = getblk(vp, lbn, size, 0, 0);
293 			bp->b_blkno = blkno;
294 			bp->b_flags |= flags;
295 		}
296 		return (bp);
297 	}
298 	tbp = bp;
299 	if (!tbp) {
300 		tbp = getblk(vp, lbn, size, 0, 0);
301 	}
302 	if (tbp->b_flags & B_CACHE) {
303 		return (tbp);
304 	} else if (bp == NULL) {
305 		tbp->b_flags |= B_ASYNC;
306 	}
307 	bp = getpbuf();
308 	bp->b_flags = flags | B_CALL | B_BUSY | B_CLUSTER;
309 	bp->b_iodone = cluster_callback;
310 	bp->b_blkno = blkno;
311 	bp->b_lblkno = lbn;
312 	pbgetvp(vp, bp);
313 
314 	b_save = malloc(sizeof(struct buf *) * (run + 1) + sizeof(struct cluster_save),
315 	    M_SEGMENT, M_WAITOK);
316 	b_save->bs_nchildren = 0;
317 	b_save->bs_children = (struct buf **) (b_save + 1);
318 	bp->b_saveaddr = b_save;
319 
320 	bp->b_bcount = 0;
321 	bp->b_bufsize = 0;
322 	bp->b_npages = 0;
323 
324 	if (tbp->b_flags & B_VMIO)
325 		bp->b_flags |= B_VMIO;
326 
327 	inc = btodb(size);
328 	for (bn = blkno, i = 0; i <= run; ++i, bn += inc) {
329 		if (i != 0) {
330 			tbp = getblk(vp, lbn + i, size, 0, 0);
331 			if ((tbp->b_flags & B_CACHE) ||
332 			    (tbp->b_flags & B_VMIO) != (bp->b_flags & B_VMIO)) {
333 				brelse(tbp);
334 				break;
335 			}
336 			tbp->b_blkno = bn;
337 			tbp->b_flags |= flags | B_READ | B_ASYNC;
338 		} else {
339 			tbp->b_flags |= flags | B_READ;
340 		}
341 		++b_save->bs_nchildren;
342 		b_save->bs_children[i] = tbp;
343 		for (j = 0; j < tbp->b_npages; j += 1) {
344 			bp->b_pages[j + bp->b_npages] = tbp->b_pages[j];
345 		}
346 		bp->b_npages += tbp->b_npages;
347 		bp->b_bcount += size;
348 		bp->b_bufsize += size;
349 	}
350 	pmap_qenter((vm_offset_t) bp->b_data, (vm_page_t *)bp->b_pages, bp->b_npages);
351 	return (bp);
352 }
353 
354 /*
355  * Cleanup after a clustered read or write.
356  * This is complicated by the fact that any of the buffers might have
357  * extra memory (if there were no empty buffer headers at allocbuf time)
358  * that we will need to shift around.
359  */
360 void
361 cluster_callback(bp)
362 	struct buf *bp;
363 {
364 	struct cluster_save *b_save;
365 	struct buf **bpp, *tbp;
366 	caddr_t cp;
367 	int error = 0;
368 
369 	/*
370 	 * Must propogate errors to all the components.
371 	 */
372 	if (bp->b_flags & B_ERROR)
373 		error = bp->b_error;
374 
375 	b_save = (struct cluster_save *) (bp->b_saveaddr);
376 	pmap_qremove((vm_offset_t) bp->b_data, bp->b_npages);
377 	/*
378 	 * Move memory from the large cluster buffer into the component
379 	 * buffers and mark IO as done on these.
380 	 */
381 	for (bpp = b_save->bs_children; b_save->bs_nchildren--; ++bpp) {
382 		tbp = *bpp;
383 		if (error) {
384 			tbp->b_flags |= B_ERROR;
385 			tbp->b_error = error;
386 		}
387 		biodone(tbp);
388 	}
389 	free(b_save, M_SEGMENT);
390 	relpbuf(bp);
391 }
392 
393 /*
394  * Do clustered write for FFS.
395  *
396  * Three cases:
397  *	1. Write is not sequential (write asynchronously)
398  *	Write is sequential:
399  *	2.	beginning of cluster - begin cluster
400  *	3.	middle of a cluster - add to cluster
401  *	4.	end of a cluster - asynchronously write cluster
402  */
403 void
404 cluster_write(bp, filesize)
405 	struct buf *bp;
406 	u_quad_t filesize;
407 {
408 	struct vnode *vp;
409 	daddr_t lbn;
410 	int maxclen, cursize;
411 	int lblocksize;
412 
413 	vp = bp->b_vp;
414 	lblocksize = vp->v_mount->mnt_stat.f_iosize;
415 	lbn = bp->b_lblkno;
416 
417 	/* Initialize vnode to beginning of file. */
418 	if (lbn == 0)
419 		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
420 
421 	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
422 	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
423 		maxclen = MAXPHYS / lblocksize - 1;
424 		if (vp->v_clen != 0) {
425 			/*
426 			 * Next block is not sequential.
427 			 *
428 			 * If we are not writing at end of file, the process
429 			 * seeked to another point in the file since its last
430 			 * write, or we have reached our maximum cluster size,
431 			 * then push the previous cluster. Otherwise try
432 			 * reallocating to make it sequential.
433 			 */
434 			cursize = vp->v_lastw - vp->v_cstart + 1;
435 			cluster_wbuild(vp, NULL, lblocksize,
436 			    vp->v_cstart, cursize, lbn);
437 		}
438 		/*
439 		 * Consider beginning a cluster. If at end of file, make
440 		 * cluster as large as possible, otherwise find size of
441 		 * existing cluster.
442 		 */
443 		if ((lbn + 1) * lblocksize != filesize &&
444 		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen) ||
445 			bp->b_blkno == -1)) {
446 			bawrite(bp);
447 			vp->v_clen = 0;
448 			vp->v_lasta = bp->b_blkno;
449 			vp->v_cstart = lbn + 1;
450 			vp->v_lastw = lbn;
451 			return;
452 		}
453 		vp->v_clen = maxclen;
454 		if (maxclen == 0) {	/* I/O not contiguous */
455 			vp->v_cstart = lbn + 1;
456 			bawrite(bp);
457 		} else {	/* Wait for rest of cluster */
458 			vp->v_cstart = lbn;
459 			bdwrite(bp);
460 		}
461 	} else if (lbn == vp->v_cstart + vp->v_clen) {
462 		/*
463 		 * At end of cluster, write it out.
464 		 */
465 		cluster_wbuild(vp, bp, bp->b_bcount, vp->v_cstart,
466 		    vp->v_clen + 1, lbn);
467 		vp->v_clen = 0;
468 		vp->v_cstart = lbn + 1;
469 	} else
470 		/*
471 		 * In the middle of a cluster, so just delay the I/O for now.
472 		 */
473 		bdwrite(bp);
474 	vp->v_lastw = lbn;
475 	vp->v_lasta = bp->b_blkno;
476 }
477 
478 
479 /*
480  * This is an awful lot like cluster_rbuild...wish they could be combined.
481  * The last lbn argument is the current block on which I/O is being
482  * performed.  Check to see that it doesn't fall in the middle of
483  * the current block (if last_bp == NULL).
484  */
485 void
486 cluster_wbuild(vp, last_bp, size, start_lbn, len, lbn)
487 	struct vnode *vp;
488 	struct buf *last_bp;
489 	long size;
490 	daddr_t start_lbn;
491 	int len;
492 	daddr_t lbn;
493 {
494 	struct cluster_save *b_save;
495 	struct buf *bp, *tbp, *pb;
496 	caddr_t cp;
497 	int i, j, s;
498 
499 #ifdef DIAGNOSTIC
500 	if (size != vp->v_mount->mnt_stat.f_iosize)
501 		panic("cluster_wbuild: size %d != filesize %d\n",
502 		    size, vp->v_mount->mnt_stat.f_iosize);
503 #endif
504 redo:
505 	while ((!incore(vp, start_lbn) || start_lbn == lbn) && len) {
506 		++start_lbn;
507 		--len;
508 	}
509 
510 	pb = (struct buf *) trypbuf();
511 	/* Get more memory for current buffer */
512 	if (len <= 1 || pb == 0) {
513 		relpbuf(pb);
514 		if (last_bp) {
515 			bawrite(last_bp);
516 		} else if (len) {
517 			bp = getblk(vp, start_lbn, size, 0, 0);
518 			bawrite(bp);
519 		}
520 		return;
521 	}
522 	tbp = getblk(vp, start_lbn, size, 0, 0);
523 	if (!(tbp->b_flags & B_DELWRI)) {
524 		relpbuf(pb);
525 		++start_lbn;
526 		--len;
527 		brelse(tbp);
528 		goto redo;
529 	}
530 	/*
531 	 * Extra memory in the buffer, punt on this buffer. XXX we could
532 	 * handle this in most cases, but we would have to push the extra
533 	 * memory down to after our max possible cluster size and then
534 	 * potentially pull it back up if the cluster was terminated
535 	 * prematurely--too much hassle.
536 	 */
537 	if (tbp->b_bcount != tbp->b_bufsize) {
538 		relpbuf(pb);
539 		++start_lbn;
540 		--len;
541 		bawrite(tbp);
542 		goto redo;
543 	}
544 	bp = pb;
545 	b_save = malloc(sizeof(struct buf *) * (len + 1) + sizeof(struct cluster_save),
546 	    M_SEGMENT, M_WAITOK);
547 	b_save->bs_nchildren = 0;
548 	b_save->bs_children = (struct buf **) (b_save + 1);
549 	bp->b_saveaddr = b_save;
550 	bp->b_bcount = 0;
551 	bp->b_bufsize = 0;
552 	bp->b_npages = 0;
553 
554 	if (tbp->b_flags & B_VMIO)
555 		bp->b_flags |= B_VMIO;
556 
557 	bp->b_blkno = tbp->b_blkno;
558 	bp->b_lblkno = tbp->b_lblkno;
559 	bp->b_flags |= B_CALL | B_BUSY | B_CLUSTER;
560 	bp->b_iodone = cluster_callback;
561 	pbgetvp(vp, bp);
562 
563 	for (i = 0; i < len; ++i, ++start_lbn) {
564 		if (i != 0) {
565 			/*
566 			 * Block is not in core or the non-sequential block
567 			 * ending our cluster was part of the cluster (in
568 			 * which case we don't want to write it twice).
569 			 */
570 			if (!(tbp = incore(vp, start_lbn)) ||
571 			    (last_bp == NULL && start_lbn == lbn))
572 				break;
573 
574 			if ((tbp->b_flags & (B_INVAL | B_CLUSTEROK)) != B_CLUSTEROK)
575 				break;
576 
577 			/*
578 			 * Get the desired block buffer (unless it is the
579 			 * final sequential block whose buffer was passed in
580 			 * explictly as last_bp).
581 			 */
582 			if (last_bp == NULL || start_lbn != lbn) {
583 				if( tbp->b_flags & B_BUSY)
584 					break;
585 				tbp = getblk(vp, start_lbn, size, 0, 0);
586 				if (!(tbp->b_flags & B_DELWRI) ||
587 				    ((tbp->b_flags & B_VMIO) != (bp->b_flags & B_VMIO))) {
588 					brelse(tbp);
589 					break;
590 				}
591 			} else
592 				tbp = last_bp;
593 		}
594 		for (j = 0; j < tbp->b_npages; j += 1) {
595 			bp->b_pages[j + bp->b_npages] = tbp->b_pages[j];
596 		}
597 		bp->b_npages += tbp->b_npages;
598 		bp->b_bcount += size;
599 		bp->b_bufsize += size;
600 
601 		tbp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
602 		tbp->b_flags |= B_ASYNC;
603 		s = splbio();
604 		reassignbuf(tbp, tbp->b_vp);	/* put on clean list */
605 		++tbp->b_vp->v_numoutput;
606 		splx(s);
607 		b_save->bs_children[i] = tbp;
608 	}
609 	b_save->bs_nchildren = i;
610 	pmap_qenter((vm_offset_t) bp->b_data, (vm_page_t *) bp->b_pages, bp->b_npages);
611 	bawrite(bp);
612 
613 	if (i < len) {
614 		len -= i;
615 		goto redo;
616 	}
617 }
618 
619 /*
620  * Collect together all the buffers in a cluster.
621  * Plus add one additional buffer.
622  */
623 struct cluster_save *
624 cluster_collectbufs(vp, last_bp)
625 	struct vnode *vp;
626 	struct buf *last_bp;
627 {
628 	struct cluster_save *buflist;
629 	daddr_t lbn;
630 	int i, len;
631 
632 	len = vp->v_lastw - vp->v_cstart + 1;
633 	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
634 	    M_SEGMENT, M_WAITOK);
635 	buflist->bs_nchildren = 0;
636 	buflist->bs_children = (struct buf **) (buflist + 1);
637 	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++)
638 		(void) bread(vp, lbn, last_bp->b_bcount, NOCRED,
639 		    &buflist->bs_children[i]);
640 	buflist->bs_children[i] = last_bp;
641 	buflist->bs_nchildren = i + 1;
642 	return (buflist);
643 }
644