1 /*- 2 * Copyright (c) 1993 3 * The Regents of the University of California. All rights reserved. 4 * Modifications/enhancements: 5 * Copyright (c) 1995 John S. Dyson. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)vfs_cluster.c 8.7 (Berkeley) 2/13/94 36 * $FreeBSD$ 37 */ 38 39 #include "opt_debug_cluster.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/stdint.h> 44 #include <sys/kernel.h> 45 #include <sys/proc.h> 46 #include <sys/bio.h> 47 #include <sys/buf.h> 48 #include <sys/vnode.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/resourcevar.h> 52 #include <sys/vmmeter.h> 53 #include <vm/vm.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <sys/sysctl.h> 57 58 #if defined(CLUSTERDEBUG) 59 #include <sys/sysctl.h> 60 static int rcluster= 0; 61 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, 62 "Debug VFS clustering code"); 63 #endif 64 65 static MALLOC_DEFINE(M_SEGMENT, "cluster_save buffer", "cluster_save buffer"); 66 67 static struct cluster_save * 68 cluster_collectbufs(struct vnode *vp, struct buf *last_bp); 69 static struct buf * 70 cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn, 71 daddr_t blkno, long size, int run, struct buf *fbp); 72 73 static int write_behind = 1; 74 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, 75 "Cluster write-behind; 0: disable, 1: enable, 2: backed off"); 76 77 /* Page expended to mark partially backed buffers */ 78 extern vm_page_t bogus_page; 79 80 /* 81 * Number of physical bufs (pbufs) this subsystem is allowed. 82 * Manipulated by vm_pager.c 83 */ 84 extern int cluster_pbuf_freecnt; 85 86 /* 87 * Maximum number of blocks for read-ahead. 88 */ 89 #define MAXRA 32 90 91 /* 92 * Read data to a buf, including read-ahead if we find this to be beneficial. 93 * cluster_read replaces bread. 94 */ 95 int 96 cluster_read(vp, filesize, lblkno, size, cred, totread, seqcount, bpp) 97 struct vnode *vp; 98 u_quad_t filesize; 99 daddr_t lblkno; 100 long size; 101 struct ucred *cred; 102 long totread; 103 int seqcount; 104 struct buf **bpp; 105 { 106 struct buf *bp, *rbp, *reqbp; 107 daddr_t blkno, origblkno; 108 int error, num_ra; 109 int i; 110 int maxra, racluster; 111 long origtotread; 112 113 error = 0; 114 115 /* 116 * Try to limit the amount of read-ahead by a few 117 * ad-hoc parameters. This needs work!!! 118 */ 119 racluster = vp->v_mount->mnt_iosize_max / size; 120 maxra = 2 * racluster + (totread / size); 121 if (maxra > MAXRA) 122 maxra = MAXRA; 123 if (maxra > nbuf/8) 124 maxra = nbuf/8; 125 126 /* 127 * get the requested block 128 */ 129 *bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0); 130 origblkno = lblkno; 131 origtotread = totread; 132 133 /* 134 * if it is in the cache, then check to see if the reads have been 135 * sequential. If they have, then try some read-ahead, otherwise 136 * back-off on prospective read-aheads. 137 */ 138 if (bp->b_flags & B_CACHE) { 139 if (!seqcount) { 140 return 0; 141 } else if ((bp->b_flags & B_RAM) == 0) { 142 return 0; 143 } else { 144 int s; 145 struct buf *tbp; 146 bp->b_flags &= ~B_RAM; 147 /* 148 * We do the spl here so that there is no window 149 * between the incore and the b_usecount increment 150 * below. We opt to keep the spl out of the loop 151 * for efficiency. 152 */ 153 s = splbio(); 154 for (i = 1; i < maxra; i++) { 155 156 if (!(tbp = incore(vp, lblkno+i))) { 157 break; 158 } 159 160 /* 161 * Set another read-ahead mark so we know 162 * to check again. 163 */ 164 if (((i % racluster) == (racluster - 1)) || 165 (i == (maxra - 1))) 166 tbp->b_flags |= B_RAM; 167 } 168 splx(s); 169 if (i >= maxra) { 170 return 0; 171 } 172 lblkno += i; 173 } 174 reqbp = bp = NULL; 175 } else { 176 off_t firstread = bp->b_offset; 177 178 KASSERT(bp->b_offset != NOOFFSET, 179 ("cluster_read: no buffer offset")); 180 if (firstread + totread > filesize) 181 totread = filesize - firstread; 182 if (totread > size) { 183 int nblks = 0; 184 int ncontigafter; 185 while (totread > 0) { 186 nblks++; 187 totread -= size; 188 } 189 if (nblks == 1) 190 goto single_block_read; 191 if (nblks > racluster) 192 nblks = racluster; 193 194 error = VOP_BMAP(vp, lblkno, NULL, 195 &blkno, &ncontigafter, NULL); 196 if (error) 197 goto single_block_read; 198 if (blkno == -1) 199 goto single_block_read; 200 if (ncontigafter == 0) 201 goto single_block_read; 202 if (ncontigafter + 1 < nblks) 203 nblks = ncontigafter + 1; 204 205 bp = cluster_rbuild(vp, filesize, lblkno, 206 blkno, size, nblks, bp); 207 lblkno += (bp->b_bufsize / size); 208 } else { 209 single_block_read: 210 /* 211 * if it isn't in the cache, then get a chunk from 212 * disk if sequential, otherwise just get the block. 213 */ 214 bp->b_flags |= B_RAM; 215 bp->b_iocmd = BIO_READ; 216 lblkno += 1; 217 } 218 } 219 220 /* 221 * if we have been doing sequential I/O, then do some read-ahead 222 */ 223 rbp = NULL; 224 if (seqcount && (lblkno < (origblkno + seqcount))) { 225 /* 226 * we now build the read-ahead buffer if it is desirable. 227 */ 228 if (((u_quad_t)(lblkno + 1) * size) <= filesize && 229 !(error = VOP_BMAP(vp, lblkno, NULL, &blkno, &num_ra, NULL)) && 230 blkno != -1) { 231 int nblksread; 232 int ntoread = num_ra + 1; 233 nblksread = (origtotread + size - 1) / size; 234 if (seqcount < nblksread) 235 seqcount = nblksread; 236 if (seqcount < ntoread) 237 ntoread = seqcount; 238 if (num_ra) { 239 rbp = cluster_rbuild(vp, filesize, lblkno, 240 blkno, size, ntoread, NULL); 241 } else { 242 rbp = getblk(vp, lblkno, size, 0, 0); 243 rbp->b_flags |= B_ASYNC | B_RAM; 244 rbp->b_iocmd = BIO_READ; 245 rbp->b_blkno = blkno; 246 } 247 } 248 } 249 250 /* 251 * handle the synchronous read 252 */ 253 if (bp) { 254 #if defined(CLUSTERDEBUG) 255 if (rcluster) 256 printf("S(%ld,%ld,%d) ", 257 (long)bp->b_lblkno, bp->b_bcount, seqcount); 258 #endif 259 if ((bp->b_flags & B_CLUSTER) == 0) { 260 vfs_busy_pages(bp, 0); 261 } 262 bp->b_flags &= ~B_INVAL; 263 bp->b_ioflags &= ~BIO_ERROR; 264 if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL) 265 BUF_KERNPROC(bp); 266 error = VOP_STRATEGY(vp, bp); 267 curproc->p_stats->p_ru.ru_inblock++; 268 } 269 270 /* 271 * and if we have read-aheads, do them too 272 */ 273 if (rbp) { 274 if (error) { 275 rbp->b_flags &= ~B_ASYNC; 276 brelse(rbp); 277 } else if (rbp->b_flags & B_CACHE) { 278 rbp->b_flags &= ~B_ASYNC; 279 bqrelse(rbp); 280 } else { 281 #if defined(CLUSTERDEBUG) 282 if (rcluster) { 283 if (bp) 284 printf("A+"); 285 else 286 printf("A"); 287 printf("(%lld,%ld,%lld,%d) ", 288 (intmax_t)rbp->b_lblkno, rbp->b_bcount, 289 (intmax_t)(rbp->b_lblkno - origblkno), 290 seqcount); 291 } 292 #endif 293 294 if ((rbp->b_flags & B_CLUSTER) == 0) { 295 vfs_busy_pages(rbp, 0); 296 } 297 rbp->b_flags &= ~B_INVAL; 298 rbp->b_ioflags &= ~BIO_ERROR; 299 if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL) 300 BUF_KERNPROC(rbp); 301 (void) VOP_STRATEGY(vp, rbp); 302 curproc->p_stats->p_ru.ru_inblock++; 303 } 304 } 305 if (reqbp) 306 return (bufwait(reqbp)); 307 else 308 return (error); 309 } 310 311 /* 312 * If blocks are contiguous on disk, use this to provide clustered 313 * read ahead. We will read as many blocks as possible sequentially 314 * and then parcel them up into logical blocks in the buffer hash table. 315 */ 316 static struct buf * 317 cluster_rbuild(vp, filesize, lbn, blkno, size, run, fbp) 318 struct vnode *vp; 319 u_quad_t filesize; 320 daddr_t lbn; 321 daddr_t blkno; 322 long size; 323 int run; 324 struct buf *fbp; 325 { 326 struct buf *bp, *tbp; 327 daddr_t bn; 328 int i, inc, j; 329 330 GIANT_REQUIRED; 331 332 KASSERT(size == vp->v_mount->mnt_stat.f_iosize, 333 ("cluster_rbuild: size %ld != filesize %ld\n", 334 size, vp->v_mount->mnt_stat.f_iosize)); 335 336 /* 337 * avoid a division 338 */ 339 while ((u_quad_t) size * (lbn + run) > filesize) { 340 --run; 341 } 342 343 if (fbp) { 344 tbp = fbp; 345 tbp->b_iocmd = BIO_READ; 346 } else { 347 tbp = getblk(vp, lbn, size, 0, 0); 348 if (tbp->b_flags & B_CACHE) 349 return tbp; 350 tbp->b_flags |= B_ASYNC | B_RAM; 351 tbp->b_iocmd = BIO_READ; 352 } 353 354 tbp->b_blkno = blkno; 355 if( (tbp->b_flags & B_MALLOC) || 356 ((tbp->b_flags & B_VMIO) == 0) || (run <= 1) ) 357 return tbp; 358 359 bp = trypbuf(&cluster_pbuf_freecnt); 360 if (bp == 0) 361 return tbp; 362 363 /* 364 * We are synthesizing a buffer out of vm_page_t's, but 365 * if the block size is not page aligned then the starting 366 * address may not be either. Inherit the b_data offset 367 * from the original buffer. 368 */ 369 bp->b_data = (char *)((vm_offset_t)bp->b_data | 370 ((vm_offset_t)tbp->b_data & PAGE_MASK)); 371 bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO; 372 bp->b_iocmd = BIO_READ; 373 bp->b_iodone = cluster_callback; 374 bp->b_blkno = blkno; 375 bp->b_lblkno = lbn; 376 bp->b_offset = tbp->b_offset; 377 KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset")); 378 pbgetvp(vp, bp); 379 380 TAILQ_INIT(&bp->b_cluster.cluster_head); 381 382 bp->b_bcount = 0; 383 bp->b_bufsize = 0; 384 bp->b_npages = 0; 385 386 inc = btodb(size); 387 for (bn = blkno, i = 0; i < run; ++i, bn += inc) { 388 if (i != 0) { 389 if ((bp->b_npages * PAGE_SIZE) + 390 round_page(size) > vp->v_mount->mnt_iosize_max) { 391 break; 392 } 393 394 /* 395 * Shortcut some checks and try to avoid buffers that 396 * would block in the lock. The same checks have to 397 * be made again after we officially get the buffer. 398 */ 399 if ((tbp = incore(vp, lbn + i)) != NULL) { 400 if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) 401 break; 402 BUF_UNLOCK(tbp); 403 404 for (j = 0; j < tbp->b_npages; j++) { 405 if (tbp->b_pages[j]->valid) 406 break; 407 } 408 409 if (j != tbp->b_npages) 410 break; 411 412 if (tbp->b_bcount != size) 413 break; 414 } 415 416 tbp = getblk(vp, lbn + i, size, 0, 0); 417 418 /* 419 * Stop scanning if the buffer is fully valid 420 * (marked B_CACHE), or locked (may be doing a 421 * background write), or if the buffer is not 422 * VMIO backed. The clustering code can only deal 423 * with VMIO-backed buffers. 424 */ 425 if ((tbp->b_flags & (B_CACHE|B_LOCKED)) || 426 (tbp->b_flags & B_VMIO) == 0) { 427 bqrelse(tbp); 428 break; 429 } 430 431 /* 432 * The buffer must be completely invalid in order to 433 * take part in the cluster. If it is partially valid 434 * then we stop. 435 */ 436 for (j = 0;j < tbp->b_npages; j++) { 437 if (tbp->b_pages[j]->valid) 438 break; 439 } 440 if (j != tbp->b_npages) { 441 bqrelse(tbp); 442 break; 443 } 444 445 /* 446 * Set a read-ahead mark as appropriate 447 */ 448 if ((fbp && (i == 1)) || (i == (run - 1))) 449 tbp->b_flags |= B_RAM; 450 451 /* 452 * Set the buffer up for an async read (XXX should 453 * we do this only if we do not wind up brelse()ing?). 454 * Set the block number if it isn't set, otherwise 455 * if it is make sure it matches the block number we 456 * expect. 457 */ 458 tbp->b_flags |= B_ASYNC; 459 tbp->b_iocmd = BIO_READ; 460 if (tbp->b_blkno == tbp->b_lblkno) { 461 tbp->b_blkno = bn; 462 } else if (tbp->b_blkno != bn) { 463 brelse(tbp); 464 break; 465 } 466 } 467 /* 468 * XXX fbp from caller may not be B_ASYNC, but we are going 469 * to biodone() it in cluster_callback() anyway 470 */ 471 BUF_KERNPROC(tbp); 472 TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head, 473 tbp, b_cluster.cluster_entry); 474 for (j = 0; j < tbp->b_npages; j += 1) { 475 vm_page_t m; 476 m = tbp->b_pages[j]; 477 vm_page_io_start(m); 478 vm_object_pip_add(m->object, 1); 479 if ((bp->b_npages == 0) || 480 (bp->b_pages[bp->b_npages-1] != m)) { 481 bp->b_pages[bp->b_npages] = m; 482 bp->b_npages++; 483 } 484 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) 485 tbp->b_pages[j] = bogus_page; 486 } 487 /* 488 * XXX shouldn't this be += size for both, like in 489 * cluster_wbuild()? 490 * 491 * Don't inherit tbp->b_bufsize as it may be larger due to 492 * a non-page-aligned size. Instead just aggregate using 493 * 'size'. 494 */ 495 if (tbp->b_bcount != size) 496 printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size); 497 if (tbp->b_bufsize != size) 498 printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size); 499 bp->b_bcount += size; 500 bp->b_bufsize += size; 501 } 502 503 /* 504 * Fully valid pages in the cluster are already good and do not need 505 * to be re-read from disk. Replace the page with bogus_page 506 */ 507 for (j = 0; j < bp->b_npages; j++) { 508 if ((bp->b_pages[j]->valid & VM_PAGE_BITS_ALL) == 509 VM_PAGE_BITS_ALL) { 510 bp->b_pages[j] = bogus_page; 511 } 512 } 513 if (bp->b_bufsize > bp->b_kvasize) 514 panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n", 515 bp->b_bufsize, bp->b_kvasize); 516 bp->b_kvasize = bp->b_bufsize; 517 518 pmap_qenter(trunc_page((vm_offset_t) bp->b_data), 519 (vm_page_t *)bp->b_pages, bp->b_npages); 520 return (bp); 521 } 522 523 /* 524 * Cleanup after a clustered read or write. 525 * This is complicated by the fact that any of the buffers might have 526 * extra memory (if there were no empty buffer headers at allocbuf time) 527 * that we will need to shift around. 528 */ 529 void 530 cluster_callback(bp) 531 struct buf *bp; 532 { 533 struct buf *nbp, *tbp; 534 int error = 0; 535 536 GIANT_REQUIRED; 537 538 /* 539 * Must propogate errors to all the components. 540 */ 541 if (bp->b_ioflags & BIO_ERROR) 542 error = bp->b_error; 543 544 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 545 /* 546 * Move memory from the large cluster buffer into the component 547 * buffers and mark IO as done on these. 548 */ 549 for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head); 550 tbp; tbp = nbp) { 551 nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry); 552 if (error) { 553 tbp->b_ioflags |= BIO_ERROR; 554 tbp->b_error = error; 555 } else { 556 tbp->b_dirtyoff = tbp->b_dirtyend = 0; 557 tbp->b_flags &= ~B_INVAL; 558 tbp->b_ioflags &= ~BIO_ERROR; 559 /* 560 * XXX the bdwrite()/bqrelse() issued during 561 * cluster building clears B_RELBUF (see bqrelse() 562 * comment). If direct I/O was specified, we have 563 * to restore it here to allow the buffer and VM 564 * to be freed. 565 */ 566 if (tbp->b_flags & B_DIRECT) 567 tbp->b_flags |= B_RELBUF; 568 } 569 bufdone(tbp); 570 } 571 relpbuf(bp, &cluster_pbuf_freecnt); 572 } 573 574 /* 575 * cluster_wbuild_wb: 576 * 577 * Implement modified write build for cluster. 578 * 579 * write_behind = 0 write behind disabled 580 * write_behind = 1 write behind normal (default) 581 * write_behind = 2 write behind backed-off 582 */ 583 584 static __inline int 585 cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len) 586 { 587 int r = 0; 588 589 switch(write_behind) { 590 case 2: 591 if (start_lbn < len) 592 break; 593 start_lbn -= len; 594 /* fall through */ 595 case 1: 596 r = cluster_wbuild(vp, size, start_lbn, len); 597 /* fall through */ 598 default: 599 /* fall through */ 600 break; 601 } 602 return(r); 603 } 604 605 /* 606 * Do clustered write for FFS. 607 * 608 * Three cases: 609 * 1. Write is not sequential (write asynchronously) 610 * Write is sequential: 611 * 2. beginning of cluster - begin cluster 612 * 3. middle of a cluster - add to cluster 613 * 4. end of a cluster - asynchronously write cluster 614 */ 615 void 616 cluster_write(bp, filesize, seqcount) 617 struct buf *bp; 618 u_quad_t filesize; 619 int seqcount; 620 { 621 struct vnode *vp; 622 daddr_t lbn; 623 int maxclen, cursize; 624 int lblocksize; 625 int async; 626 627 vp = bp->b_vp; 628 if (vp->v_type == VREG) { 629 async = vp->v_mount->mnt_flag & MNT_ASYNC; 630 lblocksize = vp->v_mount->mnt_stat.f_iosize; 631 } else { 632 async = 0; 633 lblocksize = bp->b_bufsize; 634 } 635 lbn = bp->b_lblkno; 636 KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset")); 637 638 /* Initialize vnode to beginning of file. */ 639 if (lbn == 0) 640 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0; 641 642 if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 || 643 (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) { 644 maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1; 645 if (vp->v_clen != 0) { 646 /* 647 * Next block is not sequential. 648 * 649 * If we are not writing at end of file, the process 650 * seeked to another point in the file since its last 651 * write, or we have reached our maximum cluster size, 652 * then push the previous cluster. Otherwise try 653 * reallocating to make it sequential. 654 * 655 * Change to algorithm: only push previous cluster if 656 * it was sequential from the point of view of the 657 * seqcount heuristic, otherwise leave the buffer 658 * intact so we can potentially optimize the I/O 659 * later on in the buf_daemon or update daemon 660 * flush. 661 */ 662 cursize = vp->v_lastw - vp->v_cstart + 1; 663 if (((u_quad_t) bp->b_offset + lblocksize) != filesize || 664 lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) { 665 if (!async && seqcount > 0) { 666 cluster_wbuild_wb(vp, lblocksize, 667 vp->v_cstart, cursize); 668 } 669 } else { 670 struct buf **bpp, **endbp; 671 struct cluster_save *buflist; 672 673 buflist = cluster_collectbufs(vp, bp); 674 endbp = &buflist->bs_children 675 [buflist->bs_nchildren - 1]; 676 if (VOP_REALLOCBLKS(vp, buflist)) { 677 /* 678 * Failed, push the previous cluster 679 * if *really* writing sequentially 680 * in the logical file (seqcount > 1), 681 * otherwise delay it in the hopes that 682 * the low level disk driver can 683 * optimize the write ordering. 684 */ 685 for (bpp = buflist->bs_children; 686 bpp < endbp; bpp++) 687 brelse(*bpp); 688 free(buflist, M_SEGMENT); 689 if (seqcount > 1) { 690 cluster_wbuild_wb(vp, 691 lblocksize, vp->v_cstart, 692 cursize); 693 } 694 } else { 695 /* 696 * Succeeded, keep building cluster. 697 */ 698 for (bpp = buflist->bs_children; 699 bpp <= endbp; bpp++) 700 bdwrite(*bpp); 701 free(buflist, M_SEGMENT); 702 vp->v_lastw = lbn; 703 vp->v_lasta = bp->b_blkno; 704 return; 705 } 706 } 707 } 708 /* 709 * Consider beginning a cluster. If at end of file, make 710 * cluster as large as possible, otherwise find size of 711 * existing cluster. 712 */ 713 if ((vp->v_type == VREG) && 714 ((u_quad_t) bp->b_offset + lblocksize) != filesize && 715 (bp->b_blkno == bp->b_lblkno) && 716 (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) || 717 bp->b_blkno == -1)) { 718 bawrite(bp); 719 vp->v_clen = 0; 720 vp->v_lasta = bp->b_blkno; 721 vp->v_cstart = lbn + 1; 722 vp->v_lastw = lbn; 723 return; 724 } 725 vp->v_clen = maxclen; 726 if (!async && maxclen == 0) { /* I/O not contiguous */ 727 vp->v_cstart = lbn + 1; 728 bawrite(bp); 729 } else { /* Wait for rest of cluster */ 730 vp->v_cstart = lbn; 731 bdwrite(bp); 732 } 733 } else if (lbn == vp->v_cstart + vp->v_clen) { 734 /* 735 * At end of cluster, write it out if seqcount tells us we 736 * are operating sequentially, otherwise let the buf or 737 * update daemon handle it. 738 */ 739 bdwrite(bp); 740 if (seqcount > 1) 741 cluster_wbuild_wb(vp, lblocksize, vp->v_cstart, vp->v_clen + 1); 742 vp->v_clen = 0; 743 vp->v_cstart = lbn + 1; 744 } else if (vm_page_count_severe()) { 745 /* 746 * We are low on memory, get it going NOW 747 */ 748 bawrite(bp); 749 } else { 750 /* 751 * In the middle of a cluster, so just delay the I/O for now. 752 */ 753 bdwrite(bp); 754 } 755 vp->v_lastw = lbn; 756 vp->v_lasta = bp->b_blkno; 757 } 758 759 760 /* 761 * This is an awful lot like cluster_rbuild...wish they could be combined. 762 * The last lbn argument is the current block on which I/O is being 763 * performed. Check to see that it doesn't fall in the middle of 764 * the current block (if last_bp == NULL). 765 */ 766 int 767 cluster_wbuild(vp, size, start_lbn, len) 768 struct vnode *vp; 769 long size; 770 daddr_t start_lbn; 771 int len; 772 { 773 struct buf *bp, *tbp; 774 int i, j, s; 775 int totalwritten = 0; 776 int dbsize = btodb(size); 777 778 GIANT_REQUIRED; 779 780 while (len > 0) { 781 s = splbio(); 782 /* 783 * If the buffer is not delayed-write (i.e. dirty), or it 784 * is delayed-write but either locked or inval, it cannot 785 * partake in the clustered write. 786 */ 787 if (((tbp = gbincore(vp, start_lbn)) == NULL) || 788 ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI) || 789 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) { 790 ++start_lbn; 791 --len; 792 splx(s); 793 continue; 794 } 795 bremfree(tbp); 796 tbp->b_flags &= ~B_DONE; 797 splx(s); 798 799 /* 800 * Extra memory in the buffer, punt on this buffer. 801 * XXX we could handle this in most cases, but we would 802 * have to push the extra memory down to after our max 803 * possible cluster size and then potentially pull it back 804 * up if the cluster was terminated prematurely--too much 805 * hassle. 806 */ 807 if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) != 808 (B_CLUSTEROK | B_VMIO)) || 809 (tbp->b_bcount != tbp->b_bufsize) || 810 (tbp->b_bcount != size) || 811 (len == 1) || 812 ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) { 813 totalwritten += tbp->b_bufsize; 814 bawrite(tbp); 815 ++start_lbn; 816 --len; 817 continue; 818 } 819 820 /* 821 * We got a pbuf to make the cluster in. 822 * so initialise it. 823 */ 824 TAILQ_INIT(&bp->b_cluster.cluster_head); 825 bp->b_bcount = 0; 826 bp->b_magic = tbp->b_magic; 827 bp->b_op = tbp->b_op; 828 bp->b_bufsize = 0; 829 bp->b_npages = 0; 830 if (tbp->b_wcred != NOCRED) 831 bp->b_wcred = crhold(tbp->b_wcred); 832 833 bp->b_blkno = tbp->b_blkno; 834 bp->b_lblkno = tbp->b_lblkno; 835 bp->b_offset = tbp->b_offset; 836 837 /* 838 * We are synthesizing a buffer out of vm_page_t's, but 839 * if the block size is not page aligned then the starting 840 * address may not be either. Inherit the b_data offset 841 * from the original buffer. 842 */ 843 bp->b_data = (char *)((vm_offset_t)bp->b_data | 844 ((vm_offset_t)tbp->b_data & PAGE_MASK)); 845 bp->b_flags |= B_CLUSTER | 846 (tbp->b_flags & (B_VMIO | B_NEEDCOMMIT | B_NOWDRAIN)); 847 bp->b_iodone = cluster_callback; 848 pbgetvp(vp, bp); 849 /* 850 * From this location in the file, scan forward to see 851 * if there are buffers with adjacent data that need to 852 * be written as well. 853 */ 854 for (i = 0; i < len; ++i, ++start_lbn) { 855 if (i != 0) { /* If not the first buffer */ 856 s = splbio(); 857 /* 858 * If the adjacent data is not even in core it 859 * can't need to be written. 860 */ 861 if ((tbp = gbincore(vp, start_lbn)) == NULL) { 862 splx(s); 863 break; 864 } 865 866 /* 867 * If it IS in core, but has different 868 * characteristics, or is locked (which 869 * means it could be undergoing a background 870 * I/O or be in a weird state), then don't 871 * cluster with it. 872 */ 873 if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK | 874 B_INVAL | B_DELWRI | B_NEEDCOMMIT)) 875 != (B_DELWRI | B_CLUSTEROK | 876 (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) || 877 (tbp->b_flags & B_LOCKED) || 878 tbp->b_wcred != bp->b_wcred || 879 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) { 880 splx(s); 881 break; 882 } 883 884 /* 885 * Check that the combined cluster 886 * would make sense with regard to pages 887 * and would not be too large 888 */ 889 if ((tbp->b_bcount != size) || 890 ((bp->b_blkno + (dbsize * i)) != 891 tbp->b_blkno) || 892 ((tbp->b_npages + bp->b_npages) > 893 (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) { 894 BUF_UNLOCK(tbp); 895 splx(s); 896 break; 897 } 898 /* 899 * Ok, it's passed all the tests, 900 * so remove it from the free list 901 * and mark it busy. We will use it. 902 */ 903 bremfree(tbp); 904 tbp->b_flags &= ~B_DONE; 905 splx(s); 906 } /* end of code for non-first buffers only */ 907 /* check for latent dependencies to be handled */ 908 if ((LIST_FIRST(&tbp->b_dep)) != NULL) 909 buf_start(tbp); 910 /* 911 * If the IO is via the VM then we do some 912 * special VM hackery (yuck). Since the buffer's 913 * block size may not be page-aligned it is possible 914 * for a page to be shared between two buffers. We 915 * have to get rid of the duplication when building 916 * the cluster. 917 */ 918 if (tbp->b_flags & B_VMIO) { 919 vm_page_t m; 920 921 if (i != 0) { /* if not first buffer */ 922 for (j = 0; j < tbp->b_npages; j += 1) { 923 m = tbp->b_pages[j]; 924 if (m->flags & PG_BUSY) { 925 bqrelse(tbp); 926 goto finishcluster; 927 } 928 } 929 } 930 931 for (j = 0; j < tbp->b_npages; j += 1) { 932 m = tbp->b_pages[j]; 933 vm_page_io_start(m); 934 vm_object_pip_add(m->object, 1); 935 if ((bp->b_npages == 0) || 936 (bp->b_pages[bp->b_npages - 1] != m)) { 937 bp->b_pages[bp->b_npages] = m; 938 bp->b_npages++; 939 } 940 } 941 } 942 bp->b_bcount += size; 943 bp->b_bufsize += size; 944 945 s = splbio(); 946 bundirty(tbp); 947 tbp->b_flags &= ~B_DONE; 948 tbp->b_ioflags &= ~BIO_ERROR; 949 tbp->b_flags |= B_ASYNC; 950 tbp->b_iocmd = BIO_WRITE; 951 reassignbuf(tbp, tbp->b_vp); /* put on clean list */ 952 ++tbp->b_vp->v_numoutput; 953 splx(s); 954 BUF_KERNPROC(tbp); 955 TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head, 956 tbp, b_cluster.cluster_entry); 957 } 958 finishcluster: 959 pmap_qenter(trunc_page((vm_offset_t) bp->b_data), 960 (vm_page_t *) bp->b_pages, bp->b_npages); 961 if (bp->b_bufsize > bp->b_kvasize) 962 panic( 963 "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n", 964 bp->b_bufsize, bp->b_kvasize); 965 bp->b_kvasize = bp->b_bufsize; 966 totalwritten += bp->b_bufsize; 967 bp->b_dirtyoff = 0; 968 bp->b_dirtyend = bp->b_bufsize; 969 bawrite(bp); 970 971 len -= i; 972 } 973 return totalwritten; 974 } 975 976 /* 977 * Collect together all the buffers in a cluster. 978 * Plus add one additional buffer. 979 */ 980 static struct cluster_save * 981 cluster_collectbufs(vp, last_bp) 982 struct vnode *vp; 983 struct buf *last_bp; 984 { 985 struct cluster_save *buflist; 986 struct buf *bp; 987 daddr_t lbn; 988 int i, len; 989 990 len = vp->v_lastw - vp->v_cstart + 1; 991 buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist), 992 M_SEGMENT, M_WAITOK); 993 buflist->bs_nchildren = 0; 994 buflist->bs_children = (struct buf **) (buflist + 1); 995 for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) { 996 (void) bread(vp, lbn, last_bp->b_bcount, NOCRED, &bp); 997 buflist->bs_children[i] = bp; 998 if (bp->b_blkno == bp->b_lblkno) 999 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, 1000 NULL, NULL); 1001 } 1002 buflist->bs_children[i] = bp = last_bp; 1003 if (bp->b_blkno == bp->b_lblkno) 1004 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, 1005 NULL, NULL); 1006 buflist->bs_nchildren = i + 1; 1007 return (buflist); 1008 } 1009